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ABSTRACT
Many different forms of sensor fusion have been proposed each with its own niche. We propose 
a method of fusing multiple different sensor types. Our approach is built on the discrete belief 
propagation to fuse photogrammetry with GPS to generate three-dimensional (3D) point 
clouds. We propose using a non-parametric belief propagation similar to Sudderth et al’s work to 
fuse different sensors. This technique allows continuous variables to be used, is trivially parallel 
making it suitable for modern many-core processors, and easily accommodates varying types 
and combinations of sensors. By defining the relationships between common sensors, a graph 
containing sensor readings can be automatically generated from sensor data without knowing 
a priori the availability or reliability of the sensors. This allows the use of unreliable sensors which 
firstly, may start and stop providing data at any time and secondly, the integration of new sensor 
types simply by defining their relationship with existing sensors. These features allow a flexible 
framework to be developed which is suitable for many tasks. Using an abstract algorithm, we 
can instead focus on the relationships between sensors. Where possible we use the existing 
relationships between sensors rather than developing new ones. These relationships are used 
in a belief propagation algorithm to calculate the marginal probabilities of the network. In this 
paper, we present the initial results from this technique and the intended course for future work.

1. Introduction

Despite increases in the availability of sensors and data 
acquisition rates, we still face significant problems relat-
ing the collected data and fusing the result into a coher-
ent model. Currently, there is significant research into 
sensor fusion where the observations from multiple sen-
sors are combined with the aim of improving reliability 
(Lhuillier 2012) and reducing drift (Kerl, Sturm, and 
Cremers 2013). As a result of this research, there have 
been several forms of sensor fusion developed each with 
their own niches and use cases (Jøsang and Pope 2012). 
Bayesian methods are popular; however, have a reliance 
on a priori information about sensor error distributions 
(Koks and Challa 2003). The Dempster-Shaefer meth-
ods do not require this information (Klein 1999) but 
problems emerge when sensor data contains significant 
conflicts (Ali, Dutta, and Boruah 2012; Jøsang and Pope 
2012).

Modern smartphones now contain many different 
kinds of sensors which can be used in situations where 
more expensive sensors have traditionally been used. 
Nevertheless, the sensors in a smartphone are low cost 
and the accuracy often suffers as a result. Conversely, 
there are lots of interests in fusing these sensors for 
orientation (Ayub, Bahraminisaab, and Honary 2012) 

activity identification (Tundo, Lemaire, and Baddour 
2013) and image geotags for structure from motion 
(Crandall et al. 2013).

In this paper, we present a method of fusing accel-
erometer, gyroscope, and GNSS measurements using 
non-parametric belief propagation. We show preliminary 
results using both synthetic data and real-world data from 
a commodity smartphone. In Section 2, we outline belief 
propagation in both the discrete and non- parametric 
forms. We then describe our method in Section 3 
followed by some preliminary results in Section 4.  
Finally, our conclusions and outline of intended future 
work are given in Section 5.

2. Belief propagation

2.1. Discrete belief propagation

Belief propagation was originally developed by Pearl 
(1982) as an iterative method of efficiently calculating 
the marginal probability of variables in Bayesian tree 
graphs. It has since shown possibilities on the more 
general cyclic graphs (Murphy, Weiss, and Jordan 1999; 
Yedidia, Freeman, and Weiss 2000, 2003). Even though 
the conditions for convergence are not well understood 
and indeed it may not converge, in most useful cases 
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it does converge and the resulting approximations are 
good (Murphy, Weiss, and Jordan 1999; Ihler, Iii, and 
Willsky 2005). Belief propagation performs well in 
graphs where new or changing data is present because 
instead of updating every node in each iteration, only 
nodes affected by the changed data need to be recalcu-
lated. A key component of Bayesian statistics are the 
directional conditional probability or undirected com-
patibility functions that define the probabilistic relation-
ships between variables (Pearl 1982; Yedidia, Freeman, 
and Weiss 2003). These functions are required a priori, 
which requires the relationships between sensors to be 
predefined if they are to be fused with this method.

The belief propagation algorithm works using the fol-
lowing steps (Yedidia, Freeman, and Weiss 2003):

(1)    Initialize graph structure and compatibility 
functions.

(2)    Set the probability distributions of the 
observed nodes to their measured states.

