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Abstract

In this paper, we consider the portfolio optimization problem for a pension fund consisting of various government
and corporate bonds. The aim of the problem is to maximize the fund’s cash position at the end of the time horizon,
while allowing for the possibility of bond defaults. We model this problem as a stochastic discrete-time optimal
control problem with a chance constraint that ensures all future outgoing commitments can be met with sufficiently
high probability. We then introduce a corresponding deterministic formulation that is a conservative approximation
of the original stochastic optimal control problem. This approximate problem can be solved using gradient-based
optimization techniques. We conclude the paper with a simulation study.
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1. Introduction

The aim of portfolio optimization is to divide an in-
vestor’s capital judiciously among various financial se-
curities (stocks, bonds, derivatives, etc.) to achieve an
optimal balance between risk and return. First intro-
duced by Markowitz in the early 1950s, portfolio opti-
mization is now a mature research field with consider-
able practical impact.

Markowitz’s original mean-variance model
(Markowitz (1959)) is still used as the basis for
many new portfolio optimization techniques (see,
for example, Smith (1967); Fama (1970); Pliska
(1997); Çlikyurt and Öekici (2007)). In this model,
the return of each security is viewed as a random
variable characterized by two fundamental quantities:
the mean (which measures the expected return of the
security) and the variance (which measures the risk
associated with the security). The goal is to maximize
the total expected return subject to a given risk level,
or alternatively, minimize the total risk subject to a
target rate of return. This risk-return tradeoff is the
common theme underpinning all portfolio optimization
problems.
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1.1. Literature review
The literature on portfolio optimization is dominated

by extensions to Markowitz’s original one-period mod-
el. Early papers discuss the problem of maximizing the
expected utility of the investor over a single- or multi-
period investment horizon, with various forms for the
utility function (Mossin (1968); Merton (1969)). Re-
cent papers consider more complex problem settings,
but still rely on the assumption that there are no out-
flows from the investment portfolio (Zhang et al. (2009);
Van Weert et al. (2010); Çanakoǧlu and Öekici (2012)).
This assumption is not suitable for retirees and other in-
come investors, who withdraw (rather than reinvest) the
returns from their portfolios.

In addition to portfolio outflows, the possibility of as-
set defaults must also be considered when designing an
optimal investment portfolio. Modeling the default risk
on debt securities, as well as the pricing and manage-
ment of such securities, is discussed in various paper-
s (Jarrow and Turnbull (1995); Duffie and Singleton
(2003); Lando (2004)). The importance of consider-
ing the credit risk of debt securities was highlighted by
the 2007-2008 global financial crisis.

Investment portfolios are designed to satisfy various
constraints, which are typically defined by the invest-
ment strategy. One of the most common constraints is
an upper bound on the variance (Schweizer (1995)).
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More recently, the problem of controlling bankruptcy
risk in portfolio optimization has attracted consider-
able attention in the literature (Zhu et al. (2004); Chen
and Song (2012)). For example, Zhu et al. (2004)
propose a model through which an optimal investmen-
t policy can be devised to achieve not only an optimal
mean-variance tradeoff, but also a low risk of portfolio
bankruptcy. In a related study, Chen and Song (2012)
model investment returns using a Markov stochastic
framework, and show how to control the bankruptcy risk
by restricting the portfolio loss to be less than or equal
to a specified percentage of the total wealth at the start
of each time period.

1.2. Contribution of this paper
The purpose of this paper is to introduce a new model

for portfolio optimization based on stochastic discrete-
time optimal control. Instead of maximizing the termi-
nal wealth of an individual investor, we focus on maxi-
mizing the terminal cash balance of a conservative pen-
sion fund consisting entirely of government and corpo-
rate bonds. The pension fund experiences regular s-
tochastic outflows as retirees leave the workforce and
draw on their pensions. Thus, to ensure that the fund
can meet all obligations with sufficiently high probabil-
ity, we impose an all-time chance constraint that forces
the fund’s cash balance to be above a minimum thresh-
old at all times. In this respect, our paper follows a dif-
ferent approach to others in the literature, by imposing a
chance constraint, rather than a bound on the variance.

The bonds in the portfolio are assumed to be held for
the entire time horizon. Thus, all investment decision-
s are made at the start of the time horizon and active
management of the fund is not required. A key feature
of our model is that it explicitly considers the risk of
bond defaults, which facilitates comparisons between
the default risk and no-default risk optimal strategies.
Pension funds are designed to operate over a long time
horizon, and thus it is essential to consider the risk of
bond defaults—indeed, a bond issuer who is reputable
now may no longer be reputable in 10 years time.

This paper is organized as follows. In Section 2, we
model the portfolio optimization problem by a stochas-
tic discrete-time optimal control problem. In Section 3,
we convert this stochastic problem into an approximate
deterministic problem, whose feasible region is con-
tained within the feasible region of the original stochas-
tic problem. In Section 4, we develop a gradient-based
optimization algorithm for solving the deterministic op-
timal control problem introduced in Section 3. Section 5
includes simulation results showing that our optimized
portfolio outperforms the naive 1/N portfolio strategy,

which is considered to be the benchmark standard in the
finance literature (Demiguel et al. (2009a,b)). Finally,
we conclude the paper in Section 6.

2. Problem statement

We consider the portfolio optimization problem for a
pension fund consisting of N bonds and operating over
a time horizon of T periods. Let x(t) denote the fund’s
cash level at the end of period t. Furthermore, let αi(t)
denote the promised payment of a type-i bond at the end
of period t, and let ψ(t) denote the total pension pay-
ments to be made during period t. We assume that ψ(t)
is a random variable of unknown distribution, but with
known mean and covariance information. The mean
of ψ(t) is denoted by µ(t) and the covariance of ψ(t ′)
and ψ(t ′′) is denoted by σ(t ′, t ′′).

