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LOCAL LINEAR SPATIAL REGRESSION1 

BY MARC HALLIN, ZUDI LU AND LANH T. TRAN 

Universite Libre de Bruxelles, Chinese Academy of Sciences and London School 

of Economics, and Indiana University 

A local linear kernel estimator of the regression function x g- g(x): 
E[YilXi = x], x E IRd, of a stationary (d + 1)-dimensional spatial process 
{(Yi, Xi), i E ZN} observed over a rectangular domain of the form In := i = 

(i1,..., iN) Ec ZNI _ ik < nk,k= 1,..., N), n = (n ,..., nN) E N, is 
proposed and investigated. Under mild regularity assumptions, asymptotic 
normality of the estimators of g(x) and its derivatives is established. 

Appropriate choices of the bandwidths are proposed. The spatial process 
is assumed to satisfy some very general mixing conditions, generalizing 
classical time-series strong mixing concepts. The size of the rectangular 
domain In is allowed to tend to infinity at different rates depending on the 
direction in ZN. 

1. Introduction. Spatial data arise in a variety of fields, including econo- 

metrics, epidemiology, environmental science, image analysis, oceanography and 

many others. The statistical treatment of such data is the subject of an abundant 
literature, which cannot be reviewed here; for background reading, we refer the 
reader to the monographs by Anselin and Florax (1995), Cressie (1991), Guyon 
(1995), Possolo (1991) or Ripley (1981). 

Let ZN, N > 1, denote the integer lattice points in the N-dimensional Euclidean 

space. A point i = (il, ..., iN) in ZN will be referred to as a site. Spatial 
data are modeled as finite realizations of vector stochastic processes indexed 

by i E ZN: randomfields. In this paper, we will consider strictly stationary (d + 1)- 
dimensional random fields, of the form 

(1.1) I{(Yi, Xi);i e N} , 

where Yi, with values in IR, and Xi, with values in Rd, are defined over some 

probability space (Q, ?, P). 
A crucial problem for a number of applications is the problem of spatial 

regression, where the influence of a vector Xi of covariates on some response 
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variable Yi is to be studied in a context of complex spatial dependence. More 
specifically, assuming that Yi has finite expectation, the quantity under study in 
such problems is the spatial regression function 

g:xx g(x) := E[YiXi = x]. 

The spatial dependence structure in this context plays the role of a nuisance, 
and remains unspecified. Although g of course is only defined up to a P-null 
set of values of x (being a class of P-a.s. mutually equal functions rather than a 
function), we will treat it, for the sake of simplicity, as a well-defined real-valued 
x-measurable function, which has no implication for the probabilistic statements of 
this paper. In the particular case under which Xi itself is measurable with respect to 
a subset of Yj's, with j ranging over some neighborhood of i, g is called a spatial 
autoregression function. Such spatial autoregression models were considered as 

early as 1954, in the particular case of a linear autoregression function g, by 
Whittle (1954, 1963); see Besag (1974) for further developments in this context. 

In this paper, we are concerned with estimating the spatial regression (au- 
toregression) function g:x - g(x); contrary to Whittle (1954), we adopt a 
nonparametric point of view, avoiding any parametric specification of the possi- 
bly extremely complex spatial dependent structure of the data. 

For N = 1, this problem reduces to the classical problem of (auto)regression 
for serially dependent observations, which has received extensive attention in the 
literature; see, for instance, Roussas (1969, 1988), Masry (1983, 1986), Robinson 
(1983, 1987), Ioannides and Roussas (1987), Masry and Gy6rfi (1987), Yakowitz 
(1987), Boente and Fraiman (1988), Bosq (1989), Gy6rfi, Hardle, Sarda and Vieu 
(1989), Tran (1989), Masry and Tj0stheim (1995), Hallin and Tran (1996), Lu 
and Cheng (1997), Lu (2001) and Wu and Mielniczuk (2002), to quote only a 
few. Quite surprisingly, despite its importance for applications, the spatial version 
(N > 1) of the same problem remains essentially unexplored. Several recent papers 
[e.g., Tran (1990), Tran and Yakowitz (1993), Carbon, Hallin and Tran (1996), 
Hallin, Lu and Tran (2001, 2004), Biau (2003) and Biau and Cadre (2004)] deal 
with the related problem of estimating the density f of a random field of the form 
{Xi; i E ZN}, or the prediction problem but, to the best of our knowledge, the 
only results available on the estimation of spatial regression functions are those by 
Lu and Chen (2002, 2004), who investigate the properties of a Nadaraya-Watson 
kernel estimator for g. 

Though the Nadaraya-Watson method is central in most nonparametric regres- 
sion methods in the traditional serial case (N = 1), it has been well documented 
[see, e.g., Fan and Gijbels (1996)] that this approach suffers from several se- 
vere drawbacks, such as poor boundary performance, excessive bias and low effi- 
ciency, and that the local polynomial fitting methods developed by Stone (1977) 
and Cleveland (1979) are generally preferable. Local polynomial fitting, and par- 
ticularly its special case-local linear fitting-recently have become increasingly 
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popular in light of recent work by Cleveland and Loader (1996), Fan (1992), Fan 
and Gijbels (1992, 1995), Hastie and Loader (1993), Ruppert and Wand (1994) 
and several others. For N = 1, Masry and Fan (1997) have studied the asymptot- 
ics of local polynomial fitting for regression under general mixing conditions. In 
this paper, we extend this approach to the context of spatial regression (N > 1) by 
defining an estimator of g based on local linear fitting and establishing its asymp- 
totic properties. 

Extending classical or time-series asymptotics (N = 1) to spatial asymptotics 
(N > 1), however, is far from trivial. Due to the absence of any canonical ordering 
in the space, there is no obvious definition of tail sigma-fields. As a consequence, 
such a basic concept as ergodicity is all but well defined in the spatial context. And, 
little seems to exist about this in the literature, where only central limit results are 
well documented; see, for instance, Bolthausen (1982) or Nakhapetyan (1980). 
Even the simple idea of a sample size going to infinity (the sample size here 
is a rectangular domain of the form 1n := {i = (il, ..., iN) E zNI1 < ik < nk, 
k = 1,..., N}, for n = (nl,...,nnN) E ZN with strictly positive coordinates 
n , ..., n N) or the concept of spatial mixing have to be clarified in this setting. 
The assumptions we are making (A4), (A4') and (A4") are an attempt to provide 
reasonable and flexible generalizations of traditional time-series concepts. 

Assuming that x -+ g (x) is differentiable at x, with gradient x - g'(x), the main 
idea in local linear regression consists in approximating g in the neighborhood of x 
as 

g(z) _ g(x) + (g'(x)) (z - x) 

and estimating (g(x), g'(x)) instead of simply running a classical nonparametric 
(e.g., kernel-based) estimation method for g itself. In order to do this, we propose a 
weighted least square estimator (gn (x), g/ (x)), and study its asymptotic properties. 
Mainly, we establish its asymptotic normality under various mixing conditions, 
as n goes to infinity in two distinct ways. Either isotropic divergence (n == oo) can 
be considered; under this case, observations are made over a rectangular domain In 
of ZN which expands at the same rate in all directions-see Theorems 3.1, 3.2 
and 3.5. Or, due to the specific nature of the practical problem under study, the 
rates of expansion of In cannot be the same along all directions, and only a 
less restrictive assumption of possibly nonisotropic divergence (n -> oo) can be 
made-see Theorems 3.3 and 3.4. 

The paper is organized as follows. In Section 2.1 we provide the notation and 
main assumptions. Section 2.2 introduces the main ideas underlying local linear 
regression in the context of random fields and sketches the main steps of the 
proofs to be developed in the sequel. Section 2.3 is devoted to some preliminary 
results. Section 3 is the main section of the paper, where asymptotic normality is 
proved under the various types of asymptotics and various mixing assumptions. 
Section 4 provides some numerical illustrations. Proofs and technical lemmas are 
concentrated in Section 5. 
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2. Local linear estimation of spatial regression. 

2.1. Notation and main assumptions. For the sake of convenience, we 
summarize here the main assumptions we are making on the random field (1.1) 
and the kernel K to be used in the estimation method. Assumptions (A1)-(A4) are 
related to the random field itself. 

