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Abstract. The starting point for a quantum mechanical investigation of disordered

systems usually implies calculations on a limited subset of configurations, generated

by defining either the composition of interest or a set of compositions ranging from

one end member to another, within an appropriate supercell of the primitive cell of

the pure compound. The way symmetry can be used in the identification of symmetry

independent configurations (SICs) is here discussed. First, Pólya’s enumeration theory

is adopted to determine the number of SICs, in the case of both varying and fixed

composition, for colors in number of two or higher. Then, De Bruijn’s generalization is

presented, which allows to analyze the case where colors are symmetry related, e.g. spin

up and down in magnetic systems. In spite of their efficiency in counting SICs, neither

Pólya’s nor De Bruijn’s theories do help in solving the difficult problem of identifying

the complete list of SICs. SICs representatives are here obtained by adopting an orderly

generation approach, based on the lexicographic ordering, that offers the advantage

of avoiding the (computationally expensive) analysis and storage of all the possible

configurations. When the number of colors increases, this strategy can be combined

with the surjective resolution principle, that permits to efficiently generate SICs of a

problem in |R| colors starting from the ones obtained for the (|R|−1)-colors case. The

whole scheme is documented by means of three examples: the abstract case of the

square with C4v symmetry and the real cases of garnet and olivine mineral families.
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1. Introduction

Quantum mechanical computer simulation of the atomistic behavior of solids is one of

the most successful methodologies employed in materials science. Nowadays this class

of methods is routinely applied to ordered crystalline phases in their equilibrium states.

The total and formation energies, the equilibrium geometry, the vibrational spectrum,

the dielectric and polarizability tensors as well as many other properties can be evaluated

routinely for periodic systems with unit cells containing up to 1000 atoms [1, 2] and even

more [3].

However, the availability of the same properties for disordered systems and/or non-

equilibrium states still remains an outstanding challenge. Yet these systems have a

major importance for both Earth and materials science: nearly all rock-forming minerals

are solid solutions (substitutional disorder); many technologically relevant materials are

non stoichiometric (occupational and/or substitutional disorder) or magnetic (possible

spin disorder).

In the past, various techniques of increasing complexity have been proposed and

implemented for the simulation of disordered solids. The schemes that in the last two

decades were shown to provide the most promising results are based on the description

of these systems as a weighted average of ordered configurations. A further step

forwards consists in using the energies of some of these configurations (obtained from

“accurate”, possibly ab initio, calculations) in a simple model that permits to estimate

at very low cost the energies of many other configurations and to use them in a self-

consistent manner to select other low energy configurations to be investigated quantum-

mechanically. In this way, hopefully, a relatively low number of “accurate” calculations is

sufficient for the complete description of the thermodynamic properties of the disordered

system [4, 5, 6, 7, 8, 9, 10].

If the number of involved positions is |D| (the positions being elements of the set D)

and the number of species is |R| (the species are the elements of the set R) the total

number of configurations over the complete range of compositions is N = |R||D| (see

Section 2.1 for complete notations). This requires a large computer time in generating

the set of configurations, and most of all a huge, unsustainable computational cost to

treat the whole of this set at an ab initio level.

In crystalline structures (any dimensionality), the symmetry, whatever it is, induces a

partition of the RD set of configurations in equivalent classes. Then, in order to fully

characterize the configurations, one needs to know the number of equivalence classes

and one representative per class. The set of these representatives is the smallest possible

subset of symmetry independent configurations (SICs).

The automatic generation of a set of SICs permits on the one hand to avoid the repetition

of quantum mechanical calculations for equivalent configurations, on the other hand to

automatically submit parallel quantum mechanical calculations and collect the related

data, removing errors due to by hand data manipulation.

The simulation schemes mentioned above become reliable when large |D| (that means
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large cells) are used. However the enumeration of the SICs becomes rapidly a challenging

problem when |D| increases.
In the past, averaged structures described by small cells (very few atoms) have been

considered, in most of the cases with reference to metallic alloys (see for example the

excellent paper by Ferreira et al. [11], references therein and also Refs. [12, 13]). The too

small number of atom(s) in the cell corresponding to the averaged structure calls for the

use of larger derived cells (supercells). Ferreira et al. (1991)[11] considered supercells

derived from FCC and BCC Bravais lattice (1 atom per primitive cell). The problem

was split in two steps: 1) identify the independent sublattices corresponding to an index

as large as possible, in order to consider a large number of involved positions; 2) for

a given sublattice, enumerate symmetry independent structures corresponding to the

complete set of SICs. In this analysis, the atoms are all equivalent by translation. The

translational symmetry plays then the major role in finding SICs. The sublattices are

generated using the geometric “smallest first” approach and for any generated sublattice

the calculation of all the corresponding SICs is performed through an O(N2) algorithm.

For an example of implementation, the reader is referred to Van de Walle and Ceder

[14].

Rutherford in a series of papers [15, 16, 17] evidentiated the role of Pólya’s theory in

the counting of independent coloring patterns of sublattices of a given index by means

of the translation group.

Recently, Hart and Forcade (2008)[18] improved dramatically the approach by Ferreira

et al. [11]. Making a systematic use of the so-called Hermite normal form (HNF) of

integer matrices to identify the independent sublattices and the corresponding diagonal

Smith normal form to determine the independent atomic configurations, they built a

very fast algorithm which scales linearly with the number of unique structures. The

rotational lattice symmetry allows to select inequivalent HNF matrices (or supercells)

and the translation symmetry permits an easy identification of equivalent labeling for

supercell of a given index. In 2009, they [19] (HF09) introduced a multilattice model in

order to extend the applicability of their method to cases where the parent lattice is not

a Bravais (i.e. simple) lattice. Both rotational symmetry of the lattice and symmetry

of the multilattice are used to enumerate the SIC’s up to a given index.

An alternative and more natural description of the symmetry acting on periodic

structures uses space groups. For the solid state community (physicists, chemists

and mineralogists) the space group is the standard starting point for describing the

high symmetry structure and its disordered derivatives. Space groups are very useful

for complex unit cells in which disorder (for example substitutional) occurs only at

some sites, because they properly account for the details of the structures and for the

neighborhoods of the involved sites. In other words, they account for positions not

involved in the disorder. If one considers only the sites involved in the disorder (the

set denoted D in HF09 [19]) the group of symmetry (S , see appendix in Ref. [19])

could be higher than the actual one and non genuine equivalences would appear. On

the contrary, if the not involved sites are considered to establish the group of symmetry,
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then only the action of S on the involved sites has to be considered. This point is not

discussed in HF09 [19].

For many crystalline compounds the cell contains a large number of atoms sitting in

positions involved or not in the substitutions (see the garnet example below). For such

compounds, the number of configurations is rapidly prohibitive (see Table 5 for the

conventional cell of garnet |D|=16) also for supercells of modest index. In these cases,

the relative weight of the two steps proposed by Ferreira et al. [11] differs significantly

from simple cases, and the search for independent structures becomes dominant. This

point of view was developed by Grau-Crespo et al. [20] and applied in a series of works

to large cell minerals [21, 22, 23]. In their enumeration algorithm, the operations of

the space group play a crucial role. The runtime scales however quadratically, O(N2).

These authors emphasize the importance of the multiplicity of the configurations to

compute the average properties at given composition. This is achieved enumerating the

equivalent configurations of any new SICs by applying every operation of the group to

it. A crucial feature of their implementation is the use of two large tables containing

the |R||D| configurations. These authors underline that it is impractical to properly

compute the average properties for a very large configuration space (at a quantum

mechanical level and even with classical potentials). In such cases, they propose to use

random sampling methods to study the configurations at a given composition [21]. The

significance of the averaged values were checked with respect to the sample size.

The main goal of this work (whose formalism has been implemented in a development

version of the CRYSTAL code [24]) is to enumerate the symmetrically independent

configurations (SICs) within a given cell containing a set D of sites involved in solid

solutions or disorder without restriction on the number of involved equivalent or

independent positions (|D| = 1, 2, 3, ...) among other non involved positions and for any

number of species (colors) 2 ≤ |R| ≤ |D|. With respect to Hart and Forcade’s algorithm

[18], the present approach scales linearly with the size of the configuration space. At

variance with respect to direct methods, long lists of configurations are not necessary.