The bond allocation in the pension fund must be de-
signed to mitigate the risk of bond defaults. If a bond
default occurs, then the pension fund will lose all future
coupons as well as the redemption value of the bond.
Let pi(t) be the probability that type-i bonds default
during period t. Furthermore, let yi(t) be a binary s-
tate variable, where yi(t) = 1 if type-i bonds do not de-
fault before the end of period t, and yi(t) = 0 otherwise.
Then yi(t) can be described by the following discrete-
time difference equation:

yi(t +1) = Si(t +1)yi(t), t = 0, . . . ,T −1, (1)

where Si(t) follows a Bernoulli distribution with param-
eter 1− pi(t), and

yi(0) = 1. (2)

We assume throughout this section that for any choice
of t ′ and t ′′, Si(t ′) and ψ(t ′′) are independent (i.e.,
the occurrence of bond defaults is independent of the
amount of outgoing pensions). Note, however, that the
Bernoulli random variables Si(t) and S j(t), which gov-
ern whether type-i and type- j bonds default during pe-
riod t, are not necessarily independent: the bonds could
default for the same reason (e.g., a common bond issuer
going bankrupt). Define

πi j(t) = Cov{Si(t),S j(t)}, i, j = 1, . . . ,N. (3)

We assume that these covariances are known.
The fund’s cash level is governed by the following
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difference equation:

x(t +1) = x(t)+
N

∑
i=1

Kui

γi
αi(t +1)yi(t +1)−ψ(t +1),

t = 0, . . . ,T −1, (4)

where N is the number of bond types, K is the initial
capital available for investment, γi is the price of a type-
i bond at the beginning of the time horizon, and ui is the
fraction of initial capital allocated to type-i bonds.

The allocation fractions ui, i = 1, . . . ,N, are decision
variables to be selected optimally. To ensure sufficient
diversification of the portfolio, we impose the following
box constraints:

0 ≤ ui ≤ umax
i , i = 1, . . . ,N, (5)

where umax
i is the maximum fraction of initial capital

that can be invested in type-i bonds.
Furthermore, since the pension fund cannot invest

more than the initial capital K,

N

∑
i=1

ui ≤ 1. (6)

Let U denote the set of all vectors u = [u1, . . . ,uN ]
⊤ ∈

RN satisfying (5) and (6). Any vector u ∈U is called an
admissible allocation vector.

The initial cash level in the pension fund is

x(0) = K
[

1−
N

∑
i=1

ui

]
. (7)

Constraint (6) ensures that x(0) is always non-negative.
Substituting (1) into (4) yields

x(t +1) = x(t)+
N

∑
i=1

Kui

γi
αi(t +1)Si(t +1)yi(t)

−ψ(t +1), t = 0, . . . ,T −1. (8)

Equations (1), (2), (7), and (8) constitute a system of
discrete-time difference equations.

The pension fund’s finances must be sufficiently ro-
bust to cope with unexpected increases in outgoing
commitments (e.g., if more retirees than normal leave
the workforce during a given period). Thus, we require
that the fund’s cash level be greater than or equal to a
pre-set minimum level at all times. This condition can
be modelled by the following chance constraint:

Pr
{

x(t)≥ xmin
}
≥ q, t = 0, . . . ,T, (9)

where xmin is the pre-set minimum cash balance and q
is a given probability level.

The objective is to choose a bond allocation that max-
imizes the total expected wealth at the end of the plan-
ning horizon. Here, total wealth is defined as the fund’s
final cash level plus the redemption values of all bonds
in the fund (except for those bonds that have defaulted).
Thus, the objective function is

g(u) = E

{
x(T )+

N

∑
i=1

Kui

γi
ciyi(T )

}
= E {x(T )}+

N

∑
i=1

Kui

γi
ciE {yi(T )}, (10)

where ci is the redemption price of a type-i bond and E
denotes the mathematical expectation. Here, we assume
that all bonds in the portfolio are redeemed at the end of
the planning horizon.

The portfolio optimization problem, which takes de-
fault risk into account, may now be stated formally as
follows.

Problem P. Given the discrete-time stochastic system
(1) and (8) with initial conditions (2) and (7), find an
admissible allocation vector u ∈U such that the objec-
tive function (10) is maximized subject to constraint (9).

Problem P is a discrete-time stochastic optimal con-
trol problem subject to the chance constraint (9). The
solution of this problem gives the optimal allocation of
each bond type in the pension fund. Because of its s-
tochastic nature, Problem P cannot be solved using con-
ventional optimal control techniques. Thus, in the next
section, we will convert Problem P into a deterministic
problem.

3. Deterministic approximation

The dynamic equations in Problem P involve two
types of random variables: Si(t), Bernoulli random vari-
ables, and ψ(t), random variables of unknown distribu-
tion. Thus, it is impossible to derive an explicit form for
the probability distribution of x(t) in Problem P, which
makes the chance constraint (9) extremely challenging.
We will therefore introduce an approximation for this
constraint. We begin with the following result.

Lemma 3.1. For each i = 1, . . . ,N and t =
1, . . . ,T , yi(t) is a Bernoulli random variable with
parameter ∏t

k=1(1− pi(k)).

Proof. The result can be proved easily by induction
on t.
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From Lemma 3.1, we obtain

E {yi(t)}=
t

∏
k=1

(1− pi(k)), (11)

Var{yi(t)}=
t

∏
k=1

(1− pi(k))
[
1−

t

∏
k=1

(1− pi(k))
]
.

