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Abstract—Variable digital filters (VDFs) are useful for various
signal processing and communication applications where the fre-
quency characteristics, such as fractional delays and cutoff fre-
quencies, can be varied online. In this paper, we investigate the de-
sign of VDFs with discrete coefficients as a means of achieving low
complexity and efficient hardware implementation. The filter coef-
ficients are expressed as the sum of signed power-of-two terms with
arestriction on the total number of power-of-two for the filter coef-
ficients. An efficient design procedure is proposed that includes an
improved method for handling the quantization of the VDF coeffi-
cients for both the min—-max and the least-square criteria leading
to an optimum quantized solution. For the least-square criterion,
areduced search region around the optimum quantized solution is
further constructed and the branch and bound method in conjunc-
tion with an efficient branch cutting scheme is presented to search
for an optimum solution in this reduced region.

Index Terms—Finite-impulse response (FIR) variable digital
filter (VDF), least-square criteria, min-max, optimization, signed
power-of-two (SPT) coefficients.

1. INTRODUCTION

controllable spectral characteristics such as variable
cutoff frequency, adjustable passband width and controllable
fractional delay [1]-[3]. These spectral characteristics can
be varied online. VDFs have many applications in different
areas of signal processing and communications. Examples
include arbitrary sample rate changers, digital synchronizers
and other applications involving online tuning of frequency
characteristics [4], [5]. Fractional delay digital filters have
various important applications including timing adjustment for
digital receivers [4].
In this paper, we investigate the design of the Farrow-based
VDF [6] with coefficients expressed as the sum of signed
power-of-two (SPT) terms. These coefficients are attractive

VARIABLE digital filters (VDFs) are digital filters with
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for hardware implementation since multiplications can be effi-
ciently implemented by using shifters or adders. This will result
in low cost, low complexity and ease in implementations for the
filters as well as high speed and high yield. These advantages
have been explored and consequently incorporated in various
cases [7]-[11].

In [12]-[14], the design of VDF with the sum of SPT co-
efficients and the min—max criterion is investigated. Here, we
examine a general design of the VDF with both the min—max
and the least-square criteria in conjunction with a restriction on
the total number of power-of-two of the filter coefficients. This
restriction allows the control on the total SPT for the filter co-
efficients, thereby determining the complexity of the filter im-
plementation. In other words, the design optimizes the number
of power-of-two required to be distributed for each VDF coeffi-
cients, given a restriction on the total number of SPT terms for
the filter [15].

In [12] and [13], a random search algorithm is employed for
the design of the VDF with the sum of SPT coefficients and the
min—max criterion. Here, we develop efficient design schemes
for the VDFs with the sum of SPT coefficients for both the
min—max and the least-square criteria. For the min—max crite-
rion, a two-step procedure is proposed which includes a quan-
tization scheme to efficiently distribute the SPT to the filter co-
efficients, leading to an optimum quantized solution. For the
least-square criterion, a three-step procedure is developed which
incorporates a global branch and bound algorithm to search fur-
ther in a reduced region around the optimum quantized solution.
The reason of incorporating another step for this criterion in-
stead of the min—max criterion is that the bounds for the branch
and bound algorithm can be obtained with low complexity es-
pecially when the VDFs are designed with controllable charac-
teristics. The performance of the scheme is compared with the
solution obtained in [13].

The paper is organized as follows. The VDF and the
desired frequency response are given in Section II. The VDF
with coefficients expressed as the sum of SPT terms is
presented in Section III. A two-step scheme which includes the
quantization procedure and optimization with respect to the
scaling factor for both the min—max and the least-square criteria
is developed in Section IV. For the least-square criterion, the
designed problem is further formulated as a mixed integer
programming problem in Section V. A reduced search region
is constructed and the branch and bound algorithm with an
efficient branch cutting scheme is presented for solving the
problem. Design examples solved by using the proposed
procedure are shown in Section VI. Finally, conclusions are
given in Section VII.

1549-8328/$25.00 © 2007 IEEE
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Fig. 1. VDF-Farrow structure.

