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Abstract— The PID controller has been widely applied in 

industries since many decades ago despite the advancement in 

many advanced control techniques. Process models such as the 

First-Order plus Deadtime (FOPDT) has often been used to 

design or tune the PID controller. A large number of PID 

controller tuning formulas have been established since the well-

known Ziegler-Nichols formula introduced in the 1940s. In this 

paper, we present a new approach based on the Multi-scale 

Control scheme to constructing a PID controller tuning formula 

which is applicable to the FOPDT model. The effectiveness of the 

proposed PID tuning formula is compared with some of the best 

PID tuning formulas reported in the literature. 
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I.  INTRODUCTION 

In process industry, the presence of time delay or deadtime 
often causes poor control performance or even closed-loop 
instability. In fact, the presence of deadtime has been 
recognized as one of the limiting factors for the closed-loop 
performance [1]. Interestingly, the model which incorporates 
deadtime, i.e., the First-Order plus Deadtime (FOPDT) model 
has been used rather extensively in the PID controller design, 
i.e., PID controller tuning formulas or rules. Since the well-
known Ziegler-Nichols PID tuning formula introduced in the 
1940s, a large number of PID tuning formulas based on the 
FOPDT model have been developed; see the summary report in 
[2]. 

In this brief paper, we shall demonstrate a new approach to 
devising an advanced PID controller augmented with a filter; 
this PID formula is derived based on the principle of the Multi-
scale Control (MSC) scheme recently introduced by Nandong 
and Zang [3]. 

The rest of this paper is organized as follows. Section II 
provides a brief overview of the MSC scheme and a PID tuning 
formula derivation based on the FOPDT model. Section III 
demonstrates the effectiveness of the proposed PID tuning 
formula using two case studies: Steam Superheater and Cement 
Cooler Grate systems. Finally, Section IV highlights some 
conclusions and future works.  

II. MULTI-SCALE CONTROL SCHEME 

A. Multi-scale Plant Decomposition 

The details about the Multi-scale Control (MSC) scheme 
can be found in [3]. Here, we only provide a brief overview of 
the MSC scheme. The principle of the MSC scheme is first to 
decompose a given plant into a sum of basic factors or modes 
with distinct speed responses. For a general case, consider a 
rational transfer function P which can be decomposed into a 
sum of 1+n  basic factors or modes as follows: 
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Here, },...,2,1,0{, niPi ∈∀  is the plant factor, which is either 

first or second order system with real coefficients. The dynamic 

of iP  is slower than that of 1+iP  for ni ,...,2,1,0= ; 0P  is 

called the outermost factor while }...,3,2,1{, niPi ∈∀ the inner-

layer factor.  Notice that this general case results in a 1+n -

layer MSC scheme. In real application, we might just need a 2- 
or 3-layer MSC scheme. In this present paper, we demonstrate 
the application of the 2-layer MSC scheme to constructing a 
PID tuning formula based on the First-Order plus Deadtime 
(FOPDT) model. 

B. Realization of the 2-Layer Multi-scale Control Scheme 

The block diagram of a 2-layer multi-scale control (MSC) 
scheme is shown in Figure 1; i.e., a given plant P  can be 

decomposed into 2 modes ( 10 PPP += ). Here, iW is called the 

multi-scale predictors; iK  the multi-scale sub-controllers; cP  

the augmented overall plant transfer function. The outermost 

sub-controller ( 0K ) corresponds to the factor with the slowest 

dynamic ( 0P ) and 1K corresponds to the fastest dynamic ( 2P ). 

In Figure 1, the closed-loop transfer function for the inner 
layer is given by: 
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The augmented overall plant transfer function is expressed as 

)()()( 1 sPsGsPc =  (2) 

The overall MSC controller is then given by 
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Figure 1.  Block diagram of 2-layer multi-scale control scheme: (a) full 2-

loop, (b) reduced single-loop [3] 

C. Derivation of PID Tuning Formula 

Let us consider a process which can represented by the 
First-Order Plus Deadtime (FOPDT) model as follows 
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where θτ ,,pK denote the process gain, time constant and 

deadtime respectively. 

By using 1/1 Padé formula to approximate the delay 
component in (4) gives 
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where θα 5.0= . 

