
NOTICE: this is the author’s version of a work that was 
accepted for publication in Electrochimica Acta. Changes 
resulting from the publishing process, such as peer review, 
editing, corrections, structural formatting, and other quality 
control mechanisms may not be reflected in this document. 
Changes may have been made to this work since it was 
submitted for publication. A definitive version was subsequently 
published in Electrochimica Acta, Vol. 101 (2013). 
DOI: 10.1016/j.electacta.2012.11.062 
 



1 
 

Chronoamperometric Response at Nanoscale Liquid-Liquid Interface Arrays 

 

Masniza Sairi a,1, Jörg Strutwolf b, Rowan A. Mitchell a, Debbie S. Silvester a,1 and 

Damien W. M. Arrigan a,1,*  

a Nanochemistry Research Institute, Department of Chemistry, Curtin University, 

GPO Box U1987, Perth, Western Australia 6845, Australia 

b Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 

72076 Tübingen, Germany 

* Corresponding author. Tel.: +61-8-9266-9735; Fax: +61-8-9266-2300; Email: 

d.arrigan@curtin.edu.au 

 

Abstract 

In this work, potential step chronoamperometry (PSCA) was used to study the 

behaviour of arrays of nanoscale interfaces between two immiscible electrolyte 

solutions (nanoITIES). The nanoITIES arrays were formed at nanoporous silicon 

nitride membranes containing 400 nanopores in a hexagonal close-packed 

arrangement. Three membrane designs, with nanopore radii of 75, 50 and 17 nm, 

were studied by ion-transfer of tetrapropylammonium cations across the nanopore 

array-supported water1,6-dichlorohexane interface. The cell time constants and 

charging times were determined prior to experimental PSCA. The three membrane 

designs studied exhibited charging times in the range of 0.08 s to 0.46 s, with the 

smallest pore configuration (17 nm radius) exhibiting the longest charging time. The 

experimental steady-state currents were 30-50 % lower than of the calculated inlaid 

disc model currents, due to diffusion zone overlap at adjacent interfaces. The three 
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nano-interface arrays studied also showed response times of 6  1 s, being the time 

required to reach 95 % of the steady-state current. 

 

Keywords: nanoITIES arrays, silicon nitride membranes, potential step 

chronoamperometry, charging time, response time. 

  

1. Introduction 

Electrochemistry at the interface between two immiscible electrolyte solutions 

(ITIES) [1] offers the possibility for detection of non-redox active ions, which cannot 

be detected at solidliquid (electrodesolution) interfaces [2]. The detected current 

arises as a result of the applied potential-induced movement of ions across the liquid 

| liquid interface, in accordance with the ions’ Gibbs energy of transfer. It affords a 

level of selectivity to the detection process, just as the applied potential does at 

solidliquid interfaces [1-3]. Electrochemistry at micro- and nano-scale ITIES creates 

prospects for improved analytical sensitivity as a result of greater diffusional flux and 

often smaller iR drop [2, 4]. Recently, developments in electrochemical detection 

based on ion transfer across the ITIES have focussed on the detection and 

determination of small molecules and macromolecules of biological importance such 

as peptides [5], proteins [6], drugs, neurotransmitters and food additives [2]. 

To date, nano-scale ITIES (nanoITIES) have been prepared in two ways: (a) 

those supported at the tip of a single [7-9] or dual [9, 10] nanopipette (producing 

single or double nanoITIES) and (b) those produced by placing nanoporous 

materials containing geometrically irregular or regular pore arrays at the ITIES [11]. 

Track-etched polyester [12, 13] and -alumina ultrafiltration membranes [14] with 

high pore densities have been used to form irregular nanoITIES arrays, while silicon 
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nitride membranes prepared by electron-beam lithography and chemical etching 

methods [11, 15] were used to form regular nanoITIES arrays. NanoITIES can offer 

benefits comparable to those experienced at nanoelectrode arrays, such as 

enhanced mass transport (due to radial diffusion), decreased charging current and 

decreased impact of solution resistance [11, 16]. NanoITIES studies reported by 

Rimboud et al. [15], Liu et al. [4] and Shao and Mirkin [7] focussed on ion sensing 

using cyclic voltammetry as a technique. However, there is little information 

published on the chronoamperometric response at nano-interface arrays [13] despite 

numerous studies reporting the chronoamperometric response at 

microelectrochemical devices, e.g. micropipette-based ITIES [17-20], microdisc 

electrodes [21-24], micropore-based ITIES [13] and microarray electrodes [25]. 

Potential step chronoamperometry (PSCA) involves stepping the potential 

applied across the interface from a region where no Faradaic process occurs to a 

potential where a Faradaic process occurs and is mass-transport controlled. The 

resulting current is monitored as a function of time. This method generates high 

charging currents at short timescales, which decay exponentially with time. PSCA is 

widely used in the determination of diffusion coefficients and characterisation of 

electrodes and electrode reactions [26]. It also enables the determination of 

response time, a crucial parameter for chemical sensor applications. The response 

time of a chemical sensor can be defined as the time for the sensor signal to reach 

95 % of its final value      [27]. For PSCA at a nanoITIES, we can define the 

response time as the time needed to reach a current that is 95 % of the steady-state 

current. 

At electrified interfaces, two types of processes occur, Faradaic and non-

Faradaic, and both contribute to the overall current, with Faradaic processes being of 
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primary interest for sensing applications. At the ITIES, the Faradaic process is 

associated with the transfer of a charged species (ions, electrons or both) between 

the two liquid phases. Usually, in an amperometric or voltammetric sensing system, 

the non-Faradaic current associated with the charging of the interfacial capacitance 

is minimized. In designing or analysing an electrochemical experiment, consideration 

must be taken of the charging of the double layer at the electrochemical interface 

and its combination with the uncompensated resistance of the cell [28]. The Faradaic 

response for fast electrochemical or chemical reactions is restricted by this charging 

process [29]. 

The    time constant or cell time constant characterizes the timescale for the 

charging process and is generally modelled on the basis of a resistor and a capacitor 

in series [28, 30]. This constant (which then leads to calculation of the charging time) 

has been reported by various researchers [18, 25, 31, 32]. Nirmaier and Henze 

reported that the cell time constant for establishing the electrode potential at the 

electrode surface varies linearly with the electrode surface radius for disk-shaped 

electrodes. Therefore, when a potential step is applied at a microelectrode, the 

charging process is much faster than for a millimetre-sized electrode [25]. 

