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Abstract

The vibrational properties of CaCO3 aragonite have been investigated both theoretically, by using

a quantum mechanical approach (all electron Gaussian type basis set and B3LYP HF-DFT hybrid

functional, as implemented in the CRYSTAL code) and experimentally, by collecting polarized

infrared (IR) reflectance and Raman spectra. The combined use of theory and experiment permits

on the one hand to analyze the many subtle features of the measured spectra, on the other hand

to evidentiate limits and deficiencies of both approaches. The full set of TO and LO IR active

modes, their intensities, the dielectric tensor (in its static and high frequency components) and

the optical indices have been determined, as well as the Raman frequencies. Tools such as isotopic

substitution and graphical animation of the modes are available, that complement the analysis of

the spectrum.

Keywords: IR spectra, Raman spectra, reflectance, polarized, single crystal, ab initio simulation, frequencies,

intensities, CRYSTAL code
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I. INTRODUCTION

Calcium carbonate nucleates in three crystalline forms: calcite, aragonite and vaterite,

with rhombohedral, orthorhombic and hexagonal structure, respectively. Calcite is the most

stable thermodynamically, followed by aragonite. The crystallization of calcium carbonate

is a widely occurring process in nature (marble and limestone, biominerals, etc.)[1] as well

as a relevant operation in industry. Calcium carbonate is one of the main components

of the scaling which arises in various drainage situations in the chemical industry, and in

circulating water for heating and cooling in living environments[2]. Calcium carbonate is

also used as an additive in various industrial fields, e.g. building materials, medicines, food,

paper, plastics, printing inks[3]. Although calcite is the most stable CaCO3 phase at Earth

surface conditions, aragonite is a very common mineral, of both biological and geological

origins. In particular, aragonite is the major constituent of coral reefs, shells, pearls and

other biominerals, where it grows preferentially at ambient conditions due to the effect of

organic templates [4]. Aragonite occurs in many other environments as deposition of hot,

mineral-rich springs, in stalactite and stalagmite cave formations [5].

For these reasons aragonite, along with the other naturally occurring polymorphs, has been

the subject of a large number of investigations using a variety of techniques. The infrared

(IR) and Raman spectra of aragonite were collected in the past by several investigators, who

applied group theory to classify the active modes. Polarized Raman spectra of aragonite

were first measured by Couture [6]. This pioneering work was completed by Frech et al.

[7] who produced accurate Raman polarized spectra and some IR reflectance spectra. More

recently the IR and Raman spectra have been used as an analytical tool by chemists and

mineralogists to separate the carbonate polymorphs: calcite, aragonite, and vaterite [8–12].

Although the vibrational spectra of aragonite have been previously measured, the assignment

of the normal modes is incomplete; moreover, no IR data are available in the far-infrared

range, and the dielectric function in the far- and mid-infrared ranges is still unknown. This is

probably due both to difficulties in obtaining a well-characterized single crystal of sufficient

optical quality and to the absence of accurate references from simulation, two ingredients

that constitute novelty elements of the present investigation. The polarized Raman and IR

reflectance spectra in the whole spectral range are here obtained from a high quality single

crystal whose orientation was determined by X-ray diffraction. Besides that, accurate ab
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initio simulations are performed, that complement the experimental data and provide an

extremely useful support in their processing.

It is in fact well known that, whereas the “final results”, namely frequencies and intensities,

are directly produced by Raman experiments, their determination from the raw-digitalized

IR reflectance spectrum Rexp(ν) is not simple, and implies a best fit procedure. As the fitting

parameters are strongly correlated and the χ2 function to be minimized is characterized by

many minima, additional information must be available during the optimization process,

to be inserted in the form of constraints. One of the crucial points of this process is the

definition of the number and position (on the frequency axis) of oscillators to be used in

this non-linear best fit; in other words, a set of quite reasonable initial parameters must

be provided. It should be noticed that the number of active modes (provided a priori by

group theory) might not correspond to the number of modes present in the spectrum, as

some of them might be characterized by very low intensity. The presence in the best fit

process of a spurious oscillator can introduce additional numerical instability. On the other

hand, combinations and resonances might be interpreted as fundamentals, if the theoretical

number of modes is looked for persistently.

At this stage, the availability of a simulated spectrum, that can nowadays be easily generated

by quantum mechanical codes, can dramatically reduce the risk of erroneous attributions

or artefacts. This permits to discriminate among the fundamental peaks characterized by

low (often very low) intensity and other features such as combinations, overtones, Fermi

resonances and impurities.

The paper is organized as follows: Section II is devoted to the description of the sample.

Information on the Raman and IR experimental set up is also provided. Section III describes

the way simulation is performed. In Section IV the results from theory and experiment are

compared. Section V presents the main conclusions.

II. EXPERIMENTAL DETAILS

A. Sample, orientation, convention

CaCO3 aragonite has an orthorhombic unit cell with parameters[13] a = 4.9618, b =

7.9691, c = 5.7429 Å, four formula units (Z=4), and Pnma space group (Dh16
2 in Schönflies

3



notation). The original sample was oriented by X-Ray Diffraction (XRD), cut and polished

to reveal the (100), (010), and (001) facets. The final size of the sample is ∼ 5 × 4 × 2

mm3 along the a, b, c axes, respectively. XRD confirms that our sample is a single CaCO3

aragonite phase with lattice parameters (at room temperature) a = 4.9633, b = 7.9703, c =

5.7441 Å, which are very close to the ones from the literature [13] (see also Table I).

Figure 1 shows the orientation of the CO3 triangles with respect to the crystallographic axes.

The x, y and z Cartesian axes, according to the current laboratory reference, were selected

as the a, b and c crystallographic axes, respectively. B3u, B2u and B1u symbols were used

for the polarization along a, b and c, respectively.

B. Polarized Infrared Reflectance spectroscopy and best fit

Polarized IR spectra Rexp(ν) were measured at room temperature (295 K) along the three

crystallographic directions a, b and c. The selected spectral range was 80-2500 cm−1, with

a resolution of 1 to 2 cm−1. A near-normal angle of incidence (θ = 10◦) was chosen. The

s-polarized geometry was employed, as it has been shown to reduce the contamination from

other crystallographic directions [14, 15].

