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Summary 
 
From P-wave traveltime measurements in a spherical shale 
sample at 40 MPa we find the symmetry axis. We 
transform the ray velocities from the measurement 
coordinate system to the symmetry axis coordinate system. 
Assuming transverse isotropy symmetry, we estimate the 
elasticity tensor using a very fast simulated annealing 
algorithm followed by a quasi Newton method. 
 
Introduction 
 
Due to sedimentation pattern of clay minerals, shale 
formations generally show transverse isotropy (TI) with 
vertical axis of symmetry. The main motivation of this 
study is to understand the seismic anisotropy of the 
overburden shale. Geological formations in the region 
under study are generally experiencing a horizontal stress 
field. This stress field may cause azimuthal anisotropy by 
either tilting the symmetry axis of shale formations and/or 
causing the directional planes of weakness. To characterize 
the seismic anisotropy, we have used P-wave traveltimes 
from a spherical shale core sample from the top of a sand 
reservoir. Unlike others, e.g Delinger (2005) and  Vestrum 
and Brown (1994), we find the symmetry axis first and then 
invert for elasticity parameters to reduce the complexity of 
the inversion. Assuming TI symmetry, we have estimated 
the elasticity tensor using the Simulating Annealing 
followed by quasi Newton algorithm. 
 
Sample preparation and measurement 
 
To prepare a spherical sample, a core sample was polished 
in different directions to obtain a sphere with 50 mm in 
diameter. The spherical sample has been placed in pressure 
chamber to measure the ultrasonic velocities in a broad 
range of confining pressures from ambient pressure to 700 
MPa. Traveltimes was measured over the spherical sample 
at every 15 degrees in azimuthal and polar directions using 
the transducers at resonant frequency of 2 MHz (Figure 1). 
This acquisition pattern produced 132 records of P-wave 
traveltimes. 
 
Estimation of major symmetry axis  
 
To find the symmetry axis of a TI medium, we use the 
invariance of ray velocity V along the azimuthal direction, 
expressed by equation (1). To find the axis, we form an 
objective function S given by equation (2). This requires, 
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Figure 1:  This A schematic of measurements locations on 
the sphere  
 
transforming the data from the measurement coordinates 
( α , β ) to the symmetry axis coordinates (θ ,ϕ ) given by 
equations (3), (4), and (5) with symmetry axis coordinates 
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Elasticity tensor from spherical samples 

 
β ϕ∂ ∂  and α ϕ∂ ∂ are given in equations (6) and (7). 

V α∂ ∂  and V β∂ ∂ can be calculated numerically using 

the finite difference from measured ray velocities along the 
azimuthal and polar directions. Due to lack of data to use 
the four-term finite difference, we interpolate the ray 
velocities along the polar angle over a sphere into the 
smaller grids using the linear triangularization of adjacent 
points. Transformation from measurement coordinate 
system to symmetry axis coordinate system is illustrated by 
Figure 2. 
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Figure 2:  Measurement and symmetry axis coordinate 
systems after rotation( )0 0,α β . 

 
The objective function S is 2-dimensional and the direct 
searching of the model space could be used to find the 
solution instead of using other minimization algorithm. We 

drew prior values of 
0

α  and 
0

β from a uniform grid 

( )
0 0

0 2 ,  - / 2 / 2α π π β π≤ ≤ ≤ ≤ and plotted the 

objective function in Figure 3. We used the ray velocities 
measured at 40 MPa pressure which is close to lithostatic 
pressure at the depth where the sample was taken from.  
Figure 3 shows two minima of S, where the smaller was 
considered as the true solution. The symmetry axis tilt is 

given by
0
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, 
0
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(Figure 4). 

 

 
Figure 3: Model space of the objective function S .      
 

 
 
Figure 4: The rotation of symmetry axis with respect to 
normal to bedding plane.  
 
Ray and phase velocities and angles in TI medium 
 
Phase velocity v  for a quasi P-wave can be simply found 
by solving the Christoffel’s equations for a TI medium. We 
use the same notation as given in Slawinski (2003), 
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where 
ij

C  are the elasticity coefficients, ρ  is the density, 

and θ  is the phase angle. Hereafter we use normalized 
elasticity coefficients by density and wherever we refer to 

elasticity coefficients 
ij

C , they indeed are /
ij

C ρ . 

