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Abstract. We prove that there are eight subgroups of the orthogonal
group O(3) that determine all symmetry classes of an elasticity tensor.
Then, we provide the necessary and sufficient conditions that allow us to
determine the symmetry class to which a given elasticity tensor belongs.
We also give a method to determine the natural coordinate system for
each symmetry class.

1. Introduction

Any linearly elastic continuum is defined at a given point in terms of the
corresponding elasticity tensor, which possesses intrinsic symmetries that
result from the fundamentals of elasticity theory. Also, an elasticity tensor
might exhibit additional symmetries that depend on the properties of a given
elastic continuum. The latter symmetries, which are the subject of this
paper, are referred to as material symmetries.

This paper consists of two main sections. In the first one, we discuss the
classification of elasticity tensors according to their material symmetries. We
determine all possible symmetry classes for an elasticity tensor; for each of
these classes the corresponding symmetry group is explicitly given. These
symmetry groups are determined using simpler symmetries of associated
second-rank tensors. The symmetry groups are presented in an invariant
form and, when a basis is fixed, we represent them using their matrix rep-
resentation. Accordingly, our study does not depend on a particular choice
of a basis for the three-dimensional Euclidean space E

3. This independence
is especially important in discussion of trigonal and tetragonal cases, when
particular basis and particular representations of the symmetry groups help
us to determine the symmetry groups. In the second section, we show how to
recognize to which symmetry class a given elasticity tensor expressed in an
arbitrary basis belongs. Using the eigenvectors of the associated second-rank
tensors, we determine for each symmetry class a natural coordinate system.
To make the paper self-contained, we provide a complete and rigorous, albeit
laborious, formulation of these results.

Symmetries of elastic media are discussed by numerous authors, notably,
by Love [1] and Voigt [2]. There are several papers in which the authors
prove that the number of symmetry classes of an elasticity tensor is eight;
notably, those of Chadwick et al [3], Forte and Vianello [4] and Ting [5]. In
recent literature, there are several discussions about symmetries of elasticity
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tensors that are pertinent to our study; in particular, those by Backus [6],
Baerheim [7, 8], Cowin and Mehrabadi [9, 10, 11], Forte and Vianello [12],
Helbig [13], as well as Huo and del Piero [14].

Our paper differs from previous publications in several ways. Unlike Love
[1] and Voigt [2], we do not use the strain-energy function, which contains
components of the elasticity tensor, to discuss material symmetries. Instead,
we deal directly with the tensor itself. Unlike Baerheim [7], Chadwick et
al [3], and Ting [5], our discussion of hierarchy of symmetries is based on
symmetries groups of associated second-rank tensors and their intersections.
In particular, the symmetry group associated with each symmetry class of
an elasticity tensor allows us to discuss the possible routes of increasing
symmetries. A diagram that shows the relations between these classes of
symmetry of an elasticity tensor is presented in Section 4. Our study is
based on eigenvectors and eigenspaces of associated second-rank tensors and
not on eigentensors of the elasticity tensor as done by Cowin and Mehrabadi
[10, 11].

As shown by Forte and Vianello [12, 4], there are two different ways to
define symmetries for an elasticity tensor. In this paper we follow the def-
inition used by Forte and Vianello [4] and Chadwick et al [3]. A different
way of defining the symmetry classes of an elasticity tensor has been intro-
duced by Huo and del Piero [14]. According to their definition, there are ten
symmetry classes of an elasticity tensor.

We begin our investigation with the elasticity tensor as a four-linear map
that possesses all the intrinsic symmetries, and not as a linear map between
two spaces of symmetric bi-linear forms, as Huo and del Piero [14] and Forte
and Vianello [12, 4] do. Using this four-linear map, we discuss the material
symmetries of the elasticity tensor, which is a fourth-rank tensor, by consid-
ering two associated second-rank tensors. We prove that the symmetry group
of this fourth-rank tensor must be a subgroup of both symmetry groups of
the two associated second-rank tensors. Studying all possible intersections
of eigenspaces and the corresponding symmetry groups for the second-rank
tensors, we obtain eight subgroups of O(3) that correspond to all symmetry
classes of an elasticity tensor. Moreover, we determine symmetry planes us-
ing the eigenspaces of the two second-rank tensors and, depending on these
spaces, we identify the natural coordinate system. Hence, it is the mate-
rial symmetry that determines the coordinate system, rather than its being
determined by some a priori considerations. This allows us to identify the
symmetry class to which a given elasticity tensor belongs by starting with
an arbitrary coordinate system.

We wish to emphasize that, in spite of similarities to crystallographic
classifications, such as Bravais lattices and Fedorov groups, the classification
in this paper is based solely on the concept of continua. Also, we note that
we do not use for our discussions the 6 × 6 elasticity matrix; we deal only
with tensors.
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2. Classification of elasticity tensors

2.1. Elasticity tensors. To study elasticity tensors, we begin by stating
several properties of tensors that are pertinent to our present work. For this
purpose, consider E

3 – the Euclidean three-dimensional space.
An n-th rank tensor in E

3 is an n-linear map

T : E3 × · · · × E
3︸ ︷︷ ︸

n-times

−→ R.