(3)    For each iteration each node i sends a message 
mij to each neighbor j in N(i), where N(i) is 
the set of neighbors of node i. This message 
contains the expected value of node u from 
the current information available at node i 
excluding the message from node j.

(4)    Repeat step (3) until the probabilities stabilize 
or until the number of iterations has reached 
the allowed limit.

Each message mij in the belief propagation described 
above is computed as

 

where mij is the message to send from node i to node 
j, ϕ(xi) is the local evidence at node i, and �ij(xi, xj) is 
the compatibility function relating nodes i and j. In the 
discrete case, mij is a vector with a dimension the same 
as the number of discrete states that this node can take. 
Each element of this vector is the belief at node i has that 
node j is in that state. Once the probabilities have sta-
bilized, the beliefs of each node can be calculated from 
the incoming messages to that node as

 

where mij and �
(
xi
)
 are defined as above and k is a con-

stant such that the sum of all elements in b equals 1.

2.2. Non-parametric belief propagation

Belief propagation is usually performed over discrete 
state spaces, but for many complex systems, the varia-
bles of interest are continuous in nature. While in some 
cases they can be discretized similar to the Structure-
from-Motion work done by Crandall et al. (2013), in 

(1)mij

(
xj

)
=
∑

xi

�
(
xi
)
�ij

(
xi, xj

) ∏

k∈N(i)�j

mki

(
xi
)

(2)bi
(
xi
)
= k�i

(
xi
) ∏

j∈N(i)

mij(xi)

many cases this places unnatural restrictions on the sys-
tem. Sudderth et al. (2003) propose a non-parametric 
form of belief propagation where states of probability 
are represented by Gaussian Mixture Models (GMMs). 
Using GMMs the need to discretize the problem space 
is avoided and arbitrary state spaces can be used.

A significant limitation of this technique is that many 
operations on sets of GMMs cause the number of kernels in 
the model to increase significantly. To counter this, a Gibbs 
sampling method is introduced to reduce the number of 
kernels while maintaining the approximate representation.

3. Method

3.1. Coordinate systems

When fusing the different sensors we require all of them 
to be in the same coordinate system so that we can define 
relationships between them. The coordinate system used 
here is the right-handed ENU system where each of the  
x–y–z axis points toward East, North, and Up, respectively. 
This has several advantages, most significantly allowing 
use of either a local or global coordinate system without 
changing the underlying algorithm. Also, allowing easy 
use of existing solutions transformation between GNSS 
systems such as WGS84 and Eastings and Northings.

Our orientation is stored as (θ, φ, ρ), where ρ is the 
heading, and θ, φ encode the “up” vector. To remove the 
double covering of standard Euler angles, we limit each 
of (θ, φ, ρ) to (0, π), (0, 2π), and (0, 2π), respectively. 
This results in the rotation matrix of Equation (3) from 
a local to global coordinate system:

 

where RZ(ρ) and RZ(θ) are rotation matrices around the 
z-axis and RY(φ) is a rotation matrix around the y-axis.

This allows independent calculation of the up vector 
and heading to take place, allowing us to orient our plat-
form and find “up” while leaving the heading ambiguous. 
This has uses in the absence of global heading informa-
tion provided by sensors such as compasses or multiple 
points measured in a global coordinate system which 
would provide a basis for a global orientation. Many 
accelerometers will measure acceleration including 
gravity which we can orient using this model without 
heading information. In the case of photogrammetry 
we can find an up-vector in a photogrammetric model 
using the portrait/landscape info recorded by many dig-
ital cameras while leaving the “north” vector unknown. 
However, if geotags are recorded the “north” direction 
may be able to be resolved as a result of this new data.

3.2. Sensor models

In our work, we have assumed that each sensor takes 
readings which are near their true value with an error 
distribution described by a Gaussian distribution. We 
transform all of our sensors into the common coordinate 

(3)R(�,�, �) = RZ(�)RY (�)RZ(�)
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systems described above, which we then use for the 
remainder of the processing.

GNSS measurements are transformed into ENU 
coordinates based on a local reference point. The var-
iance of the Gaussian distributions used to model the 
measurements are taken from the accuracy reported by 
the GNSS system.

