
Suffix Arrays: What Are They Good For?

Simon J. Puglisi
Dept. of Computing

Curtin University of Technology
Perth, Australia

Email: puglissj@computing.edu.au

William F. Smyth
McMaster University, Hamilton, Canada

Curtin University of Technology, Perth, Australia
Email: smyth@computing.edu.au

Andrew Turpin
Dept. of Computer Science & IT

RMIT University
Melbourne, Australia

Email: aht@cs.rmit.edu.au

Recently the theoretical community has displayed
a flurry of interest in suffix arrays, and compressed
suffix arrays. New, asymptotically optimal algo-
rithms for construction, search, and compression of
suffix arrays have been proposed. In this talk we
will present our investigations into the practicalities of
these latest developments. In particular, we investi-
gate whether suffix arrays can indeed replace inverted
files, as suggested in recent literature on suffix arrays.

Background

In 1990 Manber & Myers proposed suffix arrays as a
space-saving alternative to suffix trees and described
the first algorithms for suffix array construction and
use (Manber & Myers 1990, Manber & Myers 1993).
It has since been shown that any problem whose so-
lution can be computed using suffix trees is solvable
with the same asymptotic complexity using suffix ar-
rays (Abouelhoda, Kurtz & Ohlebusch 2004). In ad-
dition, suffix arrays use much less memory than suffix
trees, even less when they are compressed (Ferragina
& Manzini 2000, Sadakane 2002, Grossi, Vitter &
Gupta 2004, Puglisi, Turpin & Smyth 2005a, Mäkinen
& Navarro 2005).

It has recently been shown that given an n charac-
ter text T and its corresponding suffix array S, with
some preprocessing and auxiliary information, it is
possible to search for an arbitrary m character pat-
tern P in T using only O(m) time (Sim, Kim, Park
& Park 2003). This is superior to non-index based
string matching algorithms like that of Knuth, Mor-
ris & Pratt (1977) and Boyer & Moore (1977) which
are linear in both the pattern and text length, requir-
ing O(m + n) time to find P in T . In conjunction
with these time-efficient searching algorithms, time-
efficient construction algorithms have also been de-
veloped that require only O(n) time to construct the
suffix array on an n character text (Puglisi, Turpin &

Copyright c©2006, Australian Computer Society, Inc. This pa-
per appeared at the Seventeenth Australasian Database Con-
ference (ACSC2006), Hobart, Australia. Conferences in Re-
search and Practice in Information Technology, Vol. 49. Gillian
Dobbie and James Bailey, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

Smyth 2005b).
Subsequent research on compressed suffix arrays

(Sadakane 2000, Mäkinen 2000, Grossi & Vitter n.d.)
and similar structures has revealed that self-indexing
structures are possible, which can search for and re-
port matches without the need for the original text
to be stored (Mäkinen & Navarro 2004, Ferragina &
Manzini 2000, Ferragina & Manzini 2001, Navarro
2004, Grossi et al. 2004). These structures typically
require about 30% of the space of the text, and so
double as a compression scheme as the original text
can be discarded. Search times remain linear in the
length of the pattern (assuming a fixed alphabet, such
as ASCII).

While a great deal of effort has been expended in
making suffix arrays smaller, there is still a funda-
mental problem with their scalability. When search-
ing for a pattern P of length m, one must perform
m non-sequential accesses into the suffix array, and
m non-sequential access into the text. If the suffix
array is on disk, this equates to 2m seek operations,
which, for anything but small patterns (of the order of
5 characters), limits the technology to a small num-
ber of simultaneous users, or small texts that fit in
RAM. Even the compressed, self-indexing suffix ar-
ray of Grossi et al. (2004), which does not require
access to the text, requires O(m + log n) seeks into
the structure itself.

Because of the non-sequential access patterns ex-
hibited by current suffix array algorithms, all pa-
pers experimenting with such algorithms assume that
their structures can fit in memory. This seems to
contradict bold claims that suffix arrays are an im-
portant technology for searching the World Wide
Web, and even large genomic databases (Sadakane
& Shibuya 2001, Grossi et al. 2004).

The inverted file, on the other hand, is a data
structure that has been adopted by the Web search
engine community, and handles data on external stor-
age (Witten, Moffat & Bell 1999). Inverted files
have been specifically engineered to scale well, and
to minimise the number of expensive disk opera-
tions required to find a pattern in a text (Zobel &
Moffat n.d.). However, the form of the pattern is re-
stricted. With an inverted file, the form of the pattern
must be set prior to index construction. Typically

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by espace@Curtin

https://core.ac.uk/display/195636321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


a word is chosen as the unit of indexing, restricting
pattern search to words, prefixes of words, or combi-
nations of words (phrases).

In this talk we will report on experiments with
inverted files in direct competition to suffix arrays:
that is, all data is in RAM, and arbitrary patterns
are the target of the search.

Acknowledgments This work has been supported
in part by grants from the Australian Research Coun-
cil (Turpin) and the Natural Sciences and Engineering
Research Council of Canada (Smyth).

