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ABSTRACT 

 

RuII(6-p-cymene) complexes of two bidentate (O,O) alkoxycarbonylmethyl-3-hydroxy-

2(1H)-pyridone ligands exhibit in vitro antitumor activity. We determined their stoichiometry 

and stability in aqueous solution by pH-potentiometry, 1H NMR spectroscopy and UV-Vis 

spectrophotometry and also characterized the proton dissociation processes of the ligands. 

Formation of mono-ligand complexes with moderate stability was found to predominate in the 

physiological pH range. Moreover, the chlorido/aqua co-ligand exchange processes of the 

[RuII(6-p-cymene)(L)(H2O)]+ species were also monitored and 55–65% of the aqua ligand 

was found to be replaced by chloride in 0.2 M KCl containing aqueous solutions. Under basic 

conditions, the complexes decompose to dinuclear tri-hydroxido-bridged [Ru(
6-p-

cymene)2(OH)3]
+ and metal-free ligand and also a hydroxido species [RuII(6-p-

cymene)(L)(OH)] was found. Furthermore, the ligands contain an ester functional group, 

which may hydrolyze at basic pH, which is however negligible at acidic or neutral pH.  
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1. Introduction 

 

Anticancer metallodrug research started with the discovery of cisplatin and its introduction to 

clinical practice almost four decades ago [1,2]. The main goal of the development of novel 

anticancer metal-based compounds is to increase their selectivity and therapeutic index and 

thereby overcome the adverse effects and resistance phenomena, which are a major limitation 

for the curative treatment of cancer. Ruthenium compounds are currently considered as the 

most promising candidates for the next generation of antitumor metal complexes [2−4]. Two 

representatives of this class of compounds have entered clinical trials so far, i.e., imidazolium 

trans-[tetrachlorido(dimethylsulfoxide)(1H-imidazole)ruthenate(III)] (NAMI-A) [5,6] and 

indazolium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (KP1019) [7,8]. The reduction 

of RuIII complexes to RuII in the more reductive tumor environment as compared to normal 

tissue is an important step of activation. In addition to RuIII coordination compounds, 

organometallic RuII complexes mainly with piano stool structure were developed and tested in 

vitro and in vivo. Among the RuII(arene) complexes a large number of [RuII(6-p-

cymene)(XY)Cl]-type compounds were prepared, where XY is an (O,O), (O,S), (O,N), (N,N) 

or (N,S) bidentate ligand [9−16]. The replacement of chlorido by aqua ligands can take place 

in aqueous solution, which is considered an essential step of activation [17−20]. However, the 

ultimate target of these organometallic RuII(arene) complexes is still not clear [21,22]. As 

other anticancer metallodrugs, they can be regarded as prodrugs and it is a prerequisite to 

follow their speciation in biological fluids for a better understanding of the pharmacokinetic 

properties and the mechanism of action. Aqueous solution equilibrium studies are a first 

approach to characterize possible dissociation reactions of such metal complexes in solution 

at low concentration. The displacement of original ligands by endogenous biomolecules 

strongly depends on the thermodynamic stability and kinetic inertness/lability. However, little 

is known about the stability of RuII(arene) complexes. Buglyó and co-workers determined 

stability data for RuII(6-p-cymene) complexes with bidentate (O,O) ligands [23,24], and also 

the pKa values of the coordinated water molecule in [RuII(6-p-cymene)(XY)(H2O)] species 

were reported [9,18,24,25]. Complexes bearing (O,O) bound hydroxypyrones show only 

moderate cytotoxicity and much lower stability as compared to (O,N) or (O,S) type complexes 

[26,27]. Switching from hydroxypyrones (such as the well-known maltol) to 

hydroxypyridones allows tuning the chelating ability and drug-like parameters, such as 

lipophilicity [18]. The Ru complex [RuII(6-p-cymene)(EHP)Cl] {EHP = N-
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[(ethoxycarbonyl)methyl]-3-hydroxy-2-(1H)-pyridone} was previously prepared and 

evaluated as an anticancer agent in CH1 adenocarcinoma human cells of the ovary, showing 

moderate cytotoxicity (IC50 240 M) [18]. 