(12)

Now, define a new set of parameters oi j(t), i =
1, . . . ,N, j = 1, . . . ,N, as follows:

oi j(t) = Cov{yi(t),y j(t)}, t = 0, . . . ,T.

The values of oi j(t) can be computed according to the
following result.

Lemma 3.2. For each i = 1, . . . ,N, and j =
1, . . . ,N, oi j(t) satisfies the discrete-time system

oi j(t +1)
= [πi j(t +1)+(1− pi(t +1))(1− p j(t +1)) ]oi j(t)

+πi j(t +1)
t

∏
k=1

(1− pi(k))
t

∏
k=1

(1− p j(k)),

t = 0, . . . ,T −1, (13)

with initial condition

oi j(0) = 0, (14)

where πi j(t) is as defined in (3).

Proof. Using (1), we have

oi j(t +1) = Cov{yi(t +1), y j(t +1)}
= E {Si(t +1)yi(t)S j(t +1)y j(t)}
−E {Si(t +1)yi(t)}E {S j+1(t)y j(t)}.

Since yi(t) and y j(t) are independent of Si(t + 1)

and S j(t +1), it follows that

oi j(t +1)
= E {Si(t +1)S j(t +1)}E {yi(t)y j(t)}
−E {Si(t +1)}E {S j(t +1)}E {yi(t)}E {y j(t)}

=
[

Cov{Si(t +1),S j(t +1)}
+E {Si(t +1)}E {S j(t +1)}

]
·
[

Cov{yi(t),y j(t)}+E {yi(t)}E {y j(t)}
]

−E {Si(t +1)}E {S j(t +1)}E {yi(t)}E {y j(t)}
=
[

Cov{Si(t +1),S j(t +1)}
+E {Si(t +1)}E {S j(t +1)}

]
oi j(t)

+Cov{Si(t +1),S j(t +1)}E {yi(t)}E {y j(t)}.

Using (3) and Lemma 3.1, this equation can be simpli-
fied to yield

oi j(t +1)
= [πi j(t +1)+(1− pi(t +1))(1− p j(t +1)) ]oi j(t)

+πi j(t +1)
t

∏
k=1

(1− pi(k))
t

∏
k=1

(1− p j(k)),

which completes the proof of (13).
For (14), since yi(0) = y j(0) = 1, we have

oi j(0) = Cov{yi(0), y j(0)}= 0,

as required.

Note that oi j(t) is independent of the allocation vector
and can be computed immediately from equations (13)
and (14).

Now, since the pension payment in period t + 1 may
depend on the pension payments in previous period-
s, x(t) and ψ(t+1) are not necessarily independent. The
covariance of x(t) and ψ(t + 1) is given in the next re-
sult.

Lemma 3.3. For each t = 0, . . . ,T − 1, the covariance
of x(t) and ψ(t +1) is given by

Cov{x(t), ψ(t +1)}=−
t

∑
k=1

σ(k, t +1).

Proof. It is easy to prove by induction that

x(t) = x(0)+
t

∑
k=1

N

∑
i=1

Kui

γi
αi(k)yi(k)−

t

∑
k=1

ψ(k),

t = 0, . . . ,T .
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Hence, since yi(k) and ψ(t +1) are independent,

Cov{x(t), ψ(t +1)}=−
t

∑
k=1

σ(k, t +1),

t = 0, . . . ,T −1.

This completes the proof.

Let z(t) = E {x(t)} and v(t) = Var{x(t)}. Further-
more, let wi(t), i = 1, . . . ,N, be new state variables de-
fined as follows:

wi(t) = Cov{x(t),yi(t +1)}, t = 0, . . . ,T −1.

Taking the expectation of (4) and then applying (11)
yields

z(t +1) = E
{

x(t +1)
}

= E

{
x(t)+

N

∑
i=1

Kui

γi
αi(t +1)yi(t +1)−ψ(t +1)

}
= z(t)+

N

∑
i=1

Kui

γi

t+1

∏
k=1

(1− pi(k))αi(t +1)−µ(t +1),

t = 0, . . . ,T −1. (15)

The initial condition for z(t) is:

z(0) = E

{
K
[

1−
N

∑
i=1

ui

]}
= K

[
1−

N

∑
i=1

ui

]
. (16)

Recall that yi(t+1) and ψ(t+1) are independent. Thus,
it follows from Lemmas 3.2 and 3.3 that the variance
of x(t) can be calculated as given below:

v(t +1) = Var
{

x(t +1)
}

= Var
{

x(t)+
N

∑
i=1

Kui

γi
αi(t +1)yi(t +1)−ψ(t +1)

}
= v(t)+

N

∑
i=1

N

∑
j=1

K2uiu j

γiγ j
αi(t +1)α j(t +1)oi j(t +1)

+2
N

∑
i=1

Kui

γi
αi(t +1)wi(t)

+2
t

∑
k=1

σ(k, t +1)+σ(t +1, t +1),

t = 0, . . . ,T −1, (17)

with initial condition

v(0) = Var
{

K
[

1−
N

∑
i=1

ui

]}
= 0. (18)

Equations (15)-(18) define the dynamic equations for
the state variables z(t) and v(t). We now derive the dy-
namic equations for wi(t).

Theorem 3.1. For each i = 1, . . . ,N, the new state vari-
able wi(t) satisfies the discrete-time system

wi(t +1) = (1− pi(t +2))wi(t)

+
N

∑
j=1

Ku j

γ j
(1− pi(t +2))α j(t +1)oi j(t +1),

t = 0, . . . ,T −1, (19)

with initial condition

wi(0) = 0. (20)

Proof. First, using (4),

wi(t +1) = Cov{x(t +1), yi(t +2)}

= Cov
{

x(t)+
N

∑
j=1

Ku j

γ j
α j(t +1)y j(t +1)

−ψ(t +1), yi(t +2)
}
.

