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MULTISCALE FINITE ELEMENT METHODS∗
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Abstract. In this paper, we develop efficient multiscale methods for flows in heterogeneous
media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approxi-
mates the solution space locally using a few multiscale basis functions. This approximation selects an
appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions,
in order to achieve an efficient model reduction. However, the successful construction of snapshot
spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We
use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on
oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the random-
ized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm
for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a
snapshot space which consists of harmonic extensions of random boundary conditions defined in a
domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this
small space. We study the application of randomized sampling for GMsFEM in conjunction with
adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided.
We present representative numerical results to validate the method proposed.

Key words. generalized multiscale finite element method, oversampling, high contrast, ran-
domized approximation, snapshot spaces construction

AMS subject classifications. 65N30, 65N15

DOI. 10.1137/140988826

Notation.
κ permeability field
ω coarse neighborhood
K coarse block
Nc number of coarse nodes
χ partition of unity function
kωinb number of bases selected on ωi
pωinb buffer number on ωi
ηi local error indicator on ωi
λωli the lith smallest eigenvalue for some spectral problem on ωi
Voff offline space
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§Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá D.C., Colombia
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1. Introduction. Model reduction is becoming increasingly important when
dealing efficiently with problems characterized by multiple scales. Due to scale dis-
parity, single-scale discretization techniques cannot provide useful results with ac-
ceptable computational cost in practice. In order to efficiently handle these mul-
tiscale problems, many model reduction techniques have been developed in the lit-
erature. These include approaches that are based on homogenization and numeri-
cal homogenization [10, 28, 24, 18], approaches that employ finite element or finite
volume basis functions to approximate the fine-scale features of the solution space
[1, 2, 4, 5, 6, 7, 17, 21, 23, 25, 26], and approaches that employ global model reduction
techniques [20, 11, 9]. In this paper, we focus on approaches based on multiscale finite
element methods which fall into the second category. We use a recently introduced
framework known as the generalized multiscale finite element method (GMsFEM)
and discuss how one can reduce the setup cost employing randomized singular value
decomposition (SVD) concepts [27, 22].

To construct multiscale basis functions, we employ the GMsFEM framework
where the multiscale basis functions are constructed via a local spectral decompo-
sition of a snapshot space. This snapshot space typically consists of spatial fields that
represent the solution space up to some desired accuracy. For example, one choice
for the snapshot space is to use harmonic functions that can represent any boundary
value in each coarse region [13]. These snapshots are constructed by solving local
problems for all possible Dirichlet boundary conditions. The latter allows us to rep-
resent any fine-scale traces and incorporate the effects of many small-scale features
into these snapshots and thus achieve low-dimensional coarse models. However, the
computation of these snapshots is expensive. In this paper, we propose the use of ran-
dom boundary conditions in constructing snapshot vectors. We show that by using
only a few of these randomly generated snapshots, we can adequately approximate
the dominant modes of the solution space. To avoid oscillations near the boundary,
an oversampling technique is used [13]. More precisely, we solve local problems on
domains that are larger than the target coarse blocks. Typically, they are larger by
several layers of fine-grid blocks around the target coarse block. Furthermore, we per-
form a local spectral decomposition using the restriction of the randomly generated
snapshots to the target coarse-grid domain.

The use of random boundary conditions (to generate the snapshot spaces) is mo-
tivated by the randomized SVD methodology [27, 22]. In general, randomized SVD
algorithms allow computing dominant eigenvectors by considering a random linear
combination of the columns (or rows) of a given matrix. The random linear combi-
nations typically have a component in the dominant modes and thus by performing
a spectral decomposition in the span of these random combinations, we can achieve
an accurate approximation of dominant eigenvectors.

We take advantage of the idea of randomized linear combinations to considerably
reduce the computational cost associated with the computation of snapshot vectors.
In particular, we propose solving local problems with random boundary conditions
and perform the local spectral decomposition in the space of these snapshots. The
cost reduction is due to the fact that, in previous approaches, the snapshot spaces
were constructed by solving local problems for every possible boundary condition in
each coarse region. Using our new methodology, the number of snapshots to be gen-
erated is only slightly larger than the number of desired eigenvectors. Our experience
suggests that for GMsFEM modeling, in general it suffices to include four additional
random boundary conditions to the number of eigenvectors sought. For instance, in
our numerical experiments, when three basis functions per coarse grid are needed, we
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484 V. M. CALO, Y. EFENDIEV, J. GALVIS, AND G. LI

compute only seven snapshot vectors (i.e., only seven random boundary conditions
are generated, irrespective of the number of degrees of freedom on the coarse block
boundary). We discuss how the number of additional snapshots can depend on the
eigenvalue structure for some special cases. This new methodology provides substan-
tial computational savings in the offline stage as we compute many fewer snapshots.
We apply randomized boundary conditions on the oversampled region to avoid os-
cillations near the boundaries. Indeed, if random boundary conditions are imposed
on the target coarse grid (and no oversampling is used), the computed solution has
oscillations near the boundaries which can cause large errors. Moreover, oversampling
snapshots have several additional advantages [13] as they allow faster convergence for
GMsFEM discretizations.

We compare the results obtained by using randomized snapshots to those obtained
when all snapshot vectors are used. In the latter, we employ all possible boundary
conditions on the oversampled region to construct the snapshot vectors. The lo-
cal spectral decomposition is based on local eigenvalue problems, following previous
studies [13]. Our numerical results show similar accuracy when using fewer random
snapshots instead of using all possible snapshot vectors. Furthermore, we discuss
approaches that can improve the results obtained by using randomized snapshots,
although at a larger computational cost.