We have chosen to describe the symmetry of the parent structure using space groups (G)

acting on D because, as previously explained, it accounts for positions not belonging

to D. Configurations are identified by mappings from the set D to a set of atoms or

colors. In the search of the SICs, a stopping rule provided by the Pólya – Redfield’s

theory is used, that reduces the runtime. Within this theoretical framework, the tools

allowing efficient analysis of the configurations (orbits, stabilizers, cycle structure of

symmetry operations, ...) are easily generated (e.g. the multiplicity of a configuration

is obtained directly from its stabilizer). The robust theoretical foundations set up at this

stage are necessary to understand the construction behind the “surjective resolution”

principle used here to handle more than 2-colors configurations without exploring the

full set of |R||D| configurations. On this basis, the linear scaling of the present approach

will be proved using Oberschelp’s formula which gives the asymptotic behavior of the

number of SICs for large cells. New developments such as symmetric selection (based

on the structure of the stabilizers) and random sampling of the derivative structures
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space (not included in the present paper, but very useful to explore tremendously large

configuration spaces [25]) will appear as natural extensions of the present formalism.

The method here proposed is described in Section 2. The problem of the determination

of the number of SICs is tackled in subsection 2.1, where Pólya’s theory is shortly

summarized, in the case a range of compositions needs to be analyzed, spanning from

one end member to the other. Subsections 2.2 and 2.3 discuss two special cases,

namely the fixed composition and the one where the two “colors” are symmetry related

(De Bruijn’s generalization). The algorithmic aspects are described in 2.4 . They

combine the so-called lexicographic ordering, which allows orderly generation, with the

surjective resolution principle to produce SICs representatives. The scaling behavior of

the approach with respect to both the number of SICs and the size of the symmetry

group is discussed in subsection 2.5. Section 3 applies the proposed scheme to two

examples that are of great geochemical interest: garnets and olivines. Finally, the main

conclusions are drawn in Section 4.

2. Method

In this Section the methodological aspects of group theory and combinatorics that are

used to identify and characterize SICs are presented.

The first target is to evaluate the number of SICs. This problem can be solved by using

Pólya’s enumeration theory [26], that is based on the cycle structure of the symmetry

operators acting on a set of objects D and gives a systematic method to count the

number of non equivalent colorings of D.

Note that Pólya’s theory refers to D as a finite set of objects, while crystalline solids

are usually modeled as infinite periodic systems, i.e. they show an infinite set of atomic

sites D′. However, thanks to periodicity, it is always possible to decompose a symmetry

operation in a point symmetry operation plus a translation. Translational symmetry

allows to describe all the point symmetry properties of the crystal by considering a

finite, small subset D of the whole set of sites D′, i.e. a unit cell. The simplest unit

cell that can be chosen is the smallest translational set of sites, which is called primitive

cell. Otherwise, a supercell of the primitive cell can be chosen as a reference.

The two sets of examples used to illustrate definitions and formulas appearing in the

proposed algorithms are shown in Figure 1. Both of them are based on a two-dimensional

square lattice under the action of the 8 symmetry operators of the C4v group. In the

case of Figure 1-A (model A), the unit cell contains 4 symmetry-related sites, lying on

the σd reflection planes. By applying all the 8 symmetry operators to, for example, site

“1”, the full set of 4 sites is obtained. The full set of 24 = 16 configurations that can be

obtained for model A by using 2 colors is represented in Figure 2.

Model B (Figure 1-B) represents a more general case of C4v symmetry acting on the

square lattice. The unit cell contains 8 symmetry-related sites, which all lie in a general

position, i.e. not on a symmetry element.
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2.1. Pólya’s enumeration theory

Let D denote a finite set of objects, for example the 4 sites of model A in Figure 1-A,

D = {1, 2, 3, 4}, with |D| = 4, and let R denote a set of colors, e.g. R={blue,red}={b,r},
|R| = 2 (2-colors case). In what follows, the notion |E| denotes the cardinal of a given

set E. Color is the common terminology in combinatorics for the property that makes

the elements of D distinguishable; in our framework it can be the chemical species or

the spin status of the atoms occupying the lattice sites.

Let S = RD be the set of all mappings s from D to R that associate colors to objects.

Each s is called a coloring of the set of objects, or a configuration. In the case of 2 colors

over the 4 sites of model A, the 24 = 16 possible configurations are shown in Figure

2. For r ∈ R we shall denote s−1(r) = {x ∈ D; s(x) = r} the preimage of r, which

associates to r the set of objects of D colored by this color. We shall refer to the |R|-plet
(|s−1(r1)|, .., |s−1(r|R|)|) as the color-pattern, or composition, of the configuration s. Note

that for a given s it comes
∑|R|

j=1 |s−1(rj)| = |D|. In the case of model A, for example

for the first configuration in the second row of Figure 2 we have: s−1(b) = {2, 3, 4},
s−1(r) = {1}, the composition being (3, 1).

Now, let G denote a group of symmetry operations g acting on the set D. In the

examples of Figure 1, this group (C4v) consists of the rotations and reflections which

leave the set of 4 (8) sites of model A (B) invariant.

The action of G on D induces an action of G on S (called the Pólya’s action) defined

by:

(g · s)(x) = s(g−1x) ; g ∈ G , x ∈ D. (1)

In order to analyze this action, G must be seen as a subgroup of the permutations of

D and the cycle decomposition of the symmetry operations g ∈ G acting on D must

be performed. The cycle decomposition induces a partition of D, that is a division of

D into non-overlapping and non-empty parts, that covers all of D. We identify this

partition with the cycle structure of g acting on D, and denote it CycD(g). The number

of cycles describing the action of g on D is the number of elements of the partition:

|CycD(g)|. As an example, we consider the effect of the C2 operator on model A (third

line in Table 1). By applying C2 to site “1”, it goes to “3”; by applying C2 to “3”, it

goes to “1”. By applying C2 to “2”, it goes to “4”; finally, “4” goes to “2” (“Moves” in

Table 1). We say that the cycle decomposition of C2 acting on the set D of model A

results in 2 cycles (“Cycles” in Table 1).

Pólya’s enumeration theory relies on the following general concepts.

Orbits The group orbit of an element s ∈ S is the set of configurations obtained by

applying all the elements g ∈ G to s:

Ω(s) = {g · s ∈ S; g ∈ G} (2)

The set of all orbits Ω(s) of S under the action of G forms a partition of S. In the

configurational analysis of disordered solids, an orbit is a class of symmetry equivalent
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configurations. In Figure 2, all the 16 configurations of model A are shown. Each row

represents an orbit (they are 6 in total). For each orbit, it is convenient to select one of

its elements as its “canonical” representative[27]; the first found configuration of each

orbit is here selected to play this role.

Stabilizers The stabilizer of an element s consists of the set of all the operators g ∈ G

that send s to itself:

Gs = {g ∈ G; g · s = s} (3)

Any stabilizer Gs is a subgroup of G. Note that all elements of a given orbit have

conjugated stabilizers. For the 6 orbits obtained for model A, stabilizers are shown to

the right in Figure 2.

Fixed points Fixed or invariant configurations of an operation g ∈ G are the elements

of a subset of S:

Sg = {s ∈ S; g · s = s} (4)

The fixed points of g are all the configurations whose stabilizer contains g. For example,

for model A the fixed points of C2 are the configurations belonging to orbits 1,4 and 6

(see Figure 2).

A general property of an orbit Ω(s) of a configuration s is that it can be mapped to the

set of left cosets of the stabilizer Gs in a bijective way [28, 29]. This permits to easily

know the length of the orbit, once the cardinal of Gs is known:

|Ω(s)| = |G|
|Gs|

(5)

For model A (see Figure 2), the stabilizers of the six orbits contain 8, 2, 2, 4, 2 and 8

elements, respectively. Thus, the corresponding orbit lengths |Ω(s)| are 1, 4, 4, 2, 4 and

1, respectively.

Now, assume that a procedure for selecting canonical representatives is available. Let

∆(S) denote the set of canonical representatives for the orbits Ω(s) of the action of G

on S, and let us introduce W (s), a G-invariant weight defined on S (this means that W

is constant on each orbit). Definitions (3) and (4) imply:∑
s∈S

∑
g∈Gs

W (s) =
∑
g∈G

∑
s∈Sg

W (s) (6)

Using the fact that the elements of an orbit have stabilizers with the same cardinal and

share the same value forW , we can factorize by orbits (i.e. by canonical representatives).