II. VDF AND THE DESIRED FREQUENCY RESPONSE

In a VDF design problem, the objective is to achieve a design
response Hy(z,6) that is a function of a control or tuning pa-
rameter § defined to lie in some range A = [6min, Omax]. FOr
example, the tuning parameter may control the cutoff frequency
of the filter or the delay of the filter in some specified bandwidth.
The formulation will also take into consideration of meeting ad-
ditional requirements of the filter in the frequency response.

In this paper, we are concerned with the design of VDF shown
in Fig. 1. The structure includes L FIR sub-filters H;(z), 0 <
! < L — 1. The tuning parameter ¢ is the input to L — 1 multi-
pliers. The structure referred as the Farrow structure is described
in [6]. The frequency response of a sub-filter H,(z) with the cor-
responding impulse response h;(n) is given as

N—-1
H(z) =Y lu(n)z™" =hi ¢(2) ey

where by = [(0),....,m(N — 1]¥ and ¢(z) =
[20,...,2=(™=D]T The notation []T denotes the trans-
pose of a vector and N is the length of the FIR sub-filters.

The frequency response of the VDF can be expressed as

L—-1
H(z,6) = > Hi(z)'
=0

N-1L-1

= Z Z hi(n)d'z="

n=0 1=0
Let h denote the N L x 1 vector of the VDF coefficients

VéeA. 2)

T
h = [hg7.,.7h€71] (3)
and s(w,6) be an NLx1 complex vector s(w,d) =
[¢T (e7°)8°, ..., ¢T (e7°)6T 1T, Then, the frequency re-

sponse of the VDF in (2) can be rewritten in the following
form:

H(e,6) = h"s(w, ). “)

The desired frequency response for the VDF is specified by

jw . efjw‘r(é), w € 'P((S)
Ha(e™,8) = {o, w € 8(6)
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where P(8) and S(6) are, respectively, the passband and stop-
band regions, whilst 7(4) is the desired group delay. In general,
the VDFs are designed with: (1) variable fractional delay; or (2)
variable cutoff frequency. For a variable fractional delay filter,
the desired group delay 7(6) is tunable via ¢ and is given by

7(6) = 7a + B-(6) )

where (3;(6) is a continuous function with respect to é. For a
variable cutoff frequency filter, the passband and stopband re-
gions, P($) and S(§), vary depending on é.

III. VDF WITH COEFFICIENTS EXPRESSED AS THE
SuM OF SPT TERMS

In this section, we express the VDF coefficients in terms of
the sum of SPT. Each sum of SPT is restricted by a maximum
number of allowable bits, denoted by a positive integer B, and
is given as ), _; mx2~"* where ¢ > 0 represents the number
of SPT terms, 7, is a binary value and vy, is an integer in the set
{1,..., B}. Thus, the range for each sum of SPT is in [-1 +
2781 —27B]. For the filter to satisfy a general specification, a
common scaling factor v is introduced and incorporated to scale
the sum of SPT filter coefficients. Thus, the coefficient vector h
of the VDF includes a sum of SPT coefficient vector, denoted
by g, and a scaling factor «y. In other words, the VDF coefficient
vector can be given as

h=1g
where each coefficient g;(n) of g can be expressed as

Cin

gi(n) = Z Mo, 2”70k
k=1

Gm>0 YO<I<KL—-1,0<n<N-1 (6)

with mn . € {—1,1} and vy nr € {1,...,B}. Note that
¢, = 0 implies that g;(n) = 0. Since B is the total number
of allowable bits for each coefficient, we have

can < B V1 and n.

The frequency response of the VDF then becomes

H (e, 8) = ~vG (e, 6) )

where G(e7%, 6) is the frequency response of the discrete filter
corresponding to the coefficient vector g.

The total number of SPT terms for the VDF coefficients is
restricted to a positive number M according to

Z Z cin < M. ®)
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For convenience of notation, we now define a region G of g
where each coefficient is discrete and can be represented as the
sum of SPT terms with a restriction of B bits

Cl,n
G = {g tqi(n) = Zm,n,k2_w'"’k
k=1

VO<I<L-1,0<n<N-1,

an<DB, mnk €{-1,1} and Vin,k e{1,... ,B}} )]

In the following, a two-step quantization scheme for the least-
square and min—max criteria will be developed.

