
©2008 IEEE. Personal use of this material is permitted. However, 
permission to reprint/republish this material for advertising or 
promotional purposes or for creating new collective works for resale or 
redistribution to servers or lists, or to reuse any copyrighted 
component of this work in other works must be obtained from the IEEE. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195638029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Ontology-based Software Engineering- Software Engineering 2.0 

 
T.S. Dillon FIEEE, E. Chang SMIEEE,P. Wongthongtham 

 
Digital Ecosystems and Business Intelligence Institute, 

Curtin University of Technology, 

Perth, Western Australia 6845 

tharam.dillon{ elizabeth.chang,Pornpit.wongthongtham}@cbs.curtin.edu.au 

 

 

Abstract 
 

This paper describes the use of ontologies in 

different aspects of software engineering. This use 

of ontologies varies from support for software 

developers at multiple sites to the use of an 

ontology to provide semantics in different 

categories of software, particularly on the web. The 

world’s first and only software engineering 

ontology and a project management ontology in 

conjunction with a domain ontology are used to 

provide support for software development that is 

taking place at multiple sites. Ontologies are used 

to provide semantics to deal with heterogeneity in 

the representation of multiple information sources, 

enable the selection and composition of web 

services and grid resources, provide the shared 

knowledge base for multiagent systems, provide 

semantics and structure for trust and reputation 

systems and privacy based systems and codification 

of shared knowledge within different domains in 

business, science, manufacturing, engineering and 

utilities. They, therefore, bring a new paradigm to 

software engineering through the use of semantics 

as a central mechanism which will revolutionize the 

way software is developed and consumed in the 

future leading to the development of software as a 

service bringing about the dawn of software 

engineering 2.0. 

 

1. Introduction 
Ontology was initially introduced into computing 

and information technology as a means of 

providing the semantics in the “Semantic Web”.  

This provided support for the retrieval information 

based on its meaning rather than just simple string 

matching.  Since this early use of ontologies, they 

have now grown to provide semantics and 

mechanisms for communication and structuring of 

knowledge in a wide variety of uses in IT, business 

and many other areas of human endeavour. In this 

keynote paper, we will provide a panoramic vista of 

some of the ways ontologies are being used in our 

work and that we hope to stimulate more research 

in the software engineering community into what 

you believe to be as the essence of software 

engineering 2.0. 

Software as a service is going to be increasingly the 

dominant means of delivery and consumption of 

software. This will mean there must be a good 

enough characterization of the semantics of the 

software services to allow one to choose the 

appropriate software and to compose different 

components of software that meet particular 

requirements. In addition, this will introduce new 

approaches to software development.  The use of 

multisite software development to allow one to 

cost-effectively access the sources to carry out the 

development is accelerating. This brings new 

challenges in  communicatiion between the groups 

working at different sites.  Here again, ontologies 

have an important role to play. 

 

2. Purposes  for which ontologies are 

being used 
 

Ontologies are being used in our research for 

several purposes.  These include: 

(1) To provide a strong and unambiguous 

communication mechanism, and references 

medium for software engineers working at 

multiple sites to develop software , for you to 

solve a software engineering ontology and a 

project management ontology. 

(2) To provide a mediating mechanism for 

accessing heterogeneous data and information 

sources, particularly on the Web. 

(3) To enable the building of applications on the 

Web by providing clearly defined semantics   

for Web services. 

(4) To provide a common knowledge base for 

multi agents working in a particular domain. 

(5) To provide clearly defined semantics and 

confidence for interactions on the Web, more 

specifically, to build :Trust and Reputation 

systems[4], Privacy Based systems[14,15] 

(6) To provide clearly defined semantics for the 

knowledge in a number of different domains, 

including: 

• protein ontology 

• disease ontology 

• manufacturing ontology 

• energy and power systems ontology 

• different financial systems ontologies 

 

It will not be possible  in the space of this paper to 

discuss each of these ontologies in detail and their  

use in construction of software. I will therefore 

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.77

13

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.77

13

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.77

13

19th Australian Conference on Software Engineering

1530-0803/08 $25.00 © 2008 IEEE
DOI 10.1109/ASWEC.2008.77

13

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



make a selection and discuss the cases one to four 

above and  refer you to additional references or 

alternatively the websites if you wish to obtain 

information about the other ontologies and their 

use. 

 

3. Ontology Definitions 
 

    The term “Ontology” is derived from its usage in 

philosophy where it means the study of being or 

existence as well as the basic categories [9]. 

