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 13 
Abstract: Tektites are terrestrial natural glasses of up to a few centimeters in size produced 14 

during a hypervelocity impact of an extraterrestrial projectile onto the Earth’s surface. It is well 15 

established that the chemical and isotopic composition of tektites in general is identical to the 16 

composition of the upper terrestrial continental crust. Tektites typically have very low water 17 

content which has generally been explained by volatilization at high temperature; however the 18 

exact mechanism is still debated.  Because volatilization can fractionate isotopes, comparing the 19 

isotope composition of volatile elements in tektites with that of their source rocks may help to 20 

understand the physical conditions during tektite formation.  21 

Interestingly, volatile chalcophile elements (Cd and Zn) seem to be the only element 22 

isotopically fractionated in tektites. Here, we extend this study to Cu, another volatile 23 

chalcophile element. We have measured copper isotopic composition for 20 tektites originating 24 

from the four different strewn fields. All the tektites (but the Muong-Nong type) are enriched in 25 

the heavy isotopes of Cu (1.99<δ65Cu<6.98) in comparison to the terrestrial crust (δ65Cu≈0) with 26 
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no clear distinction between the different groups. Muong-Nong type tektites and a Libyan desert 1 

glass are not fractionated at all (δ65Cu≈0) in comparison to the terrestrial crust. To refine the Cu 2 

isotopic composition of the terrestrial crust we also present data for 3 geological reference 3 

materials (δ65Cu ≈0).  4 

The correlation of δ65Cu with the abundance of Cu probably reflects that the isotopic 5 

fractionation occurred by evaporation during heating. A simple Rayleigh distillation cannot 6 

explain the Cu isotopic data and we suggest that the isotopic fractionation is governed by a 7 

diffusion-limited regime. Cu (1.99<δ65Cu<6.98) is isotopically more fractionated than the more 8 

volatile element Zn (δ66/64Zn up to 2.49 ‰). This difference of behavior between Cu and Zn is 9 

predicted in a diffusion-limited regime where the magnitude of the isotopic fractionation is 10 

regulated by the balance between the evaporative flux and the diffusive flux at the diffusion 11 

boundary layer. Due to the difference of ionic charge in silicates (Zn2+ vs Cu+), Cu has a 12 

coefficient of diffusion larger than Zn by at least two orders of magnitude. Therefore the larger 13 

isotopic fractionation in Cu than in Zn in tektites is due to the significant difference in their 14 

respective chemical diffusivity  15 
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1. Introduction:  1 
 2 

Tektites are terrestrial natural glasses of up to a few cm diameter size that are produced during 3 

the early phases of a hypervelocity impact of an asteroid or a comet into terrestrial rock (Blum et 4 

al., 1992; Glass, 1990; Koeberl, 1986; Koeberl, 1990; Koeberl, 1992). Tektites have been found 5 

in only four geographically extended strewn fields (Glass et al., 1991): the North American 6 

strewn field of age ~35 Ma (associated with the Chesapeake Bay impact structure, east of the 7 

USA (Koeberl et al., 1996; Poag et al., 2004)); the Central European strewn field (associated 8 

with the Ries crater in Bavaria, Germany, Engelhardt et al. (1987)) of age ~14.4 Ma, the Ivory 9 

Coast tektites strewn field of age ~1.07 Ma (the Bosumtwi impact structure in Ghana is 10 

recognized as the source for the IVC, based on similar geochemistry and ages of tektites and 11 

crater-based impact melt (Koeberl et al., 1997; Koeberl et al., 1998)) and Australasian strewn 12 

field of age ~0.8 Ma for which no impact structure has not yet been identified. The tektites from 13 

these four strewn fields are characterized by different chemical compositions, petrologies, and 14 

ages.   15 

Tektites have a similar chemical and isotopic composition to that of terrestrial upper 16 

continental crust (Koeberl, 1986), as such, tektites must have formed by fusion of such target 17 

rock and do not appear to preserve material from the impactor. In addition, studies of 18 

cosmogenic radioisotopes (e.g., 10Be) have shown that tektites derived from the top of the 19 

impacted target lithologies (see (Koeberl, 2007; Ma et al., 2004; Serefiddin et al., 2007)). 20 

