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Abstract 
 

Curtin University Brailler (CUB) is a Personal 
Digital Assistant (PDA) for visually impaired people. 
Its objective is to make information in different formats 
accessible to people with limited visual ability. This 
paper presents the design and implementation of two 
modules: a print-to-Braille translation system and a 
Braille keyboard controller. The translator implements 
Blenkhorn’s algorithm in hardware, liberating the 
microprocessor to perform other functions. The Braille 
keyboard controller along with a low cost keyboard 
provides users with a note-taking function. These 
modules are used as intellectual property (IP) cores 
coupled to a 32-bit MicroBlaze processor in an 
embedded system-on-a-chip (SoC). In its current 
implementation, the microprocessor uses a 
hierarchical interrupt scheme to coordinate IP cores. 
A prototype of the complete embedded system is under 
development using Xilinx’s FPGAs. The system is a 
potential platform for the development of embedded 
systems to assist the visually impaired.  
 
1. Introduction 
 

Curtin University Brailler (CUB) is a Personal 
Digital Assistant (PDA) under development at Curtin 
University of Technology to address the special needs 
of visually impaired people. Functions of the device 
include print-to-Braille translation, Braille note taking, 
interface to printer and embosser, and double talk 
function. A current version of the CUB uses a 
microcontroller and off-the-shelf components. An 
FPGA-based version is currently being investigated. 
More details about CUB can be found in [1].  

Figure 1 shows the FPGA-based CUB’s block 
diagram. The system consists of peripheral devices 
connected to a MicroBlaze via CoreConnect’s On-chip 
Peripheral Bus (OPB) [2]. Some of these devices are 
“virtual”. They are IP cores that are loaded into 

reconfigurable areas of the FPGA at run-time, 
improving FPGA usage and overall performance.  

In Figure 1 the Universal Asynchronous Receiver 
Transmitter (UART) is used to communicate the PDA 
with personal computers or embossers. The interrupt 
controller handles interrupt requests for the 
MicroBlaze. A Media Access Controller (MAC) 
coupled to an on-board physical layer network chip 
supplies a standard Ethernet connection. Other IP cores 
implement Print-to-Braille and Braille-to-print 
translation. Input devices include Braille keyboard, 
QWERTY keyboard and microphone (Double Talk). 
Output devices include standard printer, LCD, 
embosser and speakers or headphones. This paper 
presents IPs for Print-to-Braille translation and control 
of Braille keyboard. 
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Figure 1. CUB’s hardware block diagram 
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2. Print-to-Braile translation IP 
 
2.1. Print-to-Braille translation 
 

There are two approaches for the translation of text 
into Braille. One is simply substituting each Computer 
Braille code for its standard ASCII equivalent, such 
character-by-character translation, known as Grade 1 
Braille, significantly slows down the reading speed [4]. 
Hence, English and many other languages employ 
contractions to represent information with a minimum 
number of Braille characters. When contractions are 
used, Braille is called Grade 2. In English, Grade 2 
Braille uses 189 contractions [5, 6]. 

Currently, automatic text-to-Braille translation is 
done by software running in personal computers. Some 
of these programs can even perform multiple language 
translation [7]. Unfortunately, commercial software is 
designed mainly for users with healthy eyesight. Most 
commercial programs offer low or no accessibility to 
visually impaired users and are mainly used for the 
translation of existing printed texts.  

In this paper we present an embedded system-on-
chip that includes a hardware-based, print-to-Braille 
translator with greater throughput than commercial 
software. 
 
2.2. Algorithm 
 

Several approaches have been proposed for 
automatic text-to-Braille translation. In one instance, 
Slaby used production rules derived from a Markov 
system [10,11]. Even though Slaby’s approach 
achieves accurate translations, his solution requires a 
large number of production rules. 

Based on Slaby’s work, Paul Blenkhorn proposed a 
system to convert text into Standard English Braille 
[12]. His method uses a decision table with input 
classes and states and a table with over a thousand 
rules for translation. The format of each row in the 
table is: 

Input class <TAB> RULE <TAB> New state 

Every RULE has the following format: 

Left context [FOCUS] Right context = result text 

Focus is the Braille string to be translated. During 
translation rules are checked one by one looking for a 
match against the FOCUS and its left and right 
contexts. If a match is found then the rule fires and the 
input string is substituted with the right-hand-side of 
the rule (result text).  

 

2.3. Architecture 
 
For its hardware implementation, the print-to-

Braille translator was divided into 9 blocks. Figure 2 
shows a diagram of the translator and its interface.  
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In Figure 2 the rule table has to be stored in the on-

board 16 MB Flash Memory using an independent 
module (not shown in Figure 2) before translation 
begins. To read the table, there is an interface between 
the Flash memory and the Output-Rule block.  

