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Bayesian Minimax Estimation of the
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Covariance Matrix Specification
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Abstract—This work addresses the issue of Bayesian robustness
in the multivariate normal model when the prior covariance ma-
trix is not completely specified, but rather is described in terms
of positive semi-definite bounds. This occurs in situations where,
for example, the only prior information available is the bound on
the diagonal of the covariance matrix derived from some physical
constraints, and that the covariance matrix is positive semi-defi-
nite, but otherwise arbitrary. Under the conditional Gamma-min-
imax principle, previous work by DasGupta and Studden shows
that an analytically exact solution is readily available for a special
case where the bound difference is a scaled identity. The goal in
this work is to consider this problem for general positive definite
matrices. The contribution in this paper is a theoretical study of
the geometry of the minimax problem. Extension of previous re-
sults to a more general case is shown and a practical algorithm
that relies on semi-definite programming and the convexity of the
minimax formulation is derived. Although the algorithm is numer-
ically exact for up to the bivariate case, its exactness for other cases
remains open. Numerical studies demonstrate the accuracy of the
proposed algorithm and the robustness of the minimax solution rel-
ative to standard and recently proposed methods.

Index Terms—Bayesian point estimate, gamma-minimax, min-
imax estimator, normal model, prior uncertainty, robust Bayesian
analysis, shrinkage method.

I. INTRODUCTION

W E consider the estimation problem of random param-
eters in the multivariate normal model under the

Bayesian paradigm

(1)

Here, both the measurement noise covariance matrix and
the design matrix are known, and the random pa-
rameter follows a conjugate prior given as:

(2)
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When this prior is completely specified and both and
are invertible, it is widely known [21] that there exists an ana-
lytical Bayesian solution to this model given by

where

(3)

(4)

The posterior mean minimizes the Bayes risk under the
quadratic loss. The analytical solution has led to many widely
applicable algorithms, for example, the Kalman filter.

However, complete prior specification may not always be
available to a statistician for various reasons, such as, an
insufficient number of observations to ensure good domain
knowledge, missing and noisy data, or many parameters in
large-scale problems [20]. In particular, we consider the situa-
tion addressed by Leamer [14] and DasGupta and Studden [9]
that the prior belongs to a class of distributions with known
mean, and the covariance matrix can only be specified by the
upper and lower bounds as

(5)

(6)

where denotes the Löwner partial order for symmetric ma-
trices1 (i.e., means is positive semi-definite
(psd). Similarly, means is strictly positive def-
inite.)

We note that the specification in (6) is not the only unique
way to describe the incomplete prior. One may also bound the
covariance matrix in terms of a Frobenius norm, for example,
as in [12]. Other constraints are also discussed by Eldar and
Merhav in [10]. However, we note that the constraint (6) im-
plies constraints on the trace, determinant, and norm but not the
converse. Accordingly, if the constraints in [10] are imposed, an
analytical minimax solution can be derived from the subsequent
results of this work (see Appendix A). The incomplete specifica-
tion is only for the covariance matrix due to the assumption that,
in practice, eliciting the prior mean rather than higher moments
is easier for a statistician. More arguments for the constraint (6)
are discussed in [9] and references therein.

1For a review of generalized inequalities which the Löwner partial order is a
special case, see [5, p. 43].
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The above incomplete prior specification problem can be
tackled by different approaches under the Bayesian paradigm
(a thorough discussion is given in Berger’s textbook [3, Ch.
4]). For example, parametric empirical Bayes treats the vari-
ances as hyperparameters that can be estimated from the data.
However, there is a problem with passing the uncertainty in the
hyperparameter estimates to the final decision for small and
moderate size problems unless one develops approximations
(such as [17]) that account for that uncertainty [3, p. 170].
A full Bayesian treatment (i.e., hierarchical Bayes analysis)
places hyperpriors on top of the prior distribution and performs
nested integrations to obtain the final estimates. Hierarchical
Bayes is often robust [3], but the main drawback is the compu-
tational burden, unless one uses approximations by assuming
other parametric forms for the hyperpriors. We note that the
estimation problem of normal means under both empirical and
hierarchical Bayes analysis is well documented in [3, Ch. 4].

In this work, we are interested in an approach within the
Bayesian paradigm that is concerned more with the sensitivity
of the analysis to possible mis-specification of the prior dis-
tribution. Given a class of plausible prior distributions that
a statistician can elicit, robust Bayesian analysis finds a de-
cision rule that is optimized for the worst-case scenarios. In
other words, robust Bayesian analysis ensures that the decision
made is guarded against the least favorable prior in [3], [24].
Such a minimax approach is used by many statistical decision
procedures [2], [6], [8]. Even in the robust Bayesian frame-
works, there are numerous ways to design procedures that pos-
sess either prior or posterior robustness (see [3, Ch. 4.7] for
more details). For the problem under consideration, we propose
to follow the conditional -minimax framework that was first
posed by Watson [25] and subsequently studied in [4], [9], and
[24]. The key difference with respect to the classical -min-
imax framework [3], [24] is that it does not integrate over un-
observed data to obtain robustness. We also note that there are
other variations of the -minimax principle such as the -min-
imax regret [3], [24]. Our aim in this work is not to advocate
any particular Bayesian approach2. Rather, our main goal is to
extend the previous work by DasGupta and Studden [9], who
have solved this problem for a special case. More specifically,
we place no restriction on the bounds of the covariance matrix.
Our first major contribution is a theoretical result (Theorem 3)
that indicates when an analytical minimax solution is available
and it covers previous results by DasGupta and Studden [9] as
a special case. The second contribution is an algorithm to com-
pute the minimax solution when such an analytical result is not
available. This algorithm exploits the geometry of the minimax
problem and is based on semi-definite programming. Our theo-
retical analysis of the algorithm indicates that the algorithm is
numerically exact for the bivariate case (i.e., ). Further
numerical studies suggest that it is also numerically exact for

