
MICRO NEURAL-CONTROLLER FOR OPTICAL

CHARACTER RECOGNITION

Ker-Chin Lim and Cesar Ortega-Sanchez

Electrical and Computer Engineering Department

Curtin University of Technology

GPO Box U1987

 Perth, Western Australia 6102

 c.ortega@curtin.edu.au

ABSTRACT

This paper presents a Micro-Neural Controller

(MNC) for Optical Character Recognition (OCR).

The controller consists of both a multilayered

feedforward Artificial Neural Network (ANN) and a

Von Neumann-type microcontroller. The ANN is

supervised and trained using back-propagation. The

role of the ANN is to perform character recognition

while the microcontroller coordinates the data

transfer between the network and the user. The

results show that the network recognizes the patterns

effectively and the microcontroller is able to execute

a demonstration program.

1. INTRODUCTION

OCR was first introduced by Intelligent Machine

Corporation in 1959 [1]. OCR involves extracting

characters from hard-copy paper and translating them

into a document format that can be manipulated by a

computer. Usually, the first step is to create a digital

picture of the text. In this format, the image is simply

an array of black and white dots. A special pattern-

recognition algorithm is then applied to translate

image into text. The effectiveness of OCR largely

depends on the software used. However, good OCR

software can be very expensive.

At present, the role of the scanner is to provide a

clear scanned image and deliver it to the computer

equipped with OCR software; it contributes very

little to the entire OCR process. If the scanner were

equipped with character recognition capabilities,

software complexity would be diminished and

throughput could be improved.

This paper presents the preliminary design and

implementation of an embedded system to

perform OCR in hardware.

2. SYSTEM DESCRIPTION

The embedded system consists of a custom

microcontroller, memory, an ANN and I/O logic to

interface with external hardware. All these

components are implemented in a Field-

Programmable Gate Array (FPGA). Figure 1 shows

the basic blocks of the system.

Custom
uC

Code
memory

Bitmap of
text

ANN

Text
output

FPGA

Figure 1. Block diagram of OCR system

2.1 Custom Microcontroller

A 16-bit custom microcontroller (uC) was designed

for the OCR system. The uC is based on the

traditional Von Neumann architecture, i.e. code and

data are stored in the same memory, and the CPU

continuously performs a fetch-execute-store cycle. In

its current implementation, the uC can execute 16

different instructions; hence, one 16-bit micro

instruction is sufficient to specify operation,

operands and destination.

There are typically four stages in a machine cycle:

A. “Fetch the instruction” from memory. This step

brings the instruction into the instruction register,

so that it can be decoded and executed.

B. “Decode” the instruction. The instruction is used

to generate a set of control signals that get the

Arithmetic and Logic Unit (ALU) ready to

perform the operation.

C. “Execute” the instruction. The individual steps of

the instruction are executed. Several steps may be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195637188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

required to perform an instruction, such as

reading data from memory, then instructing the

ALU to perform an addition.

D. “Store” the result of the instruction in memory, if

needed.

Figure 2 shows the basic components of the

microcontroller.

Control
Unit

Oscillator

Memory

(RAM &
ROM)

ALU

I/O

Control Data Address

PC
Register

Figure 2. Structure of the microcontroller

In Figure 2, the control unit runs the program stored

in memory. At the present stage, the program is part

of the VHDL code describing the memory; however

future versions will be able to receive new programs

from a PC. The Control Unit (CU) reads instructions

from the data bus (fetch). The CU then decides what

to do depending on the value of the 4-bit, operation

field loaded from the data bus (decode). The outputs

from the control unit are set according to the current

instruction and the ALU’s status (execute).

The MCU has four main operations. Depending on

the data bus value, it can perform read, write,

arithmetic or logic, and jump operations.

• READ- The value read by the CU is stored in

either register A or B.

• WRITE- The CU puts a value on the data bus.

