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Abstract

In this paper, we discuss impulsive high-order Hopfield type neural networks. Inves-
tigating their global asymptotic stability, by using Lyapunov function method, suf-
ficient conditions that guarantee global asymptotic stability of networks are given.
These criteria can be used to analysis the dynamics of biological neural systems
or to design globally stable artificial neural networks. Two numerical example are
given to illustrate the effectiveness of the proposed method.
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1 Introduction

Hopfield neural networks have been extensively studied and developed in re-
cent years, and found many applications in different areas(See,e.g.,[1-3]). Ar-
tificial neural networks with impulses have been given in [4-9], and the sta-
bility, existence of the equilibrium of such networks have been investigated.
In the present paper, we introduce impulsive high-order Hopfield type neural
networks, and Lyapunov method is employed to investigate the sufficient con-
ditions for the global asymptotic stability. This paper is organized as follows.
In Section 2, impulsive high-order Hopfield type neural networks model is
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described and some preliminaries are given. Based on the Lyapunov stability
theory, some global asymptotic stability criteria for neural networks are derivd
in Section 3. Two example are given in Section 4 to illustrate the applicability
of our results, and conclusions follow in Section 5.

2 Model description and preliminaries

We consider the impulsive high-order Hopfield type neural networks described
by





Ciu̇i = − ui
Ri

+
n∑

j=1
Tijgj(uj) +

n∑
j=1

n∑
l=1

Tijlgj(uj)gl(ul) + Ii, t 6= tk

∆ui = diui +
n∑

j=1
Wijhj(uj) +

n∑
j=1

n∑
l=1

Wijlhj(uj)hl(ul), t = tk

i = 1, 2, · · · , n

(1)

where ∆ui(tk) = ui(t
+
k ) − ui(tk), ui(t

+
k ) = lim

t→t+
k

ui(t), k ∈ Z = {1, 2, · · ·}, the

time sequence {tk} satisfies 0 < t1 < t2 < · · · < tk < tk+1 < · · · , lim
k→∞

tk = ∞,

Ci > 0, Ri > 0, and Ii are the capacitance, the resistance, and the external
input of the ith neuron respectively, Tij,Wij and Tijl,Wijl are the first and
second order synaptic weights of the neural networks, respectively.

Throughout this paper,we assume that the neuron activation functions in (1),
gi(u), hi(u), i = 1, 2, · · · , n, are continuous and satisfies the following condition:

(H)




|gi(ui)| ≤ Mi, 0 ≤ ġi(ui) ≤ Ki,∀ui ∈ <,

|hi(ui)| ≤ Ni, 0 ≤ ḣi(ui) ≤ Li,∀ui ∈ <,
i = 1, 2, · · · , n (2)

or

(H∗)





|gi(ui)| ≤ Mi, 0 ≤ gi(ui)− gi(vi)
ui − vi

≤ Ki,∀ui 6= vi, ui, vi ∈ <,

|hi(ui)| ≤ Ni, 0 ≤ hi(ui)− hi(vi)
ui − vi

≤ Li,∀ui 6= vi, ui, vi ∈ <,

i = 1, 2, · · · , n
(3)

Let u = u∗, i.e., ui = u∗i , i = 1, 2, · · · , n be an equilibrium point of system (1),
and set x = u− u∗ = (x1, x2, · · · , xn)T ,

diu
∗
i +

n∑
j=1

Wijhj(u
∗
j) +

n∑
j=1

n∑
l=1

Wijlhj(u
∗
j)hl(u

∗
l ) = 0,

fi(xi) = gi(xi + u∗i )− gi(u
∗
i ), and ϕi(xi) = hi(xi + u∗i )− hi(u

∗
i ), i = 1, 2, · · · , n.
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Then we see that




|fi(z)| ≤ Ki|z|, zfi(z) ≥ 0,∀z ∈ <,

|ϕi(z)| ≤ Li|z|, zϕi(z) ≥ 0,∀z ∈ <,
i = 1, 2, · · · , n, (4)

and it is easy to transform system (1) into the following





Ciẋi = − xi
Ri

+
n∑

j=1
Tijfj(xj)

+
n∑

j=1

n∑
l=1

Tijl

(
fj(xj)fl(xl) + fj(xj)gl(u

∗
l )

+fl(xl)gj(u
∗
j)

)
, t 6= tk,

∆xi = diui +
n∑

j=1
Wijϕj(uj)

+
n∑

j=1

n∑
l=1

Wijl

(
ϕj(xj)ϕl(xl) + ϕj(xj)hl(u

∗
l )

+ϕl(xl)hj(u
∗
j)

)
, t = tk,

i = 1, 2, · · · , n,

(5)

By a simple transformation, system (5) may be written as follows.