. However, its exactness for is an open question.
The paper is organized as follows. In Section II, we detail

the -minimax approach and the geometry of the minimax
problem. We then present a theoretical study of this problem

2A complete discussion on robust Bayesian analysis is given in [3] and a com-
parison between some robust Bayesian methods is given in [9]

and specify the conditions for when an analytical solution is
available, thereby extending the previous result of DasGupta
and Studden [9]. When the analytical solution does not exist,
we provide a numerical algorithm that is based on semi-definite
programming and exploits the convexity of the minimax for-
mulation, to compute the minimax solution. In Section III, we
perform numerical studies to investigate the accuracy and com-
pare the proposed method to some commonly used Bayesian
and recently proposed methods [10]. Concluding remarks are
given in Section IV.

Notation: The field of real numbers is denoted as , whilst
denotes a -dimensional vector space over . Vector quan-

tities are in lower-case bold-face (e.g., ), matrix quantities
are in upper-case bold-face (e.g., ), set quantities are in cal-
ligraphic letters (e.g., ), denotes expectation, de-
notes trace, denotes the boundary of a set. For technical
clarity, the statement means is positive semi-def-
inite singular (i.e., at least one eigenvalue of is zero).
Finally, all technical proofs are detailed in the Appendices.

II. THE -MINIMAX SOLUTION

We now detail the -minimax approach for the problem of
estimating given the condition (5).

Following the conditional -minimax principle ([9], [25]),
we are interested in a statistical decision rule that
minimizes the worst-case conditional risk

(7)

Here, denotes the class of nonrandomized decision rules,
denotes the posterior distribution of given , and the

loss function is quadratic (i.e., ). The ulti-
mate goal of this work is to solve the minimax problem (7).

We note in particular that the minimax solution in (7) is con-
ditional on the observation . This is different to the classical

-minimax approach [3] where an integration over the unob-
served data is performed. A previous study by Betrò and Rug-
geri [4] establishes a general set of conditions under which the
conditional -minimax principle is admissible and the solution
is unique.

For notational simplicity, we drop the posterior subscript
when referring to the posterior covariance matrix (i.e., we write

instead of ). Furthermore, we introduce
(note that is already known) so that from (4) we have

. Next, we introduce and assume
that . It follows that the posterior covariance matrix
can be written as and it depends only on

. With this new variable, the original minimax problem (7)
over and is now reparameterized in terms of and
instead. As the prior covariance matrix is bounded by
defined in (6), it follows that is bounded by , defined as

, where

and .
The following result expresses the minimax problem (7) in a

more convenient form by explicitly evaluating the conditional
risk.
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Lemma 1: The minimax problem (7) for the constraints (6)
can be equivalently written as

(8)

where the re-parameterized conditional risk is given by

(9)

The proof is detailed in Appendix B. Hereafter, we define the
problem of (8) as

(10)

and the problem of (8) as

(11)

where .

A. Analytical Minimax Solution

We first revisit and strengthen the result on the ellipsoidal
bound of the conditional mean by Leamer [14], as this bound
is important for the derivation of the minimax solution. We then
reduce the set of possible candidates for the inner maximization
problem with respect to in (8). This allows us to characterize
the properties of the minimax solution. We show that the min-
imax solution can be obtained analytically when a certain condi-
tion on the principal eigenvalues of the bound difference matrix
is met (see Theorem 3). The result generalizes that of DasGupta
and Studden [9], which covers a more special case.

1) Variation of the Conditional Mean:

Lemma 2: The conditional mean if and only if ,
where is an ellipsoid given by

(12)

and

(13)

(14)

(15)

The proof is detailed in Appendix C.
Further Geometrical Interpretation: We further review

some geometrical results on ellipsoidal bounds derived in [14]
that will be used subsequently for the derivation of the minimax
estimator (see Fig. 1 for an illustration of the 2-D case).

• If only the positive definite condition is imposed, i.e.,
, then is within an ellipsoid that goes

through the origin and whose center is at where
. Mathematically, the ellip-

soid is defined as

(16)

Fig. 1. Illustration of posterior bounds for a 2-D case.

• If only the lower bound constraint is imposed (i.e.,
) then the bound of is an ellipsoid contained

within and touches at one point.
• If only the upper bound constraint is imposed (i.e.,

) then the bound of is an ellipsoid (see (29))
contained within and touches on its surface at the
origin.

• The ellipsoid of interest resides in the intersection of
(see (28)) and . It touches at a point and at
a point , which are, respectively, those defined by the
following vectors:

(17)

It is noted that is only a subset of . This is due to
the fact that there exists that satisfies either the lower
or upper bounds, but not both at the same time. This will
be clearer subsequently.

2) Properties of the Minimax Function:

Proposition 1: For the minimax problem (8):
1) is a compact and convex set;
2) is Lipschitz continuous with respect to and

convex in both and ;
3) of (11) is locally Lipschitz continuous on bounded

sets and also convex in .
Proof: The first part is obvious due to the fact that is the

intersection of two translated positive semi-definite (psd) cones
pointing towards each other. The second part follows from the
first part and the fact that is quadratic in both and .
The third part is a standard result of point-wise supremum that
can be found in the convex analysis literature (for example [19]).