Therefore, it is used to refer to what exists in a 

system model.  

    An ontology, in computer science, is an explicit 

specification of a conceptualisation [11,12]. In such 

an ontology, definitions associate the names of 

concepts in the universe of discourse e.g. classes, 

relations, functions) with describing what the 

concepts mean, and formal axioms that constrain 

the interpretation and well-formed used of these 

terms [10].  

    People use the word ontology in different ways 

and to mean different things.  However, different 

definitions provide different and complementary 

points of view on the word ontology. In the 

following sections, we compare ontology with data 

catalogues of glossaries, data dictionaries, thesauri, 

taxonomies. 

    We summarise the comparison between ontology 

and glossary or data dictionary and a taxonomy 

from [6,19]. Ontology is more than a glossary or 

data dictionary in whose terms everything else must 

be well described. An Ontology is more than a 

taxonomy or classification of terms. Often the term 

‘ontology’ has been used very loosely to label 

almost any conceptual classification schema. 

Although a taxonomy contributes to the semantics 

of a term in a vocabulary, ontologies include richer 

relations between terms. A true ontology should 

contain not only a hierarchy of concepts organised 

by  ‘is a’, ‘subtype’, or ‘subclass’ relations, but 

other ‘semantic relations’ that specify how one 

concept is related to another. The terms in ontology 

are chosen to ensure the representation of the 

abstract foundational concepts and distinctions 

within the domain of interest and form a complete 

set whose relationship one to another is defined 

using formal techniques which provide the semantic 

basis for the terminology chosen.  

    We should also distinguish between knowledge 

representations in Knowledge Based Systems 

(KBS) and Ontologies. A knowledge representation 

in a KBS is solely for the purpose of reasoning 

within that KBS and the terms do not have to be 

capable of being shared or understood more widely. 

In contrast,a key element of anontology is the 

shared nature of the conceptualization across the 

community which represents the domain.  

 

4. Ontology Based MultiSite Software 

Development 

 

    There have been major shifts from the traditional 

single-site business environments where people, 

resources, business, and services are all centrally 

managed, monitored, and controlled to today’s 

multi-site environments for software development. 

Multi-site distributed software development 

requires the implementation of methodologies, 

technologies, and processes to minimise the 

potentially negative aspects and to leverage multi-

site distributed software development benefits. 

There are four issues that need to be addressed: 

• Communication and coordination 

• Unified Knowledge Sharing 

• Knowledge Sharing Platform  

• Methodology Adaptation and Validation  

    Failure to identify a clear issue or to correctly 

interpret an answer, often causes 

miscommunication, misunderstanding, and 

misinterpretations during discussion, subsequently 

followed by lack of coordination of activities and 

tasks. The physical distance becomes a crucial issue 

when the specifications are not complete, or 

ambiguous, or continually evolving, thereby 

needing more interaction among team members. 

Failure to share unifying knowledge, which 

includes domain knowledge, common knowledge, 

and project information including project data, 

project agreement, and project understanding, is a 

key issue. Awareness of the work that is being done 

according to the plan, the work that is being done 

co-operatively between teams, the current issues 

that have been raised, the issues that have been 

clarified, the means whereby members can conduct 

a discussion in order to make a decision on issues, 

all present a challenge in a multi-site distributed 

environment.  Different teams might not be aware 

of the tasks that are being carried out by others, 

potentially leading to problems such as two groups 

overlapping in some work, or other work not being 

performed due to misinterpretation of the task.  

Wrong tasks may be carried out due to ignorance of 

whom to contact in order to obtain the proper 

details.  If everyone working on a certain project is 

located in the same area, then situational awareness 

is relatively straightforward.. Over the last three 

years, we have developed the world’s first and only 

Software Engineering Ontology (SE Ontology) 

which is available online at www.seontology.org. 

The SE Ontology defines common sharable 

software engineering knowledge including 

particular project information [23,24,25] and 

typically provides software engineering concepts – 

what the concepts are, how they are related, and 

why they are related [23,24,25]. These concepts 

facilitate common understanding of software 

engineering project information to all the 

distributed members of a development team in a 

multi-site development environment. We have 

merged Gruber’s [11,12], and Studer’s [21] 

definitions of an ontology as a basis to define the 

14141414

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



software engineering ontology. Hence, the software 

engineering ontology is a formal, explicit 

specification of a shared conceptualisation in the 

domain of software engineering. ‘Formal’ implies 

that the software engineering ontology should be 

machine-understandable. Software engineering 

ontology facilitates better communication over 

software engineering domain knowledge between 

humans and machines. ‘Explicit’ implies that the 

type of software engineering concepts used, and 

their constraints, are explicitly defined. Software 

engineering ontology standardises and formalises 

the meaning of terms in the software engineering 

through its concepts. ‘Shared’ shows that the 

ontology specifies consensual knowledge of 

software engineering which means it is public and 

accepted by a group of software engineers. 

