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Abstract This paper addresses implementation issues in order to apply non-stationary

least-squares collocation (LSC) to a practical geodetic problem: fitting a gravimetric

quasigeoid to discrete geometric quasigeoid heights at a local scale. This yields a sur-

face that is useful for direct GPS heighting. Non-stationary covariance functions and a

non-stationary model of the mean were applied to residual gravimetric quasigeoid deter-

mination by planar LSC in the Perth region of Western Australia. The non-stationary

model of the mean did not change the LSC results significantly. However, elliptical ker-

nels in non-stationary covariance functions were used successfully to create an iterative

optimisation loop to decrease the difference between the gravimetric quasigeoid and

geometric quasigeoid at 99 GPS-levelling points to a user-prescribed tolerance.
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2

1 Introduction

Historically, two different approaches have been applied to fit a gravimetric geoid to a

geometric geoid or a gravimetric quasigeoid to a geometric quasigeoid. In this study, we

shall only refer to the quasigeoid because this is the surface of interest in Australia (cf.

Featherstone 2009). In recent years, the differences between the gravimetric quasigeoid

and the geometric quasigeoid at discrete GPS-levelling points have been interpolated

to create a surface that is applied to the gravimetric quasigeoid grid. This approach

gives a practically useful ‘product’ for the direct determination of heights from GPS

on the local vertical datum (cf. Featherstone 1998), but it is always subject to any

deficiencies in the GPS-levelling data used in the surface fitting. Also, a plethora of

interpolation techniques have been trialled, with least-squares collocation (LSC) now

being a popular choice (e.g., Milbert and Dewhurst 1992, Featherstone 2000, Kuroishi

et al. 2002, Featherstone and Sproule 2006).

In the older literature, the fitting [albeit indirectly] was performed as a part of the

gravimetric quasigeoid determination process. As an early example, Kearsley (1988)

selected the cap-radius for the ring-integration approach by optimising the gravimetric

quasigeoid to the geometric quasigeoid at GPS-levelling points. However, the cap-radius

chosen in this way was then used over the entire computation area. A similar idea is used

in this paper, but we use non-stationary covariance functions to optimise a gravimetric

to a geometric quasigeoid during the computation stage, where the covariance functions

are tuned to deliver a prescribed difference at each GPS-levelling point.

More recently, Prutkin and Klees (2008) formulated the non-uniqueness of local

quasi-geoids computed from terrestrial gravity anomalies by using GPS-levelling as

a Cauchy problem for the Laplace equation. This is a similar approach, where the

GPS-levelling data are used during the quasigeoid computation process.

Darbeheshti and Featherstone (2009) presented the implementation of the Higdon

et al. (1999) method (herein HSK) for non-stationary covariance modelling for the

interpolation of residual free air gravity anomalies by LSC. In short, HSK use spatially

variant ellipse kernels to build non-stationary covariance functions. However, we suggest

that Darbeheshti and Featherstone (2009) is consulted for clarification of the concepts

used in this paper. However, there are still unanswered questions relating to the best

use of this method more generally in LSC-based physical geodesy:
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3

– How can non-stationary covariance functions be applied when LSC is used for the

prediction of different gravity field functionals from one another?

– How much does accounting for non-stationarity of the mean (not just the covari-

ance; cf. Darbeheshti and Featherstone 2009) affect the LSC results?

– How should elliptical kernels be defined for the prediction points? For the case

of interpolation, where observation and prediction are the same functional, the

statistical analysis of observations is sufficient, but for the case of prediction of the

quasigeoid from gravity anomalies, for example, how should the elliptical kernels

be designed for the prediction points?

This study tries to answer these questions. It uses the same study area as Feather-

stone (2000), Claessens et al. (2001), Kirby (2003) and Darbeheshti and Featherstone

(2009) because the Darling Fault causes strong non-stationarity in the gravity field

across Perth region of Western Australia. For instance, the quasigeoid gradient with

respect to a geocentric ellipsoid is extremely steep, rising by as much as 40 cm over

only 2 km ( 200 ppm). In AUSGeoid98 (Featherstone et al. 2001), this steep gradi-

ent was handled by using LSC in a separate interpolation stage only over this region

(Featherstone 2000). Claessens et al. (2001) and Kirby (2003) later found that the

need to apply a posteriori fitting to GPS-levelling originated largely from erroneous

ship-track data, which has since been confirmed by comparisons with independent data

(Featherstone 2009).