It is evident from this result that the minimax problem of in-
terest (8) is convex for both variables and . Hence, many
computationally efficient methods developed for minimax prob-
lems, where the objective functions are concave with respect
to the problem (10), are not applicable. As shown subse-
quently, this problem is confined to the comparison of ex-
treme points in the set which implies a possibly nonunique
solution. Fortunately, the third part of Proposition 1 suggests
that if can be evaluated at any , then it is possible to use
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Fig. 2. Illustration of � ���� ���� for a 2D case. The set � is the ring
where the two cones intersect.

standard unconstrained optimization routines that do not require
differentiability, such as the simplex algorithm [18], to solve the
min problem (11).

Note that though is quadratic in both and ,
is more difficult to describe other than to note that it is convex,
which means that second-order information is not analytically
available.

One of the main issues in solving (11) is to compute for
each and this requires the solution of the problem (10).
Note that this is a maximization of a convex function over a com-
pact convex set, which is generally a -hard problem. The
problem by itself could be tackled by semi-definite relaxation
to obtain an upper bound [23]. However, such an approach will
not warrant the convexity of unless the relaxation is tight.
It is therefore desirable to solve the problem exactly. To
reduce the computational cost, the geometry of the problem is
exploited.

3) Solving the Minimax Problem: We first start with the fol-
lowing result that specifies possible candidates for problem (10).

Proposition 2: Let

Then

(18)

Proof: It is easy to verify from the definition of the
boundary of a set that . In other words,

and are the boundaries of the two translated psd
cones corresponding to the upper and lower bounds on .
Further, it is possible to verify that any is a convex
combination of and a point in . Similarly, any point

is a convex combination of and a point in
. Together with the convexity of with respect to
over , we can conclude that the supremum is found at

(i.e., they are extreme points of the set ,
see Fig. 2 for an illustration).

For notational convenience, we introduce

We shall remove from the list of the possible candidates
for the problem. Before doing so, we study the geometry
of the set via the following result.

Proposition 3: If the set is not empty, there exists a
nonempty subset such that the mapping from to
the boundary of

is bijective, i.e., each maps to some
and for each there exists a unique such that

. Further, we have for the case . The
proof is detailed in Appendix E.

By applying the result of Proposition 3, we can remove
from the list and simplify the original minimax

problem as follows.

Corollary 1: When the set is not empty and:

so that the minimax problem (8) is equivalent to

(19)

The proof is detailed in Appendix F.
Define . It naturally follows that the

minimax solution depends on the relative geometry of and
as follows:

Theorem 1:
• Case 1: If which implies ,

the minimax solution of (19) is

• Case 2: If then:

The proof is detailed in Appendix G.
We note that the condition was proved for a special case

where and in [9]. In other words, the
ellipsoid was assumed to be spherical. Here, we do not need
to make such a restrictive assumption. The two cases specified
in Theorem 1 are illustrated, respectively, in Figs. 3 and 4. In
these figures the functions and are plotted as
varies within the ellipsoid. It is also of interest to compare the
minimax solution with an obvious choice corresponding to the
average of the upper and lower bounds, which is the center of
the ellipsoid. In Fig. 3, is always greater than
over the ellipsoid , resulting in the minimax solution being
the minimum of , which is . Also, if one selects
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Fig. 3. Case �� ��� ���� � ��� ���� � � which implies � ���� � �
� ���� �.

Fig. 4. Case 2: ��� ���� ���� ���� � �.

the average of the upper and lower bounds, which corresponds
to the center of the ellipsoid, then the maximum risk associ-
ated with this choice is larger than the minimax risk given by

. In Fig. 4, the minimax
solution is found as the minimum of the intersection between

and . In this particular setting, the minimax so-
lution is away from the center of the ellipsoid , meaning that
the maximum risk associated with the average choice is signifi-
cantly greater than the minimax risk.

The difficult part of the problem is to derive the minimax so-
lution when . Before deriving such a solution, we note an
important characteristic of the minimax solution as varies in
the range . When , Theorem 1 shows that the
minimax always stays at . A closer look reveals that the
minimax objective function (9) consists of two terms. In this
case the supremum of the second term is larger than the
supremum of the first term due to Case 1 of Theorem 1, so that
the choice is obvious. When , the supremum of
the second term is negligible compared with the supremum of
the first term and the minimax objective function can be approx-
imated by removing the second term. It can then be easily seen
that the minimax solution when is the center of the
ellipsoid (i.e., ). Intuitively, we would expect that the min-
imax solution is continuous in as varies. Thus, for , the
minimax solution must follow some trajectory from to .
When the ellipsoid is not skewed, the geometrical symmetry

hints that the minimax solution, whilst being a function of ,
must also depend on some convex combination of and
such that it becomes when and when .
One conjecture that reflects this behavior when is

(20)

For a very special case when the ellipsoid becomes a sphere,
DasGupta and Studden [9] have achieved the following result.

Theorem 2: For problem (8), with and
, (20) is conditional -minimax.
It is of interest to note that DasGupta and Studden start from

a study of the -minimax solution for the linear combination
and achieve the explicit minimax solution in the same form.

However, as the mapping from to is not bijective, they
were unable to derive the minimax solution for the general case,
except for the special case as detailed above.

In what follows, we show that (20) is the conditional -min-
imax for a slightly more general case when the ellipsoid is
not necessarily spherical. We first derive the following result as
a consequence of Theorem 1.

Proposition 4: For the case , there exist nonempty
subsets and such that

The minimax solution lies in the intersection of and , where
.

