
Abstract

The cooling history of the Polinik and Kreuzeck Blocks of the Austroalpine units to the southeast of the Tauern Window are re-

examined in the light of new mica Ar/Ar-, zircon fission track and apatite fission track data. Our new data demonstrate that the two 

blocks experienced a significantly different thermal evolution during Mesozoic-Cenozoic times: The Polinik Block revealed Late 

Cretaceous Ar/Ar ages (87.2–81.6 Ma), which reflect cooling subsequent to the thermal peak of Eo-Alpine metamorphism. The 

Kreuzeck Block, in contrast, shows early Permian Ar/Ar ages (295–288 Ma) that reflect post-Variscan extension and cooling. Late 

Cretaceous zircon fission track ages (67.8 and 67.3 Ma) found in the Kreuzeck Block are interpreted to reflect post-metamorphic 

exhumational cooling after the Eo-Alpine metamorphism. Miocene apatite fission track ages (21.3–8.7 Ma) and transdimensional 

inverse thermal history modelling results suggest that the Polinik Block cooled rapidly through the apatite partial annealing zone 

and exhumed to near surface temperatures in the middle Miocene. The Kreuzeck Block, in contrast, cooled and exhumed to near 

surface temperatures already in the Oligocene and early Miocene as evidenced by apatite fission track ages (29.1–16.4 Ma) and 

thermal history modelling results. Based on the temperature difference between the uppermost and lowermost samples from steep 

elevation profiles, calculated paleo-geothermal gradients are in the range between 47 and 43 °C/km for the late Oligocene and 

middle Miocene periods. These high values likely resulted from an elevated heat flow associated with magmatism in the area and 

from the fast exhumation of hot Penninic domains during Oligocene and Miocene times.

Wir präsentieren neue Ar/Ar, Zirkon- und Apatitspaltspuralter vom ostalpinen Kristallin südöstlich des Tauernfensters.  Die unter-

schiedlichen Altersverteilungen lassen auf verschiedene Abkühlphasen sowohl in mesozoischer als auch in känozoischer Zeit 

schließen. Der nördlich gelegene Polinik Block zeigt kretazische Ar/Ar Alter (87–81 Ma), welche als Abkühlalter unmittelbar nach 

dem Höhepunkt der eoalpinen Metamorphose interpretiert werden. Ar/Ar Daten aus dem südlich gelegenen Kreuzeck Block zeigen 

permische Alter (295–288 Ma). Das bedeutet, dass die eoalpine Deformation und Metamorphose nicht ausreichte, um diese Alter 

zurückzustellen. Mittels eines neuen Modellieransatzes können wir zeigen, dass sowohl der Kreuzeck- als auch der Polinik Block 

zu unterschiedlichen Zeiten zu oberflächennahen Temperaturen abkühlten. Demnach erreicht der Kreuzeck Block die partielle 

Ausheilzone von Apatitspaltspuren, zwischen 120 und 60 °C, bereits im Oligozän und frühen Miozän. Im Gegensatz dazu erreichte 

der Polinik Block diese Temperaturzone erst im mittleren Miozän. Aufgrund der Temperaturdifferenz zwischen den topographisch 

höchst- und tiefstgelegenen Proben von Höhenprofilen ist es uns möglich, den geothermischen Gradienten für das Oligozän und 

mittlere Miozän zu errechnen. Es zeigt sich, dass in dem genannten Zeitraum der geothermische Gradient zwichen 47 und 43 °C/km 

lag. Diese hohen Werte lassen sich mit magmatischen Aktivitäten entlang des Periadriatischen Störungssystems, beziehungsweise 

mit erhöhtem Wärmefluss durch die Exhumation von warmen penninischen Einheiten in Verbindung bringen.
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1. Introduction

Geochronology has played an enormous role in unravelling 

of the complex history of the Eastern Alps. Since the pionee-

ring studies in the 60´s and 70´s of the last century, the Alps 

have been extensively sampled for geochronological analyses 

which mostly involved muscovite and biotite for Rb/Sr, K/Ar 

and Ar/Ar dating methods, covering the temperature ranges of 

lower to middle crust (e.g. Oxburgh et al. 1966; Brewer and 

Jenkins, 1969; Lambert, 1970; Wagner et al., 1977; Thöni, 

1999). With the advance of low-temperature thermochrono-

logy since the late 80´s, a growing number of zircon and apa-

tite fission track data (ZFT and AFT, respectively) helped to

resolve processes in the deeper levels of the upper crust 

(e.g. Wagner et al., 1977; Grundmann and Morteani, 1985; 

Staufenberg, 1987; Hejl, 1997, 1998; Dunkl et al., 2003; Foe-

ken et al., 2007; Wölfler et al., 2008, 2012). And finally, the 

(U-Th)/He methods available since the beginning of this cen-

tury allowed scientists to track shallow crystal processes ope-

rating at temperatures <100C° in the shallowest levels of the 

upper crust (e.g. Foeken et al., 2007; Glotzbach et al., 2008; 

Wölfler et al., 2008, 2012). One of the major challenges in 

geochronology is the proper reconstruction of thermal histo-

ries from measured data. The long accepted closure tempe-
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rature concept (Dodson, 1973) is sound and viable in many 

cases, however, increased understanding of track annealing 

and diffusion kinetics in apatite and zircon (e.g. Fleischer et al., 

1964, 1965, 1975; Wagner, 1968; Green et al., 1986; Carlson, 

1990; Ketcham et al., 1999; Wendt et al., 2002; Farley, 2000; 

2002; Meesters and Dunai, 2002; Reiners et al., 2003, 2004; 

Barbarand et al., 2003; Flowers et al., 2007; Guenthner et al., 

2013) and development of user-friendly modelling packages 

that invert measured thermochronological data into cooling 

trajectories, provide scientists with much more robust tools for 

quantitative reconstruction of thermal histories of rocks (e.g. 