We analyze the proposed method using [27, Lemma 18] and the convergence of
oversampling GMsFEM [13]. In a first step, we estimate the approximation error
between the full snapshots and randomized snapshots in each coarse neighborhood in
a certain norm. This approximation error is used within GMsFEM analysis to show
the convergence of the solution solved in the randomized snapshot space. We also
discuss adaptive strategies for randomized snapshots. In adaptive methods, additional
multiscale basis functions are added based on error estimators. These estimators
are proposed and investigated in [8]. Later in the paper, we discuss how additional
multiscale basis functions can be computed by considering only a few extra random
snapshots. In particular, in simulations we only compute four additional snapshot
vectors in order to compute each additional multiscale basis function to be added as
a refinement in the coarse domains that contain most error. The main objective of
this paper is to show that the local snapshot spaces can be constructed inexpensively
with an accuracy comparable to state-of-the-art alternatives.

The paper is organized as follows. In section 2, we give an introductory description
of GMsFEM. In section 3, we present the randomized snapshot algorithm. Section 4
is devoted to numerical results. In this section, we also discuss the use of adaptive
strategies and how to compute additional multiscale basis functions. In section 5, we
present the mathematical analysis of the method, and in section 6 we draw conclusions.

2. Preliminaries. We consider linear elliptic equations of the form

(1) − div
(
κ(x)∇u

)
= f inD,

where u is prescribed on ∂D. We assume that the coefficient κ(x) has multiple scales
and high variations (see, e.g., Figure 1). Herein, we focus on two-dimensional cases
but our methodology can be easily extended to problems in three dimensions, where
the implied savings could be larger. This is due to the fact that in three-dimensional
problems, the number of snapshots representing all Dirichlet boundary conditions is
very large.

2.1. Fine and coarse grids. Let T H be a conforming partition of the com-
putational domain D into finite elements denoted by {Kj} (triangles, quadrilaterals,
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Fig. 1. Permeability fields in log10-scale.
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K1

K2K3

K4

T H (Coarse Grid)

ωi
Coarse

Neighborhood

K

Coarse
Element

i

i

ω+i
Oversampled

Region

Fig. 2. Illustration of a coarse neighborhood and an oversampled domain. Here, K is a coarse-
grid block, ωi is a coarse neighborhood of xi, and ω+

i is an oversampled domain.

tetrahedrals, etc.), called coarse grid. Assume that each coarse subregion is parti-
tioned into a connected union of fine-grid blocks. Assume the fine grids match across
coarse elements boundaries and denote by T h the obtained (fine-grid) triangulation
of D. We use {xi}Nci=1 (where Nc is the number of coarse nodes) to denote the vertices
of the coarse mesh T H , and define the neighborhood of the node xi by

(2) ωi =
⋃
{Kj ∈ T H ; xi ∈ Kj}.

See Figure 2 for an illustration of neighborhoods and elements subordinated to the
coarse discretization. We introduce notation for oversampled regions. We denote by
ω+
i the oversampled region of ωi ⊂ ω+

i , defined by adding several fine- or coarse-grid
layers around ωi. Important features of the methodology are that the coarse grid is too
coarse to effectively resolve all heterogeneities and scales presented in the coefficient
κ, while the fine grid resolves all variations of κ but it leads to a huge linear system
that is not practical to solve.
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2.2. GMsFEM. Throughout this paper, we use the continuous Galerkin formu-
lation and use ωi as the support of the coarse basis functions. The regions ω+

i are used
to construct the multiscale basis functions. For the purpose of this description, we for-
mally denote the basis functions of the offline space Voff by φωik where k denotes the ba-
sis function index in the domain ωi. The solution is sought as uH(x) =

∑
i,k c

i
kφ

ωi
k (x).

Once the basis functions are identified, we solve

(3) a(uH , v) = (f, v) for all v ∈ Voff

and

a(u, v) =

∫
D

κ(x)∇u · ∇v.

Now, we briefly describe GMsFEM. We consider oversampling for the GMsFEM
(see [13, 12]) that uses harmonic snapshots. That is, snapshot vectors are obtained as
harmonic extensions of a subset of all possible boundary conditions on the oversampled

domain. We construct a snapshot space V
ω+
i

snap. The construction of the snapshot space
involves solving local problems and we detail the standard process below [13, 12].

The snapshot space consists of harmonic extensions of fine-grid functions defined
on the boundary of ω+

i . More precisely, for each fine-scale function with support on
the boundary of the oversampled coarse domain, δhl (x), we solve a local problem. Let
δhl (xk) = δlk be one of these functions where for all l, k ∈ Jh(ω+

i ), where Jh(ω+
i ) are

the indices of the fine-grid boundary nodes on ∂ω+
i and δlk is Kronecker’s delta with

value 1 for k = l and value 0 otherwise. Thus, the local problem we solve is

(4) − div(κ(x)∇ψ+,snap
l,ωi

) = 0 in ω+
i

subject to the boundary conditions, ψ+,snap
l,ωi

= δhl (x) on ∂ω+
i . We form the snapshot

matrices by placing the solutions of these local problems as the rows of the following
matrix (throughout, for notational convenience, we do not distinguish between the
fine-grid vectors and their continuous representations):

Ψ+,snap
ωi = [ψ+,snap

1,ωi
; . . . ;ψ+,snap

l,ωi
; . . . .].

We define the vectors ψsnap
l,ωi

as the restrictions of the snapshot vectors ψ+,snap
1,ωi

to
degrees of freedom in ωi by taking their values at the fine-grid nodes of ωi. Considering
these vectors, we form the snapshot matrix in ωi

(5) Ψsnap
ωi = [ψsnap

1,ωi
; . . . ;ψsnap

l,ωi
; . . . .].

Next, we discuss the construction of a smaller offline space using an eigenvalue
problem [12]. In order to construct an offline space Voff, we reduce the dimension of
the snapshot space using an auxiliary spectral decomposition. We seek a subspace of
the snapshot space where we approximate any element of the snapshot space in the
appropriate norm defined via the following auxiliary bilinear forms. For each ωi, we
define

AoffΘoff
k = λoff

k S
offΘoff

k ,(6)

where

Aoff = [aoff
mn] =

∫
ωi

κ(x)∇ψ+,snap
m,ωi · ∇ψ+,snap

n,ωi = Ψsnap
ωi A(Ψsnap

ωi )T
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and

Soff = [soff
mn] =

∫
ωi

κ̃(x)ψ+,snap
m,ωi ψ+,snap

n,ωi = Ψsnap
ωi S(Ψsnap

ωi )T .