The proof of this result is detailed in Appendix H.
Next, we note an important observation that if is a local

minimum for a small neighborhood about some , then the
convexity of implies that must be the minimax solution.
Using the intuitive result proposed by DasGupta and Studden
[9], we formally state the following sufficient condition for the
minimax solution:

Proposition 5: For the case , if there exist and
such that:

• is some convex combination of and ;
• ;

then is the minimax solution.
The proof is detailed in Appendix I.
Proposition 5 leads to the following result that slightly gen-

eralizes Theorem 2:

Theorem 3: Denote and as the eigenvectors and eigen-
value matrix of so that .
Suppose that the top eigenvalues are the same and denote the
corresponding eigenvectors by . Then (20) is the conditional

-minimax solution if
The proof is detailed in Appendix J.
Geometrically speaking, Theorem 3 asserts that (20) is the

minimax solution only if lies in the convex hull of the norm
vectors of the top principal axes of ellipsoid whose lengths
are equal. It can be easily seen that the condition imposed in
DasGupta and Studden is a special case where all eigenvalues
of are the same so that is actually the
whole space. Thus, Theorem 3 would be useful in practice if the
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number of principal and identical eigenvalues is large or when
there is a large number of principal eigenvalues which are close
to each other.

If the condition in Theorem 3 is not met, practical experi-
ence shows that the minimax solution (20) is unlikely to be a
convex combination of and . It appears from the proof
of Theorem 3 that the distance between (20) and the true min-
imax solution depends both on the flatness of the ellipsoid
(i.e., the ratio between the maximum and minimum eigenvalues
of ) and the value of . Accordingly, we propose
the following algorithm to compute a more accurate approxi-
mation of the minimax estimate for low-dimensional problems
when .

B. Algorithm

To numerically compute the minimax solution, one possible
approach is to calculate and exploit its convexity. This ne-
cessitates the evaluation of as shown in (19). As men-
tioned, (10) is a difficult optimization problem except for some
special cases. We can also view as a semi-infinite
problem over (i.e., the maximum3 over an infinite number of
suitably chosen points (see also [19]):

(21)

This suggests that if it is possible to obtain a dense sampling
of the parameter space then can be well
approximated. The question then is how to select the samples

. Proposition 3 suggests that at least for the case
, every maps to a boundary point of the ellipsoid

, and thus sampling on the boundary of can provide an equiv-
alent sampling on via a bijective mapping. Even though we
have not yet obtained a proof for a general case, intensive nu-
merical studies lead to a conjecture that this may hold for
as well (see Appendix M for an example). A rigorous proof for
the case is an unsolved problem. For the case ,
the following is proposed. Denote a boundary point on ellipsoid

as . It follows that the associated can only be a
possible candidate for the problem when it is a solution of

(22)

Once a set of and , , has been computed, the
evaluation of is straightforward

The minimax solution is then found from the following problem:

using a nondifferentiable unconstrained optimization technique
with the starting point at (20).

Next, we detail two important aspects of the proposed
algorithm.

3Technically, � contains an uncountable, infinite number of points. How-
ever, for practical purposes considering a countable, but dense, set of points
does not change the result.

• Selection of points on the boundary of ellipsoid : for
each pair of eigenvectors of (cf. (14)), the
boundary points can be selected as

where is the number of selected points for each pair ,
, which means . The above sam-

pling is representative of the full search space for .
For , one can make the selection denser by consid-
ering multiple eigenvectors at the same time and using mul-
tiple weights whose sum-of-squares equals 1 rather than
the weights defined by and as above.

• The problem (22) can be easily converted to a standard
semi-definite programming (SDP) formulation that in-
cludes a linear objective function, equality constraints, and
semi-definite constraints on the matrix variables [1], [15],
[23]. Once an optimization problem is formulated in an
SDP framework, it is generally considered solved, at least
numerically [15], for suitable problem size and computing
power (see Appendix K for an example).

Remarks:
• From Proposition 3, it is clear that when , our

proposed algorithm is numerically exact, in the sense that
the error of the minimax solution can be made arbitrarily
small by selecting sufficiently large number of points on
the boundary of the ellipsoid . Although, the case
is still an open question, the proposed algorithm may still
be useful in potential applications where the number of un-
known parameters is small, such as 2-D or 3-D tracking
with prior dynamic uncertainty in computer vision.

• In addition, empirical investigation shows that the approxi-
mation is generally satisfactory for a relatively small value
of . For example, when and , the relative

error is of the order of less than 0.5%.
• From Theorem 1, there are two possible cases. These arise

from the structure of the conditional risk function (9),
which is the objective function of the minimax problem.
It consists of two terms, the first measures the distance
of the estimate to a posterior mean, the second measures
the trace of . The minimax problem is essentially the
compromise of these two terms over the ellipsoid . For
tractability, we consider the special case with ,

, and . Then it is possible to show that

where is a random variable drawn from . It is
straightforward to show that

A closer look reveals that when the measurement noise is
“large” (relative to the signal) (i.e., ) the second
term of the conditional risk will become dominant. In other
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words, the difference between and
is much greater than the size of any principal axis of the el-
lipsoid . This is Case 1 of Theorem 1, where the minimax
solution is found at , and no complicated computa-
tions need to be carried out. When the noise is sufficiently
“small” or “moderate”, these two terms could be compa-
rable. Hence, one needs to invoke the proposed algorithm
to solve Case 2 of Theorem 1 if the conditions in Theorem
3 are not satisfied.