Ciẋi = − xi
Ri

+
n∑

j=1
Tijfj(xj) +

n∑
j=1

n∑
l=1

(Tijl + Tilj)ζlfj(xj), t 6= tk,

∆xi = dixi +
n∑

j=1
Wijϕj(xj) +

n∑
j=1

n∑
l=1

(Wijl + Wilj)ξlϕj(xj), t = tk,

i = 1, 2, · · · , n,

(6)

where ζl is between gl(ul) and gl(u
∗
l ), while ξl is between hl(ul) and hl(u

∗
l ).

Let C = diag(C1, C2, · · · , Cn), R = diag(R1, R2, · · · , Rn), T = (Tij)n×n,
D = diag(d1, d2, · · · , dn),W = (Wij)n×n, Wi = (Wijl)n×n, Ti = (Tijl)n×n,
(i = 1, 2, · · · , n), TH = (T1 +T T

1 , T2 +T T
2 , · · · , Tn +T T

n )T , Ξ = (W1 +W T
1 ,W2 +

W T
2 , · · · ,Wn + W T

n )T , ϕ(x) = (ϕ1(x1), ϕ2(x2), · · · , ϕn(xn))T ,
Φ(x) = diag(ϕ(x), ϕ(x), · · · , ϕ(x)), f(x) = (f1(x1), f2(x2), · · · , fn(xn))T ,
F (x) = diag(f(x), f(x), · · · , f(x)), ζ = (ζ1, ζ2, · · · , ζn)T , ξ = (ξ1, ξ2, · · · , ξn)T ,
M = (M1,M2, · · · ,Mn)T , N = (N1, N2, · · · , Nn)T , L = diag(L1, L2, · · · , Ln),
K = diag(K1, K2, · · · , Kn), x = (x1, x2, · · · , xn)T , ∆x = (∆x1, ∆x2, · · · , ∆xn)T .
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Then system (6) may be written in the following equivalent form





Cẋ = −R−1x + Tf(x) + F T (x)THζ, t 6= tk,

∆x = Dx + Wϕ(x) + ΦT (x)Ξξ, t = tk,
(7)

The following notations will be used throughout the paper: <+ the set of
nonegative real numbers, and <n the n−dimensional Euclidean space. The
notation P > 0, (respectively, P < 0) means that P is symmetric and positive
definite (respectively, negative definite) matrix. We use P−1, λmin(P ), λmax(P ),
to denote,respectively, the inverse of, the smallest and the largest eigenvalues
of a square matrix P . The norms ‖ · ‖ is either the Euclidean vector norm or
the induced matrix norm.

The following lemmas will be used in the proof of our main results.

Consider an impulsive differential system





ẋ(t) = f(t, x), t 6= tk

∆x = Ik(x), t = tk

x(t+0 ) = x0, k = 1, 2, · · ·
(8)

where ∆x(tk) = x+
k − x(tk).

We denote by £ the class of maps h : <+ ×<n 7−→ <+, which are continuous
and infh(t, x) = 0.

Definition 1. Let h, h0 ∈ £. Then the impulsive differential system (8) is
called

(1) (h0, h)-stable if for any ε > 0 and t0 ∈ <+ given, there exist a δ = δ(t0, ε) >
0 such that

h0(t0, x0) < δ implies h(t, x(t)) < ε, t ≥ t0

where x(t) = x(t, t0, x0) is any solution of (8);

