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 

Abstract—Emerging micro-power harvester research using 

smart material components shows viable self-powered devices 

capable of capturing mechanical motion and converting it into 

useful electrical energy that can be further used to supply 

electrical voltage into rechargeable power storage via a power 

management electronic circuit. The micro-power harvesters 

using piezoelectric materials cover a wide range of applications 

for powering thin film battery technology and wireless sensor 

systems that can be used to monitor the health condition of 

machines and infrastructure and biomedical implant devices. 

This research focuses on the development of a novel numerical 

direct method technique with non-orthonormality based on the 

electromechanical vector transformation for modelling the self-

powered cantilevered piezoelectric unimorph beam under input 

base excitation. The proposed finite element piezoelectric 

unimorph beam equations were formulated using 

Hamiltonian’s principle for formulating the global matrices of 

electromechanical dynamic equations based on the 

electromechanical vector transformation that can be further 

employed to derive the electromechanical frequency response 

functions. This numerical technique was modelled using 

electromechanical discretisation consisting of mechanical and 

electrical discretised elements due to the electrode layers 

covering the surfaces of the piezoelectric structure, giving the 

single voltage output. The reduced equations are based on the 

Euler-Bernoulli beam assumption for designing the typical 

power harvesting device. The proposed finite element models 

were also compared with orthonormalised electromechanical 

finite element response techniques, giving accurate results in 

the frequency domains.   

 

I. INTRODUCTION 

The investigation of piezoelectric power harvesters using 
mathematical studies plays the important role to model and 
predict the electrical power output based on the frequency 
responses and transient time domain behaviour of the 
structure. Most vibration environments from the machines 
and infrastructure, including biomechanical human motion 
give relatively lower amplitude and frequency ranges that can 
be used for matching the system response from the 
piezoelectric structure in order to maximise the power output. 
For this reason, development of analytical studies of the 
piezoelectric power harvesters has received much attention 
from researchers. The piezoelectric power harvesters using 
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unimorph and bimorph beams have been investigated using 
novel analytical studies with different parametric case studies 
[1]-[5]. However, there are minor concerns in developing the 
numerical studies of the electromechanical power harvesting 
devices. The development of finite element analysis for 
modelling piezoelectric active control systems has made 
major contributions during the last two decades and these can 
be used to give fundamental concepts and cross-reference 
numerical studies to the current energy harvesting research 
studies. The finite element active control analysis using the 
laminated smart structure system such as coupled 
piezoelectric and substructure was formulated using the 
variational principle [6], [7]. More details of the active 
control system using various numerical methods can be found 
in the published literature reviews [8]. In the power 
harvesting research area, novel technical concepts of the 
finite element methods have shown alternative solution 
techniques for investigating the self-powered MEMS devices 
using complex geometry of the laminated piezoelectric 
beams with electrode layers combined with the external 
circuit components. Only a few of the finite element self-
powered harvester research studies have been investigated by 
researchers during the last six years [9]-[11].   

Although many researchers have investigated various 
numerical techniques for developing the governing 
electromechanical finite element dynamic equations 
including other numerical solutions, this paper presents novel 
numerical direct method techniques of the electromechanical 
finite element analysis for investigating power harvesting 
frequency response. Here, the research focus is to present 
derivations of the finite element equations with non-
orthonormality based on the electromechanical vector 
transformation in order to develop the electromechanical 
frequency response functions (FRFs) for the voltage, current 
and power harvesting. The proposed studies are compared 
with the series form of the multimode FRFs derived from the 
orthonormalised global scalar forms of the electromechanical 
finite element equations. Finally, the numerical case studies 
using the numerical convergence studies and frequency 
responses based on the resistive shunt circuit are presented 
and discussed, where the results obtained from the two 
numerical solution techniques show good agreement.    

II. FINITE ELEMENT MODELING OF PIEZOELECTRIC ENERGY 

HARVESTER 

In this section, the piezoelectric unimorph beam under base 

excitation and variable load resistance as shown in Fig. 1 is 
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utilised for modelling the electromechanical finite element 

vibration energy harvester.  
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A. Electromechanical coupled finite element formulation 

The linear constitutive equations of the Lead Zirconate 

Titanate (PZT) beam can be formulated with 3-1 mode of 

piezoelectric constant operation and 3-3 effect of 

piezoelectric permittivity as, 
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The linear-elastic constitutive relation for the substructure 
can also be formulated as,  
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where the parameters T , S, E  and D represent stress, strain, 
electric field, and electric displacement, respectively. 
Moreover, coefficients c, e, and ε indicate elastic constant, 

piezoelectric coefficient, and permittivity at constant strain, 
respectively. The superscript 1 and 2 represent substructure 
and piezoelectric layers, respectively. 