A reconstructed reflectance curve Rfit
ii (ν) along the ii direction can be obtained by best fit

of Rexp
ii (ν), by means of the Fresnel formula[16]:

Rfit
ii (ν) =

∣∣∣∣∣
√
εii(ν)− sin2(θ)− cos(θ)√
εii(ν)− sin2(θ) + cos(θ)

∣∣∣∣∣
2

, (1)

where θ is the incidence angle of the IR beam with respect to the normal to the surface

and εii(ν) = ε1,ii(ν) + iε2,ii(ν) is the ii − th component of the complex dielectric function.

The maxima of ε2(ν) and of Im(-1/ε(ν)) (Loss Function) correspond to the TO and LO

frequencies, respectively. Note that, when the symmetry of the system is orthorhombic or

higher, ε(ν) is a diagonal tensor, so that only the xx, yy and zz components are non-null.

The classical Drude-Lorentz model [16] describes the dielectric function as a superposition

of damped harmonic oscillators:

εii(ν) = ε∞,ii +
∑
n

Ln,ii(ν) , (2)
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where ε∞,ii is the high-frequency (electronic) dielectric contribution and the oscillator Ln,ii(ν)

is defined as:

Ln,ii(ν) =
fn,iiν

2
n

ν2
n − ν2 − iνγn

. (3)

Each oscillator is characterized by three parameters: the frequency νn of the TO mode

(note: only of the TO mode), its strength along the ii direction fn,ii (related to the plasma

frequency νp,n through fn = ν2
p,n/ν

2
n) and the damping factor γn. These quantities can

be obtained by best fit, through minimization of the chi-square (χ2) between Rfit
ii (ν) and

Rexp
ii (ν) over a set of points on which the latter has been digitalized.

An alternative semi-quantum model was also adopted, that was introduced by Berreman and

Unterwald[17] and applied for the first time by Gervais and Piriou[18, 19]. It contains four

parameters, namely the frequencies ν of both the TO and LO modes and the corresponding

damping factors γ:

εii(ν) = ε∞,ii
∏
n

ν2
LO,n − ν2 − iνγLO,n
ν2
TO,n − ν2 − iνγTO,n

. (4)

where the n product extends to all the modes corresponding to the ii direction. The ii− th

component of the n− th oscillator strength can be calculated by comparison of Equations 2

and 4 in which the damping is neglected [18]:

fn,ii = ε∞,ii

(
ν2
LO,n

ν2
TO,n

− 1

)∏
k 6=n

ν2
LO,k − ν2

TO,n

ν2
TO,k − ν2

TO,n

. (5)

This model permits to take into account the asymmetry of the reflectance peaks (that in

many cases is quite large).

Best fit procedures against the Drude-Lorentz (DL) and Four-Parameter Semi-Quantum

(FPSQ) models were performed with the RefFIT interactive program written by Alexey

Kuzmenko [20]. The simulated frequencies and intensities were used as an initial guess

for the fits. First, damping factors were determined; then, individual mode parameters

were optimized iteratively within a finite window around the simulated data (30 cm−1 for

frequencies, 30 % for intensities). In the case of modes with very low intensities, this

window was reduced by a factor 3 to 4. Finally, a constrained global minimization on all

the parameters was performed.
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C. Polarized Raman spectroscopy

Raman spectra were collected at 295 K on a Jobin-Yvon T64000 spectrometer coupled

to a N2-cooled CCD detector and an Olympus optical microscope. Samples were excited

by an argon-ion laser beam at 514.5 nm using a Spectra Physics Stabilite 2017 laser. The

laser beam was focused on the sample via a 16x microscope objective with approximately

20 mW excitation power. Back-scattered Raman spectra were collected in confocal mode

with a low numerical aperture objective to avoid optical artifacts; Rayleigh scattering was

removed by an edge filter. The Raman spectra were recorded between 90 and 1600 cm−1,

with acquisition times of 2 minutes and a spectral resolution of about 1.5 cm−1.

The crystal was deposited at the center of a rotation stage and oriented along either a, or

b or c axes. A careful adjustment was made of the rotation stage, to ensure the overlap of

the focused laser with the center of the rotation stage. The polarized Raman measurements

were performed using a polarizer for both cross and parallel configurations (i.e. with respect

to the incident laser polarization vector) and referred for the (100) orientation to as x(zz)x

and x(yz)x respectively, according to Porto’s notation[21]. The notation of the spectrum

is described by four symbols, two inside parentheses and two outside. The inside symbols

are, left to right, the polarizations of the incident and scattered beams, while the letters

preceding and following the parentheses indicate the respective propagation directions of

the incident and scattered beams.

III. COMPUTATIONAL METHODS

For the present calculations, the CRYSTAL program[22, 23] was used. As in previous

works by some of the present authors [24–29] the B3LYP Hamiltonian[30] was employed,

that contains a hybrid Hartree–Fock/density–functional exchange–correlation term, and is

widely and successfully used in molecular quantum chemistry[31] as well as in solid state

calculations, where it has been shown to reproduce vibrational frequencies in general good

agreement with experiment.[32–35].

The adopted basis set has already been used in a previous investigation of calcite (BSD

in Ref. 36). Oxygen, calcium and carbon are described by (8s) − (411sp) − (1d1d),

(8s)− (6511sp)− (2d1d), (6s)− (311sp)− (1d1d), contractions, respectively. Details can be
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found at the web page www.theochem.unito.it/aragonite, where input and output files

are also available.

The computational conditions (tolerances for the truncation of the infinite Coulomb and

exchange sums, SCF convergence criteria, grid size for the integration of the DFT exchange

and correlation contribution and number of points in the reciprocal space) were set at the

same values as in a previous study on calcite[36].