In this work, the behavior of RuII(6-p-cymene) complexes of the 

alkoxycarbonylmethyl-3-hydroxy-2(1H)-pyridone ligands, i.e., EHP and N-

[(ethoxycarbonyl)methyl]-3-hydroxy-4-methyl-2-(1H)-pyridone (EHMP) (Chart 1) in 

aqueous solution was studied by pH-potentiometry, 1H NMR spectroscopy and UV-Vis 

spectrophotometry in order to determine the stoichiometry and stability of the complexes as 

well as the proton dissociation processes of the ligands.  

 

Chart 1 

 

 

2. Experimental 

 

2.1. Chemicals 

 

The ligands EHP and EHMP were prepared as described previously [18]. The purity and 

hydrolytic stability of the ligands was checked and the exact concentrations of the stock 

solutions were determined by the Gran method [28]. [RuII(6-p-cymene)Cl2]2 was synthesized 

and purified according to a literature procedure [29]. A stock solution of [RuII(6-p-cymene)] 

was obtained by dissolving a known amount of [RuII(6-p-cymene)Cl2]2 in water and the 

exact concentration was determined with pH-potentiometric titrations employing literature 

data for [RuII(6-p-cymene)]–hydroxido complexes [23].    

 

2.2. pH-potentiometric measurements 

 

The pH-potentiometric measurements for determination of the protonation constants of the 

ligands and the overall stability constants of the metal complexes were carried out at 25.0 ± 

0.1 °C in water and at an ionic strength of 0.20 M (KCl, Sigma-Aldrich) in order to keep the 

activity coefficients constant. The titrations were performed with carbonate-free KOH 

solution of known concentration (0.20 M). Both the base and the HCl used were Sigma-

Aldrich products and their concentrations were determined by pH-potentiometric titrations. 
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An Orion 710A pH-meter equipped with a Metrohm combined electrode (type 6.0234.100) 

and a Metrohm 665 Dosimat burette were used for the pH-potentiometric measurements. The 

electrode system was calibrated to the pH = −log[H+] scale by means of blank titrations 

(strong acid vs. strong base: HCl vs. KOH), as suggested by Irving et al. [30]. The average 

water ionization constant, pKw, was determined as 13.76 ± 0.01 at 25.0 °C, I = 0.20 M (KCl), 

which corresponds well to the literature [31]. The reproducibility of the titration points 

included in the calculations was within 0.005 pH. The pH-potentiometric titrations were 

performed in the pH range 2.0−11.5. The initial volume of the samples was 10.0 mL. The 

ligand concentration was 2 × 10–3 M and metal ion-to-ligand ratios of 1:1 to 1:4 were used. 

The accepted fitting of the titration curves was always less than 10 L. Samples were 

degassed by bubbling purified argon through them for ca. 10 min prior to the measurements 

and it was also passed over the solutions during the titrations. 

  For testing the hydrolytic stability of the ligands, stock solutions were prepared at 

various pH values (pH 1.83, 7.61 and 11.11) and titrations were performed at pH 1.83 after 

0.5, 47 and 191 h, at pH 7.61 after 1, 48 and 120 h and at pH 11.11 after 0.17, 0.33, 1.42, 

1.62, 2.7, 4, 24 and 188 h.  

The protonation constants of the ligands were determined with the computer program 

HYPERQUAD [32]; PSEQUAD [33] was utilized to establish the stoichiometry of the 

complexes and to calculate the stability constants. MpLqHr is defined for the general 

equilibrium pM + qL + rH  MpLqHr as (MpLqHr) = [MpLqHr]/[M]p[L]q[H]r where M 

denotes a metal ion and L the completely deprotonated ligand. Literature log values of the 

[RuII(6-p-cymene)(hydroxido)] complexes were used [23] and compared to data collected in 

the course of the experiments described herein. In all calculations exclusively titration data 

were used from experiments in which no precipitate was visible in the reaction mixture. 