IV. QUANTIZATION PROCEDURE AND OPTIMIZATION WITH
RESPECT TO THE SCALING FACTOR

From [12], [13], the least-square infinite precision solution
is employed to obtain the quantized solution with total number
of SPT terms restricted to a positive number M. We now for-
mulate the least-square criterion for the design of VDF with
infinite precision coefficients. The integral squared deviation
between the frequency response H (e/*, §) and the desired re-
sponse H,(e?“, 6) over § € A is given by

E(h) = /A /Q ) WA, 8) — Ha(eh, o) dds

(10)
where () is the range of the frequency w, Q(6) = P(6) U
S(6), and W (w, 6) is the weighting function depending on w
and §. Since the coefficient vector h of the VDF is real, the cost
function (10) can be reduced to the following quadratic function
[17]

EMm)=h"Qh+p'h+a (1)

where

Q=" {/ W(w,8)s(w,d)s (w, 6)dwd6}
JAJQ8)

p=— _ 2 {/ W2(w, 6)s(w, 6) ,}‘(ej“,é)dwdé}
JAJQ(8)

and Q is a constant scalar given by
Ja Jos) W2(w, 8)|Ha(e?*, 6)|>dwds  with
() and R{-} denoting, respectively, the Hermitian transpose
and the real component of a complex vector.

The infinite precision solution hy g to the least-squares design
problem which minimizes the quadratic cost function (11) is
given as

(6 =

1
hys = —EQ_IP- (12)

For a scaling factor 7, it follows from (7) that the integral
squared error for the VDF with discrete coefficients g can be
given as

Elg, )= /A [ W@ ANG(E,8) ~ Ha(e o) s
(13)
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Another approach to obtain the discrete filters is to scale the
desired frequency response as in [11]. This scaling factor is then
required to be incorporated into the cost function. For a least-
square criterion, this incorporation results in a nonconvex cost
function for the infinite precision solution filter and hence the
minimum for the cost function is not readily obtained. Hence,
in this paper, we focus on the case in (13).

From (11), (13) is reduced to

E(g,7) =~"g" Qg+ vp g + . (14)

The infinite precision, that is unconstrained solution to the least-
square problem

min +’g" Qg +p’g+
geRNL
is given by

hrs
grsy=—,7#0 (15)
Y
where hyg is given in (12).
As the first step, we develop a quantization procedure for the
VDF coefficients given a scaling factor ~.

A. Quantization Procedure for a Fixed Scaling Factor vy

We extend the quantization method proposed in [15] to the
coefficients of the VDF structure. For a given ~, the quantized
solution g, that lies in the region defined by (9) and satisfies
the constraint (8) can be obtained by quantizing the coefficients
of the infinite precision solution gz s ~ to B bits. The procedure
for obtaining this quantized solution is given as follows.

1) Procedure 4.1: Obtain quantized solution g, with max-
imum B bits from the infinite precision solution gz.s - given an
upper bound M on the total number of SPT terms.

Step 1) Initialize g, = Oppr,1, where Onz 1 denotes an
NLx 1 zero vector
gyi(n) =0 VO<I<L—-—1and0<n<N-—-1. (16)

Set an intermediate vector &, as §, = gr.s,4, and k = 1.
Step 2) Search for the indexes [1,0 < I3 < L — 1, and nq
0 < mp < N — 1, corresponding to the coefficient
in g with the maximum absolute value

max max

0<I<L—1 0<n<N-1 195.1(n)]- a7

|9, (na) =

We have the following two cases.

* If the absolute value of g (n1) is less than
2=B=1 then from (17) the absolute values of all
the coefficients in g, are less than 2=B-1 Go to
Step 4.

* Otherwise, |g-1, (n1)] > 27871, The k' SPT
term will be allocated to the (I1,71)*" position of
g~. We now search for a SPT term that is closest
to g1, (n1). Denote by B the set of all possible
SPT terms

B={27t... 278 97t _27B}

’

(18)
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Search for a number ( € B that is closest to
g"/all (nl)

Gy, (n1) = ¢] = glé% G0, (n1) — il (19)

and go to Step 3.

