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Abstract – Plastic effect of environmental factors acting on an aquatic submerged plant, Potamogeton
perfoliatus L. at the plant-level (nutrient availability) and the leaf-level (light intensity) at different sites in
Lake Balaton was studied. Light-dependent morphological traits (foliar morphology and internode length) of

P. perfoliatus were measured and analysed across the environmental gradients of the lake. The size of leaves
was influenced by both trophic state and light environment: nutrient surplus increased the size of leaves by
y29%, whereas a more heterogeneous light environment resulted in 15% larger leaves. The light environment
influenced shoot morphology (internode length) to a greater extent than nutrient surplus (38% vs. 19%).

Contrary to this, within-plant morphological variability was significantly higher (41%) at the nutrient limiting
sites as a result of diversification effect of the leaf-level environmental factor, light. Foliar parameters
and within-plant variability showed correlation only with the total N content of the sediment. Appearance

of P. perfoliatus is shaped by counteracting effects: within-plant differentiation, promoted by leaf-level
environmental sensitivity and within-plant homogenization triggered by perception of the surroundings at
plant-level. Both light attenuation, stimulating an increase of morphological variability, and nutrient surplus,

initiating the stabilization of morphological parameters, could have adaptive advantages. The variability of
leaf size leads to diversification of foliar parameters, thus increasing the efficiency of light harvest at
low-nutrient sites and making responses to changes in the light environment more dynamic. These results

suggest that leaf-level-induced diversification is counteracted by the standardization effect triggered by plant-
level environmental factors.
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Introduction

By way of phenotypic plasticity, a plant genet produces
different morphological forms according to the environ-
mental conditions present. This prevents the decrease of its
fitness and therefore has an evolutionary function. Many
studies recognize the adaptive role of phenotypic plasticity
in plant species (Wells and Pigliucci, 2000; Miner et al.,
2005; Garbey et al., 2006), and only recently ecological
and evolutionary importance of plastic interaction be-
tween individual organisms and their environments has
also been recognized (De Kroon et al., 2005; Barthélémy
and Caraglio, 2007; Karban, 2008).

Little is known about the importance and ecological
function of within-plant morphological variability (Orians
and Jones, 2001). Previous morphological studies mainly
focus on variability along major environmental transitions

resulting in some important developmental (heteroblast-
omy) or ecological (heterophylly) changes (Wells and
Pigliucci, 2000), but less drastic environmental gradients
have not been studied at all, even though they might add
substantially to the understanding of the transition from
acclimation to adaptation.

Owing to the fact that it is built from somatic modules
that appear during ontogenesis, repeatedly recreating the
same pattern of vegetative tissue (e.g., leaves, internodes,
etc.), a single plant is sensitive to its environment at the
whole-plant, as well as sub-individual (leaves, internodes,
etc.) levels. At the location of a plant some environmental
factors (e.g., light in the tree crown or light attenuation
within the water column) change in a spatially determinis-
tic way, thus each leaf perceives a unique environmental
signal from the conditions present. Moreover, the effect of
these local conditions are expressed over a very limited
distance such that the light perceived by a Potamogeton
leaf will manifest within that specific leaf (hereinafter*Corresponding author: toth.viktor@okologia.mta.hu
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referred to as leaf-level environmental conditions), thus
increasing the heterogeneity of plants. In addition to these
leaf-level environmental signals, the whole plant also
perceives environmental signals that have general effects
on the whole plant (e.g., chemical or physical character-
istics of the sediment – hereinafter referred to as plant-level
environmental conditions). It is not known how the plant-
level and leaf-level environmental factors operate, but it
could be presumed that plant-level environmental factors
would affect the whole plant in general, while sensitivity
to environmental factors at the single leaf-level would
manifest within a single plant in high morphological
variation of its somatic modules (De Kroon et al., 2005;
Schlichting and Piglucci, 1998). Late environmental
acclimatization at subindividual level affects the perform-
ance of a single plant, helping individual plants exploit
all possible slices of environment, while the decrease of
subindividual variability might lead to specification of the
plant to the given environmental conditions. Therefore,
it is possible that within-plant variability of different
morphological parameters could have evolutionary con-
sequences.

Macrophytes are especially suitable for examining
not just plant-level, but also within-plant heterogeneity,
as they experience much stronger vertical gradients
(especially light, within the water column) than terrestrial
plants. For this, we used a common and wide-spread
plant, Potamogeton perfoliatus L., which is highly variable;
therefore it is to be expected that it will show changes in its
morphology and within-plant morphological variability
to environmental factors, in the present case to the very
much differing conditions at study sites around the lake,
constituting therefore a suitable model for examining how
a single macrophyte can react to changes in the environ-
ment.