This paper looks at the prediction of a gravimetric quasigeoid from gravity anoma-

lies using non-stationary methods (mean and covariance) in planar LSC. The non-

stationary methods for the mean and covariances will be applied separately to examine

if non-stationarity of the mean is more critical than non-stationarity of covariances in

LSC or vice versa. The model for the non-stationary of the mean will first be applied

to planar LSC, then HSK’s non-stationary method for covariances will be implemented

in planar LSC. The elliptical kernels at the observation points (gravity anomalies) are

the same as those used by Darbeheshti and Featherstone (2009). When designing ellip-

tical kernels for the prediction points, the residual geometric quasigeoid at 99 discrete

GPS-levelling stations will be used.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4

2 Geometric quasigeoid in the Perth region

There are algebraic transformations where the orthometric height (H) is subtracted

from the ellipsoidal height (h) to give the geoid-ellipsoid separation (N), or the normal

height (HN ) is subtracted from the ellipsoidal height to give the quasigeoid-ellipsoid

separation, also known as the height anomaly, (ζ). Since the normal-orthometric height

(HN ) system is used in Australia (Featherstone and Kuhn 2006), the quasigeoid is used

for better consistency:

ζgeo
.
= h − HN (1)

This will be termed the geometric quasigeoid. The approximation in Eq. (1) is because

the different heights are measured along different field-lines, but the differences are

probably less than a millimetre over this region, where the maximum topographic

height is about 350 m.

There are 99 GPS points available to us in the test area (Fig.1), which are referenced

to the GRS80 ellipsoid on the ITRF92 (epoch 1994.0) datum. The dual-frequency GPS

baselines were adjusted in 1998 by Landgate (the Western Australian geodetic agency)

using Geolab software. The mean of the one-sigma error in the ellipsoidal heights σ2
h

is 2.4 cm. From inspection of benchmark descriptions, the mean of the one-sigma error

in the levelled heights is about 3 cm. Using variance propagation at the two-sigma

confidence level, gives an estimated accuracy of the GPS-levelling of 7 cm, which will

be used in the sequel.

This data set has been used before by Featherstone (2000), Tziavos and Feather-

stone (2001) and Kirby (2003). However, there are some minor problems with this data

set:

– For the original adjustment of the levelling data to realise the Australian Height

Datum (AHD), this region was divided into the ‘Perth Metropolitan Zone’ and

a ‘buffer’ zone, but the maximum difference between adjustments is only 4 mm

(National Mapping Council 1979).

– A comparison of around 200 ITRF2005 (epoch 2000.0) and ITRF92 (epoch 1994.0)

ellipsoidal heights across Western Australia (Featherstone 2008) shows a mean ab-

solute difference of 3 cm, but it reached 18 cm in one case. However, this is not an
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5

issue if ITRF92 (epoch 1994.0) ellipsoidal heights are used with the local quasigeoid

model presented here.

– There is a widely-acknowledged north-south tilt in the AHD (e.g., Featherstone

2004, 2008 and the many references cited therein).

Figure 1 near here

As a first check of these GPS-levelling data, EGM2008 (Pavlis et al. 2008) was used

in linear regressions in latitude and longitude (Fig. 2) show north-south and east-west

tilts among the GPS-EGM2008-AHD residuals. The north-south tilt with an R2 value

(R is the correlation coefficient) of ∼ 0.20 is more significant than the east-west tilt

of R2 =∼ 0.01. The north-south tilt is equivalent to ∼ 0.71 mm/km when converting

degrees to kilometres (one degree is ∼ 111 km at the equator), which roughly agrees

with the value of ∼ 0.81 mm/km determined by Featherstone (2004) for 48 GPS-AHD

points across the southwest of Western Australia, but using AUSGeoid98 instead of

EGM2008. Featherstone (2008) obtained a lower north-south tilt of ∼ 0.27 mm/km

with 243 GPS-AHD points across the whole of Western Australia, but used a GRACE-

augmented version of AUSGeoid98.

Figure 2 near here

3 Gravimetric quasigeoid modelling with planar LSC

Since the studies cited in the Introduction were conducted, new data sets are available

that improve (shown later) residual gravimetric quasigeoid determination in this region:

– Irregularly spaced land gravity data from Geoscience Australia with an average

spatial separation of 3 km (Fig.3);

– The 1-arc-minute DNSC2008GRA (Andersen et al. 2009) grid of free-air anomalies

offshore (Fig.3);

– EGM2008 geopotential coefficients to degree and order 2160 (Pavlis et al. 2008);

– A 9-arc-second grid of gravimetric terrain corrections (Kirby and Featherstone

2002) as an approximation of the Molodensky G1 term (cf. Sideris 1990).

