
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Reconfigurable PDA for the Visually Impaired Using FPGAs

Xuan Zhang, Cesar Ortega-Sanchez and Iain Murray
Electrical and Computer Engineering Department

Curtin University of Technology, Perth, Western Australia
c.ortega@curtin.edu.au

Abstract

Curtin University Brailler (CUB) is a Personal
Digital Assistant (PDA) for visually impaired people.
Its objective is to make information in different formats
accessible to people with limited visual ability. This
paper presents the design and implementation of two
modules: a print-to-Braille translation system and a
Braille keyboard controller. The translator implements
Blenkhorn’s algorithm in hardware, liberating the
microprocessor to perform other functions. The Braille
keyboard controller along with a low cost keyboard
provides users with a note-taking function. These
modules are used as intellectual property (IP) cores
coupled to a 32-bit MicroBlaze processor in an
embedded system-on-a-chip (SoC). In its current
implementation, the microprocessor uses a
hierarchical interrupt scheme to coordinate IP cores.
A prototype of the complete embedded system is under
development using Xilinx’s FPGAs. The system is a
potential platform for the development of embedded
systems to assist the visually impaired.

1. Introduction

Curtin University Brailler (CUB) is a Personal
Digital Assistant (PDA) under development at Curtin
University of Technology to address the special needs
of visually impaired people. Functions of the device
include print-to-Braille translation, Braille note taking,
interface to printer and embosser, and double talk
function. A current version of the CUB uses a
microcontroller and off-the-shelf components. An
FPGA-based version is currently being investigated.
More details about CUB can be found in [1].

Figure 1 shows the FPGA-based CUB’s block
diagram. The system consists of peripheral devices
connected to a MicroBlaze via CoreConnect’s On-chip
Peripheral Bus (OPB) [2]. Some of these devices are
“virtual”. They are IP cores that are loaded into

reconfigurable areas of the FPGA at run-time,
improving FPGA usage and overall performance.

In Figure 1 the Universal Asynchronous Receiver
Transmitter (UART) is used to communicate the PDA
with personal computers or embossers. The interrupt
controller handles interrupt requests for the
MicroBlaze. A Media Access Controller (MAC)
coupled to an on-board physical layer network chip
supplies a standard Ethernet connection. Other IP cores
implement Print-to-Braille and Braille-to-print
translation. Input devices include Braille keyboard,
QWERTY keyboard and microphone (Double Talk).
Output devices include standard printer, LCD,
embosser and speakers or headphones. This paper
presents IPs for Print-to-Braille translation and control
of Braille keyboard.

OPB
arbiter

Reconfigurable
area I

Reconfigurable
area II

Interrupt
controller MicroBlaze

Instruction
memory

Data
memory

IP cores:
• Ethernet MAC
• UART
• Print to Braille (P2B)
• Braille to Print (B2P)
• Braille Keyboard
• QWERTY Keyboard

Double Talk
Chip Set I/F

Figure 1. CUB’s hardware block diagram

2008 International Conference on Reconfigurable Computing and FPGAs

978-0-7695-3474-9/08 $25.00 © 2008 IEEE

DOI 10.1109/ReConFig.2008.62

1

2. Print-to-Braile translation IP

2.1. Print-to-Braille translation

There are two approaches for the translation of text
into Braille. One is simply substituting each Computer
Braille code for its standard ASCII equivalent, such
character-by-character translation, known as Grade 1
Braille, significantly slows down the reading speed [4].
Hence, English and many other languages employ
contractions to represent information with a minimum
number of Braille characters. When contractions are
used, Braille is called Grade 2. In English, Grade 2
Braille uses 189 contractions [5, 6].

Currently, automatic text-to-Braille translation is
done by software running in personal computers. Some
of these programs can even perform multiple language
translation [7]. Unfortunately, commercial software is
designed mainly for users with healthy eyesight. Most
commercial programs offer low or no accessibility to
visually impaired users and are mainly used for the
translation of existing printed texts.

In this paper we present an embedded system-on-
chip that includes a hardware-based, print-to-Braille
translator with greater throughput than commercial
software.

2.2. Algorithm

Several approaches have been proposed for
automatic text-to-Braille translation. In one instance,
Slaby used production rules derived from a Markov
system [10,11]. Even though Slaby’s approach
achieves accurate translations, his solution requires a
large number of production rules.