 

2.3. UV–Vis spectrophotometric and 1H NMR measurements 

 

A Hewlett Packard 8452A diode array spectrophotometer was used to record the UV-Vis 

spectra in the interval 200–800 nm. The path length was 1 cm. Protonation and stability 

constants and the individual spectra of the species were calculated with the computer program 

PSEQUAD [33]. The spectrophotometric titrations were performed on samples of the ligands 

alone or with [RuII(6-p-cymene)] over the pH range 2.0–11.5 at an ionic strength of 0.20 M 
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(KCl) and at 25.0 ± 0.2 °C. The concentration of ligands was set constant at 1 × 10–4 M and 

the metal-to-ligand ratios were 1:1 and 1:2.  

1H NMR studies were carried out on a Bruker Ultrashield 500 Plus instrument. 4,4-

Dimethyl-4-silapentane-1-sulfonic acid was used as an NMR standard. The ligands were 

dissolved in a 10% (v/v) D2O/H2O mixture to yield a concentration of 2−4 mM and were 

titrated at 25 °C, at I = 0.20 M (KCl) in absence or presence of [RuII(6-p-cymene)] at 1:1 and 

1:2 metal-to-ligand ratios. 1H NMR spectra were recorded to study the H2O/Cl− exchange 

processes in the [RuII(6-p-cymene)(L)] complexes at pH 5.8 and 7.4 in dependence of the Cl− 

concentration (4−500 mM). 

 

2.4. Determination of the distribution coefficient (logD7.4) of EHP and EHMP 

 

LogD7.4 values of EHP and EHMP were determined by the traditional shake flask method 

[34] in n-octanol/HEPES-buffered aqueous solution at pH 7.4 (4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid, HEPES) at 25.0 ± 0.2 °C. Two parallel experiments were 

performed for each sample. The ligands were dissolved at 0.10 mM in n-octanol pre-saturated 

aqueous solution of the buffer (10 mM) at constant ionic strength (0.20 M KCl). The aqueous 

solutions and n-octanol (1:1) were gently mixed with 360° vertical rotation for 2 h to avoid 

emulsion formation, and the mixtures were centrifuged at 5000 rpm for 3 min with a HeroLab 

centrifuge. After separation of the phases, UV spectra of the ligands in the aqueous phase 

were compared with those of the original aqueous solutions in the range 250–400 nm and 

logD7.4 values were calculated using equation 1. 

 

 log ��.� = log �
������������������	��������

�����������������	�����
− 1�    (1) 

 

The absorbance was obtained at the region of lmax (~300 nm) ± 10 nm. The partition 

coefficients (logP) of EHP and EHMP were calculated using equation 2. 

 

log P = log (D × (1 + (Ka / [H
+])))      (2)   
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3. Results and discussion 

 

3.1. Proton dissociation processes and lipophilicity of the ligands 

 

The proton dissociation processes of the ligands EHP and EHMP (Chart 1) in water were 

followed by pH-potentiometry, UV spectrophotometry and 1H NMR titrations. The ligands 

contain ester functional groups and thus may undergo hydrolysis under acidic and basic 

conditions. Therefore, before studying the solution equilibria of the Ru complexes, a careful 

investigation of the hydrolytic stability of EHP and EHMP had to be performed. Stock 

solutions containing either ligand were prepared at pH 1.83, 7.61 and 11.11 and aliquots were 

titrated with the strong base KOH within a time frame of up to 191 h (Fig. S1). The formation 

of the carboxylic acid moiety by hydrolysis of the ester bond would result in extra base 

consumption and a shift of the equivalent point, which was only observed at pH 11.11. Within 

3 h ca. 45% of the ester had hydrolyzed, and remained constant during the rest of the 

experiment (Fig, S1.d). The hydrolytic stability of the ligands was also monitored by a second 

titration following re-acidification of the initially titrated aliquots of the acidic stock solution 

with the base. Overlapping consecutive titration curves were observed when the first titration 

was stopped at a maximum of pH ~10.4, demonstrating that no measurable ester hydrolysis of 