The coefficient κ̃(x) uses multiscale partition of unity functions (cf. [12]), which is
described in (9). Here, A and S are fine-grid stiffness and mass matrices in the coarse
region. To generate the offline space, we then choose the smallest Moff eigenvalues
of (6) for each ω+

i and form the corresponding eigenvectors in the respective space of

snapshots by setting ψ+,off
k,ωi

=
∑
j Θoff

kjψ
+,snap
j,ωi

(for k = 1, . . . ,Moff), where Θoff
kj are the

components of the vector Θoff
k . We then create the offline matrices

Ψ+,off
ωi =

[
ψ+,off

1,ωi
, . . . , ψ+,off

Moff,wi

]
and Ψoff

ωi =
[
ψoff

1,ωi , . . . , ψ
off
Moff,ωi

]
,

where ψoff
k,ωi

is the restriction of ψ+,off
k,ωi

to ωi. To construct multiscale basis functions,
we multiply the dominant eigenvectors by a partition of unity functions χi that are
supported in ωi, such that

∑
i χi = 1. More precisely, the offline space is composed

of the following basis functions:

φωik = χiψ
ωi
k .(7)

Alternatively, we can choose the partition of unity functions to be multiscale finite
element basis functions; see [16]. Let χ0

i be the nodal bases of the standard finite
element space WH . For example, WH consists of piecewise linear functions if TH
is a triangular partition or WH consists of piecewise bi-linear functions if TH is a
rectangular partition. “Standard” multiscale finite element basis functions coincide
with χ0

i on the boundaries of the coarse partition and satisfy

div(κ∇χmsi ) = 0 in K ∈ ωi, χmsi = χ0
i in ∂K for all K ∈ ωi,(8)

where K is a coarse grid block within ωi. In our numerical implementation, we
take κ̃ = κ for the computation of mass matrix. However, one can take a weighted
permeability field (see detailed discussion in [12]) such as

(9) κ̃ =
∑
i

κ|∇χms
i |2.

3. Randomized oversampling. As described above, a usual choice for the
snapshot space consists of the harmonic extension of fine-grid functions defined on
the boundary of ω+

i . This type of snapshot is complete in the sense that it captures
all the boundary information of the solution. However, the computational cost is

expensive since O(nω
+
i ) number of local problems are required to solve in each local

coarse neighborhood. Here, nω
+
i denotes the number of fine grids on the boundary

of ω+
i . A smaller yet accurate snapshot space is needed to build a more efficient

multiscale method.
In the following, we generate inexpensive snapshots using random boundary con-

ditions. That is, instead of solving (4) for each fine boundary node, we solve (4) with
other boundary conditions and fewer combinations using random boundary condi-
tions:

ψ+,rsnap
l,ωi

= rl on ∂ω+
i ,(10)
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where rl are independent identically distributed (i.i.d.) standard Gaussian random
vectors on the fine-grid nodes of the boundary. Then, we can obtain the local random
snapshot on the target domain ωi by restricting the solution of this local problem,
ψ+,rsnap
l,ωi

to ωi (which is denoted by ψrsnap
l,ωi

). The space generated by ψrsnap
l,ωi

is a
subspace of the space generated by all local snapshots Ψsnap

ωi . Therefore, there exists
a randomized matrix R with rows composed by the random boundary vectors rl, such
that

Ψrsnap
ωi = RΨsnap

ωi .(11)

Using these snapshots, we follow the procedure in the previous section to generate
multiscale basis functions. Below, we summarize the algorithm. In our algorithm, we
need to compute more snapshots to obtain an accurate offline space. We denote the
dimension difference between those two spaces the buffer number, pωibf for each ωi and
the dimension of local offline space by kωinb for each ωi. Later on, we use the same
buffer number for all ωi and simply use the notation pbf.

Algorithm 1. Randomized GMsFEM algorithm

1: Input: Fine grid size h, coarse grid size H, oversampling size t, buffer number
pωibf for each ωi, the number of local basis functions kωinb for each ωi;

2: Generate oversampling region for each coarse block: T H , T h, and ω+
i ;

3: Generate kωinb + pωibf random vectors rl and obtain randomized snapshots in ω+
i

(equation (10));
Add a snapshot that represents the constant function on ω+

i ;
4: Obtain kωinb offline bases by a spectral decomposition ((6) restricted to random

snapshots);
5: Construct multiscale basis functions (equation (7)) and solve (equation (3)).
6: output: Coarse-scale solution uH .

Remark 1. Computational savings of the randomized GMsFEM are derived from
the fact that given an LU factorization of the local oversampled problem, forming

the snapshot matrix in (5) corresponds to solving nω
+
i local problems, while forming

the randomized snapshot space described in Algorithm 1 requires kωinb + pωibf solutions

of the same system. For all practical purposes kωinb + pωibf << nω
+
i . Similarly, the

eigenvalue system solved in (6) is significantly smaller and thus cheaper. These savings
combined render the cost of the randomized system insignificant when compared with
the full snapshot system, while the accuracy is comparable, as the numerical examples
described in section 4 demonstrate.

Remark 2. The proposed algorithms that use randomized snapshots are limited to
linear problems. In nonlinear problems, these techniques can be used if the problem
is linearized. We expect a larger computational gain in some nonlinear problems
(e.g., those studied in [14, 3]), where the snapshot spaces are constructed in each
linearization step. In this case, we can avoid the costly computations and use fewer
snapshot vectors.