Exploiting (5), we deduce:∑
s′∈∆(S)

W (s′) =
1

|G|
∑
g∈G

∑
s∈Sg

W (s) (7)



Use of symmetry in configurational analysis of disordered solids 8

Note that the l.h.s. of Eq. (7) is a sum of |∆(S)| terms, i.e. it has as many terms as

the number of canonical representatives, thus of orbits, of S. We can obtain |∆(S)| by
taking W (s) = 1,∀ s ∈ S:

|∆(S)| = 1

|G|
∑
g∈G

|Sg|. (8)

This is the Cauchy-Frobenius Lemma often named the Burnside Lemma. In order to

evaluate |Sg| we observe that there is a natural correspondence between the set of fixed

points s ∈ Sg and the set of all mappings from CycD(g) to R. The reason for this

correspondence is that, considering the cycle structure of g, we can state that s is

stabilized by g if and only if every cycle of g has all its elements mapped to one and

only one color. This implies that Sg
∼= RCycD(g), so the cardinal of Sg is:

|Sg| = |R||CycD(g)| (9)

In order to illustrate this result, in our model A we consider the set SC2 of all the

configurations unchanged by the operator C2: they are four in orbits 1, 4 and 6 (see

Figure 2). The cycle structure of C2 from Table 1 shows 2 cycles: (13)(24). To build a

stabilized configuration the elements of cycles (13) and (24) must be mapped onto the

same color, i.e. in this 2-colors case: (bb),(bb); (bb),(rr); (rr),(bb); (rr),(rr), that are 4

configurations as obtained applying Eq. (9).

Now, substituting Eq. (9) in Eq. (8) we deduce

|∆(S)| = 1

|G|
∑
g∈G

|R||CycD(g)| (10)

which is the Pólya’s counting formula for the SICs. For convenience, in the following

applications we will use N
|D|
|R| for |∆(S)|, in order to make more evident the dependence

on |D| and |R|.
Tables 1 and 2 provide the set of |CycD(g)| values in the case of models A and B,

respectively, from which the number of configurations can be calculated for any number

of colors. As an example, for model A (4 sites) in the case of 2 and 3 colors we have,

respectively :

N4
2 =

1

8
( 24︸︷︷︸

E

+ 2 · 21︸ ︷︷ ︸
C4

+ 22︸︷︷︸
C2

+2 · 22︸ ︷︷ ︸
σv

+2 · 23︸ ︷︷ ︸
σd

) = 6 (11)

N4
3 =

1

8
( 34︸︷︷︸

E

+ 2 · 31︸ ︷︷ ︸
C4

+ 32︸︷︷︸
C2

+2 · 32︸ ︷︷ ︸
σv

+2 · 33︸ ︷︷ ︸
σd

) = 21 (12)

Note that |CycD(g)| is the same for all operators belonging to the same conjugacy

class. Moreover, the identity always bears |D| unitary cycles, thus providing the largest

contribution to the number of SICs. This observation plays a significant role in the

proof of the Oberschelp’s formula [30, 31], that states

|∆(S)| = |R||D|

|G|
(1 + o(1)), o(1) → 0 when |D| → ∞ (13)
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This formula, obtained for unlabeled graphs, can be extended to the case of large unit

cells, in which |D| >> 1. It will be at the base of the scaling analysis of our approach,

presented in Section 2.5.

2.2. Pólya’s theory at fixed composition

Pólya’s theory allows to count SICs for a given composition. This is achieved by viewing

the colors as variables z1, z2, .., z|R| and considering the weight function W (s) defined by

W (s) =
∏

1≤j≤|R|

z
nj

j (14)

where nj = |s−1(zj)| is the number of elements of D mapped on color zj. Note that W is

constant at fixed composition. For example, in model A with 2 colors, all configurations

on orbits 3 and 4 show 2 b and 2 r sites (see Figure 2), thus share the same W value:

b2r2.

Summing on both sides of Eq. (14) over the elements stabilized by a given g, and using

the fact that Sg
∼= RCycD(g), we obtain∑

s∈Sg

W (s) =
∑

t∈RCycD(g)

∏
c∈CycD(g)

t(c)|c| (15)

where t(c) is the variable corresponding to the color taken by t on the cycle c ∈ CycD(g).

Eq. (15) can be rewritten as∑
s∈Sg

W (s) =
∏

c∈CycD(g)

|R|∑
j=1

z
|c|
j (16)

To establish (16) one observes that expanding the product in the r.h.s. of (16) gives a

sum of terms of the form z
|c1|
i1

z
|c2|
i2

...z
|cN |
iN

(where N = |CycD(g)|) which is precisely the

weight of a mapping t ∈ RCycD(g) that takes the color corresponding to the variable zi1
on the cycle c1, the color corresponding to the variable zi2 on the cycle c2 and so on.

This sum contains exactly the same number of terms as the sum in the r.h.s. of (15)

(i.e. |R|N terms) and each one of its terms corresponds to a unique term in the r.h.s of

(15).

Using Eqs. (7) and (16) one obtains:∑
s′∈∆(S)

W (s′) =
1

|G|
∑
g∈G

∏
c∈CycD(g)

|R|∑
j=1

z
|c|
j (17)

Let us denote the r.h.s. of this identity as PP
|D|
|R| (z1, .., z|R|). Expanding this polynomial

PP
|D|
|R| (z1, .., z|R|) =

∑
n1+...+n|R|=|D|

k(n1,..,n|R|)z
n1
1 ..z

n|R|
|R| (18)

yields the desired information about the number of the orbits with a given composition.

The k(n1,..,n|R|) coefficient associated with the monomial zn1
1 ..z

n|R|
|R| gives the number of

orbits corresponding to the composition (n1, . . . , n|R|).
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In order to compute the number of SICs (orbits) at fixed composition, the “type” of each

g ∈ G is required. It is the |D|-plet TD(g) = (l1, l2, .., l|D|), whose ith value li indicates

the number of cycles of length i (obviously,
∑

i li · i = |D|). Note that the type is the

same for all operators belonging to the same conjugacy class.

In Tables 1 and 2, the type of the operators is given for models A and B, respectively.

As an example of polynomial, for model A (4 sites) and 2 colors we obtain:

PP 4
2 (b, r) = b4 + b3r + 2 · b2r2 + br3 + r4 (19)

This last equation indicates that each end-member b4 or r4 corresponds to 1 SIC, as

well as compositions b3r, br3, while b2r2 is split on 2 SICs. Analogously, for model A

with 3 colors:

PP 4
3 (b, r, g) = b4 + b3r + b3g + 2 · b2r2 + 2 · b2rg

+ 2 · b2g2 + br3 + 2 · br2g + 2 · brg2 + bg3

+ r4 + r3g + 2 · r2g2 + rg3 + g4 (20)

2.3. De Bruijn’s generalization: spin counting

Sections 2.1 and 2.2 dealt with a group G acting on a set D, and with the induced

action of this group on the set of configurations S = RD (i.e. the Pólya’s action). A

more general action can be introduced when a second group H acts on the set of colors

R. We shall indicate it as De Bruijn’s action [32].

Following De Bruijn we shall say that two configurations s1, s2 ∈ S are equivalent if

there exist elements g ∈ G and h ∈ H such that

s1(g · x) = h · s2(x) ; x ∈ D (21)

This amounts to consider the direct product G × H, consisting of all products g × h,

with g ∈ G, h ∈ H, and to see it as acting on S via

(g × h) · s(x) = h · s(g−1 · x) ; x ∈ D (22)

The results of Section 2.1 permit to assert in this case

|∆(S)| = 1

|G×H|
∑

g×h∈G×H

|Sg×h| (23)

where ∆(S) denotes, as in Section 2.1, a set of representatives of the action (22).

Pólya’s formula (10) was derived exploiting the fact that Sg
∼= RCycD(g). What we

need here is to find a similar characterization which permits to find the number of

configurations s that satisfy

s(g · x) = h · s(x) ; x ∈ D (24)

De Bruijn [33] succeeded in characterizing these configurations in terms of the cycle

structure of g and h. Let us summarize his argument.

Assume for the types that TD(g) = (l1, l2, .., l|D|) and that TR(h) = (m1,m2, ..,m|R|).

Let s be a configuration that satisfies (24). Let x denote some element of D. Assume
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that this element belongs to a cycle of g of length i. This cycle can be described through

the elements

x, g · x, g2 · x, · · · , gi−1 · x (25)

The crucial observation is that (24) implies that s must map the elements (25) on:

s(x), h · s(x), h2 · s(x), · · · , hi−1 · s(x) (26)

and the following condition should be satisfied:

hi · s(x) = s(gi · x) = s(x) (27)

This means that the length of the cycle of h to which s(x) belongs should divide i.