The Euclidean scalar product, 〈·, ·〉, in E
3 determines the canonical iso-

morphism between E
3 and its dual space (E3)∗ = {θ : E3 −→ R, where

θ is linear}. Due to this isomorphism, we shall identify the two spaces – E
3

and its dual, (E3)∗ – and, consequently, we shall make no distinction between
the elements of these two spaces. Also, this identification allows us to view
an n-th rank tensor as a linear map T : E3 × · · · × E

3((n− k) -times) −→
E
3×· · ·×E

3 (k-times), for any k = 0, . . . , n−1. For example, a second-rank
tensor, g, can be viewed either as the bi-linear map given by g : E3×E

3 −→ R

or as the linear map given by g̃ : E3 −→ E
3, where the connection between

these two maps is given via the Euclidean scalar product as

g(u, v) = 〈g̃(u), v〉 , for u, v ∈ E
3.

If the second-rank tensor, g, is symmetric, namely g (u, v) = g (v, u), then
the symmetry of the induced tensor g̃ is expressed by 〈u, g̃(v)〉 = 〈g̃(u), v〉.

Now, we turn our attention to c. The elasticity tensor, c, is a fourth-rank
tensor, namely a four-linear map c : E3 × E

3 × E
3 × E

3 −→ R that satisfies
the following conditions:

(1) c(u, v, z, w) = c(v, u, z, w) = c(z, w, u, v),

for all u, v, z, w ∈ E
3, and

(2) c(u, v, u, v) ≥ 0,

for all u, v ∈ E
3, where

(3) c(u, v, u, v) = 0,

if and only if u = 0 or v = 0. Note that the positive-definiteness of c is not
pertinent to the discussion of the material symmetries.

A basis {e1, e2, e3} in E
3 allows us to express the components of c with

respect to this basis as

cijkl = c(ei, ej , ek, el), i, j, k, l ∈ {1, 2, 3}.
Thus, c has 34 = 81 components, cijkl. With respect to these components,
we can write tensor c as

c(u, v, z, w) = cijklu
ivjzkwl,
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where u = uiei, v = viei, z = ziei and w = wiei. 1 If we denote the
coordinate functions that correspond to the given basis as {x1, x2, x3}, then
we can write the elasticity tensor as

c = cijkldx
idxjdxkdxl.

Using this coordinate expression, condition (1) can also be written as

(4) cijkl = cjikl = cklij,

for all i, j, k, l ∈ {1, 2, 3}.
Due to the intrinsic symmetries stated by condition (4), we conclude that

c has only twenty-one independent components. We choose to represent all
these components by

1c1111, 1c2222, 1c3333,
4c2323, 2c2233, 4c1212, 2c1122, 4c1313, 2c1133,
4c1123, 8c1213, 4c1233, 8c1323, 4c2213, 8c1223,
4c1222, 4c1112, 4c2223, 4c1113, 4c2333, 4c1333.

In this list, the number in front of each component corresponds to the number
of components of c that the particular component represents. We will use
this representation to describe material symmetries of the elasticity tensor.

2.2. Symmetries of second-rank tensor. Any symmetry of a fourth-rank
tensor translates to symmetries of associated second-rank tensors. Since it
is more convenient to study symmetries of second-rank tensors, we turn our
attention to these tensors.

To study symmetries of a tensor, we consider linear isomorphisms A :
E
3 −→ E

3; in other words, A and its inverse, A−1, are linear maps. The
isomorphism, A, is said to be an orthogonal transformation with respect to
the Euclidean scalar product in E

3 if the scalar product is preserved, namely,

〈A(u), A(v)〉 = 〈u, v〉 , ∀u, v ∈ E
3.

The set of all orthogonal transformations of E3 with respect to the compo-
sition of maps is called the orthogonal group of E3 and denoted by O(3).

Orthogonal group O(3) acts on the space of nth-rank tensors through

(5) (A,T (·, ·, . . . , ·)) �→ A ∗ T (·, ·, . . . , ·) := T (A·, A·, . . . , A·).
Orthogonal transformation A of E3 is said to be a symmetry of an nth-rank
tensor, T , if A ∗ T = T , i.e.

T (Au1, · · · , Aun) = T (u1, · · · , un), ∀u1, u2, · · · , un ∈ E
3.

If orthogonal transformation A is a symmetry of tensor T , then we can say
that this tensor is invariant under orthogonal transformation A.

The set of all symmetries for a given nth-rank tensor, T , is a subgroup
GT of orthogonal group O(3). For an n-th rank tensor T and an orthogonal

1Unless stated otherwise, we use throughout the paper the summation convention of
repeated indices.
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transformation A, the symmetry groups of T and A ∗ T are orthogonally
conjugate, i.e.

GT = A−1GA∗TA.
It is important to note that the symmetry group of any even-rank tensor

contains the point symmetry, namely, −I. Thus, all tensors considered in
this paper intrinsically possess the point symmetry.

To establish the symmetries of a given tensor, it is useful to find the basis
with respect to which this tensor has the simplest possible form. For sym-
metric second-rank tensor g : E3 × E

3 −→ R, there is an orthonormal basis
{e1, e2, e3} with respect to which the components of g are gij := g(ei, ej) =
λiδij (no summation here). This is equivalent to saying that the induced
linear map g̃ has eigenvectors {e1, e2, e3}; in other words, g̃(ei) = λiei. Con-
sequently, if A is a symmetry of g, namely g (Aei, Aej) = g (ei, ej), then
g̃ (Aei) = λi (Aei), since g(ei, ej) = λiδij . This can be stated as the follow-
ing lemma.