However, this was found not to be the case when dealing with some liquidliquid 

microinterface. PSCA experiments by Yuan et al. [18], Beattie et al. [31] and Shao 

and Mirkin [32] reported that the lower time scale (or charging time) for carrying out 

potential step experiments at a microITIES is crucially restricted by the large 

resistance at the narrow microhole of polymer membranes or glass micropipettes 

used to form such microITIES. Comparison of the charging time of a water | 1,2-

dichloroethane (DCE) microinterface with a metal | water microinterface of the same 

size showed that the charging time of the former was nearly three orders of 
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magnitude greater than that of the latter [18]. For example, a cell time constant       

value of 80 s [18] was reported for a 10 m diameter waterDCE interface with an 

uncompensated resistance,    of 10  [31, 32] and double-layer capacitance,     

of 8 pF [33]. Taking        [18, 30] as the fully established potential step, resulted 

in a charging time of 400 s [18]. The corresponding charging time for a metal | 

water interface of the same dimensions was 0.85 s [30]. 

Numerous analytical expressions have been developed for analysing PSCA 

transients. For planar diffusion, the current-time transient is described by the Cottrell 

equation   

   
    √ 

√  
                      (1) 

where   is the diffusion-limited current,   is the stoichiometric number of electrons 

involved in an electrode reaction,   is Faraday’s constant,   is the electrode surface 

area, and  ,   and   are, respectively, the bulk concentration of the electroactive 

species, the diffusion coefficient and the time [34]. 

At a microelectrode where convergent diffusion dominates, current-time 

expressions have been developed by Shoup and Szabo [35] and by Mahon and 

Oldham [36, 37]. The latter are the most exact closed-form expressions to describe 

the current-time transient, with a maximum error of 0.02 %. For short times, the 

expression is 
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where   and   are, respectively, the electrode radius and the dimensionless time 

parameter. 

  
  

                         (4) 

Equations (1), (2) and (3) can be readily applied to the ITIES, with   replaced by the 

charge number of the transferring ion,  .  

 In this report, we present characterisation of the behaviour of nanoITIES arrays, 

formed at geometrically regular silicon nitride nanoporous membranes, by PSCA. 

The aim of the work was to evaluate the response times of these membrane-

supported ITIES so as to determine whether the radial diffusion advantage of 

nanoITIES was coupled with a fast response. The electrochemical transfer of the 

tetrapropylammonium cations (TPrA+) across the water | 1,6-dichlorohexane (DCH) 

interface was chosen as a model system. PSCA has not been applied previously to 

these nanoITIES arrays and can possibly reveal information about mass transport 

effects as well as the response time of the array, both of which may be useful in 

designing new arrays and sensors or detection systems based on them.  

 

2. Experimental 

2.1. Reagents 

All reagents were obtained from Sigma Aldrich, Australia, and were used as 

received, unless stated otherwise. All aqueous solutions were prepared using 

deionized water with resistivity of 18  cm from a Milli-Q water purification system 

(Millipore Pty Ltd, North Ryde, NSW, Australia). The organic phase solvent was 1,6-

dichlorohexane (DCH). Both the aqueous and organic phase solvents were mutually 

pre-saturated prior to experiments. The supporting electrolytes in the aqueous and 

organic phases were 0.01 M lithium chloride (LiCl) and 0.01 M 
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bis(triphenylphosphoranylidene)ammonium tetrakis(4-chlorophenyl)borate 

(BTPPATPBCl), respectively. The organic electrolyte salt was prepared by 

metathesis of bis(triphenylphosphoranylidene)ammonium chloride (BTPPACl) and 

potassium tetrakis(4-chlorophenyl)borate (KTPBCl). The organic reference solution 

was 0.01 M BTPPACl dissolved in aqueous 0.01 M LiCl. The model analyte studied 

was the chloride salt of tetrapropylammonium (TPrA+) in 0.01 M LiCl in DCH-

saturated water. 

 

2.2. Preparation of nano-interface arrays 

Arrays of nano-ITIES were formed at a water | DCH interface using silicon nitride 

(Si3N4) nanopore array membranes (100 nm thick) on a silicon chip support, which 

were fabricated at Tyndall National Institute, University College Cork, Cork, Ireland 

[11, 38]. The silicon chips (5 mm  5 mm) containing the nanopore array membranes 

were sealed onto the lower orifice of cylindrical borosilicate glass tubes (2.5 mm 

inner and 4 mm outer diameters) using silicone rubber (Selleys, Australia and New 

Zealand) and allowed to cure for 72 hours before use. Three sizes of nanopore 

radius were used in this study (   75, 50 or 17 nm). Each membrane contained 400 

pores in a hexagonal close-packed arrangement with pore centre-to-centre 

separations,   , of 20-times the pore radius,    (      ). Scanning electron 

microscopy (SEM) micrographs of these nanopore arrays have been reported 

previously [11, 15, 38].  

 

2.3. Experimental procedure 

A two-electrode electrochemical cell was employed in which both AgAgCl 

electrodes served as reference and counter electrodes in their respective phases. 
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The borosilicate glass tube, to which the membrane was affixed and contained 

approximately 50 µL of the organic phase and 250 µL of the organic reference 

solution, was immersed in 3 mL of the aqueous phase solution in a 10 mL glass 

beaker. Prior to the injection of a concentrated solution of TPrA+ into the aqueous 

phase with a micropipette to achieve the required analyte concentration, a 

background voltammogram was run over a wide potential range to establish the 

limits of the available potential window. A sequence of three background 

voltammograms was then recorded over a potential range which encompassed the 

transfer of TPrA+ when it was subsequently added to the aqueous phase. A quiet 

time of 5 s at the initial applied potential was implemented prior to each scan to 

stabilize and minimize the background charging current. The electrochemical cell 

can be summarized as follows: 

 

Ag|AgCl |  x mM TPrACl + 0.01 M LiClW ||  

0.01  M BTPPATPBClDCH | 0.01 M BTPPACl in 0.01 M LiClW | AgCl|Ag 

 

(where x is the concentration of TPrACl in the aqueous phase). 