Since ψ(t + 1) is independent of yi(t + 2),
and x(t), yi(t + 1) and y j(t + 1) are independent
of Si(t +2), it follows from (1) that

wi(t +1)
= Cov{x(t), yi(t +2)}

+
N

∑
j=1

Ku j

γ j
α j(t +1)Cov{y j(t +1), yi(t +2)}

= Cov{x(t), Si(t +2)yi(t +1)}+
N

∑
j=1

Ku j

γ j

·α j(t +1)Cov{y j(t +1), Si(t +2)yi(t +1)}

= E
{

Si(t +2)
}

Cov{x(t), yi(t +1)}+
N

∑
j=1

Ku j

γ j

·α j(t +1)E
{

Si(t +2)
}

Cov{y j(t +1), yi(t +1)}
= (1− pi(t +2))wi(t)

+
N

∑
j=1

Ku j

γ j
(1− pi(t +2))α j(t +1)oi j(t +1),

which proves (19). For (20), since x(0) is a constant, we
immediately have

wi(0) = Cov{x(0), yi(1)}= 0,
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as required.

Now, consider the constraint

z(t)−
(

qv(t)
1−q

) 1
2
≥ xmin, t = 0, . . . ,T, (21)

where q and xmin are as defined in the chance constraint
(9). Let

ωq =

(
q

1−q

) 1
2
.

Now, by the one-sided Chebyshev’s inequality (Grim-
mett and Stirzaker (2001)), it follows that if (21) is sat-
isfied, then

Pr
{

x(t)< xmin
}
≤ Pr

{
x(t)≤ xmin

}
≤ Pr

{
x(t)≤ z(t)−ωq

√
v(t)

}
≤ v(t)

v(t)+ω2
q v(t)

.

Hence,

Pr
{

x(t)≥ xmin
}
= 1−Pr

{
x(t)< xmin

}
≥ 1− v(t)

v(t)+ω2
q v(t)

=
ω2

q

1+ω2
q
= q.

Thus, constraint (21), which depends explicitly on the
state variables z(t) and v(t), implies the chance con-
straint (9). We therefore use (21) as a conservative ap-
proximation of (9).

For the objective function, using (10) and (11) we
have

g(u) = E {x(T )}+
N

∑
i=1

Kui

γi
ci E {yi(T )}

= z(T )+
N

∑
i=1

Kui

γi
ci

T

∏
k=1

(1− pi(k)).

On this basis, Problem P is approximated by the follow-
ing discrete-time deterministic optimal control problem.

Problem P̂. Given the discrete-time system (15), (17)
and (19) with initial conditions (16), (18) and (20), find
an admissible allocation vector u ∈U such that the ob-
jective function

g(u) = z(T )+
N

∑
i=1

Kui

γi
ci

T

∏
k=1

(1− pi(k)) (22)

is maximized subject to constraint (21).

Problem P̂ is a discrete-time deterministic optimal
control problem. Note that Problem P̂ only involves the
first- and second-order moments of x(t). This is because
the deterministic constraint (21), derived using Cheby-
shev’s inequality, only requires first- and second-order
moments, even though the outgoing pension payments
are of arbitrary distribution.

Using the notation ωq, constraint (21) can be rewrit-
ten as follows:

z(t)≥ xmin +ωq
√

v(t), t = 0, . . . ,T.

This means that the expected cash level must be ωq s-
tandard deviations above the minimum threshold xmin.
For example, if q = 80%, then we require the expect-
ed cash level to be ωq = 2 standard deviations above
the minimum; if q = 90%, then we require ωq = 3 s-
tandard deviations. This is more conservative than the
normal distribution, where 95% of sample trajectories
lie within two standard deviations and 99.7% of sample
trajectories lie within three standard deviations. Recal-
l, however, that the outgoing pension payments in our
problem can be of any distribution, not just normal.

We now introduce a gradient-based optimization al-
gorithm for solving Problem P̂.

4. Solving Problem P̂

Problem P̂ includes a single all-time state constraint
(21). This all-time state constraint is difficult to handle
computationally because it is imposed at every point in
the time horizon. Thus, in this section, we will use the
constraint transcription method (Teo et al. (1991)) to ap-
proximate the all-time constraint (21) by a conventional
constraint. We then develop a gradient-based optimiza-
tion algorithm for solving the resulting approximation
of Problem P̂.

4.1. Constraint transcription

Let

h(z(t),v(t)) = z(t)−
(

qv(t)
1−q

) 1
2
− xmin.

Then constraint (21) is equivalent to the following e-
quality constraint:

T

∑
t=0

min
{

h(z(t),v(t)),0
}
= 0. (23)
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Thus, the T + 1 constraints given by (21) can be re-
placed by the single constraint (23). However, because
of the min{·,0} function, the new constraint (23) is non-
smooth. This will cause problems for gradient-based
optimization algorithms. Hence, we introduce the fol-
lowing smooth approximation for min{·,0}:

φδ (θ) =


θ , if θ <−δ ,
−(θ −δ )2/4δ , if −δ ≤ θ ≤ δ ,
0, if θ > δ ,

(24)

where δ is an adjustable parameter that controls the ac-
curacy of the approximation (Lin et al. (2013)). Based
on the smoothing function (24), we now define the fol-
lowing approximation for constraint (23):

δ
4
+

T

∑
t=0

φδ (h(z(t),v(t)))≥ 0. (25)

Our next result shows that (25) actually implies the all-
time state constraint (21).

Theorem 4.1. Let u ∈ U be an admissible allocation
vector satisfying constraint (25). Then u also satisfies
constraint (21).