(Al) The random field (1.1) is strictly stationary. For all distinct i and j in ZN, 
the vectors Xi and Xj admit a joint density fi,j; moreover, Ifi,j(x, x") - 

f(x')f(x")l < C for all i,j E ZN, all x', x" E Rd, where C > 0 is some 
constant, and f denotes the marginal density of Xi. 

(A2) The random variable Yi has finite absolute moment of order (2 + 8); that is, 
E[IYil2+8] < oo for some 8 > 0. 

(A3) The spatial regression function g is twice differentiable. Denoting by g'(x) 
and g"(x) its gradient and the matrix of its second derivatives (at x), 
respectively, x g- g"(x) is continuous at all x. 

Assumption (Al) is standard in this context; it has been used, for instance, 
by Masry (1986) in the serial case N = 1, and by Tran (1990) in the spatial 
context (N > 1). If the random field Xi consists of independent observations, then 

Ifi,j(x, x") - f(x')f(x") vanishes as soon as i and j are distinct. Thus (Al) also 
allows for unbounded densities. 

Assumption (A4) is an assumption of spatial mixing taking two distinct forms 
[either (A4) and (A4') or (A4) and (A4")]. For any collection of sites c C ZN, 
denote by $2(t) the Borel a-field generated by {(Yi, Xi)l i E 8}; for each couple 
5', 5", let d(', -") := min{ Ii' - i"l | i' E 5', i" E S"} be the distance between d' 
and "/, where Ilill := (i2 + .. + i2)1/2 stands for the Euclidean norm. Finally, 
write Card(S) for the cardinality of S. 

(A4) There exist a function sp such that op(t) 4 0 as t -- oo, and a function 
': N2 -> IR+ symmetric and decreasing in each of its two arguments, such 

that the random field (1.1) is mixing, with spatial mixing coefficients a 

satisfying 

( a(l (('), B (8")) := sup{lP(AB) - P(A)P(B) , A E B(8'), B E S(8")} 

< f(Card(8'), Card(S"))p(d(8', /")), 

for any 8/, 8" C ZN. The function p, moreover, is such that 

00 

mlimoma E iN l{(j)}S/(2+) = 0 
j=m 

for some constant a > (4 + 8)N/(2 + 8). 

The assumptions we are making on the function 4r are either 
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(A4') ~f(n', n") < min(n', n") 

or 

(A4") r(n', n") < C(n' + n" + 1) for some C > 0 and K > 1. 

In case (2.1) holds with ifr 1, the random field {(Yi, Xi)} is called strongly mixing. 
In the serial case (N= 1), many stochastic processes and time series are 

known to be strongly mixing. Withers (1981) has obtained various conditions 
for linear processes to be strongly mixing. Under certain weak assumptions, 
autoregressive and more general nonlinear time-series models are strongly mixing 
with exponential mixing rates; see Pham and Tran (1985), Pham (1986), Tj0stheim 
(1990) and Lu (1998). Guyon (1987) has shown that the results of Withers under 
certain conditions extend to linear random fields, of the form Xn = LjeZN gj Zn-j, 
where the Zj's are independent random variables. Assumptions (A4') and (A4") 
are the same as the mixing conditions used by Neaderhouser (1980) and Takahata 
(1983), respectively, and are weaker than the uniform strong mixing condition 
considered by Nakhapetyan (1980). They are satisfied by many spatial models, 
as shown by Neaderhouser (1980), Rosenblatt (1985) and Guyon (1987). 

Throughout, we assume that the random field (1.1) is observed over a rectan- 
gular region of the form n :=' {i = (il, ..., iN) E ZNI 1 < ik < nk, k = 1,..., N}, 
for n = (nl, . .., nN) E ZN with strictly positive coordinates nl, ..., nN. The total 

sample size is thus i:= nk=l nk. We write n -- o as soon as 
minlm<k<Nnk} -- oo. The rate at which the rectangular region expands thus can 
depend on the direction in ZN. In some problems, however, the assumption that 
this rate is the same in all directions is natural: we use the notation n =: oo if 
n -- oc and moreover Inj/nkl < C for some 0 < C < oo, 1 < j, k < N. In this 
latter case, n tends to infinity in an isotropic way. The nonisotropic case n -> oo is 
less restrictive. For more information on the nonisotropic case, we refer to Bradley 
and Tran (1999) and Lu and Chen (2002). 

Assumption (A5) deals with the kernel function K: Rd -- R to be used in the 
estimation method. For any c := (co, cl)T E Rd+l, define 

(2.2) Kc(u) := (co + cu) K(u). 

(A5)(i) For any c E Rtd+l, IKlc(u) is uniformly bounded by some constant K+, 
and is integrable: fRd+l I Kc(x) I dx < oo. 

(ii) For any c E IRd+l, IKcl has an integrable second-order radial majorant, 
that is, QK(x) := supllyi>llXll[IlyllI2Kc(y)] is integrable. 

Finally, for convenient reference, we list here some conditions on the asymptotic 
behavior, as n -+ oo, of the bandwidth bn that will be used in the sequel. 

(B 1) The bandwidth bn tends to zero in such a way that nibdn - oc as n -- oo. 
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(B2) There exist two sequences of positive integer vectors, p = Pn := (P,... 
PN) E ZN and q = qn := (q,..., q) E ZN, with q = qn --> oo such that p = 

Pn '= P = o((nibd)l/2), q/P -k 0 and nk/pk -> o for all k = 1,..., N, 
and fin^(q) -- 0. 

(B2') Same as (B2), but the last condition is replaced by (niK+1/p)q(q) > 0, 
where K is the constant appearing in (A4"). 

(B3) bn tends to zero in such a manner that qb/[a(2+)] > 1 and 
00 

(2.3) bnSd/(2+8) L tN-l {(t)}1/(2+a) __ 0 as n -- oo. 
t=q 

2.2. Local linear fitting. Local linear fitting consists in approximating, in a 

neighborhood of x, the unknown function g by a linear function. Under (A3), we 
have 

g(z) g g(x) + (g'(x)) (z - x) o : a + (z - x). 

Locally, this suggests estimating (ao, aT) = (g(x), g'(x)), hence constructing an 
estimator of g from 

( gn(X) _ (a0 
gn(x) - a 

(2.4) Xa)2 xi - x 
(2.arg min (Yj-ao-a - (X-x))K(X ) 

(ao,al)ERtd+l bn' 

where bn is a sequence of bandwidths tending to zero at an appropriate rate as n 
tends to infinity, and K(.) is a (bounded) kernel with values in R+. 

In the classical serial case (N = 1; we write i and n instead of i and n), the so- 
lution of the minimization problem (2.4) is easily shown to be (XTWX)-1XTWY, 
where X is an n x (d + 1) matrix with ith row (1, bnl(Xi - x)), W= 

b-ldiag(K(X,-X), ..., K(Xb-)), and Y= (Y1,..., Yn)T [see, e.g., Fan and 

Gijbels (1996)]. In the spatial case, things are not as simple, and we rather write 
the solution to (2.4) as 

aflb = U) Vn where Vn V= fnO and Un= n OO n) , \albn 

- 
n n 

Vnl UnIO Unl 1 

with [letting ( bn ) := 1 

(Vn)i := (nb d)-1 xi -( ) K( ib )- i = O, ..., d, n 
\: 

i 
bn bni b 

' 
n 

and 

(U~n)i:= 
(nbd)1 l= 

X 
j 

-- 

XV- 
' Z(n-iX)=(nX K(Xd1 , i,ex=x0,..., d. 