(2) (h0, h)-attractive if for t0 ∈ <+, there exist a σ = σ(t0) > 0 such that

h0(t0, x0) < σ implies lim
t→∞h(t, x(t)) = 0

(3) (h0, h)-asymptotically stable if (1) and (2) hold together.
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Let ϑ0 denote the class of functions V : <+ × <n 7−→ <+, where V is locally
Lipschitz in x, continuous everywhere except tk’s at which V is left continuous
and the right limit V (t+k , x) exists for any x ∈ <n. For V ∈ ϑ0, (t, x) ∈ <+×<n

and t 6= tk, we define D+V (t, x) by

D+V (t, x) = lim
θ→0+

sup
1

θ
[V (t + θ, x + θf(t, x))− V (t, x)]

We denote by ℵ the class of functions φ : <+ 7−→ <+ which are contin-
uous, strictly increasing and φ(0) = 0,ℵ0 the class of continuous functions
ψ : <+ 7−→ <+ such that ψ(0) = 0 if and only if s = 0, and PC the class
of functions λ : <+ 7−→ <+, where λ is continuous everywhere except tk’s at
which λ is left continuous and right limit λ(t+k ) exists.

Definition 2. Let V ∈ ϑ0 and h ∈ £. Then V is said to be

(1) h-positive definite if there exist a constant ρ > 0 and a function b ∈ ℵ such
that

b(h(t, x)) ≤ V (t, x) if h(t, x) < ρ

(2) h-decrescent if there exist a constant δ > 0 and a function a ∈ ℵ such that

V (t, x) ≤ a(h(t, x)) whenever h(t, x) ≤ ρ

Definition 3. Let h, h0 ∈ £. Then we say that h0 is finer that h if h is
h0-decrescent.

Let s(h, ρ) = {(t, x) ∈ <+ ×<n; h(t, x) < ρ}.

Lemma 1[10]. Assume that

(1) h, h0 ∈ £, h0 is finer than h, and there exist constants, ρ, ρ0, with 0 < ρ0 <
ρ such that(tkx) ∈ s(h, ρ0) implies (tk, x + Ik(x)) ∈ s(h, ρ) for all k = 1, 2, · · · ;

(2) V ∈ ϑ0, v(t, x) is h-positive definite, h0-decrescent and there exists ψk ∈ ℵ0

such that

V (t+k , x + Ik(x)) ≤ ψk(V (tk, x)), k = 1, 2, · · ·

(3) there exist c ∈ ℵ and p ∈ PC such that

D+V (t, x) ≤ p(t)c(V (t, x)), (t, x) ∈ s(h, ρ), t 6= tk
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(4) there exists a constant σ > 0 such that for all z ∈ (0, σ)

tk+1∫

tk

p(s)ds +

ψk(z)∫

z

ds

c(s)
≤ −γk

for some constant γk and k = 1, 2, · · · .

Then the system (8) is (h0, h)-asymptotically stable if γk ≥ 0 for all k =

1, 2, · · ·, and
∞∑

k=1
γk = ∞.

Lemma 2[10]. Assume that conditions (1) and (2) of Lemma 1 hold. Suppose
further that

(3?) there exist functions c ∈ ℵ and λ ∈ PC such that

D+V (t, x) ≤ −λ(t)c(V (t, x)), (t, x) ∈ s(h, ρ), t 6= tk

(4?) there exists a constant σ > 0 such that for all z ∈ (0, σ)

−
tk∫

tk−1

λ(s)ds +

ψk(z)∫

z

ds

c(s)
≤ −γk

for some constant γk and k = 1, 2, · · · .

Then the system (8) is (h0, h)-asymptotically stable if γk ≥ 0 for all k =

1, 2, · · ·, and
∞∑

k=1
γk = ∞.

Lemma 3. System (1) has at least one equilibrium point.

The proof of Lemma 3 is similar to that given in [11, Theorem 1]. An additional
difference is the consideration of the impulse effect.

3 Global asymptotic stability

In this section, we shall establish some sufficient conditions for global asymp-
totic stability of the impulsive high-order Hopfield type neural networks.

If u∗ = (u∗1, u
∗
2, · · · , u∗n)T is an equilibrium point of system (1), then x∗ =

(0, 0, · · · , 0)T is an equilibrium point of system (5), (6) and (7). To prove the
global asymptotic stability of the equilibrium point u∗ of system (1), it is
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sufficient to prove the global asymptotic stability of the trivial solution of one
of system (5), (6) and (7).