Step 3) Update the quantized vector g, by adding the SPT
term ¢ to the coefficient g ;, (n1) at the position
| = ll and n = 1

Gvy,1i(n1) = gy, (n1) + €. (20)

Furthermore, update the vector g, by subtracting ¢
from g1, (n1)

g"/:ll (711) = !A]“/,ll (nl) - <. 21

If the number of iterations k is less than the number
of allowable SPT terms in the filter coefficients, & <
M, then set k = k + 1 and return to Step 2. Other-
wise, go to Step 4.
Stop the procedure. The vector g, is the quantized
solution corresponding to the scaling factor -y, satis-
fying the SPT constraint. O
Since each VDF coefficient is not restricted to a fixed number
of SPT terms, there is a greater degree of freedom in distributing
the SPT terms to the appropriate filter coefficients given a fixed
allowable number of SPT.

Step 4)

B. Search Region for ~y

We now establish the search region for +. Since (g, y) and
(—g~, —) result in filters with the same integral squared error
and the same total number of SPT terms, we only need to search
for + in (0, 00).

For a fixed number of bits B, let us define vy, as the value
of the scaling factor in which the maximum absolute value of
gLs,y, €quals to 1 — 2-B

|hrs.i(n)]

. 22
ogrlngaL—1 0<n<N-1 1 —2-B (22)

Yq =

To restrict the range of -y, note the following.

e If v > 4~, then the maximum absolute value of all the
coefficients of gr.s - is shown in (23) at the bottom of the
page. Thus, the number of bits required is smaller than
B -1
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leading to a large quantization error. In view of (23) and (24),
we restrict the range of v according to

Vg <7 <4y (25)

C. Optimization With Respect to -y

For a fixed value v, the quantized coefficient vector g, can
be obtained by using Procedure 4.1. The aim of this step is to
obtain an optimum scaling factor v € T where I' = [ry,, 4]
for which the quantized coefficient vector has a minimum error
with respect to either the least-square or the min—max criteria.

 For the least-square criterion: Given a value -y, the integral

squared error for the quantized solution can be expressed
as

E(gy,7) = 7’87 Qgy + 1" gy + . (26)

The problem becomes to minimize this error with respect

to 7. This problem can be formulated as the following one

dimensional optimization problem with respect to ~y

min £(g,,7) = min1’g7Qg, +yp g, +a.  (27)

y€er YER gl

» For the min—max criterion: Given a value -y, the min—max
error for the quantized solution can be given as

F(gy,7) = W(w,8)g"s(w, 8) — Ha(e’*, 8)|.
(28)
Consequently, the search for v can be formulated as the

following one dimensional optimization problem:

max
SEA,WweQ(S)

in F’
min (8v:7)

= minmax max W(w,6)|yvg"s(w,8) — Hy(e?,6)|.

(29)
~ET SEA weQ(s)

The optimization problems (27) and (29) are nonlinear and
noncontinuous optimization problems. Thus, an exhaustive
search is carried out on a dense grid of v over the range I in
(25). Denote by g7 the quantized solution corresponds to the
minimum cost with the corresponding scaling factor v*. This
solution is referred to as the optimum scaling factor quantized
(OSQ) solution. For the least-square criterion, we have

o If v < ~, then we have E(g),v") = méF E(gy,7). (30)
v
max |grs~| = max max [hrsim)] >1-278 Similarly for the mi luti h
LS,y 0<I<L—1 0<n<N—1 ~ . 1mmuilarly for the minmax solution, we have
(24
Hence, overflow occurs. When « is much smaller than -, Fle* ~*) — min F a1
this will result in a large truncation for the quantized solution, (85,7%) = ner (8y,7)- GD
h n h n
max |gL5,v| = max max M < max max | Ls’l( )| 7 ol =922 _9-2-B (23)
0<I<L—1 0<n<N-1 v 0<ISL—1 0<n<N-1 4 jnax max esin

0<I<L—1 0<n<N-1
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V. DESIGN BY JOINT OPTIMIZATION FOR THE
LEAST-SQUARE CRITERION

In this section, we aim to improve further the OSQ solution
(g;, v*) for the least-square criterion by solving the joint op-
timization problem of g and - with the search region reduced
to around the neighborhood of the OSQ solution (g%, v*). That
is, we do not obtain g from hyg by a quantization process but
rather determine the optimal discrete g jointly with the optimal
v. The branch and bound algorithm is employed to search for
a global solution of the joint optimization problem in the re-
duced region. The reason that we concentrate on the least-square
criterion instead of the min—max criterion is that the bound for
the branch and bound algorithm can be obtained with low com-
plexity.