The first-order Hermite interpolation function of the 

unimorph beam can be formulated to give, 

     txtx, ee
uw Φ  ,        (3) 

where parameters Φ and u indicate the elemental 

displacement vector and shape function for each node.  The 

strain-displacement relationship in terms of the vector 

displacement for the unimorph beam can be expressed as, 

      txzx,t ee
uS   ,              (4) 

where  is the second order differential shape function for 
the strain displacement and u is the vector mechanical 
displacement.  

The discretised electric field E induced by the strain field 

creates the electrical potential  over the piezoelectric 

element and is assumed to be linear along the thickness of 

the element. The electric field component as a function of 

the electrical potential with negative gradient operator can be 

represented as, 

      teee ztz, vE Ω 3  .            (5) 

The stress field in the partial differential shape function 

can be expressed by substituting Eq. (4) and Eq. (5) into Eq. 

(1a) and Eq. (2) to give, 
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The direct mode for electric displacement vector of the 
piezoelectric component can be formulated by substituting 
Eqs. (4)-(5) into Eq. (1b) and this can be expressed as,  

        tztxze eeSee ε vuD  33313   .           (7) 

B. Extended Hamiltonian principles 

Electromechanical piezoelectric unimorph power 

harvesting response using finite element modelling can be 

formulated using the Hamiltonian principle to give,  
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The total kinetic and potential energy terms can be 

defined as, 
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The non-conservative work for the system due to input 

base excitation and electrical charge output can be written 

as, 
 vqwF δδδWF    .                  (12) 

Parameters  and V indicate mass density and volume, 

respectively. Superscript T denotes the transpose matrix and 
over-dot represents the differentiation with respect to time. 

The Hamiltonian’s principle for energy harvesting can 
then be written as, 
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The expression given from Eq. (13) can be further solved by 
substituting Eqs. (3)-(7) to give the local element matrices of 
electromechanical dynamic equations by including Rayleigh 
damping  as, 
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Fig. 1. Piezoelectric unimorph beam connected with load resistance 

under base motion 
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C. Global matrices of electromechanical dynamic equations 

based on the electromechanical vector transformation 

The generalised dynamic equations derived from Eq. (14) 
can be formulated into the global matrix forms to give,   
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where M is global mass matrix, K is global stiffness matrix 
and C is Rayleigh damping. Other parameters θP , DP , and F 

indicate global electromechanical coupling matrices, global 
capacitance matrices, global mechanical forces, respectively. 
Moreover, variable i  is global current output, u is global 

mechanical coordinate, and v is global voltage output. 
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In practical standpoint, the electrode layers cover the top 

and bottom of the piezoelectric material where the physical 

system only has two wires connected to the two electrode 

layers resulting in one single voltage output as shown in Fig. 

1. However, for analysing global finite element equations as 

shown in Fig. 2, the modelling shows different scenario since 

the whole structure of the piezoelectric beam consists of the 

mechanical discretised element and the electrical discretised 

element (electromechanical discretisation). For this case, the 

generalised multi-output electrical voltage from each element 

can be formulated in terms of Kirchhoff’s voltage law (KVL) 

as, 

                        pm21 v...vvv    or 

                 p

T

p

T
vv...  111v  ,                (16) 

and electrical current using Kirchhoff’s current law (KCL) 
related to global current matrix i can also be formulated as, 

      i ppspp ii...ii
21

 .                  (17) 

Given the characteristic discretised system, equation (14) 
needs to be modified since the generalised voltage outputs in 
the global coordinate still show distinct values. To alleviate 
this issue, the electromechanical transformation   from Eq. 

(16) can be used to multiply with the electromechanical 
coupling matrices taken from the fourth term of the first 
expression in Eq. (15). The operational form can be 
formulated as,  
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 In addition, the second expression of the global matrices 

from Eq. (15b) must also be modified by multiplying the 

electromechanical vector transformation   at both sides of 

Eq. (15b) and introducing the electrical vector 

transformation at the second term of Eq. (15b), the results of 

which can be formulated as, 
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Reformulating Eq. (15a) using Eq. (18) and altering Eq. 

(19) using Eq. (17) and the current expression loadpp Rvi  , 

the new formation of the electromechanical finite element 

equation can be written as, 
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Note that the modified electromechanical coupling T

θP   

is equivalent to the transformed electromechanical coupling 
T

Θ  and the capacitance matrix 
p

T

D CP  is equivalent to 

the trace (tr) of the global capacitance matrix DP .  

III. SOLUTION OF FINITE ELEMENT EQUATIONS 

A. Current model of electromechanical frequency response 

equations 

The piezoelectric response under base excitation can be 
assumed to be harmonic. Therefore, solutions of the 
mechanical displacement and voltage responses can be 

formulated as tje ωau  and 
tj

p bev ω . Here, variable a is 

the amplitude of the base translation and b is the amplitude of 
the harmonic voltage and is the driving frequency. The 

assumed solutions can be substituted into Eq. (20) to 
formulate the electromechanical FRFs.   

