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Abstract 

Fatty acid (FA) composition of the fillet and the intestinal content of dwarf common 

carp (Cyprinus carpio carpio) living in Lake Hévíz was determined in wintertime 

collected samples and results were compared to widespread literature data on carp. 

Fillet FA profile of the thermally adapted (28 
o
C) Hévíz dwarf carps differed from 

profiles originated from divergent culture and feeding conditions in the overall level 

of saturation. Fillet myristic acid proportions largely exceeded all literature data in 

spite of poor dietary supply. Fillet fatty acid results indicate the effects of thermal 

adaptation (high saturation level) and the correlative effects of feed components rich 
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in omega-3 fatty acids, with special respect to docosahexaenoic acid. With the 

application of discriminant factor analysis the Hévíz sample was accurately 

differentiated from the literature data on carp fillet fatty acid profile, mostly based on 

C14:0, C18:1 n9, C18:2 n6, C20:1 n9 and C20:4 n6 FAs. In summary, fillet FA 

profile suggested thermal adaptation, location specificity and the ingestion of algal 

and bacterial material. 
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Introduction 

Polyunsaturated fatty acids (PUFA) play important roles in human diet because 

of their beneficial properties for prevention of several diseases [18]. Needs of PUFA 

are partly resolved by fish consumption in human diet. Therefore fatty acid (FA) 

composition of several fish species is well studied. It has been reported that the type 

and amount of fatty acids in fish tissues vary mainly with feeding of the fish, but other 

factors may also influence their FA composition. In addition, there are defined factors 

having profound effects on FA composition, for example: body size, age, origin, 

reproductive status and environmental temperature [7, 9, 12]. Secondly, after diet, 

also water temperature can largely modify the FA composition of fish. For example, 

FA of cold adapted and deep sea fishes are providing higher PUFA proportions in 

their FAs [4].   

Common carp (Cyprinus carpio L.) is one of the most widely cultured 

freshwater fish species all over the world. Thus, the FA composition of common carp 

in context of divergent environmental factors, such as temperature, artificial feeding 
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or natural feed sources is extensively studied. The ability to adapt FA metabolism and 

composition to low winter temperature has as well been already investigated in 

common carp [7, 9]. The body traits and muscle chemical composition of common 

carp reared under different temperatures [12], as well the seasonal variations of the 

fatty acid composition were examined [14, 16, 22] but it still remains unknown how 

an extreme thermal environment and the specifically adapted natural feed source 

influences the FA composition of common carp, in a special, isolated population. 

Thus, our investigation had two aims: first to determine the fatty acid profile of 

the Hévíz carp fillets and intestinal contents, being descriptive of a still less explored 

population, and as second to evaluate (classify) the data by taking available literature 

results on carp fillet into consideration. 

 

 

Materials and methods 

Lake Hévíz is the largest thermal lake in Europe. It is a geological and a 

balneological unique. The extent of the lake is 4.4 hectares, the bottom soil is peaty 

sludge. Compared to other natural waters (10-12 
o
C mean annual water temperature), 

Lake Hévíz varies between 24 
o
C and 38 

o
C (annual mean: 30.7

 o
C). Mean summer 

and winter temperatures are 33-35 ºC and 24-28 ºC, respectively. Dominant minerals 

in the water are Ca
++

, Mg
++

, HCO3
--
, S, Ra and organic compounds. 

The vegetation of the lake consists of water lily species (Nymphaea rubra, Nymphaea 

alba). The fauna of Lake Hévíz was described by several authors [21]. The sediments 

are rich in bacterial communities [19], periphyton is harboring Nematoda species [2], 

and the main fish species (Gambusia affinis) of the lake is well examined [24]. 
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Fish (origin and sampling) 

Carp population of Lake Hévíz has a dwarfish habit, it is isolated from the 

nearby populations. Low growth rate and small adult size (maximum weight of 400-

450 g in 8-9 years old fish; unpublished observations) may be consequences of the 

adaptation to the extreme environment.  

For this analysis fish (n=10, adult males, 344.2 ± 63.9 g) were caught by gill-net 

in December 2010, at 28 
o
C water temperature. Fish were dissected to sample the 

intestinal contents (being characteristic for the feed) and the fillet. Samples were 

stored at -70 
o
C until analysis. 