Figure 3 near here

Figure 4 is a flowchart illustrating the steps in the gravimetric quasigeoid determi-

nation with planar LSC. The surface command in the GMT (Generic Mapping Tools)
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6

package (Wessel and Smith 1998; http://gmt.soest.hawaii.edu/) was used for gridding.

The tension parameter was fixed to [T = Default = 0, as it gives minimum curvature

solution] for all of the surface commands used in this paper. Three different grid-sizes

of 1′ × 1′, 2′ × 2′ and 5′ × 5′ were tested. The 2′ × 2′ grid-size appeared to be suffi-

cient in terms of accuracy versus time efficiency. The use of gridded data also avoids ill

conditioning or singularities in the numerical inversion of the auto-covariance matri-

ces in LSC, which occurs for closely spaced points. The terrain corrections computed

by Kirby and Featherstone (2002) were averaged onto the same grid, then added to

the Molodensky free-air gravity anomalies to apply an approximation of the Molo-

densky G1 terms (cf. Sideris 1990) needed in quasigeoid determination. After that,

EGM2008 gravity anomalies to degree and order 2160 were removed using the HAR-

MONIC SYNTH program (Holmes and Pavlis 2006). These residual anomalies are in

an area bounded between 33.6◦S and 30.4◦S and 117.5◦E and 114.4◦E for gravimetric

residual quasigeoid determination in an area bounded between 32.5◦S and 31.5◦S and

116.5◦E and 115.5◦E. Thus, the target area is smaller than the data area so as to

reduce the edge effects (cf. Kirby 2003).

Figure 4 near here

Planar LSC was applied to the residual gravity anomalies to estimate the residual

gravimetric quasigeoid, via:

εζgra = Cεζ ,εΔgC
−1
εΔg,εΔg

εΔg (2)

For the auto-covariance and cross-covariance of Cεζ ,εΔg and CεΔg,εΔg , the planar

covariance functions from Forsberg (1987) were used (Appendix), which are related

by the law of covariance propagation. Thus, the two are entirely self-consistent. The

use of planar LSC is permitted given the limited areal extent of this study area. Note

that this part of our study uses standard LSC; the non-stationary methods will be

implemented later.

The empirical covariances of the residual gravity anomalies εΔg are essential to

estimate the parameters of C0, D and d (defined in the Appendix and in Forsberg

(1987)) of the analytical auto-covariance function of CεΔg,εΔg and cross-covariance

function of Cεζ ,εΔg . The program GPFIT in GRAVSOFT (Forsberg and Tscherning

2008) yields the parameters (C0, D and d) of the statistical model (covariance function)
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7

to be fitted to the empirical covariances to run the planar LSC (see Figure 5 and Table

1).

Figure 5 near here

Table 1 Parameters describing the fitting of the empirical covariance of the residual gravity

anomalies εΔg with the planar covariance model of Forsberg (1987)

No. of data Mean(mGal) C0(mGal2) D(km) d(km)

9118 -0.83 10.51 4 8

There does not appear to be a standardised convention for the size of neighbourhood

search in LSC. To be on the safe side, we set the neighbourhood search out to the point

where the empirical covariances tended to be zero. The empirical covariances of the

residual gravity anomalies in this particular data set tend to zero after ∼ 40′ (∼74

km)(cf. Figure 5). Hence, our planar LSC uses a neighbourhood search of 40′ around

each point to compute the residual gravimetric quasigeoid εζgra by planar LSC. The

results will be presented later (Section 4.2, Table 3), next to the results from the

non-stationary LSC.

4 Using non-stationary mean and covariances in planar LSC

4.1 Testing non-stationarity of the mean

The standard (planar or spherical) LSC formulation is based on the zero-mean as-

sumption of the vector of observations (e.g., Moritz 1980). Table 2 shows the mean

and variance of the observation vector (residual gravity anomalies εΔg) for a repre-

sentative sample of our 99 GPS-levelling prediction points. It shows how much the

mean of each observation vector is offset from zero, and how the observation vector

is non-stationary: the larger variance indicates that data is more scattered about the

mean, thus, it is a very coarse measure of non-stationarity of the mean.

Non-stationarity models of the spatial mean have been applied in geostatistics

for many years (e.g., Wackernagel 2003). One of the practically useful methods is the

adaptation of ordinary Kriging (OK) to account for non-stationarity of the mean, which

was introduced by Deutsch and Journel (1998) in the GSLIB software. OK amounts
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Table 2 A typical sample of the mean and variance of the observation vectors for the GPS-

levelling prediction points. The mean was computed by taking the mean gravity anomaly for all

1680 residual gravity anomalies in a cap of 40′ radius about each of the 99 GPS-levelling points.