Lemma 1. An orthogonal transformation A is a symmetry of a symmetric
second-rank tensor g, if and only if it preserves the eigenspaces that corre-
spond to the eigenvalues of g̃.

Since any symmetry preserves the eigenspaces of a second-rank tensor,
we can obtain useful information about the tensor symmetries by studying
the eigenspaces of such a tensor. A symmetric second-rank tensor in E

3 has
three real eigenvalues, λi, where i ∈ {1, 2, 3}. There are, in general, three
possibilities, namely, all three eigenvalues are distinct, two among the three
eigenvalues are equal or all three eigenvalues are equal.

The largest possible symmetry groups of the second-rank tensor, g, cor-
responding to the three possibilities for eigenvalues of g̃ are stated as the
following three types.

1): If all eigenvalues of g̃ are distinct; that is λ1 	= λ2 	= λ3, then g̃
has three one-dimensional eigenspaces. According to Lemma 1, the
symmetry group of g is Gg = {A ∈ O (3) , A (ei) = ±ei, i = 1, 2, 3}.
Consequently, Gg = {±I,±Rei , i ∈ {1, 2, 3}}, where Rei is the reflec-
tion about the plane that is orthogonal to vector ei, i ∈ {1, 2, 3}.

2): If two eigenvalues of g̃ are equal to one another, say, λ1 = λ2, then g̃
has two eigenspaces, a two-dimensional space generated by e1 and e2,
and a one-dimensional space generated by e3. According to Lemma
1, the symmetry group of g is

Gg = {A ∈ O (3) , A (e3) = ±e3, Aei = αie1 + βie2, αi, βi ∈ E,∀i ∈ {1, 2}} .

With respect to the orthonormal basis {e1, e2, e3}, one can express
the elements of the symmetry group as follows.

(6)

Gg =


±


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 ,±


 cos θ sin θ 0

sin θ − cos θ 0
0 0 1


 , θ ∈ (−π, π]


 .
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The first elements of the symmetry group are ±Rθ,e3 , which are the
rotations by angle θ about vector e3. The last elements are ±Ru(θ),
which are the reflections about the plane that is orthogonal to u(θ) =
sin(θ/2)e1 − cos(θ/2)e2.
Consequently, the symmetry group contains all rotations around e3
and all reflections about planes that contain e3. It coincides with
O(2), as a subgroup of O(3).

3): If all eigenvalues of g̃ are equal to each other, that is, λ1 = λ2 = λ3,
then g̃ has one three-dimensional eigenspace. In other words, the
whole space E

3 is the eigenspace of g̃. Consequently, Gg = O(3).
To distinguish between possible cases within the second and the third possi-
bility, following Herman [15], we state another important property of tensor
symmetries in the following theorem .

Theorem 2. If an nth-rank tensor is invariant under an (n+k)-fold rotation
(k ≥ 1) about a given axis, then it is invariant under any rotation about this
axis.

We shall use this theorem for second-rank and fourth-rank tensors. Specif-
ically, for these tensors, we can state the following two corollaries.

Corollary 3. If a second-rank tensor is invariant under rotation about a
given axis by an angle smaller than π, then it is invariant under any rotation
about this axis.

Corollary 4. If a fourth-rank tensor is invariant under rotation about a
given axis by an angle smaller than π/2, then it is invariant under any
rotation about this axis.

To use the discussed properties of second-rank tensors for studying the
symmetries of elasticity tensors, we choose to associate this fourth-rank ten-
sor with particular second-rank tensors.

2.3. Second-rank tensors associated with elasticity tensors. To asso-
ciate second-rank tensors with elasticity tensors c, we begin by defining two
bi-linear maps, Γ(u) : E3×E

3 −→ R and ∆(u) : E3×E
3 −→ R for any fixed

u ∈ E
3, by

Γ(u)(v, z) = c(u, v, u, z) and ∆(u)(v, z) = c(u, u, v, z),

respectively. For each u ∈ E
3, these two bi-linear maps are symmetric. For

fixed basis {e1, e2, e3}, the components of these two maps are given by

Γij(u) = c(u, ei, u, ej) = ckilju
kul and ∆ij(u) = c(u, u, ei, ej) = ckliju

kul.

Map Γ(u) has also been used by Chadwick et al [3] and Ting [5] to study
symmetries of elasticity tensors. We can consider bi-linear maps Γ (u) and
∆(u) also as linear maps that map E

3 to E
3. The traces of these two linear

maps define two maps V,D : E3 −→ R, namely,

V(u) = Tr {Γ(u)} and D(u) = Tr {∆(u)} .
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With respect to orthonormal basis {e1, e2, e3}, we see that

V(u) = Γii(u) = ckiliu
kul and D(u) = ∆ii(u) = ckliiu

kul.

V(u) and D(u) are quadratic forms. Consequently, to each of them cor-
responds a symmetric second-rank tensor. The components of these two
tensors, with respect to orthonormal basis {e1, e2, e3}, are given by

Vij = ci1j1 + ci2j2 + ci3j3 and Dij = cij11 + cij22 + cij33.

Tensors V and D and their eigenvectors have also been used by Chadwick et
al [3], Cowin and Mehrabadi [11] to study symmetry classes of an elasticity
tensor. The symmetry group of V – namely, {A ∈ O(3)|V(Au) = V(u),∀u ∈
E
3} – is denoted by GV , while the symmetry group of D – namely, {A ∈

O(3)|D(Au) = D(u),∀u ∈ E
3} – is denoted by GD.