‘Conceptualisation’ implies an abstract model that 

has identified the relevant software engineering 

concepts. In this work, the input of Professor Ian 

Sommerville [22,23] from St. Andrews University 

was critical, 

The software Engineering ontology consists of 

several sub-ontologies namely: 

− The software requirements ontology, which 

consists of the following four sub-ontologies 

namely: a requirements sub-ontology,  a 

requirements elicitation sub-ontology, a 

requirements analysis sub-ontology, a 

requirements specification sub-ontology; See 

example in Appendix A. 

− The software design ontology which consists 

of a design activitie sub-ontology, an 

architectural design sub-ontology, a detailed 

design sub-ontology, and a design strategies 

and methods sub-ontology; See ample in 

Appendix B. 

− The construction ontology, which consists of 

construction language sub-ontology, a coding 

sub-ontology and a re-use sub-ontology; See 

example in Appendix C. 

− The software testing ontology which consists 

of the following subontologies namely: a test 

issues sub-ontology, a test targets sub-

ontology, a test objectives sub-ontology, a test 

techniques sub-ontology, a test activities sub-

ontology;  

− The software tools and methods ontology 

which consists of a software tools sub-ontology 

and a software methods sub-ontology.  

    It is not necessary that an ontology have 

instances, but software engineering ontology has 

the instances that represent project information 

including project data, project understanding, and 

project agreement. Figure 1 shows a schematic 

view of the software engineering ontology.  

    The entire set of software engineering concepts is 

captured in a generic software engineering ontology 

as domain knowledge. A particular project or a 

particular software development probably uses only 

part of the whole set of software engineering 

concepts. For example, if a project uses purely 

object-oriented methodology, then the concept of a 

data flow diagram might not necessarily be 

included; instead, it includes concepts like class 

diagram, activity diagram and so on. The specific 

software engineering concepts used for the 

particular software development project are 

captured in specific software engineering ontology 

as sub domain knowledge. The generic software 

engineering ontology represents all software 

engineering concepts that everyone working on 

software engineering is agreed upon, while specific 

software engineering ontology represents some 

concepts of software engineering for the particular 

project or particular enterprises need. Then, in each 

project, there exists project information or actual 

data including project understanding and project 

agreement. The project information in particular 

meets a particular project need and is needed with 

the software engineering ontology to define 

instance knowledge. Note that the domain 

knowledge is separated from instance knowledge. 

The instance knowledge varies depending on its use 

for a particular project. The domain knowledge is 

quite certain, while the instance knowledge  varies 

according to the project. Once all domain 

knowledge, sub domain knowledge and instance 

knowledge are created, it is available to be shared 

among software engineers through the Internet. All 

team members, regardless of where they are, can 

query the semantic linked project data and use them 

as the common communication and knowledge 

basis for raising discussion matters, questions, 

analysing problems, proposing revisions or 

designing solutions, etc.  

    Capturing domain knowledge, organising sub 

domain knowledge, and storing and extending 

instance knowledge of individual members and 

teams within a multi-site project, and making the 

knowledge available to others in the project, are 

within the research area of knowledge management. 

The particular research issue of knowledge 

management requires software engineering 

knowledge management systems.  

    The reason for the development of software 

engineering knowledge management systems is 

basically to facilitate knowledge sharing, access, 

update, and exchange. According to this objective, 

tasks are assigned to the systems containing a 

number of sub systems. There is a set of systems to 

facilitate maintaining instantiations of software 

engineering ontology: safeguard system, ontology 

system, and decision maker system. The 

architecture of the whole systems in the multi-site 

environment is shown in Figure 2.   

15151515

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



Figure 1 Schematic overview of software engineering ontology 
 

 

India site

Web Server

Systems Architecture

Ontology System

Safeguard 

System

Decision Maker

System

US site

UK site

China site

Ontology 

Repository

User 

Database

Decision 

Making 

Database

Pending 

update

Has secured connection

Connect / 

Retrieve

Request updated

Results

 
Figure 2Model of Management Systems 

 

     Team members, regardless of where they are, 

connect to the web server via a web browser. This 

will enable team members to directly use the 

system without having to download any software or 

install any application. Each team member is served 

by the intelligent systems tool as the 

communication media. This allows direct 

communication between different team members 

using a messaging system and also allows 

monitoring and recording of the activities of the 

team members. Each team member is provided with 

a particular set of access privileges that are 

dependent on the role of that team member in the 

project. The set of sub systems within the 

intelligent support systems architecture includes: 

safeguard system, ontology system and decision 

maker system.  