JE~ 
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It follows that 

H := (ao-ao ( gn(x)-g(x) 
) 

(2.5n - albnJ \ (g'n(x) - g'(x))bn) 
(2.5) 

u-I -u ( ao U-L n Vn- Un n ( aWn 
albn)}-'Un 

n, 

where 

W ( Wn 
)0 

Wnlin 

(2.6) / x X - 
(Wn),i (ib d)- ( (X i = O,..., d, n 

6n 
Z i b n bn 

and Zj := Yj - ao - a (Xj - x). 
The organization of the paper is as follows. If, under adequate conditions, we 

are able to show that: 

(C1) (ibnd)1/2(Wn - EWn) is asymptotically normal, 

(C2) (fibd)l/2EWn -- 0 and Var((inbd)/2Wn) -> E, and 

(C3) Un - U, 

then (2.5) and Slutsky's classical argument imply that, for all x (all quantities 
involved indeed depend on x), 

(ibd)l 1/2( (X)- g(x) ) = (nb d)l/2Hn N(O0, U- II(U-I)T). n 
(g(x) - g'(x))bn 

This asymptotic normality result (with explicit values of E and U), under various 
forms (depending on the mixing assumptions [(A4') or (A4")], the choice of the 
bandwidth bn, the way n tends to infinity, etc.), is the main contribution of this 

paper; see Theorems 3.1-3.5. Section 2.3 deals with (C2) and (C3) under n -> oo 
(hence also under the stronger assumption that n =X oo), and Sections 3.1 and 3.2 
with (C1) under n = oo and n -> oo, respectively. 

2.3. Preliminaries. Claim (C3) is easily established from the following 
lemma, the proof of which is similar to that of Lemma 2.2, and is therefore omitted. 

LEMMA 2.1. Assume that (Al), (A4) and (A5) hold, that bn satisfies 

assumption (B 1) and that nkbd/[a(2+^)] > 1 as n -- oc. Then,for all x, 

f (x) I K(u) du f(x) fu K(u) du 

Un -U :=. - 
f (x) uK(u)du f(x) uu'K(u) du 

asn -- oo. 
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The remainder of this section is devoted to claim (C2). The usual Cramer-Wold 
device will be adopted. For all c := (co, c1) ) I l1+d, let 

An : (iibd)/2crWn = (nbd)-1/2 y Z c(xj -x) n n n n .jeJn ' K 

with Kc(u) defined in (2.2). The following lemma provides the asymptotic 
variance of An for all c, hence that of (n^bd)l/2Wn. 

LEMMA 2.2. Assume that (Al), (A2), (A4) and (A5) hold, that bn satisfies 

assumption (B1) and that nkb/[(+)] > 1 for all k = 1,..., N, as n > oo. 
Then 

(2.7) lim Var[An] = Var(Yj,X = x)f(x) K2(u) du = c c, n---> oc d 

where 

K2 (u) du fuTK2(u)du 
:= Var(YjXj = x)f(x) K()) du 

uK2 (u) du UUrK2(U) duK 

Hence limno, Var((nibd) 1/2Wn) = I. 

For the proof see Section 5.1. 
Next we consider the asymptotic behavior of E[An]. 

LEMMA 2.3. Under assumptions (A3) and (A5), 

E[An] = v/bnb2f (x) tr (x) uuKc(u) du + o(fidb2) 
(2.8) - 

- 

= Vnbb [coBo(x) + cB i (x)] + o(indb ), 

where 

d d 

Bo(x):= f(x) f g(x) uiujK(u) du, 
i=1 j= 

d d 

Bi(x) := f (x) ygij(x) uiujuK(u)du, 
i=1 j=1 

gij (x) = a2g(x)/laxi axj, i, j = 1,..., d, andu := (ul, ...ud) E Rd. 

For the proof see Section 5.2. 
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3. Asymptotic normality. 

3.1. Asymptotic normality under mixing assumption (A4'). The asymptotic 
normality of our estimators relies in a crucial manner on the following lemma 
[see (2.6) for the definition of Wn(x)]. 

LEMMA 3.1. Suppose that assumptions (Al), (A2), (A4), (A4') and (A5) 
hold, and that the bandwidth bn satisfies conditions (B 1)-(B3). Denote by a2 the 
asymptotic variance (2.7). Then (nfbn) l/2(c [Wn(x) - EWn(x)]/o) is asymptoti- 
cally standard normal as n -> oo. 

For the proof see Section 5.3. 
We now turn to the main consistency and asymptotic normality results. First, we 

consider the case where the sample size tends to oo in the manner of Tran (1990), 
that is, n = oo. 

THEOREM 3.1. Let assumptions (A1)-(A3), (A4') and (A5) hold, with 
yp(x) = O(x-~) for some ,/ > 2(3 + 8)N/8. Suppose that there exists a sequence 
of positive integers q = qn -- oo such that qn = o((fib)1/(2N)) and niq- -> 0 as 
n =: oo, and that the bandwidth bn tends to zero in such a manner that 

(3.1) qbnd/[a(2+)] > 1 

for some (4 + 8)N/(2 + 8) < a < /l/(2 + 6) - N as n =X oo. Then, 

(.bd) /2 (gn(x)--g(x)) 1 (Bo(x) 2 (2ne) Abn(g (x) - g'() Bi(x) 
nU 

(3.2) n"Vn- 1 (x) 

t(o, u- I (U-1)) 
as n = oo, where U, E, Bo(x) and B1(x) are defined in Lemmas 2.1, 2.2 and 2.3, 
respectively. If, furthermore, the kernel K(.) is a symmetric density function, 
then (3.2) can be reinforced into 

(nibd)l/2[gn ()- g(x)- Bg(x)b] _ 
(2 

2 
(x) 0 

(fibd+2)1/2[g (x) - g'(x)] 0 a ) ()) 

[so that gn (x) and g n(x) are asymptotically independent], where 

.d Var(YjIXj = x) fK2(u) du 
Bg(x) 1 u) (u)du,f )(x) f 

and 

2 (X) Var(Yj IXj = x) a I x) f (x) 

K ---1 - -1d 
x uuT K(u)du JuuTK2(u) du J uuT K(u)du 
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The asymptotic normality results in Theorem 3.1 are stated for gn (x) and g (x) 
at a given site x. They are easily extended, via the traditional Cramer-Wold 
device, into a joint asymptotic normality result for any couple (xl, x2) (or any 
finite collection) of sites; the asymptotic covariance terms [between gn(xl) and 

gn(X2), gn(Xi) and g'(x2), etc.] all are equal to zero, as in related results on density 
estimation [see Hallin and Tran (1996) or Lu (2001)]. The same remark also holds 
for Theorems 3.2-3.5 below. 

PROOF OF THEOREM 3.1. Since q is o((ibd)l/2N), there exists Sn -* 0 such 

that q - (nbd)l/2Nsn. Take Pk := (nbd)1/2Ns2, k = 1, ..., N. Then q/pk 
2 

, 0 p = (fbd)1/2SN/2 = o((inbd)1/2) and i(p(q) = nq-u -> 0. As n oo, 

p := < (inbd)1/2 for large n. It follows that n/p > (fnbid)1/2 -> oo, hence 

nk/Pk -> oc for all k. Thus, condition (B2) is satisfied. 
Because qp(j) = Cj-~, 

oo oO 

ma E jN-11 {(j)}/(2+S) = Cma E 
jN-l j-1/(2+8) 

j=m =m 

< CmamN-tI8/(2+8) = m-[t^8/(2+6)-a-N] 

a quantity that tends to zero as m -> oo since (4 + 8)N/(2 + 8) < a < gzu/ 
(2 + 8) - N, hence g//(2 + 8) > a + N. Assumption (A4) and the fact that 

qbd/a2+ > 1 imply that bn d/(2+?) < qa and that (2.3) holds. Now 

Hn - U- 1EWn = UI (Wn - EWn) + (Un - U-1)EWn. 

The theorem thus follows from Lemmas 2.1, 2.3 and 3.1. D 

One of the important advantages of local polynomial (and linear) fitting over the 
more traditional Nadaraya-Watson approach is that it has much better boundary 
behavior. This advantage often has been emphasized in the usual regression and 
time-series settings when the regressors take values on a compact subset of Rd. 

For example, as Fan and Gijbels (1996) and Fan and Yao (2003) illustrate, for 
a univariate regressor X with bounded support ([0, 1], say; here, d = 1), it can 
be proved, using an argument similar to the one we develop in the proof of 
Theorem 3.1, that asymptotic normality still holds at the boundary point x = cbn 
(here c is a positive constant), but with asymptotic bias and variances 

Bg' - j_ u K(u)du, 

(3.3) ?2 0x2 Xo=0+ 
c 

(3.3) 
2 _Var(Yj Xj = 0+) f_ !K2(u) du 
60 '- -f(0+) 
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and 

= cc --2 - Co- 
(3.4) ,2' V ar(YIjXI- O +) u2 K(u)du 

J 
u2K2(u)du, 

f(0+) Jc _ -c _ 

respectively. This advantage is likely to be much more substantial as N grows. 
Therefore, results on the model of (3.3) and (3.4) on the boundary behavior 
of our estimators would be highly desirable. Such results, however, are all but 
straightforward, and we leave them for future research. On the other hand, the 
statistical relevance of boundary effects is also of lesser importance, as the 
ultimate objective in random fields, as opposed to time series, seldom consists 
in "forecasting" the process beyond the boundary of the observed domain. 

