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ABSTRACT
Human choriocarcinoma-derived BeWo cells express high levels of breast

cancer resistance protein (BCRP/ABCG2) with no functional P-glycoprotein

(P-gp) (ABCB1) activity, making them a potential model to study bidi-

rectional ABCG2-mediated drug transport. However, the original BeWo

clone (B24) available to researchers does not form confluent monolayers

with tight junctions required by the model. Our aim was to adapt culture

conditions to attempt to generate confluent BeWo monolayers for drug

transport studies using the standard B24 clone. BeWo cells (B24;

American Type Culture collection [ATCC]) were cultured in six-well

plates or polycarbonate millicell inserts in a number of media formu-

lations, growth supplements, and basement membrane substitutes. Cells

were examined for confluence by microscopy, and transepithelial elec-

trical resistance (TEER) was measured daily; monolayer permeability was

assessed when TEER had stabilized. Optimal growth rates were achieved

in culture conditions consisting of Medium 199 (M199) supplemented

with epidermal growth factor (EGF; 20 ng/mL), vitamin supplements, and

10% fetal calf serum (FCS) with collagen coating. A TEER of 170 U in

0.6 cm2 inserts was achieved 2 weeks after seeding under optimal

conditions. The cell-impermeable diffusion marker 5(6) carboxy-2,7di-

chlorodihydrofluorescein (C-DCDHF) had a permeability coefficient of

3.5 · 10 - 6 cm/s, indicative of minimal paracellular permeability. ABCG2

expression, as determined by immunoblotting, remained unaffected by

confluency. In conclusion, we describe culture conditions for the B24

BeWo clone that facilitate the formation of monolayers with tighter

junctions and reduced paracellular transport compared to previously

published models. These growth conditions provide a good model of

ABCG2-mediated drug transport in a human placental cell line.

INTRODUCTION

B
reast cancer resistance protein (BCRP/ABCG2), a member of

the ABC family of active efflux proteins, is an important

part of the xenobiotic defense system of the body. Along

with P-glycoprotein (P-gp)/ABCB1, these two efflux

transporters are usually collocated at the same barrier surfaces of the

body, such as the blood–brain barrier, kidney, gastrointestinal tract,

breast duct, placental syncytium, and fetal capillary endothelium.1,2

BCRP has a significant role in preventing xenobiotics and orally

active drugs from being absorbed, and from altering the pharmaco-

kinetics of drug disposition, due to its abundance in the gastroin-

testinal tract.3 Unlike other efflux transporters though, BCRP is a half

transporter that requires dimerization of two copies in the plasma

membrane for the generation of a functional efflux protein.4 While

P-gp has a wide array of drug groups that are transported,5 BCRP is

currently thought to have a smaller subset of substrates. Never-

theless, some important antineoplastic drugs are known to be

transported by both BCRP and P-gp, such as daunorubicin and

doxorubicin,6 while other drugs not affected by P-gp, such as mi-

toxantrone, ciprofloxacin, bisantrene, and topotecan, are transported

by BCRP.4,7

It has proved difficult to determine the characteristics of P-gp or

BCRP drug substrates using molecular modeling.8 Therefore, exper-

imental characterization of drug efflux properties requires the de-

velopment and application of in vitro models using cell lines with

specific efflux properties.9 The Caco-2 cell line, for example, ex-

presses P-gp on its apical surface and forms a polarized epithelial

monolayer in a culture with tight junctions to limit paracellular

transport, making it ideal for bidirectional transport studies of P-gp

efflux.8,9 Currently, the only equivalent cell line for analysis of BCRP

substrates is a Madin Darby canine kidney (MDCK) cell line trans-

fected with human BCRP,10 which is not widely available.

The placenta is the tissue with the greatest amount of BCRP ex-

pression, and placental trophoblast cells, which form the main epi-

thelial barrier between the maternal and fetal circulations, are

characterized by high levels of BCRP expression. The BeWo cell line
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is derived from human trophoblast cells and possesses two key tro-