Denote by v and u the lower and upper limits for the discrete
coefficients g in the reduced region. Forall 0 <! < L — 1 and
0 <n < N — 1, the values of v;(n) and w;(n) of v and u can
be obtained from g7 ;(n) as follows

u(n) = g5:(n) =& and w(n) = g3,(n) +&  (32)
where € is a positive integer. Consequently, the reduced region
g" of g containing g7 can be defined as

g" ={gla(n) €N, vi(n) < gu(n) < w(n)
VO<I<L-1,0<n<N-1} (33)
where A denotes the set of integers in [—oco, 00].
The optimization problem in the reduced search region can
be expressed as

min__+’g"Qg+p g +a
geGT,vER
L—-1N-1

Z Z Cl,nSM-

=0 n=0

(34)

The basic idea of the branch and bound algorithm can be
found in e.g., [16]. The problem is divided into a number of
sub-problems, referred to as branches or nodes, by restricting a
subset of coefficients in g to finite precisions. For each node,
a lower bound cost of all possible discrete solutions in the
branch is then obtained by formulating and solving a relaxation
problem. This lower bound can then be used to decide whether
to immediately cut the node or to allow further branching
division. Note that while the idea of the branch and bound
algorithm is generally known, the process of formulating the
relaxation problem and the procedure of cutting/dividing the
branches are problem dependent.

In the following, we present an efficient scheme to obtain a
lower bound for each branch. For a branch, denote by r the set
of coefficient in g which is discrete. For simplicity, assume that
r is the first k coefficients. The coefficient h of the VDF can be
expressed as

h=qyg=[n" s (35)
where s is the remainder N L — k + 1 infinite precision coeffi-

cients.
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1) Procedure 5.1: Obtain a lower bound for a branch with
the discrete coefficient vector r.
Step 1) Express the coefficient vector h in (35) in terms of
the unknown parameters v and s as follows:

h=R[y s7]" (36)

where Risa NL x NL — k + 1 matrix given by

r ONZ_k NL—
R — NL—k,NL—k

= 37
Onr—k,1 INL—k,NL-F 7

and Inz—x nr—k IS an identity matrix.
Step 2) Formulate the relaxation optimization problem with
variables v and s according to the following:
b sTIRTQR[y s"I"+p Ry 7] +a
(38)
Step 3) Obtain the infinite precision solution for (38) as

min
~ER,SERNL—k

[y s7]7 = —%pTR (RTQR) ™. (39)
The lower bound for the branch is the cost of the re-
laxation problem in (38) corresponding to the coeffi-
cient vector (39). Thus, the lower bound calculation
a for each branch is relatively simple as the solution
can be expressed in (39). O

In the following, the lower bound for branch obtained from
Procedure 5.1 will be used to decide whether to cut the branch
or to allow further branching division. Let us denote the best
discrete solution obtained up to this branch as (g, ) with the
corresponding cost E(g",~°).
2) Procedure 5.2: Decision on the branch or node.
Step 1) Obtain the optimum solution (39) of the relaxation
problem for the branch by using Procedure 5.1.
Step 2) Obtain the quantized solution [r~,s.] from [yr,s]
with the scaling factor v and the constraint (34) on
the total number of SPT terms using Procedure 4.1.
Step 3) If E([ry,s,],7) < E(g°,~°), then update (g°,~°)
and F(g°,~°).
Step 4) The current node will be removed if:
i) The current relaxation cost is greater than or
equal to E(g°,~°); or
ii) The total number of SPT terms in the first k&
discrete coefficients r., is greater than the total
number of SPT terms in r plus a positive in-
teger (3, which specifies the maximum devi-
ation for the number of SPT terms [10]. The
node can also be removed if it has a certain
length and is closed to the discrete solution g°
according to the Euclidean distance measure.
Step 5) If Step 4 has not been satisfied then branching is to
continue from the current branch. O
In the following, we will describe the branch and bound al-

gorithm incorporating Procedures (5.1) and (5.2).