Lake Balaton is large (596 km2), shallow (mean depth:
3.5 m) and elongated in shape. Its northern, windward
shore has a constant, rather steep depth gradient, its
sediment consisting of more nutrient-rich dolomite lime-
stone, whereas the southern shore is shallow and
mildly sloped with a sandy bottom, which is more wave
exposed (Máté, 1985). These differences result in shore-
specific light environments: the deeper northern shore,
owing to higher light attenuation has a lower average
irradiance and a vertically more heterogeneous light
environment (seasonal average of irradiance at basal leaf
<10 mmol.mx2.sx1), while the shallow, more transparent
southern shore has a sunnier and a vertically more
homogeneous light environment (seasonal average of
irradiance at basal leaf ca. 250 mmol.mx2.sx1) (Tóth
et al., 2011). In addition to the difference in light
environment, there is a west-east trophic gradient due to
the only large inflow at the westernmost basin of the lake.
The river Zala constitutes a major source of external
nutrient loading at the westernmost basin, resulting in a
eutrophic state of the basin, while the easternmost basin
of Lake Balaton is mesotrophic (Présing et al., 2008).

The objective of this study was to investigate
within-plant variability of light-sensitive morphological

parameters on leaves and stem, and its relation to shore-
specific light and basin-specific trophic environments. The
hypothesis of the study was that plant-level environmental
conditions (i.e., nutrient levels) decrease the variability of
morphological features leading to homogenization,
whereas leaf-level environmental signals increase hetero-
geneity (i.e., morphological variability), thus leading to
diversification. The interaction (synergism, antagonism
and amplification) of the plant-level and leaf-level en-
vironmental conditions on morphological variability were
also studied in this experiment: could environmental
effects at different levels act together (synergism), or act
against each other (antagonism), or could the magnitude
of one (or both) environmental conditions be amplified by
the other (amplification)?

Materials and methods

Sampling sites

Lake Balaton exhibits major trophic gradient (west-
to-east) and shore-specific (northern vs. southern) light
environment, thus study areas were chosen so as to reflect
these differing conditions. Nine sampling points within
highly vegetated areas were chosen (Fig. 1): about half of
the sites were on the southern and half on the northern
shore, and about half were in the easternmost basin and
about half in the westernmost basin.

Chemical characteristics of the sediment were obtained
from Csermák and Máté (2004), and also validated by our
own measurements at nine points according to Buzás
(1988). The data of Csermák and Máté (2004) are shown
in Table 1a.

The specific light environment was measured with
pendant light sensors (Onset Corp., USA) for every
20 cm throughout the entire depth of the water column
at each sampling site. Measurements in the westernmost
basin were performed once a month throughout the
vegetation period at multiple points with seven sensors
fixed to a plastic pole, whereas in the easternmost basin
the light was measured throughout the whole vegetation
period with fixed sensors. The light attenuation coefficient
(Kd) of the sampling sites was calculated based on these
data. Results of the light measurements are summarised
in Table 1b.

Plant sampling and measurements

Sampling took place in July and August, 2007. At each
sampling point, between four and six intact, healthy
looking P. perfoliatus shoots were collected at random
and transported in a cooling box to the laboratory.

All leaves and internodes of every shoot were
measured. Parameters reflecting the shape and size
of leaves (leaf length, leaf width, leaf area and leaf
dry weight) were measured. Leaves were scanned and
their dimensions acquired using the software ImageJ
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(http://rsb.info.nih.gov/ij/). Leaves were dried at 105 xC
to a constant weight and weighed. Within-plant morpho-
logical variability was calculated for each single plant as
the difference between the maximal and minimal values
of that parameter relative to the minimum of that same
parameter ([max–min]/min).

Data analysis

The nutrient effect was calculated as the difference
between the morphological parameters between the
westernmost (eutrophic) and easternmost (mesotrophic)
basins. In analogy, the difference in morphological para-
meters between the northern and southern shores of Lake
Balaton was postulated as the light effect.

For the General Linear Model (GLM) test, morpholo-
gical and variability data were tested with the shore (light)
and the basin (nutrients) as categorical variables, water
depth and the date (day from 1st of January) of sampling
as continuous variables and plants as random variables.
Normality of error and homogeneity of variance were
checked and necessary transformations were applied.
Measured variables were tested with a t-test, a GLM and
Spearman correlation using RExcel (Baier and Neuwirth,
2007).

Results

Both nutrient and light environment significantly af-
fected the appearance of P. perfoliatus leaves. The largest

Fig. 1. Schematic view of the sampling sites in Lake Balaton.

