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Abstract

This paper studies the properties of discrete time stochastic optimal control problems

associated with portfolio selection. We investigate if optimal continuous time strategies can

be used effectively for a discrete time market after a straightforward discretization. We found

that Merton’s strategy approximates the performance of the optimal strategy in a discrete

time model with the sufficiently small time steps.
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1 Introduction

The paper studies discrete time stochastic optimal control problems and their relationships

with continuous time optimal control problems. More precisely, we study optimal investment

problems where EU(XT ) is to be maximized. Here XT represents the total wealth at final time

T , and U(·) is a utility function. We consider the case where U(x) = xα, α ∈ (0, 1). For

continuous time market models, these utilities have a special significance, in particular, because

the optimal strategies for them are known explicitly (so-called Merton’s strategies). These

strategies are myopic; they depend only on the current observations of the market parameters,

including the risk free rate, the appreciation rate, and the volatility matrix, even for the case

of unknown prior distributions and evolution law. The optimality of Merton’s strategies still
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holds when the market parameters are random and independent of the driving Brownian motion,

i.e., in the case of ”totally unhedgeable” coefficients, according to Karatzas and Shreve (1998),

Chapter 6. The solution that leads to myopic strategies goes back to Merton (1969); the

case of random coefficients was discussed in Karatzas and Shreve (1998) and Dokuchaev and

Haussmann (2001).

The real stock prices are presented as time series, so the discrete time (multi-period) models

are more natural than continuous time models. On the other hand, continuous-time models

give a good description of distributions and often allow explicit solutions of optimal investment

problems.

For a real market, a formula for an optimal strategy derived for a continuous-time model

can often be effectively used after the natural discretization. However, this strategy will not

be optimal for time series observed in the real market. Therefore, it is important to extend

the class of discrete time models that allow myopic and explicit optimal portfolio strategies.

The problem of discrete-time portfolio selection has been studied in the literature, such as in

Smith (1967); Leland (1968); Mossin (1968); Merton (1969); Samuelson (1969); Fama

(1970); Hakansson (1971a); Hakansson (1971b); Elton and Gruber (1974); Francis (1976);

Dumas and Liucinao (1991); Östermark (1901); Grauer and Hakansson (1993); Pliska (1997);

Li and Ng (2000); Xu et al (2008); Çanakoǧlu and Özekici (2009); Zhang and Li (2012).

If a discrete time market model is complete, then the martingale method can be used (see,

e.g., Pliska (1997)). Unfortunately, a discrete time market model can be complete only under

very restrictive assumptions. For incomplete discrete time markets, the main tool is dynamic

programming that requires to derive and solve a backward Bellman equation with a Cauchy

condition at the terminal time. For the general case, this procedure involves recalculation of the

conditional densities at each time step which is numerically challenging (see, e.g., Pliska (1997)

or Gikhman and Skorohod (1979)). This is why the optimal investment problems for discrete

time can be more difficult than for the continuous time setting where explicit solutions are often

possible.

There are several special cases when an investment problem allows for an explicit solution

in discrete time, and, for some cases, optimal strategies are myopic; see Leland (1968); Mossin

(1968); Hakansson (1971a); Dokuchaev (2007a, 2010a)). However, the optimal strategy is not

myopic and it cannot be presented explicitly for power utilities in the general case. Hakansson

(1971a) showed that the optimal strategy is not myopic for U(x) =
√
x if returns have serial

correlation and evolve as a Markov process.

In a mean-variance discrete time multi-period setting, the optimal strategies represent some

analog of Merton’s strategies. These strategies are myopic for mean-variance goal achieving
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problems and non-myopic if these goals have to be selected to solve a problem with constraints;

see Li and Ng (2000), Dokuchaev (2010b), Zhang and Li (2012). It appears that the prob-

lems with utility functions U(x) = xα, α < 1, have different properties with respect to time

disretization. In particular, Dokuchaev (2007a) demonstrated that the direct discretization

of continuous time optimal Merton’s strategies does not approximate the optimal strategy for

the discrete time market for concave utility functions U(x) = xα such that U(x) = −∞ for

x < 0. More precisely, the difference between the optimal expected utilities for discrete time

and continuous time models does not disappear if the number of periods (or frequency of ad-

justments) grows. As the result, the optimal expected utility calculated for a continuous time

market cannot be approximated by piecewise constant strategies with possible jumps at given

times (tk)
N
k=1, even if N → +∞ and tk − tk+1 → 0.

In the present paper, we reconsider the discrete time optimal portfolio selection problems. We

suggest a solution based on myopic Merton’s strategies that are optimal for related continuous

time portfolio selection problems. We investigate the limit properties of the discrete time optimal

portfolio selection problem when the step of the discretization converges to zero. We found

that the performance of the discrete time strategy obtained directly from Merton’s strategy

approximates the optimal strategy. This suboptimal discrete time strategy is myopic. We

consider the case of Gaussian noise in the discrete time equation for the price. This means that

the stock price can be negative with non-zero probability; this feature does not affect the validity

of the model since this probability converges to zero as the step of discretization converges to

zero; see Appleby et al (2010). The proof is based on the application of the variant of the

discrete Itô formula first introduced by Appleby, Berkolaiko and Rodkina (2009). It can be

noted that the proof does not use the dynamic programming principle.