Gallagher, 1995, 2012; Gallagher et al., 2005, 2009; Ketcham, 

2005; Ketcham et al., 2000; Meesters and Dunai, 2002). For 

high topography regions, such as the Eastern Alps, however, 

the 'classic' altitude dependence method (Wagner and Reimer, 

1972; Wagner et al., 1977; Fitzgerald and Gleadow, 1988) still 

provides a powerful approach to determine exhumation rates 

from geochronological data collected along steep elevation 

profiles. However, it has to be kept in mind that this method is 

prone to potentially large errors for the cases where the criti-

cal closure isotherms were not planar during the time of exhu-

mation (Stüwe et al., 1998; Stüwe and Hintermüller, 2000). 

However, if this requirement is not met, the calculation from 

age-elevation trends may easily result in false conclusions 

about cooling and exhumation rates in the upper crust, as it 

was recently shown for instance by a study from the Eastern 

Alps (Wölfler et al., 2012).

In this study we aim to unravel the yet constrained thermal 

history of the Polinik and Kreuzeck Blocks (Staufenberg, 1987; 

Wölfler et al., 2008) – two Austroalpine units to the southeast 

of the Tauern Window that are bound by steep fault zones. For 

this purpose we provide an original dataset comprising new 

Ar/Ar ages on micas and new ZFT- and AFT ages from bed-

rock samples. The new data are used to better quantitatively 

constrain the cooling of the samples from the investigated tec-

tonic units at <450°C, corresponding to the middle to upper 

crustal levels. In addition to the 'conventional' inverse model-

____________________________

ling procedure by using HeFTy software (Ketcham, 2005), we 

employ also a transdimensional inverse thermal history mo-

delling approach for multiple samples recently introduced by 

Gallagher (2012). Perhaps the main advantage of the new 

modelling approach is its ability to consider simultaneously all 

data from an age-elevation profile, and moreover, it allows cal-

culation of paleo-geothermal gradients for the time sections be-

tween the oldest and the youngest ages in the age-elevation 

profile. Our new data from three thermochronometers,  inte-

grated with published data and new modelling strategies, en-

ables us to reconstruct ~300 Ma of thermal history in the ~450 

to 60°C temperature range, and provide new insights into final 

cooling stages of Austroalpine units that have implications for 

the evolution of the Eastern Alps.

To a large extent the European Alps and in particular the 

Eastern Alps are composed of units derived from the Adriatic 

microplate, the Penninic oceanic realm and the European con-

tinent (Figs. 1, 2). The Austroalpine and Southalpine units re-

present the Adriadic microplate and the units derived from the 

Penninic oceanic realm are mainly exposed in tectonic win-

dows (Fig. 2).

The Penninic units were overthrusted by the Austrolpine units 

in Cretaceous and Eocene times (e.g. Neubauer et al., 1999; 

Schmid et al., 2013). During the lateral tectonic extrusion of 

the Eastern Alps in Oligocene-Miocene times (e.g. Ratsch-

bacher et al., 1991a, b; Wölfler et al., 2011) the footwall Pen-

ninic units exposed in the Tauern Window (Figs. 2, 3), were 

tectonically exhumed from below the Austroalpine hanging 

wall (Frisch et al., 1998, 2000). The Austroalpine units can be 

subdivided into Lower and Upper Austroalpine nappes (e.g. 

Schuster et al., 2013), which experienced a complex geologi-

cal history from the Paleozoic to the Cenozoic era. The Lower 

Austroalpine units overlie the Penninic units and are mainly 

exposed at the border of the Tauern Window (Fig. 3). The Up-

per Austroalpine units are composed of several nappe sys-

_______________________

______________________________________

2. Geological Setting
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Figure 1: Tectonic map and paleogeographic units of the European Alps according to Schmid et al. (2004) (modified after Schuster et al., 2013).
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Figure 2: Tectonic map of the Eastern Alps following the nomenclature of Schmid et al. (2004) (modified after Froitzheim et al., 2008). BF: Bren-

ner normal fault; KF: Katschberg normal fault; DAV: Defereggen-Antholz-Vals fault; SEMP: Salzach-Ennstal-Mariazell-Puchberg fault; PF: Periadriatic 

fault system; ZW: Zwischenbergen-Wöllatratten fault; RTF: Ragga-Teuchl fault; MV Mölltal fault.____________________________________________

tems (e.g. Schuster et al., 2013).