In addition to the Software Engineering 

Ontology, the group at DEBII has defined a 

Multisite Project Management Ontology [3] which 

consists of 11 sub-ontologies, which are: 

A Process  sub-ontology based on PMI process 

structures and definitions; A  Software Product sub-

ontology which includes software development, 

PPP management and other PPP work; An 

Enterprise Architecture sub-ontology; A Software 

Component sub-ontology; An Actor & Role sub-

ontology that defines the interplay of people and 

computers in PPP management; A PPP Team sub-

ontology that represents the allocation of people to 

portfolio, program and project assignments; A 

Service Level sub-ontology that defines the product 

and process performance measures of PPP 

management; A Quality sub-ontology that defines 

service quality management to manage product & 

process performance variances; A Risk sub-

ontology that defines the concepts of risks  in PPP 

management enhanced with inclusion of MSPM 

requirements of PEST risk categories;A Control 

Structure sub-ontology that defines PMI instances 

of “Portfolio, Program and Project” as the control 

framework; A Location sub-ontology that abstracts 

the geography and building concepts of location, 

linked to the other appropriate elements of the Risk, 

Actor + Role, Process and Product sub-ontologies 

to profile the extension of PPP control structures by 

location definitions.  

5. Ontology Mediated Information 

Access 
 

    In any given field of databases, there are widely 

varying characteristics using their own categories 

for storing data. Sometimes, different databases use 

identical labels but with different meanings; 

conversely, the same meanings are expressed via 

different names. Whenever database 

interoperability becomes a major problem, an 

ontology has a major role to play in alleviating this 

situation. For example, in one database whose 

entity relationship diagram is shown in Figure 3, 

data about an activity transition (transition between 

activities) might be encoded for the activity 

transition together with branch transition (transition 

between activities through the condition), special 

transition (transition from an activity to a stop or 

transition from a start to an activity) and concurrent 

transition (transition between activities through 

either a fork or a join). In  the ontology, these 

16161616

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



transitions are separated, therefore queries about 

fork transition, for instance, can be directed to the 

right place.   

 

 

Figure 3. Entity relationship diagram 

representing activity transition concept 
 

    Rules in ontology can be expressed about 

relationships between concepts or classes and these 

can be used in  query processing that generates all 

results matching the query according to the 

specified relationships. Unlike databases, in  an 

ontology, new facts can be generated by inferring 

or reasoning with the asserted facts. 

There has been a Data Explosion of Protein 

Structure Data which makes it difficult to create 

explanatory and predictive models that are 

consistent with  the huge volume of data. This 

difficulty increases when a large variety of 

heterogeneous approaches to gather data from 

multiple perspectives and store it with completely 

different formats in the different protein databases. 

In order to facilitate computational processing of 

the data from the multiple data sources we have 

built the first and only available Protein Ontology 

(PO) to integrate protein knowledge and provide a 

structured and unified vocabulary to represent 

protein synthesis concepts.[20] This PO   

• consists of concepts, which are data descriptors 

for proteomics data and the relationships 

among these concepts.  

• has: 

o a hierarchical classification of concepts 

represented as classes, from general to 

specific; 

o a list of attributes related to each concept, 

for each class; 

o a set of relationships between classes to 

link concepts in ontology in more 

complicated ways then implied by the 

hierarchy, to promote reuse of concepts in 

the ontology; and 

o a set of algebraic operators for querying 

protein ontology instances. 

      More details about Protein Ontology are at:      

      http://www.proteinontology.info 

      The Protein Ontology is a part of Standardized 

Biomedical Ontologies available through the 

National Center for Biomedical Ontologies along 

with Gene Ontology, Flybase,  and others. 

http://cbioapprd.stanford.edu/ncbo/faces/pages/onto

logy_list.xhtml 

      This PO will form a standard on accessing the 

different protein data sources. 

     As the ontology in this application can act as a 

mediator for accessing not only relational data but 

also semi-structured data  such as XML or metadata 

annotations and unstructured information it is a 

generalization of the original concept of a mediator 

proposed by Weiderhold for accessing relational 

databases. We call this approach Ontology 

Mediated Information Access (OMIA). 