Table 1a. Water depth (cm), light attenuation coefficient of whole water column (mx1) and the number of samples at the north-
eastern (NE), south-eastern (SE), north-western (NW) and south-western (SW) study sites of Lake Balaton (average¡SD).

Different letters after the numbers show statistically different results (P<0.05).

NE SE NW SW Samples
Depth 143¡6a 83¡3b 125¡10a 79¡4b 4
Kd 2.2¡0.3a 1.9¡0.2a 3.3¡0.3b 2.6¡0.3b >8

Table 1b. Total phosphorus (mg kgx1), total nitrogen (g kgx1), CaCO3 (%) content and pH of the sediment at the north-eastern
(NE), south-eastern (SE), north-western (NW) and south-western (SW) study sites of Lake Balaton (average¡SD). Number of
samples: 4. For more information please see Csermák and Máté (2004). Different letters after the numbers show statistically

different results (P<0.05).

NE SE NW SW
Total P 143¡46a 50¡21b 204¡13c 234¡32c

Total N 2.2¡0.1a 0.5¡0.1b 10.0¡7.7a 5.9¡3.4a

CaCO3 48¡8a 20¡4b 54¡1a 35¡7c

pH 7.2¡0.1a 7.6¡0.3b 7.6¡0.1b 7.2¡0.1a
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and heaviest leaves were obtained at the north-west
sampling points, where both the high nutrient (total N
and total P, Table 1b) and the heterogeneous irradiance
(Kd, Table 1a) influenced leaf morphological parameters
(Table 2), whereas the plants at the south-east site (lowest
nutrient and the most homogeneous light environment)
had the smallest leaves (Table 2). The effect of nutrient
content of the sediment was more pronounced, since all
foliar parameters were on average 24% higher in the
nutrient-rich westernmost basin, while the more hetero-
geneous light environment of the northern shore increased
all foliar parameters by ca. 10% (Table 2). Besides the
foliar parameters, the internode length was also highest
at the north-western site and lowest at the south-eastern
site, but the influence of light heterogeneity was more
pronounced (38%), than that of nutrient content (19%,
Table 2). The GLM test also supported the fact that the
trophicity of the studied sites predominantly influences
the foliar parameters, while the heterogeneity of light had
a more pronounced influence on internodal length of
P. perfoliatus (Table 3).

Foliar parameters of P. perfoliatus increased with
increasing nutrient content of the sediment: for example,
the leaf area of plants ranged from 4.2 to 7.8 cm2 (y86%
increase), whereas leaf biomass varied from 12.1 to
22.3 mg (DW) (y84% increase), although significant

correlations were only found with total nitrogen content
(Fig. 2, Table 4). The increase in leaf size with increasing
total nitrogen content of the sediment was coupled with a
decrease of within-plant morphological variability of the
studied parameters (Fig. 2, Table 4).

Thus, the highest within-plant variability of foliar
parameters was obtained in south-eastern sites, where the
smallest leaves were measured on average, while the lowest
within-plant variability of foliar parameters was calculated
for the north-western sites, characterised by the largest
leaves (Tables 2 and 5). Overall, within-plant morpholo-
gical variability of foliar parameters was reduced by half
as a result of nutrient enrichment in the western basin,
while light had no significant effect on within-plant
variability of foliar parameters (Table 5). Meanwhile, the
only non-foliar parameter (internode length) showed
neither nutrient, nor light related changes in within-plant
variability (Table 5). The GLM test supported these
results: only nutrients affected within-plant variability of
foliar morphology, while the effect on internode length
was not significant (Table 6).

The trade-off between the number of leaves and the
average leaf area of plants showed a gradual decrease at all
study sites, although with very low correlation factors
(0.06–0.43) and only in the north-eastern (NE) study site
was this correlation significant (Fig. 3). The light environ-
ment affected this trade-off, since the study sites with more
heterogeneous light environments had higher correlation
factors (0.31 and 0.43), than sites with more homogeneous
light environments (0.06 and 0.08) (Fig. 3).