The electrochemical methods PSCA and cyclic voltammetry (CV) were applied 

using an Autolab PGSTAT 302N (Metrohm, The Netherlands) interfaced to a 

personal computer running the Nova 1.7 software package supplied with the 

instrument. The voltammetric sweep rate was 10 mV s-1 (75 and 50 nm radii pores) 

or 5 mV s-1 (17 nm radius pores). No automatic positive feedback compensation was 

applied during PSCA and CV. The electrochemical cell was placed in a Faraday 

cage to minimise electrical noise. For PSCA, the steady-state current     was taken 

as the average of the final ten current points of the 10 s transient, taken at 10 ms 

intervals, corresponding to the final 100 ms of the measurement.  



9 
 

 

3. Results and discussion 

3.1. Cyclic voltammetry of TPrA+ transfer at the nano-ITIES array 

 Initially, ion transfer across the nanoITIES array was characterised using CV so 

that initial and step potentials could be selected for the PSCA study. TPrA+ was 

chosen as the model analyte ion and aqueous phase concentrations between 20 and 

100 M in increments of 20 M in a background of 0.01 M LiCl were employed. Prior 

to the addition of analyte, a CV of the background electrolyte solutions was recorded, 

so that background-subtracted voltammograms could be obtained. Figure 1(a) 

shows a typical set of background-subtracted voltammograms (forward scans only) 

obtained at a nanoITIES array with interface radius of 50 nm. This figure 

corresponds to the transfer of TPrA+ from aqueous to organic phase. These CVs 

show that the current rose steadily with applied potential up to the switching potential 

and that no true steady-state current plateau was reached in the diffusion-limited 

region, in agreement with previous reports [15] for the transfer of 

tetraethylammonium cation across the water | liquid DCH interface. From Figure 

1(a), it can be seen that the current in the diffusion-limited region (above 0.6 V) 

increases with the aqueous phase concentration of TPrA+, with a linear relationship 

as shown by the inset graph of current versus concentration of transferring ion. In 

this case, the experimental currents were determined at a potential ca. 200 mV 

positive of the foot of ion transfer wave [15]. Concurrently, CV was used in the 

determination of the step potentials for chronoamperometric experiments in Section 

3.3 in which the potential was stepped from 0.2 V to 0.6 V. 

  

3.2. Estimation of charging time 
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Determination of the cell time constant,       allows in turn the determination of 

the charging time. Execution of a PSCA measurement at times shorter than this 

charging time will not produce useful data [30]. In fact, the minimum time for full 

establishment of a potential step requires        [30] as applied by Yuan et al. [18] 

in their micropipette-based ITIES study. Normally, the step must last at least         

which includes time for recording data beyond the time required for establishment of 

the potential step [30]. The size of the electrode governs the cell time constant and 

consequently the charging time. In this study, the charging time was taken as        

[30]. In order to estimate the cell time constant and the charging time, values of the 

uncompensated resistance and the double layer capacitance are needed.  

The main source of uncompensated resistance in ITIES electrochemical cells is 

the low conductivity of the organic electrolyte solution. Katano and Senda [39] 

reported a conductivity of   = 49 S cm-1 for DCH with tetraoctylammonium 

tetrakis(4-chlorophenyl)borate as an electrolyte. It was shown [40-42] that the 

conductivity was similar regardless of the electrolyte types, based on a study with a 

series of electrolytes in DCE. Therefore, it is reasonable to assume a value of 49 S 

cm-1 for the conductivity of the organic phase employed here. For comparison, the 

conductivity of aqueous 0.01 M LiCl, used as the aqueous electrolyte, is 1073 S cm-

1 [43]. In the organic phase, the resistance will be due to the distance between the tip 

of the counter/reference electrode and the orifice of the pore ("bulk solution" 

resistance,   ) and to the resistance within the pore (pore resistance,   ). Both 

  and   will contribute to the uncompensated resistance. 

The pore resistance,   , is given by 

   
 

    
                      (5) 
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where   is the pore length [42, 44]. Each pore is assumed to be filled by the organic 

electrolyte solution, resulting in inlaid nanoITIES arrays [11, 15]. The pore resistance 

increases with an increase in the pore length and reduction in pore radius. The 

interface cross-sectional region in direct electrical contact with the aqueous or 

organic phase is defined by the diameter of the nanopore. If the individual pores in 

the array behave like resistors in parallel, the total inverse resistance value is 

obtained by multiplying the inverse resistance of a single pore by the number of 

pores in the array [13, 42]. The individual pore resistances for the 75, 50 and 17 nm 

pore radii are 1.15  109 , 2.60  109  and 22.48  109 , respectively, calculated 

using equation 5. Thus, the total pore resistance across the three membranes 

studied are in the range 2.89 to 56.19 , with the smaller nanopore radius 

membranes exhibiting larger resistances. These results agree with the resistance 

estimation by Strutwolf et al. [42] of 103  105  per pore for 25 m radius pore and 

650  105  per pore for a 10 m radius pore. The resistances were higher at 

nanoscale pores. Additionally, the total pore resistance of the membranes with 

micron-sized pores (   25 m) increased from 9.8  104  to 3.4  106  with a 

decreased number of pores (from 105 to 3 pores) [42]. 

The dimension of the counter/reference electrode is much larger than the critical 

dimension of the pore ( ), and the distance between the pore and the tip of the 

reference/electrode is in the millimetre range and therefore much bigger than  . 

Under these conditions, the bulk resistance can be calculated from [45]  

   
 

    
                           (6) 

For the 17, 50 and 75 nm radius pores,    values of 0.95  109 , 0.32  109 , and 

0.22  109  are calculated for the individual pores in the arrays. Again, the 

resistance established between each individual pore of an array and the tip of the 
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reference/counter electrode acts like a resistor in parallel with the other bulk solution 

resistors, but in series with the pore resistance of the same pore (given by Eq. (5)). 

So the total bulk resistances for the three arrays are 0.55, 0.81 and 2.37  with 

decreasing pore radius. The total or uncompensated resistance is 3.42, 7.30 and 

58.57  for the 75, 50 and 17 nm arrays, respectively (Table 1). Since the pore 

resistances scales with    , while bulk resistance scales with    , the influence of 

the pore resistance on the uncompensated resistance is more pronounced the 

smaller the pore radius. For the 75 nm pore array, the bulk resistance contributes 19 

% to the total resistance, while for the17 nm array the contribution is 4 %. 