4. Numerical results. In this section, we present representative numerical ex-
periments that demonstrate the good performance of the randomized snapshots al-
gorithm. We take the domain D as a square, set the forcing term f = 0, and use a
linear boundary condition for the problem (1), that is, u = x1 + x2 on ∂D, where
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xi are the Cartesian components of each point. In our numerical simulations, we use
a coarse-grid of 10 × 10 blocks, and each coarse-grid block is divided into 10 × 10
fine-grid blocks. Thus, the whole computational domain is partitioned by a 100× 100
fine grid. We use a few multiscale basis functions per coarse block. This coarse basis
set defines the problem size. We assume that the fine-scale solution is obtained by
discretizing problem (1) by the classical conforming piecewise bilinear elements on
the fine grid. To test the performance of our algorithm, we consider two permeability
fields κ as depicted in Figure 1. The first permeability field (left figure) has more
connected regions and they are more irregular compared to the second permeability
field (right figure). We observe similar behavior for these two cases, and therefore
we focus on the numerical results for the first permeability field (Figure 1(a)). In
the following results, we are calculating the errors under the weighted L2 norm and
energy norm, which are defined as

‖u‖L2
κ

=

(∫
D

κu2

) 1
2

and ‖u‖H1
κ

=

(∫
D

κ|∇u|2
) 1

2

.

The proposed methods do not conserve mass locally, but one can use these ideas
within mixed multiscale finite element methods to achieve local mass conservation.

In Table 1, a comparison between using all snapshots and using the randomized
snapshots is shown. The first column shows the dimension of the offline space for
each test. We choose 5, 10, 15, 20, and 25 basis functions per interior node (in
addition to the constant eigenvectors) and use an oversampling layer that consists
of three fine-grid blocks (t = 3). The offline space Voff is defined via a local spectral
decomposition as specified in section 3. The snapshot ratio is calculated as the number
of randomized snapshots divided by the number of the full snapshots. This ratio is
displayed in the second column. Here, the total number of snapshots refers to the
number of boundary nodes of the oversampled region. In our numerical results, an
oversampled region has 26×26 fine-grid dimension and there are a total 104 snapshots
if all boundary nodes are used. For example, when the dimension of the offline space
is 931, we compute 14 snapshots instead of 104. This ratio gives the information on
the computational savings of our algorithm compared to using all snapshots. The
next two columns show the relative weighted L2 error and relative energy error using
the full snapshots. Further, the relative weighted L2 error and relative energy error
using the randomized snapshots are shown in the last two columns. From this table,
we observe that the randomized algorithm converges in the sense that the relative
error decreases as we increase the dimension of the coarse space. Comparing the
fourth column with the last column, we conclude that the accuracy when using the
randomized snapshots is similar to using all snapshot vectors. The latter has a larger
dimension as the percentage of the snapshots computed shows. As a consequence, the
proposed method is faster while having comparable accuracy. For example, when the
dimension of the offline space is 931, the accuracy of the methods is comparable, while
the randomized snapshot approach uses only 38.46% of the snapshots. Similar results
are obtained when the fine mesh is refined to 200×200. In particular, with the offline
space with dimension 931 and the snapshot ratio of 10%, we obtain similar L2

κ(D) and
H1
κ(D) errors, which are 1.28% and 24.02%. We observe that for lower-dimensional

offline spaces, we need a larger number pbf. The behavior is similar when we use the
permeability field in Figure 1(b). The results are displayed in Table 2. Here, pbf refers
to the buffer that is used to compute the eigenvectors. For example, pbf = 4 means
that we use n+ 4 snapshots to compute n basis functions for each coarse block.
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Table 1
Numerical results comparing the results between using all harmonic snapshots and the snapshots

generated by random boundary conditions with pbf = 4, κ as shown in Figure 1(a). In parentheses,
we show a higher value of the snapshot ratio.

dim(Voff) Snapshot ratio (%)
All snapshots (%) Few randomized snapshots (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

526 8.65(15.38) 0.87 18.15 2.81(1.38) 44.95(26.04)
931 13.46(38.46) 0.64 14.85 1.04(0.72) 23.61(16.88)

1336 18.27 0.55 13.59 0.70 18.08
1741 23.08 0.50 12.69 0.64 15.91
2146 27.88 0.47 12.17 0.54 14.16
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(a) Fine-scale solution

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

(b) Coarse-scale solution using
the full snapshots
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(c) Coarse-scale solution using
the randomized snapshots

Fig. 3. The fine-scale solution and coarse-scale solutions correspond to Figure 1(a).

In Figure 3, the fine-scale solution, coarse-scale solution using all snapshots, and
coarse-scale solution using randomized snapshots are shown. These solutions are
obtained using the second test (when the dimension of the offline space is 931) in
Table 1. These two coarse-scale solutions are a good approximation of the fine-scale
solution. This is corroborated in Figure 4, where we plot the absolute error of the
two solutions.

Next, we investigate the effect of the buffer number pbf on the accuracy of the
coarse solution. We test a series of simulations with different pbf while keeping the
coefficients and meshes fixed. The results are presented in Table 3, which shows that
a larger buffer coefficient decreases the relative energy error. However, there is no
need for very large buffer values. If we take pbf = 4, we can get a coarse solution
with error of 15.51% while obtaining a 14.49% error if using pbf = 20 at the cost of
solving 16 extra local problems for each inner coarse node. We also list the results
using pbf = 2 in Table 4. Comparing it with the results shown in Table 1 with pbf = 4,
one can observe that a larger pbf can provide a more reliable solution.
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Table 2
Numerical results comparing the results between using all harmonic snapshots and the snapshots

generated by random boundary conditions with pbf = 4, κ as shown in Figure 1(b).

dim(Voff) Snapshot ratio (%)
All snapshots (%) Using the randomized snapshots (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

526 8.65(15.38) 0.71 20.98 1.33(0.80) 33.76(24.14)
931 13.46 0.51 17.33 0.66 21.67

1336 18.27 0.45 15.83 0.53 18.26
1741 23.08 0.40 14.66 0.48 17.13
2146 23.88 0.36 13.65 0.43 15.39
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(a) Absolute error using the full snapshots

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.01

0.02

0.03

0.04

0.05

(b) Absolute error using randomized snapshots

Fig. 4. The absolute errors correspond to Figure 1(a) using full snapshots and random snapshots.