Proof. Suppose that u satisfies constraint (25), but not
constraint (21). Then there exists a t ′ ∈ {0, . . . ,T} such
that

h(z(t ′),v(t ′))< 0.

Since φδ is strictly increasing on (−∞,0], this implies
that

φδ (h(z(t
′),v(t ′)))< φδ (0) =−δ

4
.

Thus,

δ
4
+

T

∑
t=0

φδ (h(z(t),v(t)))≤
δ
4
+φδ (h(z(t

′),v(t ′)))< 0.

But this contradicts (25), and thus our initial assumption
that (21) is violated must be false.

Based on the new constraint (25), the approximate
problem for Problem P̂ can be stated formally as below.

Problem P̂δ . Given the discrete-time system (15), (17)
and (19) with initial conditions (16), (18) and (20), find
an admissible allocation vector u ∈U such that the ob-
jective function (22) is maximized subject to constraint
(25).

4.2. Gradient formulae
The key step to solving Problem P̂δ using gradient-

based optimization techniques is to determine the gra-

dients of the objective function (22) and the constraint
function (25). This is the aim of the present section.

We rewrite the dynamics in Problem P̂δ in the follow-
ing state-space form:

ζ (t +1) = f (t,ζ (t),u), t = 0, . . . ,T −1, (26)

where ζ (t) = [z(t),v(t),w1(t), . . . ,wN(t) ]⊤ ∈ RN+2 is
the state vector, u = [u1, . . . ,uN ]

⊤ ∈RN is the allocation
vector, and

f (t,ζ (t),u) =

z(t)+
N

∑
i=1

Kui

γi

t+1

∏
k=1

(1− pi(k))αi(t +1)−µ(t +1)

v(t)+
N

∑
i=1

N

∑
j=1

K2uiu j

γiγ j
αi(t +1)α j(t +1)oi j(t +1)

+2
N

∑
i=1

Kui

γi
αi(t +1)wi(t)

+2
t

∑
k=1

σ(k, t +1)+σ(t +1, t +1)

(1− p1(t +2))w1(t)

+
N

∑
j=1

Ku j

γ j
(1− p1(t +2))α j(t +1)o1 j(t +1)

...
(1− pN(t +2))wN(t)

+
N

∑
j=1

Ku j

γ j
(1− pN(t +2))α j(t +1)oN j(t +1)



.

The derivative of f with respect to ζ is the (N + 2)×
(N +2) matrix given by

∂ f (t,ζ (t),u)
∂ζ

=

(
I Γ
0 Λ

)
, (27)

where I is the 2×2 identity matrix, 0 is the N ×2 zero
matrix, and

Γ =

(
0 · · · 0

2Ku1
γ1

α1(t +1) · · · 2KuN
γN

αN(t +1)

)
,

Λ = diag(1− p1(t +2), . . . ,1− pN(t +2)).

Moreover, the derivative of f with respect to u is
the (N +2)×N matrix given by

∂ f (t,ζ (t),u)
∂u

=

Ω1
Ω2
Ω3

 , (28)
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where

Ω1 =
∂ f1(t,ζ (t),u)

∂u
,

Ω2 =
∂ f2(t,ζ (t),u)

∂u
,

Ω3 =

[
∂ fi(t,ζ (t),u)

∂u

]
i=3,...,N+2

.

More specifically,

Ω⊤
1 =


K
γ1

∏t+1
k=1(1− p1(k))α1(t +1)

...
K
γN

∏t+1
k=1(1− pN(k))αN(t +1)

 ,

Ω⊤
2 =



N

∑
i=1

2K2ui

γiγ1
αi(t +1)α1(t +1)oi1(t +1)

+ 2K
γ1

α1(t +1)w1(t)
...

N

∑
i=1

2K2ui

γiγN
αi(t +1)αN(t +1)oiN(t +1)

+ 2K
γN

αN(t +1)wN(t)


,

and Ω3 is a N×N matrix whose (i, j)th element is given
by

Ω3(i, j) =
K
γ j

(1− pi(t +2))α j(t +1)oi j(t +1).

The initial condition for (26) is

ζ (0) =


K
[

1−
N

∑
i=1

ui

]
0
0
...
0


. (29)

Note that the objective function (22) and the constraint
function (25) can be expressed in the following unified
form:

J(u) = Φ(ζ (T ),u)+
T−1

∑
t=0

L (ζ (t)), (30)

where Φ : RN+2 ×RN → R is a function of the state
and allocation vectors, and L : RN+2 →R is a function
of the state vector. For the objective function (22), the

functions Φ and L in (30) are

Φ(ζ (T ),u) = z(T )+
N

∑
i=1

Kui

γi
ci

T

∏
k=1

(1− pi(k)), (31)

L (ζ (t)) = 0. (32)

For the constraint function (25), the functions Φ and L
in (30) are

Φ(ζ (T ),u) =
δ
4
+φδ (h(z(T ),v(T ))), (33)

L (ζ (t)) = φδ (h(z(t),v(t))). (34)

We now derive formulae for computing the gradient of
(30) with respect to u. We will then use these formu-
lae to determine the gradients of the objective and con-
straint functions in Problem P̂δ .

Consider the following perturbed allocation vector:

uε = u+ ε û,

where û is an arbitrary but fixed perturbation and ε is
a real number of sufficiently small magnitude. Let ζ (·)
denote the solution of (26) and (29) corresponding to the
unperturbed allocation vector u, and let ζ ε(·) denote
the solution corresponding to the perturbed allocation
vector uε .