In the next section, we shall classify all the symmetry groups of elasticity
tensors using the symmetry groups of tensors V and D, as well as using the
symmetries of the two maps, Γ(u) and ∆(u).

2.4. Possible material symmetries of elasticity tensors. In this sec-
tion, we show that an elasticity tensor can belong to one among eight distinct
symmetry classes.

Orthogonal transformation A is said to be a symmetry of an elasticity
tensor, c, if

c(Au,Av,Aw,Az) = c(u, v, w, z), ∀u, v, w, z ∈ E
3.

The set of all symmetries of tensor c is a subgroup of the orthogonal group,
O(3). We denote it by Gc and we refer to it as the symmetry group of the
elasticity tensor.

Two elasticity tensors, c1 and c2, belong to the same symmetry class if
their symmetry groups, Gc1 and Gc2 , are orthogonally conjugate, i.e. there is
an orthogonal transformation A such that Gc1 = A−1Gc2A or Gc1 = GA∗c2 .

Since the elasticity tensor is an even-rank tensor, its symmetry group
always contains the point symmetry of E

3. This means that −I ∈ Gc.
Consequently, the symmetry class of an elasticity tensor is determined by
only a subgroup of the rotation group SO (3), rather than the entire O (3).

Since we can express tensor c using map ∆ as

c (u, v, w, z) = ∆

(
u+ v

2

)
(w, z) −∆

(
u− v

2

)
(w, z) ,

orthogonal transformation A is a symmetry of c, if and only if

∆(Au)(Av,Aw) = ∆(u)(v,w), ∀u, v, w ∈ E
3.

For map Γ (u), we can only state that if A is a symmetry of c, then:

Γ(Au)(Av,Aw) = Γ(u)(v,w), ∀u, v, w ∈ E
3.

These statements also show that if Au = ±u and A is a symmetry of c,
then A is a symmetry of the two bi-linear transformations, Γ(u) and ∆(u),
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namely,

Γ(u)(Av,Aw) = Γ(u)(v,w) and ∆(u)(Av,Aw) = ∆(u)(v,w), ∀v,w ∈ E
3.

We can reconstruct c from ∆. However, c cannot be reconstructed from V
and D. This implies that any symmetry of c is a symmetry of both V and
D, whereas a symmetry of V or D is not necessarily a symmetry of c. Hence,
we can state the following result, that has been proved also by Forte and
Vianello in [4].

Lemma 5. Symmetry group Gc of an elasticity tensor c is a subgroup of the
group GV ∩GD.

In other words, Gc can be, at most, GV ∩ GD. We note that throughout
this paper we use the expression “at most” to state the fact that an elasticity
tensor c cannot have more symmetries than both tensors V and D possess.

The fact that Gc can be, at most, GV ∩ GD is the reason to study all
possible intersections of the two groups, GV and GD. Since tensors V and D
are second-rank symmetric tensors, according to Section 2.2, there are three
possible types of symmetry groups for each of these two tensors. To study
these groups, in view of Lemma 1, we turn our attention to the eigenspaces
of V or D.

Let us denote the eigenvalues of tensors V and D by {λV
i }i=1,2,3 and

{λD
i }i=1,2,3, respectively. We also consider the unit eigenvectors, {eVi }i=1,2,3

and {eDi }i=1,2,3, and the eigenspaces, L(eVi ) and L(eDi ), that correspond to
these two tensors. Now, let us consider the four possible possibilities of in-
tersections of eigenspaces of V and D, depending on the dimension of the
intersection.

(1) The intersections of any eigenspace of D with any eigenspace
of V are zero-dimensional. In other words, L(eVi )∩L(eDj ) = {0},
∀i, j ∈ {1, 2, 3}, and hence GV ∩ GD = {±I}. Since {±I} ⊂ Gc ⊂
GV ∩ GD = {±I}, we conclude that Gc = {±I}. Hence, c is a
generally-anisotropic tensor.

(2) The intersection of any eigenspace of D with any eigenspace
of V is at most one-dimensional. Thus the symmetry group of c
is a group that preserves the one-dimensional eigenspace(s) and may
contain one or three reflections about orthogonal planes. Within this
possibility, we can distinguish the following two cases.
(a) If the eigenspaces of V and the eigenspaces of D have in common

only a single one-dimensional space, say spanned by e3, then
Gc ⊂ GV ∩GD = {±I,±Re3}. Hence, in view of Lemma 5, c is,
at most, a monoclinic tensor.

(b) If the intersection of the eigenspaces of V and the eigenspaces of
D are three one-dimensional spaces, spanned by e1, e2 and e3,
then Gc ⊂ GV ∩GD = {±I,±Re1 ,±Re2 ,±Re3}. Hence, c is, at
most, an orthotropic tensor.
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Note that the existence of two reflection planes together with the
point symmetry implies the existence of the third reflection plane.
Hence, there is no intermediate case between the monoclinic and
orthotropic cases.