In this report, the experimental capacitance       was determined by CV of the 

electrolyte system in the absence of ion transfer, as obtained by  

          ⁄                      (7) 

where    and   are the total charging current and scan rate, respectively [46]. The 

experimental capacitance is used here because, as will be apparent below, the 

double layer capacitance of the ITIES is but one contribution to the overall 

capacitance measured. The charging current was determined from CVs of the 

electrolyte solutions at a potential where no ion transfer occurs (Figure 1(b)). All 

membranes studied exhibited experimental capacitance values in the nanoFarad 

regime, ranging from 1.57 to 4.83 nF (Table 1).  

Assuming for the moment that the experimental capacitance is solely due to the 

capacitance of the nanoITIES, the specific capacitance or capacitance per unit area 

     
  can be determined. The experimental capacitance was divided by the total pore 

cross-sectional area, resulting in the experimental specific capacitances      
  with 

the average value ranging between 630 and 4320 F m-2 (0.63  105 and 4.32  105 

F cm-2) (Table 1).  
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For comparison purposes, the capacitance per unit area from the literature     
  

was obtained by dividing the literature value      by the nanopore array cross-

sectional area. Trojanek et al. [33] reported a capacitance value of 0.08 F m-2 for the 

interface between 0.1 M LiCl in water and 5 mM BTPPATPBCl in DCE. Assuming 

this value as the typical specific interfacial capacitance at the ITIES, and applying it 

to our system, showed that our experimental values were about four orders of 

magnitude higher (Table 1). These results indicate that capacitance effects in 

addition to that of the ITIES are present. A further source of capacitance is the Si3N4 

membrane. In the experimental set-up, the Si3N4 membrane can be considered as a 

dielectric (    7.2) membrane sandwiched between two conductors (electrolyte 

solutions) whose capacitance can be described by the parallel plate model: 

       

 
                      (8) 

where     8.85×10-12 F m-1 is the vacuum permittivity,    500   500 µm2 is the 

area of the membrane (neglecting the pores) and    100 nm is the membrane 

thickness [47, 48]. The calculated capacitance is 0.16 nF. This is one order of 

magnitude lower than the overall capacitance of the systems determined 

experimentally in this study (Table 1). The difference between the experimentally-

determined capacitances and the calculated capacitance for the silicon nitride 

membrane suggests that additional capacitive components are present, in addition to 

that of the membrane material. Further study on the system of capacitances is 

necessary and is under way using electrochemical impedance spectroscopy (EIS). 

Scanlon et al. [11] investigated the capacitance between two electrolyte solutions 

separated by a Si3N4 membrane without pores and compared this with a nanoITIES 

array containing 23 nano-interfaces, with   ~ 45 nm. In both cases, a blank 

electrolyte solution system was applied (i.e., in the absence of a transferring ion). 
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The blank CVs obtained were virtually the same, showing that the overall 

capacitance has only a marginal contribution from the nanoITIES. 

 By combining the experimental capacitance and the uncompensated resistance, 

the cell time constants for the three membrane designs employed here were 

obtained. The three membrane array designs exhibited (Table 1) cell time constants 

and charging times in the range of 0.017 s to 0.092 s and 0.08 s to 0.46 s, 

respectively, with the nanoITIES array with the smallest interface radius (17 nm 

radius) exhibiting the largest pore resistance and consequently the longest charging 

time. The charging time was observed to be more influenced by the resistance than 

the capacitance, which can be seen by the resistance range (from 3.42 to 58.57 ) 

being broader than the capacitance range (1.57 to 4.83 nF). In all experimental 

current transients reported below, data from times shorter than the charging times 

were omitted.  

Data from this study were compared to data from Yuan et al. [18] at a single 

microITIES formed at 5 m radius micropipette, since the total nanoITIES array may 

behave as microITIES. The principle underlying this assumption was that an array of 

nanoelectrodes eventually behaves as if the entire array were a single electrode of 

the same interfacial surface area, with its equivalent properties [11, 15, 49]. If the 

charging time was taken as         , the microITIES exhibited a charging time of 0.4 

ms, which was approximately three orders of magnitude faster than at the 

nanointerface arrays (Table 1). Similarly, use of the literature value for the liquid | 

liquid interfacial capacitance [33] together with the estimated uncompensated 

resistance for the nanoITIES arrays studied here, gives values of charging time 

between 0.14 ms to 2.34 ms, which are again much shorter than those obtained 

using the experimentally-determined capacitances. The comparison of our results 



15 
 

with literature data indicates that the combination of the large resistance of the 

nanopore system with the as-yet undetermined capacitance due to the presence of 

the silicon nitride membrane contributes to long charging times at the nanoITIES 

array employed here. As a result the application of methods such as differential 

pulse voltammetry (DPV) and square wave voltammetry (SWV) to characterise and 

exploit the ion transfer process at the nano-interface arrays may not produce useful 

data as these methods operate in millisecond and sub-millisecond time domains 

[50].  

 

3.3. Chronoamperometry at the nanoITIES array 

 The variation of the current response with time under potentiostatic control across 

the nanopore array-supported waterDCH interface was recorded using TPrA+ as 

the model analyte for these PSCA studies. Chronoamperograms were recorded at 

five different concentrations of TPrACl ranging from 20 to 100 M in steps of 20 M. 

The initial potential,    (+0.2 V), was chosen where no current flows, while the step 

or transfer potential,    (+0.6 V), was chosen where the ion transfer process occurs 

and was always in the region beyond the lower limits of mass transport control, i.e. 

within the “sloping” limiting current region of Figure 1(a). The potential was held for 

20 s at the initial potential and 10 s at the step potential. By holding at the initial 

potential for 20 seconds, ions present in the organic phase were back extracted into 

the aqueous phase and hence regenerating the initial conditions.  