Based on Slaby’s work, Paul Blenkhorn proposed a
system to convert text into Standard English Braille
[12]. His method uses a decision table with input
classes and states and a table with over a thousand
rules for translation. The format of each row in the
table is:

Input class <TAB> RULE <TAB> New state

Every RULE has the following format:

Left context [FOCUS] Right context = result text

Focus is the Braille string to be translated. During
translation rules are checked one by one looking for a
match against the FOCUS and its left and right
contexts. If a match is found then the rule fires and the
input string is substituted with the right-hand-side of
the rule (result text).

2.3. Architecture

For its hardware implementation, the print-to-

Braille translator was divided into 9 blocks. Figure 2
shows a diagram of the translator and its interface.

 FPGA

Translator

Look-Up
Table
(On-
Board
Flash
Mem.)

Output Translated Codes

Right
Context
Check

 Left
Context
Check

Output
Rule

Find
Entry

Load
Translated

Codes

Translating Controller

Braille
ASCII

Text
ASCII

Focus
Check

Interface

Figure 2. Block Diagram of Print-to-Braille
Translator

In Figure 2 the rule table has to be stored in the on-

board 16 MB Flash Memory using an independent
module (not shown in Figure 2) before translation
begins. To read the table, there is an interface between
the Flash memory and the Output-Rule block.

The Translating-Controller gets a signal from the
Load-Translated-Codes block to receive and store text
in its data registers. In this implementation, the
translator distinguishes words by detecting spaces.

The Find-Entry block contains addresses for entry
rules in alphabetical order. When an entry character is
received from the Translating-Controller, the Find-
Entry block will output the corresponding address to
the Output-Rule block. The entry character is defined
as the first un-translated character in the input text
string. If no entry address can be found for a particular
character, it means the entry character is not in the list;
therefore, a fail signal is issued and the character will
be output for Grade 1 translation.

Two operations take place in the Output-Rule block.
One is reading rules from the look-up table through the
interface, and the other is sending each part of a single
rule to Focus-Check, Right-Context-check, Left-
Context-Check, and Load-Translated-Codes blocks.
The Output-Rule block receives an address from the
Find-Entry block, and control signals from the Load-
Translated-Codes block indicating if the output rule
can be used. If the rule does not find a match, then a
signal will be generated by the Load-Translated-Codes

2

block requesting the Output-Rule block to get the next
rule. This process continues until a match is found and
the focus is successfully translated.

Notice in Figure 2 that the Focus-Check, Right-
Context-Check and Left-Context-Check blocks work
concurrently, providing better performance than
sequential implementations. Each block generates
signals for the Load-Translated-Codes block indicating
if the focus, the right context or the left context were
successfully matched. If one of the three fails, then a
signal is sent back to the Output-Rule block requesting
the next rule. If the focus, right context and left context
match one of the rules, then the Load-Translated-
Codes block sends the translated codes to the Output-
Translated-Codes block, and informs the Translating-
Controller block how many characters were translated.
After one group of characters has been translated, the
Output-Translated-Codes block transmits the
corresponding Computer Braille characters one by one.
Then the translation of a new set of characters begins.
A more detailed description of the translator’s
architecture can be found in [13].

2.4. Hardware implementation and test

This design has been implemented in VHDL and

tested in a Xilinx Spartan-3E FPGA with a 50MHz
clock [14]. In this particular chip the translator
occupies 1333 out of 4656 programmable slices, which
is less than 30% of the FPGA programmable logic.
Implementation and test were carried out using
Xilinx’s ISE suite, version 8.2.

To test the system a simple Universal
Asynchronous Receiver-Transmitter (UART) was
integrated in the FPGA to communicate with a PC
using an RS-232 port. Text files were sent to the
translator using this channel while translated Braille
codes were sent back to the PC.

During testing, outputs of the IP were compared
against the outputs of a commercial Braille translation
program running in a 16 MHz Mitsubishi
microcontroller. Results show that the hardware
translator can achieve the same accuracy as the
commercial system but the speed is considerable faster.
For example, to translate the word “and” into the
corresponding Computer Braille character ‘&’ the
microcontroller takes 300us, and the FPGA only 12us.

To simplify comparisons, the FPGA used the same
16 MHz clock as the microcontroller; however, during
normal operation the FPGA can use a clock as fast
as100 MHz. More details on verification can be found
in [13].

3. Braille keyboard and its controller

3.1. Braille keyboard

A Braille keyboard is a device for the blind to type
Braille characters. Braille keyboards are more
complicated than conventional keyboards because up
to six keys could be pressed at the same time. Some
designs use optical sensors [8, 9].

For the CUB, a low cost 6 x 4 push button matrix
keyboard was developed. The six keys used to type
Braille dots are allocated to the first column. Keys in
the second and third columns are used to indicate
special functions. The fourth column contains keys for
ENTER, SPACE and arrows (Left, Right, Up, Down).

