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Intrinsic Cross-Polarization Ratio of

Dual-Linearly Polarized Antennas for

Low-Frequency Radio Astronomy

Adrian T. Sutinjo and Peter J. Hall

Abstract—This note discusses the Intrinsic Cross-Polarization
Ratio (IXR) from an antenna engineering perspective in that we
seek to identify an a priori (coordinate) system where IXR is
well approximated by the raw cross-polarization numbers. We
begin by establishing a special case where IXR is identical to the
raw cross-polarization ratios for in-phase dual-linearly-polarized
antennas when the Jones matrix is expressed using circular
polarization bases. This insight allows physical interpretation
of IXR which may be useful in antenna design and system
calculations. In addition, we discuss comparisons between direct
IXR calculations and circular polarization approximations for
more realistic cases involving dual-polarized Murchison Widefield
Array (MWA) bow-tie antennas.

Index Terms- Antenna theory, Radio astronomy, Po-

larimetry

I. INTRODUCTION

The study of polarization purity of dual-polarized antennas

for radio astronomy polarimetry involves detailed knowledge

on two primary fronts: antenna design and polarimetric cali-

bration [1]–[3]. While the exact boundary demarcating these

areas is not easily discernible, it is generally agreed that polari-

metric calibration removes raw antenna polarization impurity

to a large degree [4], [5]. This perception, however, leaves

the issue of polarization purity of the dual-polarized antenna

rather vague—how this parameter should be specified seems

unclear.

A recent development in radio polarimetry suggests a funda-

mental figure of merit (FoM)—the intrinsic cross-polarization

ratio—which is commensurate with the condition number of

the Jones matrix of the polarimeter [4], [5]. The Jones IXR1

is defined as

IXR =

(

σmax/σmin + 1

σmax/σmin − 1

)2

(1)

where σmax and σmin refer to the maximum and mini-

mum singular values of the Jones matrix and σmax/σmin =
||J||

2
||J−1||

2
is the (spectral norm) condition number for the

Jones matrix [5]. The IXR appears advantageous as it provides

a FoM that is independent of coordinate systems2 and provides

an upper bound estimate for total relative error of the sky Jones

vector3 after calibration [5], [7].

||∆e||
||e|| /

(

1 +
2√
IXR

+ . . .

)(

||∆J||
||J|| +

||∆f ||
||f ||

)

(2)
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1We limit our discussions here to the Jones IXR.
2As matrix spectral norm is unitarily invariant [6] and coordinate transfor-

mations matrices are unitary.
3The term “sky Jones vector” or “sky vector” refers to the polarization

state of the incoming electric field from a particular direction in the sky.
“Measured/measurement vector” refers to the voltages or currents measured
at the ports of the dual-polarized antenna.

where ||∆J||/||J|| and ||∆f ||/||f || are the relative errors

for the calibrated Jones matrix and the measured vector,

respectively. Note that IXR = 26 dB and 20 dB equate to

2/
√
IXR = 0.2 and 0.1, respectively (indicating upper bounds

for total relative error magnification of 20% and 10%)4.

In principle, assuming an experiment for which the required

IXR is known, the antenna polarization purity may be specified

in terms of IXR [4], [5]. However, although the IXR is easily

computed after the fact for a given antenna, the process of

antenna synthesis typically requires an a priori intuition to

contrive a promising design starting point. The latter seems

lacking at the moment as physical interpretation for IXR is

not immediately apparent. Consequently, the motivation for

this communication is to find a familiar frame of reference

in antenna engineering where the IXR is obtained exactly or

is well approximated5. In particular, we examine the case of

dipole-like antennas (specifically, the MWA bow-tie [9], [10])

over a ground plane which have been adopted in many low-

frequency radio astronomy arrays [11]–[14]. Topics involving

derivation of IXR requirements for a particular scientific

experiment and polarimetric calibration are pertinent ones,

however, are beyond our current scope. Our focus here is in

providing a means for physically interpreting IXR as it relates

to dual-polarized linear antennas.