The Translating-Controller gets a signal from the 
Load-Translated-Codes block to receive and store text 
in its data registers. In this implementation, the 
translator distinguishes words by detecting spaces. 

The Find-Entry block contains addresses for entry 
rules in alphabetical order. When an entry character is 
received from the Translating-Controller, the Find-
Entry block will output the corresponding address to 
the Output-Rule block. The entry character is defined 
as the first un-translated character in the input text 
string. If no entry address can be found for a particular 
character, it means the entry character is not in the list; 
therefore, a fail signal is issued and the character will 
be output for Grade 1 translation. 

Two operations take place in the Output-Rule block. 
One is reading rules from the look-up table through the 
interface, and the other is sending each part of a single 
rule to Focus-Check, Right-Context-check, Left-
Context-Check, and Load-Translated-Codes blocks. 
The Output-Rule block receives an address from the 
Find-Entry block, and control signals from the Load-
Translated-Codes block indicating if the output rule 
can be used. If the rule does not find a match, then a 
signal will be generated by the Load-Translated-Codes 

2



block requesting the Output-Rule block to get the next 
rule. This process continues until a match is found and 
the focus is successfully translated.  

Notice in Figure 2 that the Focus-Check, Right-
Context-Check and Left-Context-Check blocks work 
concurrently, providing better performance than 
sequential implementations. Each block generates 
signals for the Load-Translated-Codes block indicating 
if the focus, the right context or the left context were 
successfully matched. If one of the three fails, then a 
signal is sent back to the Output-Rule block requesting 
the next rule. If the focus, right context and left context 
match one of the rules, then the Load-Translated-
Codes block sends the translated codes to the Output-
Translated-Codes block, and informs the Translating-
Controller block how many characters were translated. 
After one group of characters has been translated, the 
Output-Translated-Codes block transmits the 
corresponding Computer Braille characters one by one. 
Then the translation of a new set of characters begins. 
A more detailed description of the translator’s 
architecture can be found in [13]. 
 
2.4. Hardware implementation and test 

 
This design has been implemented in VHDL and 

tested in a Xilinx Spartan-3E FPGA with a 50MHz 
clock [14]. In this particular chip the translator 
occupies 1333 out of 4656 programmable slices, which 
is less than 30% of the FPGA programmable logic. 
Implementation and test were carried out using 
Xilinx’s ISE suite, version 8.2. 

To test the system a simple Universal 
Asynchronous Receiver-Transmitter (UART) was 
integrated in the FPGA to communicate with a PC 
using an RS-232 port. Text files were sent to the 
translator using this channel while translated Braille 
codes were sent back to the PC. 

During testing, outputs of the IP were compared 
against the outputs of a commercial Braille translation 
program running in a 16 MHz Mitsubishi 
microcontroller. Results show that the hardware 
translator can achieve the same accuracy as the 
commercial system but the speed is considerable faster. 
For example, to translate the word “and” into the 
corresponding Computer Braille character ‘&’ the 
microcontroller takes 300us, and the FPGA only 12us. 

To simplify comparisons, the FPGA used the same 
16 MHz clock as the microcontroller; however, during 
normal operation the FPGA can use a clock as fast 
as100 MHz. More details on verification can be found 
in [13]. 

3. Braille keyboard and its controller 
 
3.1. Braille keyboard 
 

A Braille keyboard is a device for the blind to type 
Braille characters. Braille keyboards are more 
complicated than conventional keyboards because up 
to six keys could be pressed at the same time. Some 
designs use optical sensors [8, 9].  

For the CUB, a low cost 6 x 4 push button matrix 
keyboard was developed. The six keys used to type 
Braille dots are allocated to the first column. Keys in 
the second and third columns are used to indicate 
special functions. The fourth column contains keys for 
ENTER, SPACE and arrows (Left, Right, Up, Down).  

Figure 3 shows the electrical diagram of Curtin’s 
Braille keyboard. Inputs (columns) receive a 4-bit scan 
code containing only one zero. When a key is pressed 
the zero propagates to the corresponding output (row). 
Individual keys can be identified by combining the 
input and output codes.  
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Figure 3. Matrix Keyboard Scheme 

 
3.2. Keyboard controller 

 
The keyboard controller consists of two parts: A 

Code Scanner and a Decoder. The Code Scanner sends 
4-bit scan codes to inputs I0 to I3 of the keyboard and 
receives 6-bit codes from outputs O0 to O5. The central 
element of this mechanism is a circular shift register 
initialised with “0111”. The Code Scanner module is 
driven by the state machine shown in Figure 4. 
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Figure 4. State Machine in Code Scanner 
 
The state machine driving the keyboard controller 
works as follows: 
• In State 0, code “0111” is presented in I0-I3 

providing a zero to the first column. Two 6-bit 
registers called R1 and Reg1 are used to store 
input signals and both are initialised to all ones. 
After a debouncing period of about 13 
milliseconds, the six bits input codes are saved 
into register R1. Meanwhile, Reg1 stores the 
logic AND operation between the input and its 
current value to detect if multiple keys have been 
pressed in the same column at different times. 

