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We investigate the effect of boundary slip on the transient pulsatile fluid flow through a vessel with body acceleration.The Fahraeus-
Lindqvist effect, expressing the fluid behavior near the wall by the Newtonian fluid while in the core by a non-Newtonian fluid,
is also taken into account. To describe the non-Newtonian behavior, we use the modified second-grade fluid model in which the
viscosity and the normal stresses are represented in terms of the shear rate. The complete set of equations are then established and
formulated in a dimensionless form. For a special case of the material parameter, we derive an analytical solution for the problem,
while for the general case, we solve the problem numerically. Our subsequent analytical and numerical results show that the slip
parameter has a very significant influence on the velocity profile and also on the convergence rate of the numerical solutions.

1. Introduction

In this paper, we study a fluid-structure interaction problem,
namely, the effect of boundary slip on the flow of a non-
Newtonian fluid through microchannels. This problem has
many applications, and in this paper we particularly focus on
blood flow in the cardiovascular system.

For the study of blood flow in arteries, two major types of
constitutive models have been used. The first type of models
is based on themicrocontinuumor the structured continuum
theories [1–6] inwhich the balance laws are used to determine
the characteristics of blood motion. In the other type of
models, blood is considered as a suspension, and its flow is
modeled by the non-Newtonian fluid mechanics. Due to the
red blood cells (RBC) migration as shown experimentally,
blood has been modeled as a two-stage fluid by many
researchers [7–9]. The first stage is a peripheral layer which
is modeled as a Newtonian viscous fluid, while the other one
is a centre core which is modeled as a non-Newtonian fluid.
The effect of body acceleration and pulsatile conditions were

taken into account under the same problem by Majhi et al.
[7, 10]. Later, Massoudi and Phuoc [11] used the (generalized)
second-grade fluid constitutive model to describe the shear
thinning and normal stress effect, and the behavior of blood
flow near the wall is modeled by the Newtonian fluid model,
while the behavior of the blood flow at the core is described
by the second-grade fluid model.

In all of the above mentioned models, the so-called no-
slip boundary condition is used; namely, the velocity of
flow relative to the solid is zero on the fluid-solid interface
[12]. Although the no-slip condition is supported by many
experimental results, the existence of slip of a fluid on the
solid surface was also observed by many other researches
[13–20]. The Navier slip condition has been used by various
researchers to describe boundary slip and is a more general
boundary condition, in which the fluid velocity component
tangential to the solid surface, relative to the solid surface, is
proportional to the shear stress on the fluid-solid interface
and the slip length. The surface characteristics constant, slip
length, describes the “slipperiness” of the surface. Recently,
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Figure 1: The velocity profile in the small artery with radius 0.15 cm under two different slip parameter values: (a) 𝑙𝑏 = 0; (b) 𝑙𝑏 = 2. In the
figure, the 3D graphs show the variation of velocity as a function of time and location, while the 2D graphs show the variation of velocity with
time at three radial locations including the artery centre (𝑟 = 0), the interface of inner-outer layer (𝑟 = 0.6), and the arterial wall (𝑟 = 1).

we andmany other researchers have investigated various flow
problems of Newtonian fluids with the traditional no-slip
and the Navier slip boundary conditions [12, 20–30], and it
is found that the boundary slip and the slip parameter have
significant influence on the flow of Newtonian fluids through
microchannels and tubes.

Motivated by the above mentioned work, we extend
previous work on slip flows of Newtonian fluids [21, 22] to
the case involving both Newtonian and non-Newtonian fluid
flow in the flow region. The new feature and contribution of

this work include establishment of the underlying boundary
value problem for the problem, the derivation of an exact
solution for a special case, and demonstration of the influence
of the slip parameter on the flow profile and flow behavior.
The rest of the paper is organized as follows. In Section 2,
we present the underlying boundary value problem for
the problem in dimensionless form. Then in Section 3, we
derive an exact solution for a special case. In Section 4, we
investigate numerically the effect of the slip parameter for the
general case. Finally, a conclusion is given in Section 5.
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Figure 2: The velocity profile in the large artery with radius 0.50 cm under two different slip parameter values: (a) 𝑙𝑏 = 0; (b) 𝑙𝑏 = 2. In the
figure, the 3D graphs show the variation of velocity as a function of time and location, while the 2D graphs show the variation of velocity with
time at three radial locations including the artery centre (𝑟 = 0), the interface of inner-outer layer (𝑟 = 0.6), and the arterial wall (𝑟 = 1).

2. Mathematical Formulation

The flow of a fluid with no thermochemical and electromag-
netic effects can be described by the conservation equations
of mass and linear momentum; namely,

𝜕𝜌

𝜕𝑡
+ div (𝜌k) = 0,

𝜌 (
𝜕k

𝜕𝑡
+ k ⋅ ∇k) = divT + 𝜌b,

(1)

where 𝜌 is the density of the fluid, 𝜕/𝜕𝑡 is the partial derivative
with respect to time, k is the velocity vector, b is the body
force vector, and T is the stress tensor.

The stress tensor is related to the velocity gradient by the
constitutive equations. For a modified (generalized) second-
grade fluid [11, 31, 32], the constitutive equations can be
expressed by

T = −𝑝I + Π
𝑚/2

(𝜇A1 + 𝛼1A2 + 𝛼2A
2
1, ) , (2)

where 𝑚 is a material parameter, Π = (1/2) trA2
1 is the

second invariant of A1, 𝑝 is the fluid pressure, 𝜇 is the
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Figure 3: Diagrams showing the velocity profile on the arterial wall with five different slip parameters 𝑙𝑏 for two different artery radii (a)
𝑟 = 0.15 cm; (b) 𝑟 = 0.5 cm.

coefficient of viscosity, 𝛼𝑖 are material moduli (the normal
stress coefficients), and Ai are the kinematical tensors given
by

A1 = L + L𝑇,

A2 =
𝜕A1
𝜕𝑡

+ [grad (A1)] k + A1L + (L)
𝑇A1,

(3)

in which 𝐿 is grad k and the superscript 𝑇 refers to matrix
transposition.

