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Abstract 

Cellular calcium signaling plays important roles in several signal transduction pathways that 

control proliferation, differentiation and apoptosis. In epithelial cells calcium signaling is 

initiated mainly by calcium release from endoplasmic reticulum-associated intracellular 

calcium pools. Because calcium is accumulated in the endoplasmic reticulum by 

Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA), these enzymes play a critical role 

in the control of calcium-dependent cell activation, growth and survival. We investigated the 

modulation of SERCA expression and function in human lung adenocarcinoma cells. In 

addition to the ubiquitous SERCA2 enzyme, the SERCA3 isoform was also expressed at 

variable levels. SERCA3 expression was selectively enhanced during cell differentiation in 

lung cancer cells, and marked SERCA3 expression was found in fully differentiated normal 

bronchial epithelium. As studied by using a recombinant fluorescent calcium probe, induction 

of the expression of SERCA3, a lower calcium affinity pump, was associated with decreased 

intracellular calcium storage, whereas the amplitude of capacitative calcium influx remained 

unchanged. Our observations indicate that the calcium homeostasis of the endoplasmic 

reticulum in lung adenocarcinoma cells presents a functional defect due to decreased 

SERCA3 expression that is corrected during pharmacologically induced differentiation. The 

data presented in this work show, for the first time, that endoplasmic reticulum calcium 

storage is anomalous in lung cancer cells, and suggest that SERCA3 may serve as a useful 

new phenotypic marker for the study of lung epithelial differentiation. 
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Introduction 

Non-small cell lung cancer is currently the most frequent fatal malignancy worldwide 

with more than a million deaths occurring annually [1, 2]. Although much is known about risk 

factors such as tobacco smoking, or regarding molecular and genetic events that occur during 

lung tumorigenesis, the overall survival rate of lung cancer could not be significantly 

improved during the last thirty years [2]. This indicates that currently available knowledge of 

the molecular biological behavior of lung carcinoma cells is insufficient for the development 

of efficient therapy. In particular, knowledge about calcium signaling in lung cancer cells is 

scarce, although calcium signaling is an essential component of several regulatory networks 

involved in the control of cell growth, differentiation and apoptosis. 

Calcium-dependent cell activation is initiated by the release of calcium ions stored in 

the endoplasmic reticulum (ER) into the cytosol through inositol-1,4,5-trisphosphate receptor 

calcium channels [3]. In addition, calcium in the ER lumen is required for the function of 

various ER located chaperones such as calreticulin or calnexin involved in the conformational 

maturation and posttranslational modification of newly synthesized proteins that transit 

through the organelle [4-6]. Abnormal endoplasmic reticulum calcium homeostasis can lead 

to cellular stress responses, growth arrest and apoptosis [4, 7-9]. 

Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA) enzymes are essential for 

the dynamic equilibrium of ER calcium homeostasis. Located in the ER membrane, these 

enzymes sequester calcium ions from the cytosol into the ER lumen by ATP-dependent active 

ion transport, and thus generate a steep calcium concentration gradient between the cytosol 

(approximately 50-100 nM) and the ER lumen (approximately 0.1 mM) [10]. SERCA 

proteins are encoded by three genes (ATP2A1, 2 and 3), that can give rise to several protein 
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isoforms by alternative splicing [11-15]. SERCA expression is tissue dependent and 

developmentally regulated. SERCA1 is expressed in skeletal muscle, and the SERCA2a 

isoform is mainly expressed in cardiomyocytes. Whereas SERCA2b is a ubiquitously 

expressed isoform thought to be involved in "housekeeping" functions, in several cell types 

such as cells of hematopoietic origin, gastric and colonic epithelial cells, β-cells of islets of 

Langerhans or vascular endothelium, SERCA2b has been shown to be co-expressed with 

SERCA3 [15-26]. Because SERCA2b and SERCA3 enzymes display distinct calcium 

affinities [27-32], their co-expression is involved in the fine-tuning of the parameters of ER 

calcium sequestration according to the specific calcium storage and release requirements of 

the ER of a given cell type. 