For each t = 0, . . . ,T −1, the variation of the state is:

∆ζ (t +1) =
dζ ε(t +1)

dε

∣∣∣∣
ε=0

=
d

dε
{ f (t,ζ ε(t),u+ ε û)}

∣∣
ε=0

=
∂ f (t,ζ (t),u)

∂ζ
∆ζ (t)+

∂ f (t,ζ (t),u)
∂u

û,

(35)

where ∂ f/∂ζ and ∂ f/∂u are defined in (27) and (28),
respectively. At t = 0, we have

∆ζ (0) =
dζ ε(0)

dε

∣∣∣∣
ε=0

=


−K

N

∑
i=1

ûi

0
0
...
0


= κ û, (36)
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where κ is a (N +2)×N matrix defined by

κ =


−K · · · −K
0 · · · 0
0 · · · 0
...

. . .
...

0 · · · 0

 .

Thus,

∂J(u)
∂u

û =
dJ(uε)

dε

∣∣∣∣
ε=0

=
∂Φ(ζ (T ),u)

∂ζ
∆ζ (T )+

∂Φ(ζ (T ),u)
∂u

û

+
T−1

∑
t=0

∂L (ζ (t))
∂ζ

∆ζ (t). (37)

Now, define the Hamiltonian function as follows:

H(t,ζ (t),u,λ (t +1)) = L (ζ (t))+(λ (t +1))⊤ f (t,ζ (t),u),
t = 0, . . . ,T −1, (38)

where λ (t) ∈ RN+2 is the costate sequence defined by

(λ (t))⊤ =
∂H(t,ζ (t),u,λ (t +1))

∂ζ
,

t = T −1,T −2, . . . ,0, (39)

with final time condition

(λ (T ))⊤ =
∂Φ(ζ (T ),u)

∂ζ
. (40)

Now, using (38), we can rewrite (37) as follows:

∂J(u)
∂u

û =
∂Φ(ζ (T ),u)

∂ζ
∆ζ (T )+

∂Φ(ζ (T ),u)
∂u

û

+
T−1

∑
t=0

{ ∂H(t,ζ (t),u,λ (t +1))
∂ζ

∆ζ (t)

− (λ (t +1))⊤
∂ f (t,ζ (t),u)

∂ζ
∆ζ (t)

}
.

Hence, using (39) and (40), we obtain

∂J(u)
∂u

û = (λ (T ))⊤∆ζ (T )+
∂Φ(ζ (T ),u)

∂u
û

+
T−1

∑
t=1

{
(λ (t))⊤∆ζ (t)

− (λ (t))⊤
∂ f (t −1,ζ (t −1),u)

∂ζ
∆ζ (t −1)

}
+(λ (0))⊤∆ζ (0)

− (λ (T ))⊤
∂ f (T −1,ζ (T −1),u)

∂ζ
∆ζ (T −1).

Thus, applying (35) and (36),

∂J(u)
∂u

û = (λ (T ))⊤
{ ∂ f (T −1,ζ (T −1),u)

∂ζ
∆ζ (T −1)

+
∂ f (T −1,ζ (T −1),u)

∂u
û
}

+
T−1

∑
t=1

{
(λ (t))⊤

[ ∂ f (t −1,ζ (t −1),u)
∂ζ

∆ζ (t −1)

+
∂ f (t −1,ζ (t −1),u)

∂u
û
]

− (λ (t))⊤
∂ f (t −1,ζ (t −1),u)

∂ζ
∆ζ (t −1)

}
+

∂Φ(ζ (T ),u)
∂u

û+(λ (0))⊤∆ζ (0)

− (λ (T ))⊤
∂ f (T −1,ζ (T −1),u)

∂ζ
∆ζ (T −1)

=
T−1

∑
t=0

(λ (t +1))⊤
∂ f (t,ζ (t),u)

∂u
û

+
∂Φ(ζ (T ),u)

∂u
û+(λ (0))⊤∆ζ (0)

=
T−1

∑
t=0

∂H(t,ζ (t),u,λ (t +1))
∂u

û

+
∂Φ(ζ (T ),u)

∂u
û+(λ (0))⊤κ û.

Recall that û was selected arbitrarily. By choosing û to
be the standard unit basis vectors, we obtain the follow-
ing result.

Theorem 4.2. The gradient of J(u) is given by

∂J(u)
∂u

=
T−1

∑
t=0

∂H(t,ζ (t),u,λ (t +1))
∂u

+
∂Φ(ζ (T ),u)

∂u
+(λ (0))⊤κ.
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Now, using the formula in Theorem 4.2, we can ex-
press the gradient of the cost function (22) as follows:

∂g(u)
∂u

=
T−1

∑
t=0

(λ (t +1))⊤
∂ f (t,ζ (t),u)

∂u

+
[ Kc1

γ1

T

∏
k=1

(1− p1(k)) · · ·
KcN

γN

T

∏
k=1

(1− pN(k))
]

+(λ (0))⊤κ, (41)

where ∂ f/∂u is given by (28).
Similarly, the gradient of the constraint function (25)

is given by

∂J(u)
∂u

=
T−1

∑
t=0

(λ (t +1))⊤
∂ f (t,ζ (t),u)

∂u
+(λ (0))⊤κ.

(42)
The gradient formulae in (41) and (42) can be readily in-
corporated into a standard gradient-based optimization
algorithm to solve Problem P̂δ . Note that the costate
sequences for (41) and (42) are different. For (41), the
costate system (39) and (40) has Φ and L defined by
(31) and (32); for (42), the costate system (39) and (40)
has Φ and L defined by (33) and (34).

5. Numerical simulations

In this section, we consider a randomly-generated test
problem and give the corresponding optimal portfolios
for umax

i = 5% and umax
i = 10%.