These results lead to a conclusion that Merton’s strategies can be used effectively for the

discrete time multi-period market models with power utilities U(x) = xα, α < 1 that have suffi-

ciently small time steps and approximate the continuous time model. This seems to contradict

to the result from Dokuchaev (2007a). However, there is not a contradiction. In the present

paper, we assumed that U(x) = Lx for x < 0, where L > 0 can be selected to be arbitrarily

large. On the other hand, Dokuchaev (2007a) assumed that U(x) = −∞ for x < 0. This

difference in the problem setting leads to different conclusions. Note that the utility function

considered in the present paper is not concave; however, its shape is becoming ”more concave”

as L→ +∞. Moreover, the impact of non-concavity of U for any given L disappears since this

probability converges to zero as the step of discretization converges to zero. We illustrate this in

numerical experiments to demonstrate the impact of the size of the interval of discretization on

the performance of Merton’s strategy and the impact of the selection of finite L in the adjusted
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utility function. In these experiments, we found that weekly portfolio adjustments is sufficient

to compensate the discretization error for Merton’s strategy. Moreover, we found that this error

is almost negligible for the model with daily portfolio adjustments.

2 Problem setting

In this paper we consider the following controlled stochastic difference equation

xn+1 = xn

(
1 + hunan +

√
hunbnξn+1

)
, n = 0, 1, . . . , N − 1,

x(0) = x0 > 0,
(2.1)

where x0 > 0 is nonrandom, ξn are random variables, an, bn are nonrandom coefficients, un

is a nonrandom control (strategy), n = 0, 1, . . . , N − 1, N ∈ N, h > 0 is a small parameter,

calculated as

h :=
T

N
. (2.2)

The value T > 0 is fixed throughout all paper, but N can increase, which makes h decrease.

We can either consider equation (2.1) independently, or think about it as the Eulier-Maruyama

discretization of the following Itô stochastic equation

dXt = Xtu(t)
(
a(t)dt+ b(t)dWt

)
, t ∈ [0, T ], X(0) = x0, (2.3)

where W is a standard Wiener process, b, a, u : [0, T ]→ R are continuous nonrandom functions.

In this setting h is a step size of discretization of the interval [0, T ] and N is a number of

corresponding mesh points.

We recall that the Euler-Maruyama numerical method for equation (2.3) computes approx-

imations xn(h) ≈ Xnh by

xn+1(h) = xn(h)
(
1 + hu(nh)a(nh) + u(nh)b(nh)∆Wn+1

)
, (2.4)

where h > 0 is the constant step size and ∆Wn+1 = W ((n+ 1)h)−W (nh). We see that when

ξn+1 =
W ((n+ 1)h)−W (nh)√

h
, an = a(nh), bn = b(nh), un = u(nh),

(2.4) coincides with (2.1) and ξn+1 is a standardized normal random variable. More information

about Euler-Maruyama discretization and stochastic difference equations could be found, e.g.,

in Higham et al (2002); Kloeden and Platen (1992); Appleby et al (2010); Appleby, Berkolaiko

and Rodkina (2009).

Assume that the following assumptions hold.
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Assumption 2.1. Sequences (an)n∈N and (bn)n∈N are nonrandom and such that for some

â, b̂, a, b > 0, a ≤ â, b ≤ b̂,

a ≤ |an| ≤ â, b ≤ |bn| ≤ b̂, ∀n ∈ N. (2.5)

Assumption 2.2. (ξn)n∈N is a sequence of independent and N (0, 1) distributed random vari-

ables.

Let (Ω,F , {Fn}n∈N,P) be a complete filtered probability space. We assume that the filtration

{Fn}n∈N is naturally generated: Fn+1 = σ{ξi+1 : i = 0, 1, ..., n}, where the sequence (ξn)n∈N

satisfies Assumption 2.2.

We use the standard abbreviation “a.s.” for the wordings “almost sure” or “almost surely”

throughout the text.

Among all the sequences (xn)n∈N of the random variables we distinguish those for which xn

are Fn-measurable for all n ∈ N. A detailed exposition of the definitions and facts of the theory

of random processes can be found, e.g., in Shiryaev (1996).

Define for some α ∈ (0, 1) and L > 0,

U(x) = xα, x ≥ 0, U(x) = Lx, x < 0. (2.6)

Definition 2.1. For a given N ∈ N, the set U = U(N) of admissible strategies is the set of all

nonrandom vectors u = (un)N−1
n=0 such that

u ≤ |un| ≤ û, n = 0, 1, ..., N − 1, (2.7)

for some positive numbers u, û, 0 < u ≤ û.

Up to the end of the paper, we consider the following optimal control problem:

Maximize E [U(xN )] over u ∈ U , (2.8)

where x is a solution to (2.1) with h = T
N and admissible strategy u, U = U(N) is the set of

all admissible strategies introduced in Definition 2.1.