The area of investigation, situated within the Kreuzeck Moun-

tains, covers a part of the Austroalpine units located to the 

southeast of the Tauern Window (Figs. 2, 3). It consists of po-

lymetamorphic rocks which were overprinted from the Devo-

nian to the Cretaceous (e.g. Hoinkes et al., 1999; Neubauer 

et al., 1999). A subvertical fault zone, referred to as the Ragga-

Teuchl fault, separates the study area into two units that differ 

in their structural and metamorphic history (Fig. 3). The Ragga-

Teuchl fault formed during the Oligocene and displays both 

ductile and brittle deformation and separates the Polinik Com-

plex in the North from the Strieden Complex in the south (Hoke, 

1990). Later on, during the lateral extrusion in the Miocene 

(Ratschbacher et al., 1991b) additional steeply dipping faults 

developed along the boundary of the recent Kreuzeck Moun-

tains, thus forming a northern and southern block here refer-

red as Polinik and Kreuzeck Blocks, respectively (Fig. 3).

The Polinik Block is part of the Koralpe-Wölz nappe system 

(Fig. 3), an Upper Austroalpine nappe system, which experi-

enced a metamorphic imprint under high-amphibolite to eclo-

gite facies conditions during the Eo-Alpine metamorphism 

(Schuster et al. 2001, 2004; Schmid et al., 2004). Published 

geochronological data from the Polinik Block include Creta-

_______________________

___

ceous K/Ar- and Ar/Ar ages (~127 to ~67 Ma) on white mica 

and biotite (Oxburgh et al., 1966; Lambert, 1970; Hoke, 1990; 

Dekant, 2009), ZFT ages of ~45 to ~30 Ma, AFT ages of ~23 

to ~7 Ma and apatite (U-Th)/He ages of ~17 to ~11 Ma (Dunkl 

et al., 2003; Staufenberg, 1987; Wölfler et al., 2008) (Fig. 4).

The Kreuzeck Block is part of the Drauzug-Gurktal nappe 

system (Fig. 3) which experienced a metamorphic imprint only 

under anchizonal to lowermost greenschist facies conditions 

during the Eo-Alpine metamorphism, and still preserves Vari-

scan and Permian assemblages and structures (Hoke, 1990; 

Schuster et al., 2001, 2004). K/Ar and Ar/Ar ages on white 

mica and biotite range from 337 to 141 Ma (Brewer & Jenkins, 

1969; Brewer, 1970; Hoke, 1990; Dekant, 2009) (Fig. 4). ZFT 

and AFT ages range from 160 to 60 Ma (Dunkl et al., 2003; 

Wölfler et al., 2008), and from 30 to 19 Ma, respectively (Stau-

fenberg, 1987; Wölfler et al., 2008) (Fig. 4). During the Oligo-

cene the Kreuzeck Block was intruded by tonalitic, alkaline 

basaltic and shoshonitic dykes (Exner, 1976; Deutsch, 1984; 

Müller et al., 1992).

The difference in ZFT and AFT ages to the north and south 

of the Ragga-Teuchl fault has been interpreted to reflect nor-

mal faulting related to the lateral extrusion of the Eastern Alps 

during early- and middle Miocene times (Wölfler et al., 2008).

__________________________________
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Figure 3: Simplified tectonic map of the study area and neighbouring units (modified after Linner 

et al., 2008 and Schuster et al., 2013).___________________________________________________

Figure 4: Geo- and thermochronological data in the study area. The data are from: (1) this study; 

(2) Dekant (2009); (3) Brewer and Jenkins (1969); (4) Brewer (1970); (5) Hoke (1990); (6) Dunkl et al. 

(2003); (7) Wölfler et al. (2008); (8) Staufenberg (1987); (9) Lambert (1970). For closure temperature 

ranges we adopted the following values: K/Ar muscovite: ~430-375°C (Hames and Bowring, 1994; 

Kirschner et al., 1996); Ar/Ar muscovite: ~450-350°C (Hames and Bowring, 1994; Kirschner et al., 

1996; Lips et al., 1996; Harrison et al., 2009); Ar/Ar biotite: 400-300°C (Grove and Harrison, 1996; 

Villa, 1998); zircon fission track: 300-200°C (Wagner and van den haute, 1992); apatite fission track: 

120-60°C (Green et al., 1986)._________________________________________________________

Brittle deformation along the Ragga-

Teuchl fault during the Oligocene to 

early Miocene is documented by 

Rb/Sr and K/Ar ages on cataclasites 

ranging from 32 to 30 and 23 to 22 

Ma, respectively (Kralik et al., 1987).

Available geochronological data 

and the overall fault pattern suggest 

that the Ragga-Teuchl fault is struc-

turally and temporally linked with the 

exhumation of the Tauern Window 

and associated faulting activity that 

affected the study area and the who-

le Eastern Alps during the Miocene 

lateral extrusion (e.g. Frisch et al., 

2000; Scharf et al., 2013; Schmid et 

al., 2013; Wölfler et al., 2008, 2011, 

2012). The fault zones that are in 

temporal and structural connection 

with the Ragga-Teuchl fault (Figs. 2, 

3) are briefly described as follows: 

The Katschberg and Brenner fault 

zones border the Tauern Window in 

the east and west, respectively (Fig. 