In the important particular case under which q (x) tends to zero at an exponential 
rate, the same results are obtained under milder conditions. 

THEOREM 3.2. Let assumptions (A1)-(A3), (A4') and (A5) hold, with 

op(x) = O(e-~x) for some ~ > O. Then, if bn tends to zero as n = oo in such a 
manner that 

(3.5) (nibd(l+2N/a(2+8)) 1/2N (logn)-I -- 00 

for some a > (4 + 8)N/(2 + 8), the conclusions of Theorem 3.1 still hold. 

PROOF. By (3.5), there exists a monotone positive function n -* g(n) such 

that g(n) -+ oc and (bd(l+2NS/a(2+S)))l/2N(g(n) log n)-1 - o as n = oo. Let 

q = (fibd)/2N(g(n))-l, and Pk = (bd)1/2Ng-1/2(n). Then q/pk 
g-1/2(n) - 0, p= (nibd)/2g-N/2(n) o((bd)/2) and nk/pk -- o as n oo. 
For arbitrary C > 0, q > C log n for sufficiently large ni. Thus 

ni p(q) < Cie-~q < Cinexp(-C log n) = Cn- 1, 

which tends to zero if we choose C > 1/~. Hence condition (B2) is satisfied. Next, 
for 0 < < s, 

00 00 

qa x iN- 1(i)8/(2+8) < Cqa 3 iN-le- i8/(2+8) 
i=q i=q 

00 

<Cqa e-'ia/(2+8) 
i=q 

< Cqae-' q8/(2+?) 

Note that bd > Cn- 1 and q > C log ni, so that assumption (A4) holds. In addition, 

qbhd/[a(2+a)] = (nbd+2N8d/a(2+))1/2N (g(n))-l > 1 '-n n-- 
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for in large enough. It is easily verified that this implies that condition (B3) is 
satisfied. The theorem follows. D 

Note that, in the one-dimensional case N = 1, and for "large" values of a, the 
condition (3.5) is "close" to the condition that nbd -- oo, which is usual in the 
classical case of independent observations. 

Next we consider the situation under which the sample size tends to oo in the 
"weak" sense (i.e., n - oo instead of n = oo). 

THEOREM 3.3. Let assumptions (A1)-(A3), (A4') and (A5) hold, with 

(o(x) = O(x -L) for some tu > 2(3 + 8)N/8. Let the sequence of positive integers 
q = qn -- oo and the bandwidth bn factor into bn ':= ni1 bni, such that 

fnq-~ -- 0, q = o(minl<k<N(nkbnd)1/2), and 

qbnd/a(2+?) > 1 for some (4 + 8)N/(2 + 8) < a < t8/(2 + 8) - N. 

Then the conclusions of Theorem 3.1 hold as n -- oo. 

PROOF. Since q = o(min <k<N(nkbd )1/2), there exists a sequence Snk -? 0 
such that 

q min ((nkbdk) snk) as n co. 

Take Pk = (nkbdk)1/2s 2. Then q/Pk < 0, p = ( nb2 

o((ibnd)1/2) and ni^(q) = iq-" -> 0. As n -> oo, Pk < (nkbk)1/2, hence 

nk/Pk > (nkbn d)1/2 -> c. Thus condition (B2) is satisfied. The end of the proof 
is entirely similar to that of Theorem 3.1. 0 

In the important case that sp(x) tends to zero at an exponential rate, we have the 

following result, which parallels Theorem 3.2. 

THEOREM 3.4. Let assumptions (A1)-(A3), (A4') and (A5) hold, with 

qo(x) = O(e-~x) for some 4 > O. Let the bandwidth bn factor into bn := ni 1 bni 
in such a way that, as n -> oo, 

(3.6) min {(nkbk) /2}bdS/a(2 )-1 ( oo 

for some a > (4 + 8)N/(2 + 8). Then the conclusions of Theorem 3.1 hold as 
n -- oo. 

PROOF. By (3.6) there exist positive sequences indexed by nk such that 

gnk t oo as nk -> oo and 

min {()d) 1/2-1 dI d^/a(2+^6)(log1)-1 -> oo min I{(nkbnk gnk }Vn l<k<N 
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as n -- oo. Let q :- minl<k<N{(nkbd)l/2(gn)-1} and Pk := (nkbdk)1/2g-1/2 

Then q/ -1/2 - 0p = (nbd)1/2 1 g-1/2 = o((bn^)1/2) and nk/pk = 

(nkbnd) 1/2g12 -- oo as n -- oo. For arbitrary C > 0, q > C log for sufficiently 

large ni. Thus 

niq(q) < Cfe-~q < CCn exp(-C~ logi) = Cn-C+l, 

which tends to zero for C > 1/~. Hence, condition (B2) is satisfied. Next, for 
0< ~' <, 

00 00 

qa EiN (i)2+) iN(i) < Cq i-e-i/(2+) 
i=q i=q 

oo 

<Cqa e-W'i8/(2+8) 
i=q 

< Cqae- 'q1l(2+6) 

Note that q > C log i. Assumption (A4') and (3.1) imply that qbdla(2+) > 1 forn 

large enough. This in turn implies that condition (B3) is satisfied. The theorem 
follows. - 

3.2. Asymptotic normality under mixing assumption (A4"). We start with an 

equivalent, under (A4"), of Lemma 3.1. 

LEMMA 3.2. Suppose that assumptions (Al), (A2), (A4) or (A4"), and (A5) 
hold, and that the bandwidth bn satisfies conditions (B 1), (B2') and (B3). Then the 
conclusions of Lemma 3.1 still hold as n -- oo. 

PROOF. The proof is a slight variation of the argument of Lemma 3.1, and we 

describe it only briefly. The only significant difference is in the checking of (5.18). 
Let U, ..., UM be as in Lemma 3.1. By Lemma 5.3 and assumption (A4"), 

M 

Q1 < C E[P + (M - i)P + 1]K(P(q) 
i=l 

< CV M + 1 p(q) < C (n( p) p (q), 

which tends to zero by condition (B2'); (5.18) follows. O 

We then have the following counterpart of Theorem 3.1. 
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THEOREM 3.5. Let assumptions (A1)-(A3), (A4") and (A5) hold, with 

(p(x) = O (x -) for some t > 2(3 + )N/8. Suppose that there exists a sequence of 
positive integers q = qn --> oo such that qn = o((nbd)l/2N) and fiK+lq-tL-N - 0 
as n =X oo, and that the bandwidth bn tends to zero in such a manner that (3.1) is 

satisfied as n =: oo. Then the conclusions of Theorem 3.1 hold. 

PROOF. Choose the same values for P1, .., PN and q as in the proof of 
Theorem 3.1. Note that, because p > qN and njK+lq--tN = o(1), 

(nK+l/p)q(q) 

< 

CnKi+lq-Nq- = +lq-t-N 0 

as n == oo. The end of the proof is entirely similar to that of Theorem 3.1, with 
Lemma 3.2 instead of Lemma 3.1. D 

Analogues of Theorems 3.2-3.4 can also be obtained under assumption (A4"); 
details are omitted for the sake of brevity. 

4. Numerical results. In this section, we report the results of a brief Monte 
Carlo study of the method described in this paper. We mainly consider two models, 
both in a two-dimensional space (N = 2) [writing (i, j) instead of (il, i2) for the 
sites i E Z2]. For the sake of simplicity, X (written as X) is univariate (d = 1). 

(a) Model 1. Denoting by {ui j, (i, j) E Z2} and {ei,j, (i, j) E Z2} two mutually 
independent i.i.d. J (O, 1) white-noise processes, let 

Yi,j = g(Xi,j) + ui,j with g(x) e:= ex + 2e- 

where {Xi,j, (i, j) E Z2} is generated by the spatial autoregression 

Xij = sin(Xi-l,j + Xi,j-1 + Xi+l,j + Xi,j+l) + eij. 