Accelerometer and gyroscope sensors do not usually 
record uncertainties. Hence, we calculate the variances 
as part of a calibration process, and we assume that this 
calibration holds for the remainder of the data collec-
tion. Accelerometer values are used to create an orien-
tation estimate using the following process:

(1)    � = arcsin
(

Az

|A|

)
+

�

2

(2)    If 0 = A2
x + A2

y

(a)  Then � =
�

2
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�
−

Ax√
A2
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2
y

�

(3)    If If Ay > 0

(a)  Then � = 2� − �

where Ax, Ay, and Az are the accelerometer measure-
ments on each of the x, y, and z axis, respectively.

Digital cameras such as those in many modern 
mobile phones often record many details about a photo 
as part of the image metadata. This data may include 
an approximate focal length, camera details, timestamp, 
geolocation, and orientation. In future work, we propose 
to use all of these details in our algorithm. The geoloca-
tion is treated in the same way that a GNSS measurement 
would be as the location is often derived from a GNSS 
system. The image orientation is treated as having a 45° 
variance, which accounts for the rotation allowed by the 
camera before the output changes. The focal length and 
camera details are used by the photogrammetric algo-
rithms to provide initialization values, which is not part 
of our algorithm at this stage.

3.3. Calibrations

For accelerometer and gyroscope sensors, in order to 
remove offsets and scale errors present in the raw sen-
sor data basic calibrations are performed on the sensors. 
At this stage we assume that each axis is orthogonal, the 
distance between sensors is negligible and the sensors are 
mounted in the same frame of reference. We then measure 
the offsets and scale of each axis allowing us to remove 
systematic errors from the sensor using Equation (4).

 

where XC, YC, and ZC are the calibrated measurements on 
each axis with XU, YU, ZU, the raw sensor measurements, 
α, β, and γ the scale on each axis, and OX, OY, OZ the 
corresponding offsets after scaling.

While this is fairly simple to do for sensors such as 
accelerometers where recording the measurements of 

(4)[XC ,YC ,ZC] = [�XU , �YU , �ZU ] + [OX ,OY ,OZ]

the sensors in various static orientations and solving 
multiple measurements in a multi-variable optimization 
such that |AC| = 9.81 m s−2 is sufficient for solving the 
parameters required. For sensors such as gyroscopes that 
measure angular velocity, a similar calibration is harder 
to perform, so we have assumed that the scale of each 
axis is correct and calculate the offsets for each axis.

3.4. Belief propagation algorithm

Based on the studies by Sudderth et al. (2003) and 
Crandall et al. (2013), we have implemented a non- 
parametric belief propagation using GMMs. We repre-
sent each variable we wish to calculate as a bounded 
GMM with a uniform component (Equation (5)).

 

where μi, σi, and wi are the mean, variance, and weight 
of the i-th kernel in the GMM, respectively. We also 
add a uniform distribution with a value of u. The upper 
and lower bounds are denoted as λlower and λupper which 
provide bounds for both the GMM and uniform distri-
butions. We can then calculate the expected value of a 
variable using Equation (6).
 

While use of a uniform distribution is not described in 
the work by Sudderth et al. (2003), Crandall et al. (2013) 
find it helps to ensure convergence of their algorithm 
and assists in situations where the incoming messages 
to a node differ greatly.

As noted by Sudderth et al. (2003), there is the 
potential for the number of elements in each GMM to 
increase such that the computational and memory load 
is too great to be practical. Therefore, we also include a 
resampling algorithm. However, for simplicity at this 
stage we do not use Gibbs sampling, but instead use the 
upper bound, lower bound, and mean of each kernel 
in the GMM to provide a starting point which we then 
optimize in the following steps. Using this algorithm 
we create a new GMM with up to K kernels, where K is 
chosen to balance accuracy and computation time. This 
algorithm works as follows to generate a new kernel:

(1)    Evaluate at the upper bound, lower bound and 
mean of each kernel and find largest value. Set 
μ to this value.