For the axially symmetrical blood flow through a circular
tube of radius 𝑏, we can assume that k = V(𝑟, 𝑡)ez, where 𝑧

is the axial direction and 𝑟 is the radial direction. Under the
periodic body acceleration and a unsteady pulsatile pressure
gradient [7, 10], the momentum equation in the 𝑧-direction
in the cylindrical polar coordinate (𝑟, 𝜃, 𝑧) is

𝜌
𝜕V

𝜕𝑡
= −

𝜕𝑝

𝜕𝑧
+ 𝜌𝐺 +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑇𝑟𝑧) . (4)

The shear stress 𝑇𝑟𝑧 for a generalized second-grade fluid
can be expressed by

𝑇𝑟𝑧 =

{{{

{{{

{

𝜇1



𝜕V1
𝜕𝑟



𝑚
𝜕V1
𝜕𝑟

0 ≤ 𝑟 ≤ 𝑎,

𝜇2

𝜕V2
𝜕𝑟

𝑎 ≤ 𝑟 ≤ 𝑏.

(5)

The approximate periodic form of the pressure gradient
generated by the heart can be described by

−
𝜕𝑝

𝜕𝑧
= 𝐴0 + 𝐴1 cos𝜔𝑝𝑡, (6)

where𝐴0, 𝐴1, 𝜔𝑝 = 2𝜋𝑓𝑝, and𝑓𝑝 are the constant component
of the pressure gradient, the amplitude of the pressure
fluctuation (establishing the systolic and diastolic pressures),
the circular frequency, and the frequency of pulse rate,
respectively.

The body acceleration 𝐺 can be approximated by

𝐺 = 𝐴𝑔 cos (𝜔𝑏𝑡 + 𝜙) , (7)

where 𝐴𝑔 is the amplitude, 𝑓𝑏 = 𝜔𝑏/2𝜋 is the frequency, and
𝜙 is the lead angle of 𝐺 with respect to the action of the heart.

Substituting (5)–(7) into (4), the blood flow equation for
a modified second-grade fluid in the 𝑧-direction, in the inner
and outer core, becomes

𝜌1

𝜕V1
𝜕𝑡

= 𝐴0 + 𝐴1 cos𝜔𝑝𝑡 + 𝜌𝐴𝑔 cos (𝜔𝑏𝑡 + 𝜙)

+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜇1



𝜕V1
𝜕𝑟



𝑚
𝜕V1
𝜕𝑟

) , for 0 ≤ 𝑟 ≤ 𝑎,

𝜌2

𝜕V2
𝜕𝑡

= 𝐴0 + 𝐴1 cos𝜔𝑝𝑡 + 𝜌𝐴𝑔 cos (𝜔𝑏𝑡 + 𝜙)

+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜇2

𝜕V2
𝜕𝑟

) , for 𝑎 ≤ 𝑟 ≤ 𝑏.

(8)

In order to completely define the problem, boundary
and initial conditions are required. In this work, the Navier
slip condition is applied. That is, on the solid-fluid interface
𝑟 = 𝑏, the axial fluid velocity, relative to the solid surface, is
proportional to the shear stress on the interface. As the fluid
layer near the wall is modeled as a Newtonian fluid in our
model, the shear stress on the boundary is related to the shear
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Figure 4: Velocity profiles in arteries with different radii 𝑟: (a) 𝑟 = 0.15 cm; (b) 𝑟 = 0.5 cm. In the figure, the graphs on the left column
correspond to 𝑙

𝑏
= 0, while the graphs on the right column correspond to 𝑙

𝑏
= 2.

0 10 20 30 40 50

0

5

Dimensionless time

D
iff

er
en

ce
 er

ro
r o

f d
im

en
sio

nl
es

s v
elo

ci
ty

 at
r
=
0

−5

−10

−15

−20

−25

−30

lb = 0

lb = 2

lb = 4

lb = 6

lb = 8

(a)

0 10 20 30 40 50
Dimensionless time

0

5

D
iff

er
en

ce
 er

ro
r o

f d
im

en
sio

nl
es

s v
elo

ci
ty

 at
r
=
0

−5

−10

−15

−20

−25

−30

lb = 0

lb = 2

lb = 4

lb = 6

lb = 8

(b)

Figure 5: Diagrams showing the convergence of numerical solutions for different slip parameters and artery radii: (a) 𝑟 = 0.15 cm; (b)
𝑟 = 0.50 cm.
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Figure 6: Velocity profiles in arteries with different slip parameters 𝑙𝑏 and radii 𝑟: (a) 𝑟 = 0.15 cm; (b) 𝑟 = 0.50 cm. In the Figure, the graphs
on the left column correspond to 𝑙𝑏 = 0, while the graphs on the right column correspond to 𝑙𝑏 = 2.

strain rate by 𝜎𝑟𝑧 = 𝜇2(𝜕V/𝜕𝑧).Thus, the Navier slip condition
can be written as

V2 (𝑏, 𝑡) + 𝑙
𝜕V2
𝜕𝑡

(𝑏, 𝑡) = 0, (9)

where 𝑙 is the slip parameter. Moreover, we assume that the
slip parameter does not change along the axial direction.

On 𝑟 = 0, the symmetry condition is introduced:

𝜕V1
𝜕𝑟

(0, 𝑡) = 0. (10)

On the interface between two different fluids, for contin-
uous and smooth behavior of the velocity and shear stresses,
we require

V1 (𝑎, 𝑡) = V2 (𝑎, 𝑡) ,

[𝜇1



𝜕V1
𝜕𝑟



𝑚
𝜕V1
𝜕𝑟

] (𝑎, 𝑡) = [𝜇2

𝜕V2
𝜕𝑟

] (𝑎, 𝑡) .