However, osmium isotope studies have shown that a small, but measurable extraterrestrial 21 

signature can be detected in at least some Ivory Coast tektites (Koeberl and Shirey, 1993).  22 

In addition to their different geographical origin, the tektites found on land (as opposed to 23 

the microtektites found in deep-sea cores) are classified into three groups: (1) normal or splash-24 
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form tektites. Their shapes are not aerodynamic forms, but result mostly from the solidification 1 

of rotating liquids. (2) Aerodynamically shaped tektites which are formed from partial re-melting 2 

of the tektite glass during atmospheric re-entry, after the initial melt had been ejected outside the 3 

terrestrial atmosphere and solidified through quenching. These tektites are only found in the 4 

Australasian strewn field, primarily in the form of flanged-button australites. (3) Muong Nong-5 

type (or layered) tektites which are usually considerably larger than normal tektites and are of 6 

chunky or blocky appearance. The aerodynamically shaped tektites and the Muong Nong tektites 7 

are predominantly found in the Australasian strewn fields. 8 

 The extreme water depletion of tektites (≤0.02 wt%), in comparison to their inferred 9 

precursor rocks (typically sedimentary rocks have >1 wt% of water) is still not well understood. 10 

Vapor fractionation at very high temperature (>2800 ºC for 5-10 minutes or >3000 ºC for less 11 

than a minute) and under oxidizing conditions (Walter, 1967) is a possible origin for the water 12 

loss of tektites. However, this model has some flaws (e.g., how to preserve the low Fe3+/Fe2+ 13 

ratio, as observed in tektites, under these temperature and oxidation state conditions – although 14 

atomic bomb glass shows the same behavior; (Glass et al., 1988)) and, therefore, the behavior of 15 

volatile elements and molecules during tektite formation is still debated. 16 

Volatilization is one of the few mechanisms able to fractionate the isotopes of heavy 17 

elements, thus comparing the isotope compositions of volatile heavy elements in tektites with 18 

those of their source rocks may help to understand the conditions of evaporation. Variability in 19 

the isotope composition of the source rocks is usually a problem for many “light” elements (H, 20 

O…), which are fractionated by several mechanisms other than evaporation. “Heavy stable” 21 

isotopes, which show no or little variability in terrestrial upper crustal rocks, are more suitable to 22 

study the condition of evaporation in tektites.   Humayun and Koeberl (2004) measured the K 23 



5 
 

isotope composition in four tektites from the Australasian strewn field; without finding any 1 

variations between the tektites and the related terrestrial rocks. The absence of K isotope 2 

fractionation is a surprise because K is a moderately volatile element with a 50 % condensation 3 

temperature (Tc) of ~1000K (Lodders, 2003), and K isotopes are fractionated strongly in lunar 4 

regolith (Humayun and Clayton, 1995). Based on the absence of K isotopic fractionation in 5 

tektites, Humayun and Koeberl (2004) placed an upper limit of loss of K at <2 % and concluded 6 

that any other, less volatile elements should not be fractionated during the heating events 7 

experienced by tektites. More recently, Herzog et al. (2008)observed that micro-tektites are 8 

isotopically fractionated in K, with some micro-tektites being enriched in light isotopes (up to -9 

10.6 ±1.4 ‰) and others in heavy isotopes (up to 13.8±1.5 ‰). However, on average, the micro-10 

tektites were isotopically normal (1.1±1.7 ‰). This implies that, in contrast to tektites, micro-11 

tektites experienced both evaporative loss of isotopically light K and re-condensation of 12 

isotopically heavy K. Wombacher et al. (2003) measured enrichment in heavy isotope of Cd in 13 

one Muong-Nong tektite in comparison to typical terrestrial rocks. Cd is supposedly more 14 

volatile than K, with a 50% condensation temperature of 652 K and this isotopic fractionation 15 

may reflect the preferential loss of light Cd isotopes by evaporation during tektite formation.  16 

In a previous study, Moynier et al. (2009) analyzed the Zn isotopic composition of 20 17 

tektites from the four different strewn fields. Almost all samples were enriched in heavy isotopes 18 

of Zn compared to the upper continental crust and on average, the different groups of tektites 19 

were isotopically distinct: Muong-Nong type indochinites (δ66/64Zn=0.61±0.30 ‰); North 20 