phoblast characteristics: high endogenous expression of BCRP11,12

and propensity for cell–cell fusion and differentiation—a process

known as syncytialization by which a multicellular epithelial mem-

brane is formed across which all substances must pass in order to

leave or enter the fetus.13 In addition to expressing significant

amounts of BCRP, BeWo cells express little ABCB1/P-gp, making

them ideal for BCRP transport studies.14,15 Other transporters are

present on BeWo cells such as ABCB2 and some of the ABCC series of

transporters, but these are not considered as important for drug efflux

as BCRP and P-gp. Like many other human cell lines, BeWo cells will

grow in most standard culture media in the presence of fetal calf

serum (FCS) and are capable of secreting their own basement mem-

brane to adhere to the surface of plastic culture dishes. However,

under normal culture conditions these cells do not form confluent

cell layers; instead, they aggregate and form discrete colonies.14 At

high seeding concentrations the cell colonies syncytialize and retract

from other colonies, creating large gaps that preclude the develop-

ment of intact monolayers.15,16 This characteristic renders BeWo cells

unusable for bidirectional transport studies. Although a subclone of

BeWo cells (B30) has been shown to form tight junctions and has

been used in transport studies, there has been very limited use of this

subclone and the tight junctions described still allowed substantial

paracellular transport.17,18 Thus, our aim was to assess whether it is

possible to adapt the culture conditions to encourage the B24 clone of

BeWo cells available through national cell banks to display tight

junctions and form a monolayer barrier in culture, with the ultimate

goal of developing a useable in vitro model for BCRP-mediated

transport studies.

MATERIALS AND METHODS
Topotecan hydrochloride, 5(6)-carboxy-2,7-dichlorodihydro-

fluorescein (C-DCDHF), bicinchoninic acid (BCA), collagen type I from

calf skin, anti-b-actin monoclonal antibody, the Dulbecco’s modified

Eagle’s medium (DMEM), and Medium 199 (M199) were supplied by

Sigma-Aldrich. Fumitremorgin C and forskolin were supplied by Enzo

Life Sciences, Inc. PSC-833 was kindly donated by Novartis Pharma-

ceuticals. The Roswell Park Memorial Institute (RPMI) medium was

from Hyclone. GIBCO minimum essential medium (MEM) nonessential

amino acids (NEAA; Cat. No. 11140-050), GIBCO MEM vitamin sup-

plement (100 · ; Cat. No. 11120-052), recombinant human epidermal

growth factor (rhEGF) Ham’s F-12 Nutrient Mixture with Kaighn’s

Modification (F12K medium), FCS (Cat. No. 10100-139 and 10100-

147), GlutaMAXTM, and peroxidase-labeled goat anti-mouse immu-

noglobulin G (IgG) antibody were supplied by Life Technologies

Australia Pty Ltd. FCS was also supplied by Australian Commonwealth

Serum Laboratories. Mouse monoclonal anti-human cytokeratin 7

antibody was from DAKO Australia. Precast electrophoresis gels were

from PAGEgel Inc. Anti-P-gp MDR1 (G-1) mouse monoclonal, as

well as anti-MRP1 mouse monoclonal (QCRL-1), and anti-MRP2 (M2

III-6) mouse monoclonal antibodies were supplied by SantaCruz

Biotechnology, while anti-BCRP monoclonal antibody (BXP-21) was

purchased from Chemicon (Life Technologies Australia Pty Ltd.).

SuperSignal West-Pico Substrate was from Pierce Chemical. All other

reagents were supplied by Sigma-Aldrich Pty. Ltd.

Immunohistochemistry
BeWo cells growing on 6- and 24-well plates or 0.6-cm2 inserts

were visualized by staining with anti-cytokeratin 7 to determine

levels of confluence. Cells were fixed in freshly prepared 4% para-

formaldehyde in phosphate-buffered saline (PBS) for 10 min and

subsequently blocked with 5% casein in PBS for 1 h. After incubation

with primary antibody for 1 h, cells were washed in PBS and

peroxidase-labeled secondary anti-mouse IgG antibody was added.

After an hour, cells were subject to four stringent washes with PBS

and color was developed using the 3,30-diaminobenzide peroxidase

substrate kit (Vector Labs); nickel was omitted for the staining of cells

on the 6- and 24-well plates, but included when cells cultured on

inserts were stained. Images were collected on a Nikon DS-5Mc

camera attached to a Nikon Ti inverted phase microscope using NIS

imaging software (Nikon Corp.).

Protein Determination
BeWo cells were scraped and homogenized in a protein lysis buffer

consisting of 120 mM NaCl, 24 mM Tris base, 1% Triton-X-100, 0.1%

sodium dodecyl sulfate (SDS), and 0.2% deoxycholic acid in water,

pH 7.4. The lysis buffer was supplemented with Sigma Ultrafast

general protein inhibitor tablets just before use. Protein concentra-

tions in the lysates were determined using a micro-BCA method

adapted for use with multiwell plates on a VersaMax plate reader

(Molecular Devices). Curve fitting and data extrapolation were per-

formed using SoftMax Pro40 software (Molecular Devices).