(b) Model 2. Denoting again by {ei,j, (i, j) E Z2} an i.i.d. cA(0, 1) white-noise 

process, let {Yij, (i, j) E Z2} be generated by 

Yi,j = sin(Yi_l,j + Yi,j-1 + Yi+l,j + Yi,j+i) + ei,j, 

and set 

(4.1) X? :=Yi-1,j + Yi,j + Yi+, + Yi,+i. 

Then the prediction function x h g(x) := E[Yi, iX? = x] provides the optimal 1,j 

prediction of Yij based on X? in the sense of minimal mean squared prediction 
error. Note that, in the spatial context, this optimal prediction function g(.) 
generally differs from the spatial autoregression function itself [here, sin(.)]; 
see Whittle (1954) for details. Beyond a simple estimation of g, we also will 

investigate the impact, on prediction performance, of including additional spatial 
lags of Yi,j into the definition of Xi,j. 
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Data were simulated from these two models over a rectangular domain of m x n 
sites-more precisely, over a grid of the form {(i, j) 76 < i < 75 + m, 76 < j < 
75 + n}, for various values of m and n. Each replication was obtained itera- 
tively along the following steps. First, we simulated i.i.d. random variables eij 
over the grid {(i, j), i = 1,..., 150 + m, j = 1,..., 150 + n}. Next, all initial val- 
ues of Yij and Xij being set to zero, we generated Yij's (or Xi 's) over {(i, j), 
i = 1,..., 150 + m, j = 1, ...,150 + n} recursively, using the spatial autore- 
gressive models. Starting from these generated values, the process was iterated 
20 times. The results at the final iteration step for (i, j) inside {(i, j)176 < i < 
75 + m, 76 < j < 75 + n} were taken as our simulated m x n sample. This dis- 
carding of peripheral sites allows for a warming-up zone, and the first 19 iterations 
were taken as warming-up steps aiming at achieving stationarity. From the result- 
ing m x n central data set, we estimated the spatial regression/prediction function 
using the local linear approach described in this paper. A data-driven choice of 
the bandwidth in this context would be highly desirable. In view of the lack of 
theoretical results on this point, we uniformly chose a bandwidth of 0.5 in all 
our simulations. The simulation results, each with 10 replications, are displayed 
in Figures 1 and 2 for Models 1 and 2, respectively. Model 1 is a spatial regres- 
sion model, with the covariates Xi,j forming a nonlinear autoregressive process. 
Inspection of Figure 1 shows that the estimation of the regression function g(.) is 
quite good and stable, even for sample sizes as small as m = 10 and n = 20. 

Model 2 is a spatial autoregressive model, where Yij forms a process with 
nonlinear spatial autoregression function sin(.). Various definitions of Xi,j, 
involving different spatial lags of Yi,j, yield various prediction functions, which 
are shown in Figures 2(a)-(f). The results in Figures 2(a) and (b) correspond to 

Xi,j = X?J := Yi-,j + Yi,j-l + Yi+l,j + Yi,j+1, that is, the lags of order +1 
of Yi,j which also appear in the generating process (4.1). In Figure 2(a), the sample 
sizes m = 10 and n = 20 are the same as in Figure 1, but the results (still, for 10 
replications) are more dispersed. In Figure 2(b), the sample sizes (m = 30 and 
n = 40) are slightly larger, and the results (over 10 replications) seem much more 
stable. These sample sizes therefore were maintained throughout all subsequent 
simulations. In Figure 2(c), we chose 

ij := Yi-2,j + Yij-2 + Yi-l,j + Yi,j-1 + Yi+l,j + Yi,j+l + Yi+2,j + Yi,j+2, 

thus including lagged values of Yi,j up to order ?2, in an isotropic way. 
Nonisotropic choices of Xi, were made in the simulations reported in Fig- 
ures 2(d)-(f): Xd := Yi- j + Yi, - in Figure 2(d), X. := Yij + Yi,j+l in I,j ijj 
Figure 2(e) and X := i2,j + Yi,j-2 + Yi-l,j + Yi,j-1 in Figure 2(f). 

A more systematic simulation study certainly would be welcome. However, it 
seems that, even in very small samples (see Figure 1), the performance of our 
method is excellent in pure spatial regression problems (with spatially correlated 
covariates), while larger samples are required in spatial autoregression models. 
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FIG. 1. Simulation for Model 1. The local linear estimates corresponding to the 10 replications 
(solid lines) and actual spatial regression curve (dotted line) g(x) = E(Yij Xij = x) = ex + 2e-x, 
for sample size m = 10, n = 20, with autoregressive spatial covariate Xij. The scatterplot shows the 
observations (Xij, Yi) corresponding to one typical realization among 10. 

This difference is probably strongly related to differences in the corresponding 
noise-to-signal ratios. Letting g(x) = E(YIX = x) and E = Y - g(X), the noise- 

to-signal ratio is defined as Var(E)/ Var(g(X)); see, for example, Chapter 4 in Fan 
and Gijbels (1996) for details. In a classical regression setting, independence is 

generally assumed between X and ?, so that this ratio, in simulations, can be set 
in advance. Such an independence assumption cannot be made in a spatial series 

context, but empirical versions of the ratio nevertheless can be computed from each 

replication, then averaged, providing estimated values. In Model 1 this estimated 
value (averaged over the 10 replications) of the noise-to-signal ratio is 0.214. 
The values for the six versions of Model 2 (still, averaged over 10 replications) 
are much larger: (a) 12.037, (b) 13.596, (c) 43.946, (d) 47.442, (e) 116.334 and 

(f) 88.287. 
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(a) (b) (C) 
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FIG. 2. Simulation for Model 2. The local linear estimates corresponding to the 10 replica- 
tions (solid lines) of the spatial prediction function g(x) = E(Yj IXi = x), with sample sizes 
m = 10, n = 20 in (a) and m = 30, n = 40 in (b)-(f), for different spatial covariates Xij's: 
(a) x9. Y1 l,j + Yij-1 + Y,+lj + Yi,j+l; (b) X Y 1,j ? y^,1 1 ? ? + 
(c) X^. := yi_2,j + yi,-2 + y1-ij + yi,1 + yi+i,j + yi,j+i + ? +2,j + Yi,j+2; 
(d) xd Yil,j + ,j-;(d (e) = + and (f) = j 2 

.i ' j + '.' . .' . 

Yi 1,j + Yi j_1. The scatterplot shows the observations (Xi, Yij) corresponding to one typical 
realization among 10. 

5. Proofs. 

5.1. Proof of Lemma 2.2. The proof of Lemma 2.2 relies on two intermediate 
results. The first one is a lemma borrowed from Jbragimov and Linnik (1971) or 
Deo (1973), to which we refer for a proof. 

LEMMA 5.1. (i) Suppose that (Al) holds. Let ?r(F) denote the class 

of F-measurable random variables ^ satisfying \\1\\r := (EjIIr)l/r < 0O. Let 
X E ?r((,S)) and Y e X?(?3(-S')). Then for any 1 < r, s, h < oo such that 
r-1 + -l + h-1=1l 

IE[XY]- E[X]E[Y]I < CIIXIlrYIIlls[a(8, /S)]l/\h 
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where IIX12 := II(X'X)1/2llr. 

(ii) If, moreover, IIXII := (XrX)1/2 and jYI are P-a.s. bounded, the right-hand 
side of (5.1) can be replaced by Ca(J, 8'). 

The second one is a lemma of independent interest, which plays a crucial role 
here and in the subsequent sections. For the sake of generality, and in order for this 
lemma to apply beyond the specific context of this paper, we do not necessarily 
assume that the mixing coefficient a takes the form imposed in assumption (A4). 