Theorem 1. The equilibrium point u∗ of system (1) is globally asymptotically
stable if the condition (H) and the following conditions hold:

(i)A = (aij)n×n is an M -matrix, where

aij =





1
Rj

−
(
Tjj +

n∑
k=1

|Tjjk + Tjkj|Mk

)
Kj, j = i

−
(
|Tij|+

n∑
k=1

|Tijk + Tikj|Mk

)
Kj, j 6= i

(ii)−
min
1≤j≤n

{
n∑

i=1
piaij

}

max
1≤i≤n

{piCi} (tk − tk−1) + ln
max
1≤i≤n

{piCi}
min
1≤i≤n

{piCi} + ln(
√

n%) ≤ −γk,

where % = ‖I + D‖+ max
1≤i≤n

{Li}(‖W‖+ ‖Ξ‖‖N‖) , γk ≥ 0 for all k = 1, 2, · · ·,

and
∞∑

k=1
γk = ∞, and pi > 0 for all i = 1, 2, · · · , n, such that

n∑
i=1

piaij > 0, (j =

1, 2, · · · , n).

Proof. Since A = (aij)n×n is an M -matrix, there exist a set of constant

pi > 0, (i = 1, 2, · · · , n), such that qj =
n∑

i=1
piaij > 0 for all j = 1, 2, · · · , n.

Construct a radially unbounded Lyapunov function V (t) by

V (t, x) =
n∑

i=1

piCi|xi|,

it is easy to see that

min
1≤i≤n

{piCi}‖x‖ ≤ V (t, x) ≤ max
1≤i≤n

{piCi}
√

n‖x‖ .

When t 6= tk,computing the upper right derivative of V (t, x) along the trajec-
tories of system (5), we obtain

D+V (t, x)|(5) =−
n∑

j=1

pj

Rj

|xj|+
n∑

j=1

(
pjTjj|fj(xj)|+

n∑
i=1
i6=j

piTijfj(xj)sgn(xi)
)

+ ω

≤−
n∑

j=1

pj

Rj

|xj|+
n∑

j=1

(
pjTjj +

n∑
i=1
i6=j

pi|Tij|
)
|fj(xj)|+ ω

7



where ω =
n∑

i=1

n∑
j=1

n∑
l=1

piTijl

(
fj(xj)fl(xl) + fj(xj)gl(u

∗
l ) + fl(xl)gj(u

∗
j)

)
sgn(xi).

By the Taylor’s mean value theorem, we obtain

n∑

j=1

n∑

l=1

Tijl

(
fj(xj)fl(xl) + fj(xj)gl(u

∗
l ) + fl(xl)gj(u

∗
j)

)

=
n∑

j=1

n∑

l=1

(Tijl + Tilj)ġj(ξj)gl(ξl)xj (9)

where ξj is between uj and u∗j .

By (9) and taking to account the condition (H) and (4), we obtain

D+V (t, x)|(5)≤−
n∑

j=1

pj

Rj

|xj|+
n∑

j=1

(
pjTjj +

n∑
i=1
i6=j

pi|Tij|
)
Kj|xj|

+
n∑

i=1

n∑

j=1

n∑

l=1

pi|Tijl + Tilj|MlKj|xj|

=−
n∑

j=1

[
pj

Rj

−
(
pjTjj +

n∑
i=1
i6=j

pi|Tij|
)
Kj

−
n∑

i=1

n∑

l=1

pi|Tijl + Tilj|MlKj

]
|xj|

=−
n∑

j=1

qj|xj| ≤ − min
1≤i≤n

{qi}
n∑

j=1

|xj|

≤−
min
1≤i≤n

{qi}
max
1≤i≤n

{piCi}V (t, x), t 6= tk.

By the Taylor’s mean value theorem, we obtain

n∑

j=1

n∑

l=1

Wijl

(
ϕj(xj)ϕl(xl) + ϕj(xj)hl(u

∗
l ) + ϕl(xl)hj(u

∗
j)

)

=
n∑

j=1

n∑

l=1

(Wijl + Wilj)ḣj(θj)hl(θl)xj

where θj is between uj and u∗j .