This communication is organized as follows. Section II

discusses the IXR and polarization purity of dual-linearly-

polarized antennas. Calculated results and conclusion are

presented in Sections III and IV, respectively.

II. IXR OF DUAL-LINEARLY-POLARIZED ANTENNAS

A. Circular polarization bases

In defining polarization purity for antennas of arbitrary

orientation, circular polarization (CP) is preferred over linear

polarization (LP) as antenna misorientation results in phase but

not amplitude change [15]. This is applicable to low-frequency

radio astronomy as the source positions are arbitrary relative to

fixed antennas. In the following, we point out the conditions

that lead to a special case where the raw cross-polarization

(XP) ratios are identical to IXR for dual-linearly-polarized

antennas.

The relationship between the measured vector, Jones matrix,

and sky vector of a dual-linearly polarized antenna system at

a particular frequency and direction (θ, φ in the spherical

coordinate system) is given by

fx′y′ = JLeθφ (3)

where fx′y′ = (fx′ , fy′)T indicates the measured vector, eθφ =

4Some readers may be more familiar with the condition number which is
also a measure of the upper bound for the relative error in the output divided
by the relative error in the input [8]. The condition number needed to solve
a polarimetry problem e = J−1f depends on the accuracy with which J

and f may be determined via measurement and calibration (note—as pointed
out in [3]—that calibration processes using an unpolarized source depend
on inherent polarization quality of the antenna system). For instance if this
accuracy is 10−1, then the condition number needs to be much less than 10.

5An antenna designer faced with having to meet x dB IXR will likely find
these “clues” helpful
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(eθ, eφ)
T denotes the sky Jones vector, and

JL =

(

Jx′θ Jx′φ

Jy′θ Jy′φ

)

(4)

is the Jones matrix. Note that the superscript ′ in x′ and y′

indicates that the orientation of the linearly polarized antennas

are only nominal (i.e., both misalignment from true x and y

as well as non-orthogonal antennas are allowed).

Changing the measurement basis to nominally CP and sky

basis to CP results in

JC =
1

2

(

Jl′l Jl′r
Jr′l Jr′r

)

= RCJLR
H
C (5)

where again the the superscript ′ in l′ and r′ indicates nominal

left-hand CP and right-hand CP, respectively, and

RC =
1√
2

(

−j 1
1 −j

)

(6)

is a transformation matrix (unitary) from LP to CP bases and

the superscript H indicates conjugate transpose.

Expressing the elements of JC in terms of the elements of

JL we obtain

Jl′l = Jx′θ + Jy′φ + j(Jy′θ − Jx′φ)

Jl′r = Jx′φ + Jy′θ + j(Jy′φ − Jx′θ)

Jr′l = Jx′φ + Jy′θ + j(Jx′θ − Jy′φ)

Jr′r = Jx′θ + Jy′φ + j(Jx′φ − Jy′θ) (7)

In (7), if JL is a real matrix, i.e., the dual-polarized antennas

are entirely linearly polarized (axial ratio =∞) with no phase

offset between the measurements, JC takes the form

J
′

C =
1

2

(

Jl′l Jl′r
J∗

l′r J∗

l′l

)

for Im(JL) = 0 (8)

In (8) note that the raw cross-polarization isolations (XPI)

and discriminations (XPD) are equal to one another.

XPIl′ =

∣

∣

∣

∣

∣

Jl′l
Jl′r

∣

∣

∣

∣

∣

2

= XPIr′ =

∣

∣

∣

∣

∣

J∗

l′l

J∗

l′r

∣

∣

∣

∣

∣

2

=

XPDl =

∣

∣

∣

∣

∣

Jl′l
J∗

l′r

∣

∣

∣

∣

∣

2

= XPDr =

∣

∣

∣

∣

∣

J∗

l′l

Jl′r

∣

∣

∣

∣

∣

2

= XP (9)

Furthermore, it can be shown that the singular values of J′

C

σ =
√

λ(J′H
C J′

C)

=
1

2
|Jl′l|

(

1± 1√
XP

)

(10)

where λ() indicates the eigenvalues of the matrix in question.