Western Blotting for Efflux Protein Detection
Thirty micrograms of proteins was added to each well of a 4%–

12% Tris-glycine gel and subjected to sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE) before transfer onto

nitrocellulose membranes. They were washed in Tris-buffered saline/

0.05% Tween 20, and then probed with monoclonal primary anti-

bodies directed against P-gp MDR1 (G-1), BCRP (BXP-21), MRP1

(QCRL-1), and MRP2 (M2 III-6) diluted to a final concentration of

0.5 mg/mL. In parallel, blots were also probed with mouse anti-b-

actin antibody at 1:10,000 dilution incubated at room tempera-

ture for 1.5 h with gentle rocking. After addition of horseradish

peroxidase-labeled goat anti-mouse IgG (1:5,000 dilution), blots were

developed by enhanced chemiluminescence and visualized after 20min

exposure using an ImageQuant 350 image analyzer (GE Healthcare).

Optimization of Culture Conditions
BeWo cells were seeded at 30,000 cells/cm2 on 6- or 24-well plates

(BD Falcon, BD Biosciences) and at 100,000–125,000 cells/cm2 on

0.6 cm2 Millicell polycarbonate inserts (Merck Millipore). A variety

of culture parameters were then evaluated: (1) use of different media

formulations (DMEM, F12K, RPMI, or M199), (2) addition of NEAA

and/or MEM vitamin solution, and (3) different batches and suppliers

of FCS (CSL, Life Technologies). These combinations were also tested
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with and without culture surface coating (collagen, poly-l-lysine, or

bovine gelatine). For coating with collagen, tissue culture wells and

0.6-cm2 polycarbonate inserts were incubated with 150 mL collagen I

(1 mg/mL) from calf skin dissolved in 0.9 M acetic acid for a minimum

of 2 h. The acetic acid solution was aspirated and wells were left in the

culture cabinet under ultraviolet (UV) illumination for 30 min and

then left to dry overnight. The wells were subsequently washed three

times in sterile PBS to remove traces of acetic acid before seeding

with cells. To coat with poly-l-lysine or gelatine, plates and inserts

were coated in 200 mL of a 1% solution of either poly-l-lysine or

gelatine for 1 h before aspirating, UV treating for 30 min, and sub-

sequently leaving to dry overnight before conducting three washing

steps to remove traces of nonbound poly-l-lysine or gelatine. To

evaluate the effects of differentiation and syncytialization on growth

characteristics such as aggregation and confluence, dibutryl cyclic

AMP (dbcAMP; 100 mM), forskolin (10 mM), or human epidermal

growth factor (10–20 ng/mL) were added 24 or 48 h after initial

seeding on the wells. Cells were incubated for up to 12 days, and were

inspected daily for changes in morphology and confluence. Transe-

pithelial electrical resistance (TEER) across the inner and outer

compartments of the insert chambers was measured daily using an

EVOM meter and the ENDOHM 12 chamber (World Precision

Instruments).

Bidirectional Transport
Filter inserts were transferred to fresh 24-well plates for the

transport studies. The studies were conducted using an assay medium

consisting of Hank’s balanced salt solution (HBSS) supplemented

with both glucose (Ajax chemicals) and HEPES to give final con-

centrations of 20 and 10 mM, respectively. The pH was adjusted to 7.4

using 1 M NaOH.