2), and are largely responsible for 

the exhumation of the Penninic foot-

wall units during early to late Mioce-

ne times (e.g. Selverstone, 1988; 

Genser and Neubauer, 1989; Fügen-

schuh et al., 1997; Scharf et al., 2013; 

Schmid et al., 2013). The southern 

boundary of the Eastern Alps is re-

presented by the Periadriatic fault 

system, separating the Austroalpine 

and Southalpine units (Fig. 2). Geo-

chronological and structural data 

show that the Periadriatic fault sys-

tem was dominated by strike slip de-

formation since the Oligocene (Mül-

ler et al., 2000; Mancktelow et al., 

2001) and changed to transpressive 

deformation during the late Miocene 

until present (e.g. Polinski and Eis-

bacher, 1992; Fodor et al., 1998; 

Caparoli et al., 2013). The Mölltal 

fault forms a subvertical, structural 

lineament with a length of ~100 km 

(Fig. 3) that was interpreted to act 

as a stretching fault (Kurz and Neu-

bauer, 1996; Scharf et al., 2013) and 

was mainly active in the early- to mid-

dle Miocene (Wölfler et al., 2008; 

Scharf et al., 2013). The Defereg-

gen-Antholz-Vals fault system (DAV) 

represents an ~80 km long SSW-
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Figure 5: Thin section photographs illustrating microstructures of various rocks, from which micas were separated for Ar/Ar dating. For sample 

locations see Fig. 5 and Table 1. All photographs taken under crossed polarisers. Fsp: feldspar; Ms: muscovite; Qu: quartz; Gt: garnet; St: staurolite._

striking fault (Fig. 2) which changed its kinematics from sinis-

tral to dextral deformation in the Oligocene at ~30 Ma (Manck-

telow et al., 2001). The Zwischenbergen-Wöllatratten fault off-

sets the DAV and the Ragga-Teuchl fault by ~20 km (Scharf et 

al., 2013), so that the Ragga-Teuchl fault represents the eas-

tern continuation of the DAV fault (Scharf et al., 2013) (Fig. 2).

The samples collected for this study are mainly ortho- and 

paragneisses, pegmatites and schists that mainly contain 

quartz, muscovite, biotite and garnet. For Ar/Ar analysis we 

collected six samples that are briefly described as follows. 

Three samples were collected from the Polinik Block. Sample 

K80 was obtained from a pegmatitic vein in an eclogitic host 

rock. Sample K64 is a graphitic garnet micaschist. The micro-

texture exhibits idiomorphic garnets with pressure shadows fil-

led with quartz, muscovite, biotite and chlorite (Fig. 5a). Sample 

K352 is a coarse-grained micaschist rich in staurolite. The 

garnets are idiomorphic and the strain shadows are mainly 

filled with quartz that shows straight grain boundaries, partly

3. Methods

3.1 Sample description and sampling strategy

forming equilibrium fabrics (Fig. 5b). The large staurolite crys-

tals are mainly hypidiomorphic and crosscut the foliation (Fig. 

5b). Two samples from the Kreuzeck Block (K396, K397) are 

from a large porphyric orthogneiss. The microtextures show 

large feldspar porphyroclasts that are surrounded by quartz, 

muscovite and sometimes biotite (Figs. 5c, d). Sample K398 

from the Kreuzeck Block is an orthogneiss composed of pla-

gioclase- and feldspar porphyroclasts that are embedded in 

a matrix of quartz, muscovite and biotite (Fig. 5d). The matrix 

is rich in apatite and sphene. In places the biotites are retro-

gressed to chlorite.

For ZFT analysis we collected three samples from the Kreuz-

eck Block. These are two micaschists (samples K116, K143) 

and a tonalite body (sample K235) from the westernmost part 

of the study area (Fig. 6a) that has already been described by 

Exner (1956). In order to determine a detailed final cooling 

history of the study area, we focused our sampling campaign 

for AFT analysis on steep elevation profiles (Fig. 6). We col-

lected bedrock samples from three profiles (one in the Polinik 

Block and two in the Kreuzeck Block; Fig 6a, profiles A, B, C), 

from elevations between 770 and 2390 m.a.s.l., with a vertical 

distance of 200 to 300 m between the sampled sites.

__________________________________

_______
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Figure 6: (a) Digital elevation model of the study area with sample locations and sample codes and the location of the age-elevation profiles  A, 

B and C that have been used for thermal history models that are shown in Figures 7 and 8. KF: Katschberg normal fault; PB: Polinik Block; KB: Kreuz-

eck Block. (b) New- and published thermochronological data (Wölfler et al., 2008); for space reasons the AFT data of Staufenberg (1987) and ZFT 

data of Dunkl et al. (2003) are not shown in this figure but are incorporated in Fig. 4.____________________________________________________

3.2 Analytical procedure

For Ar/Ar analysis pure mica concentrates were prepared 

from mica-rich fractions by using a Wilfley shaking table. After 

further enrichment on the Frantz magnetic separator, another 

step of purification was performed on a dry shaking table. The 

micas were then grinded in an agate mortar and ultrasonica-

ted in acetone bath to remove inclusions and impurities. Final 

purification to >99 % was achieved by handpicking under a bi-

nocular. Pure mica concentrates were then loaded into glass 

tubes and irradiated together with sample monitors of known 

isotopic compositions in the nuclear reactor at the Nuclear Re-

search Institute Řež in Prague. The irradiation J-values were
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Figure 7: Muscovite Ar/Ar dating results.

determined with international standards including muscovite 

Bern 4M (Burghele, 1987) and Fish Canyon sanidine (Renne 

et al., 1994; Jourdan and Renne, 2007). Ar/Ar-dating was con-

ducted in the Central European Ar-Laboratory (CEAL) at the 

Geological Institute of the Slovak Academy of Science, Bratis-

lava. Isotopic ages were calculated using decay constants re-

ported by Steiger and Jäger (1977) and using the following 
40 36correction factors for interfering isotopes: Ar/ Arair = 299± 

36 37 39 37 40 391%; Ca/ Ca = 0.00027; Ca/ Ca = 0.00039; K/ K = 0.0254. 