Figure 2(a) shows the background-subtracted chronoamperograms for 100 M 

TPrACl in the aqueous phase, using nanoITIES arrays patterned by 75, 50 and 17 

nm radii pore arrays. The data at shorter times than the calculated charging times 

(Table 1) were excluded from the figures. It can be seen that the experimental 
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transient obtained at the nanoITIES arrays decayed to a steady-state current as 

suggested by Equations (2) and (3), as opposed to the t-1/2 dependence expected for 

Cottrellian behaviour. Two different time regimes can be observed at the nanoITIES 

arrays from these PSCA experiments. Firstly, at short times, a rapid decrease of 

current is seen and, secondly, a steady-state current is observed at long times [51]. 

However, note that currents at times shorter than the charging times are omitted 

from Figure 2(a). Nevertheless, there is a substantial current decrease and given 

that the currents were background-subtracted, these decreasing currents must be 

due to mass transport of the TPrA+ cations to the nanoITIES arrays. Figure 2(b) 

shows examples of background, ion-transfer and background-subtracted ion transfer 

current transients. The background-subtraction removed the background-charging 

process from the current transient, and demonstrated that the short-time region is 

mainly influence by the charging current but this charging current has a minimal 

impact on the longer-time diffusion-controlled current.  

Chronoamperometry allows the determination of the response time, an important 

parameter in sensor applications, where a fast response is often required. In 

chemical sensors, the response time may be typically defined as the time taken to 

reach a signal that is 95 % of the final signal value [27]. Similarly, in PSCA, the 

response time can be defined as the time taken for the current to reach 95 % of the 

steady-state value, given by 

                 ⁄ )                  (9) 

Theoretically, the smallest membrane pore radius (17 nm) should achieve steady-

state faster as compared to the larger pore membranes, because of the dominance 

of radial diffusion [16] . However, the results obtained from Figure 2(a) clearly show 

that the response was dominated by the electrical properties of the membrane. This 
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can be seen in the similar response times for the three nanoITIES arrays studied at 6 

 1 s (Table 1). The raw experimental response times were all in the range of 5 to 7 

s, irrespective of the pore size used in the experiments and no apparent trend was 

observed as the pore size was changed. The long response times obtained can be 

attributed to the highly resistive and capacitive membranes used to pattern the 

nanoITIES and may render them unfavourable for use in rapid-response chemical 

and biochemical sensor applications.  

 In section 3.2, an assumption was made that the interfaces studied were inlaid. 

Thus, the formula to calculate the steady-state current at a single interface for an ion 

transferring from the aqueous to the organic phase is given by the Saito equation,  

     | |                        (10) 

where     is the steady-state current (or limiting current) [52]. The steady-state 

current is a linear function of the concentration and radius [15, 24, 52]. To obtain the 

total current of the array, the steady-state current calculated for one pore must be 

multiplied by the number of pores   , in this case, 400. By applying this expression 

for a fixed analyte concentration (e.g. 100 µM of TPrA+), the calculated steady-state 

currents are 0.80, 0.53, and 0.18 nA for the nanoITIES arrays based on pore radii of 

75, 50 and 17 nm, respectively, which varied linearly with the radius. The average of 

the last 10 current points from the PSCA transient was selected as the experimental 

steady-state current (i.e. the final 100 ms of the current transient).  

As shown in Figure 3(b), the experimental steady-state currents were lower than 

the calculated inlaid disc currents (equation (10)), in agreement with previous studies 

[15, 49]. They were lower by 30-50 % of the theoretical currents, while Rimboud et 

al. [15] reported the experimental limiting currents were ca. 50 % of the calculated 

currents (equation (10)). Those studies demonstrated that diffusion zone overlap, 
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which occurred at adjacent interfaces in the array, lead to non-independent diffusion 

to each interface in the array, and resulted in the difference between experimental 

and calculated steady-state currents. Radial diffusion dominates the interfaces at the 

edge of the arrays while linear diffusion governs the interfaces within the arrays [11]. 

Particularly, the electrode-to-electrode separation (in this study equivalent to the 

pore-to-pore separation) and the number of nanoelectrodes (equivalent to the 

number of nanopores or nano-interfaces) are the key parameters that influenced the 

measured currents. Although the lower currents recorded could be associated with 

recessed rather than inlaid interfaces, previous studies have indicated that the 

interfaces are indeed inlaid and thus implicating diffusion zone overlap as the reason 

for lower currents [11, 15]. 

Figure 4 represents the experimental, Cottrellian and Mahon and Oldham current 

transients for transfer of 100 M TPrACl across the 75 nm radius nanoITIES array. 

The Cottrellian current response in the time range was so low that it appears as zero 

in the figure. However, the inset magnified view of the current transient shows that it 

approaches zero, but does not reach zero. In addition, the change in current over the 

timescale is too small to be seen in the comparison figure. For the Mahon and 

Oldham currents, the steady-state current is portrayed on the figure and is larger 

than the experimental current, for the reasons discussed above. Additionally, the 

transient response is not visible on the current scale displayed, but the inset clearly 

shows that this current decays rapidly with time to achieve the steady state value. 

For the Mahon and Oldham current, only the long-time expression (equation (3)) was 

applied, as the short time expression was too short (         ) for the charging 

times of the experimental arrangements used here. The Mahon and Oldham 

expression is accurate provided that the uncompensated resistance is negligible 
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[37], in contrast with large resistance results from this study. The large resistance 

has a retarding effect on the response time, illustrated by the slower decrease of 

experimental current than this expression (equation (3)). However, the steady-state 

current at longer times will not be affected by the large resistance. Note that the 

long-term expression of Mahon and Oldham gives the same value as the Saito 

equation for the steady-state current. 

Comparison of the experimental currents with the Cottrell and Mahon and 

Oldham expressions showed non-agreement with either model, in terms of both 

timescale of response and magnitude of current. The time-dependent currents will 

obey the Cottrell equation only if the electroactive interface is subjected to planar 

diffusion [53]. On the other hand, at microITIES, convergent diffusion dominates. In 

the case of a nanoITIES array with overlapping diffusion zones at adjacent 

nanoITIES, as is the situation here, the array may behave like a single microITIES of 

the same geometric parameters as those of the total nano-array [49]. In such a case, 

the current transient may be expected to follow the trend of a single microITIES. The 

transition to a steady-state can be observed in Figure 4. The steady-state current 

was smaller than expected because of diffusion zone overlap, i.e. the diffusional 

transport to the individual pores was reduced (compared to the case of a single pore 

membrane) due to competing diffusion zones around the pores. The time required to 

achieve the steady-state current was also slower than predicted by the Mahon and 

Oldham equation (equation (3)).  