Figure 3 shows the electrical diagram of Curtin’s
Braille keyboard. Inputs (columns) receive a 4-bit scan
code containing only one zero. When a key is pressed
the zero propagates to the corresponding output (row).
Individual keys can be identified by combining the
input and output codes.

1

2

3

4

5

6

Enter

Left

Right

Space

Up

Down

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

VCC VCC VCC VCC

I0 I1 I2 I3

O1

O0

O2

O3

O4

O5

0 1 1 1

1

0

1

0

0

1

From FPGA

Open
switch

Closed
switch To

FPGA

Figure 3. Matrix Keyboard Scheme

3.2. Keyboard controller

The keyboard controller consists of two parts: A

Code Scanner and a Decoder. The Code Scanner sends
4-bit scan codes to inputs I0 to I3 of the keyboard and
receives 6-bit codes from outputs O0 to O5. The central
element of this mechanism is a circular shift register
initialised with “0111”. The Code Scanner module is
driven by the state machine shown in Figure 4.

3

State0

State1

State2

State3State4

Scan 1st column
R1=input

Reg1=Reg1 AND input

Scan 2nd column
R2=input

Reg2=Reg2 AND input

Scan 3rd column
R3=input

Reg3=Reg3 AND input

If R1=R2=R3=R4=”111111” then
 Output Reg1, Reg2, Reg3, Reg4
 Go to State0
Else
Go to State0

Reset and
initialised

Scan 4th column
R4=input

Reg4=Reg4 AND input

Figure 4. State Machine in Code Scanner

The state machine driving the keyboard controller
works as follows:
• In State 0, code “0111” is presented in I0-I3

providing a zero to the first column. Two 6-bit
registers called R1 and Reg1 are used to store
input signals and both are initialised to all ones.
After a debouncing period of about 13
milliseconds, the six bits input codes are saved
into register R1. Meanwhile, Reg1 stores the
logic AND operation between the input and its
current value to detect if multiple keys have been
pressed in the same column at different times.

• In the next three states the same process is
repeated to scan the next three columns using
codes “1011”, “1101”, and “1110” respectively.
Likewise, in each state, two registers are used to
store input codes and the result of the AND
operation. There are in total two groups of 4
registers [R1, R2, R3, R4] and [Reg1, Reg2,
Reg3, Reg4].

• In the State 4, the registers R1, R2, R3 and R4
are checked to see if the value for each register is
all ones, indicating that all keys have been
released. If they have not, the state machine will
go back to the State 0 to repeat the operation. If
all keys have been released, the 24 bits stored in
registers Reg1 to Reg4 are sent to the decoder,
and the registers are set to all ones.

When keys have been pressed and released the

decoder receives 24-bit codes from the code scanner
and translates them into the corresponding Computer
Braille or control code. The decoder sends its output to
the serial transmitter or Braille-to-Text translator
depending on the function that was selected.

3.3. Implementation and test

The keyboard and its controller were also tested in
the Spartan 3 development board. The test system
including the controller and a serial asynchronous
transmitter occupy 137 out of 3584 programmable
slices, which amounts to 3% of the programmable
resources. Computer Braille codes generated by the
controller are sent through the transmitter to a personal
computer and displayed in a window using
HyperTerminal. Results showed that the Braille
keyboard and its controller are reliable and because
they are based on a simple printed circuit board (PCB),
they are more affordable and easy to manufacture than
complicated mechanical or optical alternatives. More
details on the keyboard can be found in [15].

4. The embedded system

4.1. Hardware development

The embedded system implementing the Braille
PDA consists of a MicroBlaze microcontroller and the
hardware modules described in previous sections.
Xilinx’s Platform Studio (XPS) suite was used to
develop the embedded system’s hardware and software
components.

XPS uses IBM’s CoreConnect bus to implement
embedded systems [2]. CoreConnect allows the
interconnection of devices with different data widths
using an On-Chip Peripheral Bus (OPB).

After all hardware modules have been integrated,
XPS creates a software library for the whole system
and drivers for each one of the hardware components.
These drivers supply basic functions to read from and
write to every module. If the system is specified as
interrupt-driven, XPS also generates primitive interrupt
service routines (ISR).

Figure 5 shows the block diagram of an embedded
system that integrates a MicroBlaze with the hardware
translator and the Braille keyboard controller described
in previous sections.

The translator receives ASCII codes from
MicroBlaze using an 8-bit register connected to the
OPB bus. Results of the translation, which have a
maximum of 12 characters (96 bits), are saved in three
32-bit registers which can be accessed by MicroBlaze
in 3 clock cycles.