 



Elasticity tensor from spherical samples 

Because energy propagates with ray velocity, we use the 
following equation to relate ray and phase velocities, 
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where v θ∂ ∂  can be expressed as a function of directional 
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3
v n∂ ∂ is the derivative of phase velocity (8) with respect 

to directional cosine 
3

n . To express 
3

n  as a function of ray 

angle and ray velocity, we follow the same approach given 
in Ursin and Hokstad (2003), 
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where α  is the ray angle. lnd V dα  can be simply found  

numerically using a four-term finite difference operator. 
Noise in measurements may cause instability in numerical 
differentiation. Hence, we fit a high order polynomial to the 
measured ray velocities and constrain it by 
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measured ray velocities in symmetry axis coordinate 

system in azimuth 45
�

. Figure 6 shows the numerically and 
analytically (polynomial fitting) calculated phase angles as 
a function of ray angle. The imposed constrain results in 
more stable phase angles. 
 
 

 
 
Figure 5: Measured and polynomial fitted ray velocities.    

 
 
Figure 6: Numeric and analytically computed phase angles 
 
Inverse modeling and results 
 
A quadratic objective function, without imposing a specific 
model space structure given by Tarantola (2005), can be 
used to minimize the residual error as: 
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where  i  and j correspond to azimuth and polar angles 

respectively. N  and M are number of interpolated ray 
velocities V in symmetry axis coordinate over the entire 

azimuth and polar angles. 
D

C is the covariance matrix of 

the data. We assume there is no correlation between the 
data, hence, the off-diagonal elements of covariance matrix 
are zero. The diagonal elements or the variances could be 
the errors in picking the traveltimes or here, error in 
measuring the ray velocities. 
 
To minimize the objective function (14), we implemented 
two different inversion algorithms. A very fast simulated 
annealing (VFSA) algorithm (Stofa and Sen, 1995) was 
used initially to get a solution close to global minimum 
from a prior model randomly drawn from a wide range 

uniform distribution for three elasticity coefficients 
11

C , 

13
C , and 

33
C .  Without the shear wave velocities it is not 

possible to uniquely estimate 
13

C and 
44

C . Hence, we kept 

44
C constant during the minimization. A prior value for 

44
C  

was estimated from the converted shear waves from a VSP 
survey. Following the VFSA we implemented a quasi 
Newton algorithm with BFGS method (Press et al., 2002, 



Elasticity tensor from spherical samples 

Nocedal and Wright, 1999) with a prior model set at the 
solution which was found from VFSA, to reach the exact 
solution quickly. Using an iterative scheme we update the 
prior model vector m according to: 
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where, 
M

C is the covariance matrix for model parameters, 

e is the residual vector and it is the difference between 
measured and computed ray velocities. α is the step length 
and could be computed either by inexact line search criteria 
such as Wolfe conditions (Nocedal and Wright, 1999) or 
exact methods such as Brent algorithm (Press et al., 2002). 

f∇ is the derivative of the objective function with respect 

to model parameters (16) and T is transpose operator. In 
practice, we assume that the data, as well as model 
parameters are independent, hence, the correlation between 
two different elements is zero.  So, the covariance matrices 

of model 
M

C  and data 
D

C  are diagonal and contain the 

variances.  Since we assume that 
D

C is proportional to 

identity matrix, we look at the product of gradient 
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f∇ and 

data residual vector 
obs syn

e V V= − . 

 

1 1

N M
ijT

f ij

i jk k

Vf
e e

m m= =

∂∂
= ∇ = −

∂ ∂
∑∑ ,                                  (16) 

 
where the indices i  , j  vary over the  number of azimuth 

and polar angles, and k  over model parameters. 
 
Following are the normalized elasticity tensor elements and 
Thomsen anisotropy parameters for the sample at 40 MPa: 
 

11
13.43C = GPa, 

13
6.68C = GPa, 

33
9.48C = GPa, 

0.20δ = , and 0.21ε = , where 
44

2.25C = GPa.  
 
Figure 7 shows the measured ray velocities in the 
symmetry axis coordinate system and Figure 8 shows the 
residuals in the same coordinate system. As can be seen 
from these figures, TI symmetry may not be a good 
approximation, hence a lower symmetry class, such as 
tetragonal or orthorhombic, may need to be considered. 
However, this would require shear wave traveltimes as 
well. 
 
 
 
 

Conclusions 
 
We have estimated the elasticity tensor for a spherical shale 
sample using the measured ultrasonic P-wave traveltimes in 
different azimuth and polar angles. Because of horizontal 
stress field, shale formation may not be approximated by 
transverse isotropy symmetry well and lower symmetries 
may need to be considered. We have used a global 
optimization approach using Simulated Annealing which is 
followed by local optimization method using the quasi 
Newton algorithm. 
 

 
 
Figure 7: Measured ray velocities in symmetry axis 
coordinate system. 
 

 
 
Figure 8: Residual ray velocities in symmetry axis 
coordinate system coordinate 
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