The impact of solution resistance of the    drop can be considered as follows. If 

the current at an electrode is under diffusion control, the potential drop is expressed 

by [54, 55]  

     
   (     )

 
                    

(11)
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where    and    are the bulk and surface concentrations and the other parameters 

are as previously defined. Note that the surface concentration is zero in the region of 

the steady-state limiting current. The number of electrons involved in the electrode 

reaction,  , is equivalent to  , the charge number of the transferring ion. Equation 

(11) was derived under the assumption that the size of the counter electrode and the 

distance between it and the working electrode (here the ITIES established at the 

orifice of the nanopore) are much bigger than the size of the working electrode (i.e. 

the pore radius) and the diffusion layer established during an experiment. 

Furthermore, an excess of supporting electrolyte is present. These conditions are 

met in the present experiments. Using a concentration of 100 µM, a diffusion 

coefficient of 10-6 cm2 s-1 and a conductivity of 1073 S cm-1 for the aqueous 

electrolyte (0.01 M LiCl) [43] results in an      drop of 0.01 mV in the limiting current 

region, a value which is negligible. However, this approach does not take into 

account the resistance of the organic phase, which is a combination of the pore 

resistance and the solution resistance. A rough estimation of the potential drop can 

be made as follows. Previously, the individual pore resistance was calculated to be 

2.6×109 Ω for pores with a radius of 50 nm. The limiting current of the pore array 

(Figure 2(b)) is ca. 0.4 nA which gives a current of approximately 1 pA for an 

individual pore, resulting in      ≈ 3 mV. The potential drop is likely to be bigger due 

to the additional solution resistance. These values of potential drop will interfere with 

quantitative analysis of transfer kinetics. However, the steady-state limiting current 

will not be affected and therefore a potential drop of this magnitude might be 

negligible for electroanalytical purposes based on analysis of limiting currents. 

Finally, to study the agreement between currents obtained from the forward 

scans of cyclic voltammetry experiments with the currents obtained from PSCA, the 
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step potential was increased in increments of 0.05 V. At long times (   10 s), the 

PSCA data agreed well with the voltammetry data, as shown in Figure 5. As 

discussed in Section 3.1, no true limiting current plateau is reached when 

implementing voltammetry at the nanoITIES arrays. Nevertheless, current data 

obtained from potential-dependent and time-dependent experiments are in excellent 

agreement. 

 

4. Conclusions 

Chronoamperometry of TPrA+ ion transfer was performed at the water | 1,6-

dichlorohexane nano-interface array using three different nanopore array membrane 

designs (nanopore radii of 75, 50 and 17 nm). An assumption that the interfaces 

were inlaid was made, in which liquid organic phase filled the silicon nitride 

nanopores. The nanoITIES arrays exhibited prolonged charging times, hence the 

Faradaic current can be measured only at long times (timescale of seconds). The 

system demonstrated greater capacitances than predicted using literature values for 

the capacitance of the ITIES, indicating that capacitances additional to the interfacial 

liquid | liquid capacitance have an impact on the behaviour of these nanoporous 

membrane systems, such as the capacitance of the silicon nitride membrane 

employed. The resistances of the nanopores filled with organic phase electrolyte 

varied more with nanopore size than the overall system capacitance, indicating that 

the uncompensated resistances dominated the responses. The experimental current 

transients were not in agreement with either Cottrell or Mahon and Oldham 

expressions, and experimental steady-state currents were lower than predicted, 

indicating overlapping diffusion zones. However, the currents from 

chronoamperometry were in excellent agreement with those obtained from cyclic 
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voltammetry. The response times (time to reach 95 % of the steady-state current) of 

the silicon nitride membrane-based nanoITIES arrays to a potential step were in the 

region of 6 s, indicating a slow response and the impact of nanopore resistance as 

well as membrane capacitance. The results presented here provide further 

characterisation of nanoITIES arrays and will be beneficial in the design of chemical 

and biochemical sensing systems. 

 

Acknowledgements 

This work was supported by Curtin University, the Western Australian 

Nanochemistry Research Institute (WANRI) (a WA State Centre of Excellence) and 

the Malaysian Agricultural Research and Development Institute (MARDI). The 

authors thank Tyndall National Institute, Cork, Ireland, for the gift of the nanopore 

array membranes. 

 

References 

[1] Z. Samec, Electrochemistry at the interface between two immiscible electrolyte solution, Pure 
Appl. Chem. 76 (2004) 2147. 
[2] D.W.M. Arrigan, Bioanalytical detection based on electrochemistry at interfaces between 
immiscible liquids, Anal. Lett. 41 (2008) 3233. 
[3] P. Vanysek, L.B. Ramirez, Interface between two immiscible liquid electrolytes: A review, J. Chil. 
Chem. Soc. 53 (2008) 1455. 
[4] S. Liu, Q. Li, Y. Shao, Electrochemistry at micro- and nanoscopic liquid/liquid interfaces, Chem. 
Soc. Rev. 40 (2011) 2236. 
[5] M.D. Scanlon, G. Herzog, D.W.M. Arrigan, Electrochemical detection of oligopeptides at silicon-
fabricated micro-liquid|liquid interfaces, Anal. Chem. 80 (2008) 5743. 
[6] G. Herzog, W. Moujahid, J. Strutwolf, D.W.M. Arrigan, Interactions of proteins with small ionised 
molecules: Electrochemical adsorption and facilitated ion transfer voltammetry of haemoglobin at 
the liquid|liquid interface, Analyst 134 (2009) 1608. 
[7] Y. Shao, M.V. Mirkin, Fast kinetic measurements with nanometer-sized pipets. Transfer of 
potassium ion from water into dichloroethane facilitated by dibenzo-18-crown-6, J. Am. Chem. Soc. 
119 (1997) 8103. 
[8] P. Sun, Z. Zhang, Z. Gao, Y. Shao, Probing fast facilitated ion transfer across an externally 
polarized liquid-liquid interface by scanning electrochemical microscopy, Angew. Chem., Int. Ed. 41 
(2002) 3445. 
[9] F.O. Laforge, P. Sun, M.V. Mirkin, Shuttling mechanism of ion transfer at the interface between 
two immiscible liquids, J. Am. Chem. Soc. 128 (2006) 15019. 