(11)

The initial conditions are set to

V1 (𝑟, 0) = 0 = V2 (𝑟, 0) , (12)



Abstract and Applied Analysis 7

0 5 10 15 20 25 30

0

0.5

1

1.5

2

2.5

Dimensionless time
0 5 10 15 20 25 30

Dimensionless time

D
im

en
sio

nl
es

s v
elo

ci
ty

D
im

en
sio

nl
es

s v
elo

ci
ty

0

1

2

3

4

5

6

7

8

9

−0.5

(a)

Dimensionless time

D
im

en
sio

nl
es

s v
elo

ci
ty

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16
Dimensionless time

0 2 4 6 8 10 12 14 16

10

0

0.5

1

1.5

2

3

2.5

D
im

en
sio

nl
es

s v
elo

ci
ty

−0.5

r = 0 (centre)
r = 0.6 (inner-outer layer interface)
r = 1 (wall)

r = 0 (centre)
r = 0.6 (inner-outer layer interface)
r = 1 (wall)

(b)

Figure 7: Velocity profiles at three arterial locations (𝑟1, 𝑟2, 𝑟3): for 𝑚 = −1/4 and under different slip parameters 𝑙𝑏 and artery radii (a)
𝑟 = 0.15 cm; (b) 𝑟 = 0.50 cm. In the Figure, the graphs on the left column correspond to 𝑙𝑏 = 0, while the graphs on the right column
correspond to 𝑙𝑏 = 2.

which is essential for the numerical scheme adopted to esti-
mate the time at which the pulsatile steady state is achieved.

To simplify the equations, we introduce the following
nondimensional variables and parameters:

𝑟 =
𝑟

𝑏
, V =

V

V0
, 𝑡 =

𝜔𝑝

2𝜋
𝑡, 𝑢0 =

𝐴0𝑏
2

𝜇2

,

𝑒 =
𝐴1

𝐴0

, 𝜔𝑟 =
𝜔𝑏

𝜔𝑝

, 𝑟0 =
𝑎

𝑏
, 𝑚𝑢 = 𝜇(

𝑢0

𝑏
)

𝑚

,

𝜌
∗

=
𝜌1

𝜌2

, 𝜇
∗

=
𝜇2

𝜇
,

𝐶1 =
𝐴0𝑏
2

𝜇𝑢0

, 𝐶2 = 𝜌1𝐴𝑔
𝑏
2

𝜇𝑢0

=
𝜌1𝐴𝑔

𝐴0

𝐵1,

𝛼 =
𝜌1𝜔𝑝𝑏

2

2𝜋𝜇
, 𝛾 =

𝜌2𝜔𝑝𝑏
2

2𝜋𝜇𝜇∗
=

𝜌2𝜔𝑝𝑏
2
𝜌1

2𝜋𝜇𝜇∗𝜌1

= 𝛼
𝜌
∗

𝜇∗
,

𝐶1 =
𝐴0𝑏
2

𝜇𝑢0𝜇
∗

=
𝐶1

𝜇∗
, 𝐶2 =

𝜌2𝐴𝑔𝑏
2
𝜌1

𝜇𝑢0𝜇
∗𝜌1

= 𝐶2

𝜌
∗

𝜇∗
.

(13)
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Figure 8: Diagrams showing the convergence of numerical results of the fluid velocity on the wall to the steady state pulsatile velocity field
under various slip parameters 𝑙𝑏 for two different artery radii: (a) 𝑟 = 0.15 cm; (b) 𝑟 = 0.50 cm.

In terms of the nondimensional variables and parameters,
(8)–(12) can be written in the form of

𝛼
𝜕V1
𝜕𝑡

= 𝐶1 (1 + 𝑒 cos 2𝜋𝑡) + 𝐶2 cos (2𝜋𝜔𝑟𝑡 + 𝜙)

+
1

𝑟

𝜕

𝜕𝑟
[𝑟



𝜕V1
𝜕𝑟



𝑚
𝜕V1
𝜕𝑟

] , for 0 ≤ 𝑟 ≤ 𝑟0,

𝛾
𝜕V2
𝜕𝑡

= 𝐶1 (1 + 𝑒 cos 2𝜋𝑡) + 𝐶2 cos (2𝜋𝜔𝑟𝑡 + 𝜙)

+
1

𝑟

𝜕

𝜕𝑟
[𝑟

𝜕V2
𝜕𝑟

] , for 𝑟0 ≤ 𝑟 ≤ 1.

(14)

The boundary conditions and initial conditions, in dime-
nsionless form, can be expressed by

𝜕V1
𝜕𝑟

(0, 𝑡) = 0, (15)

𝑏V2 (1, 𝑡) + 𝑙
𝜕V2
𝜕𝑟

(1, 𝑡) = 0, (16)

V1 (𝑟0, 𝑡) = V2 (𝑟0, 𝑡) , (17)

[



𝜕V1
𝜕𝑟



𝑚
𝜕V1
𝜕𝑟

] (𝑟0, 𝑡) = [𝜇
∗ 𝜕V2

𝜕𝑟
] (𝑟0, 𝑡) , (18)

V1 (𝑟, 0) = 0 = V2 (𝑟, 0) . (19)

3. Analytical Solution

For 𝑚 = 0, the model reduces to the linear model with
different viscosity in the peripheral layer and the centre core.
In this case, (14) have the same form:

𝐿 (V) = 𝛽
𝜕V

𝜕𝑡
−

1

𝑟

𝜕V

𝜕𝑟
−

𝜕
2V

𝜕𝑟2

= 𝐵1 (1 + 𝑒 cos (2𝜋𝑡)) + 𝐵2 cos (2𝜋𝜔𝑟𝑡 + 𝜙) .