Suppose that our fictional pension fund has K =
1,000,000 dollars of initial capital to invest. Suppose
also that the portfolio is constructed from N = 10 differ-
ent bond types. The aim is to determine an optimal bond
allocation such that the terminal wealth of the portfo-
lio is maximized at the end of the planning horizon,
which is assumed to be T = 12 months. The parameter-
s for the all-time chance constraint are xmin = 200,000
and q = 0.8.

The pension fund makes payments at the end of each
monthly period. These payments ψ(t), t = 1, . . . ,12, are
normally-distributed random variables with means and
covariances given in Tables 1 and 2, respectively. The
means in Table 1 were selected randomly from the in-
terval [30000,60000]. For the covariance matrix in Ta-
ble 2, the diagonal elements were first selected random-
ly from the interval [0,108]. Then, for each off-diagonal
element (t, t ′), the corresponding correlation coefficien-
t Corr(ψ(t),ψ(t ′)) was randomly selected from the in-

Table 1: Mean of the monthly pension payment

t 1 2 3 4

µ(t) 46640 49024 54891 35668

t 5 6 7 8

µ(t) 54890 58276 39005 46566

t 9 10 11 12

µ(t) 36327 50734 43152 58798

Table 3: Price, coupon, par value, and default probability of each bond
type

Bond i γi αi ci pi(t) c′i

TB120 110.830 0.500 110.885 0.450% 109.114
TB135 104.981 0.354 105.088 0.275% 104.038
TB132 110.406 0.458 110.518 0.400% 108.786
TB122 110.541 0.438 110.783 0.375% 108.747
TB126 106.528 0.375 106.859 0.300% 105.003
TB124 114.819 0.479 115.264 0.425% 112.443
TB128 115.596 0.479 116.143 0.425% 112.772
TB133 114.208 0.458 114.786 0.400% 111.258
TB137 90.342 0.229 90.882 0.125% 88.327
TB136 106.852 0.396 107.700 0.325% 103.754

terval [0,0.1] with the covariance computed by

Cov(ψ(t),ψ(t ′)) = Corr(ψ(t),ψ(t ′))

×Var(ψ(t))Var(ψ(t ′)).

Each bond type i is defined by its price γi, monthly
coupon value αi, and par value ci (selling price). We
consider 10 real bonds issued by the Australian gov-
ernment. The data for each bond, obtained from the
Reserve Bank of Australia, is given in Table 3. Note
that ci in Table 3 is the redemption value of bond type i
at time t = 0 and c′i is the updated redemption value af-
ter t = 6 months. Both par values were obtained from
historical data in the period 2012-2013. We assume that
the default risk is time-invariant for each bond. Hence,
the default probabilities pi(t) are constant with respect
to t. These probabilities are linear functions of the rate
of return. The time-invariant covariance matrix πi j(t)
given in Table 4 was generated by choosing the diagonal
entries to be Var(Si(t)) = pi(t)(1− pi(t)) with the off-
diagonal entries generated randomly in the same way as
Table 2. Note that these bonds would be more strongly
correlated in reality since they are from the same issuer.
However, the randomly-generated data used here is suf-
ficient for the purposes of our numerical simulations.
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Table 2: Covariance matrix for the monthly pension payments ψ(t), t = 1, . . . ,12

ψ(1) ψ(2) ψ(3) ψ(4) ψ(5) ψ(6) ψ(7) ψ(8) ψ(9) ψ(10) ψ(11) ψ(12)

ψ(1) 28397556 1556668 15488442 7010829 2546108 77702 1234685 275104 171189 7041 20372 3526
ψ(2) 90990339 3944187 60307276 10162245 2333316 7752 1603968 1817158 61762 4248821 1231959
ψ(3) 24955656 4344821 665348 13992 452203 31848 11907 2278 35 34
ψ(4) 95438219 10224014 63785 950575 357385 9318912 1535112 419701 712424
ψ(5) 70127631 240042 577217 1034195 3592402 4971 1035472 385638
ψ(6) 3496194 91912 132622 18783 47748 469304 5369
ψ(7) 3322735 4231 3813 140 145 21
ψ(8) 15445233 11587672 3802 193525 108567
ψ(9) 95215466 327 43074462 1805579
ψ(10) 1663471 110 145
ψ(11) 82714753 687550
ψ(12) 5022122

Table 4: Covariance matrix for Si(t), i = 1, . . . ,N

Bond i TB120 TB135 TB132 TB122 TB126 TB124 TB128 TB133 TB137 TB136

TB120 0.44797% 0.00127% 0.02436% 0.03327% 0.02365% 0.03422% 0.03732% 0.01765% 0.00004% 0.02464%
TB135 0.27424% 0.01013% 0.02073% 0.01493% 0.02038% 0.01754% 0.00129% 0.00395% 0.02791%
TB132 0.39840% 0.02019% 0.01951% 0.03760% 0.02590% 0.02862% 0.00638% 0.00493%
TB122 0.37359% 0.00672% 0.03642% 0.02265% 0.01565% 0.01609% 0.00054%
TB126 0.29910% 0.02069% 0.02090% 0.00036% 0.01057% 0.02820%
TB124 0.42319% 0.02056% 0.03403% 0.01391% 0.01839%
TB128 0.42319% 0.01750% 0.00885% 0.02767%
TB133 0.39840% 0.01656% 0.01275%
TB137 0.12484% 0.01667%
TB136 0.32394%

We obtained the deterministic problem (i.e., Prob-
lem P̂δ ) by applying the approximation techniques de-
scribed in Sections 3 and 4. We then used the MATLAB
gradient-based optimization function fmincon to solve
the deterministic problem for umax

i = 5% and umax
i =

10%.
For umax

i = 5%, the optimal value of the objec-
tive function is 4.2836 × 105 under redemption val-
ues ci, and 4.2414 × 105 under redemption values c′i.
For umax

i = 10%, the objective function is 4.2906×105

under ci, and 4.2375× 105 under c′i. The optimal bond
allocations (u∗i , i = 1, . . . ,10) are given in Table 5. Note
that the optimal portfolio for umax

i = 5% includes on-
ly four bond types and the optimal portfolio for umax

i =
10% includes only two bond types. The optimization
procedure has successfully identified the most attractive
bonds and included them in the portfolio. For more di-
versification, a lower bound could be easily imposed on
each bond’s allocation, but this was not considered in
the present work.