Before stating the lemma, let us first introduce some further notation. Let 

An (bd)- 1/2 E x) 
niIn 

and 

Var(An) = (nbd)-1 E[A(x)] + (bn) 1 E E[Ai(x)Aj(x)] 
jEln {i,j En 13 k:ik fjk} 

:=I(x) +R(x), say, 

where rj(x) = ZjKC(x- Xj) and Aj(x) := rj(x) - Erj(x). For any cn := 

(cnl,..., CnN) E 2N with 1 < cnk < nk for all k = 1,..., N, define J(x) := 
8d/(4-+-8)+d N-IN bln (4 )H nk=i (nkcnk) and 

N k 
N ns nk ns 

J2(x) := b2d/(2+8)ni E E E { (jl. jN)}a/(2 +a) 
k=l 11l=1 |jkl=Cnk 1jsl=l 

s=l,...,k-1 s=k+l,...,N 

LEMMA 5.2. Let {(Yj, Xj); j E ZN} denote a stationary spatial process with 
general mixing coefficient 

rp(j) = P(jl, .. jN) 

:= sup{IP(AB) - P(A)P(B)I: A E 2({Yi, Xi}), B E s({Yi+j, Xi+j})}, 

and assume that assumptions (Al), (A2) and (A5) hold. Then 

(5.2) IR(x)l < C(fibnd)-[J(x) + J2(x)]. 

Iffurthermore (p(j, ..., jN) takes theform (lljjII), then 

N linil 
(5.3) J2(x) < Cbnd/(2+)nf tN-{(t)}/ ). 

k=1 t=Cnk 
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PROOF. Set L = Ln = bnd/(4+). Defining Zlj := ZjI{Izjl<L} and Z2j:= 
ZjI{Izjl>L}, let 

]ij(x) := ZijKc(x- Xj) and Aij(x) := ij(x) -Er/ij(x), i = 1, 2. 

Then Zj = Zlj + Z2j, Aj(x) = Aj (x) + A2j(x), and hence 

EAj(x)Ai(x) = EAlj(x)Ai(x) + EAlj(x)A2i(x) 

+ EA2j ( Aii(x) + EA2j(x) A2i(x). 

First, we note that 

bnd EAij(x)A2i(x) 

< {bn Er 2j (x)b} 1/2{bndE2i(x)} 1/2 

< {bndEZ2 K2 ((x - Xj)/bn) } /2 {bndEZ2iK2((x - Xj)/bn) }1/2 

< C{bndEIZil2zl>L}Kc((x - X)/bn)}/2 

< C{L-S8bdElZj12+SI{Zjl>L}Kc((x- Xl)/bn)}/2 

< CLn8/2 = Cbnd/(4+6) 

Similarly, 

b dlEA2j(X)Ali(x)l < CLn8/2 = Cbdl(4+^) and 

bnd lEA2j(x)A2i(x)l < Cb2Sdl/(4+). 
Next, for i +j, letting Kn) lb (x) (l/bK(x/bn) and Kcn(x) : (l/b)Kc(x/bn), 

bn dE Alj(x)Ali(x) 

= bd{EZiZljKcn(x 
- Xi)Kcn(x - 

Xj) 

- EZliKcn(x - Xi)EZljKcn(x - 
Xj)} 

=bdJ Kcn(x u)Kcn (x-v) 

x {glij(u, v) fi,j(u, V)- g ((u)gl) (v)f(u) f(v) }du dv, 

where glij(u,v) := E(ZliZljlXi = u,Xj = v), and gll)(u) := E(ZiilXi = u). 
Since, by definition, IZli < Ln, we have that iglij(u, v) I < L and Ig(l)(u) x 

gl)(v) L2. Thus 

glij(u, v)fi,j(u, v) - g)(u)g (v)f(u)f(v) 

g glij (u ,, v(f(, v) - f(u)f(v)) 

+ (glij (u, v) - gl) (u)g1) (v))f (u) f (v) l 

< L2 fi,j(u, v) - f(u)f(v) + 2L2f(u)f(v). 
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It then follows from (Al) and the Lebesgue density theorem [see Chapter 2 of 

Devroye and Gy6rfi (1985)] that 

bndIEAlj(X)Aili(x) 

< bnd JKcn(x - u) Kcn(x - v) L ,,j(u, v) - f(u) f(v)I du dv 

(5.5) + bdff 2L2 f (u)f(v) dudv 

<Cbd (L2f Kcn(x-u)du + 2L2f Kn(x - u)f(u)du 

< CbdL2 = Cbnd/(4+^ ) 

Thus, by (5.4) and (5.5), 

(5.6) b xbndIEAj(x)Ai(x) < CLn-/2 + CbL = Cbd/(4+ . 

Let Cn = (cnl, ..., CnN) E RN be a sequence of vectors with positive compo- 
nents. Define 

l1 := {i j E In: ljk - ikl < cnk for all k = 1, ..., N} 

and 

S2 = i,ij n: lk - ik > Cnk for some k = 1, .., N}. 

Clearly, Card(S1) < 2Ni nkNl= Cnk. Splitting R(x) into (iibn)-1(J1 + J2), with 

:= l E EAj(x)/Ai(x), t = 1,2, 
i, jef 

it follows from (5.6) that 

N 

(5.7) | Ji < Cbnd/(4+6)+d Card(1i) < 2NCbd/(4+S)+drn C^ k 
k=l 

Turning to J2, we have IJ21 ' 
Li,jE82 JEAj(x)Ai(x)l. Lemma 5.1, with 

r =s = 2 + andh = (2 + )/8, yields 

JEAj(x)Ai(x)l 

< C(E ZiKc((x - Xi)/bn)12+)2/(2+6){((j _ i)}-/(2+s) 

< Cb2d/(2+8)(bndE Zi K,((x - Xi) /bn) 2+ )2/(2+)(j-i)}/(2+) 

< Cb2nd(2+S) {o(j - i)/(2+s) 

Hence, 

(5.9) J21 < Cb2d/(2+s) 
- L{o(j i)}s/(2+S) := Cb2d/(2+) 2, say. 

i,jed2 

2488 



LOCAL LINEAR SPATIAL REGRESSION 

We now analyze the quantity E2 in detail. For any N-tuple 0 : e = (e1, ..., N) E 
{0, 1}N, set 

8(t1, ...,IN) := {i,j E In: jk -ikI > Cnk if ek = 1 and 

jk- ikl < Cnk if k = 0, k = ,..., N} 

and 

i(j - i)}-/(2+). V(, ..... -, N) := EE { 
i,jE(el, ....,eN) 

Then 

(5.10) E2 = E J{(j - i)}S/(2+6) = 
i,jE'2 o0e 

E V(el,..., eN). 
E 0, 1}N 

Without loss of generality, consider V(l,0,...,0). Because Eik-kl>cfk() 

decomposes into E"nk-Cnk- Ink .(. *) + nk-cnk-1 Enk ( .), Eik-1 EJk-lknk+e 1 (-- ,nk--Cnk-1 nk ik=l ijk=ik+cnk+l ' jk=l Yik =jk +Cnk + ' 

and Elikikl<ck (*. ) into Eik1 
- 

,k= ik+n (.* ) + k'nk Ek Cnl ( ..*) we Ii-ICijk=I ik=/k+l ' ' we 
have 

V(l,0,.. .,0) 

I= E E .- E 
lil-il l>Cnl li2-j2l<Cn2 IiN--jN ICnN 

n 1 n2 Cn2 
E E+ E ... 

-il =Cnl j2=l -j2=1 

CnN 

E+ 
jN=1 

CnN 

E I<Pul( ...,jN)161(2+6) 
-jN=l 

n I Cn2 

n E E. 
Ijl I=cnl lj2l=l 

nl 

l n C 
lIjl I =Cnl 

CnN 

E {p(j1,., i jN)}s/(2+6) 
IjN =1 

n2 nN 

E E {p(jl, --., jN)}S/(2+S) 
l/2l=1 IjNI=1 

More generally, 

(5.11) V(Vi2, f2,..., fN) < fi.nE . 
E" E{(p(jl, *- jN)} /(2+S) 

liIl Ijkl IjNI 

where the sums Eljkl run over all values of jk such that 1 < Ijkl < nk if ek = 0, 
and such that Cnl < Ijkl < nk if ek = 1. Since the summands are nonnegative, for 

< 
nl 

E + 
jl =Cnl 
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1 < Cnk <nk, we have 
EIjkl=k 

(.* ) < 
Ejkl=l (. 