(20)

By the superposition principle, if V0, V1, and V2 are
the solution of 𝐿(V) = 𝑓(𝑡), respectively, for 𝑓(𝑡) =

𝐵1𝑒
0𝑡𝑖, 𝐵1𝑎𝑒

2𝜋𝑡𝑖, and 𝐵2𝑒
(2𝜋𝜔
𝑟
𝑡+𝜙)𝑖, then the complete solution

of (20) is V = ∑
2

𝑛=0
Re(V𝑛).

To determine V𝑛, we solve

𝛽
𝜕V𝑛
𝜕𝑡

= 𝐷𝑛𝑒
𝑔
𝑛
(𝑡)𝑖

+
1

𝑟

𝜕V𝑛
𝜕𝑟

+
𝜕
2V𝑛

𝜕𝑟2
, (21)

where 𝑔0(𝑡) = 0, 𝑔1(𝑡) = 2𝜋𝑡, 𝑔2(𝑡) = 2𝜋𝜔𝑟𝑡 + 𝜙, 𝐷0 = 𝐵1,
𝐷1 = 𝑎𝐵1, and 𝐷2 = 𝐵2. As (21) admits solutions of the
form V𝑛 = 𝑓𝑛(𝑟)𝑒

𝑔
𝑛
(𝑡)𝑖, we have from (21) that

𝛽𝑔


𝑛
(𝑡) 𝑓𝑛 (𝑟) 𝑒

𝑔
𝑛
(𝑡)𝑖

𝑖

= 𝐷𝑛𝑒
𝑔
𝑛
(𝑡)𝑖

+
1

𝑟
𝑓


𝑛
(𝑟) 𝑒
𝑔
𝑛
(𝑡)𝑖

+ 𝑓


𝑛
(𝑟) 𝑒
𝑔
𝑛
(𝑡)𝑖

.

(22)

Dividing by 𝑒
𝑔
𝑛
(𝑡)𝑖 on both sides of (22), we obtain

𝛽𝑔


𝑛
(𝑡) 𝑓𝑛 (𝑟) 𝑖 = 𝐷𝑛 +

1

𝑟
𝑓


𝑛
(𝑟) + 𝑓



𝑛
(𝑟) . (23)
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For 𝑛 = 0, we get

𝑓


0
(𝑟) +

1

𝑟
𝑓


0
(𝑟) = −𝐵1, (24)

which has the general solution:𝑓0(𝑟) = (𝑐1+𝑐2 ln 𝑟)−(𝐵1/4)𝑟
2.

For 𝑛 = 1, we have

𝑓


1
(𝑟) +

1

𝑟
𝑓


1
(𝑟) − 2𝜋𝛽𝑖𝑓1 (𝑟) = −𝑒𝐵1. (25)

Let 𝛽
2

1
= −2𝜋𝛽𝑖; then,

1

𝛽
2

1

𝑓


1
(𝑟) +

1

𝛽
2

1
𝑟

𝑓


1
(𝑟) + 𝑓1 (𝑟) = −

𝑒𝐵1

𝛽
2

1

. (26)

Let 𝑟 = 𝛽
1
𝑟; we have

𝑟
2
𝑓


1
(𝑟) + 𝑟𝑓



1
(𝑟) + 𝑟

2
𝑓1 (𝑟) = −

𝑒𝐵1

𝛽
2

1

𝑟
2
. (27)

The general solution of (27) is

𝑓1 (𝑟) = 𝑑1𝐽0 (𝛽
1
𝑟) + 𝑒1𝑌0 (𝛽

1
𝑟) −

𝑒𝐵1

2𝜋𝛽
𝑖, (28)

where 𝑑1 and 𝑒1 are integration constants and 𝐽0 and 𝑌0
denote the zero-order Bessel functions of the first kind and
the second kind, respectively.

Similarly, for 𝑛 = 2, we have

𝑓


2
(𝑟) +

1

𝑟
𝑓


2
(𝑟) − 2𝛽𝜋𝜔𝑟𝑓2 (𝑟) 𝑖 = −𝐵2, (29)

and the general solution is

𝑓2 = 𝑑2𝐽0 (𝛽
2
𝑟) + 𝑒2𝑌0 (𝛽

2
𝑟) −

𝐵2

2𝛽𝜔𝑟𝜋
𝑖, (30)

where 𝛽
2

2
= −2𝜋𝛽𝜔𝑟𝑖.

Because the boundness of V1, V2, 𝑐2, 𝑒1, and 𝑒2 are set to
zero, hence, from (14) and the solutions for (20), we have

V1 = Re {𝑐1 −
𝐶1

4
𝑟
2

+ [𝑑1𝐽0 (𝛽1𝑟) −
𝑒𝐶1

2𝜋𝛼
𝑖] 𝑒
2𝜋𝑡𝑖

+ [𝑑2𝐽0 (𝛽2𝑟) −
𝐶2

2𝜋𝜔𝑟𝛼
𝑖] 𝑒
(2𝜋𝜔
𝑟
𝑡+𝜙)𝑖

} ,

V2 = Re{𝑐1 + 𝑐2 ln 𝑟 −
𝐶1

4
𝑟
2

+ [𝑑1𝐽0 (𝛽1𝑟) + 𝑒1𝑌0 (𝛽1𝑟) −
𝑒𝐶1

2𝜋𝛾
𝑖] 𝑒
2𝜋𝑡𝑖

+ [𝑑2𝐽0 (𝛽2𝑟) + 𝑒2𝑌0 (𝛽2𝑟) −
𝑐2𝑖

2𝜋𝜔𝑟𝛾
]