Discussion

Foliar and habitual morphological parameters that are
well-known for their ability to respond to irradiance were
studied in situ in Lake Balaton. The results showed that
even the light-sensitive parameters are more influenced
by nutrient availability than by light intensity: nutrient
surplus in the sediment increased the size of leaves as has
been described in numerous previous studies (Moore and
Wetzel, 2000; Crossley et al., 2002; Cronin and Lodge,
2003; Vári et al., 2010), although in our case P. perfoliatus

Table 2. Leaf number, leaf area (LA – cm2), leaf width (width – cm), leaf length (length – cm), leaf dry weight (DW – mg) and

internode length (internode – cm) (average¡SD) of P. perfoliatus at the north-eastern (NE), south-eastern (SE), north-western
(NW) and south-western (SW) study sites of Lake Balaton (average¡SD) and the effect of nutrients (i.e., difference between
the western and eastern basins) and light environment (i.e., difference between the northern and southern shores) of these

parameters (t-test). n – number of measured parameters.

n
NE SE NW SW

Effect of nutrients Effect of light1233 895 647 458
Leaf number 25.4¡9.3 24.0¡6.7 22.4¡13.1 26.3¡9.4 6%ns x4%ns

LA (cm2) 5.4¡2.5 4.2¡2.1 7.8¡3.9 6.4¡2.6 29%*** 15%***

Width (cm) 2.1¡0.6 1.9¡0.6 2.3¡0.6 2.2¡0.5 9%*** 6%***

Length (cm) 3.4¡0.8 2.8¡0.7 4.6¡1.2 3.9¡0.9 25%*** 11%***

DW (mg) 12.5¡6.8 12.1¡7.1 22.3¡15.9 15.7¡6.9 33%*** 9%***

Internode (cm) 2.8¡1.7 1.3¡0.6 3.0¡2.6 2.5¡1.4 19%*** 38%***

The significance of t-test: nspPi0.05, ***pP<0.001.

Table 3. Effect of nutrients and light on leaf area (LA), leaf

width (width), leaf length (length), leaf dry weight (DW) and
internode length (internode) of P. perfoliatus in Lake Balaton.
Morphological parameters were tested with the shore (effect of

light) and the basin (effect of nutrients) as categorical variables,
water depth and the date (day from 1st of January) of sampling
as continuous variables and plants as random variables.
Numbers are F-values of the GLM test. All results were

significant at P<0.001.

Effect of nutrients Effect of light
LA 552.3 77.5
Width 104.7 38.0
Length 1361.0 168.3
DW 382.1 27.4
Internode 179.5 267.3
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was only significantly influenced by total nitrogen.
Average light intensity of the studied sites also influenced
the growth of leaves and spatial distribution of internodes:
at more shaded sites larger leaves and longer internodes
were found, as found by other studies and our previous

results (Cenzato and Ganf, 2001; Cronin and Lodge, 2003;
Vári et al., 2010; Tóth et al., 2011).

Our results show that the variability of foliar para-
meters was probably induced by light, and more precisely
by vertical heterogeneity of irradiance within the water
column. Nevertheless, this morphological heterogeneity
was significantly diminished as an effect of higher nutrient
availability.

Light, as one of the spatially most variable environ-
mental factors, is absorbed by different tissues (mostly
leaves) of P. perfoliatus at different intensities. This light,
absorbed by a leaf, could act only at limited distances
(De Kroon et al., 2005), resulting in a set of very specific,
local responses, a typical vertical leaf distribution pattern
(Vári et al., 2010; Tóth et al., 2011), showing in high
within-plant morphological variability as in this study. In
nutrient-limited conditions, P. perfoliatus shows a non-
conservative resource-use strategy for morphological traits
(Vári et al., 2010; Tóth et al., 2011), allowing for the plant
to adapt to the actual light environment, not only at the
plant-level, but, as the present study also shows, also at the
leaf-level. In a vertically heterogeneous light environment,
it is advantageous for P. perfoliatus to have higher
morphological variability as this will result in a greater
flexibility of responses and more effective light capture.
This fine-tuning cooperation of flexibility and effectiveness
results in differential placement of leaves with different
photosynthetic areas within the canopy for sustainable
photosynthesis: as an acclimation to the lower light

Fig. 2. Effect of total N (g kgx1) and total P (mg kgx1) contents of sediment on the leaf area (LA, cm2) and on within-plant

morphological variability of P. perfoliatus in the north-eastern (NE), south-eastern (SE), north-western (NW) and south-western (SW)
sampling points of Lake Balaton. Each symbol represents the average¡SE (n at least 22). Lines shown depict significant correlation
(P<0.05, also see Table 4).

Table 4. Results of linear correlation (RP) of leaf area (LA), leaf
width (width), leaf length (length), leaf dry weight (DW),
internode length (internode), leaf number and their variability
([max–min]/min) with total nitrogen and total phosphorus of

the sediment at the study sites.