By controlling intra-ER calcium levels, SERCA enzymes are involved in the control 

of cell growth [33-36]. Small molecular SERCA inhibitors are tumor promoters [37, 38], and 

SERCA mutations have been identified in cancer [39-43]. In this context we have previously 

reported that the expression of SERCA enzymes is anomalous in breast, colon, as well as 

gastric carcinoma due to the loss of expression of SERCA3 [18, 44, 45]. It has also been 

shown that SERCA3 expression is induced during histone-deacetylase inhibitor-induced 

differentiation of gastric and colon carcinoma cells [18], as well as following the inhibition of 

the APC/β-catenin/TCF4 axis [44], and that normal colonic and gastric epithelium express 

SERCA3 abundantly [44]. In addition, the pharmacological modulation of SERCA activity 

has also been shown to enhance cell differentiation in colon carcinoma [44] and acute 

promyelocytic leukemia [46] cells. Taken together, these observations indicate that the 

functional maturation of ER calcium homeostasis that occurs during normal cell 

differentiation is blocked due to deficient SERCA3 expression in malignant cells, and that this 

phenomenon is involved in the maintenance of the neoplastic phenotype [16, 47]. 
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In order to establish whether defects of ER calcium homeostasis can be found in 

pulmonary neoplasia, in this work we investigated SERCA expression in normal lung in situ 

and in lung adenocarcinoma cell lines undergoing pharmacologically induced cell 

differentiation in vitro, and investigated functional calcium storage capacity by confocal 

microscopic calcium fluorimetry using a green fluorescent protein-based calcium probe in 

differentiated and control cells. Our results indicate that SERCA3 is abundantly expressed in 

normal fully differentiated bronchial epithelium, whereas expression is highly heterogeneous 

in carcinoma tissue. We also show that SERCA3 expression is induced during the 

pharmacologically induced differentiation of lung adenocarcinoma cell lines, and that 

differentiation induction leads to decreased ER calcium storage.  

These observations show that similarly to other types of neoplasia, lung cancer cell 

calcium homeostasis can also be remodeled during drug-induced cell differentiation. This 

indicates that defects of SERCA3 expression in cancer may be a widespread phenomenon, 

and show, for the first time that endoplasmic reticulum calcium homeostatic defects are 

involved in shaping the lung cancer phenotype. 

 

Results 

SERCA expression in lung tumor cell lines and primary tumor tissue 

Western immunoblot analysis performed on equal amounts of proteins obtained from 

total cell lysates from various non-small cell lung carcinoma cell lines indicates that the 

SERCA expression pattern of these cells is heterogeneous. As shown in Figure 1 Panel A, 

whereas all cell lines express the ubiquitous SERCA2 isoenzyme, SERCA3 expression 

displays a marked heterogeneity: whereas in cell lines such as HCC-827 or NCI-H441, 

SERCA3 protein expression is barely detectable or absent, in other cell lines such as Calu-3, 
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A-427, NCI-H23, A549, Cha-Go K-1, NCI-H1650, NCI-H358 or NCI-H460, SERCA3 

protein is highly expressed and expression levels vary depending on cell line.  

When investigated in situ by immunohistochemistry using a SERCA3-specific 

monoclonal antibody, SERCA3 expression could be detected in normal ciliated bronchial 

epithelium and, to a variable degree also in primary human lung adenocarcinoma tissue. As 

shown in Figure 1 Panel B, whereas bronchial epithelial cells were markedly labeled (++, 

Photograph 2, black arrow) in a highly reproducible manner for SERCA3, staining in lung 

adenocarcinomas was heterogeneous, and varied between weak (+/-, Photograph 6), moderate 

(+; Photographs 4 and 5) and marked (++, Photograph 3). SERCA3 labeling in normal lung 

parenchyma (Photograph 1) was readily detectable in alveolar macrophages (black 

arrowhead), and normal infiltrating lymphocytes displayed strong SERCA3 labeling (+++, 

white arrowheads) in normal (Photograph 2), as well as tumor tissue (Photographs 3-7). 

These observations taken together show that SERCA3 expression is part of the normal 

differentiation program of lung epithelium, and that SERCA3 expression may be decreased or 

lost in lung adenocarcinoma. In addition, these observations indicate that heterogeneous 

SERCA3 expression in lung cancer cell lines in vitro reflects a pathophysiologically relevant 

phenomenon, because this is also observed in tumour tissue in situ. 