Cells were incubated in a prewarmed assay medium with or

without an efflux inhibitor for 30 min at the correct pH, and then

rinsed in the same medium. TEER was measured immediately before

the start of the experiment and the assay medium with or without

inhibitors were placed in the receiver chambers. We used topotecan

hydrochloride (20 mM), a typical BCRP substrate, rhodamine 123

(5 mM), a typical P-gp substrate, or C-DCDHF, a paracellular trans-

ported compound, added to the donor chamber of each well (apical

chamber [Ap] for apical to basolateral studies, and basolateral

chamber [Bas] for basolateral to apical studies). The Ap and Bas

chambers received 0.3 and 0.6 mL of medium, respectively. Samples

were removed from the receiver chamber at various time points over

a 3-h period. Constant volumes were maintained by adding the

prewarmed medium to the receiver chambers to maintain an equi-

librium pressure differential between the volumes in the donor and

receiver chambers. The selective BCRP inhibitor fumitremorgin C

(5 mM) was used to block functional BCRP activity, while the P-gp

inhibitor PSC-833 (4 mM) was also used to provide comparative non-

BCRP efflux inhibition data. During the transport study these mod-

ifying agents were also present in the donor chamber with our test

compounds and in the receiver chamber, at the same concentrations

as stated above. Fluorescence was measured in 96-well plates using a

FLUOstar Optima fluorescence plate reader. Filters used included a

485-nm excitation filter and a 520-nm emission filter for C-DCDHF

and rhodamine 123, while a 355-nm excitation filter and a 520-nm

emission filter were used for topotecan detection similar to that used

previously (Table 1).19

Data Analysis
Drug transport through cell monolayers was calculated both as a

simple amount passing the monolayer per min, which would vary

depending on the concentration used in the donor compartment, and

as an apparent permeability coefficient as calculated previously.20

Briefly, our permeability coefficient equation (derived from Eqs. 1

and 2) allows for changes in the concentration of test compound in

the donor chamber as the permeability experiment progressed.

Cl vol =
Aa

[Cdo · Vd - [Aa + (Ca · Vs)] - (Ac ) · n=nfin]
Vd

n o (1)

Peff =
Cl vol=n

A
(2)

where Cl. vol is clearance volume (mL); n, time (min); nfin, final time

point (min); Aa, amount in acceptor compartment at time n (pmol);

Cdo , concentration in donor compartment at time 0 (nM); Vd, volume

of donor compartment (mL); Ca, concentration in acceptor com-

partment at previous sample point (nM), Vs, sample volume of pre-

vious time point (mL); Ac, amount of compound associated with cells

after cells are removed from filters at the end of the study (pmol); A,

area of monolayer (cm2); Peff, effective permeability (cm/s).

Results in this study are presented as the mean – standard error of

the mean (SEM). Significant differences between values were ex-

amined using the Student’s two-tailed unpaired t-test with results

considered significant if P < 0.05.

RESULTS
Optimization Studies

The culture of BeWo cells over 1 week in the various medium for-

mulations and supplements revealed marked differences in growth. The

DMEM was the poorest performing medium with very little growth

observed; the RPMI medium was marginally better, but neither resulted

in sustained cell growth past 3 days, leaving more than 50% of the

available surface unoccupied by day 5 (results not shown). Cells grown

in the F12K and M199 medium resulted in the formation of isolated

clusters of cells, achieving *70% coverage. NEAA supplementation of

the F12K medium increased cell growth marginally, while MEM vitamin

supplementation also enhanced attachment and growth. No differences

were observed between the different batches of FCS used. Subsequent

studies employed F12K media with NEAA/vitamin supplementation or

the M199 medium with added vitamins.

With respect to coating options, collagen coating promoted denser

cell clusters and enhanced confluency (Fig. 1). Gelatin was less ef-

fective than collagen, and poly-l-lysine was completely ineffective.

Treatment with forskolin or dbcAMP, which promotes
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syncytialization, resulted in the cell aggregates condensing and re-

tracting from each, reducing confluency, and increasing the spaces

between the cells (Fig. 1). On the other hand, rhEGF (10 ng/mL) was

effective at increasing the growth rate without inducing aggregation

or retraction (Fig. 1). The combination of the M199 medium sup-

plemented with rhEGF, vitamins, and collagen coating achieved

> 99% surface coverage. Increasing the rhEGF concentration to

20 ng/mL resulted in complete coverage with no visible spaces evi-

dent. Under these conditions, after 1 week of culture, domes of BeWo

cells were evident (Fig. 2), which continued to expand every day

postconfluence. This suggested that the

BeWo cells had formed sheets of tightly

joined cells capable of generating hy-

drostatic pressure via differences between

apical versus basal secretion. Dome for-

mation is thought to occur from fluid

being pumped underneath the cells

causing them to lift off from the base of

culture plates. In permeability studies,

where cells are cultured on a suspended

membrane insert, there is an outlet for

fluid to move through the cell and out

into the Bas chamber, preventing dome

formation on cells grown on filter inserts.

Thus, although dome formation is an in-

teresting phenomenon on cells grown on

the base of plastic plates, these events do

not occur on membrane filter grown cells.