EHP and EHMP takes place between pH 2 and 10.4. In addition, the hydrolysis of EHP was 

monitored at pH 7.4 by 1H NMR spectroscopy (Fig. S2), which revealed that no measurable 

hydrolysis takes place at this pH value within 168 h. Based on these preliminary results, the 

proton dissociation constants (pKa) of the ligands were calculated from data collected in the 

pH range 2.0−10.4. The pKa values determined by the pH-potentiometric, UV and 1H NMR 

titrations are collected in Table 1 and are in a fairly good agreement. The proton dissociation 

constants can be attributed to the deprotonation of the hydroxyl functional group. The pKa of 

EHP was found to be somewhat lower than that of the structurally related 3-hydroxy-1-

methylpyrid-2(1H)-one (MH2P, pKa = 8.89 [35]) due to the electron-withdrawing effect of the 

ester moiety. The presence of the neighboring electron-donating methyl group adjacent to the 

hydroxyl in EHMP results in higher basicity compared to EHP and MH2P. The 

deprotonation of EHP and EHMP is accompanied by characteristic changes of the ligand 

bands in the UV spectra (for EHP see Fig. 1). The development of new strong bands at a 

higher lmax value was observed for both ligands due to deprotonation which results in more 

extended conjugated  electron systems. The individual UV spectra of the ligand species (HL 
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and L–) were also calculated on basis of deconvolution of the pH-dependent spectra (Fig. S3 

and Table 1). The constant location of the isosbestic points in the spectra of the ligands (see 

Fig. 1 for EHP) also indicates that the ester hydrolysis is negligible in the pH range studied 

(pH 2.0–10.4).   

 

Table 1 

Fig. 1.     

 

 1H NMR spectroscopic titrations of the ligands gave very similar results (see Fig. 2 for 

EHP, Fig. S4 for EHMP). The chemical shifts (d) of the aromatic CH protons are sensitive to 

the protonation state of the ligands, and upfield shifts of these protons of EHP by increasing 

pH are as shown in Fig. 3. Based on these changes, the pKa values and chemical shifts of the 

individual ligand species (HL; L–) were calculated (Table 1). Above pH 10, signals were 

assigned to the hydrolysis products, i.e. the corresponding 3-hydroxy-2-oxopyridine-1(2H)-

carboxylate and ethanol (Fig. 2). 

 

Figs. 2, 3.     

 

Furthermore, EHP and EHMP were also characterized with regard to their 

lipophilicity and distribution coefficients at physiological pH (logD7.4), as determined via n-

octanol/water partitioning. The partition coefficients (logP) of the neutral, non-ionized species 

were calculated from the logD7.4 values using the proton dissociation constants (Table 1). 

EHMP exhibits a more lipophilic character than EHP due to the additional methyl group. 

 

3.2. Solution equilibria of [RuII(6-p-cymene)] complexes of EHP and EHMP 

 

The complex formation processes of the ligands with [RuII(6-p-cymene)(H2O)3]
2+ were 

studied by pH-potentiometry, UV-Vis spectrophotometry and 1H NMR spectroscopy in 

aqueous solution. The stability constants of the minor and major dinuclear hydrolysis products 

[Ru2(
6-p-cymene)2(OH)2]

2+ and [Ru2(
6-p-cymene)2(OH)3]

+, respectively, were determined 

by pH-potentiometry in the presence of 0.2 M KCl (Table 2) and were found to be in good 

agreement with data obtained by Buglyó and colleagues [23]. The chloride ion is considered 

as a non-innocent ligand for RuII [19,20,36], and thus these stability data are regarded as 
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conditional stability constants and are valid under the given conditions (0.2 M KCl, T = 25 

°C). The aqueous solution behavior of [RuII(6-p-cymene)] can be described well with the 

formation of the above mentioned three kinds of species at 0.2 M KCl ionic strength [23,24]. 

However various chlorido, hydroxido and mixed chlorido-hydroxido complexes are present at 

acidic pH, rather than [RuII(6-p-cymene)(H2O)3]
2+ and [Ru2(

6-p-cymene)2(OH)2]
2+ [36]. 