 

Induction of SERCA expression by short chain fatty acids 

When various non-small cell lung carcinoma cell lines were subjected to treatments 

with short chain fatty acids and analogs, a selective induction of SERCA3 expression could be 

observed. As shown in Figure 2, treatment with 5 mM phenylbutyrate for 5 days resulted in a 

marked and selective up-regulation of the expression of the SERCA3 isoenzyme, whereas the 

expression of SERCA2 was not modified significantly or was decreased. SERCA3 induction 

could also be obtained by n-butyrate or n-valerate as well (not shown). As studied in the A549 
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lung adenocarcinoma cell line, induction of SERCA3 expression was concentration-

dependent in the low millimolar range, and reached a plateau above 2 mM n-butyrate or 4-

phenylbutyrate concentrations (Figure 3, Panels A and B). SERCA3 expression reached a 

plateau of four to six-fold without significant toxicity when compared to untreated cells over a 

period of 4-7 days in cells treated with 3 mM butyrate or phenylbutyrate, respectively 

(Supplemental Figure 1, Panels A and B). Induction of SERCA3 expression could be obtained 

by other short chain fatty acid analogs as well. As shown in Supplemental Figure 2, when 

A549 cells were treated with short chain fatty acids of increasing chain length (from acetate to 

caproate), maximal induction could be obtained by butyrate and valerate. Among the tested 

branched chain fatty acid analogs, valproate was also active. Aryl-substituted analogs such as 

3-phenylpropionate, 4-phenylbutyrate or 5-phenylvalerate also induced SERCA3 expression, 

with maximal activity observed in the case of phenylbutyrate. 

In parallel with SERCA2 and SERCA3, the expression of gelsolin and p21CIP1/WAF1, 

two general markers of lung cancer cell differentiation [48, 49] has been investigated by 

Western blotting in several lung adenocarcinoma cell lines treated with various short chain 

fatty acids for 5 days. As shown in Figure 4, the selective induction of SERCA3 expression of 

A549, NCI-H358, NCI-H1650, Cha-Go K1 and HCC-827 cells with butyrate, valerate or 

phenylbutyrate was accompanied, in all investigated configurations, by increased gelsolin and 

p21CIP1/WAF1 expression. This indicates, that the treatments induce phenotypic differentiation 

of the cells, and that the induction of SERCA3 expression is part of this process in all 

investigated model systems. 

 

Induction of SERCA3 expression during the spontaneous differentiation of Calu-3 cells in post-

confluent culture 

Calu-3 lung adenocarcinoma cells have been shown to spontaneously undergo 

phenotypic differentiation towards a ciliated bronchial epithelial phenotype in post-confluent 
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cultures [50]. The cells form a tight, polarized monolayer that displays trans-epithelial 

electrical resistance, barrier function, vectorial solute transport, as reflected by the formation 

of domes when grown on plastic, and express apical microvilli and tight junctional complexes 

[51]. Post-confluent Calu-3 cells are widely used in pharmacological research as an in vitro 

model for bronchial epithelium [52]. As shown in Figure 5, the expression of SERCA3 is 

markedly increased in Calu-3 cells after confluency, whereas SERCA2 expression is not 

modified significantly. Interestingly, short-chain fatty acid treatment of confluent Calu-3 led 

to a further increase of SERCA3 expression. Phenylbutyrate has already been shown to 

enhance CFTR protein expression in post-confluent, differentiated Calu-3 cells [52]. These 

data, when taken together indicate that the induction of SERCA3 expression takes place 

during the spontaneous differentiation of post-confluent Calu-3 cells, a process that can be 

further enhanced by phenylbutyrate.  

 

Endoplasmic reticulum calcium storage in short-chain fatty acid differentiated cells  

In order to investigate ER calcium storage capacity in lung carcinoma cells, we 

established eleven clonal cell lines (BWV543 cells) derived from A549 lung adenocarcinoma, 

that stably express the GCaMP2 recombinant fluorescent calcium probe in the cytosol, and 

performed confocal microscopic measurements of fluorescence on cells treated with 5 mM 

phenylbutyrate for 5 days, and on untreated control cells. Treatment of all clones led to 

increased SERCA3 expression similarly to the parental A549 cell line. ER calcium storage 

capacity was tested by confocal microscopy on two randomly selected clones (BWV543 

clones 4 and 2.4). As shown in Figure 6, when clone 4 cells incubated in the absence of 

extracellular calcium were treated with thapsigargin, a significant calcium release from the 