Permeability Studies
Cells were seeded on inserts at 100,000–

125,000 cells/cm2, and TEER was measured

daily for 12 days to assess the effects of

culture optimization on cellular membrane

permeability. Cell cultured at 100,000 cells/

cm2 exhibited variable TEER measured

between replicates of 30%. Therefore, a

higher cell density of 125,000 cells/cm2

was chosen, resulting in more consistent

tight junctions between replicates. Cells

grown in the M199 medium plus epidermal

growth factor (EGF)/vitamins on collagen-

coated inserts clearly exhibited much

higher TEER values than the other growth

conditions (Fig. 3A), with readings above

165O recorded. After 12 days, TEER values

plateaued (data not shown), suggesting that

optimal tight junction formation had been

reached. Transport of the hydrophilic

paracellular transport marker C-DCDHF

(23mM) was assessed on day 12 of culture.

Ap-to-Bas transport rates were 18.3ng/

(cm2$min) (66 · 10- 6 cm/s) in nonseeded

collagen-coated inserts (i.e., no BeWo cells), 3.2ng/(cm2$min)

(6.0 · 10- 6 cm/s) with BeWo cells cultured on collagen-coated inserts in

the F12K medium plus EGF, and 1.9 ng/(cm2$min) (3.5 · 10- 6 cm/s)

with cells grown in the M199 medium plus EGF (Fig. 3B, C).

Topotecan hydrochloride is a known BCRP substrate. Bidirectional

transport studies through confluent BeWo cells resulted in Ap to

Bas transport of 6.0 · 10 - 6 cm/s (2.77 ng/[cm2$min]), while Bas to

Ap transport was 7.8 · 10 - 6 cm/s (3.67 ng/[cm2$min]) (Fig. 4). Each

transport analysis was done in triplicate (Fig. 4); error bars re-

presenting SEM values are shown, but due to their size are obscured

Table 1. Workflow for Optimized BeWo Bidirectional Transport Study

Step Parameter Value Description

1 Collagen coat inserts 150mL 1 mg/mL collagen I

2 Incubate 2 h Room temp

3 Wash 300mL PBS

4 Wait overnight In hood under ultraviolet light

5 Prepare growth medium 200 mL M199 + vitamins + FCS + Glutamax

6 BeWo cell seeding 125,000 cells/mL Trypsinize cells

7 Wait 24 h Attachment phase

8 EGF medium 5mL rhEGF in growth medium

9 Feed cells 12–14 days Replace medium every 48 h

10 TEER 170 O EndOHM probe

11 BCRP inhibitors 5 mM Fumitremorgin C

12 BCRP substrate assay 30–180 min Use of 20mM topotecan hydrochloride

13 Substrate detection 355 nm/520 nm (ex/em) 96-well fluorescent plate reader

Step Notes
1. 1 mg/mL collagen I dissolved in 0.9 M acetic acid spread over 0.6-cm2 millicel polycarbonate inserts in 24-

well plates.

2. Use Class II biological hood under ultraviolet light, aspirate all solution in inserts.

3. Wash off any acetic acid present around the inserts at least three times.

4. Wait overnight before using inserts. Allow to air-dry in sterile hood under ultraviolet light.

5. Generate final concentration of 10% FCS, 2 mM glutamax, and 2 mL of a 100 · minimum essential medium

vitamin mix solution.

6. Trypsinize cells for 5 min. Need cells from 75-cm2 flask to generate cell density to cover a 24-well study.

7. Allow full day for cells to plate down in humid 37�C incubator with 5% CO2.

8. Add rhEGF at 20 ng/mL from 100mg/mL stocks to the medium immediately before feeding cells.

9. Maintain cells in 37�C incubator with 5% CO2.

10. Measure TEER using an EVOM meter with an insert probe (EndOHM 12).

11. Replace the medium with HBSS and incubate some wells with the BCRP inhibitor.

12. Add topotecan in HBSS with or without BCRP inhibitors to donor sides and collect aliquots from receiver side

for up to 3 h.

13. Apparent permeabilities (Papp) can be determined for each direction of transport from apical to basolateral and

basolateral to apical.