Let σ(x) = (ḣ1(θ1)x1, ḣ2(θ2)x2, · · · , ḣn(θn)xn)T ,
Y (x) = diag(σ(x), σ(x), · · · , σ(x)),
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h(θ) = (h1(θ1), h2(θ2), · · · , hn(θn))T , from (5) we get

∆x = Dx + Wϕ(x) + Y T (x)Ξh(θ), t = tk

Hence, by condition (H) and (4) we obtain

V (t+k , x + ∆x)≤ max
1≤i≤n

{piCi}
√

n‖x(tk) + ∆x(tk)‖
= max

1≤i≤n

{piCi}
√

n‖(I + D)x(tk) + Wϕ(x(tk))

+Y T (x(tk))Ξh(θ)‖
≤ max

1≤i≤n

{piCi}
√

n(‖I + D‖‖x(tk)‖+ ‖W‖‖ϕ(x(tk))‖

+‖Y T (x(tk))‖‖Ξ‖‖h(θ)‖)
≤ max

1≤i≤n

{piCi}
√

n
(
‖I + D‖‖x(tk)‖

+ max
1≤i≤n

{Li}‖W‖‖x(tk)‖+ ‖σ(x(tk))‖‖Ξ‖‖N‖
)

≤ max
1≤i≤n

{piCi}
√

n%‖x(tk)‖

≤ max
1≤i≤n

{piCi}
√

n%
V (tk, x)

min
1≤i≤n

{piCi} , k ∈ Z.

Let ψk(s) = max
1≤i≤n

{piCi}
√

n% s
min
1≤i≤n

{piCi} ,

by condition (ii) we get

−
tk∫

tk−1

min
1≤i≤n

{qi}
max
1≤i≤n

{piCi}ds +

ψk(z)∫

z

ds

s
≤ −γk.

Thus by Lemma 2 we see that the trivial solution of system (5) is globally
asymptotically stable. This completes the proof.

Theorem 2. The equilibrium point u∗ of system (1) is globally asymptotically
stable if the condition (H) and the following conditions hold:

(i) Γ = (γij)n×n is Lyapunov diagonal stable[12], where

γij =





T+
ii Ki − 1

Ri
+

n∑
l=1
|Tiil + Tili|MlKi, i = j,

(
|Tij|+

n∑
l=1
|Tijl + Tilj|Ml

)
Kj, i 6= j,

T+
ii = max {Tii, 0};
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(ii)
2λmax

(
PΓ + ΓT P

2

)

max
1≤i≤n

{piCi} (tk − tk−1) + ln
max
1≤i≤n

{piCi}
min
1≤i≤n

{piCi} + 2ln% ≤ −γk,

where % = ‖I + D‖+ max
1≤i≤n

{Li}(‖W‖+ ‖Ξ‖‖N‖) , γk ≥ 0 for all k = 1, 2, · · ·,

and
∞∑

k=1
γk = ∞, and P = diag(p1, p2, · · · , pn) > 0, such that PΓ + ΓT P < 0.

Proof. Since Γ = (γij)n×n is Lyapunov diagonal stable, there exists an matrix
P = diag(p1, p2, · · · , pn) > 0, such that PΓ + ΓT P < 0, hence

λmax

(
PΓ + ΓT P

2

)
< 0

Construct a Lyapunov function

V (t, x) =
1

2

n∑

i=1

piCix
2
i ,

it is easy to verify that

1

2
min
1≤i≤n

{piCi}‖x‖2 ≤ V (t, x) ≤ 1

2
max
1≤i≤n

{piCi}‖x‖2.

When t 6= tk, computing the derivative of V (t, x) along the trajectories of
system (5), by (9) and taking to account the condition (H) and (4), we obtain

V̇ (t, x)|(5) =
n∑

i=1

pixi

(
− xi

Ri

+
n∑

j=1

Tijfj(xj)
)

+
n∑

i=1

n∑

j=1

n∑

l=1

piTijlxi

(
fj(xj)fl(xl) + fj(xj)gl(u

∗
l ) + fl(xl)gj(u

∗
j)

)

≤ −
n∑

i=1

pi

Ri

x2
i +

n∑
i=1
i6=j

n∑

j=1

piTijxifj(xj) +
n∑

i=1

piTiixifi(xi)