23 
 

[10] B. Liu, Y. Shao, M.V. Mirkin, Dual-pipet techniques for probing ionic reactions, Anal. Chem. 72 
(2000) 510. 
[11] M.D. Scanlon, J. Strutwolf, A. Blake, D. Iacopino, A.J. Quinn, D.W.M. Arrigan, Ion-transfer 
electrochemistry at arrays of nanointerfaces between immiscible electrolyte solutions confined 
within silicon nitride nanopore membranes, Anal. Chem. 82 (2010) 6115. 
[12] R.A.W. Dryfe, B. Kralj, Voltammetric ion transfer in the presence of a nanoporous material, 
Electrochem. Commun. 1 (1999) 128. 
[13] B. Kralj, R.A.W. Dryfe, Membrane voltammetry: The interface between two immiscible 
electrolyte solutions, Phys. Chem. Chem. Phys. 3 (2001) 5274. 
[14] M. Platt, R.A.W. Dryfe, E.P.L. Roberts, Voltammetry with liquid/liquid microarrays: 
Characterization of membrane materials, Langmuir 19 (2003) 8019. 
[15] M. Rimboud, R.D. Hart, T. Becker, D.W.M. Arrigan, Electrochemical behaviour and voltammetric 
sensitivity at arrays of nanoscale interfaces between immiscible liquids, Analyst 136 (2011) 4674. 
[16] D.W.M. Arrigan, Nanoelectrodes, nanoelectrode arrays and their applications, Analyst 129 
(2004) 1157. 
[17] Y. Yuan, S. Amemiya, Facilitated protamine transfer at polarized water/1,2-dichloroethane 
interfaces studied by cyclic voltammetry and chronoamperometry at micropipet electrodes, Anal. 
Chem. 76 (2004) 6877. 
[18] Y. Yuan, L. Wang, S. Amemiya, Chronoamperometry at micropipet electrodes for determination 
of diffusion coefficients and transferred charges at liquid/liquid interfaces, Anal. Chem. 76 (2004) 
5570. 
[19] P. Beattie, A. Delay, H. Girault, Investigation of the kinetics of assisted potassium ion transfer by 
dibenzo-18-crown-6 at the micro-ITIES by means of steady-state voltammetry, J. Electroanal. Chem. 
380 (1995) 167. 
[20] Y.B. Liao, M. Okuwaki, F. Kitamura, T. Ohsaka, K. Tokuda, Normal pulse voltammetry for 
facilitated ion transfer processes across two immiscible liquid-liquid interfaces, Electrochim. Acta 44 
(1998) 117. 
[21] T. Hepel, J. Osteryoung, Chronoamperometric transients at the stationary disk microelectrode, J. 
Phys. Chem. 86 (1982) 1406. 
[22] P.N. Bartlett, S.L. Taylor, An accurate microdisk simulation model for recessed microdisk 
electrodes, J. Electroanal. Chem. 453 (1998) 49. 
[23] R. Ferrigno, P.F. Brevet, H.H. Girault, Finite element simulation of the chronoamperometric 
response of recessed and protruding microdisk electrodes, Electrochim. Acta 42 (1997) 1895. 
[24] A.M. Bond, D. Luscombe, K.B. Oldham, C.G. Zoski, A comparison of the chronoamperometric 
response at inlaid and recessed disk microelectrodes, J. Electroanal. Chem. 249 (1988) 1. 
[25] H.P. Nirmaier, G. Henze, Characteristic behavior of macro-, semimicro- and microelectrodes in 
voltammetric and chronoamperometric measurements, Electroanalysis 9 (1997) 619. 
[26] M.C. Henstridge, R.G. Compton, Mass transport to micro and nanoelectrodes and their arrays: A 
review, Chem. Rec. 12 (2012) 63. 
[27] R.W. Cattrall, Chemical Sensors, Oxford University Press Inc., New York, 1997, pp. 25. 
[28] K.B. Oldham, The RC time "constant" at a disk electrode, Electrochem. Commun. 6 (2004) 210. 
[29] J.C. Myland, K.B. Oldham, How does the double layer at a disk electrode charge?, J. Electroanal. 
Chem. 575 (2005) 81. 
[30] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., 
John Wiley and Sons Inc., New York, 2001, pp. 216-218. 
[31] P. Beattie, A. Delay, H. Girault, Investigation of the kinetics of ion and assisted ion transfer by 
the technique of ac impedance of the micro-ITIES, Electrochim. Acta 40 (1995) 2961. 
[32] Y. Shao, M.V. Mirkin, Voltammetry at micropipet electrodes, Anal. Chem. 70 (1998) 3155.  
[33] A. Trojanek, A. Lhotsky, V. Marecek, Z. Samec, Limited agreement between the interfacial 
tension and differential capacity data for the polarized water|1,2-dichloroethane interface, J. 
Electroanal. Chem. 565 (2004) 243. 