  The multi-mode voltage FRFs can be formulated after 

simplifying the derivations to give,  
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The multi-mode FRFs of the electric current output 
related to the input base transverse excitation can also be 
formulated by dividing the voltage response with the load 
resistance to yield,  

Fig. 2. Electromechanical discretisation of piezoelectric unimorph element 
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The multi-mode power output FRFs can also be 

formulated as,  
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B. Orthonormalised electromechanical finite element 
modelling     

Other new techniques for solution of electromechanical 

finite element vibration equations as shown in section 2 can 

be developed using the orthonormalised scalar forms of 

electromechanical dynamic equations. These techniques can 

be useful in making comparisons with the proposed current 

model. The solution form of Eq. (15) can be stated using 

time-dependent displacement in terms of the normalised 

modal vector and time-dependent displacement generalised 

coordinate as, 

           tttttt mmmm aaaaau    112211 ... ,  (24) 

where the normalised modal matrix  can be formulated as, 
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Parameters  and U  represent a set of the normalised 

modal matrix and generalised eigenvector, respectively. The 

eigenvector reduced from the undamped mechanical 

dynamic equation, is a mechanical shape of natural mode 

that can be used to formulate the orthogonality property. The 

undamped mechanical dynamic equation depends on the 

mechanical properties from the stiffness and mass matrices.  

 

Substituting Eq. (24) into Eq. (15) and premultiplying the 

result by T  in order to diagonalise the mass, stiffness and 

damping matrices and simplifying the numerical technique, 

provides the formulations, 
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or simplifying Eq. (26) becomes, 
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T

θ ivPaP  ˆ .                      (27)
       

 

Orthonormalised parameters from Eq. (27) can be stated as, 

IM
T  ,   2

ωK
T  , 

    ωωIKMC
2TTT  2 βαβα  ,       

θ
T

PPθ ˆ

 

,  T
θ

T
θ PP ˆ ,

  
  QQ

Tˆ    .            (28) 

It should be noted that equations (28a) and (28b) represent 

the orthonormality property of mechanical dynamic 

equations, the results of which indicate diagonal matrices.     

 

Equation (27) can be further simplified into global scalar 

form of the electromechanical dynamic equations in order to 

formulate the series form of the multimode frequency 

response function. In this case, the first form of the 

discretised electromechanical piezoelectric dynamic 

equation can be formulated for the multi degree of freedom 

(multimode) system ,....,NDOF,,r 321  in terms of the 

number of normalised piezoelectric elements 

,....,NELP,,s 321  as,          

         twQtvPtaωtaωζta baser

NELP

s
srsrrrrrr

 ˆˆ2
1

2
 



,
  

        
NDOFr ,...,2,1 .         (29) 

The second form of the discretised electromechanical 

piezoelectric dynamic equation can be formulated as,  

                      titvPtaP pssDs

NDOF

r
rsr 




1

ˆ
  

,   

             NELP,s ,...,21 .     (30) 

As stated previously, the piezoelectric surface is covered 

evenly by the electrode layers. Therefore, electromechanical 

equations should be based on the electromechanical 

discretisation as shown in Fig. 1b. Since the proposed 

equations are formulated in the global scalar form, here the 

internal parallel connection in terms of the electrical 

discretised elements using the Kirchhoff's voltage law 

(KVL) and Kirchhoff's current law (KCL) must be 

formulated in the scalar form as, 

                             tvtv....tvtv s  21  
 ,     

                      titi....titi ppspp  21
  .             (31) 

Voltage output related to the external load resistance can be 

formulated as,  

    loadp Rtitv    .                       (32) 

To formulate multimode frequency response functions of the 

distributed piezoelectric unimorph, the first step is to modify 

the first term of Eq. (30) algebraically corresponding with 

the number of the normalised piezoelectric elements. 

Second, employing Eqs. (31) and (32) into the equations 

obtained from the first step. Third, applying Eq. (31) into Eq. 

(29). Fourth, the results obtained from the second and third 

steps can be algebraically solved using Laplace transforms 

giving the superposition matrix form. The first superposition 



  

form of the voltage multimode FRFs series can be 

formulated after simplifying as,  
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The series form of the multimode FRF for the electric 

current output related to the input base transverse 

acceleration can be stated as,  
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The power harvesting multimode FRF related to the input 

transverse acceleration can be formulated as, 
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IV. RESULT AND DISCUSSION 

In this section, the convergence study and the first two 
modes of voltage, current and power FRFs are discussed 
using the proposed numerical methods. Here, the geometry 
and material properties of the piezoelectric unimorph beam 
are given in table 1. Note that the input base excitation onto 
the structure was set to be 1 m/s2. 