III. EXPERIMENTAL RESULTS

In this section, we numerically demonstrate the proposed
method to address two important questions that arise. The first
question is about the accuracy of the proposed algorithm in
obtaining the conditional -minimax solution. The solution by
DasGupta and Studden, which is the only tractable solution
known in the literature and only applicable for a special case, is
also considered. The second question is the performance of the
conditional -minimax formulation relative to other Bayesian
formulations in terms of more commonly used measures such
as mean squared error (MSE). While such a comparison to
other Bayesian formulations has been considered previously
in, for example, [9], a new comparison is provided to reflect
the new setting. We note importantly that while the analytical
solution in Theorem 3 is valid for all , the algorithm is only
numerically exact for . Thus, we only perform the
detailed analysis for .

The parameters are selected somewhat arbitrarily as follows
(Matlab format): the design matrix , the
noise covariance matrix ,
the bounds are and

, and .
We parameterize the true covariance matrix as

(23)

where ’s are the eigenvectors of associated
with the corresponding eigenvalues , , 2 and .
We sample the true covariance matrix uniformly in terms
of , the sampling points are shown in Fig. 5. In particular, the
sampling point 1 corresponds to and the sampling point
25 corresponds to . This choice ensures that the selected
covariance matrix satisfies .

In all experiments, we randomly generate a number of ’s for
each selected covariance matrix . Then, we randomly gen-
erate a number of ’s according to the normal model (1) for each
randomly generated . We then report the average performance
over both and .

A. Accuracy of the Proposed Algorithm

In the first experiment, we compare the accuracy of the pro-
posed algorithm with respect to the number of sampling points

on the boundary of the ellipsoid as mentioned previously.
Specifically, we select , 20, 44 and measure the average
squared precision error relative to the true minimax solution de-
fined as , where is the minimax solution obtained
from one of the methods being compared, and is the true

Fig. 5. Sampling points for the prior covariance matrix � used in the
experiment.

minimax solution. This true minimax solution is numerically
obtained by setting to be very large. We also compare such
errors with the error induced when using the solution by Das-
Gupta and Studden for the general case. This gives an idea of
how much accuracy is gained when using our algorithm. When
running the experiment, we observe that when varies as
above, on average, the solution is found at for
20% of the time. In this case, a direct application of DasGupta
and Studden’s result yields the exact solution. For the case when
the minimax solution is not found at , Fig. 6 plots the errors
of the estimates. Here, the errors are plotted against the sampling
points defined graphically in Fig. 5. We observe that when
varies, the accuracy of all methods varies slightly, possibly due
to numerical properties. However, the overall trend is that when
the number of sampling points is large, the proposed minimax
algorithm achieves better accuracy and can be ten times more
accurate than a direct application of DasGupta and Studden’s
solution.

B. MSE Performance

The -minimax solution is formulated to cope with the worst
case scenario of conditional risk. As mentioned by DasGupta
and Studden [9], it should be examined using other conven-
tional criteria such as MSE (with respect to the true value of

as mentioned previously). This is what we demonstrate next.
The -minimax solution is compared with direct implementa-
tions of the following methods.

• Parametric empirical Bayes. We extend the solution [7, p.
76] to the multivariate case, with a minor change: the max-
imum likelihood estimate of the covariance matrix, which
is singular for the problem being considered here, is re-
placed by the shrinkage method recently described in [20],
wherein the shrinkage density is automatically found. The
parametric empirical Bayes is
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where is the projection to the positive semi-definite
cone, and is simply the shrinkage estimate based on

.
• Hierarchical Bayes. We consider the covariance matrix

of as a random variable and obtain the estimate as

(24)

where

Using the popular inverse Wishart for the hyperprior
leads to high computational cost. Hence, we consider the
choice where , where follows the distri-
bution. This enables the integration over the continuous
random variable to be easier.

• The minimax estimates by Eldar and Merhav proposed in
[10]. To adapt their methods to our settings, we simply set
the eigenvalues of and as the bounds on the
eigenvalues of for the first model, and the maximum
singular value of for the second model.

• The optimal Bayes solution. This solution is obtained when
is exactly known and the estimate is taken as the poste-

rior mean as shown in (4). Apparently, this solution serves
as the lower bound on the MSE of all compared methods
(i.e., the optimal Bayes solution is exactly the minimum
MSE (MMSE) solution).

The MSE is defined as the average of where is the
estimate from one of the methods being compared and is the
true value of the random parameters. The results on MSE perfor-
mance are shown in Fig. 7. As expected, the optimal Bayes solu-
tion achieves the overall minimum MSE. We also note that there
seem to be “favorable” values for the covariance matrix
at which all algorithms appear to achieve better accuracy than
others at sampling indices 1, 6, 11, 16, 21. By referring back to
Fig. 5, they correspond to the cases where (cf. (23)). At
these points, the -solution appears to achieve a slightly better
accuracy than all other compared methods, and this is close to
the optimal Bayes solution. Overall, the -minimax solution ap-
pears to have similar MSE performance as the parametric Bayes
or the Eldar-Merhav minimax estimates, though its variability
is slightly larger. We note importantly that Eldar-Merhav min-
imax estimates directly minimize the maximum MSE whilst the

-minimax solution only optimizes the conditional risk.
We also note that our experiment considers some particular

implementations of parametric empirical Bayes and hierarchical
Bayes, and no conclusion about these two general approaches
is made here. Rather, these particular implementations help us
to better understand the robustness and accuracy of the pro-
posed algorithm in solving the minimax solution. Although the
proposed algorithm is theoretically justified in terms of min-
imax properties in the conditional Bayesian framework, it also
demonstrates good MSE performance. Our findings are consis-
tent with [9] conducted in a different setup.