The calculation of vibrational frequencies at the Γ point, νn, was performed within the har-

monic approximation. Frequencies are obtained by diagonalizing the mass-weighted Hessian

matrix W , which is constructed by numerical differentiation of the analytical gradients with

respect to the atomic Cartesian coordinates:

Wαi,βj(Γ) =
Hαi,βj√
MαMβ

, (6)

where Hαi,βj is the second derivative of energy (evaluated numerically starting from the

analytical gradients), Mα and Mβ are the atomic masses; greek and latin indices refer to

atoms and atomic Cartesian coordinates, respectively. The calculated (optimized) equilib-

rium geometry is taken as reference. Once the Hessian matrix is calculated, frequency shifts

due to isotopic substitutions can be readily obtained by changing the masses in the above

formula, so that isotopic-shift calculations are available at zero computational cost. Details

on the calculation of vibrational frequencies can be found in Refs. 24, 35, and 37.

The oscillator strengths fn were computed for each n − th mode by means of the mass-

weighted effective mode Born charge vectors ~Zn [38, 39]:

fn,ij =
1

4πε0

4π

Ω

~Zn,i ~Zn,j
ν2
n

, (7)

~Zn,i =
∑
α,j

tn,αjZ
∗
α,ij

1√
Mα

, (8)

where ε0 is the vacuum dielectric permittivity (1/4πε0 = 1 atomic unit), Ω is the unit cell

volume, i and j refer to the Cartesian components, tn,αj is an element of the eigenvectors

matrix T of the mass-weighted Hessian matrix W , that transforms the Cartesian atomic

directions into the n − th normal coordinate directions; finally, Z∗α is the Born effective

charge tensor associated with atom α, which is evaluated through a Berry phase approach

[40–42].

The ionic components of the static dielectric tensor were evaluated as the sum of the os-

cillator strengths: Fij =
∑

n fn,ij. The electronic high frequency components ε∞,ij were
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calculated through the Coupled-Perturbed KS/HF (Kohn-Sham/Hartree-Fock) scheme [43–

47]. Note that ε∞ is almost independent from frequency in the IR range, as electronic

transition energies are very large compared to vibrational energies.

Graphical animations of the normal modes are available on the CRYSTAL web site

(www.crystal.unito.it/prtfreq/jmol.html); they provide a simple and intuitive in-

terpretation of the “nature” of the modes (stretching, bending, rotation, translation, etc).

Manipulation and visualization of structures were dealt with the MOLDRAW program

[48, 49] and the JMOL[50] molecular viewer. Molecular drawings were rendered with the

Inkscape program [51] using input files prepared with Jmol. Data analysis was performed

with the LibreOffice suite [52].

IV. RESULTS AND DISCUSSION

A. Geometry

The structure of the orthorhombic unit cell of aragonite is shown in Figure 1, and the

main parameters are reported in Table I. The B3LYP calculation overestimates the exper-

imental cell parameters by 0.9% (a), 0.7% (b) and 2.0% (c) , which is typical for this type

of Hamiltonian (see, for example, Ref. 27). Also the distances with a large ionic/dispersion

contribution, such as Ca-O (note that the Ca ion is largely polarizable), are slightly overes-

timated, by about 0.02 Å. Differences reduce by one order of magnitude, to about 0.001 Å,

in the case of the strong covalent C-O bond.

B. Frequencies at the Γ point

The orthorhombic cell of aragonite (see Figure 1) contains 4 CaCO3 formula units, for

a total of 20 atoms; its 57 vibrational modes can be classified according to the irreducible

representations of the mmm point group as follows:

Γtotal = 9Ag ⊕ 6Au ⊕ 6B1g ⊕ 8B1u ⊕ 9B2g ⊕ 5B2u ⊕ 6B3g ⊕ 8B3u.

Ag, B1g, B2g and B3g modes are Raman active, B1u, B2u and B3u are IR active, Au modes

are spectroscopically inactive (silent modes). Modes are classified as “internal” and “ex-

ternal” in Table II. The latter (rotations and translations of the CO−−3 and Ca++ units)
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appear below 300 cm−1. The former (24 modes overall) form four well separated bands, that

correspond to symmetric stretching ( 1080-1090 cm−1, usually indicated as ν1), out-of-plane

bending (850-910 cm−1, ν2), antisymmetric stretching (1440-1580 cm−1 , ν3) and in-plane

bending motions (700-720 cm−1, ν4). Such a classification is confirmed by graphical anima-

tion (www.crystal.unito.it/prtfreq/jmol.html) and is in agreement with the very old

one proposed by White in 1974[53].

C. IR reflectance spectra

Figure 2 shows the results of the best fit performed with the three-parameter Drude-

Lorentz (DL) model. Values for frequencies ν and oscillator strengths f obtained from the

best fit are given in Table III, where they are compared with the quantum-mechanically

simulated data.

The reflectance spectra Rfit
DL constructed by using Equations 1, 2 and 3 reproduce quite accu-

rately Rexp, with the evident exception of the right shoulder of the first broad band along the

b axis (see Figure 2(b) ). The best fit was repeated with the Four-Parameter Semi-Quantum

(FPSQ) model described by Equation 4, looking for a better reproduction of this band. A

zoomed view of the range 150-450 cm−1 for the b axis is reported in Figure 3, where both

Rfit
FPSQ and Rfit

DL spectra are superposed to the experimental curve; the fitting parameters

for the b axis are reported in Table IV, where the two models are compared. Mode 3, with

TO frequency νTO around 220 cm−1, corresponds to the observed broad band. While νTO

provided by the two models is about the same (the difference is 1.1 cm−1 only), the other

parameters show relevant differences. f and νLO differ by as much as 790 (adimensional; all

values are multiplied by 103) and 17.4 cm−1, respectively. As regards the damping factors,

the FPSQ model provides distinct values for TO and LO modes; γTO is quite close to the

(unique) γ value provided by the DL model, 7.3 cm−1 compared to 9.0 cm−1 (the difference

being 1.7 cm−1 only). γLO is however considerably larger (∆γFPSQ = 28.1 cm−1). All these

differences permit the FPSQ model to properly describe the asymmetry in the observed

experimental band. For the other modes differences are smaller, and involve only one or

two of the fitting parameters. The largest ones refer to mode 1 (∆f = 240) and mode 5

(∆νLO = 14.3 cm−1, ∆f = 52). The improved agreement between the reconstructed Rfit
FPSQ

spectrum and Rexp for the b axis is demonstrated by χ2
FPSQ, that is smaller than χ2

DL by a
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factor 9. As a comparison, in the case of a and c axes, when passing from the DL to the

FPSQ model, χ2 improves only by a factor 2: no relevant asymmetric bands exist along

these axes, and the reduction is essentially due to the higher number of degrees of freedom

in the best fit model.