• In the next three states the same process is 
repeated to scan the next three columns using 
codes “1011”, “1101”, and “1110” respectively. 
Likewise, in each state, two registers are used to 
store input codes and the result of the AND 
operation. There are in total two groups of 4 
registers [R1, R2, R3, R4] and [Reg1, Reg2, 
Reg3, Reg4]. 

• In the State 4, the registers R1, R2, R3 and R4 
are checked to see if the value for each register is 
all ones, indicating that all keys have been 
released. If they have not, the state machine will 
go back to the State 0 to repeat the operation. If 
all keys have been released, the 24 bits stored in 
registers Reg1 to Reg4 are sent to the decoder, 
and the registers are set to all ones. 

 
When keys have been pressed and released the 

decoder receives 24-bit codes from the code scanner 
and translates them into the corresponding Computer 
Braille or control code. The decoder sends its output to 
the serial transmitter or Braille-to-Text translator 
depending on the function that was selected. 

 
3.3. Implementation and test 
 

The keyboard and its controller were also tested in 
the Spartan 3 development board. The test system 
including the controller and a serial asynchronous 
transmitter occupy 137 out of 3584 programmable 
slices, which amounts to 3% of the programmable 
resources. Computer Braille codes generated by the 
controller are sent through the transmitter to a personal 
computer and displayed in a window using 
HyperTerminal. Results showed that the Braille 
keyboard and its controller are reliable and because 
they are based on a simple printed circuit board (PCB), 
they are more affordable and easy to manufacture than 
complicated mechanical or optical alternatives. More 
details on the keyboard can be found in [15]. 

 
4. The embedded system 
 
4.1. Hardware development 
 

The embedded system implementing the Braille 
PDA consists of a MicroBlaze microcontroller and the 
hardware modules described in previous sections. 
Xilinx’s Platform Studio (XPS) suite was used to 
develop the embedded system’s hardware and software 
components.  

XPS uses IBM’s CoreConnect bus to implement 
embedded systems [2]. CoreConnect allows the 
interconnection of devices with different data widths 
using an On-Chip Peripheral Bus (OPB).  

After all hardware modules have been integrated, 
XPS creates a software library for the whole system 
and drivers for each one of the hardware components. 
These drivers supply basic functions to read from and 
write to every module. If the system is specified as 
interrupt-driven, XPS also generates primitive interrupt 
service routines (ISR). 

Figure 5 shows the block diagram of an embedded 
system that integrates a MicroBlaze with the hardware 
translator and the Braille keyboard controller described 
in previous sections.  

The translator receives ASCII codes from 
MicroBlaze using an 8-bit register connected to the 
OPB bus. Results of the translation, which have a 
maximum of 12 characters (96 bits), are saved in three 
32-bit registers which can be accessed by MicroBlaze 
in 3 clock cycles.  
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The keyboard controller connects to the keyboard’s 

inputs and outputs via FPGA’s pins. When keys are 
pressed and released, the controller sends Computer 
Braille codes to the MicroBlaze using an 8-bit register 
connected to the OPB. 

Another feature of this system is the use of an 
interrupt controller (IC). MicroBlaze can handle only 
one interrupt source and in order to use multiple 
interrupts, an interrupt controller connected to the OPB 
is necessary [16]. 

In Figure 5, each block of the system is driven by 
an on-board 50MHz clock source. The IC receives two 
interrupts associated to the data ready signals from the 
translator and keyboard controller. If both interrupts 
arrive at the same time, the keyboard controller has 
higher priority than the translator. Interrupt signals are 
active high for one clock cycle when data from either 
module are ready to be read. After solving priorities, 
the IC will interrupt the MicroBlaze which will then 
execute interrupt service routines according to interrupt 
vectors provided by the IC. 

To achieve the reconfigurability shown in figure 1 
a microcontroller, FPGA or CPLD will hook onto the 
instruction bus of the system and when a particular 
hardware function is required, the corresponding IP 
will be loaded. This is possible thanks to a property 
called dynamic partial reconfiguration available in 
some modern FPGAs [17]. At the present stage of the 
project partial reconfiguration has not been attempted 
yet. 