IV. CONCLUSION

We addressed the robustness issue with respect to prior uncer-
tainty in the multivariate normal model. This problem is prac-
tically important for Bayesian data analysis where one cannot
obtain a complete prior specification. A theoretical study on
the minimax solution was conducted under the Bayesian con-
ditional -minimax approach. An extension to a previous result
by DasGupta and Studden, when the ellipsoidal bound of the
conditional mean is not spherical, was obtained. For the more
general case, we proposed a practical algorithm to compute the
minimax estimate. This algorithm is numerically exact for the
case and is based on a geometrical interpretation of the
space of the posterior mean, and by exploiting the problem’s
geometry. We also discussed technical issues related to imple-
mentation. Numerical studies show that the proposed algorithm
improves minimax solution accuracy in the general case and
achieves robustness as well as desirable MSE properties.

APPENDIX A
DISCUSSION ON A RELATED WORK

In what follows, we give a discussion on related minimax
settings by Eldar and Merhav [10] via both theoretical analysis
and a numerical example.

1) Simplified Minimax Solution: First, we show that the
conditional -minimax problem can be readily solved using
the results presented in this paper when the constraint set
is relaxed as in [10]. This discussion illustrates two important
arguments.

• The positive semi-definite constraints are already suffi-
ciently general.

• When simpler constraints, which are subsets of the con-
straints considered in this work, are imposed, such as those
discussed in the work of Eldar and Merhav [10], one can
readily derive an explicit minimax estimator under the con-
ditional -minimax paradigm.

First, we recall the simplified form of the minimax problem
of interest

where . It is noted that:
• psd constraints imply determinant constraints but not the

converse;
• psd constraints imply trace constraints but not the

converse;
• psd constraints imply norm constraints but not the

converse.
Considering the psd constraints also makes the problem difficult
to solve. However, we have obtained analytical results under
some special cases as well as a practical algorithm for other
cases.

Now, consider the two constraints in Eldar and Merhav [10].
• Type 1:

.
• Type 2: .
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Fig. 6. Average squared precision error relative to the true minimax solution.

We have two remarks regarding our adaptation of Eldar and
Merhav’s settings.

• For : Eldar and Merhav consider the case where, in
our own notation, and share the same eigenvec-
tors, and that the eigenvalues of are upper and lower
bounded. It can be easily shown that also shares the same
eigenvectors and its eigenvalues are also upper and lower
bounded. As the minimax problem of interest is invariant
to an unitary transformation, we can consider being di-
agonal without loss of generality.

• For : The eigenvalues of are bounded between .
Consider the set as a relaxing condition for the set . In

this case, is only diagonal. Thus, we can write the objective
function of the minimax problem as follows:

Thus, we can decouple the original -dimensional minimax
problem to independent univariate minimax problems

The solution of each univariate minimax subproblem can be
found via the trivial result for the special case . The result
by DasGupta and Studden is then applicable.

Next, consider the set . We note that needs to be chosen
properly so that and does not have to be diagonal.
As the eigenvalues of are bounded between , its follows
that . We can set and

so that . As the ellipsoid becomes the
sphere in this case, the result of DasGupta and Studden directly
applies.

In conclusion, when a simpler constraint set is imposed, con-
ditional -minimax estimates can be analytically derived from
the problem considered in the manuscript.

2) Numerical Example: Next, we numerically demonstrate
the choices between different strategies.

• The true conditional -minimax estimate
• The DasGupta-Studden estimate
• The Eldar-Merhav estimate for constraint ,
• The Eldar-Merhav estimate for constraint ,

We consider the following settings:

The settings allow the special conditions in Eldar and Merhav’s
paper to hold, and . We would like
to evaluate the maximum conditional risk associated with each
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Fig. 7. MSE performance � � �.

Fig. 8. Comparison between the true minimax, the DasGupta-Studden, and
the Eldar and Merhav estimates. The maximum risks are, respectively, ������� �
�����, ������ � � ����	� ������ � � ��


.

of the decisions on by the above strategies as varies between
and .

The estimates for this example are shown in Fig. 3. It is noted
that is quite close to , whilst incidentally.
The associated maximum risks are shown in Table I. Clearly
the strategies by Eldar and Merhav have higher maximum
risk, which is not a surprise because their goal of optimality is
different.

APPENDIX B
PROOF OF LEMMA 1

We note the same result was also stated in [9] without proof.
For completeness, a proof is given here.

Proof: The conditional risk can be written as

(25)

where it can be easily seen that the third term is

(26)

The proof follows directly from (25) and (26)
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Fig. 9. Mean squared error (MSE) performance � � �.

TABLE I
MAXIMUM CONDITIONAL RISK

APPENDIX C
PROOF OF LEMMA 2

Proof: First, we prove a somewhat more special case: If
with then lies within the interior of the

ellipsoid given by

(27)

This can be directly obtained from Theorem 3 of Leamer [14]
or by writing and deducing , which
leads to (27) with strict inequality after straightforward manipu-
lations. For the converse of this special case, we pick an interior
point satisfying (27) (note strict is required) and it can be
easily shown that

Then according to Lemma 3 (see Appendix L) there exists a
symmetric positive definite such that

from which

It can be easily seen that the choice
satisfies , which proves the converse.

Now we extend the result to the case . Similar
to the proof of Proposition 1, we observe that the set of is
a closed convex set, and we have established that the mapping
of the interior of is the interior of . As both these sets are
convex and compact, and the mapping is linear, it follows from
Lemma 5 that the mapping of is the whole . The converse
of this case follows from the converse of the above interior case
and the continuity of the mapping. Note that this does not imply
the boundary of maps to the boundary of , but its closure
does.