 

Fatty acid analysis 

Fillet (n=10) and intestinal tract contents (n= 1, pooled from 10) were analyzed 

for fatty acid composition. Samples were homogenized in ceramic mortars in a 20-

fold volume of chloroform:methanol (2:1 vol:vol) and total lipid content was 

extracted [11]. Solvents were ultrapure-grade (Sigma-Aldrich, Schnelldorf, Germany) 

and 0.01 % w:v butylated hydroxytoluene was added to prevent fatty acid oxidation. 

Solvents were evaporated under nitrogen stream and complex lipids were 

transmethylated with a base-catalysed NaOCH3 method [5] and were stored in hexane 

until analysis.  

Gas liquid chromatography was performed on a Shimadzu 2100 apparatus, 

equipped with a SP-2380 (Supelco, Bellefonte, USA) type capillary column (30 m x 

0.25 mm internal diameter, 0.20 µm film) and flame ionisation detector (FID 2x10
-11

). 

Characteristic operating conditions were: injector temperature: 270 
o
C, detector 
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temperature: 300 
o
C, helium flow: 28 cm/sec. The oven temperature was graded: from 

80 to 205 
o
C: 2.5 

o
C/min, 5 min at 205 

o
C, from 205 to 250 

o
C 10 

o
C/min and 5 min at 

250 
o
C. To identify individual FA, a standard (Mixture Me100, Larodan Fine 

Chemicals, Malmö, Sweden) was used. Results are given as weight % of the total 

fatty acids. 

From the primary FA results, unsaturation index (UI) was calculated as: (1 x Σ 

monoenoic FA) + (2 x Σ dienoic FA) ... etc. The average FA chain length was 

calculated from the multiplication of the chain length values and the respective 

proportion of each fatty acid. 

 

Statistics 

To seek for differences between the Hévíz and published data (i.e. pairwise 

comparison), the Mann-Whitney U test was used [25]. To explore the classification 

pattern of the fillet FA profile among literature data and those of the Hévíz 

population, Discriminant Factor Analysis (DFA) was used [1].  This latter software 

provides an opportunity to choose the best variables for the classification models. The 

selection of variables is based on their discrimination power which is calculated for 

each variable individually. Depending on the pattern of samples, the variables can be 

selected to reduce variability within a group and to increase the intergroup distance. 

This function is used to automatically select the best variables for the application or 

user can perform the selection manually after reviewing the values of discrimination 

power for each variable.  

 

Results 
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Characteristics of the FA profile of the Hévíz population 

The FA profile of the intestinal content (Table 1) provided uncommonly high 

arachidonic (AA) and docosahexaenoic (DHA) acid proportions, latter factor leading 

to a total of 20% n3 FA proportion in its lipids. The unsaturation index (UI) of 

intestinal content largely exceeded that of the fillet (170 vs 126.7). It revealed by the 

dissection, that every fish had a well-developed testis and abundant visceral fat. 

Substantial amounts of intestinal content were found, precluding starvation.  

When compared our FA data to those of other authors (Table 2, Mann-Whitney 

U test based comparison) nearly all individual FA proportion values were 

significantly different. Tendentious similarity was found with data obtained from 

warm climate areas and natural feeding [14, 17, 22], while moderate climatic 

circumstances and grain feeding [3, 15] led to more expressed differences. 

 

Comparison to literature data 

Comparing our fillet FA data to those in the litearature from carps fed natural 

feed and additional grains, nearly all individual FA proportion values were 

significantly different.  

Using the automatic classification method, AlphaSoft 12.3 selected C14:0, 

C18:1 n9, C18:2 n6, C20:1 n9 and C20:4 n6 to perform DFA classification (Figures 1 

and 2). (It has to be added that only those FAs were used from which all literature 

sources provided detectable amounts.) In Figure 1 groups nr. 7, 8 and 9 [3, 15, 26] are 

similar, while nr. 1., i.e. the Hévíz sample is strongly different, with spatial separation. 