The variance was computed for the same areas using the square of the standard deviation about

the mean.

Point No. Mean(mGal) C0(mGal2)

53 -1.066 15.413

54 -1.916 20.323

58 -1.861 16.261

59 -1.571 15.410

60 -0.435 14.506

61 -0.129 12.576

62 -0.441 15.094

63 -0.878 16.451

76 -0.722 13.590

77 -1.560 18.873

78 -1.010 18.518

79 -0.159 12.444

80 -0.328 14.553

81 -1.518 20.073

82 0.082 11.105

83 -0.522 13.335

84 -1.288 17.916

to re-estimating, at each new location, the mean m as used in the simple Kriging (SK)

expression. The only difference between SK and LSC is that SK assumes that the mean

is known, while LSC is based on the zero-mean assumption. Some authors (e.g., You

2006) simply reduce the mean as a trend from the data, which basically comes from

geostatistics. Cressie (1993) suggested using the median of the data instead, because

by removing the mean, there is a danger of adding a bias to the data.

Because OK is most often applied within moving-search neighbourhoods (Deutsch

and Journel 1998), i.e., using different subsets for different locations, the implicit re-

estimated mean depends on location. Hence, OK as applied within moving data neigh-

bourhoods is already a non-stationary algorithm in the sense that it corresponds to a

non-stationary random field model with varying mean, but stationary covariance. This
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9

ability to locally re-scale the random field model to a different mean value m explains

the robustness of the OK algorithm (Chilès and Delfiner 1999).

The idea of using just neighbouring data is derived from Kriging algorithms, but is

also commonplace in regional quasigeoid determination from LSC or numerical Stokes

integration. The first reason for this is to limit the CPU and computer memory require-

ments. Furthermore, adopting a global search neighbourhood would require knowledge

of the covariance for the largest separation distance between data. The covariance is

typically poorly known for distances beyond one-half or one-third of the size of a study

area. A third reason for a limited search neighbourhood is to allow local re-scaling of

covariance parameters for each computation point (Deutsch and Journel 1998).

To introduce non-stationarity of the mean, the LSC Eq. (3), based on the zero

mean assumption,

εζgra = Cεζ ,εΔgC
−1
εΔg,εΔg

εΔg, (3)

changes to

εζgra = Cεζ ,εΔgC
−1
εΔg,εΔg

εΔg + (1 −
∑

(Cεζ ,εΔgC
−1
εΔg,εΔg

))m(εΔg), (4)

(cf. Deutsch and Journel 1998), where m(εΔg) is the mean value of the residual

gravity anomalies for each prediction point (the mean of the neighbourhood of 40′

around each prediction point). If the mean is zero in Eq. (4), this degenerates the

standard LSC formulation of Eq. (3).

The difference between the residual gravimetric quasigeoid heights based on the

non-stationary mean LSC of Eq. (4) and the standard zero-mean LSC of Eq. (3) were

insignificantly small (of the order millimetres), so are not presented here. Because, in

this case, the mean values of the observation vectors for each point are small (cf. Table

2), the zero stationary assumption of the mean does not affect the result much. However,

this method might be more effective in cases when the zero stationary assumption of the

mean is more strongly contradicted; or in other words, when mean values and variances

are more inhomogeneous than in this case-study example. The general Kriging method

of Reguzzoni et al. (2005), which accounts for a non-zero mean in LSC, also reached

the same conclusion.
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4.2 Testing non-stationarity of the covariances

The same HSK kernel convolution method used for the interpolation of residual free-air

gravity anomalies (Darbeheshti and Featherstone 2009) will be applied here for non-

stationary covariances for residual gravimetric quasigeoid prediction in planar LSC.

This means that the Euclidean distance of

r2
ij = x2

ij + y2
ij =

[
(xi − xj) (yi − yj)

] ⎡
⎣ 1 0

0 1

⎤
⎦
−1 ⎡

⎣ (xi − xj)

(yi − yj)

⎤
⎦ (5)

for two points Pi = (xi, yi) and Pj = (xj , yj), usually used to build covariance

matrices of Cζ,Δg and CΔg,Δg , is replaced with

Q2
ij = x2

ij + y2
ij =

[
(xi − xj) (yi − yj)

] [
1

2

(
Σi + Σj

)]−1
⎡
⎣ (xi − xj)

(yi − yj)

⎤
⎦ (6)

where

Σ
1
2 = τ

⎛
⎝ a 0

0 b

⎞
⎠

⎛
⎝ cos α sin α

− sin α cos α

⎞
⎠ (7)

in which a and b are the axes of the ellipse and α is the direction angle (measured

anticlockwise from the x-axis) of the major axis of the ellipse.