Using this observation, we can easily compute the number of possibilities we have for

s ∈ Sh×g (i.e. the analog of the quantity |R||CycD(g)| of Pólya’s formula (10)). For each

cycle of g the number of possibilities for the element of R on which the element x of

(25) can be mapped is∑
j|i

j ·mj (28)

where i is the length of the cycle (25) and where the mj’s are determined by the type

of h; j|i refers to the j divisors of i.

Since there are li cycles of length i in the decomposition of g we obtain

|Sg×h| =
∏
i

(
∑
j|i

j ·mj)
li (29)

Combining (23) and (29) we deduce

|∆(S)| = 1

|G| · |H|
∑
g∈G

∑
h∈H

∏
i

(
∑
j|i

j ·mj)
li (30)

where (as indicated above) (l1,l2,..,l|D|) is the type of g and (m1,m2,..,m|R|) is the type

of h.

Let us now focus on the case where R reduces to two elements R = {↑, ↓} and H to

the group with two operators, namely identity (ER) and exchange (XR) of ↑ and ↓; the
cycle structure of ER and XR is (↑), (↓) and (↑, ↓)), respectively. Then, Eq. (30) reduces
to

|∆(S)| = 1

2|G|
∑
g∈G

∏
i

2li + χ(g)
∏
i|2

2li

 (31)

where χ(g) = 0 if g contains a cycle with an odd length and χ(g) = 1 if this is not the

case.

Introducing the notation

Ge = {g ∈ G,χ(g) = 1} (32)

we can rewrite (31) as

|∆(S)| = 1

2|G|
∑
g∈G

2|CycD(g)| +
1

2|G|
∑
g∈Ge

2|CycD(g)| (33)
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The first term of the sum is equivalent to the Pólya’s counting formula (up to the factor
1
2
). The second term gives a zero contribution if every operation contains odd cycles.

Counting orbits with a given spin composition is not as easy as for the classical Pólya’s

action. This is discussed by de Bruijn [33] and by Harary and Palmer [34]. In order

to overcome this difficulty, we propose to proceed as follows. The first step consists

in constructing the analog of the polynomials (18) attached to the group G acting

individually on RD. This gives a polynomial expression in ↑ and ↓ of the form

PP
|D|
↑↓ (↑, ↓) =

∑
n1+n2=|D|

k(n1,n2) ↑n1↓n2 (34)

where the coefficients k(n1,n2) satisfy

k(n1,n2) = k(n2,n1) ,
∑

n1+n2=|D|

k(n1,n2) =
1

|G|
∑
g∈G

2|CycD(g)| (35)

It is easy to see that the number of orbits corresponding to composition (n1 ↑,n2 ↓) with
n1 6= n2 is directly given by k(n1,n2). When |D| is odd, these compositions are the only

possible and the polynomial (34) encodes all the required information about the spin

composition. One should note that in this case Ge = ∅ and formula (33) reduces to the

Pólya term. When |D| is even the second term in (33) contributes in a subtle way. The

right counting is obtained by combining (10), (33) and (35):

k(n↑,n↓) =
1

2|G|
∑
g∈Ge

2|CycD(g)| +
k(n,n)
2

(36)

For models A and B (Tables 1 and 2), Formula (33) yields 4 and 27 spin SICs,

respectively:

N4
↑↓ =

1

8
(2 · 21︸ ︷︷ ︸

C4

+ 22︸︷︷︸
C2

+2 · 22︸ ︷︷ ︸
σv

) +
1

16
( 24︸︷︷︸

E

+ 2 · 23︸ ︷︷ ︸
σd

) = 4 (37)

N8
↑↓ =

1

8
(2 · 22︸ ︷︷ ︸

C4

+ 24︸︷︷︸
C2

+2 · 24︸ ︷︷ ︸
σv

+2 · 24︸ ︷︷ ︸
σd

) +
1

16
( 28︸︷︷︸

E

) = 27 (38)

The 4 spin representatives of model A correspond to the first 4 representatives in Figure

2, provided that b is substituted by ↑ and r by ↓. Only compositions in the range 0 -

50 % have representatives; the reason is that (0 ↑, 4 ↓) and (1 ↑, 3 ↓) are equivalent to

(4 ↑, 0 ↓) and (3 ↑, 1 ↓), respectively, due to the spin exchange symmetry. As regards

the 50 % composition (2 ↑, 2 ↓), there are 2 spin SICs, as in the case of the two colors

b and r. However, the last statement is not true in general, as we will discuss below in

the case of model B.

In the cases of model A and B (Tables 1 and 2), formula (35) gives, respectively:

k(2↑,2↓) =
1

16
(2 · 21︸ ︷︷ ︸

C4

+ 22︸︷︷︸
C2

+2 · 22︸ ︷︷ ︸
σv

) +
2

2
= 2 (39)

k(4↑,4↓) =
1

16
(2 · 22︸ ︷︷ ︸

C4

+ 24︸︷︷︸
C2

+2 · 24︸ ︷︷ ︸
σv

+2 · 24︸ ︷︷ ︸
σd

) +
13

2
= 12 (40)
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Note that in the case of model A (4 sites), the number of spin SICs at 50 % composition

is the same than in the two colors (b, r) case. On the contrary, for the 50% model B (8

sites) composition, the spin case yields 12 spin SICs, to be compared with 13 SICs for

the two colors (b, r) case. The reason is that there are two SICs of the latter case that

become symmetry equivalent in the former, due to the additional exchange operator XR

acting on the two spin states ↑ and ↓. The full sets of configurations corresponding to

these two SICs are illustrated in Figure 3. The two sets are symmetry independent in the

b, r-colors case, but become symmetry equivalent under the action of the spin exchange

operator XR on the set of colors; couple of configurations related by this operator are

shown in the same row in the Figure.

2.4. Algorithmic aspects: lexicographic ordering and surjective resolution

In this Section, we are concerned with the difficult problem of finding the complete set

of SICs. Direct methods require lists of independent configurations together with their

equivalent configurations that must be stored for subsequent use. To decide whether

a new configuration is independent or not from those already produced (isomorphism

test), the complete list must be spanned.

Orderly generation methods [35, 28, 29] provide practical algorithms that do not require

long lists, perform efficiently with more than two colors and reduce drastically the cost

of isomorphism tests. They are based on the fact that orders on D and R induce a

canonical order on the set RD: the lexicographic order (see Figure 4). Providing the

set of configurations with this canonical order permits to form a system of canonical

representatives by taking the smallest element in each orbit. Within this framework,

the generalization of de Bruijn can be easily implemented, thanks to the direct product

group structure of the symmetry operation involved in the de Bruijn’s action (22).

In order to explain the implementation of the orderly generation, we consider the simple

case of a set D mapped on two colors |R| = 2 represented by 0 and 1. Each configuration

can be represented as a 0-1 sequences of length |D|. For convenience, this sequences

can be identified with a |D|-number in base 2, but this identification plays no role in

the enumeration of the SICs. Starting from the “first” configuration `1 = (0 · · · 0), one
produces the sequence of successive configurations by increasing the |D|-digits number

by 1 at each step. Application to model A is illustrated in Figure 4, where the various

configurations are labelled to the left from `1 to `16. Increasing proceeds from right to

left; a configuration of the list is higher than another when the corresponding |D|-digits
number is larger. On this basis, canonical representatives of the orbits are efficiently

selected. Being the first of the list, `1 is obviously a representative. `2 is compositionally

different from `1, so no operator transforms it into `1. It does not belong to the orbit of

`1 and is the smallest element of a new class of configurations. As such it is stored as the

second representative. In the case of model A, configurations `3 and `2 have the same

composition, so they could be equivalent by symmetry, that is it may exist an operator

transforming `3 into `2. This is the case since the clockwise 4-fold rotation transformed
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`3 into `2. Then `3 is symmetry equivalent to `2 and discarded. `4 is then considered.

Applying every symmetry operator it is never transformed into a configuration equal

or smaller than `3. It is then recorded as a representative. It is easy to see that if

there exists g ∈ G such that g · `4 is lexicographically smaller than or equal to `2 then

either `4 ∈ Ω(`1) or `4 ∈ Ω(`2). On the basis of this remark, there is no need to

hold the complete list of the elements of orbits already classified to decide if a new

configuration `n belongs to one of these orbits. If there exists g ∈ G transforming `n
into a configuration smaller or equal to the last found canonical representative, then it

belongs to one of these orbits and is not the canonical representative of a new orbit.