Above pH ~6.5 the dinuclear complex [Ru2(
6-p-cymene)2(

-OH)3]
+ predominates [23,36]. 

It was also found that the hydrolytic equilibria are reached quickly so that pH-potentiometric 

titrations can be employed to follow the process. 

The formation of the RuII(6-p-cymene) complexes with the ligands EHP and EHMP 

starts in the acidic pH range and the exclusive formation of mononuclear species with 1:1 

metal-to-ligand ratio was identified. Stability constants of the complexes [RuII(6-p-

cymene)(L)] were determined by pH-potentiometry and UV-Vis spectrophotometry 

monitoring complex formation via the changes of the charge transfer (CT) bands and they are 

in good agreement with each other (Table 2). In these complexes the bidentate (O,O) 

coordination mode of the ligands is the most feasible in solution, similarly to other 

hydroxypyridone compounds [37] as demonstrated by single-crystal X-ray diffraction studies 

[18]. Due to the slow ligand exchange processes observed in the 1H NMR spectra of the 

complexes with respect to the NMR time scale, the chemical shifts of the protons of the free 

and bound ligand and the RuII(6-p-cymene) moiety are clearly distinguishable (Figs. 4, 5, 

Fig. S5).  

 

Figs. 4, 5.     

 

The integrals of the pH-dependent proton peaks of the non-bound ligand and RuII(6-p-

cymene) moiety and the peaks of the metal complexes are proportional to the molar fractions 

of the species (Fig. 6). The molar fractions of the bound and free metal ions were also 

calculated on basis of the determined stability constants. Very good correlation between the 

pH-potentiometric and 1H NMR spectroscopic data were observed at pH < ca. 6. Up to this 

pH the formation of [RuII(6-p-cymene)(L)] reaches a maximum and good quality 1H NMR 

data was accessible (Fig. 4, Tables S1, S2). The aromatic ring protons of the ligands and all 

the protons of the RuII(6-p-cymene) moiety show significant electronic shielding effects as 

compared with the HL ligand forms and ligand-free organometallic arene moiety.  
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Fig. 6.     

The mono-ligand [RuII(6-p-cymene)(L)] species, in which L is a bidentate ligand,  

often bear a chlorido leaving group, as also shown in the solid state by X-ray diffraction 

analysis [9,18,38,39]. These compounds can undergo aquation of the chlorido ligand in 

aqueous solution. This exchange process usually takes place fast and is considered to be an 

important step for the biological activation of the metal complex [17−20]. The extent of the 

aquation strongly depends on the type of the bidentate ligand and the actual chloride 

concentration [17−20,36]. Therefore, the [RuII(6-p-cymene)(L)(H2O)]+ + Cl−  [RuII(6-

p-cymene)(L)(Cl)] + H2O equilibria were studied for the bidentate (O,O) donor ligands EHP 

and EHMP using 1H NMR spectroscopy. Spectra were recorded at pH 5.8 where the mono-

ligand complexes predominate and at physiological pH (pH 7.4) using various chloride 

concentrations (Fig. S6). Fast ligand exchange processes were observed in the 1H NMR 

spectra as the signals of the aqua and chlorido species do not appear separately: A shift of the 

location of the cymene-CH peaks by about 0.1 ppm was observed by elevating the chloride 

concentration. A similar tendency was seen at both pH values studied (Fig. 7). Based on these 

spectral changes the equilibrium constants for the water/chloride exchange reactions were 

estimated (Table 2). The calculations should be considered only as estimations since a high 

excess of chloride (~ 0.5 M) was necessary to obtain saturation curves for the Ru complexes 

with a chlorido rather than an aqua ligand and thus the ionic strength of the solutions was not 

constant at 0.2 M. This effect was reached at a somewhat lower chloride concentration in the 

case of EHMP, and consequently a slightly higher logK’ value was obtained compared with 

EHP. According to these data about 38% and 55% of the EHP complex are chlorinated at 0.1 

and 0.2 M chloride concentration, respectively, while for EHMP approximately 48% and 

65% of the chlorinated species were found.   