American bediasites (δ66/64Zn=1.61±0.49 ‰); Ivory Coast tektites (δ66/64Zn=1.66±0.18 ‰); the 21 

Australasian tektites (others than the Muong Nong-type indochinites) (δ66/64Zn=1.84±0.42 ‰); 22 

and Central European moldavites (δ66/64Zn=2.04±0.19 ‰). These results were contrasted with a 23 
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narrow range of δ66/64Zn=0-0.7‰ for a diverse spectrum of upper continental crust materials. A 1 

Simple Rayleigh distillation predicts isotopic fractionations much larger than what was actually 2 

observed and Moynier et al. (2009) have developed a model of evaporation of Zn from a molten 3 

sphere which proved that both the Zn isotopic composition and the chemical abundances 4 

measured in tektites can be produced by evaporation in a diffusion-limited regime.  5 

In the present paper we extend this study to Cu. Copper is a moderately volatile element, 6 

with a condensation temperature Tc(Cu) of ~1037K (Lodders, 2003)). Cu is a chalcophile (sulfur 7 

loving) element, which means that it bonds preferentially with S. All the elements in which 8 

isotopic fractionation have been found in tektites so far (Cd and Zn) are both chalcophile 9 

elements. Even if few data have been published so far on the natural fractionation of Cu isotopes 10 

in terrestrial rocks, it seems that it has a very limited isotopic variation. The pioneer studies of 11 

Marechal (1998) } report values of δ65Cu ~ 0 ± 0.1 ‰ on one basalt from the active Piton de la 12 

Fournaise volcano (Réunion Island, Indian Ocean). These results has been further confirmed by 13 

Ben Othman et al.’s (2003) which show that the δ65Cu values of MORB and OIB scatter around 14 

zero and Archer and Vance (2004) who found δ65Cu =0.07±0.08 in the BCR-1 (basalt Colombia 15 

River) geostandard and Herzog et al. (in press) which did not found any isotopic variations 16 

(δ65Cu = 0.00 and -0.10) in Pele’s hairs from the Nyiragongo volcano (Democratic Republic of 17 

Congo). More recently, Li  et al. (2009) found that most granitic rocks have a δ65Cu which 18 

cluster around zero, with mean values of 0.03±0.15‰ for I-type granites and -0.03±0.42 ‰ for 19 

S-type granites. Li et al. (2009) concluded that the Cu isotopic composition of the crystalline part 20 

of upper continental crust is close to zero. 21 

On the other hand, it has been recently shown that isotope fractionation of Cu in lunar 22 

soils (Herzog et al., in press; Moynier et al., 2006) is very large (variations larger than 2 ‰ per 23 
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amu). These fractionations have been attributed to vaporization due to impact by 1 

micrometeorites and/or sputtering onto the Moon surface. In addition, Albarede et al. (2007) 2 

extended the study of isotopic fractionation of Zn and Cu to shocked rocks from a terrestrial 3 

impact site, Meteor Crater. Both Cu and Zn are isotopically heavy in these rocks, Cu being 4 

slightly more fractionated than Zn (up to 0.8 ‰ for Cu versus up to 0.4‰ for Zn).  5 

 Because Cu is a chalcophile and moderately volatile element that shows no or little 6 

fractionation in most terrestrial rocks on one hand, and large isotopic fractionations have been 7 

found in lunar soils and in impacted rocks from a terrestrial impact crater on the other, Cu is a 8 

very suitable element to study volatile processes in tektites by means of stable isotope 9 

fractionation. 10 

Here, we investigate the degree of isotopic fractionation of Cu in 20 different tektites 11 

from the four different strewn fields.  The Cu isotopic composition of a non-tektite impact glass, 12 

Libyan Desert Glass (LDG) from southwestern Egypt (Weeks et al., 1984), has also been 13 

measured for comparison. To complete the knowledge of the Cu isotopic composition of the 14 

Earth as well as to test the reproducibility of our technique we measure the isotopic composition 15 

of Cu in three standard geological reference materials (BHVO-2, AGV-2 and NIST SRM 278).  16 

