
MICRO NEURAL-CONTROLLER FOR OPTICAL 

CHARACTER RECOGNITION  

Ker-Chin Lim and Cesar Ortega-Sanchez 

Electrical and Computer Engineering Department 

Curtin University of Technology 

GPO Box U1987 

 Perth, Western Australia 6102 

 c.ortega@curtin.edu.au 

ABSTRACT 

This paper presents a Micro-Neural Controller 

(MNC) for Optical Character Recognition (OCR). 

The controller consists of both a multilayered 

feedforward Artificial Neural Network (ANN) and a 

Von Neumann-type microcontroller. The ANN is 

supervised and trained using back-propagation. The 

role of the ANN is to perform character recognition 

while the microcontroller coordinates the data 

transfer between the network and the user. The 

results show that the network recognizes the patterns 

effectively and the microcontroller is able to execute 

a demonstration program. 

1. INTRODUCTION 

OCR was first introduced by Intelligent Machine 

Corporation in 1959 [1]. OCR involves extracting 

characters from hard-copy paper and translating them 

into a document format that can be manipulated by a 

computer. Usually, the first step is to create a digital 

picture of the text. In this format, the image is simply 

an array of black and white dots. A special pattern-

recognition algorithm is then applied to translate 

image into text. The effectiveness of OCR largely 

depends on the software used. However, good OCR 

software can be very expensive.  

At present, the role of the scanner is to provide a 

clear scanned image and deliver it to the computer 

equipped with OCR software; it contributes very 

little to the entire OCR process. If the scanner were 

equipped with character recognition capabilities, 

software complexity would be diminished and 

throughput could be improved. 

This paper presents the preliminary design and 

implementation of an embedded system to 

perform OCR in hardware. 

2. SYSTEM DESCRIPTION 

The embedded system consists of a custom 

microcontroller, memory, an ANN and I/O logic to 

interface with external hardware. All these 

components are implemented in a Field-

Programmable Gate Array (FPGA).  Figure 1 shows 

the basic blocks of the system. 
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Figure 1. Block diagram of OCR system 

2.1 Custom Microcontroller 

A 16-bit custom microcontroller (uC) was designed 

for the OCR system. The uC is based on the 

traditional Von Neumann architecture, i.e. code and 

data are stored in the same memory, and the CPU 

continuously performs a fetch-execute-store cycle. In 

its current implementation, the uC can execute 16 

different instructions; hence, one 16-bit micro 

instruction is sufficient to specify operation, 

operands and destination. 

There are typically four stages in a machine cycle: 

A. “Fetch the instruction” from memory. This step 

brings the instruction into the instruction register, 

so that it can be decoded and executed. 

B. “Decode” the instruction. The instruction is used 

to generate a set of control signals that get the 

Arithmetic and Logic Unit (ALU) ready to 

perform the operation. 

C. “Execute” the instruction. The individual steps of 

the instruction are executed. Several steps may be 
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required to perform an instruction, such as 

reading data from memory, then instructing the 

ALU to perform an addition. 

D. “Store” the result of the instruction in memory, if 

needed. 

Figure 2 shows the basic components of the 

microcontroller. 
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Figure 2. Structure of the microcontroller 

In Figure 2, the control unit runs the program stored 

in memory. At the present stage, the program is part 

of the VHDL code describing the memory; however 

future versions will be able to receive new programs 

from a PC. The Control Unit (CU) reads instructions 

from the data bus (fetch). The CU then decides what 

to do depending on the value of the 4-bit, operation 

field loaded from the data bus (decode). The outputs 

from the control unit are set according to the current 

instruction and the ALU’s status (execute).  

The MCU has four main operations. Depending on 

the data bus value, it can perform read, write, 

arithmetic or logic, and jump operations. 

• READ- The value read by the CU is stored in 

either register A or B. 

• WRITE- The CU puts a value on the data bus. 

• ARITHMETIC OR LOGIC- These operations 

are performed on values that have already been 

place in the registers 

• JUMP- The jump operation sets the PC Register 

to a specific address so that the flow of 

execution is altered. 

The ALU performs operations such as AND, OR, 

ADD and SUBTRACT on its inputs. The ALU gets 

its command line from the Control Unit where an 

instruction has been fetched and decoded, and is 

now part of the execution cycle. The value 

calculated by the ALU is put on the data bus and 

control signals are sent to the CU to indicate that 

data are available on the data bus. 

The PC Register points to the next instruction to be 

executed and it is incremented after the MCU 

executes that instruction. Only the jump instruction 

can modify the default increment behaviour of the 

PC. 

The RAM can store up to 128 bytes. At reset, the 

RAM’s content is initialised to zero. The RAM can 

either perform read or write operations; depending 

on the signals issued by the Control Unit. 

The ROM can store up to 128 16-bit words. Every 

word contains one instruction used by the Control 

Unit to perform operations. The eight lower bits of 

the instruction contain the input value to the 

microcontroller, and the four highest bits contain the 

command sent to the MCU. This field is used by the 

Control Unit to decide what operation to perform, 

and which output lines to drive high or low. The 

middle 4 bits code the destination where the result 

from the current instruction will be stored. 

The I/O system interfaces the microcontroller with 

the I/O lines of the FPGA. Since some of the 

onboard I/O lines require a logic ‘0’ to be active, 

NOT gates had to be interfaced in between to make 

the active signal as ‘1’ before latching the results. 