(2)    If value less than threshold then end.
(3)    Set σ to the average kernel deviation in the 

GMM.
(4)    Set w = �

√
2�GMM(�)

(5)    Set devstep = σ/2
(6)    Calculate err = 2w f(μ | μ, σ2) − GMM(μ + σ) 

− GMM(μ − σ)

(5){�i, �
2
i ,wi}

K
i=1, u, {�lower, �upper}

(6)E[GMM] =
u(�upper − �lower) +

∑K

i=1 wi�i

u +
∑K

i=1 wi
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where each of x, v, a, R, and R′ are the vectors repre-
senting position, velocity, acceleration, rotation, and 
rotational velocity, respectively. δtij is the time measured 
from node i to node j. xGNSS, aACC, RACC, and R′

GYRO are 
the measured position, acceleration, orientation esti-
mate, and rotational velocity as measured by the sensors, 
respectively. g is a vector equal to (0, 0, 9.8) m s−2 which 
we use to remove the effect of gravity as measured by 
the accelerometer. This is in contrast to the common 
practice of applying a high-pass filter to remove gravity 
from accelerometer measurements. Instead we calculate 
the gravity vector using the current orientation of the 
sensor platform and subtract this from the acceleration 
reported by the accelerometer to remove the effect of 
gravity. This allows us to correctly report acceleration 
even while undergoing a constant acceleration other 
than gravity when the orientation is correctly reported 
through other means.

3.5. Graph generation

Using the nodes described above we can automatically 
generate and modify a graph from a data-set of sensor 
measurement at runtime. At this stage, we create a rig-
id-body node at each time-step that a data point exists. 
In future work we aim to cut this down to only creating 
a node for each time-step that we actually need access 
to the data.

We also create constant nodes from the sensor meas-
urements. These constant nodes apply the calibrations 
and coordinate transforms described above and cache 
the results internally so they are not recomputed at each 

(11)R�
i =

N∑

∀j≠i

(
Ri − Rj

�tij
+ R�

j

)
+

∑

∀GYRO

R�
GYRO

(7)    If |err| < allow_err then end
(8)    If err > 0

(a)  then σ = σ + devstep
(b)  else σ = σ − devstep

(9)    Set devstep = devstep/2
(10)    Add new kernel to current GMM with {mean 

μ, variance σ2, and weight −w} and new ker-
nel to new GMM with {mean μ, variance σ2, 
and weight w}

(11)    Repeat from step (1) until K kernels in new 
GMM

where f(μ | μ, σ2) is the PDF (Probability Density 
Function) for a Gaussian distribution with mean μ 
and variance σ2. GMM(x) is the evaluation of a GMM 
at x.

After we have generated K kernels or after the largest 
value is below our defined threshold, we combine the 
remaining probabilities into the uniform distribution. 
This resampling is run every time the number of kernels 
in a GMM exceeds the chosen K. In our implementation, 
we have chosen K = 5 and allow_err = threshold = 0.1. 
These values appear to be a reasonable compromise 
between speed and accuracy.

Here we utilize the same overall update equations as 
standard belief propagation. However, in order to make 
this conceptually easier some nodes in our algorithm are 
more complex than the original Belief Propagation. We 
define several different nodes which are combinations 
of variable and function nodes. This has advantages in 
the perceived complexity of the algorithm as there are 
less overall nodes to deal with and in some cases less 
complicated data structures.

The most significant node in our algorithm is our 
rigid body node which embodies standard rigid body 
physics and is used as a center node for sensor platforms. 
The internal structure of this node is shown in Figure 1. 
In our rigid body node, we also apply limits for velocity 
and acceleration so that we are not calculating probabil-
ities for impossible events. These limits are 300 m s−1 for 
velocity and 1000 g for acceleration. The constraint equa-
tions for this node are given in Equations ((7)–(11)).

 

 

 

 

(7)xi =

N∑
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(xj + �tijvj) +
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xGNSS
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(9)ai =
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(
vi − vj
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+ aj
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+
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∀ACC
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(10)Ri =

N∑
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(Rj + �tijR
�
j) +

∑
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Figure 1. our rigid body node contains internal function nodes 
(blue) and variable nodes (red). other nodes connect similarly 
to the green function node (left).
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caching can be performed which should impact perfor-
mance in a positive way.

The results of our algorithm on synthetic data are 
presented in Figure (4). This data was generated assum-
ing the sensor platform is stationary. Aside from a few 
outliers visible the vast majority of the data is centered 
around (0, 0, 0) despite the incoming “pseudo GNSS” 
data having a range of ±5 m.