 17 

2. Samples and analytical methods:   18 

2.1. Sample description: 19 

Most of all the samples presented in this study have been previously studied for their Zn 20 

isotopic fractionation (Moynier et al. 2009). We analyzed the following samples:  21 

 1) The Ivory Coast (IVC) tektites: IVC-3395 which was previously analyzed for their 22 

major and trace element composition by Koeberl et al. (1997) and Zn isotopic composition 23 
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(Moynier et al. 2009). 2) Nine Australiasan tektites: Seven Muong Nong-type tektites (MN 8301, 1 

MN 8309, MN 8314, MN X102, MN X103, a large Muong Nong tektite and Hainan HFS1); two 2 

Australites (5772 and T8205). Australite 5772 is a typical flanged-button australite, for which the 3 

rim and the core have been separately been analyzed for Cu isotopic and chemical compositions, 4 

whereas T8205 was only analyzed in bulk; two philippinites (1995 and 9201) and two thailandite 5 

(8204, 9201). All these samples were already analyzed for their major and trace element 6 

compositions by Koeberl (1992) or Moynier et al. (2009) 3) Four Central European tektites: one 7 

moldavite from Clum (MC), and three moldavites from Jankov (Jankov 2, 3, and 4).The major 8 

and trace element compositions of these samples have been previously reported by Moynier et al. 9 

(2009). 10 

 4) Two North American tektites: Bediasites BED8401 and BED8402 that had been 11 

described in Weinke and Koeberl (1985).  12 

 5) In order to compare the isotopic composition of tektites with an impact glass, we 13 

analyzed the Zn isotope composition and the major and trace element composition of a Libyan 14 

Desert Glass specimen, LDG 8501. This glass had already been described by Koeberl (1985). 15 

 6) Three standard geological reference materials: USGS BHVO-2, an ocean island 16 

basalt from Hawaii, USA; USGS AGV-2, an andesite from the Guano Valley, in Lake County, 17 

Oregon, USA and NIST SRM 278, an obsidian standard.  18 

 2.2 Analytical methods: 19 

 For all the tektites and the LDG, we retrieved the samples that have been previously 20 

processed for Zn isotopic composition (Moynier et al., 2009). For these, fragments of tektites or 21 

powders of ~150 mg were cleaned in water for 5 minutes in an ultrasonic bath; the leaching 22 

solution was removed, and then the residue was dissolved in HNO3/HF at 130°C for several days 23 
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in closed Teflon beakers. The final sample have been run through an anion exchange resin (AG-1 

1X8 200-400 mesh)  in HBr, which absorb Zn, while Cu and major elements pass straight 2 

through. The combined major element and Cu fraction was collected and subsequently processed 3 

for Cu separation. Cu is further purified from major elements on AGMP1 anion-exchange resin 4 

in 7N HCl as described in Maréchal et al. (1999).  5 

Copper isotopic compositions were measured on a Nu Plasma High Resolution Multi 6 

Collection-Inductively Coupled Plasma-Mass Spectrometer (MC-ICP-MS) at the Ecole normale 7 

superieure de Lyon, France, following the procedure described in Maréchal et al. (1999) and 8 

Moynier et al. (2006).  Isotope ratios are expressed as parts per 1,000 deviations relative to a 9 

standard:  10 

 11 
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The reference material used is the NIST 976 (Maréchal et al., 1999).   13 

  14 

3. Results: 15 

  The Cu isotopic compositions of the geostandards are reported in table 1. The Cu 16 

isotopic measurement of BHVO-2 and AGV-2 has been replicated several times to test the 17 

reproducibility of the measurement. In average, the three geostandards, obsidian NIST SRM 278 18 

(δ65Cu = 0.06); BHVO-2 (δ65Cu =+0.10 ± 0.07 ‰) and AGV-2 (δ65Cu =+0.10 ± 0.10 ‰) are 19 

almost not fractionated and show a typical terrestrial composition. These results confirm 20 
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previous founding on another geostandard by Archer and Vance (2004):  δ65Cu =0.07±0.08 ‰ in 1 

the BCR-1 and confirms the homogeneous distribution of Cu within the silicate Earth. 2 