Assuming that ατ > , and after applying partial fraction 

expansion to (5), we obtain 2 modes as follows 
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The multi-scale predictor is chosen as the inner mode, i.e. 
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Assuming P-only controller with gain 1cK is used in the 

inner-loop, the following closed-loop setpoint transfer function 
is obtained 
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The equation (10) can be simplified to 
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where the overall gain and closed-loop time constant are given 

respectively by 
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Now, consider the ratio of open-loop to closed-loop time 

constant as given by 

1
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From (13) and (14), 1cK  can be expressed as follows 
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Note that, the greater the value of 1λ , the faster is the 

closed-loop response, i.e., more aggressive controller action. 



Next, let us consider that a PI controller is chosen to control 
the outermost mode, i.e. 
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where 0cK  and 0Iτ  indicate the sub-controller gain and reset 

time respectively. 

To determine 0cK  assume first that the outermost is 

controlled using a P-only controller. Then it can be determined 
in the same way as the P controller for the inner mode, i.e. 
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where 0λ  is the ratio of the open-loop to closed-loop time 

constant, i.e., defined in the same way as (14). 
It follows that, the reset time for the PI controller is set 

based on a fraction of the open-loop time constant for the 
outermost mode as follows 

2.13.0,0 ≤≤= γγττ I  (18) 

The overall MSC controller (3) can now be arranged in the 
form of 
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Here, )( 1cKS  denotes the sign of controller gain 1cK , 

which needs to be included in (19) to get the correct sign for 
the overall controller gain. 

It can be easily shown that the overall MSC controller (18) 
can be expressed as a practical PID controller augmented with 
a filter given by 
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The equivalent MSC-PID tuning parameters IcK τ,  and 

Dτ  are expressed as 
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The parameters above can be further expressed in terms of 

model and our specification parameters 
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Remarks: 

• The controller specifications are 10 ,λλ  and γ in 

order to obtain the MSC-PID parameters via (24) - 
(27). 

• The 0λ and 1λ are adjusted first while keeping 

1=γ  until gain margin (GM) approximately 7 dB 

is reached. Then, γ is slightly adjusted to get a 

desired final response. 

III. ILLUSTRATIVE EXAMPLES 

Example 1- Steam Superheater 

A linearized model for the Steam Superheater main 
temperature (i.e., from Loop-pro Control Station, Inc.) is 
obtained as follows: 
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Additionally, a perturbed model for the Steam Superheater 
temperature is given by 
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Upon approximating the time-delay component in (28) using 
the 1/1 Padé formula, the nominal model (28) can be written as 
follows: 
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Next, we can decompose (30) into two factors using partial 
fraction expansion: 
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where the multi-scale predictor is chosen as the inner mode 
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For performance comparison, two other PID controller base 

on FOPDT model are designed with minimum IAE formula of 
Rovira et al. [4] and Suyama [5] for ideal PID controller given 
by: 
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Note that, the Rovira et al. [4] PID tuning formula is based 
on servo control while that of Suyama [5] is based on direct 
synthesis control.  

The tuning parameter for the MSC-PID controller is based 

on the settings: 9.30 =λ , 1201 =λ  and 69.0=γ , which gives 

GM = 9.16bB, PM = °60  and DM = 43.9 seconds. Tuning 

parameter for Rovira et al.[3] give GM = 6.42, PM = °3.71 and 

DM = 46.3 seconds and tuning parameter for Suyama[5] give 
GM = 7.9dB, PM = °60 , DM = 39.9 seconds. The 

performances of the 3 different PID controllers are evaluated 
against 1 unit step change in the setpoint, 0.1 unit in input 
disturbance and followed by 1 unit in output disturbance. 
Figures 2 and 3 show the disturbance rejection performances at 
the nominal condition (28) for the 3 different PID controllers.  

For the input type disturbance, it is obvious (Figure 2) that 
the MSC-PID controller shows superior performance over the 
PID controllers tuned using Rovira et al. [4] and Suyama [5]. 
Figures 4 and 5 show the closed-loop responses to input and 
output disturbances at the perturbed condition given in (29). In 
term of the IAE value, the MSC-PID provides better 
performance than the Rovira et al. and Suyama PID controllers. 

TABLE I.  PID TUNING PARAMETERS FOR STEAM SUPERHEATER. 