The same covariance functions of Forsberg (1987) are used for non-stationary LSC

(cf. Appendix); so the covariances are still consistent and derived from a basis covari-

ance function by covariance propagation (as in ordinary LSC); the only difference is

that the HSK method enforces non-stationarity through the distance function of Eq.

(6).

Some conditions (from Darbeheshti and Featherstone 2009) should be considered

when designing the scaling factor τ at each observation point:

– Larger-value observations are attributed smaller τ and vice versa. This choice agrees

with the presence of the inverse of the covariance matrix of observations in Eq. (3),

where the scaling factor τ attributes weight to each observation at each point in

LSC;
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– τ can not be zero; τ = 0 causes a singularity in the inversion of the covariance

matrix of observations in LSC;

– τ should vary smoothly across the region; sudden changes in τ will cause disconti-

nuities in the LSC result;

A critical part of the non-stationary method in Darbeheshti and Featherstone

(2009) is the detection of non-stationarity and reflection of this by the elliptical pa-

rameters. We have to use as much as geostatistical analysis as possible to detect any

evidence of anisotropy and non-stationarity in the data, like looking at the data it-

self for any source of non-stationarity, e.g., geological features, directional covariance

functions, covariance maps (i.e., empirical covariances in all directions represented in

2D), and histograms (Deutsch and Journel 1998). However, the processes of detecting

of non-stationarity and attributing the elliptical parameters to each point is largely a

subjective issue, which also depends on the experience of the analyst.

Now, the main task is to design elliptical kernels or define elliptical parameters

{α, a, b} and scaling factors τ for all observation and prediction points. Unlike the

non-stationary interpolation example in Darbeheshti and Featherstone (2009), where

the observation and prediction points were the same, here the elliptical parameters are

designed separately for observation (gravity) and prediction (GPS-levelling) points.

Figure 7 near here

Figure 6 near here

Empirical covariance functions in different directions and a covariance map of the

residual anomalies were calculated to detect anisotropy directions (Figs. 7 and 6 re-

spectively). Figure 6 shows two main directions of anisotropy in the residual gravity

anomalies. One is azimuth 0◦ (measured clockwise from the y-axis), which is caused by

the Darling Fault (located at 116◦E); the residual anomalies along the Darling Fault

exhibit values of greater than 5 mGal. Other anisotropy is along azimuth 150◦, which

is caused by negative residual anomalies in Fig. 8. There is no clear geological origin

of this feature.

Figure 8 near here

Directional empirical covariance functions (Fig. 7) show the same anisotropy di-

rections, where two pairs of perpendicular azimuths were searched to define the minor

and major axis of the ellipses.
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– Azimuths 0◦ and 90◦ show the correlation lengths of d0◦ = 6.66 km and d90◦ =

5.55 km, which defines the parameters of the ellipses {α = 0◦, a =
√

6.66 km, b =
√

5.55 km} for observations points along the Darling Fault, with residual anomalies

more than 5 mGal.

– There is no anisotropic evidence for residual anomalies between -5 mGal and 5

mGal (which are marked with yellow in Fig. 7), thus the circles with the parameters

{α = 0◦, a = b =
√

(d0◦ + d60◦ + d90◦ + d150◦)/4 = 5.13 km} were attributed to

these points.

– Azimuths of 150◦ and 60◦ with correlation lengths of d150◦ = 4.44 km and d60◦ =

3.88 km, define the parameters of ellipses {α = 150◦, a =
√

4.44 km, b =
√

3.88 km}.
These ellipses are attributed to the points with residual anomalies less than -5

mGal, which are marked with dark blue in Fig. 7.

Comparing the average size of ellipses (i.e., a × b) in each category

– For residual anomalies greater than 5 mGal, mainly along the Darling Fault:

{α = 0◦, a =
√

6.66 km, b =
√

5.55 km}: a × b = 6.0797 km2

– For residual anomalies between -5 mGal and 5 mGal:

{α = 0◦, a = b =
√

(d0◦ + d60◦ + d90◦ + d150◦)/4 = 5.13 km}:a × b = 5.1300 km2

– For residual anomalies less than -5 mGal:

{α = 150◦, a =
√

4.44 km, b =
√

3.88 km}:a × b = 4.1506 km2

shows that the size of ellipses already describes the non-stationarity of residual gravity

anomalies in this region. The negative residual anomalies ≤ 5 mGal show the shortest

correlation length, mainly to the west of the Darling Fault. Therefore there is no need

to vary the scaling factor τ across the region. Thus, τ was fixed to 1.