ER to the cytosol could be observed in control cells, whereas thapsigargin-induced calcium 

release in cells in which SERCA3 expression was induced by phenylbutyrate was 
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significantly smaller. After the completion of thapsigargin-induced calcium release measured 

in the absence of extracellular calcium, 2 mM Ca2+ was added to the extracellular medium in 

order to observe capacitative calcium influx. Despite the marked decrease of thapsigargin-

induced calcium release in phenylbutyrate treated cells, capacitative calcium influx was of 

essentially identical amplitude in untreated and phenylbutyrate treated cells. Identical results 

were obtained on BWV543 clone 2.4 cells as well. 

 

Discussion 

Because calcium uptake into the ER is performed exclusively by SERCA enzymes, 

SERCA function constitutes a key nodal point in cellular calcium homeostasis and signaling. 

SERCA activity is required for calcium accumulation in a resting cell for intra-ER calcium 

dependent chaperone functions, as well as for calcium accumulation in the ER for inositol-

1,4,5-trisphosphate-induced calcium release during cell activation. Moreover, because 

SERCA enzymes take up calcium from the cytosol even during an inositol-1,4,5-

trisphosphate-induced calcium-release event, they can shape the amplitude and the duration of 

calcium peaks, or modulate the spatiotemporal characteristics of calcium oscillations in the 

cytosol. SERCA activity can therefore critically modulate the state of activation of a cell, and 

can influence the type and the amplitude of the response given by a cell to calcium-dependent 

stimuli. This has important consequences for tumor biology: direct pharmacological SERCA 

inhibitors such as thapsigargin or 2,5-di-tert-butyl-1,4-benzohidroquinone are known tumor 

promoters, and SERCA2+/- knock-out is known to lead to squamous tumorigenesis with a long 

incubation time. In addition, sequencing of the SERCA2 and SERCA3 genes in various 

tumors including lung cancer and corresponding normal tissue suggests that inactivating 

mutations occur in these genes in a proportion of tumors [40, 41], and it has thus been 

suggested that SERCA3 haploinsufficiency may predispose to cancer development, or may 
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promote tumor progression [41, 42]. In this context the induction of SERCA3 expression, as 

observed in our work, may therefore exert anti-oncogenic effects in lung epithelial cells. 

The observations presented in this work show, for the first time, that the expression of 

SERCA-type calcium pumps in lung cancer cells is dynamic, as various cell differentiation-

inducing stimuli led the selective induction of the expression of the SERCA3 isoenzyme in all 

investigated cell lines. In addition, strong SERCA3 expression was found in fully 

differentiated bronchial epithelium. These data, when taken together, indicate that SERCA3 

expression is part of the differentiation program of normal bronchial epithelium, and that this 

phenomenon can be recapitulated at various degrees during the differentiation of all 

investigated cell lines. 

SERCA3 induction in A549 cells, a widely studied lung adenocarcinoma line, was 

associated with a decreased calcium release signal upon SERCA inhibition. The calcium 

affinity of SERCA3 is inferior (approximately 1.2 µM) to that of the co-expressed SERCA2b 

isoform (approximately 0.2 µM). The decreased calcium release signal observed in 

phenylbutyrate treated A549 cells cannot be attributed exclusively to SERCA3 induction due 

to the interconnectedness of calcium homeostatic mechanisms that operate simultaneously in 

a cell. Decreased calcium release upon SERCA inhibition is, however, compatible with the 

notion of the formation of a leakier or lower-affinity, SERCA3-associated intracellular 

calcium pool, similarly to that observed previously in butyrate treated KATO-III gastric 

carcinoma cells [18]. 