 

Fig. 7.     

 

1H NMR titrations of the [RuII(6-p-cymene)]2+−ligand systems clearly revealed 

various overlapping processes above pH 6 (Fig. 5). When elevating the pH value, the mono-

ligand complex starts to dissociate resulting in the trihydroxido-bridged dinuclear species and 

the free ligand, which features a pH-dependent signal as its proton dissociation falls in this pH 

range. The dissociation of the [RuII(6-p-cymene)(L)] species is relatively slow and could not 

be followed by pH-potentiometry as the real equilibria could not be reached during the time-
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scale of this method (max. ~15 min at each point). This is a possible reason why the fit 

between the molar fractions calculated based on pH-potentiometry and 1H NMR 

spectroscopic data at pH > 6.5 is not satisfactory. In addition, the hydrolysis products of the 

ester bond cleavage of the ligand, i.e., the carboxylate and ethanol are also formed in solution 

at pH > ~9 (Fig. 5). Ester hydrolysis of the complexes occurs only at a slightly lower pH than 

for the ligands. Thus, no strong catalytic effect on the ligand hydrolysis of the metal ion is 

probable. According to this finding, the coordination via the carboxylate side chain after 

hydrolysis of the ester moiety is also not likely to occur at pH < 9. The hydrolytic stability of 

the [RuII(6-p-cymene)]2+−EHP ligand system was monitored at pH 7.40 by 1H NMR 

spectroscopy for a week and only ca. 5% hydrolysis product was observed.  

Besides the slow dissociation of the mono-ligand complex and the ester bond 

hydrolysis, a third process may be responsible for the significant shift of the 1H NMR signals 

of the mono-ligand complex at pH > 8. Most probably the formation of a mixed hydroxido 

species [RuII(6-p-cymene)(L)(OH)] takes place. Due to the above mentioned slow complex 

dissociation processes, no reliable stability constant could be calculated for this complex 

based on pH-potentiometric experiments. However, pKa values were estimated based on the 

pH-dependence of the signals of the CH(Ar) cymene protons in 1H NMR spectra (Fig. S7, 

Table 2). The pKa values of the mono complexes of EHP and EHMP are fairly similar and 

fall within the range found for half-sandwich RuII complexes with (O,O) coordinating ligands 

[9,14]. It is noteworthy that our data obtained in the presence of 0.2 M KCl are significantly 

higher as compared with the chloride-free medium [18], since the presence of competing 

chloride ions can suppress the hydrolysis of [RuII(6-p-cymene)(L)]. 

 

3.4. Comparison of the stability of [RuII(6-p-cymene)] complexes of EHP with EHMP and 

other related ligands 

 

Direct comparison of the stability constants of the [RuII(6-p-cymene)] complexes formed 

with the ligands EHP and EHMP (Table 2) reveals that the presence of the extra methyl 

group on the aromatic ring results in higher log values, although the pKa of EHMP is also 

higher. Therefore, the overall stability constants of the [RuII(6-p-cymene)(L)] species were 

corrected by the different ligand basicities according to the following competition reaction: 

 [RuII(6-p-cymene)]  + HL  [RuII(6-p-cymene)(L)] + H+   (3) 

 logK* = logβ [RuII(6-p-cymene)(L)] – pKa(HL)    (4) 
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A higher logK* implies more favored metal complex formation as compared with the 

protonated ligand. Based on these derived constants (logK* in Table 2), the electron donating 

methyl group adjacent to the coordination site in EHMP slightly increases the metal binding 

ability. The 3,4-hydroxypyridone deferiprone and maltol as a 3-hydroxy-4-pyrone feature 

similar structures as EHP and EHMP and the stability of their mono-ligand RuII(arene) 

complexes, which predominate at physiological pH in the mM concentration range are higher 

with logK* values of 2.08 and 0.61 reported for deferiprone and maltol, respectively [24]. 