4

FPGA

Translator IP

Keyboard Controller IP

Translator

Keyboard
Controller

Interrupt
Controller

MicroBlaze
Reg1 8 bit

Reg2 32 bit

Reg3 32 bit

Reg4 32 bit

Reg1 8 bit

Irq Int_input

Int_input

OPB
On-chip

Peripheral
Bus

Figure 5. Interconnections between IPs and
MicroBlaze

The keyboard controller connects to the keyboard’s

inputs and outputs via FPGA’s pins. When keys are
pressed and released, the controller sends Computer
Braille codes to the MicroBlaze using an 8-bit register
connected to the OPB.

Another feature of this system is the use of an
interrupt controller (IC). MicroBlaze can handle only
one interrupt source and in order to use multiple
interrupts, an interrupt controller connected to the OPB
is necessary [16].

In Figure 5, each block of the system is driven by
an on-board 50MHz clock source. The IC receives two
interrupts associated to the data ready signals from the
translator and keyboard controller. If both interrupts
arrive at the same time, the keyboard controller has
higher priority than the translator. Interrupt signals are
active high for one clock cycle when data from either
module are ready to be read. After solving priorities,
the IC will interrupt the MicroBlaze which will then
execute interrupt service routines according to interrupt
vectors provided by the IC.

To achieve the reconfigurability shown in figure 1
a microcontroller, FPGA or CPLD will hook onto the
instruction bus of the system and when a particular
hardware function is required, the corresponding IP
will be loaded. This is possible thanks to a property
called dynamic partial reconfiguration available in
some modern FPGAs [17]. At the present stage of the
project partial reconfiguration has not been attempted
yet.

4.2. Software development

Xilinx’s software development tools support C and
assembly languages. Users only have to write code to
implement the high-level function of the system
because all basic functions are available in libraries
generated automatically during synthesis of the

embedded system. Since print-to-Braille translation
and keyboard control were implemented in hardware,
the corresponding ISRs were very simple.

Figure 6 shows pseudo-code for a simple
application implementing some of the CUB
functionality. The main program runs an infinite loop
executing the function selected by a global flag. The
value of the flag changes according to the function
selected using the Braille keyboard. For the tests
reported in this paper only two functions were
available: note-taking and print-to-Braille translation.

In note-taking mode the CUB reads the Braille
keyboard and sends the corresponding ASCII code to a
monitor using an RS-232 connection. The keyboard
ISR is invoked when one or more keys on the Braille
keyboard have been pressed and released. If the key
was a command, then the keyboard controller will
issue a code indicating what task to carry out next.

In print-to-Braille translation mode the CUB
receives ASCII characters form a PC and returns the
corresponding Grade 2, Computer Braille codes. The
translator ISR is invoked when the translation of a
word has finished.

Function translation
begin

print “input text”
while(Global_flag = = 2)
{

 intput a character;
 send it to translator;

}
end

Keyboard interrupt handler
//activated when keys pressed

begin
K=read_register(* keyboard);
// Braille code in K

if (K==F1)
 Global_flag=1;

else if (K==F2)
 Global_flag=2;
 else if (K== other function keys)
 Global_flag=0;
 else if (K== other value)
 CNT=CNT+1;
end

Translator interrupt handler
 //activated when translation finished

begin
read 3 translator registers;

 print Braille ASCIIs;
end

Global_Flag:
0 =>idle;
1=>note taking;
2 =>translating;

Global variable:

K: to save key values

CNT: 32-bit counter

Function note_taking
begin
 int c=0; // define a local variable

print “input Braille codes”
c=CNT;
while(Global_flag = = 1)
{

 if(c != CNT)// key pressed?
 {
 print K;
 c=CNT;

}
}

end

ISRs

Main program:
begin

initialise
Global_flag, K, CNT, T1, T2, T3, interrupt parameters;
print instructions;
//this can be replaced by speech function
while (true)
{

if (Global_flag= =1)
 note_taking function;

else if (Global_flag= =2)
 translation function;
 else continue;
 }

}
end

Figure 6. Structure of Software
Implementation

5

5. Conclusions and future work

This paper presented the implementation and test of
an embedded system that includes a print-to-Braille
translator and a Braille keyboard. The system was
developed and tested using a Xilinx Spartan 3
development board. The print-to-Braille translator is
able to achieve the same accuracy as commercial
software with much higher throughput. The translation
IP liberates the processor from the heavy burden of
running this computationally expensive algorithm, and
at the same time simplifies software development.
Furthermore, Blenkhorn’s algorithm was designed so
that Braille translation in languages other than English
can be achieved by simply changing the rule table. In
the CUB this table is stored in an external memory
module, which adds another level of reconfigurability
to the system.