3 Optimal portfolio selection and the main result

Problem (2.8) has applications for optimal portfolio selection. It appears that (2.1) describes

the dynamic of the total wealth xn of an investor at time period n for a single stock discrete

time market model with a risk-free investment with zero return. The dynamic of the stock price

is described by the equation

sn+1 = sn

(
1 + han +

√
hbnξn+1

)
, n = 0, 1, . . . , N − 1, s0 = 1. (3.1)
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It is assumed that the portfolio is distributed among the shares of this stock and the risk-free

investment with zero return. A strategy u represents a dynamically selected ratio of investment

in stock. More precisely, let γn be the quantity of stock shares in the portfolio at time n, then

un = γnsn/xn, where γnsn is the current value of the stock portfolio, xn is the current total value

of the portfolio. We select the strategy u in the class of admissible processes described above

and calculate the quantity of shares γn = unxn/sn; effectively, we select closed-loop strategies.

It is assumed that the strategy is self-financing, i.e.,

xn+1 − xn = γn(sn+1 − sn), n = 0, 1, 2, ...,

where γn = unxn/sn is the quantity of stock shares in the portfolio at time n. This assumptions

means that the model does not include an external sources of funds and that there is no expenses,

transaction costs, and dividend payments. The increments of the wealth are defined solely by

the stock price changes and by the quantity of the shares.

In fact, the case of non-zero return for the risk free asset is also covered by this model, if one

interprets xn as the discounted wealth and sn as the discounted stock price (discounted with

respect to the risk-free asset). A more detailed market model description can be found, e.g., in

Pliska (1997); Dokuchaev (2007a).

For this discrete time market model, a standard problem of optimal portfolio selection is to

maximize the expectation of the utility function U(xN ) of the terminal wealth xN , i.e., to find

a strategy u∗ which solves optimal control problem

Maximize E [U(xN )] over U , (3.2)

where U is some given concave utility function, x is a solution to (2.1) with h = T
N , U is a set

of all admissible strategies according to Definition 2.1.

Further, Itô equation (2.3) describes the evolution of the total wealth Xt for a single stock

continuous market model with zero risk-free interest rate where the stock price evolution is

described by the Itô equation

dSt = St
(
a(t)dt+ b(t)dWt

)
, t ∈ [0, T ], S0 = 1. (3.3)

For this continuous time market model, a standard optimal portfolio selection problem is to

maximize the expectation of the utility function U(XT ) of the terminal wealth XT , i.e., to find

a strategy u : [0, T ] × Ω → R in a certain class of admissible strategies U that solves optimal

control problem

Maximize E [U(XT )] over U , (3.4)
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where Xt is a solution to (2.3). For the case when U(x) = xα, α ∈ (0, 1), the following so-called

Merton strategy

u∗(t) =
a(t)

(1− α)b2(t)
, t ∈ [0, T ], (3.5)

is optimal in the continuous time setting (3.4) in the class of admissible strategies that include

all bounded random processes adapted to the filtration generated by St; see, e.g., Karatzas and

Shreve (1998), Chapter 6, and Merton (1969). In fact, this strategy is optimal in a even wider

class of random and adapted processes u(t), as well as in the setting with random a(t) and b(t)

that are independent from Wt.

It can be seen that problem (2.8) is in fact a modification of problem (3.2). Note that the

”utility function” U(x) in (2.8) is not concave in x ∈ R; however, its shape is becoming ”more

concave” as L→ +∞.

Consider the strategy u∗ such that

u∗n =
an

(1− α)b2n
, n = 0, 1, . . . , N − 1. (3.6)

Condition (2.7) is satisfied for this strategy. Notice that this strategy represents a direct dis-

cretization of Merton’s strategy (3.5). It can be also noted that strategy (3.6) does not depend

on the choice of L.

Our main result can be formulated as the following.

Theorem 3.1. The strategy u∗ defined by (3.6) maximizes EU(xN ) approximately for small

enough h = T
N , meaning that

sup
u

EU(xN ) = EU(x∗N ) +O(h) as h→ 0,

where x∗N is the terminal wealth for strategy (3.6) and O(h)→ 0 as h→ 0, independently on N .

We show that the error of this approximation tends to zero as step size of discretization h→ 0

(which is equivalent that number of mesh points N → ∞). The proof is heavily dependent on

the application of the variant of the discrete Itô formula first introduced in Appleby, Berkolaiko

and Rodkina (2009), as well as on the fact that solution x∗n of (2.1) for strategy (3.6) is positive

for all n = 1, . . . , N with probability which tends to one when h→ 0 (or N →∞); see Appleby

et al (2010).

In Dokuchaev (2007a), it was shown that the direct discretization of continuous time optimal

Merton’s strategies does not approximate the optimal strategy for the discrete time market if

the utility function U(x) = xα is extended as U(x) = −∞ for x < 0. We found that this can

be overcome using the functions U with non-concavity that can be made arbitrarily small with

selection of a large L > 0. Moreover, we show that the probability that this non-concavity will
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ever have any impact vanishes as h→ 0, since the probability that the wealth ever achieves zero

vanishes as h→ 0.

Let us review the main steps of the proofs.

Let

φ(x) = |x|α, x ∈ R. (3.7)

First, we observe that the solution xn of (2.1) can be represented as

xn = x0

n−1∏
i=0

(
1 + huiai +

√
huibiξi+1

)
, x0 > 0, n = 1, . . . , N. (3.8)

Hence

Eφ(xn) = φ(x0)
n−1∏
i=0

Eφ(1 + huiai +
√
huibiξi+1), n = 1, . . . , N.