The normal lung contains several distinct and specialized epithelial cell types. In 

addition, lung carcinoma as a group consists of several histological tumor types that can 

display different degrees of histological differentiation. The ontogenic relationship between 

normal and tumoral cell types in the lung is not established in sufficient detail [1], and the 

molecular signaling mechanisms involved in the induction and the maintenance of tumoral 
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phenotypes of increasing malignancy are not sufficiently known in the lung. Consequently, 

lung cancer is currently not amenable to successful pharmacological intervention. The 

observation that lung cancer cell calcium ER homeostasis is remodeled during differentiation 

is important for cancer biology because this indicates that lung adenocarcinoma cells may 

display calcium homeostatic defects similar to those observed in colon, gastric and breast 

carcinoma, as well as acute promyelocytic leukemia. In those systems the cross-talk of ER 

calcium homeostasis with other mechanisms of control of cell differentiation permits to 

induce and potentiate pharmacologically induced cell differentiation and to overcome certain 

forms of resistance to differentiation-induction therapy in vitro [44, 46]. In addition, SERCA3 

expression has also been shown to be a useful new immunohistochemical marker for the study 

of the state of differentiation and degree of malignancy of colon and breast tumors [44, 45]. 

Data presented in this paper indicate, for the first time, that ER calcium biology is connected 

to cell differentiation also in pulmonary epithelium, and shows that ER calcium homeostasis 

presents defects in lung cancer cells, which can be overcome by pharmacologically induced 

cell differentiation. Although the precise correlation of the loss of SERCA3 expression with 

lung adenocarcinoma histological type, grade, molecular subtypes or clinical parameters 

requires further work, the demonstration of calcium homeostatic anomalies in lung cancer 

may help identify new calcium-dependent targets for the therapy of the disease. In addition, 

our observations suggest that SERCA3 may prove useful for the immunohistochemical 

analysis of lung tumors and for the study of bronchic epithelial differentiation. 

 

Materials and Methods 

Chemicals 

n-butyric and n-valeric, 4-phenylbutyric acid, as well as sodium acetate, sodium 

caproate, sodium valproate, isobutyric, 4-methylvaleric, as well as phenylacetic, 3-
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phenylpropionic and 5-phenylvaleric acids were from Sigma-Aldrich (Saint-Quentin 

Fallavier, France). Free acids were dissolved to 300 mM final concentration in 300 mM sterile 

sodium bicarbonate solution, filtered through 0.2 µm membranes and stored at -25°C. Sodium 

salts were dissolved at 300 mM concentration in sterile water and filtered through 0.2 µm 

membranes. 

 

Cell lines 

The Calu-3, NCI-H23, NCI-H358, NCI-H441, NCI-H460, NCI-H596, NCI-H1299 

and NCI-H1650, as well as the HCC-827 cell lines were obtained from ATCC (ATCC-LGC 

Standards Sarl, Molsheim, France). A549 and A427 cells were from DSMZ (Braunschweig, 

Germany), and Cha-Go K1 was purchased from ECACC (Porton Down, UK). The various 

cell lines were cultured according to the instructions of the cell line depository of origin. 

RPMI-based media contained Ultraglutamine-I (Lonza, Verviers, Belgium) in addition to 2 

mM glutamine. 

 

Treatments 

Exponentially growing cells were trypsinized and plated into 60cm² cell culture grade 

Petri dishes in new medium. When cultures reached 40-60% confluency as examined by light 

microscopy, medium was renewed and drugs were added from concentrated stock solutions. 

Following treatments as indicated in Figures, cells were washed with ice-cold 150 mM NaCl 

and precipitated with 5% trichloroacetic acid (TCA). TCA pellet was quantified and dissolved 

in modified Laëmmli-type sample buffer exactly as described earlier [17], and 50 µg total 

cellular protein was deposited for SDS-polyacrylamide gel electrophoresis per well [17]. 

Following electrophoresis and transfer to nitrocellulose membranes, equal loading of samples 

was controlled prior immunoblotting by Ponceau red staining of total protein deposited on the 
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membranes. Ponceau red stained blots were scanned and equal protein loading was controlled 

by densitometry using the ScionImage software (Scion Corp. CA) as described earlier in 

detail [17].   

      

Western blotting 

The PLIM430 anti-SERCA3 mouse monoclonal antibody was used for Western 

immunblotting as hybridoma supernatant as described earlier in detail [17, 18, 44]. Purified 

mouse anti-gelsolin antibody (Cat # 610412, BD Transduction Laboratories, San José, CA, 

dissolved in TBS-milk at 0.05 µg/ml final concentration), and the mouse monoclonal anti-p21 

antibody SC-71811 (Santa Cruz Biotechnologies, CA, dissolved in TBS-milk at 0.2 µg/ml 

final concentration) were used on heat treated samples (100°C for 12 min) run in 8% 

polyacrylamide gels. Antibodies were revealed with an anti-mouse Ig-horseradish peroxydase 

conjugate (Jackson Immuno-Research, Newmarket, Suffolk, UK) and the Enhanced 

Chemiluminescence system of Amersham (Courtaboeuf, France) as described earlier [17, 18, 

44]. Non-saturated luminograms were scanned and densitometric analysis was done with the 

ScionImage software [11-15]. 