Consequently, the stability order of the (O,O) chelates is the following: EHP < EHMP < 

maltol < deferiprone. These results fit the generally accepted stability trend, i.e., 3-

hydroxypyrid-4-ones > 3-hydroxypyrid-2-ones [35]. According to these results, it can be 

concluded that EHP and EHMP possess moderate binding ability towards [RuII(6-p-

cymene)] and significant dissociation of their complexes or the displacement of the original 

carrier ligand by other bioligands are probable under biologically relevant conditions, namely 

at low concentrations and at pH 7.4.     

 

 

4. Conclusions 

 

The two alkoxycarbonylmethyl-3-hydroxy-2(1H)-pyridones EHP and EHMP feature ethyl 

ester groups, which were found to be stable against hydrolysis in the pH range 2.0−10.4 in 

aqueous solution. The methylated derivative EHMP has higher basicity and lipophilicity. The 

stoichiometry and stability of their RuII(6-p-cymene) complexes were determined by pH-

potentiometry, 1H NMR spectroscopy and UV-Vis spectrophotometry in aqueous solution. 

Formation of mono-ligand complexes was found with moderate stabilities in which the 

ligands coordinate in a bidentate fashion via their oxygen donors. These species predominate 

in the physiological pH range at mM concentrations, but considerable dissociation and the 

partial displacement of the original ligands by endogenous competitors is possible. In 

addition, chlorido/aqua co-ligand exchange processes for the [RuII(6-p-cymene)(L)(H2O)]+ 

species were monitored. Based on these data, it can be estimated that in the complex up to 55–

65% of the aqua ligand is replaced by chlorido at 0.2 M chloride concentration. The ester 

groups of the ligands in [RuII(6-p-cymene)(L)(H2O)]+ show considerable hydrolysis only in 

the basic pH range where significant dissociation of the complex and formation of dinuclear 
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trihydroxido bridged [Ru2(
6-p-cymene)2(OH)3] and the hydroxido species [RuII(6-p-

cymene)(L)(OH)] was found.  

 

 

5. Abbreviations 

CT  charge transfer 

D  distribution coefficient 

EHP   N-[(ethoxycarbonyl)methyl]-3-hydroxy-2-(1H)-pyridone 

EHMP  N-[(ethoxycarbonyl)methyl]-3-hydroxy-4-methyl-2-(1H)-pyridone 

MH2P   3-hydroxy-1-methylpyrid-2(1H)-one 

P  partition coefficient 
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Table 1 

Proton dissociation constants (pKa) of EHP and EHMP with lmax, molar absorptivity (M-1cm-

1) and calculated chemical shift (ppm) values for ligand species determined by UV 

spectrophotometric and 1H NMR titrations (T = 25.0 °C, I = 0.20 M (KCl)).a 

 EHP EHMP 

pKa (pH-potentiometry) 8.60(2) 9.20(3) 

pKa (UV) 8.58(1) 9.21(1) 

pKa (
1H NMR) 8.56(1) 9.19(1) 

logD7.4 −0.10(1) +0.64(2) 

logP −0.07 +0.65 

 HL L− HL L− 

λmax (nm) / 

ε (mol-1dm3cm-1) 

300 / 6156 

238 / 3227 

314 / 7485 

260 / 4935 

298 / 6881 

242 / 2616 

312 / 8718 

267 / 5427 

d / ppmb HL L− HL L− 

CH(4) (d) 7.179 6.767 − − 

CH3(4) (s) − − 2.187 2.087 

CH(5)c 6.440 6.313 7.112 6.725 

CH(6) (d) 7.086 6.562 6.403 6.316 

CH2 (q)d 4.264 4.250 4.256 4.242 

CH3 (t)
d 1.271 1.271 1.266 1.266 

a Uncertainties (SD) are shown in parentheses for the species characterized in the 
present work. 
b The signal of -CH2C=O (s) lies underneath the water peak. 
c CH(5) EHP: (d/d), EHMP: (d) 
d Data of ethanol for comparison: CH2 (q) = 3.65 ppm; CH3 (t) = 1.17 ppm 
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Table 2 