The next stage is to define the elliptical kernels at the prediction (99 GPS-levelling)

points. The elliptical kernels at these prediction points are defined in the same way as

for the observation points, i.e., with the assistance of directional empirical covariances

and covariance maps. In this case, however, the number of GPS-levelling points is

insufficient to calculate a covariance map or directional empirical covariances to reliably

detect any anisotropy in the residual geometric quasigeoid. The elliptical parameters

in this stage are rely more up on trial and error, but they are chosen carefully to be in

the range of elliptical parameters at the observation points. They change slightly from

point to point, because the result was very sensitive to the elliptical parameters at
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the prediction points. As such, we fixed all three parameters {α, a, b} to their average

values, and slightly changed the scale parameter τ .

Thus, the parameters of {α = 0◦, a = 1 km, b = 1 km} were fixed equally for all

elliptical kernels at all GPS-levelling points. The scaling factor τ was allowed to vary

at each GPS-levelling point, until the difference of εζgeo − εζgra (residual geometric

quasigeoid minus residual gravimetric quasigeoid) is obtained for a chosen threshold.

In other words, the iteration loop (Fig. 4) will stop when the difference between the

geometric and gravimetric quasigeoid at each GPS levelling point is less than a chosen

threshold or convergence criterion. To start the optimisation loop in Fig. 4, an initial

value is needed for τ , so it was constrained to vary between 0 < τ < 1.

However, there is one difference between the variation of τ at the prediction points

versus the observation points. The τ at the prediction points contributes to the cross-

covariance matrix Cεζ ,εΔg , which is directly used in planar LSC (Eq. 3), not inversely.

Therefore, GPS-levelling points with larger residuals are attributed larger τ . Recall

that the aim here is to match the gravimetric quasigeoid estimated by planar LSC to

the geometric quasigeoid at the prediction points. In this case, the elliptical kernels in

Cεζ ,εΔg effectively take the role of weights in LSC. The larger ellipses give larger resid-

ual gravimetric quasigeoid heights where there is a larger residual geometric quasigeoid

value, and vice versa.

Different criteria should be considered to set the threshold used. Basically, the

question here is how much we want to match the gravimetric quasigeoid to geometric

quasigeoid at each point. One main concern is how confident we are about the accuracy

of GPS-levelling points. In our case, we focused on two criteria: the 7 cm two-sigma

average accuracy of the 99 GPS-levelling points and the north-south tilt in the AHD

(cf. Section 1).

A threshold of 17 cm was tested first (not presented here) which required four it-

erations; the threshold of 7 cm adopted here took nine iterations. Table 3 and Fig. 9

compare latitudinale and longitudinale tilts for the 99 residuals with different thresh-

olds compared with stationary LSC. As the threshold is decreased, the tilt is increased

until we reach the same pattern in Fig. 2.

Figure 9 near here

Figure 10 shows the elliptical kernels at 99 GPS-levelling points for the last iteration

loop with the threshold of 7 cm (cf. Table 4). The number of iterations depends on
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Table 3 Latitudinale and longitudinale tilts (in mm/km) for 99 gravimetric-geometric quasi-

geoid residuals with stationary and non-stationary planar LSC

method longitude tilt latitude tilt

stationary LSC -1.60 0.24

non-stationary LSC with threshold 17cm 0.65 0.97

non-stationary LSC with threshold 7cm -0.18 0.83

the threshold chosen by the user and the initial values for the elliptical kernels at

GPS-levelling points. Generally, the number of iterations increases with a decrease of

the threshold and an increase in the number of GPS-levelling points used. A tighter

threshold can be used, according to the user’s desire, to get a reasonable number of

iterations or vice versa. Also, the more GPS-levelling points available, the better the

initial elliptical parameters can be estimated.

Table 4 shows the statistics of the stationary and non-stationary LSC methods

tested here versus the 99 GPS-levelling points in relation to earlier studies. We ac-

knowledge that independent subsets of the GPS levelling data should be used to give a

more objective measure (cf. Featherstone 2000; Featherstone and Sproule 2006). How-

ever, the technique described here relies on the GPS-levelling prediction points to define

the ellipses in the LSC solution, so no such analysis can be conducted.