The observed quite good agreement between Rfit
DL (or Rfit

FPSQ) and Rexp is obtained thanks

to an initial guess for the fitting that uses the calculated ab initio frequencies and intensities.

Without this help, the best fit would have been much more problematic, as a look to Table

III easily confirms. Consider for example the a direction (B3u symmetry). There is a very

large peak at 208 cm−1 (210 cm−1 from the calculation), with oscillator strength equal to

4106 (3920 from the calculation). There are three peaks (νexp at 183, 259 and 287 cm−1)

whose f is from 50 to 100 times smaller than the largest one. Two peaks have f in the order

of 2 and 0.1, and finally one peak (νcalc = 1469 cm−1) has null calculated oscillator strength.

The identification of peaks 5 and 7 (see zooms in Figures 4(a) and 4(c) ), whose f is three

to four orders of magnitude smaller than the dominant peak, would have been impossible

through the fitting process alone, i.e. without the guidelines provided by simulation. Note

that Frech et al. (1980)[7] have reported no data in the far infrared range and, by focusing

on the high frequency region 650-1600 cm−1, have been able to identify only 7 out of the 10

fundamental IR peaks.

The null calculated intensity of mode 8 (Figure 4(d) ) permits to reduce the number of

oscillators to 7, and to eliminate from the fitting process three variables that would further

increase the correlation among all the parameters. The weak and broad feature in the 1450-

1550 cm−1 experimental range (see again Figure 4(d) ) is likely to be related to the very

intense bands appearing along the a and c axes in the same interval: it should be attributed

to leakage, and/or non perfect orientation of the sample.

It is worth to underline that peaks 5 and 7 are extremely small features of the spectrum.

There are other similar “minor” features that might in principle be taken into account in

the fitting process, so that only the comparison with the simulated spectrum permits to

select the ones that correspond to fundamental frequencies. A similar “zoom”, with al-

most the same scale as for peaks 5 and 7, is shown in Figure 4(b), to focus on the small

peak located by the best fit at 844 cm−1: as in this spectral region there are no calculated

fundamental modes, this feature should be attributed to a combination mode, as proposed

by White[53] and Donoghue et al.[54]. We can generate all the direct products of cou-
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ples of fundamental modes that yield a mode with B3u symmetry. The only combination

whose frequency is reasonably close to the observed one is 699.8 (B2u) + 151.7 (B1g) =

851.5 cm−1, which is only 8 cm−1 higher than the experimental value. Graphical animation

(www.crystal.unito.it/prtfreq/jmol.html) shows that the former mode is an in-plane

bending of a single C-O bond in each CO−−3 unit, while the latter mode is an out-of-plane

libration of each unit around the axis defined by the same C-O bond.

A similar analysis of the intense and weak peaks of the spectrum might be performed for

the b and c axes as well. Note that the lattice bands in the three polarization directions

strongly overlap, so that measurements on powder samples would be unlikely to reveal all

the details observed in this single crystal study.

The refractive (n) and absorption (k) indices can be obtained as a by-product of the best

fit, starting from the complex dielectric function. They are shown in Figure 5 for the three

crystallographic directions.

D. IR frequencies and intensities

Let us now compare quantum-mechanically calculated and experimental frequencies and

intensities, shown in Table III; the corresponding statistics are reported in Table V.

For TO modes the agreement is excellent for all but two frequencies, with a difference never

larger than 10 cm−1. The mean absolute difference |∆| is as small as 6.3 and 5.2 cm−1 for

the a and c axes, respectively. It increases to 14.1 cm−1 for the b axis, due to two large

differences (underestimations) for modes 1 and 3 (-40 and -22 cm−1, respectively). The

reason why these two modes are too soft is related to the B3LYP (slight) overestimation of

the lattice parameters. In order to quantify the relevance of this effect, calculations were

repeated at the experimental lattice parameters (all inner fractional coordinates having

been re-optimized). The results for the b axis (Table VI) show a systematic increase of the

frequencies between 5 (high frequencies) and 28 (low frequencies) cm−1. Indeed, modes 1

and 3 turn out to be the most sensitive to the volume change, with an increase of 28 and 23

cm−1, respectively. The mean absolute deviation |∆| with the experiments reduces to 7.5

cm−1 (from 14.1 cm−1). A similar behavior at low frequencies has already been identified in

the case of a soft Mg mode at 134 cm−1 in pyrope garnet [27].

Similar considerations hold for the LO frequencies (reported in Table III, too), the mean
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and maximum absolute deviations being very close to the TO ones. In this case, the two

frequencies with deviations larger than 10 cm−1 in modulus are mode 1 of axis b (again, -33

cm−1) and mode 8 of axis c (+17 cm−1, i.e. only 1%).

As regards the oscillator strengths (Table III, multiplied by 103), in general the agreement

is excellent. Taking into account that they span 4 orders of magnitude, f exp and f calc are

always very close: for values larger than 20, differences do not exceed 30% in all but one

case. An overall measure of the quality of f values is given by F =
∑

n fn, that is the

ionic contribution to the static dielectric tensor (see Table VII). For the a and c directions

F exp and F calc differ by only -4% and +9 %, respectively. In the case of b the difference

increases to +70%, as a consequence of the very large oscillator strength of mode 1. If this

mode is excluded from the statistics, the difference reduces to +18%. The huge simulated

f value for this mode is connected to the underestimation of its frequency. Again, at the

experimental cell parameters (Table VI) the agreement of all the oscillator strengths for the

b axis improves. In particular, f for mode 1 reduces from 6555 to 3670, which is considerably

closer to the experimental value at 2228.