From the replicated measurements of BHVO-2 and AGV-2 we obtain a 2σ external 3 

reproducibility ±0.10 ‰ for δ65Cu that we will use as our error bar in the rest of the paper. 4 

 The Cu isotopic composition and elemental abundances are reported in the table 2. The 5 

full range of δ65Cu values is about 7 ‰ from -0.06 ‰ (the Muong-Nong tektite 8314) to 6 

+6.94 ‰ (the moldavite Jankov 3). On average, the Central European moldavites (δ65Cu 7 

=4.60±2.06 ‰; 2 standard error, n=4); the Australasian tektites (others than the Muong Nong-8 

type indochinites) (δ65Cu=4.25±0.70 ‰; n=8) and the Ivory Coast tektites (δ65Cu=4.20 ‰; n=1) 9 

are indistinguishable while the North American bediasites (δ65Cu=2.61±0.02 ‰; n=2) and 10 

Muong-Nong type indochinites (δ65Cu=0.02±0.02 ‰; n=6) are lighter. When error bars are taken 11 

into accounts almost all the groups overlapped at the exception of the Muong-Nong indochinites 12 

which are not fractionated (δ65Cu=0.02±0.02 ‰; n=6) and fall in the typical range of the 13 

terrestrial crust.. 14 

The rim (δ65Cu = 5.37 ‰) of the flanged australite 5572 is slightly heavier isotopically 15 

than the core (δ65Cu= 4.03 ‰). Australites are supposed to be formed in two steps: first the high 16 

velocity impact of an asteroid into the target rock produces a melt droplet (the future core of the 17 

australite), which is ejected above the Earth’s atmosphere; second, during its re-entry into the 18 

atmosphere the core is heated and re-melted at its surface. The re-melted surface forms the rim 19 

(Taylor, 1961). 20 

Despite coming from different target rocks, the Libyan Desert Glass 8501 has a δ65Cu of 21 

0.05 ‰ comparable to the mean value of the Muong Nong-type tektites. These values fall into 22 

the typical terrestrial range. 23 
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    1 

4. Discussion 2 

4. 1. Homogeneous isotopic composition of terrestrial igneous rocks 3 

BHVO-2 (ocean island basalt), BCR-1 (andesite) and NIST SRM 278 (obsidian) are all 4 

derived from terrestrial igneous rocks. There constant Cu isotopic composition 5 

(0.06 ‰<δ65Cu<0.10 ‰) confirms the previous results from Marechal et al. (1998), (Ben 6 

Othman et al., 2006) and (Li et al., 2009) that terrestrial igneous rocks have a nearly 7 

homogeneous Cu isotopic composition which scatter around zero. Sedimentary rocks seem to be 8 

slightly more fractionated in Cu isotopes. Maréchal  et al. (2000) demonstrate that Mn-nodules 9 

have a δ65Cu = 0.31 ± 0.23 ‰ but there are still very few data available, and the largest isotopic 10 

effects seem to be limited to ores and hydrothermal systems (Zhu et al., 2000). In comparison, 11 

meteorites are more fractionated than terrestrial igneous rocks. For example the CI chondrite 12 

Orgueil has a δ65Cu = -0.09 ‰ (Luck et al., 2003). Most chondrite groups are enriched in 63Cu 13 

with δ65Cu varying between -1.50 ‰ to -0.09 ‰ in carbonaceous chondrites, -0.51 ‰ to 14 

+0.10 ‰ in ordinary chondrites. Iron meteorites demonstrate more variations around zero with 15 

δ65Cu range between -0.50 ‰ to +0.40 ‰ (Luck et al., 2003; Luck et al., 2005). High-Ti lunar 16 

basalts are enriched in Cu heavy isotopes (δ65Cu=+0.50±0.10 ‰) (Herzog et al., in press).  17 

 18 

4.2 Cu isotopic fractionation in tektites 19 

In comparison to the homogeneous Cu isotopic composition of most terrestrial and extra-20 

terrestrial rocks (-1.5 ‰<δ65Cu<+0.50 ‰), all the tektites (with exception of the Muong Nong-21 

type tektites and also the Libyan Desert Glass LDG 8501) are greatly enriched in the heavy 22 
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isotope of Cu (+1.99 ‰<δ65Cu <+6.98 ‰). This isotopic fractionation has a magnitude 1 

comparable to what is observed in lunar regolith samples (up to 4.51 ‰, (Moynier et al., 2006)).  2 