3) Procedure 5.3: Branch and bound algorithm for opti-

mizing (34) in the reduced region G".
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TABLE 1
VDF WITH MIN-MAX CRITERION. MIN-MAX ERROR [DB]
Infinite precision | Optimized filter 0OSQ solution 0OSQ solution with Infinite precision
with least with 78 SPT with M = 70 and M = 70 and quantized with min-max
square criterion given in [13] infinite precision y v = total 75 SPT criterion
-42.53 -43.27 -45.85 -45.95 -47.19
Step 1) Initialize the minimum solution and the cost to be TABLE II

the same as those of the OSQ solution, (g°,7°) =
(85.7"). E(g°,7°) = E(g},7") and set k = 1.

Step2) Let! = [(k—1)/N]andn =k —1—IN, where
|| denotes the floor operator. Then, the coefficient
gi1(n) the k" coefficient in the vector g. Set G¥ as
the set of all possible values of g;(n) in the reduced
region

G" = {gu(n) €N, wi(n) < gi(n) < w(n)}.

Since the branching is taken place according to the
order of coefficients in g, all the coefficients before
g1(n) are fixed and discrete.

Choose a discrete value g € G* and set g;(n) = g.

Reduce the discrete set G¥ = G* \ g and go to Step

4,

Denote by r = [go(0),...,g1(n)]T the set of fixed

discrete coefficients for the current branch. We have

the following two cases.

e If K = NL then optimize the scaling factor ~y
corresponding to r that minimizes E(r,v) and
update (g°,7°) only if E(r,vy) < E(g°7°).
Choose the largest index k; < k such that GF1 #
(). If k1 exists then set k = k1 and return to Step
3, otherwise go to Step 5.

e If k < NL then apply Procedure 5.2 to the cur-
rent branch with the discrete coefficient r. There
are two cases: (1) If the current node is removed
then choose the largest index k1 < k such that
Gk £ . If ki exists then set K = k; and
return to Step 3, otherwise go to Step 5; (2) If
branching is to continue from the current node
then set K = k + 1 and go to Step 2.

Stop the algorithm. The minimum solution

is (g°,~°) with the corresponding cost value

E(g°,~°). O

VI. DESIGN EXAMPLES

(40)

Step 3)

Step 4)

Step 5)

1) Example 1: Consider the design of a discrete VDF with in-
finite precision coefficients provided in [6] and min—max crite-
rion [12], [13]. The bandwidth under consideration for the filter
is from O to 0.6w. The length of each FIR filters used in the
Farrow structure is N = 8 and L = 4. The number of bits is
b = 10 and the range for § is chosen as A = [—0.5,0.5].

Table I shows the maximum error deviation 20 log,, F'(h)
[dB] for: (i) the infinite precision solution with least-square cri-
terion, (ii) the optimized sum of SPT coefficient solution given
in [13], (iii) the OSQ solution with M = 70 and infinite pre-
cision <y obtained according to Section IV with 2000 points,
(iv) the OSQ solution with quantized -y, and (v) the infinite

VDF WITH MIN-MAX CRITERION. MIN-
MAX ERROR [DB] FOR OSQ SOLUTIONS

vy M=60 | M=65| M=70 | M =80
Infinite precision -44.69 -45.41 -45.85 -46.68
Quantized -44.20 -45.11 -45.95 -46.34

precision with min—max criterion. Note that the filter (see [12,
Table I]) has 78 total SPT instead of just 48 as reported (see [12,
Table IT]). The OSQ solution with a total of 75 SPT after taking
into account 5 SPT representation for « has approximately the
same min—max error as the OSQ with infinite precision . From
the table, the OSQ with quantized ~ has approximately 2.7 dB
improvement in the min—max error when compared with the op-
timized solution in [12] while having approximately the same
the sum of SPT.

Table II shows the min—max error for the OSQ solution with
infinite precision v and quantized v when M increases from 60
to 80. The OSQ solution with quantized v has approximately
the same min—max error as the filter with infinite precision -y.
For M = 60, the filter obtained has less min—max error than
the solution in [12] with fewer total SPT. Also, the min—-max
error reduces when M increases. In particular, when M = 80
the min—max error for the OSQ solution approaches the error
for infinite precision min—max solution given in Table I. Note
that these finite precision filters can also be implemented using
the approach in [18].