The calculated TO-LO splittings δν are in good agreement with the experimental TO-LO

splittings (Table III). The only two differences larger than 10 cm−1 (B2u modes 3 and 5)

occur for δν larger than 100 cm−1, so that the relative difference is smaller than 10%. Large

splittings of the transverse and longitudinal components are associated to modes with large

oscillator strengths (i.e. large dipole moment variations), and result in broad reflectance

bands. This is the case of out-of-phase translations of CO−−3 and Ca++ units (modes B1u 3,

B2u 3, B3u 2) and of CO−−3 antisymmetric stretchings (modes B1u 8 and B2u 5).

Finally, let us comment on the values for the optical dielectric tensor ε∞, reported in Table

VII. Calculated values for the three axes are 2.181, 2.660 and 2.674, slightly smaller (-6%,

-5% and -5%, respectively) than the experimental determinations. This trend is typical for

B3LYP calculations (see, for example, Ref. 27).

E. Raman frequencies and spectra

Several aragonite experimental Raman spectra have been reported before the one pro-

duced in the present study[6, 7, 9, 55]. In particular, Aĺıa (1997)[55] has collected the

unpolarized spectrum of a polycrystalline sample; Frech et al. (1980) [7] have performed
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polarized Raman measurements over a single crystal, as in this work; both experiments have

been carried out at room temperature. Since presently we are unable to provide computed

values for the Raman intensities (whose calculation is currently being implemented in the

CRYSTAL code), simulation can be used only for predicting the frequencies. However, as

the Raman experimental spectra are more directly comparable with simulation and provide

directly the frequency of the modes, with no need of fitting through models, the available

information from simulation is sufficient to identify most of the modes absent in previous

determinations.

All sets of frequencies are listed in Table VIII; the present experimental spectra are shown in

Figures 6 and 7. The three experimental determinations are in quite good agreement among

them when the common subset of modes is considered: the mean absolute deviations with

each other are around only 1 cm−1. Frech et al. have identified 23 distinct peaks, while Aĺıa

has reported 19 peaks. As for the IR, comparison with simulation permits us to identify

more modes than in previous studies, i.e. 27 out of the 30 that are symmetry allowed. The

overall agreement between simulated and experimental frequencies is excellent, the mean

absolute deviation |∆| being 6.4 cm−1 (Aĺıa), 6.6 cm−1 (Frech et al.) and 5.8 cm−1 (present

study). In this latter case, the largest errors are found at low frequencies, namely for mode

25 (-21 cm−1) and mode 10 (-15 cm−1). Both of them are close to 100 cm−1; the explanation

for the large underestimation is the same as for mode 1 of the IR spectrum along the b axis

(B3LYP overestimation of the lattice parameters). Note also a difference much larger than

10 cm−1 for mode 24 around 1500 cm−1 (18 cm−1, i.e. 1.1%).

Let us now focus on the features that would have been hard to identify without the help of

simulation (see Figures 6 and 7 as a reference). The main difficulty is the complete identi-

fication of the sets of modes for each single symmetry; the reason is that there are several

modes with different symmetry but very close frequency. Frech et al. have missed four

modes with respect to the present study: peaks 13 and 15 (B1g symmetry), peak 23 (B2g

symmetry) and peak 26 (B3g symmetry); they are highlighted by arrows in Figure 6. In all

these cases, Frech et al. have found the peaks in the spectra, but have assumed they were

leakages of very intense peaks from other symmetries (peaks 4, 9, 8 and 16, respectively).

The study by Aĺıa has been complicated by the fact that he has performed unpolarized Ra-

man measurements on a polycrystalline sample, so that no symmetry assignment has been

possible. In addition to the four modes missed by Frech et al., Aĺıa has not identified four

13



additional modes (see again the arrows in Figures 6 and 7). Two of them have been covered

by leakage: peak 3 (Ag symmetry, superposed to peak 27) and peak 14 (B1g, hidden by peak

6). Moreover, the two B2g peaks 22 and 24 have not been found at all, most probably due

to their low intensity.

There are three modes that appear in our simulation but do not have any experimental

counterpart; they lie at 199 (B1g), 279 (B2g) and 1415 (B3g) cm−1. If we inspect the ex-

perimental curves in the corresponding regions, even by expanding the intensity scale (not

shown) we are unable to identify any spectral feature. This suggests that these three modes

must be characterized by very low, or even null, intensity.

Finally, it is worth commenting on the Ag peak at 1060 cm−1 (Figure 7), which does not

match any of the computed Raman frequencies, thus is not a fundamental mode. Upon

isotopic substitution analysis, simulation suggests to attribute it to a 18O isotope satellite

mode of the very intense peak at 1086 cm−1. The simulated isotopic shift is 20 cm−1, in

good agreement with the experimental one (26 cm−1); moreover, this is the only simulated

mode that shows a significant shift upon 18O isotopic substitution. Graphical animation

(www.crystal.unito.it/prtfreq/jmol.html) shows that the mode at 1086 cm−1 is the

symmetric C-O stretching in the CO−−3 units. Indeed, when a 16O atom is substituted

with the 18O isotope, animation shows that CO−−3 units with only “regular” 16O atoms still

stretch at 1086 cm−1, while units bearing the 18O isotope decouple from the others and

stretch at 1060 cm−1. Further evidence comes from the relative intensities of the two peaks.

The experimental ratio is about 1/200, which implies a 0.5 % abundance of CO−−3 units

bearing a 18O atom, and thus a 0.17 % abundance of this isotope in the sample. This value

is extremely close to 18O natural abundance, i.e. 0.2 %.

V. CONCLUSIONS

We have presented a combined experimental and computational investigation of the In-

frared (IR) reflectance and Raman spectra of CaCO3 aragonite. The analysis has been

carried out in a very integrated way, so that strengths of the two approaches are exploited

synergically.