+
n∑

i=1

n∑

j=1

n∑

l=1

|Tijl + Tilj|piKjMl|xi||xi|

≤ −
n∑

i=1

pi

Ri

x2
i +

n∑

i=1

piT
+
ii x2

i +
n∑

i=1
i6=j

n∑

j=1

piKj|Tij||xi||xj|

+
n∑

i=1

n∑

j=1

n∑

l=1

|Tijl + Tilj|piKjMl|xi||xj|
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=
n∑

i=1

pi

(
T+

ii Ki − 1

Ri

+
n∑

l=1

|Tiil + Tili|MlKi

)
x2

i

+
n∑

i=1
i6=j

n∑

j=1

pi

(
|Tij|+

n∑

l=1

|Tijl + Tilj|Ml

)
Kj|xi||xj|

= |x|T PΓ|x| ≤ λmax

(
PΓ + ΓT P

2

)
‖x‖2

≤
2λmax

(
PΓ + ΓT P

2

)

max
1≤i≤n

{piCi} V (t, x),

where |x| = (|x1|, |x2|, · · · , |xn|)T .

By the arguments similar to that used in the proof of Theorem 1, we show
that

V (t+k , x + ∆x)≤ max
1≤i≤n

{piCi}%2 V (tk, x)

min
1≤i≤n

{piCi} , k ∈ Z.

Let ψk(s) = max
1≤i≤n

{piCi}%2 s
min
1≤i≤n

{piCi} , then

ψk(z)∫

z

ds

s
= ln

ψk(z)

z
= ln

max
1≤i≤n

{piCi}
min
1≤i≤n

{piCi} + 2ln%.

From condition (ii) we get

tk∫

tk−1

2λmax

(
PΓ + ΓT P

2

)

max
1≤i≤n

{piCi} ds +

ψk(z)∫

z

ds

s
≤ −γk.

Thus by Lemma 2 we see that the trivial solution of system (5) is globally
asymptotically stable. This completes the proof.

Theorem 3. The equilibrium point u∗ of system (1) is globally asymptotically
stable if the condition (H∗) hold and there exists an matrix P > 0 such that
the following conditions hold:

(i) α = 2(‖PC−1T‖+ ‖PC−1‖‖TH‖‖M‖) max
1≤i≤n

{Ki}
−λmin(R−1C−1P + PC−1R−1) > 0;
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(ii) α
λmin(P )

(tk+1 − tk) + ln
λmax(P )
λmin(P )

+ 2ln% ≤ −γk,

where ‖I + D‖+ max
1≤i≤n

{Li}(‖W‖+ ‖Ξ‖‖N‖), γk ≥ 0 for all k = 1, 2, · · ·, and

∞∑
k=1

γk = ∞.

Proof. Consider a Lyapunov function V (t, x) = xT Px, it is easy to verify that

λmin(P )‖x‖2 ≤ V (t, x) ≤ λmax(P )‖x‖2.

When t 6= tk, computing the derivative of V (t, x) along the trajectories of
system (7), we obtain

V̇ (t, x)|(7) =−xT (R−1C−1P + PC−1R−1)x

+2xT PC−1Tf(x) + 2xT PC−1F T (x)THζ

≤−λmin(R−1C−1P + PC−1R−1)‖x‖2

+2‖PC−1T‖‖x‖‖f(x)‖+ 2‖PC−1‖‖TH‖‖x‖‖F T (x)‖‖ζ‖.

From condition (H∗) and (4) we get

‖F T (x)‖ = ‖f(x)‖ ≤ max
1≤i≤n

{Ki}‖x‖ and ‖ζ‖ ≤ ‖M‖

Hence

V̇ (t, x)|(7)≤ 2(‖PC−1T‖+ ‖PC−1‖‖M‖‖TH‖) max
1≤i≤n

{Ki}‖x‖2

−λmin(R−1C−1P + PC−1R−1)‖x‖2

= α‖x‖2 ≤ α

λmin(P )
V (t, x), t 6= tk.

From condition (H∗)and (4), we get

‖ΦT (x(tk))‖ = ‖ϕ(x(tk))‖ ≤ max
1≤i≤n

{Li}‖x(tk)‖ and ‖ξ‖ ≤ ‖N‖.