BCRP, breast cancer resistance protein; EGF, epidermal growth factor; FCS, fetal calf serum; HBSS, Hank’s

balanced salt solution; M199, Medium 199; PBS, phosphate-buffered saline; rhEGF, recombinant human epidermal

growth factor; TEER, transepithelial electrical resistance.
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and difficult to see. The difference in the rate of Ap versus Bas to-

potecan transport was significant with P < 0.005. Addition of fumi-

tremorgen C, a potent BCRP inhibitor, abolished the difference in

transport direction (P < 0.773) (Fig. 4). The P-gp inhibitor PSC-833

was also used, but Bas to Ap transport remained significantly higher

than Ap to Bas transport (P < 0.024). To illustrate specificity for BCRP

transport, additional studies using the P-gp substrate rhodamine 123

were performed. Transport of rhodamine 123 through BeWo cells

layers was shown to be 6.9 · 10 - 6 cm/s in both direction without the

addition of any inhibitors (Fig. 5) (P < 0.967). The addition of 4 mM

PSC-833 did not significantly alter transport rates (P < 0.499), nor did

the use of fumitremorgin C (P < 0.889), suggesting that P-gp sub-

strates are not actively transported in this model.

Fig. 1. Microscopic analysis of BeWo cell growth after 7 days in varying culture conditions. (A) The F12K medium, (B) M199. BeWo cultures
were fixed and stained with anti-human cytokeratin antibody with immunoperoxidase detection as described in Materials and Methods.
Cells were grown on tissue culture grade plastic (a–d) or collagen 1–coated plastic (e–h) in control conditions (a, e) or in the presence of
10 mM forskolin (b, f), 100 mM dbcAMP (c, g), or 10 ng/mL EGF (e, h) from day 2 until day 7 of culture. Images, shown at 100 · magnification,
were taken on a Nikon Ti inverted microscope. EGF, epidermal growth factor; dbcAMP, dibutryl cyclic AMP; M199, Medium 199.

Fig. 2. Dome formation in confluent cultures of BeWo cells grown
for 7 days in 6-well plates coated with collagen 1 in M199 sup-
plemented with 10 ng/mL EGF and vitamin supplement. 100 ·
magnification on Nikon Ti inverted phase microscope.

‰
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Western blotting was performed to identify

levels of ABCB1 (P-gp), ABCG2 (BCRP), ABCC1

(MRP1), and ABCC2 (MRP2) proteins. BCRP

was readily detected in the BeWo cells used in

our study (Fig. 6A). No visible bands were de-

tected for P-gp in the BeWo lysates under any

experimental conditions, consistent with pre-

vious studies21 (Fig. 6B). MRP1 was also not

detected, but MRP2 was shown to be expressed,

although the strength of the signal was not as

strong as that for BCRP. There were no changes

in BCRP abundance in the presence or absence

of culture factors used to generate confluence

and monolayer formation in this cell line.

DISCUSSION
The BeWo cell line has been described in

many studies of trophoblast biology, differen-

tiation, and invasion, but seldom used in drug

transport studies despite the fact that it ex-

presses a number of functional drug transport

proteins, including BCRP.16 This is almost

certainly due to its propensity for aggregation

and fusion, which creates large gaps on the

culture plate, precluding formation of an intact

monolayer capable of effective membrane

barrier function.17,22 Most investigators em-

ploy the B24 BeWo clone for their studies,

which is available commercially from public

Fig. 3. (A) Increases in TEER during growth of
BeWo cells on collagen-coated 0.6-cm2 milli-
cell polycarbonate inserts grown in either the
F12K (,, >), or the M199 medium (6, · )
supplemented with either 20 ng/mL EGF (>,
6) or 10 mM dbcAMP (,, · ). BeWo cells
grown on uncoated inserts in M199 media are
also shown (B). The Ap to Bas transport
rates (ng/cm2/min) are shown on the right of
the graphs (based on the accumulation of C-
DCDHF in the basal compartment). (B) Com-
parison of passive permeability of C-DCDHF
through confluent BeWo cultures on collagen-
coated 0.6-cm2 millicell polycarbonate inserts
compared to TEER measurements for the in-
serts. (C) Bidirectional transport study of
23 mM C-DCDHF by confluent BeWo cells (day
12) grown in either the F12K medium (,, >),
or the M199 medium with supplemented EGF
(-, r). Results are shown in both Ap to Bas
(,, -) and Bas to Ap (>, r) directions for
each culture condition. TEER, transepithelial
electrical resistance; C-DCDHF, 5(6)-carboxy-
2,7-dichlorodihydrofluorescein, Ap, apical;
Bas, basolateral.

‰
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cell depositories such as American Type Culture collection (ATCC).