× 𝑒
(2𝜋𝜔
𝑟
𝑡+𝜙)𝑖

} ,

(31)

where 𝛽
2

1
= −2𝜋𝛾𝑖, 𝛽

2

2
= −2𝜋𝜔𝑟𝛾𝑖, 𝛽

2

1
= −2𝜋𝛼𝑖, and 𝛽

2

2
=

−2𝜋𝜔𝑟𝛼𝑖.
As 𝑑𝐽0(𝑥)/𝑑𝑥 = −𝐽1(𝑥) and 𝑑𝑌0(𝑥)/𝑑𝑥 = −𝑌0(𝑥), we have

𝜕V1
𝜕𝑟

= Re(−
𝐶1

2
𝑟 − 𝑑1𝛽1𝐽1 (𝛽1𝑟) 𝑒

2𝜋𝑡𝑖

−𝑑2𝛽2𝐽1 (𝛽2𝑟) 𝑒
(2𝜋𝜔
𝑟
𝑡+𝜙)𝑖

) ,

𝜕V2
𝜕𝑟

= Re(𝑐2
1

𝑟
−

𝐶1

2
𝑟

+ [−𝑑1𝛽1𝐽1 (𝛽1𝑟) − 𝑒1𝛽1𝑌1 (𝛽1𝑟)] 𝑒
2𝜋𝑡𝑖

+ [−𝑑2𝛽2𝐽1 (𝛽2𝑟) − 𝑒2𝛽2𝑌1 (𝛽2𝑟)] 𝑒
(2𝜋𝜔
𝑟
𝑡+𝜙)𝑖

) .

(32)

Obviously, V1 satisfies the boundary condition (15) automati-
cally. We now consider the boundary condition (16); namely,

Re[(𝑏𝑐1 + 𝑙𝑐2 − (𝑙 +
𝑏

2
)

𝐶1

2
)

+ ( (𝑏𝐽0 (𝛽1) − 𝑙𝛽1𝐽1 (𝛽1)) 𝑑1

+ (𝑏𝑌0 (𝛽1) − 𝑙𝛽1𝑌1 (𝛽1)) 𝑒1 −
𝑒𝑏𝐶1𝑖

2𝜋𝛾
) 𝑒
2𝜋𝑡𝑖

+ (𝑑2 (𝑏𝐽0 (𝛽2) − 𝑙𝛽2𝐽1 (𝛽2))

+ 𝑒2 (𝑏𝑌0 (𝛽2) − 𝑙𝛽2𝑌1 (𝛽2))

−
𝑏𝐶2

2𝜋𝜔𝑟𝛾
𝑖) 𝑒
(2𝜋𝜔
𝑟
𝑡+𝜙)𝑖

] = 0.

(33)

Further, from boundary conditions (17) and (18), we have

Re[(𝑐1 − 𝑐1 − 𝑐2 ln 𝑟0 − (𝐶1 − 𝐶1)
𝑟
2

0

4
)

+ (𝑑1𝐽0 (𝛽1𝑟0) − 𝑑1𝐽0 (𝛽1𝑟0) − 𝑒1𝑌0 (𝛽1𝑟0)

− (𝛾𝐶1 − 𝛼𝐶1)
𝑒𝑖

2𝜋𝛼𝛾
) 𝑒
2𝜋𝑡𝑖

+ (𝑑2𝐽0 (𝛽2𝑟0) − 𝑑2𝐽0 (𝛽2𝑟0)

−𝑒2𝑌0 (𝛽2𝑟0) − (𝛾𝐶2 − 𝛼𝐶2)
𝑖

2𝜋𝜔𝑟𝛾𝛼
)

× 𝑒
(2𝜋𝜔
𝑟
𝑡+𝜙)𝑖

] = 0,
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Re [((𝜇
∗
𝐶1 − 𝐶1)

𝑟0

2
− 𝜇
∗ 𝑐2

𝑟0

)

+ ( − 𝑑1𝛽1𝐽1 (𝛽1𝑟0) + 𝑑1𝜇
∗
𝛽1𝐽1 (𝛽1𝑟0)

+𝑒1𝜇
∗
𝛽1𝑌1 (𝛽1𝑟0)) 𝑒

2𝜋𝑡𝑖

+ (−𝑑2𝛽2𝐽1 (𝛽2𝑟0) + 𝑑2𝜇
∗
𝛽2𝐽1 (𝛽2𝑟0)

+𝑒2𝜇
∗
𝛽2𝑌1 (𝛽2𝑟0))

× 𝑒
(2𝜋𝜔
𝑟
𝑡+𝜙)𝑖

] = 0.

(34)

As (33)-(34) must be satisfied for any instant of time 𝑡,
we require that the constant terms and the coefficients of the
exponential terms all vanish; namely,

𝑏𝑐1 + 𝑙𝑐2 − (𝑙 +
𝑏

2
)

𝐶1

2
= 0,

𝑐1 − 𝑐1 − 𝑐2 ln 𝑟0 − (𝐶1 − 𝐶1)
𝑟
2

0

4
= 0,

(𝜇
∗
𝐶1 − 𝐶1)

𝑟0

2
− 𝜇
∗ 𝑐2

𝑟0

= 0,

𝑑1 (𝑏𝐽0 (𝛽1) − 𝑙𝛽1𝐽1 (𝛽1)) + 𝑒1 (𝑏𝑌0 (𝛽1) − 𝑙𝛽1𝑌1 (𝛽1))

−
𝑒𝑏𝐶1

2𝜋𝛾
𝑖 = 0,

𝑑1𝐽0 (𝛽1𝑟0) − 𝑑1𝐽0 (𝛽1𝑟0) − 𝑒1𝑌0 (𝛽1𝑟0) −
𝑒𝐶1

2𝜋𝛼
𝑖

+
𝑒𝐶1

2𝜋𝛾
𝑖 = 0,

− 𝑑1𝛽1𝐽1 (𝛽1𝑟0) + 𝑑1𝜇
∗
𝛽1𝐽1 (𝛽1𝑟0) + 𝑒1𝜇

∗
𝛽1𝑌1 (𝛽1𝑟0)

= 0,

𝑑2 (𝑏𝐽0 (𝛽2) − 𝑙𝛽2𝐽1 (𝛽2)) + 𝑒2 (𝑏𝑌0 (𝛽2) − 𝑙𝛽2𝑌1 (𝛽2))

−
𝑏𝐶2

2𝜋𝜔𝑟𝛾
𝑖 = 0,

𝑑2𝐽0 (𝛽2𝑟0) − 𝑑2𝐽0 (𝛽2𝑟0) − 𝑒2𝑌0 (𝛽2𝑟0) −
𝐶1

2𝜋𝜔𝑟𝛼
𝑖

+
𝐶2

2𝜋𝜔𝑟𝛾
𝑖 = 0,

− 𝑑2𝛽2𝐽1 (𝛽2𝑟0) + 𝑑2𝜇
∗
𝛽2𝐽1 (𝛽2𝑟0) + 𝑒2𝜇

∗
𝛽2𝑌1 (𝛽2𝑟0)

= 0.