Fitted and experimental IR spectra are in excellent agreement. For one IR band of B2u

symmetry, the three-parameter Drude-Lorentz model used for interpreting the experimental
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spectrum is in part unsatisfactory. When the more sophisticated Four-Parameter Semi-

Quantum model (taking into account peak asymmetry by describing TO and LO modes

separately) is adopted, the agreement for this peak improves substantially, whereas it re-

mains unaltered for the other peaks. Spectral features, that would be hardly recognized

as peaks due to low intensity, are clearly identified thanks to comparison with simulation.

Overall, 20 fundamental modes were assigned, out of the theoretical 21. On the other hand

a clearly visible peak at 844 cm−1 in the B3u spectrum is missing from the list of computed

fundamental IR modes, so that it is characterized as a combination mode.

Computed and experimental (fitted) IR frequencies and intensities are in very good agree-

ment, the mean absolute deviations being 7.8 cm−1 and 335, respectively. A large fraction

of these differences is due to modes at 105 and 220 cm−1 in the B2u spectrum. In this case

the discrepancy is attributed to the computational method, in particular to the well known

lattice overestimation typical for the B3LYP Hamiltonian.

Raman frequencies are in excellent agreement, too (mean absolute deviation 5.8 cm−1). In

this case, the comparison with simulation permits to identify a certain number of peaks,

that were not recognized in previous studies due to superposition with other peaks or low

intensity; 27 (out of 30) Raman modes were characterized. An experimental feature at 1060

cm−1 in the Ag spectrum is absent in the calculation; it has been identified as a 18O isotope

mode of the very intense peak at 1086 cm−1.

For both IR and Raman spectra the availability of computed frequencies is crucial for a

complete identification of the modes in the spectra, and for their classification.
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FIG. 1. Orthorhombic unit cell of aragonite (Pnma space group), containing four CO−−3 units and

four Ca++ ions. The Cartesian frame is chosen so that x, y and z axes coincide with a, b and c,

respectively. Symmetry planes are drawn as well.
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FIG. 2. IR reflectance spectra along a, b and c axes of aragonite: experimental data (points)

versus fitted curve (solid line). The fitting is performed based on the three-parameter Drude-

Lorentz model, by taking the quantum-mechanically computed frequencies and oscillator strengths

as starting values.
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FIG. 3. Zoom over the 150-450 cm−1 range of the IR reflectance spectrum along the b axis (B2u

symmetry) of aragonite: experimental data (points) versus fitted curves. The fitting is performed

based on either the three-parameter Drude-Lorentz model (solid curve) or the Four-Parameter

Semi-Quantum model (dashed curve). In both cases the quantum-mechanically computed frequen-

cies and oscillator strengths are taken as initial values for the fitting parameters.
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symmetry) of aragonite: experimental data (points) versus fitted curve (solid line). a) mode 5; b)

combination mode at 843.6 cm−1; c) mode 7; d) mode 8. See caption to Figure 2 for details on the

fitting. Note the very expanded R scale (compare to Figures 2 and 3).
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FIG. 6. Experimental polarized Raman spectra for the B3g (a axis), B2g (b axis) and B1g (c axis)

symmetries of aragonite. Arrows indicate spectral features discussed in Section IV E (mode labels

as in Table VIII).

22



FIG. 7. Experimental polarized Raman spectra for the Ag symmetry of aragonite along the b and

c axes. Arrows indicate spectral features discussed in Section IV E (mode labels as in Table VIII).

The symbol # marks a 18O isotope mode.
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Calc. Exp.

This work Caspi et al. (2005)[13]

a 5.008 4.9633 4.96183

b 8.029 7.9703 7.96914

c 5.861 5.7441 5.74285

V 235.6 227.23 227.081

Cax -0.24031 -0.24044 -0.24015

Caz 0.41553 0.41505 0.41502

Cx -0.08144 -0.08520 -0.0823

Cz -0.23778 -0.23801 -0.2381

O1x -0.09008 -0.09530 -0.09453

O1z -0.07862 -0.07777 -0.07762

O2x -0.08435 -0.08690 -0.08725

O2y 0.47219 0.47410 0.47499

O2z -0.31882 -0.31957 -0.31987

dC−O1 1.2789 1.2792 1.2808

dC−O2 1.2891 1.2883 1.2929

dCa−O 2.4324 2.4162 2.4127

TABLE I. Calculated (B3LYP) and experimental geometry of aragonite (Pnma space group, 20

atoms in the unit cell, 4 of which symmetry independent). a, b and c are the cell parameters [Å],

V the volume [Å3]. Atomic coordinates are in fractional units, distances dx−y in Å.
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Symm. IR activity Raman activity Optical Modes

External Internal Total

Ag αxx, αyy , αzz 5 4 9

B1g αxy 4 2 6

B2g αxz 5 4 9

B3g αyz 4 2 6

Au 4 2 6

B1u E ‖ c 4 4 8

B2u E ‖ b 3 2 5

B3u E ‖ a 4 4 8

TABLE II. Classification of the vibrational modes of aragonite. Symmetry is obtained from group

theory analysis. IR and Raman polarization directions are indicated. External (lattice) and CO−−3

internal modes are characterized by very different frequencies, and are easily identified through

graphical animation of the eigenvectors.
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TO LO TO-LO

νcalc νexp ∆ν fcalc fexp ∆f νcalc νexp ∆ν δνcalc δνexp ∆δ

a (B3u) 1 174.1 183.1 -9.0 91.8 60.4 31.40 174.6 183.3 -8.7 0.5 0.2 0.3

2 210.1 207.8 2.3 3920.2 4105.6 -185.36 353.8 348.4 5.4 143.7 140.6 3.1

3 269.1 259.2 9.9 62.4 77.4 -15.01 266.9 257.2 9.7 -2.2 -2.0 -0.2

4 288.9 286.9 2.0 35.0 43.5 -8.53 287.0 284.6 2.4 -1.9 -2.3 0.4

5 719.2 718.3 0.9 0.1 0.4 -0.26 719.2 718.4 0.8 0.0 0.1 -0.1

# – 843.6 – – 6.1 – – – – – – –

6 861.9 852.2 9.7 113.1 116.1 -2.98 886.7 876.7 10.0 24.8 24.5 0.3

7 1092.9 1082.8 10.1 2.4 1.9 0.46 1093.6 1083.3 10.3 0.7 0.5 0.2

8 1469.9 – – 0.0 – – 1469.9 – – 0.0 – –

F [∆F ] 4225.0 4405.3 [ 244.0 ]