The DFA approach gave very good results, where 93% of cross-validated grouped 
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cases were correctly classified. The proportional classification contribution of the 

above-mentioned single fatty acids is shown in Figure 2. 

 

Discussion 

 

Characteristics of the FA profile of the Hévíz population 

Concerning the body and fillet (and intestinal content) fatty acid composition of 

the Hévíz, isolated dwarf carp population, as far as the authors are aware, this is the 

first study.  

The marked presence of arachidonic and docosahexaenoic acids in the FA 

profile of the intestinal content refers to animal or algal feed components [20]. Since 

recognized animal remains were rare in the intestine (personal observation), it is likely 

that in Lake Hévíz fish ingest and utilize the microflora growing on the decomposing 

macrophyte remains in the lake sediment (based on the experienced crystalline 

material in the mortars during extraction). In addition, the UI value of the intestinal 

content exceeded that of the fillet total lipids. This refers to a specific type of thermal 

adaptation; namely high or increasing proportions of arachidonic and 

docosahexaenoic acids in the lipids of carp (hepatic phospholipids) refer to cold 

acclimation [8]. Herein, interestingly, we experienced the opposite, a limited or 

restricted uptake of ingested dietary polyunsaturated FAs into muscle lipids.  

It is as well an interesting finding that the level of saturated FAs in the Hévíz 

carp fillet lipids was 5-10% higher, as compared to all literature data (incl. warm 

environments as well). We hypothesize again a warm adaptation process behind this 

result [8], since the difference between the Hévíz and some of the cited water 
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temperatures [3, 15] was ca. 20 
o
C, adding that the relatively high dietary unsaturation 

was as well not mirrored (i.e. not fully taken up or transported to the skeletal muscle) 

by the fillet lipids. In addition, it is well known [6, 23] that cold adaptation markedly 

increases lipid unsaturation in the fillet polar and total lipids in marine fish and in carp 

[10]. Thus, it seems that besides relatively rich dietary PUFA supply, warm 

environment did no necessitate an expressed recruitment of these fatty acids in the 

fillet lipids. 

 

DFA classification and comparison to literature data 

During FA-profile based DFA classification of the samples originated from 

different regions, the group of Héviz carp showed obvious isolation (Figure 1). 

Samples of same region and described by the same authors (group 4 and 5, both from 

Madagascar) are linked together and form one single group. Basically, all samples 

seem to be closely related, only group 2 (Turkish) and group 1 (Hévíz) is very much 

different. The classification was tested by cross-validation when each sample was 

identified once as independent. The ratio of correctly classified cross-validated 

samples was 93%.  

The basis of the marked classification was interestingly a restricted bunch of 

FAs, namely, C14:0, C18:1 n9, C18:2 n6, C20:1 n9 and C20:4 n6. It has to be added 

that as well C17:1 gained a relatively high classification score. Figure 2 shows the 

impact of the mentioned five individual FAs on the discriminating factors (DFs). It 

can be seen by investigating the zero-vectors (position of the FAs) that C14:0, C18:1 

n9 and C18:2 n6 have great impact on both the first and second DF. C20:1 n9 has low 

impact on DF2 and a little more on DF1, while C20:4 n6 affects largely DF2 but has 
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less influence on DF1. First DF described the 69.2% of the total variance, while DF2, 

DF3, DF4, DF5 had 23.5%, 5.7%, 1.2%, 0.4%, respectively. Since DF1 dominates the 

classification, the FA that has more impact on this factor is the most considerable. 

 

Investigating the possible origin and role of the above mentioned FAs, the first 

(myristic acid) may be of both endogenous and exogenous origin. It has to be however 

emphasized that the proportion of this FA was 2.5-5 times higher in the Hévíz 

population, as compared to the literature data, with a surprisingly minor presence in 

the diet (Table 1; 0,09%). 