(35)

Solving the above system of equations yields

𝑐1 = (ln 𝑟0 −
𝑙

𝑏
) ((𝜇

∗
𝐶1 − 𝐶1)

𝑟
2

0

2𝜇∗
)

+ (
𝑙

𝑏
+

1 − 𝑟
2

0

2
)

𝐶1

2
+ 𝐶1

𝑟
2

0

4
,

𝑐1 = −
𝑙

𝑏
((𝜇
∗
𝐶1 − 𝐶1)

𝑟
2

0

2𝜇∗
) + (

𝑙

𝑏
+

1

2
)

𝐶1

2
,

𝑐2 = (𝜇
∗
𝐶1 − 𝐶1)

𝑟
2

0

2𝜇∗
,

𝑑1 = 𝜇
∗

[ (𝐽1 (𝛽1𝑟0) 𝑌0 (𝛽1𝑟0) − 𝐽0 (𝛽1𝑟0) 𝑌1 (𝛽1𝑟0))

×
𝑒𝑏𝛽1𝐶1𝑖

2𝜋𝛾
+ (𝛾𝐶1 − 𝛼𝐶1)

× [𝐽1 (𝛽1𝑟0) (𝑏𝑌0 (𝛽1) − 𝑙𝛽1𝑌1 (𝛽1))

−𝑌1 (𝛽1𝑟0) (𝑏𝐽0 (𝛽1) − 𝑙𝛽1𝐽1 (𝛽1))]

×
𝛽1𝑒𝑖

2𝜋𝛾𝛼
] / (𝑏𝐽0 (𝛽1) − 𝑙𝛽1𝐽1 (𝛽1))

× (𝛽1𝐽1 (𝛽1𝑟0) 𝑌0 (𝛽1𝑟0) − 𝜇
∗
𝛽1𝑌1 (𝛽1𝑟0) 𝐽0 (𝛽1𝑟0))

+ (𝑏𝑌0 (𝛽1) − 𝑙𝛽1𝑌1 (𝛽1))

× (𝜇
∗
𝛽1𝐽0 (𝛽1𝑟0) 𝐽1 (𝛽1𝑟0) − 𝛽1𝐽1 (𝛽1𝑟0) 𝐽0 (𝛽1𝑟0)) ,

𝑑1 = [(𝛽1𝐽1 (𝛽1𝑟0) 𝑌0 (𝛽1𝑟0)

−𝜇
∗
𝛽1𝑌1 (𝛽1𝑟0) 𝐽0 (𝛽1𝑟0))

×
𝑒𝑏𝐶1

2𝜋𝛾
𝑖 +

(𝛾𝐶1 − 𝛼𝐶1)

2𝜋𝛾𝛼

× (𝑏𝑌0 (𝛽1) − 𝑙𝛽1𝑌1 (𝛽1))

× 𝑒𝛽1𝐽1 (𝛽1𝑟0) 𝑖] / (𝑏𝐽0 (𝛽1) − 𝑙𝛽1𝐽1 (𝛽1))

× (𝛽1𝐽1 (𝛽1𝑟0) 𝑌0 (𝛽1𝑟0)

−𝜇
∗
𝛽1𝑌1 (𝛽1𝑟0) 𝐽0 (𝛽1𝑟0))

+ (𝑏𝑌0 (𝛽1) − 𝑙𝛽1𝑌1 (𝛽1))

× (𝜇
∗
𝛽1𝐽0 (𝛽1𝑟0) 𝐽1 (𝛽1𝑟0)

−𝛽1𝐽1 (𝛽1𝑟0) 𝐽0 (𝛽1𝑟0)) ,

𝑒1 = [ (𝜇
∗
𝛽1𝐽0 (𝛽1𝑟0) 𝐽1 (𝛽1𝑟0)

−𝛽1𝐽0 (𝛽1𝑟0) 𝐽1 (𝛽1𝑟0))
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×
𝑒𝑏𝐶1𝑖

2𝜋𝛾
− (𝑏𝐽0 (𝛽1) − 𝑙𝛽1𝐽1 (𝛽1))

× (𝛾𝐶1 − 𝛼𝐶1)

× 𝐽1 (𝛽1𝑟0)
𝛽1𝑒𝑖

2𝜋𝛼𝛾
] / (𝑏𝐽0 (𝛽1) − 𝑙𝛽1𝐽1 (𝛽1))

× (𝛽1𝐽1 (𝛽1𝑟0) 𝑌0 (𝛽1𝑟0)

−𝜇
∗
𝛽1𝑌1 (𝛽1𝑟0) 𝐽0 (𝛽1𝑟0))

+ (𝑏𝑌0 (𝛽1) − 𝑙𝛽1𝑌1 (𝛽1))

× (𝜇
∗
𝛽1𝐽0 (𝛽1𝑟0) 𝐽1 (𝛽1𝑟0) − 𝛽1𝐽1 (𝛽1𝑟0) 𝐽0 (𝛽1𝑟0)) ,

𝑑2 = 𝜇
∗

[ (𝐽1 (𝛽2𝑟0) 𝑌0 (𝛽2𝑟0) − 𝐽0 (𝛽2𝑟0) 𝑌1 (𝛽2𝑟0))