Table 3
Numerical results for different pbf and using 20 local bases in each coarse neighborhood, κ as

shown in Figure 1(a).

pbf
‖u− uoff‖ (%)

L2
κ(D) H1

κ(D)

4 0.62 15.51
10 0.62 15.08
15 0.57 14.70
20 0.57 14.49

Table 4
Numerical results comparing the results between using all harmonic snapshots and the snapshots

generated by random boundary conditions with pbf = 2, κ as shown in Figure 1(a).

dim(Voff) Snapshot ratio (%)
All snapshots (%) Few randomized snapshots (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

526 8.65 0.87 18.15 4.07 56.53
931 13.46 0.64 14.85 1.31 25.57

1336 18.27 0.55 13.59 0.70 18.13
1741 23.08 0.50 12.69 0.64 16.35
2146 27.88 0.47 12.17 0.54 14.16

Last, numerical tests are conducted to study the influence of oversampling effects
on the accuracy of the randomized snapshots. The simulation results are shown in Ta-
ble 5. From this table, we observe that the oversampling technique is needed to obtain
an accurate solution. However, a larger oversampling domain is not necessary since
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492 V. M. CALO, Y. EFENDIEV, J. GALVIS, AND G. LI

Table 5
Numerical results for different oversampling domain ω+

i = ωi + t and using 20 local bases in
each coarse neighborhood, pbf = 4, κ as shown in Figure 1(a).

t
‖u− uoff‖ (%)

L2
κ(D) H1

κ(D)

0 1.52 23.26
2 0.61 15.63
4 0.62 15.56
7 0.59 15.24

i

K1

K2K3

K4

T H (Coarse Grid)

i

Li
Boundary

Layer

Fig. 5. Illustration of a skin layer Li that is used for computing boundary conditions for the
snapshots in ω.

it increases the computational cost of the solution, while no significant improvement
in the solution accuracy is observed.

4.1. Comparison of results of different spectral problems. As we men-
tioned in the introduction, one can use solution-based boundary conditions to achieve
higher accuracy compared to the random boundary conditions. In this section, we
demonstrate this. The main idea behind this algorithm is to select boundary modes
using a small spectral decomposition over the boundary layer Li instead of the over-
sampling region ω+

i that surrounds the boundary in the spectral problem (6). More
precisely, we consider a local spectral problem in the layer of a few fine-grid blocks in
the region that contains the boundary of ωi (see Figure 5). We choose a layer that has
a thickness of five fine-grid elements (two interior to ωi and three on the immediate
neighborhood of ωi). Furthermore, we select dominant eigenvectors (corresponding
to smallest eigenvalues) by solving the local eigenvalue problem in the strip. The
local eigenvalue problem uses local stiffness and mass matrices (as in [19, 15]). This
approach provides correct fine-scale features and we expect higher accuracy compared
to the randomized snapshots. The numerical results are shown in Table 6. Comparing
the fourth column with the last column of Table 6, we observe that this new algorithm
is more accurate compared to the previous one. Taking the fifth row as an example,
for the same dimension of the offline space, the new algorithm gives 14.97% error,
while the previous algorithm ends with 17.13%. In general, one can apply random-
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Table 6
Numerical results comparing the results between the snapshots obtained from skin layer spectral

problems and the snapshots generated by random boundaries with pbf = 4, κ as shown in Figure
1(b).

dim(Voff) Snapshot ratio (%)
Snapshots from skin layer (%) Randomized snapshots (%)

L2
κ(D) H1

κ(D) L2
κ(D) H1

κ(D)

526 8.65 1.03 26.51 1.33 33.76
931 13.46 0.63 18.64 0.66 21.67

1336 18.27 0.48 16.29 0.53 18.26
1741 23.08 0.42 14.97 0.48 17.13
2146 27.88 0.39 14.40 0.43 15.39

ized snapshot algorithms to reduce the computational cost associated with our new
algorithm. That is, one can use randomized snapshots for the strip Li to reduce the
computational cost further.

4.2. A randomized multiscale adaptive algorithm. In this section, we dis-
cuss how to efficiently use randomized snapshots within adaptive algorithms. We use
the error indicators developed in [8]. First, we briefly recall these error estimators.
Letting Vi = H1

0 (ωi), define a linear functional Ri(v) on Vi by

(12) Ri(v) =

∫
ωi

fv −
∫
ωi

κ∇ums · ∇v,

where the norm of Ri is defined as

(13) ‖Ri‖V ∗
i

= sup
v∈Vi

|Ri(v)|
‖v‖Vi

.

Here ‖v‖Vi = (
∫
ωi
κ(x)|∇v|2 dx)

1
2 . In [8] it is shown that

‖u− uH‖2V ≤ Cerr

N∑
i=1

‖Ri‖2V ∗
i

(λωili+1)−1,(14)

where Cerr is a uniform constant and λωili+1 denotes the (li + 1)th eigenvalue over
coarse neighborhood ωi that corresponds to the first eigenvector excluded from the
construction of Voff. We define the error indicator in each coarse neighborhood as
follows:

η2
i = ‖Ri‖2V ∗

i
(λωilmi +1)−1 for H−1-based residual.

The pivotal issue to solve is to generate additional linearly independent bases for a
selected coarse neighborhood ωi for the current iteration. Specifically, those extra
bases are required to be linearly independent from the bases in the previous iteration.
In what follows, we describe a possible solution to this issue using the residue of
a series of random bases and their projection onto the offline space of the previous
iteration.

Remark 3. Step 3 in Algorithm 2 guarantees that the added local bases are inde-
pendent from the previous local bases in the M -norm as defined in the next section. In
the randomized snapshots, we have added the constant local bases manually to guar-
antee that the multiscale bases are included. However, this constant bases should be
excluded in step 3 since the constant is not in the spectral vectors and if it is added
we can get linear dependency.
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Algorithm 2. Local basis enrichment algorithm

1: Input: An index of the coarse nodes I selected by the error indicator for enrich-
ment, the local offline space Ψrsnap

ωi , buffer number cωibf , an additional local basis
number cωinb for each i ∈ I.