 

Immunohistochemistry 

Formalin fixed paraffin embedded lung cancer tissue microarray slides were purchased 

from BioChain Institute, Hayward, CA (T8235724, T8235732, Z7020066, Z7020067, 

CliniSciences, Montrouge, France) and from US Biomax, Rockville, MD (BC04015, 

BC041114, BC041115, BC04119b, LC20810, Euromedex, Souffelweyersheim, France). 

Staining for SERCA3 was performed using the clone 2H3 monoclonal mouse anti-SERCA3 

antibody (IgG2a kappa) from Abnova (Tebu-bio, Le Perray en Yvelines, France) raised 

against a GST-tagged peptide sequence encompassing the 501-621 amino acid fragment of 
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SERCA3, at 3 µg/ml final concentration diluted in Dako REALTM antibody diluent (Dako 

France S.A.S., Trappes, France) as described in [45]. Briefly, after inhibition of endogenous 

peroxydase and antigen retrieval of deparaffinized sections by a tris-hidroxymethyl-

aminomethane-based reagent (CC1 solution, Ventana Medical Systems, Illkirch, France) at 

95-100°C for 12 minutes, slides were incubated for 30 minutes at 37°C with the antibody, and 

staining was revealed using the Ventana I-View Biotin-Ig-streptavidin-biotin-horseradish 

peroxydase system with blocking of endogenous biotin activity and copper enhancement, 

according to the instructions of the manufacturer. As negative control, isotype matched 

irrelevant antibody was used at the same concentration, and this gave no staining. As internal 

positive control, lymphocytes and vascular endothelial cells present in the samples and which 

express high levels of SERCA3 [17, 24], were used. Slides were counterstained with 

hematoxylin and bluing agent (Ventana). SERCA3 immunostaining of the samples was 

evaluated semi-quantitatively using a four grade scale (0 to 3+). Photomicrographs were taken 

with a Zeiss Axio Scope.A1 microscope equipped with a Zeiss N-Achroplan 40x/0.65 

objective and an AxioCam ICc1 camera, using the Axiovision 4.8.2 software. Tissue 

microarray slides were also processed using the ImmPRESSTM biotin-free polymerized 

enzyme staining system (Vector Laboratories, Clinisciences SAS, Nanterre, France) 

according to the instructions of the manufacturer, and SERCA3 staining with this system gave 

identical results.  

 

Confocal fluorescent microscopic calcium measurements 

In order to generate the SB-CAG-GCaMP2 fluorescent calcium probe, a DNA 

fragment encoding GCaMP2 was first generated by PCR using the pN1-GCaMP2 plasmid, a 

generous gift of Junichi Nakai, RIKEN Brain Science Institute, Saitama, Japan [53]. Primer 

sequences were as follows: forward, 5’-CTACCGGTCTCGCCACCAATG-3’; and reverse, 
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5’-AGATCTCCGCTCACTTCGCTGTC-3’. The forward primer adds an AgeI restriction site, 

the reverse primer adds a BglII restriction site. The complete GCaMP2 DNA-fragment was 

cloned via AgeI(5')/BglII(3') into a SB-CAG-AmaxaGFP vector from which Amaxa GFP was 

excised with the same enzyme pair. The GCaMP2 fragment is framed in the resulting vector 

by two left inverted repeat-direct repeat (IRDR) regions, which are the recognition motifs of 

Sleeping Beauty (SB) transposase [54-57], and possesses a CAG [58] promoter. The 

efficiency of such a symmetrical transposon was proven by T. Orbán (personal 

communication). This construct was used for stable transfection using the SB transposon 

delivery system as described earlier in detail [54-57, 59]. For the SB transposase, we used an 

enhanced version of the enzyme having an approximately hundred-fold higher activity than 

the originally reconstructed transposase [59, 60]. For transfection of exponentially growing 