Oleic acid (C18:1 n9) is a desaturation product of stearic acid, thus its origin is, 

similarly to myristic acid, double, meanwhile its (and its precursors) dietary 

occurrence was high (18.1). Linoleic acid (C18:2 n6) is essential for vertebrates and 

its dietary provision was very similar to its tissue presence. In case of its 

endogenously further elongated and desaturated product, arachidonic acid (C20:4 n6), 

the diet seemed to be rather rich, leading to a percentage contribution of over 4% in 

the fillet lipids. This level was only comparable to that measured in other natural and 

warm ponds in Turkey by Guler et al. in 2008 [14] and Kalyoncu et al. in 2010 [17]. 

Interestingly, Hungarian fishpond data were also not statistically different [26] from 

the Hévíz data for this acid, most probably due to the feeding of linoleic acid rich 

components (sunflower seed). (This was supported by the relatively high fillet linoleic 

acid proportion in the fillet of those carps.) 

 

Conclusions 
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The intestinal content of the Hévíz drawf carp population provided evidence for 

a dominantly benthic feed basis of this isolated population. However, the relatively 

high supply of arachidonic and docosahexaenoic acids did ultimately not lead to 

extraordinary high tissue proportion of these fatty acids, instead, the fillet lipids were 

strongly saturated. This refers to a specific thermal adaptation. The classification 

based merely on the fillet fatty acid profile was successful, and provided reliable 

separation of the Hévíz population from widespread data published, with tendentious 

similarity to data obtained under warm climatic conditions and natural feeding. 
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Table 1. Fatty acid composition of the intestinal content 

 
Fatty acid   

C14:0 3.77 

C14:1 n5 0.13 

C15:0 0.63 

C15:1 n7 n.d. 

C16:0 23.4 

C16:1 n7 4.55 

C17:0 1.67 

C17:1 n9 n.d. 

C18:0 11.5 

C18:1 n9 18.1 

C18:2 n6 5.24 

C18:3 n6 0.54 

C18:3 n3 2.13 

C20:0 0.18 

C20:1 n9 1.20 

C20:2 n6 0.73 

C20:3 n3 0.55 

C20:3 n6 n.d. 

C20:4 n6 6.55 

C20:5 n3 3.21 

C22:0 0.06 

C22:5 n3 1.95 

C22:6 n3 12.1 

Σ saturated 41.3 

Σ unsaturated 57.0 

Σ monoenoic 24.0 

Σ PUFA 33.0 

Σ n3 20.0 

Σ n6 13.1 

Σ n9 19.3 

n6 / n3 0.65 

unsaturation index 170.4 

average FA chain 

length 16.7 

n.d.: not detectable  
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Table 2. Fillet fatty acid composition of the Hévíz carps and its comparison to literature data 

 

 Hévíz [26] Sig. [14] Sig. [17] Sig. [22] Sig. [3] Sig. [15] Sig. [16] 

Culture thermal lake fishpond  natural pond  artificial pond  natural ponds  fishpond  fishpond  
Indus 
River 

Feed natural 
mixed grain + 

natural 
 natural  natural  natural  

wheat + 

benthic 
 

grain+oilseed

s 
 Natural 

Country Hungary Hungary   Turkey   Turkey   Madagascar   Czech Rep.   Poland   Pakistan 

C14:0 5.74 ± 0.82 0.99 ± 0.37 0.002 1.90 ± 0.33 0.005 1.81 ± 0.32 0.0001 1.63 ± 0.12 0.0001 1.13 ± 0.09 0.005 1.36 ± 0.57 0.0001 3.28 

C14:1 0.29 ± 0.05 0.15 ± 0.05 0.005 0.78 ± 0.29 0.005 0.36 ± 0.1 n.s. 0.28 ± 0.04 n.s. 0.00 ± 0.00 n.s. 0.54 ± 0.26 0.002 0.74 

C15:0 0.69  ± 0.16 0.19 ± 0.13 0.005 0.96 ± 0.15 0.02 0.81 ± 0.08 n.s. 1.53 ± 0.11 0.0001 n.a.   n.a.   1.65 

C15:1 0.02  ± 0.00 n.a.   1.24 ± 0.42 0.06 1.71 ± 0.68 0.0001 0.25 ± 0.05 0.0001 n.a.   n.a.   0.82 

C16:0 21.5  ± 1.21 16.6 ± 2.27 0.005 15.68 ± 0.82 0.005 18.7 ± 0.43 0.001 15.1 ± 1.17 0.0001 18.8 ± 0.16 0.005 21.94 ± 3.63 n.s. 33.0 