2: Generate cωinb + cωibf random vectors rl and obtain randomized snapshots in ω+
i

(equation (10)). Denote as φ1, . . . , φcωinb+c
ωi
bf

;

3: A modification of the random bases obtained from step 2:

φ̃i = φi −
N∑
j=1

〈φi, ψj〉M
〈ψj , ψj〉M

φi,

where ψ1, . . . , ψN denotes a series of bases of Ψrsnap
ωi excluding the constant one;

4: Obtain cωinb offline bases by a spectral decomposition (equation (6)), next, add in
a snapshot that represent the constant function on ω+

i , and denote the resulting
vectors as Ψenrich

ωi ;
5: Ψrsnap

ωi ≡ Ψrsnap
ωi ∪Ψenrich

ωi .
6: output: an enriched local offline space Ψrsnap

ωi corresponds to each nodes in I.

The numerical results are displayed in Table 7. First, we take five bases per coarse
block. Then, we apply the multiscale adaptive algorithm proposed in [8] and identify
the coarse nodes index I requiring more bases. Set cωinb = 2 and cωibf = 1 and follow
Algorithm 2; next, we generate cωinb + cωibf = 3 local random bases for those nodes and
use Step 3 to get three new linearly independent bases. Afterwards, a local spectral
decomposition is performed to select two important bases from those three bases. In
the end, the corresponding multiscale basis functions are constructed and added to
the coarse space.

Comparing Tables 1 and 7, we observe that the randomized adaptive algorithm
is cheaper since many fewer basis functions are used to achieve comparable accuracy
to that of the uniform increase of bases shown in Table 2. We use 2146 basis func-
tions to attain an energy error of 14.16% in Table 2, while only 2061 are necessary
to get a smaller error of 13.90% using the adaptive randomized algorithm. The main
computational gain in the adaptivity is that we can select the number of basis func-
tions adaptively in each region. In many applications, one may need a few multiscale
basis functions in many coarse regions (e.g., coarse regions that contain isolated high-
conductivity inclusions), and adaptive algorithms can detect this based on a residual
information. Here, we do not discuss the computational cost of our adaptive algo-
rithm in detail and refer to [8]. Our main emphasis is that one can use randomized
snapshots within existing adaptive algorithms.

Table 7
Numerical results using adaptive algorithm with pbf = 4, and 5 local bases per node at the

beginning and with two more bases for selected nodes, κ as shown in Figure 1(a).

dim(Voff)
Using the usual snapshots (%)

L2
κ(D) H1

κ(D)

526 4.11 50.23
916 0.99 21.65

1323 0.63 17.33
1717 0.53 15.10
2061 0.51 13.90
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5. Analysis. In this section, we present an analysis of the method described
above. Our main objective is to show that using randomized snapshots, we can
obtain similar convergence results to using all snapshot vectors. In the analysis de-
scribed below, we first estimate the error due to the approximation using randomized
snapshots. In the first lemma, we compare an arbitrary snapshot obtained using all
snapshot vectors and its approximation in the space of randomized snapshots. To
avoid cumbersome notation, we denote the local snapshot matrix Ψsnap

ωi in (5) by Ψ
and the local randomized snapshot matrix Ψrsnap

ωi in (11) by Ψr.
The following lemma shows that the randomized snapshot Ψr with l random

bases is a good approximation of the full snapshot Ψ composed of m bases, m > l.
We use the notation A � B when A ≤ CB with C being independent of the size ratio
between the coarse and fine meshes, and spatial scales. Throughout, ‖ · ‖ denotes the
l2 norm for vectors and the l2-based spectral norm for matrices, while ‖z‖2A = zTAz.
We recall that throughout, for notational convenience, we do not distinguish between
the fine-grid vectors and their continuous representations.

Lemma 4. Suppose Ψ ∈ Rm×n of rank m and R ∈ Rl×m whose entries are i.i.d.
Gaussian random variables. Define Ψr = RΨ; then, for any ξ ∈ Rm, there exists
ξr ∈ Rl such that

∥∥ξTΨ− (ξr)TΨr
∥∥2

M̃(ωi)
=

∫
ωi

κ̃|ξTΨ− (ξr)TΨr|2 �
(∥∥H(−1)S

∥∥+ 1

λk+1

)2 ∥∥ξTΨ
∥∥2

A(ωi)
,

(15)

where k < l < m < n, and S and H are defined in (17) and (19).
Here, λk+1 is the (k + 1)th smallest diagonal value of Λ defined in (16) and

A(ωi) = (
∫
ωi

(κ∇φj)T∇φk)n×n with φj as the jth local fine-scale basis in the ωi. Be-

sides,
∥∥ξTΨ

∥∥
M̃(ωi)

= (
∫
ωi

(κ̃ξTΨ)T ξTΨ)
1
2 ,
∥∥ξTΨ

∥∥
A(ωi)

= (
∫
ωi

(κ∇(ξTΨ))T∇(ξTΨ))
1
2 .

Proof. Denote M̃(ωi) = (
∫
ωi

κ̃φjφk)n×n with φj as the jth local fine-scale bases

in ωi. The matrix M̃(ωi) is symmetric positive definite. Besides, A(ωi) is symmetric
semipositive definite. Thus, there exists an m×m matrix U such that

UTΨM̃(ωi)Ψ
TU = Λ and UTΨA(ωi)Ψ

TU = I,(16)

where I is an identity matrix and Λ denotes a diagonal matrix with nondecreasing
diagonal values,

1

λ1
,

1

λ2
, . . . ,

1

λm
.

Define X = U−TΛ
1
2 ; then we obtain XXT = ΨM̃(ωi)Ψ

T .
Suppose F is a matrix of dimension m× l; take ξr = FT ξ. Then∫
ωi

κ̃|ξTΨ− ξrT Ψr|2 = (ξTΨ− (ξr)TRΨ)M̃(ωi)(ξ
TΨ− (ξr)TRΨ)T

= ξT (I − FR)ΨM̃(ωi)Ψ
T (I − FR)T ξ

= ξT (X − FRX)(X − FRX)T ξ =
∥∥ξT (X − FRX)

∥∥2
.
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In the following, we construct a matrix F that minimizes
∥∥ξT (X − FRX)

∥∥. Follow-
ing [27, Lemma 18], we define

F = U−T
(
H(−1)

0

)
,

where H and S are matrices of dimension l × k and l × (m− k) defined as

RU−T =
(
H S

)
,(17)

H(−1) = (HTH)−1HT .(18)

That is, H is of rank k and contains the first k columns of RU−T and H(−1) is the
pseudoinverse of H.