This would make designing the microcontroller 

easier by standardising all active logic as ‘1’. 

2.2 Artificial Neural Network (ANN) 

The ANN implemented in this project is the 

multilayer feedforward perceptron trained with the 

back-propagation algorithm. This type of neural 

network is used in OCR applications because of its 

good pattern-recognition properties [2]. Figure 3 

illustrates the use of ANN in OCR [3]. 

 
Figure 3. ANN used in OCR. 

For testing purposes, the input to the system is set to 

a 3x5 pixel array that is used to represent 10 decimal 

digits. Figure 4 shows the 10 patterns used to train 

the ANN. 

 

 
Figure 4. Patterns used to train the ANN 



Regarding the topology of the ANN, the number of 

input neurons is determined by the dimension of the 

input vectors to be classified. Usually, the size of the 

input vector corresponds with the number of distinct 

features of the input pattern. Since the number of 

pixels within a single class is 15, therefore the 

number of input neurons was set to 15. 

The number of output neurons is equal to the 

number of output classes. In this case, the output 

neurons is 10, corresponding to the 10 digits. 

The size of the hidden layer is a very important 

consideration. However, this problem is still under 

intensive study with no conclusive results [4]. Using 

too few hidden neurons will starve the network. 

Using too many will increase the training time. One 

rule of thumb to choose the number of hidden 

neurons is the geometric pyramid rule [5]. Let’s 

denote m as number of output neurons and n as 

number of input neurons, the number of hidden 

neurons is given by, 

nmhidden .=                       (1) 

Hence, the number of hidden neurons was set to 

sqrt(15x10)≈12. 

The choice and shape of the activation function 

strongly affects the speed of the network learning 

process. Considering that the final implementation 

would be in an FPGA, a positive ramping function 

was selected. Figure 5 shows a simplified 

representation of the ANN topology. 

 

W{1,i} 

+ 

b{1} 

i=1 to 15 

W{2,j} 

b{2} 

j=1 to 12 + 
15 inputs 

12 hidden 10 outputs 

Figure 5. Topology of ANN 

In Figure 4, W{1,i} and W {2,j} are the weights 

associated to each neuron in the network. b{1} and 

b{2} are biases used to accelerate the convergence 

of the back-propagation learning algorithm. They 

help to supplement the current weight adjustment 

with a fraction of the most recent weight adjustment. 

Momentum terms can be used for both input and 

hidden layers of the network during training. 

The effectiveness and convergence of the error back-

propagation learning algorithm depends significantly 

on the value of a learning constant η. The optimum 

value of η depends on the problem being solved. 

Typical values are between 0.001 and 10. Small 

learning constants would require longer time to 

reach convergence while large learning constants 

increase the learning speed but will not stabilize the 

network. 

To determine the best value for the parameters of the 

ANN, various combinations were evaluated using 

MatLab’s Neural Networks toolbox. It was found 

that a learning constant η of 0.1 and momentum of 

0.9 yielded the best performance. 

3 IMPLEMENTATION 

The system was implemented using Xilinx’s ISE 

8.1 software and targeted for a Spartan 3MB FPGA. 

Table 1 shows a summary of the resources required 

by the OCR embedded system, including all the 

blocks shown in Figure 1. It is clear that there are 

sufficient FPGA resources for future improvements. 

 
Table 1. FPGA Utilisation Summary 

Logic Utilization Used Available Utilisation 

Number of Slice 
Flip Flops 

1,236 26,624 4% 

Number of 4-input 
LUTs 

3,061 26,624 11% 

Logic Distribution    

Number of 
occupied Slices 

2,171 13,312 16% 

Total Number of   
4-input LUTs 

3,512 26,624 13% 

Number of bonded 
IOBs 

75 487 15% 

Number of Block 
RAMs 

1 32 3% 

Number of 
MULT18X18s 

4 32 12% 

Number of GCLKs 1 8 12% 

Total equivalent 
gate count 

129,740   

 

To simulate inputs, two 3x5 arrays of push-buttons 

were assembled. Every array can represent one 

decimal digit. Additional push buttons were 

included to provide auxiliary functions. 

To test the system a 1-digit calculator was 

implemented. The additional buttons were used to 

perform addition, subtraction and multiplication of 

the two digits represented by the push-button 

matrices. Figure 6 shows a photograph of the FPGA 

development board and the input device. 

 
Figure 6. Test bench for the OCR system 

To find a suitable ANN, the network described in 

section 2.2 was trained with different percentage of 

noise in the trained sets. Overall, the best network 

managed to recognize 97.5% of noisy characters 

when 2 or 3 of the pixels were corrupted. Thus, the 

weights and biases obtained for that particular ANN 

were used for implementation into the FPGA design. 



4 CONCLUSIONS AND FUTURE WORK 

An embedded OCR system based on a custom micro-

neural controller was successfully developed and 

tested. Functionality can be tailored by varying the 

training examples or increasing the resolution of 

pattern coding. The required computational effort is 

rather low since the network and microcontroller are 

compact enough to fit into an FPGA. This structure is 

highly recommended for OCR applications. 

The system presented in this paper is a work in 

progress. Future versions will incorporate a bigger 

set of characters, better resolution, a interface to read 

the output of a scanner directly and a microcontroller 

with a bigger instruction set. 

Having a customised microcontroller in the system 

allows the efficient use of FPGA resources by 

synthesising only the functions that will be needed. 

Further research in this area is being contemplated.  
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