PID Formula cK  Iτ  Dτ  fτ  

Rovira et al.[4] -0.1522 45.4098 9.695 - 

Suyama [5] -0.1397 27.7 13.85 - 

Proposed MSC  -0.1155 32.963 8.0307 0.1154 
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Figure 2.  Input disturbance rejection response at nominal condition for the 

Steam Superheater 

1900 1950 2000 2050 2100 2150 2200 2250 2300 2350

0.8

1

1.2

1.4

1.6

1.8

2

Time

Y

 

 

Suyama: IAE 144.9

Rovira: IAE 155.6

MSC: IAE 126.5

 
Figure 3.  Output disturbance rejection response at nominal condition for the 

Steam Superheater 
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Figure 4.  Input disturbance rejection performance at perturbed condition for 

the Steam Superheater 



1900 2000 2100 2200 2300 2400 2500 2600 2700
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

Y

 

 

Suyama: IAE 275.7

Rovira: IAE 265.5

MSC: IAE 223

 
Figure 5.  Output disturbance rejection response at perturbed condition for 

the Steam Superheater. 

Overall, in term of the total Integral Absolute Error (IAE) 
value, the proposed MSC-PID controller gives the best 
performance both at the nominal and perturbed conditions; the 
Rovira et al. PID controller gives better performance than the 
Suyama PID controller at the perturbed condition, and vice 
versa at the nominal condition. 

Example 2 –Cement Cooler Grate 

A linearized model for the Cement Cooler Grate pressure 
(i.e., from Loop-pro Control Station, Inc.) is given by: 
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A perturbed linearized model is given by 
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The application of 1/1 Padé formula to (34) yields an 
approximated model as follows: 
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The application of partial fraction expansion to (36) leads to 
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The multi-scale predictor is chosen as the inner mode 
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For performance comparison, 3 PID controllers based on 
the FOPDT model (34) are designed using formulas: (a) Witt & 
Waggoner [6], (b) Kaya & Scheib [7], and (c) proposed MSC-
PID. The PID tuning formulas of Witt & Waggoner [6] and 
Kaya & Scheib [7] are developed for the classical PID 
controller of the form 



















+

+










+=

N

sT

sT

sT
KG

d

d

i
cc

1

11
1  (39) 

Note that, the Witt and Waggoner formula [6] is developed 
based on the process reaction control, while the Kaya and 
Scheib formula [7] is based on servo control. In both the Witt 
& Waggoner and Kaya & Scheib formulas, N = 10 is used. For 
the proposed MSC-PID scheme, we use these settings: 

8.30 =λ , 101 =λ  and 8.0=γ , which lead to GM = 6.55 dB 

and PM = 56.2
o
, DM = 5.65 minutes. 

TABLE II.  PID CONTROLLER PARAMETERS FOR THE CEMENT COLLER 

GRATE. 

PID Formula cK  Iτ  
Dτ  fτ  

Witt & Waggoner [6] -0.0178 4.78 4.78 - 

Kaya & Scheib [7] -0.0195 4.2954 4.149 - 

Proposed MSC  -0.0306 7.334 1.611 0.199 
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Figure 6.  Closed-loop  response  at norminal condition for the Cement Coller 

Grate pressure 

The comparative performances resulting from the 3 
different PID controller tunings at nominal condition for a 
consecutive unit step change and 0.02 units change in input 
disturbance are shown in Figure 6. It is clearly shown that the 
setpoint tracking performance for the MSC-PID controller is 
better than the other two controllers tuned using Witt & 
Waggoner and Kaya & Scheib formulas. The disturbance 
rejection performances for the 3 PID controllers are quite the 



same. Overall, the MSC-PID gives the best performance in 
term of the IAE value, i.e., the smallest IAE value. Figure 7 
demonstrate the closed-loop responses for the 3 different PID 
controllers under a perturbed condition (35). Again, the MSC-
PID controller provides the best performance. 
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Figure 7.  Closed-loop responses at perturbed condition for the Cement 

Cooler Grate pressure 

IV. CONCLUSIONS 

Over the last few decades, a large number of PID tuning 
formulas based on the First-Order plus Deadtime (FOPDT) 
model have been developed. In this paper, we have presented a 
new approach based on the Multi-scale Control (MSC) scheme 
to constructing a PID tuning formula for a process represented 
by the FOPDT model. Based on the two industrial processes 
(Steam Superheater and Cement Cooler Grate), we have shown 
the superiority of our new PID tuning formula based on the 
MSC scheme (MSC-PID) over some of the best PID tuning 
formulas established over the last several decades, e.g., Rovira 
et al. [4], Suyama [5], Witt & Waggoner [6] and Kaya &Scheib 
[7]. In future works, we will further extend the application of 
the MSC scheme to constructing a few other PID tuning 
formulas based on the Second-Order plus Deadtime (SOPDT) 
and Second-Order Integrating plus Deadtime (SOIPDT) 
models.  
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