 

6. Ontology and Semantic Web Services 
 

Web services [1,2,4] are self-contained 

components applications that can be described, 

published, located, and invoked over internet.. Web 

Services can be dynamically composed into 

applications. And this allows the implementations 

to be platform independent and programming 

language-neutral. Web Services systems promote 

significant decoupling and dynamic binding of 

components. The independence of different services 

publishers and the subscribers can formulate the 

most suited services they want. 

     The contemporary web services specification 

models merely focus on the syntactical levels, e.g. 

the Web Service Definition Language (WSDL),the 

Web Services Flow Language (WSFL), the 

Business Process Execution Language for Web 

Services (BPEL4WS), Web Service Capability 

Description Language (SCDL). Web Service 

Choreography Service (WSCI). These schemes 

capture the structural properties of the web 

components only, using the BPEL and WSCI to 

weave different Web services into meaningful 

business processes. However, this still remains a 

specification at the syntactic level. It is likely that 

the requirements of a user will often not be met by 

a single web service but will require the 

composition of several component web services. 

     There are several issues that must be addressed 

for successful application of these web services and 

these include (1) selection of a suitable architecture 

–see [7,8] for a discussion of different architectural 

styles and a proposed new approach;(2) Discovery 

of suitable services [26](3) selection of a service (4) 

composition and coordination of the services to 

meet the requirements. To assist the process 

particularly of discovery and selection our group 

like several other researchers have decided that it is 

necessary to semantically annotate these web 

services. We use a combination of Ontologies and 

Web 2.0 philosophy to achieve provision of 

semantics and composition. The key ideas below 

are more fully explained in [7,8] 

First we define a core concept: a Service Space 

is a supportive environment where a collection of 

17171717

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



Web services gather for the purpose of fulfilling 

user demands. Service space is the ‘first class’ 

concept to cope with challenges inherent in 

distributed Web services. It should be noted that a 

service space does not host, manage, or run services 

as do most services containers [ 5]. Rather, it 

provides infrastructure to enable service discovery 

and “mashup” at various levels. Web services 

within a Service Space are referred to as ‘members’ 

of that Service Space. In the Service Space regular 

Web resources are ‘augmented’ to Semantic Web 

Services which are then integrated into various 

Virtual Organisations in response to user 

requirements from the application layer. Three 

major Service Spaces are defined for ‘lifting up’ 

Web services, i.e. the Web Service Space, the 

Semantic Web Space, and the Virtual Organisation 

Space. In While Web 2.0 technology and 

‘attitude’[17] are to be entrenched in all three types 

of service spaces, they are particularly helpful in 

building Semantic Web Space and Web Service 

Space respectively. 

The Web Service space provides fundamental 

infrastructure that enables the discovery of a large 

number of basic Web services in a loosely-coupled 

manner regardless of their locations, categories, and 

qualities. From the perspective of the Service-

Oriented Computing, it resembles a number of 

contemporary global Web service registries such as 

public UDDI Business Registry, XMethods, 

StrikeIron, IBM SOA Catalog, etc. that can 

facilitate essential keyword-based service 

discovery.  It also supports service subscription that 

allows potential users  to track down interesting 

Web services.  

Semantic Web Space (SWS) refers to a focused 

Service Space where a group of related Web 

services forms a domain-specific Web service 

community in order to facilitate dependable 

collaboration through trust-driven service selection 

and semantic-based service discovery. Domain here 

refers to areas with limited boundaries such as a 

specific geographical region, a particular industry, 

etc. Semantic Web Space shall provide sufficient 

elements for the establishment and enforcement of 

trust for users [4] and ‘sense of community’ for 

member Web services. We have recently observed 

that numerous Web 2.0 communities (e.g. 43things, 

Youtube, MySpace, del.icio.us) prosper for various 

reasons that can be studied in a number of 

disciplines including economy, social science, 

biology, and information science. The Semantic 

Web Space respects this phenomenon. Moreover, it 

utilises and extends such ‘collective intelligence’ by 

providing formal semantic-enabled and semantic-

aware instruments that help to build long-lasting 

Web service communities beneficial for all Web 

service providers and consumers. 