Argon was released using the stepwise heating technique us-

ing a resistance furnace and analyzed on a VG-5400 Fisons 

noble-gas mass spectrometer following the analytical proce-

dure of Frimmel and Frank (1998).

Apatite and zircon grains were separated using conventio-

nal magnetic and heavy liquid separation techniques. Unfortu-

nately not all rocks contained enough zircon and/or apatites 

for fission track analysis. We used the external detector me-

thod (Gleadow, 1981) with low-uranium muscovite sheets 

(Goodfellow mica™) and the zeta calibration approach (Hur-

ford and Green, 1983). Zircon mounts were etched in a KOH-

NaOH eutectic melt at 215 °C (Gleadow et al., 1976) for 24 to 

140 hours, whereby this time variation is dependent on the 

uranium content, age and the grade of metamictization of the 

individual grains. Apatite mounts were etched in 5.5 Mol HNO  3

for 20 sec at 21 °C (Donelick et al., 1999). Fission track ages 

were calculated with the program TRACKKEY version 4.1 

(Dunkl, 2002). For the assessment of annealing kinetics in

apatites we used Dpar values (mean diameters of etch figures

______________________

on prismatic surfaces of apatite parallel to the crystallographic 

c-axis) (Burtner et al., 1994). Horizontal confined track lengths 

were corrected for c-axis orientation (Donelick et al., 1999).

Modelling of the low temperature thermal history based on 

AFT data was carried out using two different modelling pro-

grams - the conventionally used HeFTy (Ketcham, 2005) and 

the recently introduced QtQt software (Gallagher et al., 2005, 

2009; Stephenson et al., 2006; Gallagher, 2012). For thermal 

history modelling with the HeFTy software (Ketcham, 2005) 

we used the annealing algorithm of Ketcham et al. (1999) and 

Dpar values as kinetic parameters. The QtQt sotware allows 

determining the thermal history of multiple samples and uses 

a Baysian transdimensional Markov chain inversion scheme 

(Gallagher et al., 2005, 2009; Gallagher, 2012). The main ad-

vantage of the QtQt modelling approach is that it incorporates 

all data from vertical age-elevation profiles. The thermal his-

tories for all samples between the top and the bottom of the 

profiles are determined by using the elevation/depth differen-

ces. The offset parameters are the temperature difference 

between the highest and lowest elevation samples over time. 

The thermal history for samples between these two is obtai-

ned by linear interpolation, based on the difference in eleva-

tion. The temperature offset is not the paleo-geothermal gra-

dient, however the temperature offset divided by the elevation 

difference between the uppermost and lowermost sample of 

the profile does provide information on the paleo-geothermal

gradient. For more details about this modelling approach the 

reader is referred to the following publications: Stephenson et

__



al., (2006); Hopcroft et al., (2007); Charvin et al., 2009; Gallagher et al., 2005, 2009; Gal-

lagher, 2012).

In total, we report six Ar/Ar, three ZFT and twenty-six AFT ages. The sample locations 

and results are shown in Fig. 6 and in Tables 1, 2 and 3.

From four samples plateau ages have been determined (Figs 7a-d). In general, the 

samples from the Polinik Block revealed Cretaceous ages between ~87 and ~82 Ma. In 

contrast, two samples from the Kreuzeck Block display Permian ages of ~295 and ~288 

Ma and one sample revealed a Cretaceous age of ~85 Ma (Fig. 7d).

Sample K80 from the Polinik Block yielded a well-defined plateau age of 87.2±1.2 Ma 

(Fig. 7a, Table 1). The last two temperature steps give slightly elevated ages of 94 and 

89 Ma. These may be the relics of incompletely reset diffusion domains.

Sample K64 is a graphitic garnet micaschist from the Polinik Block with a plateau age of 

81.6±2.2 Ma (Fig. 7b).  The age step pattern shows signs of weak impregnation of excess 

argon, but this may be an effect of the larger errors at the lowermost temperature steps.

The Polinik Block sample K352 yielded a plateau age of 81.8±1.2 Ma. However, an age 

of 115 Ma is obtained for the highest temperature step (Fig. 7c) that indicates domains 

with excess argon or relics of older generation of muscovites.

The orthogneiss sample K398 from the Kreuzeck Block comes from the south of the 

Ragga-Teuchl fault and shows a well-defined plateau age of 84.7±1.0 Ma (Fig. 7d). Pro-

bably due to diffusive loss of argon in the outermost domains of the grains, the lowest 

temperature steps show slightly younger ages.