24 
 

[34] F.G. Cottrell, Residual current in galvanic polarization, regarded as a diffusion problem, Z. Phys. 
Chem 42 (1903) 385. 
[35] D. Shoup, A. Szabo, Chronoamperometric current at finite disk electrodes, J. Electroanal. Chem. 
140 (1982) 237.  
[36] P.J. Mahon, K.B. Oldham, The transient current at the disk electrode under diffusion control: A 
new determination by the Cope-Tallman method, Electrochim. Acta 49 (2004) 5041. 
[37] P.J. Mahon, K.B. Oldham, Diffusion-controlled chronoamperometry at a disk electrode, Anal. 
Chem. 77 (2005) 6100. 
[38] J.S. Ellis, G. Herzog, B. Glynn, D.W.M. Arrigan, Electrochemical characterization of regularly-
aligned nanopore array membranes filled with electrolyte solutions and their use for detection of 
nucleic acid hybridization, ECS Trans. 35 (2011) 29. 
[39] H. Katano, M. Senda, Voltammetry at 1, 6-dichlorohexane¦ water interface, Anal. Sci. 17 (2001) 
1027. 
[40] A.K. Kontturi, K. Kontturi, J.A. Manzanares, S. Mafe, L. Murtomäki, Ion pairing in the analysis of 
voltammetric data at the ITIES: RbTPB and RbTPBCl in 1, 2-dichloroethane, Ber. Bunsenges. Phys. 
Chem. 99 (1995) 1131. 
[41] K. Sawada, F. Chigira, Ion pair of tetraalkylammonlum picrates, J. Mol. Liq. 65/66 (1995) 265. 
[42] J. Strutwolf, M.D. Scanlon, D.W.M. Arrigan, Electrochemical ion transfer across liquid/liquid 
interfaces confined within solid-state micropore arrays – Simulations and experiments, Analyst 134 
(2009) 148. 
[43] P. Vanysek, Equivalent conductivity of electrolytes in aqueous solution, in: D.R. Lide (Ed.), CRC 
Handbook of Chemistry and Physics (Online), CRC Press, Boca Raton, FL, 2012, pp. 5.76. 
[44] R.W. Deblois, C.P. Bean, R.K.A. Wesley, Electrokinetic measurements with submicron particles 
and pores by the resistive pulse technique, J. Colloid Interface Sci. 61 (1977) 323. 
[45] L. Nemec, The effectiveness of iR compensation in controlled-potential polarography, J. 
Electroanal. Chem. 8 (1964) 166. 
[46] P. Vanysek, Two common electroanalytical techniques - Cyclic voltammetry and impedance. 
Capacitance data from cyclic voltammetry, ECS Trans. 41 (2012) 15. 
[47] M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy, John Wiley and Sons Inc., 
New Jersey, 2008, pp. 95. 
[48] S.E.F. Kleijn, A.I. Yanson, M.T.M. Koper, Electrochemical characterization of nano-sized gold 
electrodes fabricated by nano-lithography, J. Electroanal. Chem. 666 (2012) 19. 
[49] N. Godino, X. Borrise, F.X. Munoz, F.J. del Campo, R.G. Compton, Mass transport to 
nanoelectrode arrays and limitations of the diffusion domain approach: Theory and experiment, J. 
Phys. Chem. C 113 (2009) 11119. 
[50] D.C. Harris, Quantitative Chemical Analysis, 5th ed., W. H. Freeman and Company, New York, 
1998, pp. 483-487. 
[51] D. Menshykau, X.J. Huang, N.V. Rees, F.J. del Campo, F.X. Munoz, R.G. Compton, Investigating 
the concept of diffusional independence. Potential step transients at nano- and micro-electrode 
arrays: Theory and experiment, Analyst 134 (2009) 343. 
[52] Y. Saito, A theoretical study on the diffusion current at the stationary electrodes of circular and 
narrow band types, Rev. Polarog. 15 (1968) 177. 
[53] J. Heinze, Ultramicroelectrodes in electrochemistry, Angew. Chem. Int. Ed. Engl. 32 (1993) 1268. 
[54] K.B. Oldham, All steady-state microelectrodes have the same "iR drop", J. Electroanal. Chem. 
237 (1987) 303. 
[55] S. Bruckenstein, Ohmic potential drop at electrodes exhibiting steady-state diffusional currents, 
Anal. Chem. 59 (1987) 2098. 

 



25 
 

Table 1. Geometric, electrical and temporal behaviour of the three nanoITIES arrays 

studied in this work by potential step chronoamperometry, and comparison with a 

single microITIES.  

 NanoITIES Arrays Single 

microITIES [18] 

Pore radius (nm) 75 50 17 5000 

No. of pores    400 400 400 1 

Total ITIES cross-sectional 
area (m2) 

7.0710-12 3.1410-12 0.3610-12 78.510-12 

Experimental capacitance, 

      (F) ^ 

4.8310-9 4.4410-9 1.5710-9 8.0010-12 [33] 

Uncompensated resistance, 

   () # 

3.42 7.30 58.57 10.00 

Cell time constant,         (s) 0.017 0.032 0.092 0.00008 

Charging time,          (s) 0.08 0.16 0.46 0.0004 

Experimental specific 

capacitance,      
  (F/m2) 

630 1450 4320 - 

Response time (s) 61 61 61 - 

 

^: Estimated from CV data. 
#
: total pore and bulk resistance for each membrane calculated using 

equations 5 and 6. 
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Figure 1. (a) Background-subtracted voltammogram (forward scan) of 20 to 100 M 

TPrACl at a water | DCH nanoITIES array. The membrane employed comprised 400 

pores of 50 nm pore radius. The foot of the ion transfer wave was at ca. 0.4 V and 

the experimental limiting current was determined at approximately 0.6 V (200 mV 

positive of the wave foot) for all concentrations studied. Inset: Calibration graph 

correlating limiting current and analyte concentration and a diagram (not to scale) 

showing the cross section of the nanopore membrane filled with the organic phase 

and in contact with the aqueous phase. (b) Blank CV at the 50 nm pore radius 
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nanoITIES array. The charging current was determined at 0.2 V, and used with 

equation 7 to determine the experimental capacitance at 10 mV s-1 sweep rate. 
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Figure 2. (a) Background-subtracted chronoamperograms of 100 M TPrACl 

obtained using nanoITIES arrays formed by nanopore array membranes with three 

different sizes of nanopores (radii of 75, 50 and 17 nm). (b) Chronoamperograms at 

the 50 nm pore radius nanoITIES array of blank, analyte (100 M TPrACl) and 

background-subtracted chronoamperograms, represented by dotted, dashed and 

solid lines, respectively.  
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Figure 3. (a) Background-subtracted chronoamperograms of 20 to 100 M TPrACl 

at a nanoITIES array based on a 50 nm pore radius membrane. (b) The 

corresponding calibration curve of the steady-state currents versus the TPrA+ 

concentration. The dashed line represents the theoretical current calculated using 

equation (10) while the solid line is the best linear fit to the experimental data.  
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Figure 4. The experimental, Cottrellian and Mahon & Oldham (M&O) current 

transients for 100 M TPrACl at a nanoITIES array formed by 75 nm pore radius 

membrane. The inset shows a magnified view of the Cottrellian and Mahon & 

Oldham current response. 
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Figure 5. Comparison of the chronoamperometric steady-state current with the 

voltammetric response at a nanoITIES array formed at a 75 nm pore radius 

membrane. Voltammetric sweep rate: 10 mV s-1.  

 