References

Abouelhoda, M. I., Kurtz, S. & Ohlebusch, E. (2004),
‘Replacing suffix trees with enhanced suffix ar-
rays’, Journ. Discrete Algorithms 2, 53–86.

Boyer, R. S. & Moore, J. S. (1977), ‘A fast string
searching algorithm’, Communications of the
ACM 20(10), 762–772.

Ferragina, P. & Manzini, G. (2000), Opportunis-
tic data structures with applications, in ‘Pro-
ceedings of the 41st IEEE Symposium on
Foundations of Computer Science (FOCS 00)’,
IEEE Computer Society, Redondo Beach, CA,
pp. 390–398.

Ferragina, P. & Manzini, G. (2001), An experimental
study of an opportunistic index, in ‘SODA ’01:
Proceedings of the twelfth annual ACM-SIAM
symposium on Discrete algorithms’, Society for
Industrial and Applied Mathematics, Philadel-
phia, PA, USA, pp. 269–278.

Grossi, R. & Vitter, J. S. (n.d.), ‘Compressed suf-
fix arrays and suffix trees with applications
to text indexing and string matching’, SIAM
Journal on Computing . To appear. Available
from http://www.cs.duke.edu/~jsv/Papers/
catalog/node87.html.

Grossi, R., Vitter, J. S. & Gupta, A. (2004), When
indexing equals compression: Experiments with
compressing suffix arrays and applications, in
‘SODA ’04: Proceedings of the fifteenth an-
nual ACM-SIAM Symposium on Discrete algo-
rithms’, SIAM, New Orleans, Louisianna, USA,
pp. 636–645.

Knuth, D. E., Morris, J. H. & Pratt, V. R. (1977),
‘Fast pattern matching in strings’, SIAM Journal
on Computing 6(2), 323–350.

Mäkinen, V. (2000), Compact suffix array, in ‘Com-
binatorial Pattern Matching’, Vol. LNCS 1848,
pp. 305–319.

Mäkinen, V. & Navarro, G. (2004), Compressed
compact suffix arrays, in ‘Combinatorial Pat-
tern Matching: 15th Annual Symposium, CPM
2004’, Vol. LNCS 3109, Springer-Verlag GmbH,
pp. 420–433.

Mäkinen, V. & Navarro, G. (2005), ‘Succinct suffix ar-
rays based on run-length encoding’, Nordic Jour-
nal of Computing 12(2), 40–66.

Manber, U. & Myers, G. (1990), Suffix arrays: a new
method for on-line string searches, in ‘SODA ’90:
Proceedings of the first annual ACM-SIAM sym-
posium on Discrete algorithms’, Society for In-
dustrial and Applied Mathematics, Philadelphia,
PA, USA, pp. 319–327.

Manber, U. & Myers, G. W. (1993), ‘Suffix arrays:
a new model for on-line string searches’, SIAM
Journal of Computing 22(5), 935–948.

Navarro, G. (2004), ‘Indexing text using the Ziv-
Lempel trie’, Journal of Discrete Algorithms
2(1), 87–114.

Puglisi, S. J., Turpin, A. H. & Smyth, W. F. (2005a),
The performance of linear time suffix sorting al-
gorithms, in M. Cohn & J. Storer, eds, ‘Pro-
ceedings of the IEEE Data Compression Confer-
ence’, IEEE Computer Society Press, Los Alami-
tos, CA, pp. 358–368.

Puglisi, S. J., Turpin, A. H. & Smyth, W. F. (2005b),
A taxonomy of suffix array construction algo-
rithms, in ‘Proceedings of the Prague Stringol-
ogy Conference’, Czech Technical University,
Prague, pp. 1–30.

Sadakane, K. (2000), Compressed text databases
with efficient query algorithms based on the
compressed suffix array, in ‘Proceedings of IS-
SAC’00’, Vol. LNCS 1969, pp. 410–421.

Sadakane, K. (2002), Succinct representations of
lcp information and improvements in the com-
pressed suffix arrays, in ‘SODA ’02: Proceed-
ings of the thirteenth annual ACM-SIAM sym-
posium on Discrete algorithms’, Society for In-
dustrial and Applied Mathematics, Philadelphia,
PA, USA, pp. 225–232.

Sadakane, K. & Shibuya, T. (2001), ‘Indexing huge
genome sequences for solving various problems’,
Genome Informatics 12, 175–183.

Sim, J. S., Kim, D. K., Park, H. & Park, K. (2003),
Linear-time search in suffix arrays, in ‘Proc.
14th Australian Workshop Combinatorial Alg.
(AWOCA)’, pp. 139–146.

Witten, I. H., Moffat, A. & Bell, T. C. (1999), Manag-
ing Gigabytes: Compressing and Indexing Doc-
uments and Images, second edn, Morgan Kauf-
mann Publishing, San Francisco.

Zobel, J. & Moffat, A. (n.d.), ‘Inverted files for text
search engines’. Submitted for publication.