Transient Virtual Organisation (VO) is a 

demand-driven Service Space that allows a small 

group of Web services to form an ad hoc team 

working collectively in order to fulfil particular 

user demands during a given period of time. The 

main reasons for spawning such a transient VO lies 

in the gap between the complexity of actual user 

requirements and the limitation of each individual 

Web service obtained from both Web Service 

Space and Semantic Web Space. In addition,we 

believe ad-hoc Web service mashup – Web 

service mediation, expansion, customisation, and 

integration are essential for a VO to satisfy real-

world user requirements. Presumably, VO members 

often come from the same Semantic Web Space so 

that most collaboration grounding – trust 

establishment, shared mission and value, agreed-

upon business protocol, and essential technical 

interfaces, etc. – has been addressed by the 

semantic-based augmentation prior to the SWS 

formation. This well-established SWS is defined as 

the enclosing SWS of the VO. During the VO 

member selection, preferences are given to 

enclosing SWS members. It is however possible 

that external Web services are sometimes ‘invited’ 

to join a VO in case that appropriate Web services 

cannot be found solely from a single enclosing 

SWS. It is also possible that a SWS member is 

engaged in several VOs. In this case, the proportion 

of its commitment to a particular VO becomes an 

important criterion for the VO member selection.A 

group of End Users or a Broker conducts in-depth 

search in the Web Service Space and selectively 

collects Web services from various providers into 

several Semantic Web Spaces based on  interests 

and the semantics of these Web services. During 

this process, a great number of anarchic Web 

services are ‘clustered’ into a well-organised 

Semantic Web Space dedicated in one specific 

domain. In general, we envisage that one can apply 

two approaches to semantically enrich existing Web 

services. The first top-down approach is based on 

the concept of ontology engineering, where 

scientists and domain experts manually annotate 

relevant Web services using specific domain 

ontologies and/or knowledge databases. The second 

empirical approach builds on practical methods 

such as data/text mining, business intelligence, 

machine learning that can be carried out (semi-) 

automatically without intensive human 

involvement. The Semantic Web Space nurtures 

Web services mainly through three means: semantic 

enrichment, semantic classification, and semantic 

discovery. A Broker directly deals with End User’s 

demands and selects appropriate Web services from 

existing Semantic Web Space to conduct Web 

Service Mashup – a process where related Web 

services are rapidly integrated, customised, 

expanded, and mediated in an ad-hoc manner – in 

order to form a Virtual Organisation fulfilling the 

customer requirements. Our previous work in [4] 

has made the first endeavours to address service 

assessment and selection using the trust model and 

methodology. Instead of  relying exclusively on the 

Service Broker, end users can also track down 

constantly-changing Web services in any Service 

18181818

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



Spaces through the user-centred Web Service 

Portal (WSP). A WSP refers to a locally-accessible 

and highly-customisable user interface that 

provides a personalised view of activities and 

information essential to performing Service Space 

functions. In other words, WSP acts as a proxy on 

behalf of the end users to maintain a list of 

communication channels to involved Service 

Spaces. Unlike a traditional HTTP proxy server 

shared by a group of corporate users, a WSP is 

dedicated to serve only one user, thus creating the 

‘user-centred’ view. WSP also reveals the notion of 

‘User Mashup’– a core concept underpinning the 

attitude of Web2.0 [16]. User Mashup in the 

context of WSP refers to an activity in which the 

user can ‘hack’ standard Service Space 

communication protocols, and hence extensively 

customises user interface or features based on his 

own preferences. User Mashup has a far-reaching 

influence on the development of the user-centred 

Service Space. It endows users with a broader 

control over the information flow across the Service 

Space as well as a refined user experience 

seamlessly integrated with end user applications in 

a loosely-coupled manner. Most significantly, User 

Mashup provides a powerful yet simple mechanism 

by which infinite ‘virtual’ syndications of Service 

Spaces can be created for each WSP. A Virtual 

Syndication of Service Spaces is a fresh, highly 

filtered, and combinatory view of several Services 

Spaces within a WSP. It is created, customised, and 

solely owned by each individual SSP user and does 

not affect other users or existing Service Spaces in 

any ways. 

These ideas have also been extended to semantic 

Grid Services in [8]. 

 

7. Ontology Based Multi Agent Systems 
Agents are software entities capable of 

autonomous action. To solve more complex 

problems, a collection of agents that collaborate to  

solve problems in a given domain are employed and 

these systems are referred to as Multi Agent 

Systems. Frequently these agents have a small 

knowledge base to endow them with some 

intelligence. The problem always remains of 

ensuring that the knowledge bases of the different 

agents are   coherent and consistent with one 

another. One solution to this is to have an ontology 

which is shared by all the agents in a given domain. 