• ARITHMETIC OR LOGIC- These operations

are performed on values that have already been

place in the registers

• JUMP- The jump operation sets the PC Register

to a specific address so that the flow of

execution is altered.

The ALU performs operations such as AND, OR,

ADD and SUBTRACT on its inputs. The ALU gets

its command line from the Control Unit where an

instruction has been fetched and decoded, and is

now part of the execution cycle. The value

calculated by the ALU is put on the data bus and

control signals are sent to the CU to indicate that

data are available on the data bus.

The PC Register points to the next instruction to be

executed and it is incremented after the MCU

executes that instruction. Only the jump instruction

can modify the default increment behaviour of the

PC.

The RAM can store up to 128 bytes. At reset, the

RAM’s content is initialised to zero. The RAM can

either perform read or write operations; depending

on the signals issued by the Control Unit.

The ROM can store up to 128 16-bit words. Every

word contains one instruction used by the Control

Unit to perform operations. The eight lower bits of

the instruction contain the input value to the

microcontroller, and the four highest bits contain the

command sent to the MCU. This field is used by the

Control Unit to decide what operation to perform,

and which output lines to drive high or low. The

middle 4 bits code the destination where the result

from the current instruction will be stored.

The I/O system interfaces the microcontroller with

the I/O lines of the FPGA. Since some of the

onboard I/O lines require a logic ‘0’ to be active,

NOT gates had to be interfaced in between to make

the active signal as ‘1’ before latching the results.

This would make designing the microcontroller

easier by standardising all active logic as ‘1’.

2.2 Artificial Neural Network (ANN)

The ANN implemented in this project is the

multilayer feedforward perceptron trained with the

back-propagation algorithm. This type of neural

network is used in OCR applications because of its

good pattern-recognition properties [2]. Figure 3

illustrates the use of ANN in OCR [3].

Figure 3. ANN used in OCR.

For testing purposes, the input to the system is set to

a 3x5 pixel array that is used to represent 10 decimal

digits. Figure 4 shows the 10 patterns used to train

the ANN.

Figure 4. Patterns used to train the ANN

Regarding the topology of the ANN, the number of

input neurons is determined by the dimension of the

input vectors to be classified. Usually, the size of the

input vector corresponds with the number of distinct

features of the input pattern. Since the number of

pixels within a single class is 15, therefore the

number of input neurons was set to 15.

The number of output neurons is equal to the

number of output classes. In this case, the output

neurons is 10, corresponding to the 10 digits.

The size of the hidden layer is a very important

consideration. However, this problem is still under

intensive study with no conclusive results [4]. Using

too few hidden neurons will starve the network.

Using too many will increase the training time. One

rule of thumb to choose the number of hidden

neurons is the geometric pyramid rule [5]. Let’s

denote m as number of output neurons and n as

number of input neurons, the number of hidden

neurons is given by,

nmhidden .= (1)

Hence, the number of hidden neurons was set to

sqrt(15x10)≈12.

The choice and shape of the activation function

strongly affects the speed of the network learning

process. Considering that the final implementation

would be in an FPGA, a positive ramping function

was selected. Figure 5 shows a simplified

representation of the ANN topology.

W{1,i}

+

b{1}

i=1 to 15

W{2,j}

b{2}

j=1 to 12 +
15 inputs

12 hidden 10 outputs

Figure 5. Topology of ANN

In Figure 4, W{1,i} and W {2,j} are the weights

associated to each neuron in the network. b{1} and

b{2} are biases used to accelerate the convergence

of the back-propagation learning algorithm. They

help to supplement the current weight adjustment

with a fraction of the most recent weight adjustment.

Momentum terms can be used for both input and

hidden layers of the network during training.

The effectiveness and convergence of the error back-

propagation learning algorithm depends significantly

on the value of a learning constant η. The optimum

value of η depends on the problem being solved.

Typical values are between 0.001 and 10. Small

learning constants would require longer time to

reach convergence while large learning constants

increase the learning speed but will not stabilize the

network.