We obtain

ξT (X − FRX) = −ξTU−T
((
H(−1)

0

)(
H S

)
− I
)

Λ
1
2 .

Furthermore, ∥∥ξT (X − FRX)
∥∥ ≤ ∥∥ξTU−T∥∥(

∥∥H(−1)ST
∥∥+

∥∥T∥∥),

where T is defined as

Λ
1
2 =

(
S 0
0 T

)
.(19)

Thus, the spectral norm of T is bounded, that is,
∥∥T∥∥ ≤ 1

λk+1
. Then, using standard

properties of subordinated norms we have∥∥ξT (X − FRX)
∥∥ ≤ ∥∥ξTU−T∥∥(

∥∥H(−1)ST
∥∥+

∥∥T∥∥)(20)

≤
∥∥ξTU−T∥∥(

∥∥H(−1)S
∥∥+ 1)

∥∥T∥∥(21)

≤
∥∥H(−1)S

∥∥+ 1

λk+1

∥∥ξTΨ
∥∥
A(ωi)

.(22)

Here, to obtain the last step we have used the relation (16), which implies∥∥ξTU−T∥∥ = (ξTU−T · (ξTU−T )T )
1
2 = (ξTU−TU−1ξ)

1
2(23)

= (ξTΨA(ωi)Ψ
T ξ)

1
2 =

∥∥ξTΨ
∥∥
A(ωi)

.(24)

Hence, ∫
ωi

κ|∇χ|2|ξTΨ− ξrT Ψr|2 ≤
(∥∥H(−1)S

∥∥+ 1

λk+1

)2 ∥∥ξTΨ
∥∥2

A(ωi)
.

The proof is complete.

Remark 5 (estimate for
∥∥H(−1)S

∥∥). U in Lemma 4 is orthonormal with respect
to the A(ωi)-inner product. If U is an orthonormal matrix itself, then by [27, Lemma
18],

∥∥H(−1)S
∥∥ ≤ √lβ 1

λ2
k+1

for some positive number β and given k. If U is not

orthonormal, then by applying the Gram–Schmidt process to the first k columns of
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U−T (denoted as V1) as well as the rest of the columns of it (denoted as V2), we can
obtain nonsingular triangular matrices D1 and D2, and S1 and S2 with ST1 S1 = I
and ST2 S2 = I, such that

U−T =
(
V1 V2,

)
,

V1 = S1D1, and V2 = S2D2.

Then

H(−1)S = (HTH)−1HTS = (V T1 RTRV1)−1V T1 RTRV2,

and using the expressions for V1 and V2, we obtain

H(−1)S = D−1
1 (ST1 RTRS1)−1(D−T1 DT

1 )(ST1 RTRS2)D2.

Therefore, we have∥∥H(−1)S
∥∥ ≤ ∥∥D−1

1

∥∥∥∥(ST1 RTRS1)−1ST1 R
T
∥∥∥∥RS2

∥∥∥∥D2

∥∥.
Since the entries of RS1 and RS2 are i.i.d. Gaussian random variables of zero mean
and unit variance, using [27, Lemma 14], we get the estimate∥∥H(−1)S

∥∥ ≤√2lmβ2γ2 + 1
∥∥D−1

1

∥∥∥∥D2

∥∥
with probability not less than

1− 1√
2π(l − k + 1)

(
e

(l − k + 1)β

)l−k+1

− 1

4(γ2 − 1)
√
πmγ2

(
2γ2

eγ2−1

)m
,

where β and γ are positive real numbers, γ > 1.
Next, we note that the ith diagonal elements of D1 and D2 are the norms of ith

columns of V1 and V2. Moreover,
∥∥D−1

1

∥∥∥∥D2

∥∥ is the ratio of the largest diagonal
element of D2 and the smallest diagonal element of D1. Since U−TU−1 = ΨAΨT and
U−TΛU−1 = ΨM̃ΨT , the estimate of

∥∥H(−1)S
∥∥ depends on the norms of the columns

of U−T and, thus, depends on the contrast, in general. In the particular case, we
assume that ΨAΨT is a diagonal matrix with entries λ1 ≤ λ2 ≤ . . . λn. In this case,

U−T = U−1 = diag(λ
−1/2
1 , λ

−1/2
2 , . . . , λ

−1/2
n ) and D1 = diag(λ

−1/2
1 , λ

−1/2
2 , . . . , λ

−1/2
l ),

D2 = diag(λ
−1/2
l+1 , λ

−1/2
l+2 , . . . , λ

−1/2
n ). Then, it is easy to verify that

∥∥D−1
1

∥∥∥∥D2

∥∥ =

λ
1/2
l /λ

1/2
l+1 in this case. This estimate shows that the error can be sensitive on the

choice of the eigenspace that is selected. In GMsFEM, we usually select the most
important eigenvalues that are small (see [15]); thus, in general, a contrast-dependent
situation can be avoided.

In Lemma 4, we have derived the approximation of the randomized snapshot space
to the full snapshot space locally in each patch ωi. Next, we present the convergence
the GMsFEM using randomized snapshots. The snapshots are obtained by multiply-
ing the local snapshots Ψsnap

ωi with the corresponding partition of unity function χi
(as in (7)). To simplify notation we denote by Ψ the full global snapshots (snapshots
for all ωi’s) and by Ψr the full randomized snapshots (snapshots for all ωi’s).