To apply this for our problem, we can rewrite

and apply the above result, including the converse, with
and .

Remarks:
• In the above proof, we have only asserted that the mapping

from to the interior of is surjective. For a point in the
interior of , there may exist a family of ellipsoids passing
through that point and bounded within . However, the
statement in the above Lemma is sufficient for the result
derived in the paper.

• Note that a trivial case is when so that the ellipsoid
collapses to a single point . In this case, the problem is
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TABLE II
NUMERICAL STUDY

trivial as , independent of and not considered in
this work.

APPENDIX D
PROOFS OF THE RESULT (17)

The proof of (31) can be deduced in a similar manner to that of
Lemma 2. First, consider the case . It follows that

. From , one can deduce
. By substituting , it follows that

from which one can easily arrive at (30) without the equality. To
prove the equality part, we can use the same argument of convex
sets and linear mapping as used in the proof of Lemma 2.

The ellipsoid for the case can be derived di-
rectly from Lemma 2 by noting that . Hence,
a direct application of Lemma 2 yields the following form:

(28)

Similarly, the ellipsoid for the case can be derived
directly from Lemma 2 by noting that . Hence,
a direct application of Lemma 2 yields the following form:

(29)

We note that in all cases, any ellipsoid can be written as an in-
equality , where is a quadratic function of . If

then is on the surface of the ellipsoid; otherwise, it
is an interior point. Denote such quadratic functions for , ,

as , , . We prove (17) in two steps.
• Prove that and

, i.e., and are the surface points
where the ellipsoids intersect.

• Prove that the normal vectors of the tangent planes for
and at are the same. Similarly, the normal vectors
of the tangent planes for and at are the same.

The first step is a simple substitution. For the second step, we
recall a basic result that the normal of a tangent plane for a
surface at is where is a normalization
constant. As it can be easily verified that

the proof follows.

APPENDIX E
PROOF OF PROPOSITION 3

Proof: From Lemma 2, for any point , it is
always possible to find some such that .
Suppose that , then it is either in or
(i.e., on the boundary of ; otherwise, it would map to an interior
point of according to Lemma 2). Suppose that

. The existence of a point in is based on the following
facts.
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• It is possible to find some such that

(30)

belongs to (i.e., extending the line connecting and
on the surface of the cone should intercept at

some )
• We note that it is possible to move all the terms in the

equation of ellipsoid (cf. (12)) to the left-hand side and
obtain a quadratic function in terms of . This ellipsoid
function is convex and the maximum is 0 (found at the
boundary where the equality occurs).

• lies between and , and the values of the ellipsoid
function at and are zero.

From this result, we can easily deduce that the ellipsoid function
evaluated at is also zero4, which implies also maps to a
boundary point of . A similar argument can be made for the
case when . It remains to prove the case when

is at either or . The proof for this case follows from
the fact that the set is compact and the mapping from to

is linear. In other words, we can consider, for example, a se-
quence on the boundary of that converges to .
Then, as is compact, and due to the above result, there exists
a corresponding convergent subsequent in with a
limit point . It follows that maps to . Similar
argument can be made for . This establishes that there ex-
ists that maps to . To prove the uniqueness of the
mapping, suppose that there exist two distinct that
maps to the same boundary point of . It follows that all convex
combinations map to that boundary
point. However, there exists a convex combination that yields
the interior point of , meaning this interior point maps to a
boundary point of , which contradicts Lemma 2.

The result above does not rule out the case that some
could map to an interior point of . However, for , we
show that the mapping from is exclusively to . Similar
to the proof of Lemma 2, it suffices to consider the special case
where and (this corresponds to the set in
the generalized case). Substituting into the equation of
ellipsoid we need to show that

or equivalently

Due to Corollary 2 (see Appendix L), the middle term is which
concludes the proof.

We also note that for the case the result of Corollary
3 specifies the subset .

4Suppose that the quadratic function is � which is convex and � � and such
that ����� � � �. Then as ����� � � �, its convexity implies that ������ � �
which is a contradiction. Hence, ����� � � �

APPENDIX F
PROOF OF COROLLARY 1

Proof: The first result follows from the fact that
5. Also, it is always possible to find at least

a point on the boundary of that has the same distance to any
as that of (the trivial point is itself; note that from

Proposition 3 there exists that maps to ). Hence

For the second result, apart from directly applying the first result
we need to prove that, in this case, the minimax solution cannot
be found outside the ellipsoid . From (21), we note that each

is a convex and quadratic function of and attains its
minimum at a point on the boundary of . It follows that the
minimum of the convex function must be found within .
Finally, note that is also a quadratic and convex func-
tion with a minimum at (Intuitively, is the space of the
posterior mean, so the minimax solution must be found here).

APPENDIX G
PROOF OF THEOREM 1

From (9), we note that the supremum problem does not yield
a conditional risk less than . Hence,
the problem is that of showing that the supremum over for

is actually given , where
with . This is equivalent to

showing with . As is symmetric
and positive semi-definite, the eigenvalue decomposition yields

with where . Using
the property that , and defining , the
problem is equivalent to showing given

. The required results follows because each of the
term in the sum .

APPENDIX H
PROOF OF PROPOSITION 4

The first part of the result follows as ,
, and is both convex and contin-

uous. The second part of the result is based on the property of
the minimax solution and can be easily proved by contradiction.
To see this, we start from the first part, which proves the exis-
tence of and . From the proof of the existence, we know
that . Suppose, on the contrary, that the minimax so-
lution, denoted by , does not lie in . There are two
possible scenarios.

• . Then we know from the first part
that . However, the
convexity implies which means
that . This is the case when , which is a
contradiction.