A549 cells, the FuGENE® 6 (Roche Applied Science, Rotkreuz, Switzerland 

(http://www.roche-applied-science.com) reagent was used according to the instructions of the 

manufacturer. Cells were co-transfected with transposon and transposase plasmids in a 10:1 

ratio to avoid overproduction inhibition of the transposase [56, 57]. Following transfections, 

cells were cultured for 3 days and then resuspended by trypsinization and sorted for GFP 

fluorescence using the Aria High Speed Cell Sorter of Beckton-Dickinson (San José, CA, 

http://www.bdbiosciences.com). The sorted cell population (containing approximately 60% 

GFP positive cells) was further cultured in bulk for 4 days, trypsinized and single cell cloned 

by limiting dilution in 96 well plates. Individual GCaMP2 expressing clones were identified 

by GFP fluorescence using an inverted fluorescent microscope and expanded. 

SB-CAG-GCaMP2-carrying A549 clones were grown to 20-30% confluency in 8 

chamber Lab-TekTM  glass bottom chamber slides and treated with 5 mM phenylbutyrate for 5 

days. At the end of treatments, the cells were washed with calcium-free Hanks' solution. Cells 

were then observed with an Olympus IX-81/FV500 laser scanning confocal microscope using 
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an Olympus PLAPO 60× (1.4) oil immersion objective. For GCaMP2 imaging cells were 

excited with the 488 nm laser line and emission was collected between 505 and 535 nm. 

Under these conditions emitted fluorescence is proportional to the cytosolic free calcium 

concentration [53]. 

Calcium signal measurements were carried out in Hanks’ balanced salt solution 

supplemented with 20 mM Hepes (pH=7.4) and 0.9 mM MgCl2. This medium was 

supplemented with 100 µM CaCl2 and 100 µM EGTA for the measurement of thapsigargin-

induced calcium release from the ER. Under these conditions free calcium concentration in 

the medium is approximately 4 µM, and no calcium influx is observed. Capacitative calcium 

influx was thereafter induced by the addition of 2 mM free CaCl2 to the medium. Time lapse 

sequences of cellular fluorescence were recorded and images were analyzed with the 

FluoView Tiempo (v4.3, Olympus, http://www.olympusmicro.com) time course software. In 

order to compensate for variability of fluorophore expression levels in individual cells, 

fluorescence values are expressed as F/F0. A total of 36 untreated and 48 treated cells were 

recorded individually in 4 parallel experiments. 

 

Statistical analysis 

Data are presented as the mean+/-SEM and correspond to at least three independent 

experiments. Statistical analysis was done using Student's paired t-test. The number of 

experiments is indicated in brackets in Figures. 
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Legends to Figures 

Figure 1 - SERCA expression in lung adenocarcinoma cell lines and lung tumor tissue  

Panel A: Expression of SERCA2 and SERCA3 proteins in untreated lung carcinoma cell lines, 

detected with the IID8 (SERCA2) and the PLIM430 (SERCA3) monoclonal antibodies by 

Western blotting. Panel B: Immunohistochemical detection of SERCA3 protein in normal 

lung parenchyma (Photograph 1), bronchial epithelium (Photograph 2), and grade 1 

(Photographs 3 and 4), grade 2 (Photograph 6), and grade 3 (Photograph 5) lung 

adenocarcinomas. Black arrows: normal bronchial epithelial cells, white arrowheads: normal 

lymphocytes, black arrowhead: alveolar macrophage (original magnification: 40x). 

 

Figure 2 - Selective induction of SERCA3 protein expression in various lung adenocarcinoma 

cell lines  

The cells were treated with 5 mM phenylbutyrate (PB) for 5 days, and identical amounts of 

total cell protein lysates were analyzed using the IID8 (SERCA2-specific) and PLIM430 

(SERCA3-specific) antibodies by Western blotting. SERCA protein expression in 

phenylbutyrate-treated cells (+) is compared to untreated controls (-). 