Although an early report described (B24) BeWo cell cultures able to

produce TEER values of 600 O$cm2,23 suggestive of very effective

tight junctions, this has not been subsequently replicated and it is

widely believed that BeWo cells do not form confluent monolayers.

However, one group of researchers, the Schwartz group in Wa-

shington, have described a specific BeWo subclone, B30, capable of

forming confluency.22 They have conducted several studies using

this clone, including studies on iron17 and linoleic acid transport.18

Unfortunately, although a few other groups in Europe and the United

States have subsequently used this subclone, there is some variability

in the effectiveness of tight junction formation from these other

groups.24,25 Recently, one group from Europe attempted to generate

monolayers from the B30 subclone of BeWo cells and were not able to

get the tight junctions to increase beyond 14 O$cm2, with high

fluorescein transport rates equivalent to 10% per hour,24 while an-

other study showed tight junctions to be around the 45 O$cm2 level,

and 4% fluorescein transport per hour,25 suggesting that there can be

high variability in tight junction formation even with use of a

Fig. 4. Bidirectional transport of topotecan hydrochloride (20 mM)
by BeWo cells grown on 0.6-cm2 polycarbonate inserts at day 14 of
culture. Cells were maintained in simple balanced salt solution for
the 3-h study. Fumitremorgin C (5 mM) or vehicle was added 30 min
before the start of the experiment and was maintained in both Ap
and Bas chambers. Results are shown for topotecan hydrochloride
alone (-, r) or with fumitremorgin C (,, >). Results are shown
for both Ap to Bas (,, -) and Bas to Ap (>,r) directions for each
culture condition. Data shown are mean – SEM (n = 3). Error bars
may not be visible due to their small size. SEM, standard error of
the mean.

Fig. 5. Assessment of bidirectional transport of rhodamine 123
(5 mM) in BeWo cells grown on 0.6-cm2 polycarbonate inserts at
day 15 of culture. Cells were maintained in simple balanced salt
solution for the 3-h study. P-gp inhibitor PSC-833 (4 mM) or vehicle
was added 30 min before the start of the experiment and was
maintained in both Ap and Bas chambers. Results are shown for
rhodamine 123 alone (-, r) or with PSC-833 (,, >). Results are
shown for both Ap to Bas (,, -) and Bas to Ap (>,r) directions
for each culture condition. Data shown are mean – SEM (n = 3).
Error bars may not be visible due to their small size. P-gp,
P-glycoprotein.

Fig. 6. (A) Western blot analysis of BCRP/ABCG2 protein expres-
sion in BeWo cells under different culture conditions. About 30 mg
of protein was loaded per lane. Lanes 1–3: Total protein was ex-
tracted on day 7 of culture from BeWo cells grown in M199 with
and without 20 ng/mL rhEGF for either 24 or 72 h. Lanes 4and 5:
BeWo cells on day 7 of culture grown on collagen-coated wells,
with and without rhEGF for 6 days. (B) Western blot analysis of
three other active efflux proteins (P-gp, MRP1, and MRP2) in BeWo
cells compared to Caco-2, A549, and MCF7 cells used in our lab-
oratory. Lane 1: Prestained MW stds. Lane 2: Caco-2 cells cultured
for 21 days. Lane 3: A549 cells cultured for 6 days. Lanes 4 and 5:
BeWo cells grown on collagen-coated wells, with and without
rhEGF for 6 days. Lane 6: MCF7 cells cultured for 7 days. BCRP,
breast cancer resistance protein; rhEGF, recombinant human epi-
dermal growth factor.
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subclone that has a higher propensity to generate monolayers. In

addition, approval to use this subclone must come from specific

research labs in the United States, as it is not held in commercial cell

banks. In contrast, the B24 clone is widely distributed from official

American and European cell line distribution sites, which allows

ready worldwide access to laboratories interested in developing a

BCRP transport model. Here we have outlined a specific set of

culture conditions using standard B24 cells that facilitate the for-

mation of confluent BeWo monolayers with tight junctions that will

be useful for the study of trophoblast permeability, substrate

specificity, and transport kinetics of efflux proteins such as BCRP/

ABCG2 in vitro.