×
𝑏𝛽2𝐶1𝑖

2𝜋𝜔𝑟𝛾
+ (𝛾𝐶2 − 𝛼𝐶2)

× [𝐽1 (𝛽2𝑟0) (𝑏𝑌0 (𝛽2) − 𝑙𝛽2𝑌1 (𝛽2))

−𝑌1 (𝛽2𝑟0) (𝑏𝐽0 (𝛽2) − 𝑙𝛽2𝐽1 (𝛽2))]

×
𝛽2𝑖

2𝜋𝜔𝑟𝛾𝛼
] / (𝑏𝐽0 (𝛽2) − 𝑙𝛽2𝐽1 (𝛽2))

× (𝛽2𝐽1 (𝛽2𝑟0) 𝑌0 (𝛽2𝑟0)

−𝜇
∗
𝛽2𝑌1 (𝛽2𝑟0) 𝐽0 (𝛽2𝑟0))

+ (𝑏𝑌0 (𝛽2) − 𝑙𝛽2𝑌1 (𝛽2))

× (𝜇
∗
𝛽2𝐽0 (𝛽2𝑟0) 𝐽1 (𝛽2𝑟0)

−𝛽2𝐽1 (𝛽2𝑟0) 𝐽0 (𝛽2𝑟0)) ,

𝑑2 = [(𝛽2𝐽1 (𝛽2𝑟0) 𝑌0 (𝛽2𝑟0)

−𝜇
∗
𝛽2𝑌1 (𝛽2𝑟0) 𝐽0 (𝛽2𝑟0))

×
𝑏𝐶1

2𝜋𝜔𝑟𝛾
𝑖 +

(𝛾𝐶1 − 𝛼𝐶1)

2𝜋𝛾𝛼𝜔𝑟

× (𝑏𝑌0 (𝛽2) − 𝑙𝛽2𝑌1 (𝛽2))

×𝛽2𝐽1 (𝛽2𝑟0) 𝑖] / (𝑏𝐽0 (𝛽2) − 𝑙𝛽2𝐽1 (𝛽2))

× (𝛽2𝐽1 (𝛽2𝑟0) 𝑌0 (𝛽2𝑟0)

−𝜇
∗
𝛽2𝑌1 (𝛽2𝑟0) 𝐽0 (𝛽2𝑟0))

+ (𝑏𝑌0 (𝛽2) − 𝑙𝛽2𝑌1 (𝛽2))

× (𝜇
∗
𝛽2𝐽0 (𝛽2𝑟0) 𝐽1 (𝛽2𝑟0)

−𝛽2𝐽1 (𝛽2𝑟0) 𝐽0 (𝛽2𝑟0)) ,

𝑒2 = [(𝜇
∗
𝛽2𝐽0 (𝛽2𝑟0) 𝐽1 (𝛽2𝑟0)

−𝛽2𝐽0 (𝛽2𝑟0) 𝐽1 (𝛽2𝑟0))

×
𝑏𝐶1𝑖

2𝜋𝜔𝑟𝛾
− (𝑏𝐽0 (𝛽2) − 𝑙𝛽2𝐽1 (𝛽2))

× (𝛾𝐶1 − 𝛼𝐶1) 𝐽1 (𝛽2𝑟0)

×
𝛽2𝑖

2𝜋𝜔𝑟𝛼𝛾
] / (𝑏𝐽0 (𝛽2) − 𝑙𝛽2𝐽1 (𝛽2))

× (𝛽2𝐽1 (𝛽2𝑟0) 𝑌0 (𝛽2𝑟0)

−𝜇
∗
𝛽2𝑌1 (𝛽2𝑟0) 𝐽0 (𝛽2𝑟0))

+ (𝑏𝑌0 (𝛽2) − 𝑙𝛽2𝑌1 (𝛽2))

× (𝜇
∗
𝛽2𝐽0 (𝛽2𝑟0) 𝐽1 (𝛽2𝑟0)

−𝛽2𝐽1 (𝛽2𝑟0) 𝐽0 (𝛽2𝑟0)) .

(36)

To show the flow behavior and the effect of the slip
parameter, we investigate the velocity profiles in the arteries
with different values of the slip parameter under various
different conditions. In the first example of investigation, the
radius of the artery is taken as 𝑟 = 𝑏 = 0.15 cm, and the other
parameters are set to 𝐴0 = 698.65 dyne/cm3, 𝐴𝑔 = 0.5𝑔,
𝑓𝑏 = 𝑓𝑝 = 1.2, 𝜙 = 0, 𝐶1 = 6.6, 𝐶2 = 4.64, 𝐴1 = 1.2𝐴0, and
𝜌1/𝜌2 = 1. Figure 1 shows the 3-dimensional velocity profile
as a function of time and location and the 2-dimensional
velocity profile as a function of time at three different radial
locations for two different slip parameters 𝑙 = 0 (no-slip)
and 𝑙 = 2. The results show that boundary slip has a very
dramatical effect on the fluid flow in the artery. It affects
not only the magnitude of the flow velocity significantly, but
also the flow pattern and velocity profile on the cross-section
of the artery. For the no-slip flow (𝑙𝑏 = 0), the pulsatile
flow nature gradually disappears toward the arterial wall,
while with boundary slip, the flow near the arterial wall also
displays a pulsatile nature.