• . Then must be a local minimum of
in . The convexity of implies that

5Note: A stronger result is strictly � for regular cases.
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and hence . Specifically, we can always
find such that is a convex combination of

and . It follows from the convexity of that
. However, we have .

This leads to a contradiction.
The two scenarios both lead to a contradiction, which concludes
the proof.

APPENDIX I
PROOF OF PROPOSITION 5

We note that

Consider a small neighborhood where is some unit
vector and is a small number. Using first-order approximation,
one obtains

As is a convex combination of and , it follows that:
. Thus

As , it follows that
in a small neighborhood of . As is convex,

this implies is the minimax solution.

APPENDIX J
PROOF OF THEOREM 3

For notational brevity, we introduce . We
rewrite

(31)

where is some symmetric positive semi-definite matrix. The
condition implies

(32)

Using the same approach as in [9], we show that the choice (20)
satisfies

where and

First, we show that

By substituting (31) into the formula for , as shown in
(9), this is equivalent to showing that

(33)

We prove (33) using the following arguments.
• is a direct consequence of (32) as

,
where the last equality follows from the assumption that
lies in the subspace of the top eigenvectors whose eigen-
values are equal.

• Using Lemma 6, the trick , and the
trace property , it can be easily shown
that

which implies, after straightforward manipulations, that

The equalities occur at a trivial choice . However,
it is also possible to show, after tedious verification, that the
equalities also occur at . We omit the detail.

It is also of interest to note that . Thus, it is easy
to verify that the choice for in (20) is a convex combination
of and . It follows by Proposition
5 that (20) is the minimax solution.

APPENDIX K
SDP FORMULATION

With the new variable

where , , and
, the problem (22) is equivalent to

where . This is exactly the form of a SDP

problem and thus can be considered solved.
In practice, many SDP solvers, for example SeDuMi and

Yalmip [22], [16], can handle multiple positive semi-definite
constraints already and thus (22) can be easily implemented by
a few lines of code.
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APPENDIX L
SOME SUPPLEMENTARY RESULTS

Lemma 3: Assume that , and . Then
there exists a symmetric positive definite matrix which
satisfies

Proof: It can be easily seen that this equation is true for
. We therefore need to prove the result for the case .

The idea is to project a solution on to . Let

It can be easily seen that (i.e., ) and that
. We note that . Therefore,

there always exists a symmetric positive semi-definite matrix

with such that

Let be linearly independent vectors
in the orthogonal subspace of

Denote . It is easy to show that the matrix

is symmetric positive definite. Further

(34)

where we have used in (34). This concludes the proof.

Lemma 4: Consider two symmetric matrices
with size . Suppose that . We have

Proof: From the given condition, it follows that there exists
a transformation that simultaneously diagonalizes and
(see [11, p. 469] for an algorithm)

where , , , is a
diagonal matrix. It follows that which results in

, . Proving the Lemma amounts to proving that
, which is easily translated to

. This result can be easily verified.

Corollary 2: Given the conditions in Lemma 4, and that
, and , it follows that .

Proof: In this case, . Combining the two
conditions and , we can deduce that one diagonal
element is 0, while the other is 1. Verification that
is straightforward.

Corollary 3: Given the conditions in Lemma 4. It follows
that if a nontrivial can be decomposed as

where and are the eigenvalue and eigenvector matrices
of , is some diagonal matrix with 1’s and 0’s in the diag-
onal, and is a unitary matrix.

Proof: It is easy to verify that simultaneously diagonal-
izes and , as in the proof of Lemma 4, and that

.

Lemma 5: Let and be two finite-dimensional linear
spaces. If there exist two sets in , bounded, and in , and
a linear mapping such that

(35)

then , where denotes the closure of a set.
Proof: From the given information, it follows that is con-

tinuous, hence . Further, is bounded, there-
fore is bounded and thus compact. So from (35), we have

On the other hand, a continuous function maps a compact set to a
compact set, so must be compact and therefore closed.
But, by definition, is the smallest closed set that contains

, so . All these imply .

Lemma 6: For two positive semi-definite matrices and
of compatible dimensions, it is the case that

Proof: This result is a direct consequence of classical re-
sults on eigenvalues of positive semi-definite matrices [13]

As both and are positive semi-definite, their eigenvalues
are nonnegative. Thus

One trivial case, which will be useful in the main paper, is that
the inequality occurs when is full-rank and .

APPENDIX M
NUMERICAL EXAMPLE

In the paper, we give a conjecture that if is the maximizer
of
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then is a boundary point of the ellipsoid . In what follows,
we present a numerical study that supports this conjecture. We
consider the case . As the above objective is a convex
function of , we need to use brute-force search over the set

. To verify if maps to a
boundary point, we need to check if

where .
In this numerical study, we set

This choice ensures that and
that does not lie in the principal subspace of

. In other words, the choice is not special.
The special points of the ellipsoid are

Table II shows the brute-force search results for several values
of uniformly selected within the ellipsoid . Clearly, with all
the points that we picked, the maximizer is either at
or maps to another boundary point.

Further, to support the conjecture for the case , we re-
peat the numerical study of MSE with the following parameters:

The experiment is carried in a similar manner as the experi-
ment with except that we vary the true along the
straight line between the two bounds (i.e.,

) just for simplicity. The results are
shown in Fig. 9. Once again, it is observed that while the condi-
tional -minimax estimate is optimal for the worst-case scenario
in terms of conditional risk, it is evident that it still maintains
competitive performance, in terms of MSE and frequentist risk,
when compared with other methods.
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