(3) The intersection of some eigenspace of D with some eigenspace
of V is two-dimensional. We can choose the coordinate system
such that the common one-dimensional eigenspace is spanned by e3
and the two-dimensional eigenspace is spanned by {e1, e2}. Then,
following expression (6), we see that GV ∩ GD = O(2). In view of
Lemma 5, symmetry group Gc is a subgroup of O(2) and may contain
rotations about e3 as well as reflections about planes that contain e3.
Then, using Corollary 4, there are the following three possible cases
for the symmetries of c.
(a) If Gc ⊂

{±I,±Ruα ,±R±2π/3,e3 , α ∈ {1, 2, 3}} ⊂ GV∩GD, which
means that Gc may contain a rotation by θ = 2π/3 about e3 and
reflections about three planes that contain the axis of rotation,
then c is, at most, a trigonal tensor. The angle between two
reflection planes is 2π/3. One can choose e2 to be orthogonal to
one plane of reflection.
For a trigonal tensor the symmetry group does not contain Re3

and −Re3 . We can see this from the fact that rotation R2π/3,e3

combined with reflection Re3 would result in rotation by π/3
about e3 and, hence – by Corollary 4 – such a tensor would be
transversely isotropic, which is a class discussed below.
We shall see in Section 3 that if an elasticity tensor c is invariant
under R±2π/3, then it is also invariant under reflections about
three planes that contain the axis of rotation.

(b) If Gc ⊂
{±I,±R±π/2,e3 ,±Rπ,e3 ,±Ruα , α ∈ {1, 2, 3, 4}} ⊂ GV ∩

GD, which means that Gc may contain a rotation by θ = π/2
about e3 and reflections about four planes that contain the axis
of rotation, then c is, at most, a tetragonal tensor. The angle
between consecutive reflection planes is π/4. One can choose
e1, e2 to be orthogonal to two planes of reflection.
Note that the symmetry group of a tetragonal tensor contains
Re3 and −Re3 . We can see this from the fact that Re3 = −Rπ,e3

and −Re3 = Rπ,e3 .
We shall see in Section 3 that if an elasticity tensor c is invariant
under R±π/2,e3 , then it is invariant also under four reflections
Ruα , α ∈ {1, 2, 3, 4} about four planes that contain the axis of
rotation.

(c) If Gc ⊂ GV ∩GD = O(2), which means that Gc may contain any
other rotations by θ ∈ (−π, π] about e3 and reflections about
planes that contain e3, then c is, at most, a transversely-isotropic
tensor.
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(4) The intersection of the eigenspace of D with the eigenspace
of V is three-dimensional. In this possibility, the symmetry groups
of tensors V and D coincide with the orthogonal group O(3) and
GV ∩ GD = O(3). Hence, the symmetry group, Gc, of an elasticity
tensor c is a subgroup of O(3) that may contain rotations about dif-
ferent axes. In such a case, as we shall see in Section 3, there are
only two possible subgroups of O(3), which are symmetry groups for
the elasticity tensor c. These two groups correspond to the cubic and
the isotropic cases. They are as follows.
(a) If Gc ⊂ {A ∈ O(3), A(ei) = ±ej , i, j ∈ {1, 2, 3}}, then c is, at

most, a cubic tensor.
(b) If Gc ⊂ O (3), then c is, at most, an isotropic tensor.

This completes the classification of all the possible symmetries of the elas-
ticity tensor. All classes are given by 1, 2(a), 2(b), 3(a), 3(b), 3(c), 4(a)
and 4(b). These consist of both discrete and continuous symmetry classes.
While the discrete classes have their analogies in crystallography, the contin-
uous ones, namely transverse isotropy and isotropy, are specific to continuum
mechanics.

3. Symmetry recognition of given elasticity tensor

In order to recognize to which symmetry class any given elasticity tensor
belongs, we use a method that results in expressing c in the natural basis
where it has the simplest possible form.

To distinguish between the cases within the four possibilities of possible
intersections of eigenspaces, discussed in the previous section, we have to
study how c (ei, ej , ek, el) transforms under the given symmetry. Since there
are only three basis vectors {e1, e2, e3} and c is a fourth-rank tensor, instead
of studying transformations of c, we can equivalently study transformations
of both Γ (ei) (ej , ek) and ∆(ei) (ej , ek). Note that under transformations
that preserve u, bilinear maps Γ(u) and ∆(u) behave as second-rank tensors
and, hence, we can use the methods developed above to study their symme-
tries that preserve a fixed u. Namely, in view of Lemma 1, we are going to
study the eigenspaces of these maps, which must be preserved under such
symmetries. Following the same order as in Section 2.4, we will discuss each
of the four possibilities in detail.

(1) The intersection of any eigenspace of D with any eigenspace
of V is zero-dimensional. This is the case of the generally-anisotropic
tensor. In this case, there is nothing left to decide, since the sym-
metry group of the elasticity tensor is Gc = {±I} – the elasticity
tensor has twenty-one nonzero independent components and it is a
generally-anisotropic tensor.

(2) The intersection of any eigenspace of D with any eigenspace
of V is at most one-dimensional. Within this possibility, we can
distinguish the following cases.
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(a) Monoclinic tensor : Let {e1, e2, e3} be an arbitrary orthonormal
basis such that e3 is a common eigenvector of V and D. The
condition that V and D have the same eigenvector e3 can be
expressed as

(7)
V13 = c1113 + c1223 + c1333 = 0,

V23 = c1213 + c2223 + c2333 = 0,

and as

(8)
D13 = c1113 + c1322 + c1333 = 0,

D23 = c1123 + c2223 + c2333 = 0.