Application of the discrete Itô formula to each Eφ(1 + huiai +
√
huibiξi+1) gives that

sup
u

Eφ(xN ) = xα0

N−1∏
n=0

[
1 + αh

a2
n

2(1− α)b2n

]
+O(h) as h→ 0.

Then we show that the probability

P{ω : U(xN (ω)) 6= φ(xN (ω))}

can be made arbitrary small when N = T/h is big enough. Finally we prove that

sup
u

E [U(xN )] = xα0

N−1∏
n=0

[
1 + αh

a2
n

2(1− α)b2n

]
+O(h) as h→ 0.

4 Simulations

The equation of type (2.1) with un ≡ 1, an ≡ λ, bn ≡ µ was considered in Palmer (2012), where

an explicit bound on h suitable for application of the discrete Itô formula was computed and

error terms were estimated.

Appleby et al (2010) developed an asymptotic estimate on the number of mesh points N(γ)

required to ensure the positivity of solutions of Euler-Maruyama discretization of (2.3) as the

required proportion of positive trajectories γ approaches 1. Based on the above works one can

estimate h (or N) for equation (2.1) in order to be able to apply the discrete Itô formula and to

ensure positivity with given probability γ.

For the purposes of the present paper, it suffices to demonstrate the impact of the sampling

interval of discretization on the performance of Merton’s strategy. In addition, we want to show

the impact of the selection of finite L in the adjusted utility function U = UL defined by (2.6).
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H
HHH

HHHH
L

N
2 6 12 52 250

10 0.054938 0.004632 0.001674 0.000803 9.506101× 10−5

102 0.462369 0.010440 0.001706 0.000803 9.506101× 10−5

103 4.536681 0.068490 0.002021 0.000803 9.506101× 10−5

105 452.7109 6.453968 0.036671 0.000803 9.506101× 10−5

106 4527.022 64.50377 0.351671 0.000803 9.506101× 10−5

Table 1: The differences supN,uEX
α
T −EU(XN ) in Theorem 3.1 for different values of L in (2.6)

and for different numbers N of portfolio adjustments during one year time period.

We remind that the classical concave utility function corresponds to the case L = +∞ that we

excluded.

Table 1 presents the results of the numerical simulations with Matlab. This table shows the

differences EU(X∗T )−EU(x∗N ), where EU(x∗N ) is the expected utility for the strategy described

in Theorem 3.1, and where

EU(X∗T ) = exp

(
a

2b2
α

1− α

)
is the expected utility for Merton’s strategy in the continuous time setting. Note that the value

X∗T is non-negative; therefore EU(X∗T ) = EX∗T
α, and this value is not impacted by the choice of

L. The table shows the values of these differences for the parameters L = 10, 102, 103, 105, 106

presented in (2.6) and for N = 2, 6, 12, 52, 250, with X0 = 1, T = 1, α = 1/2, T = 1, a = 0.07,

b = 0.2, with 1,000,000 simulations each. For these parameters, EU(X∗T ) = 1.0631.

The values N show the numbers of allowed portfolio adjustments during one year time period,

with δ = T/N = 1/N .

It can be seen that n = 52 (i.e., δ = 1/52) that corresponds to weekly portfolio adjustments

is sufficient to compensate the discretization error for Merton’s strategy. This error is almost

negligible for n = 250 (i.e., δ = 1/250) that corresponds to daily portfolio adjustments.

5 Conclusions

We have investigated the possibility of using known optimal continuous time strategies for solving

the discrete time optimal portfolio selection problems. For this, we studied the limit properties

of the discrete time optimal portfolio selection problem when the step of the discretization

converges to zero. We found that the performance of the discrete time strategy obtained directly

9



from Merton’s strategy approximates the optimal strategy after some minor adjustment of the

utility function. This suboptimal discrete time strategy is myopic. The proof is based on the

application of a discrete Itô formula. The results of this paper leads to the conclusion that

Merton’s strategies can be used effectively for discrete time multi-period market models.
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Appendix: proofs

In this Appendix, we provide the proof of Theorem 3.1 accordingly to the outline given above.

A.1 Discrete Itô formula.

The Discrete Itô formula which we use in this paper is similar to the formula first introduced by

Appleby, Berkolaiko and Rodkina (2009) for the proof of stability results for scalar stochastic

difference equations. The main purpose of this formula is to mimic the classical Itô formula

for continues processes when we deal with the discrete process described by the equation with

small parameter h, similar (2.1). Berkolaiko et al (2012) demonstrates the use of a discrete Itô

formula in the context of stochastic numerical analysis. Theorem A.1 below deals with the case

which is slightly different than the one considered in Appleby, Berkolaiko and Rodkina (2009)

and Berkolaiko et al (2012). Theorem A.1 can also be obtained as a partial case of Lemma

5.1 from Rodkina and Dokuchaev (2013), where the Itô formula was proved for the diagonal

system of stochastic difference equations. However it is much easier to give a sketch of the proof

here than to adapt Lemma 5.1 for (2.1).