We then investigatewhether the above observed flowphe-
nomena associated with boundary slip are affected or not by
the radius of the artery, and for this purpose, we consider the
fluid flow through an artery with a larger radius 𝑟 = 0.5 cm.
The constant pressure gradient is set to 𝐴0 = 32 dyne/cm3 in
order to achieve a mean velocity magnitude approximately
equal to that in the smaller artery, while all other parameters
are set to the same values as those used for the smaller
radius. Figure 2 shows the velocity profile in the artery for
two different slip parameter values including 𝑙𝑏 = 0 (no-slip)
and 𝑙𝑏 = 2. The 3-dimensional graph shows the variation
of the flow velocity with time and radial position, while the
2-dimensional graphs demonstrate the variation of the flow
velocity with time at three different radial locations including
𝑟 = 0 (centre), 𝑟 = 0.6 (inner-outer layers interface),
and 𝑟 = 1 (arterial wall). From Figures 1 and 2, it is clear
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that the boundary slip related flow phenomena and behavior
observed for the smaller artery also appear in the artery with
a larger radius, and further, amore significant pulsatile nature
of fluid flow is observed for the larger artery.

To further investigate the effect of the slip parameter on
the velocity profile near the artery wall, we show in Figure 3
the velocity of fluid on the artery wall for four different
values of the slip parameter including 𝑙𝑏 = 0, 2, 4, 6, and 8.
The results clearly demonstrate that the slip parameter has a
very significant effect on the near-wall velocity and that the
magnitude of the average wall velocity is proportional to the
slip parameter.

4. Numerical Investigation

A numerical scheme, based on the finite different method, is
established to solve the underlying boundary value problem
for the general case 𝑚 ̸= 0, consisting of (14) and boundary
condition (15)–(19). To validate the numerical technique, we
apply the numerical scheme to generate a series of numerical
solutions for the case 𝑚 = 0 and then compare the numerical
results with the exact solution derived in Section 3.

Figure 4 presents the velocity profile in the small and large
arteries for two different slip parameters 𝑙𝑏 = 0 (no-slip) and
𝑙𝑏 = 2 obtained by the numerical technique. The numerical
errors between the exact solution and the numerical solution,
𝐸𝑟 = 𝑉 − 𝑈, are presented in Figure 5 in which 𝑉 is the
exact solution and 𝑈 is the numerical solution. The results
clearly indicate that the numerical solution converges to the
exact solution.This shows that a larger slip length has a lower
convergence rate.

We then investigate the flow phenomena for the general
case 𝑚 ̸= 0, and here we consider 𝑚 = −1/4 in the investiga-
tion. Figure 6 gives the 3D graph showing the convergence of
the transient velocity field to a steady state pulsatile velocity
field and also demonstrating the substantial influence of
boundary slip on the steady state velocity profile in both
magnitude and flow pattern. Figure 7 shows the variations
of velocities with time at three arterial locations for different
slip parameters and artery radii and also clearly demonstrates
the significant effect of boundary slip on the flow through the
artery. Figure 8 shows the variation of fluid velocity along the
artery wall under different slip parameters and artery radii.
The results show that as the slip parameter increases, the time
required for achieving convergence results increases, and the
magnitude of the average steady state velocity also increases.

5. Conclusion

In this paper, amathematicalmodel for the transient pulsatile
flow of fluids through vessels, taking into account boundary
slip and the Fahraeus-Lindqvist effect, is established. For a
special case of the underlying boundary value problem, an
exact solution for the velocity field has been derived in explicit
form, which provides one with an exact analytical method
for investigating the flow phenomena under the special case
and also a mean for validating the subsequently developed
numerical scheme for generating numerical results for the

general case. Our analytical and numerical studies show that
for the flow of fluids with the Fahraeus-Lindqvist effect,
boundary slip has a very significant influence on the magni-
tude of the mean flow velocity and on the flow pattern and
velocity profile on the cross-section. With boundary slip, the
boundary layer near thewall also displays significant pulsatile
flow nature. The results also show that as the boundary slip
length increases, the convergence rate of numerical results to
the exact solutions decreases and the time required to achieve
the steady state pulsatile flow increases.

References

[1] A. C. Eringen, “Continuum theory of dense rigid suspensions,”
Rheologica Acta, vol. 30, no. 1, pp. 23–32, 1991.

[2] A. C. Eringen, “A continuum theory of dense suspensions,”
Zeitschrift für Angewandte Mathematik und Physik, vol. 56, no.
3, pp. 529–547, 2005.

[3] T. Ariman, M. A. Turk, and N. D. Sylvester, “Microcontinuum
fluidmechanics—a review,” International Journal of Engineering
Science, vol. 11, no. 8, pp. 905–930, 1973.

[4] M. A. Turk, N. D. Sylvester, and T. Ariman, “On pulsatile blood
flow,” Transactions of the Society of Rheology, vol. 17, pp. 1–21,
1973.

[5] L. Debnath, “On a microcontinuum model of pulsatile blood
flow,” Acta Mechanica, vol. 24, no. 3-4, pp. 165–177, 1976.

[6] G. Ahmadi, “A continuum theory of blood flow,” Scientia Sinica,
vol. 24, no. 10, pp. 1465–1474, 1981.

[7] S. N. Majhi and L. Usha, “Modelling the Fahraeus-Lindqvist
effect through fluids of differential type,” International Journal
of Engineering Science, vol. 26, no. 5, pp. 503–508, 1988.

[8] K. Haldar and H. I. Andersson, “Two-layered model of blood
flow through stenosed arteries,” Acta Mechanica, vol. 117, pp.
221–228, 1996.

[9] D. S. Sankar and Y. Yatim, “Comparative analysis of mathe-
matical models for blood flow in tapered constricted arteries,”
Abstract and Applied Analysis, vol. 2012, Article ID 235960, 34
pages, 2012.

[10] S. N. Majhi and V. R. Nair, “Pulsatile flow of third grade fluids
under body acceleration-Modelling blood flow,” International
Journal of Engineering Science, vol. 32, no. 5, pp. 839–846, 1994.

[11] M. Massoudi and T. X. Phuoc, “Pulsatile flow of blood using a
modified second-grade fluidmodel,”Computers &Mathematics
with Applications, vol. 56, no. 1, pp. 199–211, 2008.

[12] J. C. Slattery, Advanced Transport Phenomena, Cambridge
University Press, 1999.
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