We remark here that equations (7) are equivalent to GV =
{±I,±Re3}, while equations (8) are equivalent to GD = {±I,±Re3}.
If the symmetries of c contain Re3 , then — since any sym-
metry of a second-rank tensor preserves its eigenspaces and
Re3e3 = −e3, e3 defines an eigenspace of Γ (e3), and accord-
ing to Lemma 1 — we see that GΓ(e3) = {±I,±Re3}. This
implies that

(9) c1333 = c2333 = 0.

Note that following Lemma 1, these equalities are true also for
any symmetries that preserve ±e3.
We remark that we also get equations (9) if we require e3 to be
an eigenvector for ∆(e3). Similarly, if Re3 is a symmetry of c,
then Re3 also preserves the vectors {e1, e2}; consequently e3 is
an eigenvalue of Γ (e1). Note that this is equivalent to saying
that e3 is also an eigenvalue of Γ (e2) or ∆(e1) or Γ (e2). Any
of these conditions can be written as

(10) c1113 = c1213 = 0.

Equations (7) through (10) imply that

c1113 = c1123 = c1322 = c2223 = c1333 = c2333 = c1213 = c1223 = 0.

The last equations are equivalent to

Gc = GV = GD = GΓ(ei) = G∆(ei) = {±I,±Re3} ,∀i = 1, 2, 3.

Consequently, a monoclinic tensor has thirteen nonzero inde-
pendent components. With respect to an orthonormal basis
{e1, e2, e3}, where e3 is the common eigenvector of V and D and
e1, e2 are arbitrary, the components of a monoclinic tensor are
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given by

(11)

c1111, c2222, c3333,
c1122, c1133, c2233,
c1212, c1313, c2323,
c1112, c1222, c1233, c1323.

One can rotate {e1, e2, e3} by an angle θ around e3 such that

tan(2θ) =
2c1323

c2323 − c1313
.

With respect to the new basis, c has twelve components, since
c1323 vanishes. This simpler form of c does not bring any new in-
formation about the tensor, as we shall also see later for trigonal
and tetragonal cases.

(b) Orthotropic tensor : Let e1, e2 and e3 be the orthonormal basis of
common eigenvectors of tensors V and D. The fact that vectors
e1, e2 and e3 are eigenvectors for both tensors V and D results
in

(12)
V13 = c1113 + c1223 + c1333 = 0,
V23 = c1213 + c2223 + c2333 = 0,
V12 = c1112 + c1222 + c1323 = 0

and

(13)
D13 = c1113 + c1322 + c1333 = 0,
D23 = c1123 + c2223 + c2333 = 0,
D12 = c1112 + c1222 + c1233 = 0.

We remark here that equations (12) are equivalent to GV =
{±I,±Re1 ,±Re2 ,±Re3}, while equations (13) are equivalent to
GD = {±I,±Re1 ,±Re2 ,±Re3}. If the symmetry group of c
contains all reflections, Re1 , Re2 and Re3 , then, by a similar
argument as in case 2(a), e1, e2 and e3 are eigenvectors of Γ (ei)
for all i = 1, 2, 3. Equivalently,

(14) c1112 = c1113 = c1222 = c2223 = c1333 = c2333 = 0.

Note that the requirement for e1, e2 and e3 to be eigenvectors of
∆(ei) for all i ∈ {1, 2, 3} gives the same result. Then equations
(14) are equivalent to

GΓ(ei) = G∆(ei) = {±I,±Re1 ,±Re2 ,±Re3} ,

for all i = 1, 2, 3.

In this case, six equations given by expressions (12) and (13)
as well as equalities (14) imply that the elasticity tensor has
only nine nonzero independent components with respect to basis
{e1, e2, e3} of common eigenvector of V and D. Such an elasticity
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tensor is an orthotropic tensor. In such a case, the symmetry
group is given by:

Gc = GV = GD = GΓ(ei) = G∆(ei) = {±I,±Re1 ,±Re2 ,±Re3} .

With respect to the orthonormal basis {e1, e2, e3}, where e1, e2, e3
are common eigenvectors of V and D, the components of an or-
thotropic tensor are given by:

(15)
c1111, c2222, c3333,
c1122, c1133, c2233,
c1212, c1313, c2323.

(3) The intersection of some eigenspace of D with some eigenspace
of V is two-dimensional. We can choose the coordinate system
such that the common one-dimensional eigenspace is spanned by e3
and the two-dimensional eigenspace is spanned by two arbitrarily or-
thonormal vectors {e1, e2}. Consequently, with respect to orthonor-
mal basis {e1, e2, e3}, both tensors V and D have a diagonal form.
This translates to the fact that equations (12) and (13) are satisfied.

As the two tensors have in common a two-dimensional eigenspace,
the eigenvalues of V that correspond to eigenvectors e1 and e2 are
equal to one another. The same is true for D. This imposes

(16) c1111 + c1212 + c1313 = V (e1, e1) = V (e2, e2) = c1212 + c2222 + c2323.

Similarly, for D, we can write

(17) c1111 + c1122 + c1133 = D (e1, e1) = D (e2, e2) = c1122 + c2222 + c3322.

Equations (12) and (16) imply that GV = O(2), while equations
(13) and (17) imply that GD = O(2). In this case, the only possible
symmetries leaving c invariant are rotations about e3. The invariance
of e3 under these symmetries implies that e3 is an eigenvector of Γ (e3)
and ∆(e3). This means that equations (9) are satisfied.

Let us examine how rotations about e3 act on c. For vectors e1 and
e2, we have

(18)
Rθ,e3e1 = cos θe1 + sin θe2

Rθ,e3e2 = sin θe1 − cos θe2.