Theorem A.1. Let Assumptions 2.1, 2.2, and condition (2.7) hold. Consider φ : R→ R such

that there exists δ ∈ (0, 1) and φδ : R→ R saisfying

(i) φδ has a bounded third derivative on R,

(ii) φδ(s) = φ(s) for s /∈ (−δ, δ),

(iii) |φδ(s)− φ(s)| < K for some K > 0 and all s ∈ (−δ, δ).

Then there exists h0 such that, for all h ≤ h0, N ≥ T
h0

, and n = 0, 1, . . . , N − 1

E
(
φ(1 + hunan +

√
hunbnξn+1)

)
= φ(1) + hφ′(1)unan + h

φ′′(1)

2
u2
nb

2
n + o(h), (A.1)

where

|o(h)| ≤ h3/2K̂u2
nb

2
n,

and K̂ > 0 does not depend on N .

Proof. Fix n = 0, 1, . . . , N − 1 and define

ζn+1 := 1 + hunan +
√
hunbnξn+1, νn+1 := hunan +

√
hunbnξn+1,

and, for all v ∈ R,

η(v) := 1 + hunan +
√
hunbnv.

13



Expand φδ(ζn+1) by Taylor’s formula and apply mathematical expectation

Eφδ(ζn+1) = φδ(1) + φ′δ(1)Eνn+1 +
φ′′δ (1)

2
Eν2

n+1 + E

[
φ′′′δ (θ)

6
ν3
n+1

]
,

where θ is situated between 1 and 1 + hunan +
√
hunbnξn+1. Applying (2.5) we arrive at the

estimate ∣∣∣∣E [ φ′′′δ (θ)

6
ν3
n+1

]∣∣∣∣ ≤K1E
∣∣∣hunan +

√
hunbnξn+1

∣∣∣3
≤ K2|un|3h3/2[ha3

n + 3anb
2
n] ≤ K3u

2
nb

2
nh

3/2,

where Ki, i = 1, 2, 3, does not depend on n. Note also that

φδ(1) = φ(1), φ′δ(1) = φ′(1), φ′′δ (1) = φ′′(1).

So the only thing which needs to be done is to estimate

∆2 := E |φ(ζn+1)− φδ(ζn+1)| = 1√
2π

∫
|(η(v)|≤δ

|φ(η(v))− φδ(η(v))| e−v2/2dv.

Change the variables by

s = 1 + hunan +
√
hunbnv, v =

s− 1− hunan√
hunbn

, dv =
ds√
hunbn

.

Assume that δ and h0 > 0 are small enough and |s| ≤ δ, h ≤ h0. Then, for unbn > 0 we have

v =
s− 1− hunan√

hunbn
≤ δ − 1− hunan√

hunbn
≤ − 1

2
√
hunbn

≤ − 1

2
√
hûb̂

,

while unbn < 0 we have

v =
1− s− h|unan|√

h|unbn|
≥ 1− δ − h|unan|√

h|unbn|
≥ 1

2
√
h|unbn|

≥ 1

2
√
hûb̂

.

So

|v| ≥ 1

2
√
h|unbn|

,

which implies that

e−v
2/2 ≤ K4v

−4 ≤ K5h
2u4
nb

4
n.

Note that h0 > 0 chosen here does not depend on n, but only on bounds for a, b, u, i.e. on

â, b̂, û, a, b, u > 0 (see (2.5), (2.7)).

This gives us

∆2 =
1√
2π

∫
|(η(v)|≤δ

|φ(η(v))− φδ(η(v))| e−v2/2dv

≤ K5h
2u4
nb

4
n√

2π

∫
|(η(v)|≤δ

|φ(η(v))− φδ(η(v))| dv

=
K5h

2u4
nb

4
n√

2π
√
hunbn

∫
|s|≤δ
|φ(s)− φδ(s)| ds ≤ K6h

3/2u2
nb

2
n,

14



where K6 does not depend on n, which completes the proof.

Corollary 1.1. For φ, defined by (3.7), formula (A.1) takes the form

E
(
φ(1 + hunan +

√
hunbnξn+1)

)
= 1 + hαunan + h

α(α− 1)

2
u2
nb

2
n + o(h),

(A.2)

where

|o(h)| ≤ h3/2K̂u2
nb

2
n,

and K̂ > 0 does not depend on n = 0, 1, . . . , N − 1. Hence (A.2) can be written as

E
(
φ(1 + hunan +

√
hunbnξn+1)

)
= 1 + hαunan + h

α(α− 1)

2
u2
nb

2
n[1 + h1/2On(1)],

(A.3)

uwhere |On(1)| ≤ K̂ for all n = 0, 1, . . . , N − 1, N > T
h0

and h ≤ h0.

A.2 Positivity of xn with probability close to 1

In this section we follow ideas from Appleby et al (2010), showing that even though a.s. pos-

itivity is impossible to achieve for solution of (2.1), positivity with arbitrarily high probability

is observed as the number of mesh points N grows large. Again, we are giving the sketch of the

proof instead of adapting a result from Appleby et al (2010).