Samples K396 and K397 from the Kreuzeck Block are discussed together as they were 

taken from the same large porphyric orthogneiss body and show similarities in their tex-

ture and Ar-release patterns. Both samples exhibit a saddle shape rather than a plateau 

type pattern. The samples gave total gas ages of 288.1±2.9 and 295.8±2.8 Ma for K396 

and K397, respectively (Figs. 7e, f). At the highest temperature step apparent ages of 

both samples are equal within error (312.9±1.1 Ma for sample K396 and 313.8±1.0 Ma 

for sample K397) (Figs. 7e, f).

All ZFT and AFT samples pass the chi-square test at a 95 % confidence interval and

4. Results

4.1 Ar/Ar dating results

4.1 Zircon- and apatite fission track results

__________________________

________________

_____________

______________________

__________________________________

_______________________________________________
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Figure 8: (a) Age-elevation relationships of all AFT samples in the study area. Black circles: 

samples from the Polinik Block; white circles: samples from the Kreuzeck Block. (b) Age-elevation 

relationship of samples from profile A in the Polinik Block. (c) and (d) Age-elevation relationship of 

samples from profile B and C from the Kreuzeck Block. The samples from these profiles have been 

used for transdimensional thermal modelling that is shown in Fig. 8.__________________________
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Table 2: 5 2 Summary of zircon fission track data. n: number of dated apatite crystals; ρ /ρ : spontaneous/induced track densities (x10  tracks/cm ); s i

5 2Ns/Ni: number of counted spontaneous/induced tracks; ρd: dosimeter track density (x10  tracks/cm ); Nd: number of tracks counted on dosimeter; 
2 2P(χ ): probability obtaining chi-square (χ ) value for n degrees of freedom (where n is number of crystals minus 1); age ± 1σ is central age ± 1 standard 

error (Galbraith and Laslett, 1993); ages were calculated using zeta calibration method (Hurford and Green, 1983); glass dosimeter CN-2. Latitude and 

longitude coordinates are given in the WGS 84 datum._____________________________________________________________________________

Table 3: 5 2 Summary of apatite fission track data. n: number of dated apatite crystals; ρ /ρ : spontaneous/induced track density (x10  tracks/cm ); s i

5 2 2Ns/Ni: number of counted spontaneous/induced tracks; ρd: dosimeter track density (x10  tracks/cm ); Nd: number of tracks counted on dosimeter; P(χ ): 
2probability obtaining chi-square value (χ ) for n degree of freedom (where n is number of crystals minus 1); MTL: mean track length; SD: standard de-

viation of track length distribution; N(L): number of horizontal confined tracks measured; Dpar: average etch pit diameter of fission tracks; age ± 1σ is 

central age ± 1 standard error (Galbraith and Laslett, 1993); ages were calculated using zeta calibration method (Hurford and Green, 1983); glass do-

simeter CN-5. Latitude and longitude coordinates are given in the WGS 84 datum.______________________________________________________

are reported as central ages with 1 sigma errors (Tables 2, 3). 

Two micaschist samples from the Kreuzeck Block yielded ZFT 

ages of 67.3±3.9 and 67.8±3.8 Ma (samples K116 and K143). 

The youngest ZFT age of 18.5±1.0 Ma was determined from 

the tonalite body from the westernmost part of the study area 

(Fig. 6b).

In general, the Kreuzeck Block shows older AFT ages (29.1± 

2.5 to 16.41.4 Ma) than the Polinik Block (21.3±2.3 to 8.7±0.6 

Ma) and the samples follow an age-elevation trend (Table 3, 

Figs. 6b, 8). Track length distributions were measured in ten 

samples (Table 3). The mean confined track lengths (MTL) vary 

between 13.84±1.3 µm (sample K296) and 13.14±1.14 µm 

(sample K426). All samples are characterized by long MTL 

(>13 µm) and a unimodal distribution suggesting fast cooling 

through the partial annealing zone. Dpar values range from 

1.9 to 1.8 µm (Table 3), pointing to a homogeneous chemi-

cal composition of the samples, typical for a fluorine-apatite 

composition.

For the tonalite sample K235 from the Kreuzeck Block we 

performed the inverse thermal history modelling with the HeFTy

4.3 Thermal history modelling
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software (Ketcham, 2005). Based on zircon U-Pb data, De-

kant (2009) calculated a crystallization age of 31 Ma for this 

sample. As a starting point we assumed a temperature range 

of 750-950 °C for magma emplacement as inferred from zir-

con saturation in a silica melt and numerical modelling (Bel-

lieni et al., 1984; Steenken et al., 2002). The HeFTy model 

suggests fast exhumation at a rate of 60°C/Ma since the in-

trusion of the tonalite at ~31 Ma to ~13 Ma, followed by ther-

mal stagnation (Fig. 9a).

Transdimensional thermal history modelling with the QtQt 

software was performed on three steep elevation profiles that 

comprises the AFT ages with 1 sigma errors, the mean track 

length distributions and Dpar values. Profile A is from the Po-

linik Block and includes samples K296, K385, K386 and K387 

(Fig. 6a). Profiles B (samples K214, K224, K 227, K232, K414, 

K423, K424, K425) and C (samples K170, K179, K413, K415, 

K426) are from the Kreuzeck Block (Fig. 6a). Rapid cooling 

through the apatite partial annealing zone (120 to 60°C, Green 

et al., 1986) for the northern profile in the Polinik Block occur-

red between ~17 and ~14 Ma (Fig. 9b). In contrast, the samp-

les from the Kreuzeck Block cooled through the apatite partial 

annealing zone already during Oligocene and early Miocene 

times approximately between ~30 and ~22 Ma (Figs. 9c, d). 