The process continues along the same lines for the following members of the list and

yields the next canonical representatives: `6, `8 and `16 (Figure 4).

Such an implementation does not require long lists and the canonicity test is reduced

to the comparison of G-equivalent configurations of the one under consideration with

the last identified canonical representative. These features considerably speed up the

selection with respect to direct schemes (it should be noticed that the cost of the selection

of SICs, also when the direct strategy is adopted, may correspond in many cases to a

small fraction of the overall cost of the calculation [21, 22, 23]). The possibility of

reducing the number of canonicity tests using an augmentation procedure, as proposed

by Read [35], has not been implemented here because it would require to hold a sub-list

of canonical representatives. Furthermore, Goldberg [36] noted that in such case there

is no efficient method to determine whether a configuration is canonical or not and no

mechanism ensures that the algorithm does not consider an exponentially long list of

unsuccessful augmentations.

Orderly generation of configurations applies equally for more than two colors and could

provide the complete list of SICs. However, it can be improved by combining it with

a recursion procedure. Before introducing this procedure, we show how the previous

considerations allow to identify the SICs corresponding to a fixed composition. This is

useful for situations where only one composition is of interest, for example in the study

of inverse spinels or disordered systems in general.

All we need, starting from the configuration having the required composition and

the lowest lexicographic rank, is to generate the lexicographically ordered list of

|D| sequences corresponding to the composition and test the canonicity of each new

generated configuration as previously described. These |D|-sequences can be interpreted

either as anagrams or as |D|-digit numbers in base |R|. If one converts configurations

(|D|-sequences, or |D|-digit numbers in base |R|) into base-10 integers, one obtains

a list of increasing but not consecutive integers. In the computer science language,

this corresponds to a hashing scheme using a perfect, but not minimal hash table. In

contrast, Hart et al. [37], looking for derivative structures at fixed composition, proposed

an approach demanding minimality of the hash table. To index the configurations in

minimal mode, they cleverly introduced a mixed-radix number. Minimality is not taken

as a condition in the approach here presented. However an improvement is offered by

the use of the Pólya’s polynomial, whose coefficients provide a stopping condition. As
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soon as the number of classes is found, the search is interrupted. Figure 5 illustrates

the scheme in the case of model A with 3 colors.

In the general case where more than two colors are considered, we combine lexicographic

ordering with a recursion procedure: the so-called surjective resolution. In order to

explain this procedure let us assume that the group G acts on two sets of configurations

S = RD and S1 = RD
1 , where R1 is obtained by adding a new color z|R|+1 to the set R:

R1 = R ∪ {z|R|+1} = {z1, . . . , z|R|, z|R|+1}. (41)

A natural mapping Θ can be defined from RD
1 onto RD

Θ : RD
1 −→ RD

s −→ Θs (42)

by setting {
(Θs)i = si if si 6= z|R|+1

(Θs)i = z|R| if si = z|R|+1

(43)

This mapping is surjective and “compatible” with the actions of G on RD and RD
1 . This

means that

Θ(g · s) = g ·Θ(s) ; s ∈ RD
1 , g ∈ G. (44)

In particular the orbit of an element s ∈ RD
1 projects on the orbit of Θ(s) in RD.

For model A and three colors (R1 = {r, b, g}, where g stands for “green”), the projection

Θ from RD
1 onto RD corresponds to substitute r for g in each configuration s containing

green color. The fact that every orbit of the action of G = C4v on {g, r, b}{1,2,3,4} is

projected on the orbit of the projection of one of its elements is illustrated in Figure 6.

The surjective resolution principle asserts that it is possible to construct a system of

representatives of the action of G on RD
1 from a set of representatives of the action of

G on RD and their stabilizers in G.

More precisely let Ω1 denote an orbit of the action of G on RD
1 and let s1 an element

of this orbit. Let ω denote the canonical representative of the orbit Ω(Θ(s1)) and let

g ∈ G be the operator defined by ω = g ·Θ(s1).

The compatibility property (44) implies that ω = Θ(g · s1), which means that g · s1 ∈
Θ−1(ω). In other words the orbit Ω1 intersects a set of form Θ−1(ω) for an ω belonging

to the set of canonical representatives of the action of G on RD. Figure 6 shows for

example that orbit 13 intersects the set Θ−1(10) and orbit 19 intersects the set Θ−1(16).

It is easy to see that such a canonical representative is unique: if we assume that ω′ is

another canonical representative such that Ω1 ∩Θ−1(ω′) 6= ∅, then there exists s′1 ∈ Ω1

such that:

ω′ = Θ(s′1) = Θ(g′ · s1) = g′ ·Θ(s1) = g′ · g−1 · ω (45)

for a certain g′ ∈ G, which means that ω and ω′ are on the same orbit.

It follows that each orbit of the action of G on RD
1 intersects one and only one preimage

Θ−1(ω) of the set of canonical representatives of the action of G on RD. On Figure 6,
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these representatives are indicated by an asterisk.

The second important fact is that for each canonical representative ω, orbits of the action

of G on Θ−1(ω) are exactly the orbits of the action of the stabilizer Gω on Θ−1(ω). To

see this, consider two elements s, s′ ∈ Θ−1(ω) which are on the same orbit, i.e. s′ = g ·s,
for some g ∈ G, and note that

ω = Θ(s′) = Θ(g · s) = g ·Θ(s) = g · ω (46)

which shows that the operator g is an element of the stabilizer Gω. In model A, the

3-colors orbits are derived from 2-colors ones. As an example, consider class (orbit) 7

and its canonical representative. Classes 8 and 9 are obtained using the stabilizer of 7:

C2v.

The upshot is that once we have produced a set of canonical representatives ω of the

action of G on RD, it is enough to compute the preimages Θ−1(ω) and then the set

of canonical representatives of the orbits of the action of the stabilizers Gω on Θ−1(ω).

Proceeding in this way permits to reduce the number of isomorphisms tests, because

canonicity tests are performed within shorter lists and under the action of smaller groups.

Figures 6 and 7 can help to illustrate this point, again with reference to model A. The

latter shows to the left the generation of the representatives for |R|=2; to the right,

on the contrary, the generation of the representatives for |R|=3 is shown, where the

branching for the third color starts from the |R|=2 representative only. The more

explicit generation of orbits with three colors, blue, red and green is shown in Figure 6.

From Figures 6 and 7, one can note that after the representative of the 15th class has

been found, there is no need to go on. More precisely, the process is stopped when all

the descendants of the last but one 2-colors only representative have been found. As

shown by the presented example, we would then be looking for configurations built on

2 colors, labelled 1 and 2, instead of 0 and 1. The labeling of colors being irrelevant,

the next representatives can be obtained from previous one by properly re-labeling the

colors.

2.5. Orderly generation: scaling with number of SICs

In this Section we discuss time scaling aspects of the orderly generation algorithm. We

start our analysis of the lexicographic ordering scheme for the 2-colors case, as described

in Section 2.4. The full list of configurations {`i} is explored (providing a factor 2|D|);

to each of them at most |G| symmetry operators are applied to test the canonicity. The

required total time (TLO) is then:

TLO ≈ 2|D| · |G| (47)

In contrast, we can estimate the scaling behavior of the direct method (see the flow

charts reported in Figure 2 of Ref. [20]) for the 2-colors case. This method requires to

construct the full list of the 2|D| configurations. Within this list the first occurrence of

a new orbit is determined by comparing each element of the list with all the elements of

the already identified symmetry classes of configurations stored in a second vector. The
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process is initiated by taking the first element of the full list as the representative of the

first class and applying to it all the |G| operators; the obtained configurations belonging

to its class are stored in the second vector. Every time an element of the long list is

not in the second vector, then it is taken as the representative of a new class and all its

equivalent are added to the second vector. All the symmetry classes are found when the

length of the two vectors are equal. This approach scales as 22|D|. The application of the

symmetry operators adds a contribution proportional to |∆(S)| · |G| that is negligible

with respect to 22|D|. So the required time is

Tdir ≈ 22|D| (48)

Relation (47) gives

Tdir ≈ TLO · 2
|D|

|G|
(49)

from which we deduce, by using the Oberschelp’s formula (13):

Tdir

TLO

≈ |∆(S)| (50)

In order to illustrate the relations (47) and (49), we considered the Mg sites in the

tetragonal MgO (n,1,1) supercells built from the primitive cell, with n ranging from 12

to 32 and |R| = 2. The number of sites |D| equals n and |G| ranges from 48 to 128 (in

steps of 4). The results are plotted in Figure 8. The CPU time needed by the algorithm

to generate all the representatives of the SICs is linear on |R||D|. The quadratic behavior

of the direct method on |R||D| with |R| = 2 is also shown for comparison. For large

cells (|D| large), the number of SICs agrees with the relation (13) and supports the

approximations used previously.