Let xn be a solution to (2.1) with a positive initial value x0 > 0, a parameter h = T
N and a

strategy u. Define

ΩN := P{ω ∈ Ω : xn(ω) > 0, n = 1, . . . , N}. (A.4)

Lemma A.1. Let Assumptions 2.1, 2.2 and condition (2.7) hold. Let ΩN be defined as in (A.4).

Then, for each γ ∈ (0, 1), we can find N(γ) such that for all N ≥ N(γ)

P[ΩN ] ≥ 1− γ.

Proof. Note that xn is Fn-measurable and is independent of ξn+1. Let unbn > 0. Then, for

n = 0, 1, . . . , N − 1, we have

P{xn+1 > 0
∣∣xn > 0} = P

{
xn

(
1 + hunan +

√
hunbnξn+1

)
> 0
∣∣xn > 0

}
= P

{
1 + hunan +

√
hunbnξn+1 > 0

∣∣xn > 0
}

= P
{
ξn+1 > −

1 + hunan√
hunbn

∣∣∣∣xn > 0

}
= 1− Φ

(
−1 + hunan√

hunbn

)
= Φ

(
1 + hunan√

hunbn

)
,

(A.5)
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where Φ is a normal probability distribution function.

If unbn < 0 we consider ξ̄n+1 = −ξn+1 and note that ξ̄n+1 is also standard normal variable.

So calculations (A.5) holds true in this case again.

Applying (A.5), Mill’s estimate (see Karatzas and Shreve (1991))

x

(1 + x2)
√

2π
e−x

2/2 ≤ 1− Φ(x) ≤ 1

x
√

2π
e−x

2/2, x > 0,

and the inequality
1 + hunan√

hunbn
≥ 1

2
√
hûb̂

,

we conclude that for some h1 > 0 and all h < h1, we have

P{xn+1 > 0
∣∣xn > 0} ≥ Φ

(
1 + hunan√

hunbn

)
≥ 1− 1√

2π

e
− 1

2

(
1+hunan√
hunbn

)2

1+hunan√
hunbn

≥ 1−K1

(
1

2
√
hûb̂

)−3

1
2
√
hûb̂

= 1−K1

(
2
√
hûb̂
)4

= 1−K2h
2,

where K1,K2 > 0 do not depend on n. Then,

P[ΩN ] :=
∏

n=0,1,...N−1

P{xn+1 > 0
∣∣xn > 0} ≥

∏
n=0,1,...N−1

(
1−K2h

2
)

=
(
1−K2h

2
)N

=

(
1− K2T

2

N2

)N
.

Fix now γ ∈ (0, 1) and find N(γ) such that for all N ≥ N(γ)

1−
(

1− K2T
2

N2

)N
< γ.

This implies that for all N ≥ N(γ)

P[ΩN ] ≥ 1− γ,

which completes the proof.

A.3 Estimation of maximum Eφ(xN)

Let h0, On(1) and K̂ be from Corollary 1.1. So formula (A.3) holds and |On(1)| < K̂ for all

n = 1, . . . , N − 1, N > N0 = T
h0

. In addition we assume that h0 is so small that for h ≤ h0,

n = 1, . . . , N − 1, N > N0,

1− h1/2K̂ > 0, 1 + hαanun + h
α(α− 1)

2
u2
nb

2
n[1− K̂h1/2] > 0. (A.6)
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Define, for h ≤ h0, N > N0 and for any admissible strategy u,

G(u) := Eφ(xN ) = φ(x0)
N−1∏
n=0

E
(
φ(1 + hunan +

√
hunbnξn+1)

)
= xα0

N−1∏
n=0

[
1 + αhunan + h

α(α− 1)

2
u2
nb

2
n[1 + h1/2On(1)]

]
,

(A.7)

and

G(u) := xα0

N−1∏
n=0

[
1 + αhunan + h

α(α− 1)

2
u2
nb

2
n

]
. (A.8)

Calculation of strategy to maximize G(u)

Lemma A.2. Let Assumptions 2.1 and condition 2.7 hold. Let G be defined as in (A.8). Then

the strategy u∗, defined by (3.6), maximizes G(u).

Proof. To find the maximum of G we calculate its partial derivatives. We have

∂G
∂uk

=x2
0αh

(
ak + (α− 1)ukb

2
k

) N−1∏
n=0,n6=k

[
1 + hαanun + h

α(α− 1)

2
u2
nb

2
n

]
.

By (A.6), solving the system

∂G
∂uk

= 0, k = 0, 1, . . . , N − 1,

is equivalent to solving the system

ak + (α− 1)ukb
2
k = 0, k = 0, 1, . . . , N − 1. (A.9)

Solution u∗ to (A.9) is given by (3.6). To show that u∗ is a point of maximum for the function

G, we find second partial derivatives of G at u∗. We have, for k = 0, . . . , N − 1,

∂2G
∂u2

k

=x2
0αh(α− 1)b2n

N−1∏
n=0,n6=k

[
1 + αhanun + h

α(α− 1)

2
u2
nb

2
n

]
,

and, for k 6= j,

∂2G
∂uk∂uj

=x2
0α

2h2
(
ak + (α− 1)ukb

2
k

) (
aj + (α− 1)ujb

2
j

)
×

N−1∏
n=0,n6=k,j

[
1 + αhanun + h

α(α− 1)

2
u2
nb

2
n

]
.