Overall stability constants (log) with some stepwise and derived constants of the [RuII(6-p-

cymene)] complexes of EHP and EHMP (T = 25.0 °C, I = 0.20 M (KCl))a 

 EHP EHMP 

log ([RuII(6-p-cymene)(L)]) (pH-metry) 8.49(1) 9.33(1) 

log ([RuII(6-p-cymene)(L)]) (UV−Vis) 8.55(9) 9.30(1) 

pa ([RuII(6-p-cymene)(L)]) (1H NMR)b 9.39(1) 9.46(3) 

logK’ (H2O/Cl−)c 0.78(2) 0.96(2) 

logK* d −0.11 +0.13 

a Uncertainties (SD) are shown in parentheses for the species 
characterized in the present work. Hydrolysis products of the metal ion: 
log [Ru2(

6-p-cymene)2H−2]
2+ = −7.01(1) and log [(Ru2(

6-p-
cymene)2H−3]

+ = −11.99(1). 
b [RuII(6-p-cymene)(L)]  [RuII(6-p-cymene)(L)(OH)] + H+ 
c [RuII(6-p-cymene)(L)(H2O)]+ + Cl−  [RuII(6-p-cymene)(L)(Cl)] + 
H2O 
d logK* = logβ [RuII(6-p-cymene)(L)] – pKa(HL) 
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Chart 1. Ligands used in this study: EHP = N-[(ethoxycarbonyl)methyl]-3-hydroxy-2-(1H)-

pyridone; EHMP = N-[(ethoxycarbonyl)methyl]-3-hydroxy-4-methyl-2-(1H)-pyridone  

 

 

 

 

Fig. 1. UV absorbance spectra of ligand EHMP recorded in the pH range of 2.0−10.3 (cEHP = 

0.1 mM; T = 25.0 °C; I = 0.20 M (KCl)). 
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Fig. 2. Low (a) and high (b) field regions of the 1H NMR spectra of EHP recorded at the 

indicated pH values (cEHP = 4 mM; T = 25.0 °C; I = 0.20 M (KCl); 10% D2O). The peaks 

stemming from the hydrolysis products 3-hydroxy-2-oxopyridine-1(2H)-carboxylate (on a) 

and ethanol (on b) are annotated with stars.  

 

 

 

 

 

Fig. 3. pH-Dependence of the chemical shifts (d) of the EHP protons: CH(4) (×); CH(6) (■); 

CH(5) (○) (T = 25.0 °C; I = 0.20 M (KCl); 10% D2O). 
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Fig. 4. 1H NMR spectrum of the [RuII(6-p-cymene)]–EHP system recorded at pH 6.09. The 

peaks with the grey background correspond to non-bound ligand and metal ion (cEHP = 2 mM; 

M:L = 1:1; T = 25.0 °C, I = 0.20 M (KCl), 10% D2O).  
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Fig. 5. Representative 1H NMR spectra of the [RuII(6-p-cymene)]–EHP system recorded at 

various pH values (cEHP = 2 mM; M:L = 1:1; T = 25.0 °C, I = 0.20 M (KCl), 10% D2O). 
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Fig. 6. Bound and ligand-free metal ion fractions for the [RuII(6-p-cymene)]–EHP (a) and –

EHMP (b) systems calculated on the basis of the stability constants of the [RuII(6-p-

cymene)(L)] species (solid lines) and 1H NMR peak integrals of the singlet CH3 (cymene 

moiety) protons: bound (●), free (×) fractions. Errors are calculated with the help of the ligand 

distribution on basis of the ligand peaks in the NMR spectra (cligand = 2 mM; M:L = 1:1; T = 

25.0 °C, I = 0.20 M (KCl), 10% D2O). 
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Fig. 7. 1H NMR chemical shifts (d) of the CH(6) and CH(5) peaks of the [RuII(6-p-

cymene)(L)]+ complexes of EHP (black) and EHMP (grey), respectively, plotted against the 

chloride concentration at pH 5.8 (○) and 7.4 (×) together with the fitted curves (cligand = 2 

mM; M:L = 1:1; T = 25.0 °C, 10% D2O). 
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