b (B2u) 1 65.4 105.4 -40.0 6554.9 2228.3 4326.63 83.7 116.5 -32.8 18.2 11.1 7.1

2 158.7 164.2 -5.5 62.1 53.4 8.66 158.9 164.2 -5.3 0.3 0.0 0.3

3 198.0 219.9 -21.9 5838.5 4862.0 976.45 343.8 352.5 -8.7 145.8 132.6 13.2

4 697.4 699.8 -2.4 5.2 6.7 -1.53 698.1 699.0 -0.9 0.7 -0.8 1.5

5 1445.1 1444.5 0.6 467.1 458.0 9.08 1571.8 1561.0 10.8 126.7 116.5 10.2

F [∆F ] 12927.7 7608.4 [ 5322.4 ]

c (B1u) 1 147.3 144.4 2.9 16.2 59.3 -43.10 147.4 144.9 2.5 0.1 0.5 -0.4

2 200.7 208.6 -7.9 2617.5 1829.6 787.87 218.4 221.3 -2.9 17.8 12.7 5.1

3 245.5 249.5 -4.0 2286.7 2423.0 -136.31 359.7 364.2 -4.5 114.2 114.7 -0.5

4 293.1 298.0 -4.9 7.0 164.9 -157.91 292.8 292.8 0.0 -0.2 -5.2 5.0

5 712.2 712.4 -0.2 15.5 16.6 -1.12 714.2 714.4 -0.2 2.0 2.0 0.0

6 913.1 908.8 4.3 0.1 0.2 -0.06 913.1 908.8 4.3 0.0 0.0 0.0

7 1092.9 1082.8 10.1 1.3 1.1 0.21 1093.1 1082.9 10.2 0.2 0.1 0.1

8 1474.1 1466.6 7.5 469.2 461.2 8.02 1602.9 1586.0 16.9 128.8 119.4 9.4

F [∆F ] 5413.5 4955.9 [ 1134.6 ]

TABLE III. Calculated (B3LYP) and experimental (fitted) IR active vibrational frequencies ν

[cm−1] and oscillator strengths f (adimensional and multiplied by 103) along the a, b and c axes

(B3u, B2u and B1u symmetry, respectively) of aragonite. Calculations were performed at the

optimized cell volume. Experimental values were obtained through a best fit with the three-

parameter Drude-Lorentz model. δν is the TO-LO splitting. ∆ν, ∆f and ∆δ are the differences

between calculated and experimental quantities. F =
∑

n fn is the sum of the oscillator strengths,

∆F =
∑

n |∆fn| is the sum of the absolute differences between experimental and calculated os-

cillator strengths. Statistics are reported in Table V. The symbol # indicates a combination

mode.
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TO LO

νFPSQ
exp νDL

exp ∆ν fFPSQ
exp fDL

exp ∆f νFPSQ
exp νDL

exp ∆ν γFPSQ
TO,exp γFPSQ

LO,exp ∆γFPSQ
exp γDL

exp

1 105.2 105.4 -0.2 2467.8 2228.3 239.5 116.1 116.5 -0.4 12.5 14.3 -1.8 13.5

2 164.2 164.2 0.0 87.6 53.4 34.2 164.7 164.2 0.5 15.8 15.9 -0.1 15.8

3 221.0 219.9 1.1 5651.8 4862.0 789.8 369.9 352.5 17.4 7.3 35.4 -28.1 9.0

4 699.8 699.8 0.0 7.2 6.7 0.5 700.7 699.0 1.7 1.7 1.8 -0.1 1.7

5 1444.4 1444.5 -0.1 510.2 458.0 52.2 1575.3 1561.0 14.3 9.7 10.4 -0.7 9.0

F [∆F ] 8724.6 7608.4 [ 1116.2 ]

|∆| 0.3 223.2 6.9

∆ 0.2 223.2 6.7

|∆|max 1.1 789.8 17.4

TABLE IV. Difference between IR active experimental frequencies [cm−1], oscillator strengths

(adimensional, multiplied by 103) and damping factors [cm−1] along the b axis (B2u symmetry)

obtained by fitting with the Four-Parameter Semi-Quantum (FPSQ) and the three-parameter

Drude-Lorentz (DL) models. ∆ν and ∆f are the differences between quantities fitted with the two

models. ∆γFPSQexp is the difference between γTO and γLO obtained with the FPSQ model. For F

and ∆F see caption to Table III; for statistical indices see caption to Table V.
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νTO f νLO

a |∆| 6.3 34.9 6.8

∆ 3.7 -25.8 4.3

|∆|max 10.1 185.4 10.3

b |∆| 14.1 1064.5 11.7

∆ -13.8 1063.9 -7.4

|∆|max 40.0 4326.6 32.8

c |∆| 5.2 141.8 5.2

∆ 1.0 57.2 3.3

|∆|max 10.1 787.9 16.9

Σ |∆| 7.8 335.05 7.4

∆ -1.8 279.83 1.0

|∆|max 40.0 4326.63 32.8

TABLE V. Statistics on the calculated and experimental IR active vibrational frequencies ν [cm−1]

and oscillator strengths f (adimensional, multiplied by 103) along the a, b and c axes (respectively

B3u, B2u and B1u symmetry) of aragonite (data in Table III). Calculations were performed at the

optimized cell volume. Experimental data were obtained from the three-parameter Drude-Lorentz

fitting. Statistical indices (x is either ν or f): |∆| =
∑N

i=1 |∆xi|/N is the mean absolute difference,

∆ =
∑N

i=1 ∆xi/N is the mean difference, |∆max| is the maximum difference, N is the number of

available experimental data, on which statistics are performed; N is 7, 5 and 8 for the three axes,

respectively.
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TO LO

νE.V.
calc νO.V.