Figure 10 near here

Table 4 Descriptive statistics of (εζgeo − εζgra ) (in metres) for the 99 GPS-levelling points

for various gravimetric quasigeoid models

Model/method EGM used Max Min Mean STD

AUSGeoid98 (Featherstone et al. 2001) EGM96 0.258 -0.301 -0.600 0.128

Kirby (2003) EGM96 0.294 -0.330 0.156 0.540

EGM2008 alone EGM2008 0.311 -0.019 0.126 0.051

LSC with stationary planar covariances EGM2008 0.217 0.052 0.126 0.037

LSC with non-stationary planar covariances EGM2008 0.056 -0.066 .0002 0.030

Table 4 shows that planar LSC with non-stationary covariances decreases the mag-

nitude of the differences (εζgeo − εζgra) versus planar LSC with stationary covariances.

Importantly, the difference at each point is less than the user-prescribed 7 cm when
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using the non-stationary covariances. Table 4 also shows the differences for previous

EGM96-based regional gravimetric quasigeoid models. This shows that EGM2008 has

made substantial improvements, even over regional quasigeoid models that added data

to EGM96. However, further improvements can be made to EGM2008 by the addition

of regional data, but the percentage improvements are smaller relative to EGM96.

Using non-stationary covariances has introduced statistical parameters in addition

to the stationary covariance parameters of (C0, D, d) in Table 1; these are parameters

of the elliptical kernels (a, b, α, τ) at the observation and prediction points. These extra

parameters were used to tune the gravimetric quasigeoid to the geometric quasigeoid.

In other words, the prediction points have the role of control points in non-stationary

LSC; the statistical parameters of the non-stationary covariance function change at

these points such that, the residual falls below the user-prescribed threshold. The

advantage of using non-stationary covariances lies in controlling the threshold at each

GPS-levelling point individually; while standard stationary LSC is limited to a fixed

solution over the whole data set. In other words, non-stationary LSC provides the

advantage of tuning the gravimetric quasigeiod to the geometric quasigeoid by choosing

smaller thresholds.

Figure 11 near here

For the estimation of gravimetric qusigeoid on a grid, we need elliptical parame-

ters at every prediction point; thus the elliptical parameters at 99 GPS-levelling points

were interpolated over a 2′ × 2′ grid by grdmath command in the GMT (Generic Map-

ping Tools) package (Wessel and Smith 1998; http://gmt.soest.hawaii.edu/). Figure 11

shows the gravimetric quasigeoid by planar non-stationary LSC, which is tuned to the

99 GPS-levelling points to within 7 cm. From Table 4, this outperforms all previous

gravimetric quasigeoids in this region, with respect to these 99 GPS-levelling data.

5 Summary and main conclusions

Approximation solutions, like LSC, are highly dependent on pre-statistical analysis

of the input data. Better knowledge of statistical parameters gives a more realistic

solution from LSC. An example of such a detailed statistical analysis was conducted

in this paper, which is similar to the exploratory data analysis that is very common

among geostatisticians for geological data sets.
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The numerical tests in this paper showed the effect of non-stationary methods on

planar LSC for the prediction of one gravity field functionals from another:

– A non-stationary model of the mean did not change the LSC result significantly

for the determination of the gravimetric quasigeoid in the Perth region, but this

effect may be more significant where the mean is more non-stationary than for this

case-study dataset;

– Non-stationary covariance functions were used to create an iterative optimisation

loop to decrease the difference of the residual gravimetric quasigeoid and resid-

ual geometric quasigeoid at GPS-levelling points to within a prescribed level of

tolerance. This tolerance can be changed according to the user’s needs.

Appendix: Local planar covariance models of Forsberg (1987)

Forsberg (1987) introduced a complete set of self-consistent formulas for auto- and

cross-covariances for quasi/geoid undulations, gravity disturbances, deflections of the

vertical, and second-order gradients. All planar covariance functions from Forsberg

(1987) were estimated by taking the derivatives of the auto-covariance of the anomalous

potential T . The Forsberg (1987) model for covariance between gravity anomalies is:

CΔg,Δg(r) = − log(z + r) (8)

where

x = x2 − x1

y = y2 − y1

z = z2 + z1 + D

r = (x2 + y2 + z2)1/2

For two points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) with Euclidean coordinates,

located on or above the reference plane. The planar depth parameter D corresponds

to the depth to the Bjerhammar sphere.