* ), and (5.9)-(5.11) imply 

I J21 < Cb2d/(2+n)n 
N ( ni nk- nk nk+l 

(5.12) k= \ljll=l Ijk-ll=l jkl=cnk Ijk+ll=l 

N Ni 

L I(P(j,9 ... M)}S/(2+) . 

1 jNi=1 

Thus, (5.2) is a consequence of (5.7) and (5.12). If, furthermore, ((ji, ..., jN) 
depends on Ilji only, then 

nl nk-1 nk nk+l nN 

E Z E E iE ** E .(IIJJ)}./(2+) 
jl1l=l Ijk-ll=lIjkl=cnk |jk+ll=l I jN 1 

j2 j2 2 
nl nk-1 nk nk+l n N-1 JI +-"+jN-1+nN 

E< - E E E E E { (')}/(2+8) 
Ijll=l lik-1=l 1 jkl=Cnk Ij+ll=l IjN- 1=1 t2=j2+,,,+j_l-+ 

llnll t t llnll 

-E EC '"-- E {((t)}z/(2+6)< E tN-I {r(t)}S/(2+6); 
t=Cnk 1j11=1 IjN-1 1=l t=Cnk 

(5.3) follows. O 

PROOF OF LEMMA 2.2. Observe that 

I(x) = bndEA (x) = bnd[Ej2 - (Erj)2] 
(5.13) 

= b-d[EZ 2((x- Xj)/bn) 
- 

{EZj c((x 
- 

Xj)/bn)}2]. 

Under assumption (A5), by the Lebesgue density theorem, 

n-->im d nx> d d 

lim bndE[zjI2Xj =u]K,((x -u)/bn)f(u)du =g()(x)f(x)J( K2(U)du, 

where g()(x) := E[Zj Xj = x] for i = 1, 2. It is easily seen that bd{EZjKc((x - 

Xj)/bn)}2 -- 0. Thus, from (5.13), 

(5.14) lim I(x) =g(2)(x)f(x) f K(u)du, 
nwhere g2)(x) oo = x} 

where g(2)(x) = E{Z?|Xj = x} E{(Yj _ g(x))21Xj = x} = Var{fYj IXj = x}. i 
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a -bd.(2+6) 6d/(2+8)a Let Cnk := bn od/(2+) __ . Clearly, Cnk < nk because nkb/( > 1 for 
all k. Apply Lemma 5.2. Since, due to the fact that a > (4 + S)N/(2 + 8), and 
N/(2 + 8)a < 1/(4 + 8) 

(5.15) (n-b) J2 < C z cnk tN-l{p(t)}3/(2+?) )> 
k= 1 t=Cnk 

because Cnk --> oo, (5.3) and assumption (A4) imply that 

(fibd)-IJ1 < Cb3d/(4+8)cnl ... CbN d= Cb/(4+?)bn)dN/(2+) a 0, 

hence, by (5.2), that 

(5.16) IR(x)l (bn)J(x)l 

< 

C(nbnd)- C (Jb + J2) 0. 

Finally, (2.7) follows from (5.14) and (5.16), which completes the proof of 
Lemma 2.2. D 

PROOF OF LEMMA 2.3. From (2.5) and the definition of An [recall that 
ao = g(x), ai = g (x)], 

E[An] = (nib) l/2bn-dE[Zj]Kcxj 

- 

x) 

= (ibd)1/2 bdE(Yj - ao - a(Xj - x))Kc bn 

=(nb d)/2bn-dE(g (Xj)- ao- a(Xj -))Kc 
x - 

= (nibnd) /2bbndE(Xj _ x)T 

x g"(x + (Xj -x))(Xj - X)Kc b ) (where I) < 1) 

= (fibd)l/2b2 b-dtrE g"(x + (Xj - x)) ) Kc( ); 
n-n-n bn bn bn 

the lemma follows via assumption (A3). D 

PROOF OF LEMMA 3.1. The proof consists of two parts and an additional 
lemma (Lemma 5.3). Recalling that 

(5.17) lj(x) :=ZjKc(x-Xj) and Aj(x) := 7j(x)-EI7j(x), 

define (nj := b-d/2Aj, and let Sn : Enkjk=l;k=1 ...N (nj. Then 

i- /2Sn = (nibd)l/2c (Wn(x) - EWn(x)) = An - EAn. 
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Now, let us decompose i -1/2S1S into smaller pieces involving "large" and "small" 
blocks. More specifically, consider [all sums run over i = (i1, ...I iN)] 

U(1, n, x, j) := 
1k (pk+q)+Pk 

L 
ik=jk (pk+q)?l 

k=l,...,N 

1k (Pk+q)+Pk 

U(2,n,x,j):= L 
ik=jk(Pk+q)+l 

k=1.: N 1 

ik (Pk?q)+Pk 

U(3,n,x,j):= L 
ik=jk(Pk?q)+l 

k=l,...,N-2 

1k (pk+q)?Pk 

U(4,n,x,j):= L 
ikjk (Pk?q )+1 

k=l,...,N-2 

(jN+l)(PN+q) 

iN-jN(PN+q)+pN+l 

(jN-1+?)(PN 1+q) 

L 
iN-1=jN-1(PN-1 +q)+PN- 

(jN 1+1)(pN I+q) 

iN-I =jN-1(PN I+q)+PN-I+11 

IN (PN?q)+PN 

L 
1+1 iN=jN(pN+q)+l 

(jN+l)(PN+q) 

N (pi(X)1 

iN =jN (PN +q)+PN+l 

and so on. Note that 

U(2 N -_1,n, x,j)= 
(jk?l)(Pk+q) 

ik jk(Pk+q)+pk+l 

k=l,...,N-1 

IN (PN+q)+pN 

N i(x) 
iN =jN (PN +q)f l 

U (2N, n, x, j) : 
(jk?l)(pk+q) 

ik=jk (Pk+q)+Pk+l 

k=l,...,N 

Without loss of generality, assume that, for some integers rl, ...,rN, n = 

(n I,...,.nN) is such that n1 = rl(pl + q),..., nN = rN(PN + q), withrk -- 00 

for all k = 1, N. For each integer 1 < i < 2N, define 

rk 1 

T(n, x, i) E U (i, n, x,j). 
Ik=O 

k=l,...,N 

Clearly, Sn = ~il T(n, x, i). Note that T(n, x, 1) is the sum of the random 
variables r,i over "large" blocks, whereas T(n, x, i), 2 < i < 2N, are sums over 
"small" blocks. If it is not the case that n1 = I (p1 + q), ... , nN = rN (PN + q) for 
some integers rl, ... , rN, then an additional term T(n, x, 2N + 1), say, containing 
all the Tjj's that are not included in the big or small blocks, can be considered. This 

and 
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term will not change the proof much. The general approach consists in showing 
that, as n -- oo, 

rk - l 

(5.18) Q1 := E[exp[iuT(n,x, 1)] - f E[exp[iuU(1,n,x,j)]] - 0, 
jk=0 

k= ,..., N 

2N \2 

(5.19) Q2 :=n-E T(n,x,i) 0, 
i=2 

rk-1 

(5.20) Q3:= i1 E E[U(1,n,x,j)]2 a 2, 
jk=: 

k=l, ...N 

rk - 1 

(5.21) Q4 n-1 3 E[(U(1, n, x,j))21U(l, n, x,j)l > o1/2}] - 0, 
jk=O 

k=, ...,N 

for every E > 0. Note that 

[An - EAn/ = (ibndl/2c[Wn(x) - EWn(x)]/r = Sn/(cin1/2) 

2N 

= T(n, x, l)/(anl1/2) + (n, x, i)/(oi/2). 
i=2 

The term E/2i2 T(n,x, i)/(ai1/2) is asymptotically negligible by (5.19). The 
random variables U(1, n, x, j) are asymptotically mutually independent by (5.18). 
The asymptotic normality of T(n,x, l)/(aon1/2) follows from (5.20) and the 
Lindeberg-Feller condition (5.21). The lemma thus follows if we can prove 
(5.18)-(5.21). This proof is given here. The arguments are reminiscent of those 
used by Masry (1986) and Nakhapetyan (1987). 

Before turning to the end of the proof of Lemma 3.1, we establish the following 
preliminary lemma, which significantly reinforces Lemma 3.1 in Tran (1990). 