Let y = (y0, . . . , yN−1). Consider the following quadratic form

Q(y) =
N−1∑
k,j=0

∂2G
∂uk∂uj

∣∣∣∣
u=u∗

ykyj . (A.10)
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Since (
ak + (α− 1)u∗kb

2
k

) (
aj + (α− 1)u∗jb

2
j

)
= 0,

we have, for k 6= j,
∂2G

∂uk∂uj

∣∣∣∣
u=u∗

= 0,

and (A.10) takes the form

Q(y) =

N−1∑
k=0

∂2G

∂u2
k

∣∣∣∣
u=u∗

y2
k = x2

0αh(α− 1)
N∑
k

b2k

N−1∏
n=0,n 6=k

[
1 +

αha2
n

2(1− α)b2n

]
y2
k.

Since α− 1 < 0, but

αh > 0, b2k > 0, 1 +
αha2

n

2(1− α)b2n
> 0,

the quadratic form Q(y) is negatively defined, which proves that u∗ given by (3.6) is a point of

maximum for G.

Estimation of the difference G(u)− G(u)

Lemma A.3. Let Assumptions 2.1, 2.2 and condition (2.7) hold. Let G(u) and G(u) be defined

as in (A.8) and (A.7), respectively. Then, for each ε > 0 there exists N(ε) ∈ N such that for

all N > N(ε), h ≤ T
N(ε) , we have

|G(u)− G(u)| ≤ ε. (A.11)

Proof. Denote

νn := 1 + αhunan + h
α(α− 1)

2
u2
nb

2
n, ηn :=

α(α− 1)

2

u2
nb

2
n

νn
. (A.12)

Let h0 and K̂ be as in Corollary 1.1 . Assume in addition that h0 is so small that

1 + αhunan + h
α(α− 1)

2
u2
nb

2
n[1− h1/2K̂] >

1

2
. (A.13)

Based on Assumption 2.1, inequality (2.7) and (A.13), we conclude that there exist constants

K̂1 > 0 and K̂2 > 0 which do not depend on N(h0) such that, for all n = 1, 2, . . . , N − 1,

K̂ηn ≤ K̂1, K̂α(α− 1)u2
nb

2
n ≤ K̂2. (A.14)

Note that |On(1)| ≤ K̂ . Then, applying (A.13) and (A.14) we have, for all n = 1, 2, . . . , N − 1,

1 + αhunan + h
α(α− 1)

2
u2
nb

2
n[1 + h1/2On(1)] ≤ νn + h3/2K̂

α(α− 1)

2
u2
nb

2
n

= νn

[
1 + h3/2K̂ηn

]
≤ νneh

3/2K̂ηn ≤ νneh
3/2K̂1 ,

(A.15)
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and

1 + αhunan + h
α(α− 1)

2
u2
nb

2
n[1 + h1/2On(1)] ≥ νn − h3/2K̂

α(α− 1)

2
u2
nb

2
n

= νn

[
νn − h3/2K̂ α(α−1)

2 u2
nb

2
n

νn

]
= νn

[
νn

νn − h3/2K̂ α(α−1)
2 u2

nb
2
n

]−1

= νn

[
1 +

h3/2K̂ α(α−1)
2 u2

nb
2
n

νn − h3/2K̂ α(α−1)
2 u2

nb
2
n

]−1

≥ νn exp

{
−

h3/2K̂ α(α−1)
2 u2

nb
2
n

νn − h3/2K̂ α(α−1)
2 u2

nb
2
n

}

≥ νn exp
{
−h3/2K̂α(α− 1)u2

nb
2
n

}
≥ νne−h

3/2K̂2 .

(A.16)

Note that

G(u) = xα0

N−1∏
n=0

νn, h3/2N = Th1/2, hN = T. (A.17)

Applying (A.16), (A.15) and (A.17) we arrive at

G(u)e−h
3/2K̂2N ≤ G(u) ≤ G(u)eh

3/2K̂1N ,

or

G(u)e−h
1/2K̂2T ≤ G(u) ≤ G(u)eh

1/2K̂1T ,

which implies that

G(u)
[
e−h

1/2K̂2T − 1
]
≤ G(u)− G(u) ≤ G(u)

[
eh

1/2K̂1T − 1
]
. (A.18)

Therefore,

|G(u)− G(u)| ≤ G(u) max
{

1− e−h1/2K̂2T , eh
1/2K̂1T − 1

}
.

Now we estimate G(u). By Assumption 2.1 and inequality (2.7) we have

G(u) =xα0

N−1∏
n=0

[
1 + αhunan − h

α(1− α)

2
u2
nb

2
n

]

≤ xα0 exp

{
αh

N−1∑
n=0

[
unan −

(1− α)

2
u2
nb

2
n

]}

≤ xα0 exp

{
αhN

[
âû− (1− α)

2
u2b2n

]}
= xα0 exp

{
αT

[
âû− (1− α)

2
u2b2n

]}
= xα0C1,

(A.19)
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for some C1 > 0, which does not depend on N or h.

Now, fix ε > 0 and find N = N(ε) such that, for h < T
N(ε) ,

max
{
eh

1/22K̂2 − 1, 1− e−h1/22K̂1

}
<

ε

C1
.