Let us now discuss the case of |R| colors, with |R| > 2, which is handled by means

of the surjective resolution. The 3-colors case will be considered, the obtained results

being applicable to larger numbers of colors. Let N and `1, `2, . . . be the number and

the representatives of the 2-colors SICs, respectively. From the definition and properties

of the Θ mapping (42)- (43), the sum of the lengths of the preimages of all the `j is the

number of the 3-colors configurations 3|D|:

N∑
j=1

∣∣Θ−1(`j)
∣∣ = 3|D| (51)

For large |D|, and obviously large N (approximated by the Oberschelp’s formula), the

mean length of the preimages of the `j is given by

<
∣∣Θ−1(`j)

∣∣ > 2|D|

|G|
≈ 3|D| (52)

<
∣∣Θ−1(`j)

∣∣ >≈ |G|
(
3

2

)|D|

(53)
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For each `j, j = 1, . . . , N , the time needed to explore the set Θ−1(`j) is in the order of

|Θ−1(`j)| ·
∣∣G`j

∣∣
The total time to explore the 3-colors SICs is then

Tsurj =
N∑
j=1

∣∣Θ−1(`j)
∣∣ · ∣∣G`j

∣∣ ≈<
∣∣Θ−1(`j)

∣∣ > N∑
j=1

∣∣G`j

∣∣ (54)

As shown by Goldberg (see Lemma 1 in Ref. [36]), an important consequence of

Oberschelp’s formula is

N∑
j=1

∣∣G`j

∣∣ = (1 + o(1))N ≈ N ≈ 2|D|

|G|
(55)

Combining Eqs. (53), (54) and (55)

Tsurj ≈ |G|
(
3

2

)|D|

× 2|D|

|G|
= 3|D| (56)

In the case of |R| colors, the previous formula is written

Tsurj ≈ |R||D| (57)

This result is well illustrated in Figure 9, where the CPU time needed to produce the

representatives of SICs with 3 colors for MgO supercell of type (n,1,1), with 7 ≤ n ≤ 22,

appears to be linearly dependent on 3|D|. With respect to lexicographic approach, the

surjective resolution is |G| times more efficient.

This rather favorable scaling behavior permits to explore a relatively high number of

colors. As an example, up to 5 and 6 colors are considered in Figure 10, with two

different values for |D|, 12 and 16. Note that the CPU time depends on both |R| and
|D|, as expected from Eq. (57).

3. Examples from geochemistry: garnets and olivines

In this Section, we apply Pólya’s and De Bruijn’s theories introduced in the previous

Sections to two real systems, namely garnets and olivines.

Garnets are orthosilicates with general chemical formula X3Y2Si3O12, where X2+ and

Y3+ are divalent and trivalent cations, respectively. The primitive cell contains four

formula units, for a total of 80 atoms; the space group G is cubic (Ia3̄d) with 48

symmetry operators. Natural garnets form substitutional solid solutions extending over

a broad chemical range, and involving up to 12 end members[38, 39]. The most common

cases refer to substitutions of either trivalent cations at the Y octahedral site (1 orbit

containing 8 symmetry equivalent sites in the primitive cell) or divalent cations at the

X dodecahedral site (1 orbit with 12 equivalent sites).

In Table 3 we reported the analysis of the action of G on the set D = {1, 2, 3, 4, 5, 6, 7, 8}
of octahedral sites in the primitive cell. To make the Table more compact, symmetry

operators g were grouped in conjugacy classes CC (10 in total); for each class CC, the

number of cycles |CycD(CC)| and the type TD(CC) are shown.
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Various trivalent cations can occur in the garnet octahedral site, such as Fe3+ (iron),

Al3+ (aluminium), Cr3+ (chromium). For the corresponding solid solutions, Pólya’s

formulas (10) and (17)-(18) can then be used to compute the total number of SICs and

the number of SICs at fixed composition. For example, in the case of 2-colors binary

systems, we have:

N8
2 =

1

48
( 28︸︷︷︸

E

+3 · 24︸ ︷︷ ︸
C2

+6 · 24︸ ︷︷ ︸
C′

2

+8 · 24︸ ︷︷ ︸
C3

+6 · 22︸ ︷︷ ︸
C4

+ 28︸︷︷︸
i

+6 · 22︸ ︷︷ ︸
S4

+8 · 24︸ ︷︷ ︸
S6

+3 · 24︸ ︷︷ ︸
σh

+6 · 24︸ ︷︷ ︸
σd

) = 23 (58)

PP 8
2 (b, r) = b8 + b7r + 3 · b6r2 + 3 · b5r3 + 7 · b4r4 (59)

+ 3 · b3r5 + 3 · b2r6 + br7 + r8

In the case of magnetic trivalent cations, such as Fe3+, the system is usually a magnetic

“solid solution”, involving Fe(↑) and Fe(↓) species. Formulas (33) and (36), from De

Bruijn’s approach, become then useful to calculate the number of spin SICs:

N8
↑,↓ =

1

48
(3 · 24︸ ︷︷ ︸

C2

+6 · 24︸ ︷︷ ︸
C′

2

+6 · 22︸ ︷︷ ︸
C4

+6 · 22︸ ︷︷ ︸
S4

+3 · 24︸ ︷︷ ︸
σh

+6 · 24︸ ︷︷ ︸
σd

)

+
1

96
( 28︸︷︷︸

E

+ 28︸︷︷︸
i

+8 · 24︸ ︷︷ ︸
C3

+8 · 24︸ ︷︷ ︸
S6

) = 15 (60)

k(4↑,4↓) =
1

96
(3 · 24︸ ︷︷ ︸

C2

+6 · 24︸ ︷︷ ︸
C′

2

+6 · 22︸ ︷︷ ︸
C4

+6 · 22︸ ︷︷ ︸
S4

+3 · 24︸ ︷︷ ︸
σh

+6 · 24︸ ︷︷ ︸
σd

) +
7

2
= 7 (61)

note that, in the case of garnets, the number of spin SICs at 50 % composition is the

same than the number of “chemical” SICs: compare k(4↑,4↓) with the coefficient of the

b4r4 term in polynomial (59).

To explore a bigger set of SICs, it is necessary to take a larger set of sites D, by

using a supercell of the primitive cell as a reference. As an example, we performed the

Pólya’s analysis in the case of the garnet conventional cell (160 atoms instead of 80),

for both octahedral (1 orbit containing 16 equivalent sites in the conventional cell) and

dodecahedral sites (1 orbit with 24 equivalent sites). The sets of |CycD(CC)| and the

total numbers of SICs ND
|R| are reported in Tables 4 and 5, respectively.

Note that, when building a supercell, the symmetry group of the system must be

enlarged: it is obtained as product group of the space group and of the translational

vectors used to build up the supercell from the primitive one. The garnet conventional

cell is double than the primitive one, so that there are 96 operators instead of 48,

grouped in 20 (instead of 10) conjugacy classes. The additional classes result from the

composition of each class of the primitive case with the centering vector (1
2
, 1
2
, 1
2
) of the

conventional cell. The |CycD(CC)| values for the conventional cell were reported in

Table 4 in a compact form (see caption to Table).

Now, let us comment on the number of SICs (Table 5), which was also studied as a

function of the number of colors |R|. Taking the 2-colors case and starting from the
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primitive cell, when going from the octahedral (|D| = 8) to the dodecahedral (|D| = 12)

sites, the number of configurations goes from 23 to 154; This number increases up to

179’444 for the 24 dodecahedral sites in the conventional cell. The number of SICs

increases enormously with the number of colors: yet for 3 colors it can reach the order

of billions (dodecahedral sites in conventional cell). Note that these numbers can be

obtained with a very limited number of operations with the present scheme.

