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Abstract

Two methods are tested whereby satellite altimeter measurements of the geoid
height are combined with surface measurements of the free-air gravity anomaly.
The study area comprises the oceans around the Australian continent. The
first method involves draping a grid of the free-air anomaly from satellite data
onto a grid of the ship and land data. The second method utilises grids of
the altimeter-derived geoid height, combining these with the surface data in
an iterative superposition. Preliminary results show that the draping method
yields a fit of 5.4 mGal between the satellite and marine data, while the iterative
procedure returns 8.1 mGal. Further work can be done, however, to improve
these results. The impact of the combined marine gravity data sets is illustrated
by comparing the effects on an Australia-wide spherical-FFT geoid solution.

Introduction

Although there exists an almost global coverage of satellite altimetry data, with
the newly released Geosat/GM data and ERS-1 data greatly improving resolu-
tion, there is also an extensive global marine gravity data set. This data set
should not be ignored as it can quite easily be incorporated with satellite al-
timetry data to give a more accurate map of the geoid than presumably could
ever be obtained from purely altimetric data.

A method extensively used to combine heterogeneous gravity data is least
squares collocation (LSC) [Moritz (1980)]. However, LSC is notoriously costly
in computer execution time. To combine M data points, a matrix of size M×M
must be inverted; “inversions of this size obviously present time problems even
on a supercomputer and results will suffer from round-off errors” [Schwarz et
al. (1990)].
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Other procedures to transform gravity anomalies to geoid heights are based
directly upon the classical Stokes integral [Heiskanen and Moritz (1967)]. These
include direct numerical integration of the anomalies through ring integration
methods [e.g., Kearsley (1985)] or quadrature integration; Fourier-domain ap-
proximations of the Stokes integral, a number of different techniques being sum-
marised in Tziavos (1996); and a method by Sideris (1995) to construct a geoid
from irregularly spaced gravity data using Fourier techniques.

This paper tests two approaches to the integration of satellite and surface
data: a straightforward “draping” of the marine gravity onto the altimeter field;
and an iterative scheme whereby the two heterogeneous data sets are integrated
through the fast Fourier transform (FFT).

The Data

The two methods were tested on data over and around the Australian continent.
The gravity data were supplied by the Australian Geological Survey Organisa-
tion (AGSO), revalidated by Featherstone et al. (1997). They comprise 111,396
free-air anomalies at sea and 526,091 on land. Both data sets were gridded
together at 6 minutes using the GMT software [Wessel and Smith (1995)].

The altimeter data were also gridded at 6 minutes from the global 2 minute
grid of Sandwell et al. (1995). Both data sets had the EGM96 geopotential
model to degree and order 360 removed.

The resulting geoid models were compared with GPS/levelling data at 34
stations of the Australian Fiducial and National Networks (AFN/ANN) around
the coast of Australia, where a geometric control geoid height could be deter-
mined.

The Iterative FFT Method

The algorithm combining heterogeneous gravity data sets [Kirby (1996)] makes
use of the wavenumber domain relationship between geoid height and free-air
anomaly, and can thus employ the fast Fourier transform to carry out rapid
conversions between these various forms of potential field data. The algorithm
presented here has been given the name IFC, for Iterative Fourier Combination.

The procedure utilises the planar 2-D Fourier-domain representation of the
boundary value problem of physical geodesy:

F {∆g} = γ kF {N} (1)

after Hipkin (1988), where k is the two-dimensional wavenumber.
The IFC routine requires not only a grid of gravity values, but also a grid

of weights for the data set. This grid should reflect the relative influence which
the gridnode corresponding to the data point has in the data set combination.
This depends upon the distance of the node from the actual observation points.

A provisional gravity field model, h, is created which is improved upon in
successive iterations of a weighted superposition with grids of geoid or free-air
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anomaly measurements. Conversion is always performed through equation (1),
while the superpositions take the forms:

h → h + ωterr∆gterr

1 + ωterr
(2)

for gravity anomaly combination, and

h → h + ωsatNsat

1 + ωsat
(3)

for geoid undulation combination. Here, ω represents the weight grids for the
terrestrial (terr) and satellite (sat) data sets.