Using (1) we find that for the special case JC = J
′

C shown

in (8)

IXR = XP (11)

Thus, we have achieved the stated objective, that is to define

the conditions for dual-linearly-polarized antennas such that

raw cross-polarizations are identical to IXR. It should be

pointed out that the condition Im(JL) = 0 is met for many

textbook antennas such as dipoles and loops [16]. Thus (11)

applies to system level calculations involving such antennas.

Note that although we started the derivation with linearly

polarized antennas, this finding is equally applicable to any

dual-polarized antenna whose Jones matrix takes the form

shown in (8).

B. Factors that affect IXR approximation

The assumption Im(JL) = 0 is pivotal in obtaining (11).

Accordingly, as the imaginary parts of the elements in JL

become non-negligible, IXR approximation using CP bases

becomes less accurate. We comment on this briefly here,

followed by calculated examples in the next section.

1) Consider phase imbalance for x′ measurement repre-

sented by

Px′ =

(

ejϕ 0
0 1

)

(12)

The total Jones matrix is a complex matrix given by

J = Px′J
real
L =

(

Jx′θe
jϕ Jx′φe

jϕ

Jy′θ Jy′φ

)

(13)

Note that as (12) is a unitary matrix, IXR remains

unchanged. However, RCJR
H
C no longer has the form

shown in (8) such that IXR 6= XP. This situation

occurs in practice as dual-polarized antennas will not

be exactly identical. In this case, CP approximation will

be markedly improved by simple phase compensation

(more on this in the next section).

2) Assuming identical antennas (for simplicity), the mutual

coupling matrix (normalized to ZS + ZL) is given by

Z =

(

1 ZM

ZS+ZL

ZM

ZS+ZL
1

)

(14)

where the subscripts S ,L ,M refer to self, load, and

mutual impedances, respectively. Note that ZS and ZM

are generally complex quantities [17] and that Z is not

unitary (i.e., mutual coupling alters IXR). Suppose that

the mutual coupling-free Jones matrix of the polarimeter

is a real matrix, the measured vector (proportional to

voltages across ZL on each port) is given by

J = Z
−1

J
real
L (15)

which is a complex matrix. In this case, IXR approxima-

tion via CP bases may be improved by removing mutual

coupling between measurements (calculating each row

of J in the absence of the other antenna). However,

as Z is not unitary, one should ensure that the IXR

obtained does not differ significantly from the case

where mutual coupling is present (as illustrated with a

numerical example in the next section).

3) Nominally linear polarized antennas generally radiate

fields with high but finite axial ratio. This due to the 2-or

3-dimensional current distributions on the antennas that

bend around structures and are inevitably phase shifted.

This effect is inherent to the antennas and cannot be

compensated for in IXR approximation using CP.
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Figure 1. MWA bow-ties simulated in FEKO. Dimensions (cm): L = 74,
W = 40, H = 10 (above an infinite perfect ground plane), feed plate = 5.5×10,
feed gap = 4, wire dia. = 0.5. The bow-ties are aligned along x and y axes.
The feed wire for the y dipole is 0.5 cm above that of the x.

III. CALCULATED RESULTS

This section demonstrates previous discussions with sim-

ulated results based on the MWA bow-ties [9], [10]. The

antennas and their dimensions are shown in Fig. 1. The bow-

ties were simulated in FEKO at 120 MHz which is close to the

first resonance. Each feed point was connected to the nominal

LNA input impedance of 100 Ω. The Jones matrix was filled

by exciting each feed point in turn and recording the far-field

Eθ and Eφ at each direction (θ, φ). Each source power was

set to 1 W. In every case, the LP bases were changed to CP

via (5) to compute raw XPs.