calc ∆νO.V.
calc νexp ∆νexp fE.V.

calc fO.V.
calc ∆fO.V.

calc fexp ∆fexp νE.V.
calc νO.V.

calc ∆νO.V.
calc νexp ∆νexp

1 93.4 65.4 27.9 105.4 -12.0 3670.2 6554.9 -2884.7 2228.3 1441.9 109.6 83.7 25.9 116.5 -6.9

2 172.0 158.7 13.3 164.2 7.8 12.4 62.1 -49.7 53.4 -41.1 172.0 158.9 13.1 164.2 7.8

3 220.8 198.0 22.8 219.9 0.9 4910.5 5838.5 -927.9 4862.0 48.5 360.0 343.8 16.3 352.5 7.5

4 702.0 697.4 4.6 699.8 2.2 6.5 5.2 1.3 6.7 -0.2 702.8 698.1 4.7 699.0 3.8

5 1459.0 1445.1 13.9 1444.5 14.5 476.2 467.1 9.1 458.0 18.2 1586.9 1571.8 15.1 1561.0 25.9

F [∆F ] 9075.8 12927.7 [ 3872.7 ] 7608.4 [ 1549.9 ]

|∆| 16.5 7.5 774.5 310.0 15.0 10.4

∆ 16.5 2.7 -770.4 293.5 15.0 7.6

|∆|max 27.9 14.5 2884.7 1441.9 25.9 25.9

TABLE VI. Comparison of IR active calculated frequencies ν [cm−1] and oscillator strengths f

(adimensional, multiplied by 103) along the b axis (B2u symmetry) obtained at the experimental

(E.V.) and optimized (O.V.) lattice parameters. ∆νO.V.calc (∆fO.V.calc ) is the difference between the

frequencies (oscillator strengths) calculated at the experimental and optimized lattice parameters;

∆νexp (∆fexp) is the difference between the frequencies (oscillator strengths) calculated at the

experimental lattice parameters and the experimental values (obtained from the three-parameter

Drude-Lorentz fitting). For F and ∆F see caption to Table III; for statistical indices see caption

to Table V.
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ε0 ε∞ F

Calc. Exp. ∆% Calc. Exp. ∆% Calc. Exp. ∆%

xx (a) 6.406 6.74 -5.0 2.181 2.33 -6.4 4.225 4.41 -4.1

yy (b) 15.588 10.41 +49.7 2.660 2.81 -5.3 12.928 7.61 +70.0

zz (c) 8.087 7.78 +3.9 2.674 2.82 -5.2 5.414 4.96 +9.2

TABLE VII. Calculated (B3LYP) and experimental (fitted) static dielectric tensor (ε0) and its

components: the electronic (high frequency) (ε∞) and the ionic contributions, the latter evaluated

as the sum of the oscillator strengths (F =
∑

n fn). The three Cartesian directions correspond to

the crystallographic ones (indicated in parentheses), so that the dielectric tensor turns out to be

diagonal. Experimental values were obtained from the three-parameter Drude-Lorentz fitting of

the reflectance spectrum.
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This work Frech 1980[7] Aĺıa 1997[55]

Symm. νcalc νexp ∆ν νexp ∆ν νexp ∆ν

1 Ag 148.7 141.5 7.2 142 6.7 143.1 5.6

2 161.9 160.5 1.4 161 0.9 163.5 -1.6

3 195.8 193.8 2.0 193 2.8 – –

4 205.0 213.5 -8.5 214 -9.0 215.6 -10.6

5 280.2 283.5 -3.3 284 -3.8 284.8 -4.6

6 704.2 704.9 -0.7 705 -0.8 705.7 -1.5

7 862.8 853.0 9.8 853 9.8 853 9.8

# – 1059.8 – – – – –

8 1095.3 1085.5 9.8 1085 10.3 1085.7 9.6

9 1473.9 1463.0 10.9 1462 11.9 1462 11.9

10 B1g 97.4 112.6 -15.2 112 -14.6 115.4 -18.0

11 152.1 151.7 0.4 152 0.1 153.3 -1.2

12 199.0 – – – – – –

13 213.4 213.9 -0.5 – – – –

14 705.5 705.7 -0.2 721 -15.5 – –

15 1463.9 1461.5 2.4 – – – –

16 B2g 182.5 178.8 3.7 180 2.5 180.6 1.9

17 207.2 205.1 2.1 206 1.2 206.4 0.8

18 249.2 246.8 2.4 248 1.2 248.5 0.7

19 260.7 259.5 1.2 260 0.7 260.4 0.3

20 278.7 – – – – – –

21 714.6 715.8 -1.2 717 -2.4 716.5 -1.9

22 911.8 908.0 3.8 907 4.8 – –

23 1091.6 1085.0 6.6 – – – –

24 1591.8 1574.0 17.8 1574 17.8 – –

25 B3g 101.3 122.5 -21.2 123 -21.7 129.3 -28.0

26 167.6 179.6 -12.0 – – – –

27 177.8 189.5 -11.7 190 -12.2 191.3 -13.5

28 271.4 271.5 -0.1 272 -0.6 272.3 -0.9

29 701.2 700.6 0.6 701 0.2 701.3 -0.1

30 1415.0 – – – – – –

N 27 23 19

|∆| 5.8 6.6 6.4

∆ 0.3 -0.4 -2.2

|∆|max 21.2 21.7 28.0

TABLE VIII. Calculated (B3LYP, optimized volume) and experimental Raman active vibrational

frequencies ν (cm−1) of aragonite. N is the number of experimental data, on which statistical

analysis against computed values is performed; statistical indices are defined in the caption to

Table V. The symbol # indicates a 18O isotope mode.
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[28] R. Demichelis, H. Suto, Y. Noël, H. Sogawa, T. Naoi, C. Koike, H. Chihara, N. Shimobayashi,

M. Ferrabone, and R. Dovesi. The infrared spectrum of ortho-enstatite from reflectance

experiments and first-principle simulations. Mon. Not. R. Astron. Soc., 420:147–154, 2012.
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