We do not know the exact Cu isotope compositions of the target rocks and of the 3 

impactor for the different tektites. Therefore we cannot totally rule out that the Cu isotopic 4 

fractionations are due to 1) either mixing between a meteoritic component and terrestrial rocks or 5 

2) by secondary alteration.  Since the heaviest meteoritic samples analyzed so far (Brenham 6 

pallasite with δ65Cu=0.49 ‰, (Luck et al., 2005)) is isotopically lighter than most of the tektites, 7 

the hypothesis 1) is very improbable. Very little is known about the isotopic fractionation of Cu 8 

during alteration. However, the isotopic composition of most terrestrial rocks analyzed so far is 9 

very homogeneous and it would, thus, be unlikely that the isotopic fractionation observed in 10 

tektites would be the first observation of alteration effects. Therefore, as for Zn, the enrichment 11 

in heavy isotopes of Cu in tektites is more likely explained by the loss of isotopically light Cu 12 

that was concentrated in the vapor fraction during the heating events experienced by tektites. 13 

 In addition, the Muong Nong-type tektites are known to be less depleted in volatile 14 

elements than splash-form tektites (Koeberl, 1992; Koeberl, 1994). This is confirmed by the 15 

elemental concentrations of our tektites where Cu is more abundant in Muong Nong-type tektites 16 

(6 ppm<[Cu]<22 ppm) than in the other types of tektites (0.1 ppm<[Cu]<6.5 ppm).   Muong 17 

Nong-type tektites are also the ones that remain closest to the site of impact (Koeberl, 1994; Ma 18 

et al., 2004). As expected from vapor fractionation, Muong Nong-type tektites are not 19 

fractionated at all (δ65Cu =0.02±0.02 ‰) and therefore behave differently than any other kind of 20 

tektites. Therefore the Muong-Nong tektites seem to have recorded the typical continental crust 21 

isotopic composition.  22 

 23 
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4. 2. Isotopic fractionation of chalcophile elements in tektites  1 

Mg (Esat and Taylor, 1986), K (Humayun and Koeberl, 2004), and B (Chaussidon and 2 

Koeberl, 1995) do not show any isotopic fractionation in tektites. In contrast, chalcophile 3 

elements, (Zn (Moynier et al., 2009), Cd (Wombacher et al., 2003) and Cu (this study)) show 4 

large enrichment in heavy isotopes.   Magnesium is a fairly refractory element and is not 5 

isotopically fractionated in lunar regolith. It is, thus, not surprising that this element does not 6 

show fractionation in tektites. Potassium, Tc of ~1006 K (Lodders, 2003),  is slightly more 7 

volatile than Cu, Tc ~1037 K, therefore the large isotopic fractionation of Cu in comparison to 8 

the absence of isotopic fractionation of K is surprising. In addition, Zn is more volatile than Cu 9 

but less isotopically fractionated in tektites (δ66Zn up to 2.49 ‰ and δ65Cu up to 6.98 ‰). We 10 

conclude that the magnitude of the isotopic fractionation is either controlled by a mechanism 11 

dependent on other parameters than volatility of the element (e.g. a diffusion-limited regime),, 12 

and/or that in the condition of evaporation of the tektites Cu behaves as a more volatile element 13 

than both Zn and K. 14 

This conclusion is supported by the strong depletion of Cu in tektites compared to target 15 

rocks. The tektite samples analyzed here have an average Cu content of 2±1ppm when Muong-16 

Nong tektites are excluded. Muong-Nong tektites are less depleted in Cu with an average content 17 

of 14±4 ppm and do not show any Cu isotopic fractionations (δ65Cu=0.02±0.02).   18 

Assuming that the different target rocks have the composition of the average upper 19 

terrestrial crust, [Cu]=28 ppm, [Zn]=67 ppm, and [K]=2.8% (Rudnick and Gao, 2003) one can 20 

calculate the relative depletion of the tektites in Cu, Zn and K. It then appears that the tektites 21 