The corresponding cross-covariance function of quasi/geoid undulations and gravity

anomalies is:
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CN,Δg =
r − z log(z + r)

γ
(9)

Singularities in the simple logarithmic covariance functions arise from the inade-

quacy of the planar approximation at low spatial frequencies. Forsberg’s (1987) solution

is that any type of covariance function in the final model may expressed as

C′(x, y, z1 + z2) = f

3∑
i=0

αiC(x, y, zi) (10)

where zi = z1 + z2 + Di, with α0 = 1, α1 = −3, α2 = 3, α3 = 11 and C given

by the simple logarithmic covariance expressions evaluated using a depth parameter

(characteristic distance) Di = D + id. The scaling factor f is:

f = C0/ log(
D3

1D3

D0D3
2

) (11)

where C0 and d are the variance and correlation length respectively.
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Fig. 1 Distribution of the 99 GPS-AHD points around Perth (white boxes show station num-

ber), with the contours of the GPS-AHD quasigeoid residuals (εζgeo ) referenced to EGM2008

to degree 2160 [contour interval 0.02 m, Mercator projection].
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Fig. 2 Linear regression of the 99 GPS-EGM2008-AHD residuals (εζgeo ) in metres versus

(left) latitude and (right) longitude in degrees. From the gradient in degrees, this gives tilts of

∼ 0.71 mm/km in latitude and ∼ −0.38 mm/km in longitude.
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Fig. 3 Coverage of gravity anomalies, which is a combination of irregular land data from

Geoscience Australia and 1-arc-minute DNSC2008GRA data offshore [units in mGal; Mercator

projection]
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Fig. 4 Flowchart of the planar LSC algorithm for tuning the gravimetric quasigeoid to the

geometric quasigeoid. The two last blocks, connected by two opposite arrows, illustrate the

optimisation loop used.
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Fig. 5 Fitting of the empirical covariance of residual gravity anomalies εΔg (solid line) with

the planar covariance model of Forsberg (1987) (dashed line)

Fig. 6 Covariance map of the residual gravity anomalies εΔg referenced to EGM2008 [units

in mGal2; linear projection]. The black lines illustrate the directions of anisotropy along the

clockwise azimuths 0◦ and 150◦.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

25

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

0

2

4

6

8

10

12

Distance(Degree)

co
va

ria
nc

e(
m

G
al

2 )

d ~ 6.66 km

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

0

2

4

6

8

10

12

Distance(Degree)

co
va

ria
nc

e(
m

G
al

2 )

d ~ 3.88 km

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

0

2

4

6

8

10

12

Distance(Degree)

co
va

ria
nc

e(
m

G
al

2 )

d ~ 3.88 km

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

0

2

4

6

8

10

12

Distance(Degree)

co
va

ria
nc

e(
m

G
al

2 )
d ~ 5.55 km

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

0

2

4

6

8

10

12

Distance(Degree)

co
va

ria
nc

e(
m

G
al

2 )

d ~ 4.44 km

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−2

0

2

4

6

8

10

12

Distance(Degree)

co
va

ria
nc

e(
m

G
al

2 )

d ~ 4.44 km

Fig. 7 Empirical covariances (dashed lines in mGal2) for the residual gravity anomalies εΔg

referenced to EGM2008 for azimuths: 0◦ (upper left), 30◦ (upper right), 60◦ (middle left), 90◦

(middle right), 120◦ (lower left) and 150◦ (lower right). Solid lines illustrate the covariance

models fitted to these empirical covariances.
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Fig. 8 Elliptical kernels attributed to each observation (gravity) point used to construct the

non-stationary auto-covariance matrix CεΔg,εΔg . The underlying image shows the residual

anomalies referenced to EGM2008 [units in mGal; Mercator projection]
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Fig. 9 Linear regression of the 99 gravimetric quasigeoid residuals (εζgra ) [in metres] versus

(left) latitude and (right) longitude [in degrees] for stationary LSC (upper), non-stationary

LSC with a threshold of 17 cm (middle) and non-stationary LSC with a threshold of 7 cm

(lower).
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Fig. 10 Elliptical kernels attributed to each prediction (GPS-levelling) point used to construct

the non-stationary cross-covariance matrix Cεζ ,εΔg . The colour inside the ellipses shows the

residual geometric quasigeoid heights εζgeo referenced to EGM2008 [units in m; Mercator

projection]
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Fig. 11 Residual gravimetric quasigeoid from planar LSC with non-stationary covariances,

relative to EGM2008 at the 99 GPS-levelling points [contour interval 0.1 m; Mercator projec-

tion]