Theorem 6. Denote by Ψ the snapshot matrix and by Ψr the randomized snap-
shot matrix of dimension m × n and l × n, respectively, and their ranks are m and
l, respectively. R is a matrix with i.i.d. Gaussian random entries and Ψr = RΨ.
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Suppose uH is solved using the offline space formed using the snapshot matrix Ψr,
and u is the fine-scale solution of (1); then we have∫

D

κ|∇(u− uH)|2 �
(

1

Λ∗
+

(
1

Λ∗

)2

(
∥∥H(−1)S

∥∥+ 1)2

)∫
D

κ|∇u|2 +H2

∫
D

f2,(25)

where Λ∗ is defined in (36) and l < m < n.

Proof. Denote Iωi and Iωir as arbitrary interpolants from the fine scale to the
space spanned by the rows of Ψ and Ψr on the coarse neighborhood ωi, respectively.
Later, we choose a proper interpolant that reduces the error. Taking into account
that the GMsFEM solution, uH , provides a minimal energy error, we have∫

D

κ|∇(u− uH)|2 �
∫
D

κ|∇
(∑

i

χi(u− Iωir u)

)
|2

�
∑
i

∫
ωi

κ|∇(χi(u− Iωiu))|2 +

∫
ωi

κ|∇(χi(I
ωi
r u− Iωiu))|2.

(26)

Next, we use the inequalities∫
ωi

κχ2
i |∇(u− Iωiu)|2 �

∫
ωi

κ̃|(u− Iωiu)|2 +

∣∣∣∣∫
ωi

fχ2
i (u− Iωiu)

∣∣∣∣ ,(27) ∫
ωi

κχ2
i |∇(Iωir u− Iωiu)|2 �

∫
ωi

κ̃|(Iωir u− Iωiu)|2,(28)

where κ̃ is defined by (9). Here, we have used the inequality (29) in [15]. Using (27)
and (28), and we obtain from (26)∫

D

κ|∇(u− uH)|2 �
∑
i

∫
ωi

κ̃|(u− Iωiu)|2 +
∑
i

∣∣∣∣∫
ωi

fχ2
i (u− Iωiu)

∣∣∣∣
+
∑
i

∫
ωi

κ̃|(Iωir u− Iωiu)|2.(29)

Selecting a proper interpolant Iωi , we have

(30)

∫
ωi

κ̃|(u− Iωiu)|2 � 1

λωik+1

∫
ωi

κ|∇(u− Iωiu)|2,

where λωik+1 is the eigenvalue that corresponds to the first eigenvector that is not
included in the coarse space. Similarly, we can show that∣∣∣∣∫

ωi

fχ2
i (u− Iωiu)

∣∣∣∣ � ∫
ωi

κ̃−1f2 +

∫
ωi

κ̃|(u− Iωiu)|2

�
∫
ωi

κ̃−1f2 +
1

λωik+1

∫
ωi

κ|∇(u− Iωiu)|2.(31)

We note that
∫
ωi
κ̃−1f2 � κ−1

∫
ωi
f2 if |∇χms

i | = O(H−1). Combining the above
estimates, we have∫

D

κ|∇(u− uH)|2 �
∑
i

1

λωik+1

∫
ωi

κ|∇(u− Iωiu)|2

+
∑
i

∫
ωi

κ̃−1f2 +
∑
i

∫
ωi

κ̃|(Iωir u− Iωiu)|2.(32)
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For a fixed vector Iωiu ∈ Ψ, by Lemma 4, we can get a corresponding vector ξr ∈ Ψr,
such that ∫

ωi

κ̃|ξr − Iωiu|2 �
(∥∥H(−1)(ωi)S(ωi)

∥∥+ 1

λωik+1

)2 ∥∥Iωiu∥∥2

A(ωi)
,(33)

for some integer k. For simplicity, we assume that λωik+1 is the same eigenvector as in
the interpolant defined in (30) by selecting the smallest index.

We define Iωir u = ξr. Thus using (32) and (33), we obtain∫
D

κ|∇(u− uH)|2 � max
ωi

(
1

λωik+1

)∫
ωi

κ|∇u|2 +
∑
i

∫
ωi

κ̃−1f2

+
∑
i

(∥∥H(−1)S
∥∥+ 1

λωik+1

)2 ∥∥Iωiu∥∥2

A(ωi)
(34)

�
(

1

Λ∗
+

1

Λ2
∗

(
∥∥H(−1)S

∥∥+ 1)2

)∫
κ|∇u|2 +

∑
i

∫
ωi

κ̃−1f2,(35)

where

Λ∗ = min
ωi

λωik+1.(36)

Here, we have used the boundedness property of the interpolant in the energy norm
[19]. Assuming |∇χi| = O(H−1), we get∫

D

κ|∇(u− uH)|2 �
(

1

Λ∗
+

1

Λ2
∗

(
∥∥H(−1)S

∥∥+ 1)2

)∫
κ|∇u|2 +H2

∫
D

f2.(37)

Remark 7. One can improve the error due to GMsFEM discretization by changing
the eigenvalue problem (see [13]) and the error will scale as 1

Λq∗
for a large q that

depends on the size of the oversampled region. In this case, the error due to GMsFEM
discretization will scale as (1/Λ∗)

n for some large n.

6. Conclusions. In this paper, we study the use of randomized boundary con-
ditions to reduce the computational cost in multiscale finite element methods. Local
multiscale finite element basis functions are constructed in each coarse patch by com-
puting snapshot vectors and performing local spectral decompositions. The choice of
snapshot vectors and the local spectral decomposition is important for achieving low-
dimensional coarse spaces that can approximate the solution accurately on a coarse
mesh. For example, the use of harmonic functions computed in oversampled regions
improves the accuracy. However, the computation of harmonic functions for all possi-
ble boundary conditions in each local region is expensive. Therefore, we propose the
use of randomized boundary conditions for computing the snapshot vectors. We show
that with a few snapshot vectors, we can compute the basis functions that provide an
accuracy that is similar to that obtained using all snapshot vectors. We analyze the
method and validate our estimates with numerical evidence. Moreover, we discuss
approaches that are more accurate compared to randomized snapshots; however, they
are more expensive. Finally, we discuss how adaptive computations can be performed
efficiently and robustly within the framework of randomized snapshots where multi-
scale basis functions are added locally in some regions based on an error indicator.
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