By system (7) we obtain ‖x(tk) + ∆x(tk)‖ ≤ %‖x(tk)‖.

Hence

V (t+k , x + ∆x) ≤ %2λmax(P )
V (tk, x)

λmin(P )
, k ∈ Z.
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Let ψk(s) = %2λmax(P ) s
λmin(P )

, then form condition (ii) we obtain

tk+1∫

tk

α

λmin(P )
ds +

ψk(z)∫

z

ds

s
≤ −γk.

Thus by Lemma 1 we see that the trivial solution of system (7) is globally
asymptotically stable. This completes the proof.

Theorem 4. The equilibrium point u∗ of system (1) is globally asymptotically
stable if the condition (H∗) hold and there exists an matrix P > 0 such that
the following conditions hold:

(i) α = 2(‖PC−1T‖+ ‖PC−1‖‖TH‖‖M‖) max
1≤i≤n

{Ki}
−λmin(R−1C−1P + PC−1R−1) < 0;

(ii) α
λmax(P )

(tk − tk−1) + ln
λmax(P )
λmin(P )

+ 2ln% ≤ −γk,

where % = ‖I + D‖+ max
1≤i≤n

{Li}(‖W‖+ ‖Ξ‖‖N‖), γk ≥ 0 for all k = 1, 2, · · ·,

and
∞∑

k=1
γk = ∞.

Proof. Consider the Lyapunov function V (t, x) = xT Px, by the arguments
similar to that used in the proof of theorem 3, we show that

V̇ (t, x)|(7) ≤ α

λmax(P )
V (t, x), t 6= tk

Let ψk(s) be same as in the proof of theorem 3, we get

V (t+k , x + ∆x) ≤ ψk(V (tk, x)), k ∈ Z.

Form condition (ii) we obtain

tk∫

tk−1

α

λmax(P )
ds +

ψk(z)∫

z

ds

s
≤ −γk.

Thus, by Lemma 2 we see that the trivial solution of system (7) is globally
asymptotically stable. This completes the proof.

4 Examples

In this section, we will give two examples to illustrate the main results of this
paper.
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Example 1. Consider the neural network





Ciu̇i = − ui
Ri

+
3∑

j=1
Tijgj(uj) +

3∑
j=1

3∑
l=1

Tijlgj(uj)gl(ul), t 6= tk,

∆ui = diui +
3∑

j=1
Wijhj(uj) +

3∑
j=1

3∑
l=1

Wijlhj(uj)hl(ul), t = tk,

i = 1, 2, 3,

(10)

where g1(u1) = tanh(0.16u1), g2(u2) = tanh(0.14u2), g3(u3) = tanh(0.07u3),
h1(u1) = 0.9 tanh(0.1u1), h2(u2) = 0.9 tanh(0.02u2), h3(u3) = 0.9 tanh(0.19u3),
C = diag(C1, C2, C3) = diag(2.6, 6.8, 8.3),
R = diag(R1, R2, R3) = diag(0.4, 2.86, 0.5),
D = diag(d1, d2, d3) = diag(−0.95,−0.84,−0.99),

T = (Tij)3×3 =




0.13 0.11 0.02

0.44 −0.57 0.14

0.11 0.16 −0.37




, T1 = (T1ij)3×3 =




0.01 0.01 0.05

0.07 0.11 0.02

0 −0.02 −0.11




,

T2 = (T2ij)3×3 =




0.12 0 −0.01

−0.01 0.02 0.04

−0.02 0.07 0.01




,

T3 = (T3ij)3×3 =




0.04 −0.01 −0.13

−0.01 −0.08 −0.02

−0.04 −0.16 −0.04




,

W = (Wij)3×3 =




−0.04 −0.05 0.16

0.19 −0.17 −0.02

0.03 0.13 0.04




,

W1 = (W1ij)3×3 =




−0.01 0.01 −0.03

0.08 −0.09 0.07

0.08 −0.01 0.01




,

W2 = (W2ij)3×3 =




0.06 0 0.04

0.04 −0.07 0.07

−0.02 −0.06 0.05




,
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W3 = (W3ij)3×3 =




0.04 −0.04 0.01

0.02 0.05 −0.05

−0.02 0.03 −0.02




.