To determine the best value for the parameters of the

ANN, various combinations were evaluated using

MatLab’s Neural Networks toolbox. It was found

that a learning constant η of 0.1 and momentum of

0.9 yielded the best performance.

3 IMPLEMENTATION

The system was implemented using Xilinx’s ISE

8.1 software and targeted for a Spartan 3MB FPGA.

Table 1 shows a summary of the resources required

by the OCR embedded system, including all the

blocks shown in Figure 1. It is clear that there are

sufficient FPGA resources for future improvements.

Table 1. FPGA Utilisation Summary

Logic Utilization Used Available Utilisation

Number of Slice
Flip Flops

1,236 26,624 4%

Number of 4-input
LUTs

3,061 26,624 11%

Logic Distribution

Number of
occupied Slices

2,171 13,312 16%

Total Number of
4-input LUTs

3,512 26,624 13%

Number of bonded
IOBs

75 487 15%

Number of Block
RAMs

1 32 3%

Number of
MULT18X18s

4 32 12%

Number of GCLKs 1 8 12%

Total equivalent
gate count

129,740

To simulate inputs, two 3x5 arrays of push-buttons

were assembled. Every array can represent one

decimal digit. Additional push buttons were

included to provide auxiliary functions.

To test the system a 1-digit calculator was

implemented. The additional buttons were used to

perform addition, subtraction and multiplication of

the two digits represented by the push-button

matrices. Figure 6 shows a photograph of the FPGA

development board and the input device.

Figure 6. Test bench for the OCR system

To find a suitable ANN, the network described in

section 2.2 was trained with different percentage of

noise in the trained sets. Overall, the best network

managed to recognize 97.5% of noisy characters

when 2 or 3 of the pixels were corrupted. Thus, the

weights and biases obtained for that particular ANN

were used for implementation into the FPGA design.

4 CONCLUSIONS AND FUTURE WORK

An embedded OCR system based on a custom micro-

neural controller was successfully developed and

tested. Functionality can be tailored by varying the

training examples or increasing the resolution of

pattern coding. The required computational effort is

rather low since the network and microcontroller are

compact enough to fit into an FPGA. This structure is

highly recommended for OCR applications.

The system presented in this paper is a work in

progress. Future versions will incorporate a bigger

set of characters, better resolution, a interface to read

the output of a scanner directly and a microcontroller

with a bigger instruction set.

Having a customised microcontroller in the system

allows the efficient use of FPGA resources by

synthesising only the functions that will be needed.

Further research in this area is being contemplated.

REFERENCES

[1] R. Wisneski, “Digital Image Processing: Optical

Character Recognition (OCR)”, October 2004.

Retrieved: May 1, 2006 from

http://www.personal.kent.edu/~rwisnesk/jstor/jstor.htm.

[2] William R. Wiley Environmental Molecular Sciences

Laboratory, “Neural Network Commercial

Applications”, 2006. Retrieved: April 12, 2006 from

http://www.emsl.pnl.gov:2080/proj/neuron/neural/prod

ucts/

[3] Neuro Dimension Inc., Retrieved November 2005,

http://www.nd.com/neurosolutions/products/ns/whatisN

N.html

[4] Kemao Peng, Shuzhi S. GE, Chuanyuan Wen, “ An

Algorithm To Determine Neural Network Hidden Layer

Size And Weight Coefficients”, IEEE Transactions, 17-

19 July 2000. Retrieved: April 12, 2006 from

http://vlab.ee.nus.edu.sg/~sge/conference/ISIC00-2.pdf

[5] Mohamed A. Shahin, Mark B. Jaksa, Holger R. Maier,

“Applications Of ANN In Foundation Engineering”,

2004. Retrieved: May 2, 2006 from

http://www.ecms.adelaide.edu.au/civeng/staff/mjaksa01

/pdf/e-Conf_2004.pdf