This procedure can be iterated any number of times until the provisional
model, h, stabilises. Stabilisation occurs at the iteration count when the RMS
difference between successive ‘like’ provisional models reaches a previously spec-
ified value, indicating convergence.

The Draping Method

The second method of combination tested involved “draping” the terrestrial
gravity data onto the Sandwell altimeter grid. This was achieved by frequency
filtering the satellite grid with a 200 km high-pass filter. The difference between
this and the marine gravity was then gridded using the Geosoft collocation
package, and added back to the filtered altimeter grid only where no marine
data existed.

A geoid model was then produced from this combined gravity field using the
2-D multiband spherical FFT [Forsberg and Sideris (1993)], with equation:

F {N} =
R

4πγ
F {∆g cos φ} F {S(ψ)} (4)

where S(ψ) is the Stokes function.

Results

To assess their accuracy, the models were compared with the original data by
interpolation at the observation locations. Table 1 shows the statistics of the
difference between the original data observations, and values interpolated from
the indicated models at their locations.

The accuracy of the GMT gridding procedure was assessed by comparing
the AGSO ship and land data with their gridded counterpart. Rows 1 and 5
in Table 1 show the accuracy for gridding the marine data is 4.341 mGal RMS,
and 3.675 mGal RMS for the land data.

Points of interest in this table are the large RMS difference between the
marine gravity and the altimeter data: 10.617 mGal, indicating that one of
these data sets has gross errors.
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data model max min mean std dev RMS
AGSO 74.015 -170.035 -0.050 4.341 4.341

AGSO marine Altimeter 147.783 -239.579 -1.676 10.483 10.617
(mGal) IFC 136.966 -233.471 -1.181 8.060 8.146

Draped 95.536 -221.555 -0.103 5.447 5.448
AGSO land AGSO 82.154 -62.403 -0.032 3.675 3.675

(mGal) IFC 92.462 -69.082 -0.206 4.665 4.670
Draped 97.617 -96.074 -1.113 6.795 6.885

Altimeter IFC 98.650 -90.113 -0.211 2.357 2.357
(mGal) Draped 159.166 -104.167 -0.084 6.158 6.159

AFN/ANN IFC 1.133 -0.671 0.054 0.375 0.379
(metres) Draped 1.196 -0.396 0.065 0.332 0.338

Table 1: Statistics of the difference between the data observations in the first
column, and the values interpolated from the indicated model in the second
column.

model max min mean std dev RMS
gravity (mGal) 159.514 -110.888 -0.388 7.085 7.095
geoid (metres) 4.384 -3.798 -0.023 0.303 0.304

Table 2: Statistics of the difference between the IFC and draped potential fields.

The draped free-air field shows a better accuracy at sea than on land, 5.448
mGal against 6.885 mGal; while the reverse is true for the IFC gravity field:
4.670 mGal on land versus 8.146 mGal at sea.

The comparisons between the combined models and the 6 minute altimeter
grid are also shown in Table 1. The IFC field shows a marked improvement over
the draped field, with an RMS difference of 2.357 mGal against 6.159 mGal.

Finally, the geoid models from the two methods were compared with the
coastal AFN/ANN data. The improvement of the draped solution over the IFC
solution is slight: 33.8 cm against 37.9 cm RMS.

Figures 1 and 2 show the resultant combined geoid models. Note that the
IFC solution has more successfully integrated the ship track data with the al-
timeter field to produce a smoother grid. However, the draped gravity field
shows better agreement with the AGSO marine data. This discrepancy is most
probably due to errors in the marine data.

Table 2 shows the statistics of the difference between the IFC and draped
gravity field and geoid models.
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Figure 1: The geoid from the IFC method.
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Figure 2: The geoid from the draping method.
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Discussion and Conclusions

From Table 1, it can be seen that the majority of the differences occur at sea,
where gravity data is usually ill constrained. Indeed, the ship data shows a very
poor fit to the altimeter gravity field. However, both combination solutions have
succeeded in blending the two data sets together, and, given accurate ship data,
the benefits of this process would be multiple.

Further work should look at combining the benefits of both techniques, and
this is indeed the subject of a proposal by the first author.
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