The second mineralogical example refers to olivines. They are orthosilicates, too, with

chemical formula X2SiO4 (X2+ are divalent cations). Their primitive cell contains four

formula units and 28 atoms in total; The space group G is orthorhombic (Pbnm) with

8 symmetry operators. The binary system Mg2SiO4-Fe2SiO4 is very common in nature

[38, 40]. The X octahedral site, involved in this solid solution, shows 2 orbits in the

primitive cell, each of them containing 4 equivalent sites (8 sites in total).

The action of G on the set of octahedral sites D = {1, 2, 3, 4, 5, 6, 7, 8} is analyzed in

Table 6. Sites 1-4 and 5-8 belong to the 2 separate orbits; this implies that in every

cycle decomposition they are always found in different cycles. Similar to the case of

garnets, we can apply Pólya’s theory to get the number of SICs of the binary system:

N8
2 =

1

8
( 28︸︷︷︸

E

+3 · 24︸ ︷︷ ︸
C2

+ 26︸︷︷︸
i

+ 26︸︷︷︸
σh

+2 · 24︸ ︷︷ ︸
σv

) = 58 (62)

PP 8
2 (b, r) = b8 + 2 · b7r + 8 · b6r2 + 10 · b5r3 + 16 · b4r4

+ 10 · b3r5 + 8 · b2r6 + 2 · br7 + r8 (63)

The iron end member Fe2SiO4 has magnetic Fe2+ cations in the octahedral sites, which

result in the occurrence of magnetic solid solutions. A De Bruijn’s analysis yields

N8
↑,↓ =

1

8
(3 · 24︸ ︷︷ ︸

C2

+2 · 24︸ ︷︷ ︸
σv

) +
1

16
( 28︸︷︷︸

E

+ 26︸︷︷︸
i

+ 26︸︷︷︸
σh

) = 34 (64)

k(4↑,4↓) =
1

16
(3 · 24︸ ︷︷ ︸

C2

+2 · 24︸ ︷︷ ︸
σv

) +
16

2
= 13 (65)

note that, in the case of 50 % spin composition there are 13 spin SICs, against the 16

SICs of the “chemical” case.

4. Conclusions

In the present study it has been shown that the problem of the automatic and efficient

identification of the symmetry independent configurations can be successfully solved

for (formally) any number of involved positions and species (colors) by using Pólya’s

and de Bruijn’s formalisms and, for the explicit generation of SICs representatives,

an orderly generation approach based on lexicographic ordering combined with the

surjective resolution principle.

The proposed algorithm (that presents many evident advantages with respect to the

direct scheme [21, 22, 23]), has been implemented in a development version of the
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CRYSTAL code and represents a contribution to the automatic investigation of solid

solutions, nowadays (and even more in the near future) at hand, as high performance

computing provides thousands of processors whose use imposes to minimize the number

of manual operations at the various stages of the calculation.

Despite common features with a previously proposed method [18, 19, 37], the present

approach offers a new lightening on the relevant problem of enumerating structures, and

is prone to further developments which will be part of future work. Just as an example,

we mention the problem of the automatic identification of the minimal cell that provides

the required information (that is that contains all the required two-body interactions)

with the constraint of the maximum symmetry.
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g Moves Cycles |Cyc4(g)| T4(g) pp42(g) pp43(g)

E 1 2 3 4 (1)(2)(3)(4) 4 (4,0,0,0) (b+ r)4 (b+ r + g)4

C4 2 3 4 1 (1234) 1 (0,0,0,1) (b4 + r4) (b4 + r4 + g4)

C2 3 4 1 2 (13)(24) 2 (0,2,0,0) (b2 + r2)2 (b2 + r2 + g2)2

C−1
4 4 1 2 3 (1432) 1 (0,0,0,1) (b4 + r4) (b4 + r4 + g4)

σv1 4 3 2 1 (14)(23) 2 (0,2,0,0) (b2 + r2)2 (b2 + r2 + g2)2

σv2 2 1 4 3 (12)(34) 2 (0,2,0,0) (b2 + r2)2 (b2 + r2 + g2)2

σd1 3 2 1 4 (13)(2)(4) 3 (2,1,0,0) (b+ r)2 · (b2 + r2) (b+ r + g)2 · (b2 + r2 + g2)

σd2 1 4 3 2 (1)(3)(24) 3 (2,1,0,0) (b+ r)2 · (b2 + r2) (b+ r + g)2 · (b2 + r2 + g2)

Table 1. Action of the 8 symmetry operators g of the C4v group on the 4-sites square

(see Figure 1-A). “Moves” column gives the one-line notation for the permutation of

the |D|=4 sites under the effect of each g; e.g. in the case of C2, “3412” reads as “1

goes to 3, 3 to 1, 2 to 4 and 4 to 2”. The cycles generated by each g are given in the

third column, while their number |Cyc4(g)| is in the fourth column. T4(g) is a 4-plet

whose ith value li indicates the number of cycles of length i resulting in the “Cycles”

column. pp42(g) gives the contribution of each g to the Pólya’s polynomial PP 4
2 (b, r)

(Eqs. (17)-(18)); the subscript and superscript (2 and 4 in this case) are the number

of colors and the label of the set of sites, respectively. pp43(g) gives the contributions

to PP 4
3 (b, r, g).

g Cycles |Cyc8(g)| T8(g) pp82(g)

E (1)(2)(3)(4)(5)(6)(7)(8) 8 (8,0,0,0,0,0,0,0) (b+ r)8

C4 (1234)(5678) 2 (0,0,0,2,0,0,0,0) (b4 + r4)2

C2 (13)(24)(57)(56) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

C−1
4 (1432)(5876) 2 (0,0,0,2,0,0,0,0) (b4 + r4)2

σv1 (18)(27)(36)(45) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

σv2 (16)(25)(38)(47) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

σd1 (17)(26)(35)(48) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

σd2 (15)(26)(37)(48) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

Table 2. Action of the 8 symmetry operators of the C4v group on the 8-sites square

(see Figure 1-B). Symbols as in Table 1.
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CC Cycles |Cyc8(CC)| T8(CC) pp82(CC)

E (1) (1)(2)(3)(4)(5)(6)(7)(8) 8 (8,0,0,0,0,0,0,0) (b+ r)8

C2 (3) (12)(34)(56)(78) 4 (0,4,0,0,0,0,0,0) 3 · (b2 + r2)4

C2’ (6) (15)(26)(37)(48) 4 (0,4,0,0,0,0,0,0) 6 · (b2 + r2)4

C3 (8) (1)(234)(5)(687) 4 (2,0,2,0,0,0,0,0) 8 · (b+ r)2 · (b3 + r3)2

C4 (6) (1827)(3645) 2 (0,0,0,2,0,0,0,0) 6 · (b4 + r4)2

i (1) (1)(2)(3)(4)(5)(6)(7)(8) 8 (8,0,0,0,0,0,0,0) (b+ r)8

S4 (6) (1827)(3645) 2 (0,0,0,2,0,0,0,0) 6 · (b4 + r4)2

S6 (8) (1)(234)(5)(687) 4 (2,0,2,0,0,0,0,0) 8 · (b+ r)2 · (b3 + r3)2

σh (3) (12)(34)(56)(78) 4 (0,4,0,0,0,0,0,0) 3 · (b2 + r2)4

σd (6) (15)(26)(37)(48) 4 (0,4,0,0,0,0,0,0) 6 · (b2 + r2)4

Table 3. Action of the space group Ia3d (48 symmetry operators) on the 8 octahedral

sites of the garnet structure (primitive cell). Symbols as in Table 1. The first

column lists the conjugacy classes CC of symmetry operators; their cardinal is given

in brackets. pp82(CC) gives the contribution of each CC to the Pólya’s polynomial

PP 8
2 (b, r) (Eqs. (17)-(18)); note that it has the cardinal of the class as a multiplying

factor.