 

Dimensional Parameter 

Length of the beam, L (mm) 60 

Width of the beam, b (mm)  6 

Thickness of the substructure, hs (mm) 0.5 

Thickness of the PZT, hp (mm) 0.127 

Young’s Modulus of the substructure, 
 1

11c  (GPa) 
105 

Young’s Modulus of the PZT,  
 2

11c   (GPa) 
66 

Mass Density of the substructure layer, 
 1ρ (kg/m3) 

9000 

Mass Density of the PZT layer,
 2ρ (kg/m3) 

7800 

Piezoelectric constant, d31 (pm/V) -190 

Permittivity, 
T
33ε  (F/m) 

15.93 

  
The convergence study shows the very important aspect 

that can be used to achieve better accuracy of the numerical 
results. Here, the purpose of presenting the convergence 
study as shown in Fig. 3 is to show the trend of the frequency 
responses for each mode based on the increasing number of 

elements. The results shows that increasing the number of 
elements changes the resonance frequency value for each 
mode. After 10 or 15 elements only, very minor frequency 
changes were seen for the first three modes. Therefore, the 
unimorph with 50 discretised elements should be sufficient 
for modelling and investigating the FRFs of the first two 
modes as shown in the next stage.  

As previously mentioned, the proposed numerical direct 
method techniques with non-orthonormality were compared 
with the orthonormalised electromechanical finite element 
response techniques. The results show that 
electromechanical frequency responses of the system have 
similarities between two different methods. Starting with the 
electrical voltage FRF as shown in Fig. 4, the trends of the 
two numerical methods for the electrical voltage amplitudes 
under variable load resistance show very good agreement 
and the amplitudes increase from short to open circuit load 
resistances, followed by a frequency shift. This occurs 
especially at the first mode where the second mode of 
frequency response seems to stay at a constant resonance 
frequency with increasing amplitudes.  By inspecting the 
two enlarged views from Fig. 4, the first mode of the 
electrical voltage FRF with short circuit resonance frequency 
shows 89.38 Hz and the frequency shifts to 90.94 Hz for the 
open circuit resonance frequency.  

Moreover, the current FRF under variable load resistance 
as shown in Fig. 5 appears to have the opposite trend to that 
of the voltage FRFs where the current magnitudes decrease 
monotonically with increasing load resistance values. Again, 
the two different numerical methods consistently show good 
agreement. It is important to note here that the actual short 
circuit load resistance approaches to zero, that, however, 
cannot be used for making the comparison between 
theoretical and experimental studies since the voltage  FRF 
will be zero and the displacement response cannot be 
identified [2]. From that reason, the short circuit load 
resistance can be achieved at the certain lowest values such 
as 100 Ω, as presented in this paper.  

 

 

 

TABLE I. MATERIAL PROPERTIES OF UNIMORPH POWER HARVESTER 

 

Fig. 3. Convergence studies of the resonance frequency based on 

the number of element  



  

     

 

      

 

     

 

 

In aforementioned statement, the electromechanical 

frequency responses of the voltage and current have the 

opposite behaviour when load resistances change where the 

maximum voltage amplitude can be seen in the highest load 

resistance whereas the maximum current amplitude can be 

achieved at the lowest load resistance (short circuit). 

However, such situation clearly does not appear in the power 

output FRFs as shown in Fig. 6 where the maximum power 

output at the first mode does not necessarily depend on the 

short or open circuit load resistance. For this case, the 

maximum power output response appeared when the 

resistance value coincides with load resistance of 32 kΩ at 

the frequency of 89.92 Hz. Meanwhile, the maximum power 

output at the second mode appears at the resonance of 561.5 

Hz when the load resistance approaches to 10 kΩ. 

V. CONCLUSION 

This paper discussed novel numerical techniques for 
modeling a piezoelectric unimorph power harvester derived 
by using the matrix electromechanical dynamic equations 
based on the electromechanical vector transformation. The 
proposed model was also compared using the 
orthonormalised global scalar forms of electromechanical 
dynamic equations. The result shows that the multimode 
frequency responses of the voltage, current and power under 
variable load resistance using the two numerical methods 
show good agreement. The benefit of using the numerical 
techniques is to analyse the multi-level piezoelectric power 
harvesters with complex geometry and different scalability 
of MEMS structure where such techniques can alleviate the 
tedious solutions required by the analytical techniques.  
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Fig. 4. Electrical voltage FRFs with 50 discretised elements: solid  

line (non-orthornormalised) and round dot (orthonormalised method) 

 

Fig. 5. Electrical current FRFs with 50 discretised elements: solid line 

(non-orthornormalised) and round dot (orthonormalised method) 

 

Fig. 6.  Electrical power FRFs with 50 discretised elements: solid line 

(non-orthornormalised) and round dot (orthonormalised method) 

 