2) Example 2: Consider the design of a bandpass VDF with
variable delay and least-square criterion. The range for the
tuning parameter is chosen different from Example 1,e.g., A =
[0, 1]. The desired group delay of the filter changes linearly ac-
cording to 6 as 7(6) = 74 + 26 with 74 = 9. The desired
passband and stopband regions P(6) and S(6) do not depend
on the tuning parameter 6, P(¢) = [0.4m,0.67], and S(6) =
[0,0.257] U [0.757, 7]. The VDF has 4 sub-filters, L = 4, with
the length of each sub-filter chosen as N = 21. The integer &
for the reduced search region in (32) is chosen as ¢ = 2 while
the value of 3 in Procedure 5.3 chosen as § = 2 if K < LN/2
and 1 otherwise. The number of allowable bits is B = 9.

Table IIT shows the performance criterion 10log,, F(g,~)
[dB] for different values of M. The first column of the table
shows the value of M, obtained based on the total number of
VDF coefficients NL as M = Z{uN L} where p is a real pos-
itive number increasing from 1.0 to 2.1 and Z{-} denotes the
integer closest to real value inside {-}. The second column in
Table III shows the initial quantized solution obtained by using
Procedure 4.1 with the scaling factor v = ~,. The third column
presents the OSQ solution, obtained by searching for the best
value of vy over a dense grid of the search interval given by (25).
The integral squared error is significantly reduced over the ini-
tial scaling factor v = -y, by searching for an optimum scaling
factor. The fourth column in the table shows the integral squared
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TABLE III
VDF WITH VARIABLE DELAY AND LEAST-SQUARE CRITERION. INTEGRAL SQUARE ERROR[DB] FOR VDF WITH A RESTRICTION M ON THE TOTAL OF SPT
TERMS AND THE INFINITE PRECISION SOLUTION.

Constraint M Initial Optimum scaling | Optimum solution Infinite
on the total quantized quantized in the reduced precision
SPT solution solution region solution
Z{1ONL} =84 -10.99 -18.00 -23.31
Z{1.3NL} = 109 -15.24 -22.36 -23.07
I{1.6 NL} =134 -22.38 -27.49 -29.04 -32.49
Z{1.9NL} = 160 -27.50 -30.52 -30.95
Z{2.INL} =176 -29.71 -31.24 -31.80
TABLE IV

VDF WITH VARIABLE CUTOFF FREQUENCY AND LEAST-SQUARE CRITERION. INTEGRAL SQUARE ERROR [DB] FOR VDF WITH A
RESTRICTION M ON THE TOTAL OF SPT TERMS AND THE INFINITE PRECISION SOLUTION.

Constraint M Initial Optimum scaling | Optimum solution Infinite
on the total quantized quantized in the reduced precision
SPT solution solution region solution
Z{1.0NL} =84 -18.11 -24.51 -24.51
Z{1.3NL} =109 -26.65 -27.81 -30.01
Z{I.6 NL} =134 -28.21 -33.13 -33.36 -35.04
Z{19NL} =160 -31.21 -34.55 -34.80
20 ‘ T T
o 13 T T T
—-=-5=05| |

- - -5=t

Frequency response [dB]

[

a1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o/t

! 1 1 1 1 1 |

Fig.2. VDF with variable delay and least-square criterion. Frequency response
for the infinite precision solution VDF with least-square criterion.

error obtained by using the branch and bound algorithm, pre-
sented in Procedure 5.3, over a reduced region containing g7 .
The error reduces further by jointly optimized the discrete co-
efficients and the scaling factor. Finally, the last column shows
the integral squared error for the infinite precision solution with
the least-square criterion. For v = 2.1 N L, the integral square
error for the optimum discrete solution is within from 0.7 dB
the infinite precision solution. Thus, the discrete VDF can be
implemented efficiently with an average of 2.1 multipliers per
coefficients. The operations of the filter coefficients in this case
are reduced to simple additions and subtractions.

Figs. 2 and 3 show the magnitude responses and the group de-
lays of the VDFs with infinite precision coefficients. The values
of § are taken as 0, 0.5 and 1. The group delays for the three
bandpass filters vary around the desired group delays, that is
around 9 for § = 0 and 11 for 6 = 1. The magnitude responses
of the three filters, on the other hand, have approximately the
same passband and stopband cutoff frequencies.

Group delay
>

7 I I L 1 | L 1 L 1
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
o/t

Fig. 3. VDF with variable delay and least-square criterion. Group delay for the
infinite precision solution VDF with least-square criterion.