The proposed Braille keyboard and its controller are
a low cost solution that could be part of a commercial
Braille personal digital assistant (PDA).

An important feature of the system is that it is
interrupt-driven, which simplifies the development of
software if there is need to include additional PDA
functions. It is expected that some of these new
functions will be implemented in hardware liberating
microcontroller-power for other high-level applications
such as an embedded real-time operating system.

The microcontroller-based version of CUB is now
in the industrial prototype stage. The FPGA
implementation is being explored to reduce cost and
augment functionality in the future. The development
of the FPGA-based CUB will span several stages. At
the current stage the FPGA is connected as a peripheral
to the microcontroller. Individual IP modules are being
developed to implement in hardware functions that
currently run in software. Work is being carried out to
include features like voice-recognition, text-to-voice
synthesis and Braille-to-Text translation. The next
stage will be to incorporate dynamic reconfigurability
into the system. This will require major modifications
to the hardware and software architectures. It is
expected that new challenges will have to be faced; for
example, as more functions are incorporated into the
system, the capacity of the chip may become an issue.

At this point in time minimizing cost is not a
priority because new devices with more capabilities, at
lower costs keep appearing every semester. However,
it is expected that the actual cost of the final version of
the FPGA-based CUB will be dominated by the cost of
the FPGA itself.

References

[1] Curtin University, CUB web page.
 http://bauhaus.ece.curtin.edu.au/~iain/CUB/
[2] Xilinx, “Processor IP Reference Guide”, Feb. 2005.
http://www.xilinx.com/support/documentation/sw_manuals/
XPS71i_proc_ip_ref_guide.pdf
[3] K. R. Ingham, “Braille, the Language, Its Machine
Translation and Display”, IEEE Transactions on Publication,
Vol. 10, no. 4, Dec. 1969, pp. 96-100.
[4] Sullivan J. E., “DOTSYS III: A Portable Braille
Translator”, in proceedings of the ACM annual conference,
issue 15, New York, Mar. 1975, pp. 14-19.
[5] Jonathen, A. “Recent Improvement in Braille
Transcription”, Proceedings of the ACM annual Conference,
Vol. 1, Boston, 1972, pp. 208-218.
[6] Blenkhorn, P. A., “System for Converting Braille into
Print”, IEEE transactions on Rehabilitation Engineering, Vol.
3, no. 2, Jun. 1995, pp. 215-221.
[7] Duxbury Braille Translator web page.
 http://www.duxburysystems.com
[8] Spragg J., “Interfacing a Perkins Brailler to a BBC
micro,” Microp. Microsystems, Vol. 8, pp. 524-527, 1984.
[9] Evans D.G., Pettitt S. and Blenkhorn, P., “A Modified
Perkins Brailler for Text Entry into Windows Applications”,
IEEE Transactions on Rehabilitation Engineering, Vol. 10,
no. 3, Sep. 2002, pp. 204-206.
[10] Slaby W. A., “The Markov System of Production Rules:
A Universal Braille Translator”, ACM SIGCAPH computers
and the physically handicapped, no. 15, 1975, pp. 53-59.
[11] Slaby W. A., “Computerized Braille Translation”,
journal of microcomputer applications, Vol. 13, no. 2, 1990,
pp. 107-113.
[12] Blenkhorn P., “A System For Converting Print into
Braille”, IEEE transactions on rehabilitation engineering,
Vol. 5, no. 2, Jun. 1997, pp. 121-129.
[13] Zhang X., Ortega-Sanchez C. and Murray I. “A System
For Fast Text-To-Braille Translation Based On FPGAs”, 3rd
Southern Conference on Programmable Logic, Mar del Plata,
Argentina, 26-28 February, 2007.
[14] Xilinx, “Spartan-3E Starter Kit Board User Guide”,
Mar. 2006.
http://www.xilinx.com/support/documentation/boards_and_k
its/ug230.pdf
[15] Zhang X., Ortega-Sanchez C. and Murray I. “A
Hardware-Based Braille Note Taker”, 3rd Southern
Conference on Programmable Logic, Mar del Plata,
Argentina, 26-28 February, 2007
[16] Xilinx, “Using and Creating Interrupt Based Systems”,
Jan. 2005.
http://www.xilinx.com/support/documentation/application_n
otes/xapp778.pdf
[17] Xilinx, “Managing Partial Dynamic Reconfiguration in
Virtex-II Pro FPGAs”, Xcell Journal, Fall 2004.

6