 

Figure 3 - Dose-response relationship of SERCA3 induction  

A549 cells were treated with various concentrations of butyrate (Panel A) and phenylbutyrate 

(Panel B), and SERCA expression was measured by semi-quantitative Western blotting. An 

approximately six-fold induction of SERCA3 expression (black columns) is obtained in the 

low millimolar concentration range for both molecules, whereas the expression of SERCA2 

(empty columns) decreases slightly (butyrate) or is not modified significantly 

(phenylbutyrate; n=3). 
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Figure 4 - Expression of lung cancer cell differentiation markers by short chain fatty acids  

Several lung adenocarcinoma cell lines (A549, NCI-H358, NCI-H1650, Cha-Go K1 and 

HCC-827) were treated with various short chain fatty acids (phenylbutyrate, 3 mM; valerate 

or butyrate, 5 mM) for 5 days, and SERCA expression, as well as the expression of gelsolin 

(82 kDa) and p21CIP1/WAF1 (21 kDa) was observed by Western blotting. Similarly to SERCA3, 

the expression of gelsolin and p21CIP1/WAF1 is increased in short chain fatty acid-treated cells 

in all investigated drug/cell line configurations. 

 

Figure 5 - Induction of SERCA3 expression during the spontaneous differentiation of post-

confluent Calu-3 cells - Superinduction by short chain fatty acids  

Calu-3 lung adenocarcinoma cells were grown in pre-confluent conditions, and in post-

confluency, in the absence or the presence of various short chain fatty acids (5 mM) for 5 

days, and SERCA expression was determined by Western blotting. Panels A and B: 

Photomicrographs of pre- and post-confluent cultures. Formation of "domes" in post-

confluent cultures (arrowheads) is indicative of trans-epithelial solute transport, a feature of a 

tight, differentiated epithelial monolayer. Panels C and D: Cells at day 1 of post-confluency 

were allowed to undergo differentiation for 5 days in the absence or the presence of 5 mM 

butyrate, valerate or phenylbutyrate. SERCA2 and SERCA3 expression was then detected by 

Western blotting and quantified. The selective induction of SERCA3 expression by post-

confluent growth is further enhanced by short chain fatty acids. White bars: pre-confluent 

untreated cells, grey bars: post-confluent untreated cells, black bars: post-confluent, 

phenylbutyrate-treated cells (n=3). 
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Figure 6 - Calcium release from SERCA-dependent intracellular calcium pools in A549 cells  

A549 cells carrying the GCaMP2 fluorescent calcium probe (BWV543-4 cells) were treated 

or not with 5 mM phenylbutyrate for 5 days, and cytosolic calcium fluorescence was recorded 

by confocal fluorescent microscopy after complete inhibition of SERCA activity with 10 µM 

thapsigargin in the absence of extracellular calcium. After completion of the thapsigargin-

induced calcium release signal, extracellular medium was replenished with 2 mM Ca2+, and 

capacitative calcium influx was observed. Phenylbutyrate treatment leads to a significant 

decrease of calcium release from intracellular pools upon complete SERCA inhibition, 

whereas capacitative calcium influx remains similar. A total number of 36 treated, and 48 

untreated individual cells were recorded in 4 parallel experiments. Right Panel: Similarly to 

parental A549 cells, SERCA3 expression was induced by phenylbutyrate in A549 cells 

carrying the GCaMP2-carrying calcium probe. 

 

Legends to Supplemental Figures 

 

Supplemental Figure 1 - Time course of SERCA2 and SERCA3 expression in short chain fatty 

acid-treated A549 cells  

Cells were treated with 3 mM butyrate (Panel A) or 3 mM phenylbutyrate (Panel B) during 

several days. SERCA3 expression in treated cells (   ) increases and reaches a plateau of 

approximately four-fold and six-fold in butyrate, and phenylbutyrate treated cells, 

respectively, whereas SERCA2 expression in treated cells (    ), as well as SERCA3 (    ) or 

SERCA2 (    ) in untreated cells remains unchanged. 
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Supplemental Figure 2 - Induction of SERCA3 expression in A549 cells by various short chain 

fatty analogs  

Cells were treated with various short chain fatty acid analogs (5 mM) of increasing alkyl 

chain length (acetate, propionate, butyrate, valerate and caproate), with branched chain 

analogs (valproate, isobutyrate and 4-methylvalerate), and with omega-aryl-substituted 

analogs (phenylacetate, phenylpropionate, phenylbutyrate and phenylvalerate for 5 days. 

Maximal induction of SERCA3 expression is observed with valerate and phenylbutyrate. 
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