Then, for N > N(ε), inequality (A.11) holds.

A.4 Estimation of maxEU(xN)

Estimate for E|xN |2

From (3.8) we obtain, for n = 1, 2, . . . , N :

E|xn|2 = |x0|2
n−1∏
i=1

E
∣∣∣1 + huiai +

√
huibiξi+1

∣∣∣2
=x2

0

n−1∏
i=1

E
[
1 + h(2uiai + hu2

i a
2
i + u2

i b
2
i ) + 2

√
h(1 + huiai)uibiξi+1 + hu2

i b
2
i (ξ

2
i+1 − 1)

]
=x2

0

n−1∏
i=1

[
1 + h(2uiai + hu2

i a
2
i + u2

i b
2
i )
]
≤ x2

0

n−1∏
i=1

[1 + hK3] ≤ |x0|2 [1 + hK3]n ,

so

E|xN |2 ≤ x2
0 [1 + hK3]N = |x0|2eNhK3 = x2

0e
K3T . (A.20)

Estimate for max EU(xN ).

Substituting the value u∗ from (3.6) into (A.8) we get

G(u∗) = xα0

N−1∏
n=0

[
1 + αh

a2
n

2(1− α)b2n

]
. (A.21)

Lemma A.4. Let Assumptions 2.1, 2.2 and condition (2.7) hold. Let xn be a solution to (2.1)

with a positive initial value x0 > 0, a parameter h = T
N and a strategy u. Let G(u∗) be defined

as in (A.21) and U be defined as in (2.6). Then, for each ε > 0, there exists N(ε) ∈ N such

that for all N > N(ε), h ≤ T
N(ε) , we have

| sup
u

EU(xN )− G(u∗)| ≤ ε. (A.22)

Proof. Fix γ ∈ (0, 1) and find N(γ) by Lemma A.1. Then, by definition (2.6) of U , for ΩN ,

defined by (A.4) with N ≥ N(γ), we have

U(xN (ω)) = φ(xN (ω)) = |xN (ω)|α, ω ∈ ΩN ,
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so

P{ω : U(xN (ω)) 6= φ(xN (ω))} ≤ P[Ω \ ΩN ] ≤ γ.

Further,

E |φ(xN )− U(xN )| =
∫

Ω
|φ(xN (ω))− U(xN (ω))| dP (ω)

≤
∫

Ω\ΩN
[|xN (ω)|α + L |xN (ω)|] dP (ω)

=

∫
Ω\ΩN

|xN (ω)|α dP (ω) + L

∫
Ω\ΩN

|xN (ω)| dP (ω)

≤

(∫
Ω\ΩN

|xN (ω)|2 dP (ω)

)α
2

×

(∫
Ω\ΩN

dP (ω)

) 2−α
2

+ L

(∫
Ω\ΩN

|xN (ω)|2 dP (ω)

) 1
2

×

(∫
Ω\ΩN

dP (ω)

) 1
2

≤
(∫

Ω
|xN (ω)|2 dP (ω)

)α
2

(P{Ω \ ΩN})
2−α
2 +

L

(∫
Ω
|xN (ω)|2 dP (ω)

) 1
2

(P{Ω \ ΩN})
1
2

≤
(
E|xN |2

)α
2 γ

2−α
2 + L

(
E|xN |2

) 1
2 γ

1
2 .

(A.23)

Since 1− α
2 >

1
2 and γ ∈ (0, 1) estimates (A.20) and (A.23) imply

E |φ(xN )− U(xN )| ≤ K4γ
1
2 ,

where K4 > 0 does not depend on N .

Then

|EU(xN )−Eφ(xN )| ≤ E |φ(xN )− U(xN )| ≤ K4γ
1
2 .

Now, fix ε > 0, and choose

γ <

(
ε

2K4

)2

. (A.24)

By Lemma A.1, find N(γ). By Lemma A.3, find N(ε/2) ≥ N(γ) such that, for each admissible

strategy u, N ≥ N(ε/2) and h ≤ T
N(ε/2) we have

|G(u)− G(u)| ≤ ε/2. (A.25)

Recall that Eφ(xN ) = G(u) and supu [G(u)] = G(u∗). Then, by (A.24) and (A.25) we have, for
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N ≥ N(ε/2) and h ≤ T
N(ε/2) ,

| sup
u

EU(xN )− G(u∗)| = | sup
u

[EU(xN )−Eφ(xN ) +G(u)− G(u) + G(u)]− G(u∗)|

≤ | sup
u

[EU(xN )−Eφ(xN )] |+ | sup
u

[G(u)− G(u)] |+ | sup
u

[G(u)]− G(u∗)|

≤ K4γ
1
2 +

ε

2
≤ ε.

(A.26)

Now we are able to complete the proof of Theorem 3.1. For small enough h = T
N , the strategy

u∗ defined by (3.6) maximize EU(xN ) approximately, meaning that

sup
u

EU(xN ) = x2
0

N−1∏
n=0

[
1 + αh

a2
n

2(1− α)b2n

]
+ ρ(N),

where ρ(N)→ 0 as N →∞. Then the proof of Theorem 3.1 follows.
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