Primitive cell Conventional cell

CC |Cyc8| |Cyc12| |Cyc16| |Cyc24|
E (1) 8 12 16 | 8 24 | 12

C2 (3) 4 8 8 | 8 16 | 12

C2’ (6) 4 8 8 | 8 14 | 14

C3 (8) 4 4 8 | 4 8 | 4

C4 (6) 2 4 4 | 4 6 | 6

i (1) 8 6 12 | 12 12 | 12

S4 (6) 2 4 4 | 4 8 | 8

S6 (8) 4 2 6 | 6 4 | 4

σh (3) 4 6 8 | 8 12 | 12

σd (6) 4 6 4 | 4 6 | 6

Table 4. Number of cycles |CycD| resulting from the action of the space group Ia3d on

four sets of sites of the garnet structure. |Cyc8| and |Cyc12| refer to the 8 octahedral

and 12 dodecahedral sites, respectively, of the primitive cell. |Cyc16| and |Cyc24|
refer to the same 16 and 24 sites of the conventional cell. The first column lists the

conjugacy classes CC of symmetry operators g; their cardinal is given in brackets. In

the conventional cell case, in each |CycD| column there are two sets of values: the first

refers to the classes CC in the first column, the second to the classes CC ′, resulting

from the composition of each CC with the centering vector ( 12 ,
1
2 ,

1
2 ) of the conventional

cell.
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Primitive Cell Conventional Cell

|R| N8
|R| N12

|R| N16
|R| N24

|R|
2 23 154 874 179’444

3 333 12’489 461’889 2’943’985’419

4 2’916 362’776 45’112’096 2’932’200’891’456

5 16’725 5’163’025 1’594’680’625 620’887’278’324’375

6 70’911 45’674’826 29’432’496’906 49’358’237’168’514’996

Table 5. Total number of SICs ND
|R| resulting from the action of the space group Ia3d

on four sets of sites of the garnet structure, as a function of the number of colors |R|.
N8

|R| and N12
|R| refer to the 8 octahedral and 12 dodecahedral sites, respectively, of the

primitive cell. N16
|R| and N24

|R| refer to the same sites of the conventional cell.

g Cycles |Cyc8(g)| T8(g) pp82(g)

E (1)(2)(3)(4) (5)(6)(7)(8) 8 (8,0,0,0,0,0,0,0) (b+ r)8

Ca
2 (13)(24) (57)(68) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

Cb
2 (14)(23) (58)(67) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

Cc
2 (12)(34) (56)(78) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

i (1)(2)(3)(4) (56)(78) 6 (4,2,0,0,0,0,0,0) (b+ r)4 · (b2 + r2)2

σh (12)(34) (5)(6)(7)(8) 6 (4,2,0,0,0,0,0,0) (b+ r)4 · (b2 + r2)2

σv1 (13)(24) (58)(67) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

σv2 (14)(23) (57)(68) 4 (0,4,0,0,0,0,0,0) (b2 + r2)4

Table 6. Action of the space group Pbnm (8 symmetry operators) on the 8 octahedral

sites of the olivine structure (primitive cell). Symbols as in Table 1.
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Figure 1. Action of the symmetry group C4v (8 symmetry operators) on two sets of

objects in a square: (A) 4 symmetry equivalent sites lying on the σd reflection planes

(diagonals); (B) 8 symmetry equivalent sites in general position. The full list of the

C4v symmetry operators is given in the first column of Table 1.
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Figure 2. C4v group acting on the 4-sites, 2-colors square (see Figure 1-A): the set of

24 = 16 configurations, grouped in the 6 orbits. Each row corresponds to an orbit; the

first configuration of each orbit has been chosen as its “canonical” representative. The

orbit stabilizer Gs and its cardinal |Gs| are given in the last two columns (Schoenflies

notation).
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Figure 3. C4v group acting on the 8-sites, 2-colors square (see Figure 1-B): effect

of the additional action of H = S2 group on the set of colors. The configurations

belonging to orbits 7 and 8 for the 50% composition (4b, 4r) (13 orbits in total) are

reported in two columns. These two orbits are symmetry independent in the general

b, r-colors case. On the contrary, they compose a single orbit of symmetry equivalent

configurations in the ↑, ↓-colors case, i.e. when the H = S2 group acts on the 2 colors.

Couples of configurations that become equivalent due to the action of the exchange

operator XR ∈ S2 are on the same row. The symmetry operator g ∈ C4v, that must

be applied to the first-row configurations to obtain the configurations in each row, is

reported in the left column.
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0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
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ω

Figure 4. C4v group acting on the 4-sites, 2-colors square (see Figure 1-A): generation

of the canonical representatives through orderly generation; the left column gives the

lexicographic order (LO) of the representatives.

0 1 1 2
0 1 2 1

1 0 1 2
0 2 1 1

4 3 2 1

Sites

1

1 0 2 1
1 1 0 2
1 1 2 0
1 2 0 1
1 2 1 0
2 0 1 1
2 1 0 1
2 1 1 0

2

ω

Figure 5. C4v group acting on the 4-sites, 3-colors square (see Figure 1-A):

generation of the canonical representatives at fixed composition (b, 2r, g) through

orderly generation; the left column gives the LO of the representatives. All

configurations at constant composition (b, 2r, g) are listed in lexicographic order. The

first one, the lowest, (f1), is canonical. The second one (f2) cannot be transformed in

the previous one by any operator, it is then canonical. Pólya’s polynomial (Table 1)

indicates that there are only 2 representatives for this composition, then the search is

stopped.
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Figure 6. C4v group acting on the 4-sites square (see Figure 1-A): orbits vs number of

colors |R|, from one (blu, bottom layer), to two (red, middle layer), to three (green, top

layer). The number of orbits increases from 1 to 6 to 21. The canonical representatives

(SICs) for the |R|+1 case are generated from the set of SICs for the |R| case by using

the surjective resolution principle. The arrows represent the θ mapping, according to

Eqs. (42)-(43), Section 2.4. Asterisks in the 2-colors (middle) layer label the 2-colors

SICs. Asterisks in the 3-colors (top) layer label the configurations belonging to the

θ-preimages of the 2-colors SICs; among them, primed asterisks label the 3-colors SICs.



Use of symmetry in configurational analysis of disordered solids 30

4 3 2 1

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1

0 1 0 0
0 1 0 1

0 1 1 0
0 1 1 1

Sites

1
2

4

7

10

16

0 1 1 2

0 1 2 2
0 1 2 1

0 2 1 2
0 2 1 1

0 1 0 2

0 2 0 2
0 2 0 1

0 0 0 2

0 0 1 2
0 0 2 1
0 0 2 2

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1 1 1 1 2

. . . .
2 2 2 2

4 3 2 1

Sites

1

2

3

4

5

6

3

5

6

8

9

11
12
13

0 2 2 2
14
15

17

21

.

ω ω' ω'

Figure 7. C4v group acting on the 4-sites, 3-colors square (see Figure 1-A): generation

of the canonical representatives (SICs) through lexicographic ordering (LO) combined

with surjective resolution. On the left side, the 2-colors configurations are given. The

left-most column gives the LO of the corresponding SICs in the 2-colors only case

(see also Figure 4), while the central column indicates their LO in the 3-colors case.

On the right side, the additional 3-colors configurations are listed. The arrows in the

central column represent the θ mapping according to the surjective resolution principle

(see Eqs. (42)-(43), Section 2.4). In the right-most column the LO of the additional

3-colors SICs is reported.
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Figure 8. CPU time (circles, logarithmic scale) needed to generate the SICs using

lexicographical ordering, as a function of the size of the system |R||D|, for |R| = 2.

The reference system is a tetragonal MgO (n,1,1) supercell, with 12 ≤ n ≤ 32. There

are 12 ≤ |D| ≤ 32 sites and 48 ≤ |G| ≤ 128 symmetry operators. The number of SICs

is represented by squares. The arrow indicates the time growth for direct method (see

Eq. (48)). The scaling difference between the time and SICs curves is in the order of

|G|2 (see Eqs. (13) and (47)).
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Figure 9. CPU time (triangles, logarithmic scale) needed to generate the SICs using

surjective resolution, as a function of the size of the system |R||D|, for |R| = 3. The

reference system is a tetragonal MgO (n,1,1) supercell, with 7 ≤ n ≤ 22. There are

7 ≤ |D| ≤ 22 sites and 28 ≤ |G| ≤ 88 symmetry operators. The number of SICs is

represented by squares. The arrow indicates the time growth for direct method (see

Eq. (48)).



Use of symmetry in configurational analysis of disordered solids 33
T

im
e

 (
s
)

N
u

m
b

e
r 

o
f 
S

IC
s

Figure 10. CPU time (circles and triangles, logarithmic scale) needed to generate

the SICs using surjective resolution, as a function of the number of colors |R|. The

reference system is the garnet structure, either octahedral sites in the conventional cell

(circles, |D| = 16, |G| = 96 symmetry operators) or dodecahedral sites in the primitive

cell (triangles, |D| = 12, |G| = 48). The number of SICs is represented by squares and

hexagons for the two cases, respectively. For details on the garnet system, see Section

3.
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