LEMMA 5.3. Let the spatial process { Yi, Xi} satisfy the mixing property (2.1), 
and denote by Uj, j = 1, ..., M, an M-tuple of measurablefunctions such that Uj 
is measurable with respect to {(Yi, Xi), i E .j}, where ij C In. If Card(lj) < p 
and d(le, Ij) > q for any ? 4 j, then 

M M M-1 
E exp iu Uj - fl E[exp{iuUj}] < C f(p, (M- j)p)(p(q), 

j=1 j j= j=1 

where i = -1. 
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PROOF. Let a :=exp{iu U). Then 

E[al ... aM] - Erail ... E[aM] 

=E[al ...aM] - E[al]E[a2 ... aM] 

?E[al]{E[a2 ... aM] - E[a2]E[a3 ..."aM]} 

+ - - - + E[a1]E[a2] ... E[aM 2]{E[aM- laM] - E[aM-I]E[aMLI. 

Since IE[ai]I <1, 

IE[al ..."aM] - E[al] ... E[aM]I 

< IE[al v " -aM] - E[al]E[a2 ... aaM]I 

+ IE[a2 ... aM] - E[a2]E[a3... aM]I 

+ . A- IEIiaM-laM] - E[am_1j]E[aM]I. 

Note that d(Ie, Ij) > q for any f : j. The lemma then follows by applying 
Lemma 5. 1(ii) to each term on the right-hand side. D 

PROOF OF LEMMA 3.1 (continued). In order to complete the proof of 

Lemma 3.1, we still have to prove (5.18)-(5.21). 

PROOF OF (5.18). Ranking the random variables U(1,n, x, j) in an arbitrary 
manner, refer to them as U1,..., U. Note that M = 1 rk - f{Hk=-1(Pk ? 

q)} 1 < /ilp, where p =F INk=1Pk. Let 

I(l, n, x,j):={ i: jk(pk + q) + Il< ik _<jk(Pk + q) + Pk, k =1,... , N). 

The distance between two distinct sets I(1, n, x, j) and 1(1, n, x, j') is at least q. 
Clearly, 1(1, n, x, j) is the set of sites involved in U(l, n, x, j). As for the set of 
sites Ij associated with U1j, it contains p elements. Hence, in view of Lemma 5.3 
and assumption (A4'), 

M-1 

Qi ( C L min{p, (M - k)p}yo(q) < CMp~p(q) 
< C^iio(q), 

k=1 

which tends to zero by condition (B2). D 

PROOF OF (5.19). In order to prove (5.19), it is enough to show that 

n^-'E[T2(n, x, i)] --O for any 2 < i < 2N. 

Without loss of generality, consider EIT2(n, x, 2)]. Ranking the random variables 
U (2, n, x, j) in an arbitrary manner, refer to them as U1, ..., UM. We have 

M 

E[T2(n, x, 2)] Var(Ui) + 2 Cov(U,Uj) 
(5.22) i= coijF 

say. 
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Then U(2,n,x,j) = EiI(2,n,x,j) ni(X). Since Pk > q, if i and i' belong to 
two distinct sets 1(2,n,x,j) and 1(2,n,x,j'), then li - i'll > q. In view of 

(5.8) and (5.22), we obtain 

IV21 < C E E IE[(ni(x) nj(x)]I 
{i,j: Ii-ji_>q, 1 <ik,jk<nk} 

_< Cbnd E[Ani(x)Anj(x)]| 
{i,j: li-jll>q, l<ik,jk_<nk} 

< Cbnd Z b2d/(2+S){p(Jij - i)}S/(2+ ) 

{i,j li-i>1q, 1 <ik,jk<nk} 

(5.24) < 
Cb -6d/(2+) n t 

n-1 
t)/(2+) n t-l H p(t)}~/(2+E) 

k=1 t=q 

Take ck b d/(2+^) oo. Condition (B3) implies that qbnda(2) > 1, 
so that Cnk < q < Pk. Then, as proved in (5.15) and (5.16), it follows from 

assumption (A4) that 7rn - 0. Thus, from (5.22), (5.23) and (5.24), 

fin-E[T2(n, x, 2)] < C(q/pN)[1 + 7rn] + Cbnsd/(2+s) E tN -l{I(t)}8/( 2+S ) 
t=q 

which tends to zero by q/pN -> 0 and condition (B3); (5.19) follows. D 

PROOF OF (5.20). Let S :=T(n,x, 1)and Sn := 2 T(n, x, i). Then S' is 
a sum of Yj's over the "large" blocks, Sn over the "small" ones. Lemma 3.2 implies 

in-E[ISnl2] -> a2. This, combined with (5.19), entails n-lE[SIn2] -- a2. Now, 

rk -l 

n-lE[iSnl2]_ =fi -l E[U2(1,n,x,j)l 
jk=0 

(5.25) k= ,.,N 

+n-1 ~ Cov(U(l,n,x,j), U(l,n,x,i)), 

where J* = -*(p,q) := {i,j:l < ik, jk < rk - 1,k = 1,..., N}. Observe 
that (5.20) follows from (5.25) if the last sum in the right-hand side of (5.25) 
tends to zero as n - oo. Using the same argument as in the derivation of the 
bound (5.22) for V2, this sum can be bounded by 

nk-I oo 

Cb-sd/(2+?) E {<(llill)}^/(2+) Cbsd/(2+ EtN-(t)}/(2+6 ) 

11il >q ik=1 t=q 
k=l,...,N 

which tends to zero by condition (B3). D 
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PROOF OF (5.21). We need a truncation argument because Zi is not 
necessarily bounded. Set Z := ZiI{Izi<L}, r := Z Kc((Xi - x)/bn), AL = 

1i - EtjL, := bn d/2A, where L is a fixed positive constant, and define 
UL(1, n, x, j) := Ei(,n,x,j) nLi Put 

rk - 

Q4L := n1 L E[(U(1, n, x,j j))2{U,n,x,) > ^ 
, 1/2}]. 

ik=. jk =0 
k=l, ..., N 

Clearly, I nl| < CLbnd/2. Therefore IUL (1, n, x,j) < CLpb d/2. Hence 

rk - 

Q} < Cp2bn 
-1 

P[U (1, n, x, j) > eian/2]. 
jk=0 

k=l,..., N 

Now, U(1, n, x, j)/(aii1/2) < Cp(nbnd)-1/2 -O 0, since = [(ibnd)/2/n], where 

Sn -- oo. Thus P[UL(1, n, x, j) > ani1/2] = 0 at allj for sufficiently large f. Thus 
QL = 0 for large ni, and (5.21) holds for the truncated variables. Hence 

nk 

(5.26) 1/2s : 1/2 N(, L ) 
jk=l 

k=l,...,N 

where a2 := Var(ZL IXi = x)f (x) f K2 (u) du. L ? 

Defining Sn L = E=l;k=,...,N(nj -L j), we have Sn = SnL + SnL. Note that 

IE[exp(iuSn/nl/2)] - exp(-u2or2/2)l 

< IE[exp(iuSL/n1/2) - exp(-u2o2/2)] exp(iuSnL*/n 1/2) 

+ [E[exp(iuSnL*/ 1/2) - 1]exp(-u2a/2 ) 

+ I exp(-u2a2/2) - exp(-u2o2/2)I 
= E1 + E2+ E3, say. 

Letting n -- oo, E1 tends to zero by (5.26) and the dominated convergence 
theorem. Letting L go to infinity, the dominated convergence theorem also implies 
that 72 -: Var(Z/(IXi = x)f (x) f Kc2(u) du converges to 

Var(ZiXi = x)f(x) f Kc2u) du = Var(YiXi =x)f(x) f K2(u) du := 2, 

and hence that E3 tends to zero. Finally, in order to prove that E2 also tends to 
zero, it suffices to show that SL*/fn1/2 -* 0 in probability as first n -> oo and then 
L - oo, which in turn would follow if we could show that 

E[(sL*/l1/2)2] - Var(lZilIltzij>L} Xi = x)f(x) f 
K (u) du as n oo. 

2497 



2498 M. HALLIN, Z. LU AND L. T. TRAN 

This follows along the same lines as Lemma 3.2. D 

The proof of Lemma 3.1 is thus complete. D 
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