The summary plots of the track length data for selected samp-

les display the observed data and the predictions from the ther-

mal history models (Figs. 9e-g) that are in good agreement. 

The temperature offset between the upper- and lowermost 

samples of the profiles are shown in Figs. 9 h–j. It should be 

noted that the temperature offset is not the paleo-geothermal 

gradient. However, with the knowledge of the vertical distance 

between the upper and the lower sample the paleo-geothermal 

gradient can be straightforwardly calculated. We emphasize 

that the calculated paleo-geothermal gradient covers only the 

time period of the oldest and youngest age of the profile. The 

paleo-geothermal gradient for the Polinik profile (Profile A) is 

46 °C/km for the time between ~19 and ~15 Ma, and 47 and 

43°C/km for the profiles B and C, respectively, in the two Kreuz-

eck Block profiles for the time between ~25 and ~16 Ma. The 

details for the calculations are shown in Table 4.

Muscovite Ar/Ar plateau ages from the Polinik Block and for 

one sample of the Kreuzeck Block range between ~87 and 

~82 Ma (Fig. 7a-d). The microtextures show mainly well-pre-

served high-pressure assemblages like unaltered garnets, no 

or little chloritisation and idiomorphic staurolite (Fig. 5). There-

______________________________

__________

5. Interpretation and discussion

fore we interpret the detected time interval as the time of post-

metamorphic cooling that followed thermal maximum of the 

high pressure Eo-Alpine metamorphism with a peak at ~90 Ma 

(e.g. Thöni et al., 2006). We interpret the Cretaceous cooling 

as a result of overall extension that has been observed in the 

Austroalpine nappe stack (e.g. Froitzheim et al., 1997, 2012; 

Fügenschuh et al., 2000; Liu et al., 2001; Kurz and Fritz, 2003). 

The exhumation of the Eo-Alpine high pressure wedge is due 

to thrusting in the lower part and normal faulting in the upper 

part of the Austroalpine nappe pile (Sölva et al., 2005; Schus-

ter et al., 2004, 2013) but still in a compressional environment. 

This process was associated with the formation of the Gosau 

sedimentary basins between Late Cretaceous and early Eo-

cene (Wagreich, 1995; Froitzheim et al., 1994; Neubauer et 

al., 1995, 2000) that were deposited in a transpressional re-

gime (Ortner, 2007).

Two samples from the Kreuzeck Block display Permian total 

gas Ar/Ar ages (Fig. 7e, f). At the highest temperature steps 

the data display late Carboniferous ages that might represent 

the oldest domains which have retained Variscan argon age 

signature. The data are therefore considered as geologically 

meaningful, as they are consistent with late Carboniferous 

cooling ages reported for the Eastern Alps in general (e.g. 

Handler et al., 1997; Neubauer and Handler, 2000) and in par-

ticular for the study area (Hoke, 1990 and references therein). 

We suggest that the rather complex argon release spectra 

from the Kreuzeck Block are possibly related to both, late 

Variscan collapse in the late Carboniferous and to post-Vari-

scan extension and cooling during the Permian (Schuster and 

Stüwe, 2008). The cooling in the Polinik Block occurred subse-

quent to peak metamorphic conditions during Eo-Alpine meta-

morphism. This extensional phase is associated with the oro-

genic collapse in the Late Cretaceous.

The Cretaceous ZFT ages (~68 and ~67 Ma) from the Kreuz-

eck Block are interpreted as recording cooling after the Eo-

Alpine metamorphic peak. Our new data are consistent with 

other ages reported from large parts of the Austroalpine units 

that cooled through the ZFT partial annealing zone (300 to 

200°C, Wagner and Van den Haute, 1992) before Cenozoic 

times (e.g. Dunkl et al., 2003; Fügenschuh et al., 1997; Hejl, 

1997, 1998; Kurz et al., 2011; Luth and Willingshofer, 2008; 

Wölfler et al., 2008, 2010, 2012). The Miocene ZFT age of 

18.5±1.0 Ma from the tonalitic intrusion in the western part of 

the study area (Fig. 6) is thus far the youngest ZFT age ever 

reported from this part of the Eastern Alps. Both, the Miocene 

ZFT- and AFT (15.5±0.8 Ma) ages from the tonalite as well as

_________________________________

__________________

Table 4: Parameters used for the calculation of the paleo-geothermal gradients._____________________________________________________
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Figure 9: (a) Thermal history inverse model for the tonalite sample K235 using the software HeFTy (Ketcham, 2005). Input parameters: central 

AFT age with 1σ error; track length distributions, Dpar values as kinetic parameters. For starting conditions (black box) we choose a temperature 

range between 750 and 950 °C as magma emplacement temperature (Watson and Harrison, 1983; Bellieni et al., 1984; Steenken et al., 2002). The 

red boxes are the temperature range for ZFT ages (ZFT: 18.5±1.0 Ma) and the temperature range for AFT ages (AFT: 15.5±0.8 Ma). The blue box 

defines the final cooling to present-day temperatures of ~10 °C. Green paths: acceptable fits; red paths: good fits; black line: best fit solution. (a-d) 