Since the feed points are slightly offset, the antenna input

impedances were slightly different (116 − j1.89 Ω [x] and

116 + j6.55 Ω [y]) and so were the phases of the antenna

currents (Ix = 0.131∠0.94o A and Iy = 0.131∠− 3.23o A,

respectively). Phase compensation is performed simply by

dividing the first and second rows of JL by 1∠Ix and 1∠Iy,

respectively. Tab. I shows IXR and raw XPs before and

after phase compensation where significant improvement after

compensation is evident. This is again clearly shown in Fig. 2

for θ = 0–60o and φ = 0–360o.

Table I
CROSS-POLARIZATION ISOLATIONS AND IXR FOR THE DUAL-POLARIZED

MWA BOW-TIES AT 120 MHZ AT BORESIGHT (θ = 0
o). THE FIRST AND

SECOND ROWS INDICATE THE VALUES BEFORE AND AFTER PHASE

COMPENSATION, RESPECTIVELY.

XPIl′ (dB) XPIr′ (dB) IXR (dB)

no comp. 28.8 28.8 55.8

w/ comp. 55.8 55.8 55.8

Next, the effects of misaligning the x bow-tie and mutual

coupling are explored. The x′ bow-tie was rotated by +2o

about the z axis with respect to x. The mutual coupling

expressed as |ZM/(ZS + ZL)| is -33 dB at this frequency.

Tab. II shows IXR and XPIs at boresight with and without

mutual coupling. We see that the CP approximation with

mutual coupling, though not strictly accurate, still provides

a reasonable qualitative estimate. This is again shown Fig. 3

for θ = 0–60o and φ = 0–360o. When mutual coupling is

removed, the CP approximation greatly improves, however,
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Figure 2. (a) IXR and (b) XPIl′ contour plots for the MWA bow-ties after
phase compensation. Note that the plots are virtually identical. XPIr′ is not
shown but is also virtually identical to these plots. Relative error |XPIl′ −
IXR|/|IXR| is reported in (c).

note that IXR is slightly altered by approximately 1 dB at

boresight (see Tab. II) from the previous case. This is again

demonstrated in Fig. 4 for θ = 0–60o and φ = 0–360o. These

results suggest that CP approximation is of value in practical

cases.
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Table II
CROSS-POLARIZATION ISOLATIONS AND IXR FOR THE DUAL-POLARIZED

MWA BOW-TIES (x DIPOLE IS MISALIGNED BY 2o) AT 120 MHZ AT

BORESIGHT (θ = 0o) WITH PHASE COMPENSATIONS. THE FIRST ROW

INDICATE VALUES OBTAINED WITH BOTH BOW-TIES PRESENT (MUTUAL

COUPLING PRESENT) AND THE SECOND ROW INDICATE VALUES

CALCULATED WHEN ONLY THE EXCITED BOW-TIE IS PRESENT (MUTUAL

COUPLING ABSENT).

XPIl′ (dB) XPIr′ (dB) IXR (dB)

w/ coupling 32 31 36.3

no coupling 35.2 35.1 35.1
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Figure 3. (a) IXR and (b) XPIl′ contour plots for the MWA bow-
ties (x dipole is misaligned by 2

o, mutual coupling is present) after phase
compensation. XPIr′ is not shown but is a similar to (b).

IV. CONCLUSION

If the Jones matrix of a dual linearly-polarized antenna is

purely real and is expressed using CP bases then the IXR

and raw-cross polarization ratios are identical. This condition

is met for many textbook antennas, and consequently, this

finding should be applicable to system calculations involving

such antennas. In practical cases, where the Jones matrix

of a dual-linearly-polarized antenna is not purely real, CP

may still offer a good approximation if measurement phase

equalization is appropriately performed. In addition, removal

of mutual coupling effects may further improve the accuracy
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Figure 4. (a) IXR and (b) XPIl′ contour plots for the MWA bow-ties (x
dipole is misaligned by 2o, mutual coupling is absent) after phase compen-
sation. Note that XPIl′ again very closely approximates IXR. Relative error
|XPIl′ − IXR|/|IXR| is reported in (c).

of approximation. However, it must be done with care as the

mutual coupling matrix is not unitary and does alter IXR.
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