In comparison, for the naive 1/N investment strat-
egy (Demiguel et al. (2009a,b)), the resulting expect-
ed cash balance in the pension fund is 4.2347 × 105

with umax
i = 5%, and 4.2348× 105 with umax

i = 10%.
This is slightly less than the optimized portfolio. More

importantly, the 1/N strategy is actually infeasible be-
cause the expected cash balance falls below the mini-
mum threshold xmin during the time horizon.

The results in the previous paragraph are for the 1/N
portfolio in which the entire initial capital K is divid-
ed equally among the N bonds. Other 1/N portfolios
can be constructed by investing less than K. In Ta-
ble 6, we give the expected fund value under c′i for
the 1/N portfolios constructed by investing different ini-
tial amounts. Only one of the 1/N portfolios (the 1/N
portfolio with $100,000 invested) is feasible. This result
is consistent with our optimized bond portfolios, which
invest less than $200,000 of the initial capital. Note that
our optimization procedure determines both the optimal
amount of initial investment and the optimal bond al-
location such that the resulting combination of bonds
maximizes the pension fund value while mitigating de-
fault risk. As shown in Table 6, where it is reported that
most of the 1/N portfolios are infeasible, designing the
best 1/N portfolio requires an optimization procedure
to determine the best initial investment amount. Naive-
ly investing the entire capital may produce an infeasible
result.

The optimal trajectories of the state variables z(t)
and v(t) are illustrated in Figures 5.1 and 5.2, respec-
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Optimal Allocation

Bond umax
i = 5% umax

i = 10%

TB120 0.0000% 0.0000%
TB135 2.1531% 0.0000%
TB132 0.0000% 0.0000%
TB122 0.0000% 0.0000%
TB126 5.0000% 0.0000%
TB124 0.0000% 0.0000%
TB128 0.0000% 0.0000%
TB133 0.0000% 0.0000%
TB137 5.0000% 10.0000%
TB136 5.0000% 7.1028%

Table 5: Optimal bond allocations for the example in Section 5

tively. The optimal trajectories of the standard devia-
tion

√
v(t) are shown in Figure 5.3 for the two scenar-

ios with different allocation limits. Figures 5.4 and 5.5
show simulated trajectories of x(t) under 10,000 ran-
dom scenarios for the optimized portfolios with umax

i =
5% and 10%, respectively. These simulations were
performed using the internal MATLAB function mvn-
rnd for sampling the normally-distributed pension pay-
ments ψ(t) and the method in Park et al. (1996) for sam-
pling the Bernoulli random variables Si(t).

In Figure 5.1, it is observed that the mean of the pen-
sion fund value decreases over time, as the pension pay-
ments in each period exceed the coupons received. At
the end of the last period, there is a large increase in the
fund value in each portfolio, which is due to the capital
repayment for the outstanding bonds.

In Figure 5.2, the variance of the pension fund in-
creases over time. The standard deviation of the pension
fund, which is shown in Figure 5.3, follows a similar
pattern to the variance.

Figures 5.4 and 5.5 show simulated trajectories
of x(t). The pattern is similar to the mean portfolio val-
ue shown in Figure 5.1. The variation for the first 11
months is due to the uncertainty in the pension pay-
ments. There is a possibility that some bonds default
and this is reflected in the sample paths, which show a
decline in pension fund value at the end of the invest-
ment horizon as the repayment of capital is lost.

6. Conclusion

In this paper, we have considered a portfolio opti-
mization problem for a pension fund consisting of both
government and corporate bonds, with the possibility of

Figure 5.1: Optimal mean profile z(t)
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Figure 5.2: Optimal variance profile v(t)
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Figure 5.3: Optimal standard deviation profile
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Figure 5.4: 10,000 sample paths for the fund cash level (umax
i = 5%)

0 2 4 6 8 10 12
2

3

4

5

6

7

8

9
x 10

5

Figure 5.5: 10,000 sample paths for the fund cash level (umax
i = 10%)
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Table 6: Performance of the 1/N portfolio for the example in Sec-
tion 5

Amount Invested Expected Final Value Feasible?

$100,000 $424,537 Yes
$200,000 $423,047 No
$300,000 $421,556 No
$400,000 $420,066 No
$500,000 $418,575 No
$600,000 $417,085 No
$700,000 $415,594 No
$800,000 $414,104 No
$900,000 $412,613 No

$1,000,000 $411,123 No

bond defaults. The objective is to find the optimal in-
vestment strategy that maximizes the expected fund val-
ue at the end of the planning horizon. The problem is
formulated as a discrete-time stochastic optimal control
problem. The numerical simulations in Section 5 show
that our proposed model gives solutions that, unlike the
naive 1/N investment strategy, are guaranteed to satis-
fy the robust all-time chance constraint. Note that we
have assumed the portfolio composition remains static
throughout the time horizon, with all investment deci-
sions made at time t = 0. Future research will involve
problems in which the portfolio can be updated dynam-
ically, taking into account transaction costs.
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