Figs.4 and 5 plot the magnitude responses and the group delays
for the optimum discrete VDFs with the sum of SPT coefficients
andanupperbound M = Z{2.1N L} onthe total number of SPT.
The filters have the desired group delay increases around 9 to 11
with approximately the same passband and stopband regions. In
addition, the discrete VDFs have approximately the same perfor-
mance as the infinite precision filters.

3) Example 3: Consider the design of a bandpass VDF with
variable cutoff frequencies and least-square criterion. The pass-
band and stopband regions P(é) and S(4) change depending on
the tuning parameter 6 as P(6) = [0.37 +0.276, 0.57 + 0.276]
and S(6) = [0,0.157 + 0.276] U [0.657 + 0.276, 7] with the
range for § chosen the same as in Example 2. The desired group
delay for the filters is constant for all 6, 7(§) = 10. Here, the in-
teger ¢ for the reduced search region in (32) is chosen as £ = 1.

Table IV shows the integral squared error for the initial quan-
tized solution, OSQ solution and the optimum solution in the
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TABLE V
VDF WITH VARIABLE CUTOFF FREQUENCY AND LEAST-SQUARE CRITERION. THE NUMBER OF
BRANCHES OR NODES VISITED FOR THE BRANCH AND BOUND ALGORITHM
Constraint M The number of branches or nodes visited The total number of nodes
by the branch and bound algorithm for the discrete opt. problem
Z{10ONL} =384 90
Z{1.3NL} =109 18279
Z{I.6NL} = 134 1194 384 & 1.197 x 1040
Z{1.9NL} = 160 416293
20 : : . T : 20 : : . T T
—— =0 ——5=0
c— = 3205 | S— = 3=05] |

- = —5=1

Frequency response [dB]

_80 L I L I L I ! I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o/t

Fig. 4. VDF with variable delay and least-square criterion. Frequency response
for the optimum discrete VDF with ¢ = 2.1 or M = 176.
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Fig. 5. VDF with variable delay and least-square criterion. Group delay for the
optimum discrete VDF with p = 2.1 or M = 176.

reduced region. The error is reduced by searching for the op-
timum scaling factor. It is then reduced further by searching for
the optimum solution in the reduced region.

Table V shows the total number of branches or nodes visited
by the branch and bound algorithm. The third column shows
the total number of possible nodes for the discrete optimization
problem. Since ¢ = 1, the number of possible nodes for the
problem becomes 3VL = 3% ~ 1.197 x 10%°. It can be seen
from the table that the number of visited nodes is smallest for

- = —5=1

Frequency response [dB]
&
o

I L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
o/t

Fig. 6. VDF with variable cutoff frequency and least-square criterion. Fre-
quency response for the infinite precision solution VDF with least-square crite-
rion.
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Frequency response [dB]
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Fig. 7. VDF with variable cutoff frequency and least-square criterion. Fre-
quency response for the near-optimum discrete VDF with ¢ = 1.9 or M =
160.

1 = 1.0 or 1.6 since the OQS in those cases are relatively closed
to the minimum solution in the reduced region. Moreover the
number of nodes visited by the algorithm is much smaller than
the total number possible nodes for the discrete optimization
problem.

Fig. 6 shows the frequency responses of the infinite preci-
sion VDFs with ¢ taken as 0, 0.5 and 1. The frequency re-
sponses of the optimum discrete VDFs with the upper bound
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M = Z{1.9NL} on the total number of SPT terms is given in
Fig. 7. This filter can be implemented with an average of only
1.9 SPT per filter coefficient with approximately the same per-
formance as the infinite precision solution.

VII. CONCLUSION

In this paper, a two-step and a three-step schemes are pro-
posed for the design of VDFs with the sum of SPT coefficients
and minmax or least-square criterion. For the least-square
criterion, the effective application of the branch and bound
method for solving this complex nonlinear integer program-
ming problem has been possible through the introduction a
reduced search area and an efficient cutting scheme. Design
example shows a significant improvement by using the pro-
posed method over merely quantizing the infinite precision
solution. In addition, the numerical examples presented show
that the finite precision filters can obtained approximately the
same performance as the infinite precision solution with a small
number of additions and subtractions.
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