The collection of agents in the Multi Agent System 

could then utilise this ontology as their common 

knowledge base. This will considerably facilitate 

communication and coordination between the 

agents when they are collaborating to solve a 

problem. However one of the problems that has 

remained until recently is that while there are 

methodologies for developing an ontology and 

methodologies for developing Multi Agent systems 

they are quite separate and do not have any link or 

connection with one another. As the key aspect is 

putting the Multi Agent System and Ontology 

together to leverage of each other it is important 

that the methodology for developing one takes 

account of the other. This issue has led to the group 

at DEBII developing a Methodology for Integrated 

Multi Agent and Ontology Development and the 

research is reported in [13].  

 

9. Conclusions 
 

    We discussed several different uses of ontologies 

which varied from supporting software engineers to 

develop software to their use in providing 

semantics in very different settings. This use of 

ontologies particularly when coupled with the 

philosophy of Web 2.0 is likely to have a profound 

effect on the nature of , consumption of and 

development of software. It is therefore important 

that the software engineering community takes this 

on board and plays a leading role in the 

developments that are taking place. 

 

Appendix A: Ontology Representation for Requirements Elicitation 

 

 
 

 

 

 

19191919

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



 

9.0 References 
 
1. Alonso G., F. Casati, H. Kuno and V. Machiraju, 

Web Services: Concepts, Architectures and 

Applications, Springer-Verlag Heidelberg New 

York,  2004 

2. Shadbolt N., W. Hall, and Tim Berners-Lee, The 

semantic Web revisited, IEEE  Intelligent Systems, 

Volume 21, Issue 3, Jan.-Feb. 2006 Pp. 96 - 101 

3. Chan C. 2007 Multi-Site Project Management 

(MSPM) -An Ontology Supported Methodology 

PhD Thesis, Curtin University of Technology. 

4. Chang, E, Dillon, T & Hussain, FK 2006, Trust and 

Reputation for Service Oriented Environment: 

Technologies For Building Business Intelligence 

And Consumer Confidence, John Wiley and Sons. 

5. Dhesiaseelan A and V. Ragunathan, "Web Services 

Container Reference Architecture (WSCRA)," 

ICWS’04, 2004. 

6. Dillon, T 1993, Object Oriented Conceptual 

Modeling, Prentice Hall  

7. Dillon Tharam  S., Chen Wu, Elizabeth Chang 

‘Reference Architectural Styles for Service-Oriented 

Computing’ Keynote , IFIP NPC 2007 Dalian, 

China  

8. Dillon Tharam  S., Chen Wu, Elizabeth Chang 

‘GRIDSpace: Semantic Grid Services on the Web  

— Evolution towards a SoftGrid, Keynote, IEEE 

Semantics, Knowledge and Grid Conf 2007, 

Xian,China 

9. Fensel, D 2001, Ontologies: Silver Bullet for 

Knowledge Management and Electronic Commerce, 

SpringerVerlag. 

10. . Klein, M, Fensel, D, Harmelen, Fv & Horrocks, I 

2001, 'The relation between ontologies and XML 

schemas', in Link oping Electronic Articles in 

Computer and Information Science, vol. 6.  

11. Gruber, TR 1993a, 'Toward principles for the design 

of ontologies used for        knowledge sharing', 

International Workshop on Formal Ontology in 

Conceptual Analysis and Knowledge 

Representation, eds. G N & P R, Kluwer Academic 

Publishers, Deventer, The Netherlands, Padova, 

Italy.  

12. Gruber, TR 1993b, 'A translation approach to 

portable ontology specification', Knowledge 

Acquisition, pp. 199-220. 

13. Hadzic M., Wongthongtham P. , Chang E., Dillon 

T.S. ‘Integrated MultiAgent and Ontology 

Development’ Springer To Appear 2008 

14. Hecker M., Dillon Tharam S., Elizabeth, Chang 

Elizabeth, Privacy Ontology Support for E-

Commerce IEEE Internet Computing To Appear 

2008 

15. Hecker M., and  Dillon T.S., "Ontological privacy 

support for the medical domain," in eHPass 

National e-Health Privacy and Security Symposium, 

Brisbane, Australia, 2006. 

16. Högg R., M. Meckel, K. Stanoevska-Slabeva, and R. 

Martignoni, "Overview of business models for Web 

2.0 communities," GeNeMe 2006. 

17. Lin, K.-J.  "Serving Web 2.0 with SOA, (Keynote 

Presentation)," ICEBE, Shanghai ,China, 2006. 

18. Musser J. and T. O'Reilly, Web 2.0 Principles and 

Best Practices: O'REILLY RADAR, 2006. 