In this case M =




1

1

1



, N =




0.9

0.9

0.9



, K = diag(0.16, 0.14, 0.07),

L = diag(0.09, 0.02, 0.17). u∗ = (0, 0, · · · , 0)T is an equilibrium point of system
(10).

By direct computation, it follows that the matrix

A =




2.4552 −0.0574 −0.0203

−0.1152 0.4071 −0.0210

−0.0608 −0.0728 2.0014




in Theorem 1 is an M -matrix, and there exist constants p1 = 0.04, p2 =

0.02, p3 = 0.02, such that qj =
3∑

i=1
piaij > 0, j = 1, 2, 3.

Let γk ≤ 0.2471, k ∈ Z. Then by Theorem 1 we see that the equilibrium point
u∗ of system (10) is globally asymptotically stable for tk − tk−1 ≥ 0, k ∈ Z.

By Matlab Toolbox, we see that the matrix P = diag(9.5603, 45.1883, 12.1201)
such that PΓ + ΓT P < 0. Thus the matrix

Γ =




−2.4552 0.0574 0.0203

0.1152 −0.3273 0.0210

0.0608 0.0728 −1.9755




in Theorem 2 is Lyapunov diagonal stable.

Let γk ≤ 0.0134, k ∈ Z. Then by Theorem 2 we see that, the equilibrium point
u∗ of system (10) is globally asymptotically stable for tk − tk−1 ≥ 0, k ∈ Z.

Example 2. Consider the neural network (10) with g1(u1) = tanh(0.7u1),
g2(u2) = tanh(0.5u2), g3(u3) = tanh(0.8u3), h1(u1) = 0.9 tanh(0.09u1),
h2(u2) = 0.9 tanh(0.08u2), h3(u3) = 0.9 tanh(0.07u3), C = diag(C1, C2, C3) =
diag(1.4, 1.5, 1.3), R = diag(R1, R2, R3) = diag(1.9, 2.1, 0.8),
D = diag(d1, d2, d3) = diag(−0.57,−0.77,−0.71),
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T = (Tij)3×3 =




0.02 −0.04 0.01

−0.14 0.65 0.74

−1.2 0.01 0.25




, T1 = (T1ij)3×3 =




0.02 0.07 −0.07

0.01 0.08 0.04

0.04 0.07 0.02




,

T2 = (T2ij)3×3 =




0.03 0.08 −0.01

0.01 0.13 0.07

−0.04 −0.01 0.06




,

T3 = (T3ij)3×3 =




0.08 0.02 0.01

0.01 0.08 0.01

−0.05 −0.06 0.03




,

W = (Wij)3×3 =




1.36 0.6 0.64

1.33 −0.15 0.2

0.38 0.23 −0.62




,

W1 = (W1ij)3×3 =




0.03 −0.04 −0.01

0.01 −0.03 −0.04

0.02 0.05 −0.04




,

W2 = (W2ij)3×3 =




−0.08 0.01 −0.03

0.07 0.02 0.01

−0.03 −0.03 −0.01




,

W3 = (W3ij)3×3 =




−0.03 0.05 −0.05

0.03 0.02 0.04

0.05 −0.06 −0.06




.

In this case M =




1

1

1



,K = diag(0.7, 0.5, 0.8), N =




0.9

0.9

0.9



,

L = diag(0.08, 0.07, 0.06). u∗ = (0, 0, · · · , 0)T is an equilibrium point of system
(10).
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Since there exist an matrix

P =




0.34 0 −0.02

0 0.32 −0.01

−0.02 −0.01 0.42




such that α = 0.8156 in Theorem 3. Let γk < 0.6586, k ∈ Z. Then by Theorem
3 we see that the equilibrium point u∗ of system (10) is globally asymptotically

stable for tk+1 − tk ≤ 0.6586− γk
2.5585 , k ∈ Z.

5 Conclusions

The problem of global asymptotic stability analysis for impulsive high-order
Hopfield type neural networks have been discussed in this paper. By means
of Lyapunov functions, some global asymptotic stability criteria have been
derived. These criteria are easy to verify and can be used to analysis the
dynamics of biological neural systems or to design globally stable artificial
neural networks.
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