Vector e3 is an eigenvector for rotations (18). For a trigonal, tetrag-
onal and transversely isotropic tensor, we need rotations (18) to be
symmetries for bilinear maps Γ(e3) and ∆(e3). This means that the
symmetry groups of these maps are given by GΓ(e3) = G∆(e3) = O(3).
First, let us note that the invariance of each among Γ(e3)(e1, e3),
Γ(e3)(e2, e3), ∆(e3)(e1, e3) and ∆(e3)(e2, e3) results in equation (9).
Next, let us study the invariance of the remaining entities associated
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with Γ(e3) and ∆(e3).
The invariance of Γ(e3)(e1, e1) under rotations (18) imposes

(19) c1323 = 0 and c1313 = c2323.

Analogous computations for ∆(e3) (e1, e1) give us

(20) c1233 = 0 and c1133 = c2233.

At this moment, we have six equations given by expressions (12)
and (13), four equations given by expressions (16), (17), (9) and four
equations given by expressions (19) and (20). Hence, there are thir-
teen equations. However, only twelve among them are independent.
All these equations are true for the trigonal, tetragonal and trans-
versely isotropic cases. Note that the symmetry group of an elasticity
tensor that satisfies the above-mentioned twelve independent equa-
tions satisfies

Gc ⊂ GV = GD = GΓ(e3) = G∆(e3) = O(2).

To distinguish between these cases, we need to express the following
invariances.
(a) Trigonal tensor : For this case, Γ(e1) has to be invariant under

rotations (18) for θ ∈ {2π/3, 4π/3}.
The invariance of Γ (e1) (e2, e2) under rotations (18) with 2π/3
and 4π/3 for θ, implies

(21) c1112 = 0 and 2c1212 = c1111 − c1122.

Equations (9), (12), (13), (21) and equations (16) through (20)
imply that c has – with respect to orthonormal basis {e1, e2, e3}
– seven nonzero independent components. These components
are given by

(22)

c1111 = c2222, c3333,
c1122, c1133 = c2233,

c1212 =
1
2 (c1111 − c1122), c1313 = c2323,

c1123 = −c2223 = c1213, c1113 = −c1322 = −c1223.

One can rotate the orthonormal basis {e1, e2, e3} by angle θ
around e3, such that

(23) tan(3θ) =
c1123
c1113

.

With respect to the new basis, c1123 vanishes. The six nonzero
independent components are given by expression (22). One can
check by direct calculation that an elasticity tensor that has the
components given by expression (22) with c1123 = 0 is invariant
under reflections Ru, namely,

(24)
Ru(e1) = cos θe1 + sin θe2

Ru(e2) = sin θe1 − cos θe2,
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where u = sin(θ/2)e1−cos(θ/2)e2, if and only if θ ∈ {0,±2π/3}.
Since the invariance of the elasticity tensor under orthogonal
transformation is independent of the coordinate system choice,
we conclude that for the trigonal case the symmetry group con-
tains also three reflections.
An elasticity tensor that has the components given by conditions
(22) with c1123 = 0 has the symmetry group given by

Gc =
{±I,±Ruα ,±R±2π/3,e3 , α ∈ {1, 2, 3}} ,

where the three vectors uα, α ∈ {1, 2, 3} are orthogonal to e3
and the angle between any two of them is 2π/3.
We remark here that we could choose the angle of rotation of
the basis {e1, e2, e3} to be such that

tan(3θ) =
c1113
c1123

.

In this case with respect to the new basis, the components of the
elasticity tensor c are given by expression (22) with c1113 = 0.
In this case we can draw analogous conclusions as in the case
when θ is given by expression (23).

(b) Tetragonal tensor : For this case, Γ(e1) and ∆(e1) have to be
invariant under rotation (18) for θ = π/2.

The invariance of ∆(e1)(e2, e3) under rotations (18) for θ = π/2,
implies

(25) c1213 = c1223 and c1123 = c1322.

Equations (9), (12), (13), equations (16) through (20), as well as
equation (25) imply that c is a tetragonal tensor. With respect
to the orthonormal basis, tensor c has seven nonzero indepen-
dent components given by

(26)

c1111 = c2222, c3333,
c1122, c1133 = c2233,
c1212, c1313 = c2323,
c1112 = −c1222.

One can rotate the orthonormal basis {e1, e2, e3} by angle θ
around e3, such that

(27) tan(4θ) =
−4c1112

2c1212 − c1111 + c1122
.

With respect to the new basis, c1112 vanishes and the six nonzero
independent components are given by the first three lines of ex-
pression (26). One can check by direct calculation that an elas-
ticity tensor that has the components (26) with c1112 = 0 is
invariant under reflections (24), if and only if θ ∈ {0,±π/2, π}.
Since the invariance of c under orthogonal transformation is in-
dependent of the coordinate system choice, we conclude that
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for the trigonal case, the symmetry group contains also four re-
flections about planes that contain e3, given by expression (24),
where θ ∈ {0,±π/2, π}.
With respect to the new basis, e1and e2 are orthogonal to two
reflection planes. This implies that Re1 , Re2 ∈ Gc. Both of these
imply that c1112 = −c1222 = 0. A tetragonal elasticity tensor is
also invariant under Re3 = −Rπ,e3 .
An elasticity tensor whose components with respect to the or-
thonormal basis are given by the first three lines of (26) has the
symmetry group given by

Gc =
{±I,±R±π/2,e3 ,±Rπ,e3 ,±Ruα , α ∈ {1, 2, 3, 4}} .