The expected (weighted mean) thermal history (black line) and its probability distribution for transdimensional modelling of all samples from the Pro-

files A to C. The red lines are the 95 % credible intervals for the thermal history. The credible interval is the Bayesian form of the confidence interval 

(e.g. Bernardo and Smith, 2000; Gallagher, 2012). The scale on the right indicates the probability. (e-g) Model predictions for the thermal history of 

distinct samples from the profiles. The grey lines are the 95 % credible intervals for the predicted values. FTA is the fission track age, MTL is the mean 

track length in micrometers (O: observed, P: predicted). (h-j) The paleo-offset temperature as a function of probability (between the upper- and lower-

most sample in a profile). Note: the paleo-offset temperature is not the paleo-geothermal gradient._________________________________________

the modelled cooling history (Fig. 9a) is in agreement with 

cooling histories of intrusive rocks along the Periadriatic fault, 

and collectively suggests that fast and continuous cooling at a 

rate of ~60°C/Ma occurred immediately after the Oligocene em-

placement and lasted until the middle Miocene (Fig. 9a) (e.g. 

Fügenschuh et al., 1997; Stöckhert et al., 1999; Viola et al., 

2001; Steenken et al., 2002; Most, 2003; Pomella et al., 2010).

The youngest AFT ages of 21.3±2.3 to 8.7±0.6 Ma are found 

in the Polinik Block (Fig. 6b, Table 3). These ages are similar 

to those from the eastern Tauern Window (e.g. Wölfler et al., 

2008, 2012) and document contemporaneous cooling of the 

Penninic- and Austroalpine units during the middle Miocene.

The oldest AFT ages are from the Kreuzeck Block and range 

between 29.1±2.5 and 18.5±1.6 Ma (Fig. 6b). This indicates
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that cooling through the apatite partial annealing zone took 

place earlier in the Kreuzeck Block than in the northern Poli-

nik Block (Staufenberg, 1987; Wölfler et al., 2008, 2012). The 

AFT ages show a positive trend in the age-elevation correla-

tion in the whole study area (Fig. 8a), and in particular for the 

three selected profiles (Figs. 8b-d). To better constrain the 

cooling history we used these age elevation correlations for 

multiple thermal history modelling. The thermal history model 

of the Polinik Block suggests rapid cooling in the middle Mio-

cene (Fig. 9a), which coincides with the timing of the lateral 

extrusion (Frisch et al., 2000). In contrast, the Kreuzeck Block 

had already cooled to near surface temperatures in the Oligo-

cene and early Miocene (Figs. 9c, d). The same cooling pat-

tern applies to the western part of the DAV, where ZFT ages 

record pre-Miocene cooling to the south and Miocene cooling 

to the north (Stöckhert et al., 1999; Steenken et al., 2002; Most, 

2003; Luth and Willingshofer, 2008). If the Ragga-Teuchl fault 

is considered the eastern continuation of the DAV (Scharf et al., 

2013; Schmid et al., 2013), it is likely that the crystalline blocks 

to the north and south of it exhibit similar thermal histories.

The onset of rapid cooling and exhumation in the Polinik Block 

occurred at ~20 Ma (Fig. 9b) (Wölfler et al., 2008). Roughly be-

tween 23 and 21 Ma the Southalpine intender started to indent 

in the Eastern Alps (Scharf et al., 2013; Schmid et al., 2013). 

Contemporaneously, the Southalpine lithosphere started to 

subduct beneath the Eastern Alps (Lippitsch et al., 2003; Hor-

váth et al., 2006). The combination of these processes led to 

lateral extrusion in the Eastern Alps and doming of Penninic 

units in the Tauern Window (Ratschbacher et al., 1991b; Scharf 

et al., 2013). Therefore, the initiation of lateral extrusion at ~ 20 

Ma is probably more related to the indentation of the southal-

pine intender, rather than subduction roll back beneath the Car-

patians (Horváth et al., 2006). However, the influence of the 

retreating subduction zone increased at ~18 Ma and leads to 

the formation of intramontane basins to the east of the Tauern 

Window and enhanced fault activity (Wölfler et al., 2011).

To summarize, we suggest that the Ragga-Teuchl fault plays 

a key role during lateral extrusion. It marks the border between 

footwall and hanging wall units (Polinik- and Kreuzeck Blocks, 

respectively) that experienced different cooling histories be-

tween the Oligocene and middle Miocene.

By determining the offset temperature between the highest 

and lowest sample in the vertical profiles (Figs. 9h-j) we were 

able to calculate the paleo-geothermal gradient for the speci-

fic time frames. Our calculations reveal relatively high values 

(47 to 43 °C/km) from late Oligocene to middle Miocene times. 

We interpret the high values as a result of elevated heat flow 

in the vicinity of the Oligocene plutons (Sachsenhofer, 2001) 

and the rapid exhumation of hot Penninic rocks during the 

middle Miocene (e.g. Fügenschuh, 1995; Genser et al., 1996; 

Dunkl et al., 1998; Rantitsch, 2000; Sachsenhofer, 2001). In-

deed, the occurrence of Oligocene dykes and veins (Deutsch, 

1984; Müller et al., 1992) and the occurrence of plutonic rocks 

(Exner, 1956, 1976) may be responsible for an elevated heat 

flow in the study area.

__

____

________________

________________________________

6. Conclusions
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