Similar to the synthetic data above, some real-world 
data were collected in a similar way to the synthetic 
data with the Galaxy SIII stationary outside with a sta-
ble GNSS lock. Figures 5 and 6 show the results of this 
processed data. Similar to the synthetic data above there 
are some outliers in the processed data. However, inter-
estingly once these outliers are removed the resulting 
data is closer to the ideal (0, 0, 0).

5. Conclusions

Here, we present initial results from our proposed algo-
rithm. While preliminary these results show that this 
algorithm has potential and if extended and refined may 
be a useful part of a sensor fusion system.

iteration step. A section of a generated graph is shown 
in Figure 2.

4. Results

4.1. Sensors

In this work, we have used both synthetic data and real 
data from a Galaxy SIII smartphone. The Galaxy SIII 
contains a GNSS sensor which reports at approximately 
1 Hz using GPS and GLONASS. It also contains an accel-
erometer and gyroscope which report at approximately 
100 and 200 Hz, respectively. Under the Android sys-
tem, the exact reporting rate is not guaranteed however 
timestamps in nanoseconds are given for each of the 
measurements.

Our synthetic data has been generated for GNSS, 
Accelerometer, and Gyroscope sensors with zero offsets 
and reporting rates of 1, 100, and 200 Hz, respectively. 
This data was generated using a Gaussian distribution 
around the intended values with variances shown in 
Table 1.

4.2. Calibrations used

Using the calibration described in Section 3.3 above, our 
calibration values for the Galaxy SIII sensors are given in 
Tables 2 and 3. When collecting data the GNSS sensor 
reported an error of 10 m, so this value was used as the 
variance.

4.3. Speed and accuracy

The algorithm described above has been implemented 
in C++ and performs at a speed of 3032 nodes per sec-
ond when using 8 threads on a quad core Intel i7 920 
running at 2.66 GHz. There is near linear scaling when 
adding more threads up to the number of virtual cores 
as shown in Figure 3. However, exceeding this has no 
value. At this stage, locks are used to synchronize the 
incoming message queue to each node. We are also not 
caching incoming messages from constant nodes, so at 
each iteration we need to reacquire the message from 
each of the constant nodes. However, with a different 
implementation this locking will not be required and 

Figure 2. illustration of graph generated using our technique.
note: rigid body nodes in blue and sensor measurement nodes in orange.

Table 1. standard deviations used for simulated data.

Parameter x y z

Gnss (m) 1.000 1.000 2.000
accelerometer (m s−2) 0.030 0.030 0.030
Gyroscope (deg s−1) 0.055 0.055 0.055

Table 2. calibration parameters for sensors.

Parameter α β γ OX OY OZ

accelerometer 1.0023 0.9904 0.9888 0.1149 0.0889 0.5064
Gyroscope 1 1 1 0.0019 −0.0032 0.0017

Table 3. measured standard deviation (sD) of sensors

Parameter SD before calibration SD after calibration
axis x y z x y z
accelerometer 0.0206 0.0200 0.0301 0.0206 0.0198 0.0298

Gyroscope 0.0123 0.0557 0.0054 – – –
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Several areas for future work have been identified. 
These include things such as auto calibration of sensors 
and time alignment of different sensors. These may be 
implemented as connections between sensor measure-
ment nodes which share calibration information and 
time offsets, treating these values as other variables to 
be solved in the same way we are currently solving posi-
tion and rotations.

There may also be scope to reduce the number of 
rigid-body nodes in our graph so we only generate one 
of these nodes where we need to read out the position 
and orientation of the platform. This may increase the 
speed dramatically as the number of connections would 
be significantly reduced hence reducing communication 
overhead between nodes as well as allowing for more 
efficient implementations of some constraint functions.
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Figure 3. performance vs. number of threads.

Figure 4.  scatter plot of calculated positions of the sensor 
platform x-axis (horizontal) y/z-axis vertical.
note: X-Y positions are shown as X marker and X-Z positions are shown 
as + marker.

Figure 5. plot of calculated positions for real data.
note: x-axis (horizontal) y/z-axis vertical. X-Y positions are shown as X 
marker and X-Z positions are shown as + marker.

Figure 6. plot of calculated positions for real data.
note: x-axis (horizontal) y/z-axis vertical. X-Y positions are shown as X 
marker and X-Z positions are shown as + marker.
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