C16:1 n7 6.29  ± 0.48 9.29 ± 1.92 0.002 9.51 ± 3.50 0.16 12.5 ± 1.15 0.001 5.17 ± 0.47 n.s. 9.11 ± 0.24 0.005 5.34 ± 1.94 0.07 6.08 

C17:0 1.04  ± 0.20 0.51 ± 0.12 0.002 1.64 ± 0.29 0.005 0.79 ± 0.2 0.0500 3.02 ± 1.7 0.002 n.a.   n.a.   3.34 

C17:1 1.22  ± 0.21 n.a.   1.56 ± 0.15 0.02 1.57 ± 0.31 0.03 1.72 ± 0.24 0.0001 n.a.   n.a.   8.89 

C18:0 4.43  ± 0.92 4.80 ± 0.63 n.s. 4.42 ± 0.54 n.s. 4.87 ± 0.61 n.s. 5.16 ± 0.29 0.03 1.41 ± 0.13 0.005 4.51 ± 1.22 n.s. 11.2 

C18:1 n9 32.75  ± 2.58 39.56 ± 9.12 n.s. 2.94 ± 1.24 0.005 25.8 ± 2.81 0.001 19.57 ± 1.71 0.0001 55.32 ± 0.31 0.005 42.02 ± 3.43 0.0003 23.5 

C18:2 n6 7.00  ± 2.92 8.41 ± 1.73 n.s. 7.57 ± 2.87 n.s. 5.45 ± 1.55 n.s. 11.95 ± 1.07 0.0001 6.74 ± 0.18 n.s. 20.47 ± 3.95 0.0002 6.41 

C18:3 n6 0.34  ± 0.13 n.a.   3.03 ± 1.20 0.005 0.07 ± 0.04 0.001 0.84 ± 0.09 0.0001 0.17 ± 0.01 0.01 n.a.   1.03 

C18:3 n3 3.83  ± 0.46 1.75 ± 1.08 0.005 0.70 ± 0.29 0.005 4.24 ± 0.9 n.s. 1.94 ± 0.24 0.0001 0.82 ± 0.04 0.005 1.97 ± 1.84 0.05 1.22 

C20:0 0.12  ± 0.01 n.a.   1.38 ± 1.13 0.01 0.18 ± 0.03 0.001 0.23 ± 0.05 0.0001 0.14 ± 0.06 n.s. 0.75 ± 0.37 0.001 0.17 

C20:1 n9 2.07  ± 0.23 3.09 ± 1.07 0.05 1.87 ± 0.89 n.s. 1.23 ± 0.35 0.0001 1.84 ± 0.23 0.0001 3.81 ± 0.28 0.005 2.93 ± 0.64 0.04 0.52 

C20:2 n6 0.63  ± 0.14 n.a.   0.19 ± 0.06 0.03 0.86 ± 0.1 n.s. 0.57 ± 0.05 n.s. n.a.   0.45 ± 0.07 n.s. 0.23 

C20:3 n6 0.58  ± 0.11 n.a.   1.02 ± 0.26 0.01 0.04 ± 0.02 0.0001 0.70 ± 0.08 n.s. n.a.   0.45 ± 0.08 n.s. 0.61 

C20:3 n3 0.42  ± 0.05 n.a.   0.54 ± 0.13 n.s. 0.02 ± 0.01 0.0001 0.49 ± 0.07 0.016 n.a.   n.a.   0.3 

C20:4 n6 4.53  ± 1.42 2.59 ± 2.36 n.s. 5.58 ± 1.08 n.s. 4.69 ± 1.47 n.s. 1.80 ± 0.54 0.0001 0.09 ± 0.01 0.005 0.85 ± 0.49 0.03 0.42 

C20:5 n3 1.74  ± 0.41 1.53 ± 1.50 n.s. 4.83 ± 0.65 0.005 6.09 ± 0.27 n.s. 2.58 ± 0.48 0.0001 0.65 ± 0.05 0.005 n.a.   0.34 