We evaluated a variety of culture conditions to arrive at a

combination of medium, supplements, and culture surface coating

needed to achieve confluency. We optimized the culture medium

and vitamin content to achieve optimal growth. We also evaluated

the effects of increases in intracellular cyclic adenosine mono-

phosphate (cAMP) levels to promote differentiation and ERK1/2 and

p38MAPK phosphorylation26–28 based on the reported effects of

cAMP on tight junction formation between adjoining BeWo cells.27

However, this strategy merely promoted aggregation and fusion

with no benefits on confluence. We also evaluated addition of EGF

since this is known to increase cell growth, ERK1/2 and p38MAPK

activity, and a2-integrin expression.29 The addition of EGF proved

extremely successful in terms of promoting growth and confluence,

particularly at the higher dose (20 ng/mL). It is important to note

that EGF was not added until 24 h after seeding to allow normal

attachment before growth stimulation, with medium and supple-

ments added every 48 h. In our hands, 12 days of constant exposure

to EGF were required to reach peak tight junction formation.

Coating with collagen I was also essential for formation of BeWo

monolayers in our study. This is despite the findings of Nakatsuji

and coworkers that EGF treatment had no impact on the adhesion of

BeWo cells to collagen IV coated plates.29 Our observations are

unlikely to be related directly to adhesion; it is more likely that cell-

to-cell apposition is affected. The differences in EGF response could

reflect a difference in the BeWo phenotype when grown on type I

and type IV collagen.29

The use of TEER measurements as a marker of barrier formation is

a common technique, but subject to considerable laboratory-to-

laboratory variance due to lack of consistency and reproducibility in

measurement techniques and calibration. The original 1997 study

detailing the transport properties of the B30 sub-clone showed

fluorescein transport at 10 · 10 - 6 cm/s and TEER values around

60O$cm2.18 In a more recent publication using the B30 clone, Heaton

and coworkers reported TEER measurements over 300 O$cm2, but

with unexpectedly high rates of transmission of mannitol of 3.5% per

hour.17 Under our optimal growth conditions, BeWo cultures

achieved TEER readings of 170 O, 8.5 · greater than background,

while the carboxyfluorescein transport rate was only 1.6% per hour

(3.5 · 10 - 6 cm/s). These TEER inconsistencies may be due to meth-

odological differences, e.g., the use of chopstick electrodes or en-

dohm chambers to measure TEER. We have found that chopstick

electrodes can provide inconsistent and variable data ( > 100 O be-

tween measures), so now we use fixed chambers that provide more

accurate and reproducible results.

Stability of the transport characteristics of the model is an im-

portant consideration. In a previous study using the B30 sub-clone

on collagen-coated polycarbonate inserts, confluency could not be

maintained for more than 60 min.30 In contrast, our model showed

linearity in efflux for at least 3 h in BeWo cells maintained in a

simple buffered balanced salt solution. Drug transport in polarized

epithelia would be expected to exhibit marked differences in di-

rectionality. In our model although the A–B versus B–A efflux

differential for the BCRP substrate topotecan was significant, it did

not exceed 1.3-fold. Criteria established for P-gp-mediated efflux in

Caco-2 cells suggest that transport differential should be at least

two-fold to achieve a functional model with useful characteris-

tics.31 However, this assumes that the extent of polarized expression

of the transporters of interest is similar to that of P-gp. The polarity

of BCRP expression in BeWo cells has not been assessed, and is

currently assumed to be similar to that of the placenta with the

majority facing the apical side, although recent findings suggest

that BCRP is also present on the maternal side of the placenta.2 As

our data showed some increased basolateral efflux of topotecan,

and use of BCRP inhibitors only decreased Bas to Ap transport. If

BCRP was present on both sides of the cells, use of a BCRP inhibitor

would have decreased transport in both directions, and this was not

observed. In addition, we have also shown that this model does not

exhibit P-gp-mediated transport, as no P-gp protein was detected

and bidirectional transport studies with a P-gp substrate found no

evidence of P-gp-mediated efflux.

Therefore, in this study we have shown that in appropriate cul-

ture conditions, standard BeWo cells can generate monolayers with

tight junctions for studies of bidirectional transport of high-affinity

BCRP substrates and inhibitors. For low-affinity molecules, in-

creases in the polarity of expression or the cellular barrier integrity

would be required to provide an adequate level of sensitivity.

Measurement of intracellular substrate concentrations might also

enhance the utility of the model. While the potential presence of

MRP2 must be taken into consideration when using this cell line as a

model to study BCRP transport, the absence of P-gp or MRP1 pro-

vides a distinct advantage. In addition, the study of other transport

proteins and processes, such as the transport of amino acids, fatty

acids, and nanoparticles, could also be facilitated by the use of this

model.
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