(after exclusion of the Muong-Nong tektites) are more depleted in Cu ([Cu]tektites/[Cu]continental 22 

crust=0.06±0.04) than in Zn ([Zn]tektites/[Zn]continental crust=0.28±0.06) or K ([K]tektites/[K]continental 23 
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crust=0.70±0.12)  . The larger depletion (and isotopic fractionation) of Cu in comparison to K is 1 

most probably due to its stronger chalcophile behavior and that the evaporation of metal in 2 

tektites may be controlled by the S content of the target rock and the impactor and the 3 

evaporation of a sulfide phase more volatile than silicates. Interestingly, Albarede et al. (2007) 4 

observed that Cu were isotopically more fractionated (up to +0.8 ‰) than Zn (up to +0.4 ‰) in 5 

shocked rocks from the Meteor Crater and based on Cu and Zn isotopic composition Moynier et 6 

al. (2006) already reached the conclusion that during the formation of lunar volcanic glass Cu 7 

should be more volatile than Zn.  8 

Figure 2 shows a slightly negative correlation between δ65Cu and the Cu abundance for 9 

all bulk tektites analyzed here.  As anticipated, if the origin of the isotopic fractionation is 10 

evaporation, the isotopic composition becomes heavier when the Cu content decreases.   11 

Assuming that evaporation obeys a simple Rayleigh distillation law (Eq. 2), the evolution of the 12 

expected δ65Cu as a function of the remaining fraction of Cu is plotted in Fig. 3. 13 

  (2) 14 

with [Cu]0 being the Cu concentration before the evaporation (e.g. the average content of the 15 

continental crust, 28 ppm (Rudnick and Gao, 2003)) and α the kinetic fractionation factor that 16 

we approximate by  where M65Cu and M63Cu are the masses of 65Cu and 63Cu. 17 

 It can be seen from Fig. 3 that the observed isotopic composition cannot be explained by 18 

a Rayleigh distillation of Cu (small dash curve), CuO (black curve) or CuS (large dash curve). A 19 

much larger isotopic fractionation would result from a  Rayleigh distillation. This result agrees 20 

with previous conclusions from Moynier et al. (2009) and Wombacher et al. (2003) that the 21 

enrichment in heavy isotopes of both Cd and Zn in tektites cannot be accounted by a Rayleigh 22 
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distillation. Instead we recently proposed a model of isotopic fractionation by evaporation at the 1 

surface of a molten sphere, the sphere being re-homogenized by diffusion and advection 2 

(Moynier et al., 2009).  3 

 4 

4. 3. Fractionation in a diffusion-limited regime 5 

In a previous modeling of the isotopic fractionation of Zn in tektites, Moynier et al. 6 

(2009), used the Rybczynski-Hadamard formulae (Grasset and Albarede, 1994; Levich, 1962), 7 

which is a solution of the Navier-Stokes equation for the steady motion of a viscous sphere 8 

within a viscous medium. In this model, a velocity field stirs the tektite, while differential 9 

evaporation of Zn isotopes occurs at the surface. It was shown that if the characteristic 10 

evaporation time is slow with regard to the diffusion timescale, the system deviates from 11 

Rayleigh distillation as a diffusion-limited regime is installed, and for a same Zn elemental loss 12 

the magnitude of the isotopic fractionation is reduced. One of the limitations of this modeling 13 

was the lack of experimental measurements of the diffusion coefficient of Zn in silicate liquid, 14 

and 10-8 m2/s was used as likely upper value. Since then, Behrens and Hahn (2009) have reported 15 

on extensive study of trace element diffusion in acidic melts, including Zn. At T=1150°C, the 16 

diffusivity of Zn was found to range between 10-14 to 5.10-12  m2/s, which suggest even slower 17 

diffusion that the one modeled in Moynier  et al. (2009), and confirms their suggestion that 18 

evaporation should have occurred in a diffusion-limited regime.  19 

Such a mechanism might also be proposed to explain the isotopic fractionation we have 20 

measured for Cu. To our knowledge, the diffusivity of Cu has not been measured in silicate melts. 21 

However, it can be estimated from Mungall (2002) empirical model if its speciation is known. 22 