C22:0 0.05  ± 0.02 n.a.   0.27 ± 0.12 0.01 0.35 ± 0.09 0.0001 n.a.   n.a.   0.97 ± 0.01 0.01 0.31 

C22:5 n3 1.07  ± 0.28 0.82 ± 0.51 n.s. 0.95 ± 0.61 n.s. 2.34 ± 0.23 0.0001 2.75 ± 0.95 n.s. 0.07 ± 0.01 n.s. n.a.   0.16 

C22:6 n3 3.52  ± 0.85 1.52 ± 1.21 0.01 6.67 ± 3.02 0.01 4.15 ± 1.1 n.s. 3.97 ± 1.32 n.s. n.a.   n.a.   0.36 

Σ saturated 33.71  ± 2.04 23.10 ± 2.04 0.002 25.95 ± 1.33 0.005 27.66 ± 0.91 0.001 27.0 ± 2.52 0.0001 21.48 ± 0.16 0.005 28.74 ± 3.88 0.002 53.5 
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sig.: P<0,05 as compared to the data obtained at Hévíz 

n.a.: not available; n.s.: P>0.05 

 

Σ unsaturated 66.29  ± 2.04 68.68 ± 1.63 0.05 48.9 ±2.52 0.005 71.11 ± 1.26 0.0011 56.4 ± 0.57 n.s. 76.68 ± 0.27 0.005 70.83 ± 3.89 0.003 51.6 

Σ monoenoic 42.63  ± 2.77 52.10 ± 8.17 0.01 17.9 ± 3.89 0.005 43.17 ± 3.81 n.s. 28.8 ± 2.28 0.0001 68.24 ± 0.44 0.005 48.19 ± 3.15 0.003 40.5 

Σ polyenoic 23.66  ± 3.4 16.62 ± 7.73 n.s. 30.1 ± 5.17 0.03 27.94 ± 2.55 0.044 27.59 ± 2.26 0.007 8.44 ± 0.25 0.005 22.64 ± 3.82 n.s. 11.1 

Σ n3 10.57  ± 1.69 5.62 ± 3.98 0.02 13.69 ± 3.39 0.03 16.84 ± 2.46 0.0001 11.7 ± 2.73 n.s. 1.54 ± 0.09 0.005 2.13 ± 1.86 0.0002 2.38 

Σ n6  12.74  ± 2.85 11.0 ± 3.66 n.s. 17.3 ± 4.44 n.s. 11.1 ± 1.45 n.s. 15.86 ± 0.53 0.003 6.91 ± 0.18 0.005 20.51 ± 4.23 0.001 8.7 

Σ n9 34.82  ± 2.71 42.65 ± 9.22 n.s. 4.8 ± 0.82 0.005 27.04 ± 3.07 0.001 21.41 ± 1.87 0.0001 59.13 ± 0.58 0.005 42.61 ± 3.95 0.001 24.0 

n6/n3 1.23  ± 0.39 2.88 ± 1.84 0.01 1.34 ± 0.56 n.s. 0.67 ± 0.15 0.017 1.42 ± 0.32 n.s. 4.51 ± 0.23 0.005 32.71 ± 31.8 0.0002 3.66 

unsaturation 
index 126.68  ± 10.58 105.35 ± 21.2 0.05 140.32 ± 19.63 n.s. 154.7 ± 10.5 n.s. 123.44 ± 12.6 n.s. 88.26 ± 0.46 0.005 96.03 ± 6.97 0.0002 69.6 

average FA chain 

length 17.63  ± 0.09 16.38 ± 0.25 0.002 13.87 ± 0.73 0.005 17.43 ± 0.36 0.001 15.92 ± 0.67 0.0001 18.36 ± 0.03 0.005 20.96 ± 0.8 0.0002 17.2 
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Figure 1. The discriminant factor analysis based classification of the Hévíz carp 

fillets and those found in literature (group numbering: 1: Hévíz; 2: [26]; 3: [17]; 4, 5: 
[22]; 7: [3]; 8: [15]; 9: [16]) 
 

 

Figure 2. Results of the DFA classification with indication of impact of the involved 

FAs, individually 

 

 