Total N Total P
Morphological data
LA 0.99* 0.85ns

Width 0.94ns 0.92ns

Length 0.99* 0.85ns

DW 0.97* 0.65ns

Leaf number x0.34ns 0.24ns

Internode length 0.73ns 0.78ns

Morphological variability
LA x0.99* x0.88ns

Width x0.95* x0.84ns

Length x0.94ns x0.96*
DW x0.99** x0.88ns

All foliar x0.99** x0.87ns

The significance of correlation: nspPi0.05, *pP<0.05,
**pP<0.01.
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environment, larger leaves are grown at the shadier, basal
part of the plant, while smaller, but physiologically
more efficient leaves concentrate at the apical, well-lit
region of P. perfoliatus, thus minimizing self-shading. The
light-dependent growth of internodes also concentrate
the majority of foliar biomass in the optimal light
environment, the internode length is higher at the basal
and lower in the apical regions of P. perfoliatus.

Although this sort of within-plant morphological
variability is a result of interaction between both intrinsic
(developmental stage and sectoriality) and extrinsic (abio-
tic and biotic) factors (Wells and Pigliucci, 2000; Orians
and Jones, 2001; De Kroon et al., 2005), our results show
that it could be significantly altered. The homogenization
(decrease of variability) of foliar morphology by nutrient
surplus (a plant-level environmental factor) shows its
antagonistic impact, counteracting the differentiating
effect of the present leaf-level stimuli of light. Unlimited
amount of nutrients increases the metabolism of plants,
and consequently neglects the differentiating effect of
light attenuation: production and growth of leaves,

influenced by hormonal activity of the plant apex and
existing leaf primordia, is overridden by physiological and
hormonal changes in the root tips, triggered by the
surplus of nutrients. It might work by analogy as adaptive

Table 5. Within-plant morphological variability ([max–min]/min) of leaf area (LA), leaf width (width), leaf length (length), leaf dry
weight (DW) and internode length (internode) of P. perfoliatus at the north-eastern (NE), south-eastern (SE), north-western (NW)
and south-western (SW) study sites of Lake Balaton (average¡SD) and the effect of nutrients (i.e., difference between the

western and eastern basins) and light environment (i.e., difference between the northern and southern shores) of these parameters
(t-test). n – number of studied plants.

n
NE SE NW SW

Effect of nutrients Effect of light54 39 22 25
LA 2.9¡2.3 3.5¡3.1 1.1¡0.6 1.8¡1.7 x117%*** x17%ns

Width 1.2¡0.7 1.2¡0.5 0.7¡0.4 0.8¡0.4 x63%*** 4%ns

Length 0.9¡0.7 1.2¡0.8 0.5¡0.3 0.6¡0.5 x84%*** x21%ns

DW 4.3¡4.8 5.2¡4.9 1.6¡0.9 2.7¡2.8 x119%*** x19%ns

Foliar average 2.4 – 0.2 2.7 – 0.3 1.0 – 0.1 1.5 – 0.2 x106%*** x15%ns

Internode length 7.1¡6.7 4.7¡5.2 4.9¡5.3 8.0¡9.8 7%ns 7%ns

All parameters 2.9 – 0.3 2.8 – 0.3 1.6 – 0.2 2.4 – 0.2 x41%*** x5%ns

The significance of t-test: nspPi0.05, ***pP<0.001.

Table 6. Effect of nutrients and light on variability of
morphological parameters of P. perfoliatus of Lake Balaton.
Variability of morphological parameters were tested with the
shore (effect of light) and the basin (effect of nutrients) as

categorical variables, water depth and the date (day from 1st
of January) of sampling as continuous variables and plants
as random variables. Numbers are F-values of the GLM

test, while in the uppercase is the significance of the test, where
ns – not significant, and *** is P<0.001.

Effect of nutrients Effect of light
LA 17.47*** 2.36ns

Width 22.82*** 0.56ns

Length 16.86*** 2.59ns

DW 11.06*** 3.7ns

Internode length 0.23ns 0.01ns

Fig. 3. Relation between the number of leaves and the average leaf area (LA – cm2) of P. perfoliatus at the north-eastern (NE), north-
western (NW), south-eastern (SE) and south-western (SW) study sites of Lake Balaton. Line depicts significant correlation (R=0.42)
at P=0.014.
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phenotypic plasticity counteracts the ecotype-like special-
ization of plants to a given environment (Sultan, 2000;
De Jong, 2005; Funk et al., 2007).

It was shown that morphology of plants could be
shaped by two counteracting forces at the same time:
differentiation driven by leaf-level environmental factors
and standardization controlled by plant-level environmen-
tal factors. Moreover, within-plant diversification also
might have not only ecological as it enhances the range of
environmental conditions the plant can endure, but also
evolutionary significance as it influences the distribution
area of the species in the long run (Orians and Jones, 2001;
Orians et al., 2002).
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