 
4.2. Software development 

 
Xilinx’s software development tools support C and 
assembly languages. Users only have to write code to 
implement the high-level function of the system 
because all basic functions are available in libraries 
generated automatically during synthesis of the 

embedded system. Since print-to-Braille translation 
and keyboard control were implemented in hardware, 
the corresponding ISRs were very simple. 

Figure 6 shows pseudo-code for a simple 
application implementing some of the CUB 
functionality. The main program runs an infinite loop 
executing the function selected by a global flag. The 
value of the flag changes according to the function 
selected using the Braille keyboard. For the tests 
reported in this paper only two functions were 
available: note-taking and print-to-Braille translation. 

In note-taking mode the CUB reads the Braille 
keyboard and sends the corresponding ASCII code to a 
monitor using an RS-232 connection. The keyboard 
ISR is invoked when one or more keys on the Braille 
keyboard have been pressed and released. If the key 
was a command, then the keyboard controller will 
issue a code indicating what task to carry out next.  

In print-to-Braille translation mode the CUB 
receives ASCII characters form a PC and returns the 
corresponding Grade 2, Computer Braille codes. The 
translator ISR is invoked when the translation of a 
word has finished. 

 

Function translation 
begin 

print “input text” 
while(Global_flag = = 2) 
{ 

 intput a character; 
 send it to translator; 

} 
end 

Keyboard interrupt handler  
//activated when keys pressed

begin 
K=read_register(* keyboard);  
// Braille code in K 

if (K==F1)  
  Global_flag=1; 

else if (K==F2 ) 
  Global_flag=2; 
 else if (K== other function keys) 
  Global_flag=0; 
 else if (K== other value) 
  CNT=CNT+1; 
end 

Translator interrupt handler  
 //activated when translation finished 

begin 
read 3 translator registers; 

 print Braille ASCIIs; 
end 

Global_Flag: 
0 =>idle; 
1=>note taking; 
2 =>translating; 

Global variable:  

K: to save key values 

CNT: 32-bit counter 

Function note_taking 
begin  
  int c=0; // define a local variable 

print “input Braille codes” 
c=CNT; 
while(Global_flag = = 1) 
{ 

 if(c != CNT)// key pressed? 
 { 
  print K; 
  c=CNT; 

} 
} 

end 

ISRs 

Main program:
begin 

initialise  
Global_flag, K, CNT, T1, T2, T3, interrupt parameters; 
print instructions;  
//this can be replaced by speech function 
while (true) 
{ 

if (Global_flag= =1)  
  note_taking function; 

else if (Global_flag= =2) 
  translation function; 
 else continue; 
 } 

} 
end

Figure 6. Structure of Software 
Implementation 
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5. Conclusions and future work 
 

This paper presented the implementation and test of 
an embedded system that includes a print-to-Braille 
translator and a Braille keyboard. The system was 
developed and tested using a Xilinx Spartan 3 
development board. The print-to-Braille translator is 
able to achieve the same accuracy as commercial 
software with much higher throughput. The translation 
IP liberates the processor from the heavy burden of 
running this computationally expensive algorithm, and 
at the same time simplifies software development. 
Furthermore, Blenkhorn’s algorithm was designed so 
that Braille translation in languages other than English 
can be achieved by simply changing the rule table. In 
the CUB this table is stored in an external memory 
module, which adds another level of reconfigurability 
to the system.  

The proposed Braille keyboard and its controller are 
a low cost solution that could be part of a commercial 
Braille personal digital assistant (PDA).  

An important feature of the system is that it is 
interrupt-driven, which simplifies the development of 
software if there is need to include additional PDA 
functions. It is expected that some of these new 
functions will be implemented in hardware liberating 
microcontroller-power for other high-level applications 
such as an embedded real-time operating system. 

The microcontroller-based version of CUB is now 
in the industrial prototype stage. The FPGA 
implementation is being explored to reduce cost and 
augment functionality in the future. The development 
of the FPGA-based CUB will span several stages. At 
the current stage the FPGA is connected as a peripheral 
to the microcontroller. Individual IP modules are being 
developed to implement in hardware functions that 
currently run in software. Work is being carried out to 
include features like voice-recognition, text-to-voice 
synthesis and Braille-to-Text translation. The next 
stage will be to incorporate dynamic reconfigurability 
into the system. This will require major modifications 
to the hardware and software architectures. It is 
expected that new challenges will have to be faced; for 
example, as more functions are incorporated into the 
system, the capacity of the chip may become an issue. 

At this point in time minimizing cost is not a 
priority because new devices with more capabilities, at 
lower costs keep appearing every semester. However, 
it is expected that the actual cost of the final version of 
the FPGA-based CUB will be dominated by the cost of 
the FPGA itself. 
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