19. NOY, NF & KLEIN, M 2003, 'Ontology Evolution: 

Not the Same as Schema Evolution', Knowledge and 

Information Systems, vol. 5.  

20.  Sidhu A.S., Dillon T.S, Chang E., "Integration of 

Protein Data Sources through PO," 17th 

International Conference on Database and Expert 

Systems Applications (DEXA 2006), Poland, 2006, 

pp. 519-527. 

21. Studer, R, Benjamins, V & Fensel, D 1998, 

'Knowledge Engineering: Principles and Methods', 

IEEE Transactions on Data and Knowledge 

Engineering, pp. 161-97.  

22. Sommerville, I 2004, Software Engineering, 7th edn, 

Pearson Education Limited. 

23. Sommerville, I 2007, Software Engineering, 8th edn, 

Pearson Education Limited. 

24. Wongthongtham, P 2006, A methodology for multi-

site distributed software development, PhD Thesis, 

Curtin University of Technology 

25. Wongthongtham, P, Chang, E, Dillon, T & 

Sommerville, I 2006, 'Ontology-based multi-site 

software development methodology and tools', 

Journal of Systems Architecture, vol. 52, no. 11, pp. 

640 - 53.  

26. Wu C., E. Chang, "Aligning with the Web: An 

Atom-based Architecture for Web Services 

Discovery," Service-Oriented Computing and 

Applications, vol 1, 2007. 

 

 

20202020

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



 

 

 

 

Appendix B1- Software design activities ontology 

 

 

Appendix B2- Component diagrams ontology 

 

  

 

 

 

 

 

21212121

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



Appendix B3 - Activity diagrams ontology 

 

<<Concept>>

Activity

Activity_Name Single String

<<Concept>>

ActivityTransition

<<Concept>>

BranchTransition

Guard_Expression_1 Single String

Guard_Expression_2 Single String

Guard_Expression_3 Single String

Related_Branch_Activity_1 Single {Activity, Branch 

Transition, Concurrent Transition, Special Transition}

Related_Branch_Activity_2 Single {Activity, Branch 

Transition, Concurrent Transition, Special Transition}

Related_Branch_Activity_3 Single {Activity, Branch 

Transition, Concurrent Transition, Special Transition}

Relating_Branch_Activity Single {Activity, Branch 

Transition, Concurrent Transition, Special Transition}

<<Concept>>

NormalTransition

Related_Activity Single Activity

Relating_Activity Single Activity

<<Concept>>

SpecialTransition

Related_Special_Activity Multiple Activity

Relating_Special_Activity Multiple Activity

<<Concept>>

Start

Related_Special_

Activity >= 1

Relating_Special_

Activity = 0

<<Concept>>

Stop

Related_Special_

Activity = 0

Relating_Special

_Activity >= 1

<<Concept>>

Object

Get_Object

_Flow

Set_Object

_Flow

0..* 0..*

<<Concept>>

ConcurrentTransition

Related_Concurrent_Activity Multiple {Activity, 

Branch Transition, Concurrent Transition}

Relating_Concurrent_Activity Multiple {Activity, 

Branch Transition, Concurrent Transition}

<<Concept>>

Fork Transition

Related_Concurrent_Activity >= 2

Relating_Concurrent_Activity = 1

<<Concept>>

Join Transition

Related_Concurrent_Activity = 1

Relating_Concurrent_Activity >= 2

Set_Object_Flow

Get_Object_Flow0..*

<<Concept>>

Swimlane

Swimlane_Name Single String

In_Swimlane
0..1

0..*

Partition

Partition

Partition

 

 

Appendix C- Coding ontology 

 
 

 

22222222

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 



 

 

Professor Tharam S. Dillon is a Fellow of the IEEE, ACS and IE(aust). He is Chairman 
of the Technical Committee of IEEE IES on Industrial Informatics, and ADCOM 
member for IEEE IES. He is also Chair of IFIP working Group in Web Semantics. His 
current research interests include Web semantics, ontologies, Internet computing, e-
commerce, hybrid neurosymbolic systems, neural nets, software engineering, database 
systems, and data mining. He has  more than 650  papers published in international 
conferences and  journals and is the author of five books and has another 5 edited books. 
He is the Editor-in-Chief of the International Journal of Computer Systems Science and 
Engineering as well as the Engineering Intelligent Systems. He is the Co-Editor of the 
Journal of  Electric Power and Energy Systems. 

 

 
 

23232323

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 7, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 