(c) Transversely isotropic tensor : For this case, all the above equa-
tions have to be satisfied. Equations (9), (12), (13), equations
(16) through (20), and equations (21) and (25) imply that c
describes a transversely isotropic tensor. With respect to the
orthonormal basis, tensor c has five nonzero independent com-
ponents given by

(28)
c1111 = c2222, c3333,
c1122, c1133 = c2233,

c1212 =
1
2 (c1111 − c1122), c1313 = c2323.

An elasticity tensor whose components with respect to the or-
thonormal basis are given by conditions (28) has the symmetry
group given by

Gc = GV ∩GD ∩GΓ(e3) ∩G∆(e3) = O(2).

(4) The intersection of the eigenspace of D with the eigenspace
of V is three-dimensional. This means that, with respect to any
orthonormal basis, {e1, e2, e3}, these tensors are diagonal. In this
case, equations (12)) and (13) are satisfied. This also implies that
V11 = V22 = V33; in other words,

(29) c1111 + c1313 = c2222 + c2323,
c1212 + c2222 = c1313 + c3333.

Similar equations apply to tensor D, which means that D11 = D22 =
D33, and which can be written as

(30) c1111 + c1133 = c2222 + c2233,
c1122 + c2222 = c1133 + c3333.

Also, each vector ei from the orthonormal basis is an eigenvector for
Γ(ei) and ∆(ei). This implies that equations (14) are also satisfied.
Equations (12) and (29) imply that GV = O(3), while equations (13)
and (30) imply that GD = O(3).
At this moment we have sixteen equations (12), (13), (14), (29) and
(30). If an elasticity tensor c is invariant under a rotation by any



MATERIAL SYMMETRIES OF ELASTICITY TENSORS 17

angle except π/2, then – in view of the above equations – we see that
c has isotropic symmetry and its components are given by expressions
(34), below.
(a) Cubic tensor : Since cubic tensor is invariant under tetragonal

symmetries, we can consider only the nonzero coefficients given
by expressions (26). Considering rotations about the e1 axis by
an arbitrary angle, we can use equations equivalent to (19) and
(20), from which we obtain

(31) c1313 = c1212 and c1122 = c1133.

If we use equations (29) or (30), as well as equations (26) and
(31), we also see that c1111 = c2222 = c3333. Thus, with respect
to any orthonormal basis {e1, e2, e3}, a cubic tensor c has three
nonzero independent components, which are given by

(32)
c1111 = c2222 = c3333,
c1122 = c1133 = c2233,
c1212 = c1313 = c2323.

The symmetry group of a cubic tensor is given by:

Gc = {A ∈ O(3), A(ei) = ±ej , i, j ∈ {1, 2, 3}} .

Note that the cubic-symmetry group has forty-eight elements
which is the full symmetry group of a cube.

(b) Isotropic tensor : In this case, all the equations considered above
must be satisfied. The only remaining condition to consider is
equation (21), which, in this case, reduces to

(33) 2c1212 = c1111 − c1122.

In this case, with respect to any orthonormal basis {e1, e2, e3},
an isotropic tensor c has only two nonzero independent compo-
nents given by

(34)
c1111 = c2222 = c3333 = 2c1212 + c1122,

c1122 = c1133 = c2233,
c1212 = c1313 = c2323.

The symmetry group of an isotropic tensor is given by

Gc = O (3) .

One can check directly that if we add any other symmetry to the symmetry
group of cubic tensor then equation (33) is satisfied. Consequently there is
no intermediate case between cubic symmetry and isotropic symmetry.
This completes the process by which any given elasticity tensor is recog-
nized as belonging to a particular symmetry class. All symmetry classes are
described in 1, 2(a), 2(b), 3(a), 3(b), 3(c), 4(a) and 4(b).
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4. Discussion

We note that there are several distinct routes of increasing symmetries
of an elasticity tensor. Yet, each of these routes commences with general
anisotropy and finishes with isotropy. We recall that if an elasticity tensor
is, at most, of a particular symmetry class, then this tensor possesses all
the symmetries that are connected to its class from below, as illustrated in
Figure 1.

The symmetry classes of an elasticity tensor are presented in this figure
on four levels that correspond to the four possibilities discussed in Section
3.

Tr. Isotropic 5, 8

Isotropic 2, 8

Orthotropic 9,8

Cubic 3,48

Monoclinic 13,4

Trigonal 7,12

Anisotropic 21,2

Tetragonal 7,16

Figure 1. Possible symmetry classes of the elasticity tensor.

In this figure the first number after the name of a symmetry class refers to
the number of independent coefficients the given tensor possesses, whereas
the second number is the number of elements of the corresponding symmetry
group.

It is interesting to note that the tetragonal and trigonal tensors possess the
same number of independent components, but refer to two distinct symmetry
classes with distinct number of symmetries.

Also note, that there are subgroups of the trigonal and tetragonal symme-
try groups that do not contain reflections. These subgroups are sometimes
considered as different symmetries for an elasticity tensor. However, an
elasticity tensor that is symmetric under these subgroups is identical to an
elasticity tensor that is symmetric under the bigger groups. Hence, one can-
not distinguish between these groups from the point of view of the elasticity
tensor.
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