From the measurement of the dependence of Cu partition between silicate melt and metal, 23 
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Holzheid and Lodders (2001) have concluded that copper is present as Cu+ in silicate melts, and 1 

will behave as a low field strength element. Using Mungall (2002) model with a temperature of 2 

1150°C, we obtain a value for DCu of ~10-10 m2/s. This value is at least 2 orders of magnitude 3 

higher than the diffusivity of Zn at similar temperature, which is physically explained by the 4 

difference of ionic charge (Zn2+ vs Cu+) which leads to a higher mobility of copper. 5 

The magnitude of the isotopic fractionation in the case of a diffusion-limited regime will 6 

be controlled by the balance between the evaporative flux and the diffusive flux at the diffusion 7 

boundary layer. For a given evaporation flux, a higher diffusivity will lead to an increase of the 8 

isotopic fractionation. As a consequence, the larger isotopic fractionation in Cu than in Zn in 9 

tektites is due to the significant difference in their respective chemical diffusivity.  10 

 11 

5. Conclusions 12 

We measured the Cu isotopic composition of 20 tektites from the four different strewn fields, 13 

one Libyan desert glass and 3 terrestrial reference materials All the tektites but the Muong-Nong 14 

type Indochinites are enriched in heavy isotopes of Cu compared to the upper continental crust 15 

(+1.99 ‰<δ65Cu <+6.98 ‰) On the other hand, the Libyan Desert Glass LDG8501, BHVO-2, 16 

BCR-2 and NIST SRM 978 have all the same isotopic composition than our terrestrial standard 17 

(δ65Cu ≈0). This isotopic fractionation is most probably due to preferential evaporation of the 18 

light isotopes of Cu during the heating event of the tektites. We remarked that Cu is isotopically 19 

more fractionated than elements which are supposedly more volatile (e.g. K) and only 20 

chalcophile elements (Cu, Zn and Cd) show large isotopic effects in tektites.  We suggest that 21 

this preferential isotopic fractionation of chalcophile element is due to their preferential 22 

bounding with S and the evaporation of a sulfide phase more volatile than silicates. Among 23 
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chalcophile elements, Cu is isotopically more fractionated than the more volatile Zn. This 1 

unexpected behavior is well explained if, as previously suggested (Moynier et al., 2009), isotopic 2 

fractionation in tektites is controlled by a diffusion-limited regime.  In a diffusion-limited regime, 3 

the isotopic fractionation will be controlled by the balance between the evaporative flux and the 4 

diffusive flux at the diffusion boundary layer.Due to the difference of ionic charge in silicates 5 

(Zn2+ vs Cu+), Cu is more mobile than Zn in silicate melt and have a coefficient of diffusion 6 

larger than Zn by at least two orders of magnitude. Therefore for a constant evaporative flux and 7 

temperature Cu isotopes are more fractionated than Zn in a diffusion-limited regime. 8 
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Figure Captions: 1 
 2 
Fig. 1:  δ65Cu for all the tektites analyzed in this study. All the tektites (at the exception of the 3 
Muong-Nong type Indochinites) are enriched in the heavy isotope  (δ65Cu>0). In comparison the 4 
Libyan Desert Glass LDG 8501and the Muong-Nong type tektites have a  δ65Cu  ≈ 0.  5 
 6 
Fig. 2: δ65Cu vs [Cu] for the different tektites analyzed in this study. This general negative 7 
correlation suggests that the isotopic fractionation occurred during evaporation of Cu ([Cu] 8 
decreases and δ65Cu increases because of the preferential loss of light isotopes in the vapor 9 
phase). 10 
 11 
Fig. 3:. The curves represent the evolution of the  in the case of δ65Cu in function of [Cu]for the 12 
residue during a Rayleigh distillation.  For comparison the results on the tektites are represented 13 
by black dots. A much larger isotopic fractionation than the observations would result from a 14 
Rayleigh distillation whatever the Cu species evaporating (Cu, CuS or CuO). 15 
 16 
 17 
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Table 1: Isotopic composition and concentration of Cu in the three geostandards BHVO-2, NIST 1 
obsidian, and AGV-2. The isotopic composition is represented using the δ notation (parts per 2 
1000 deviation from a terrestrial Cu standard NIST SRM 278).  3 
 4 
Sample name δ65Cu  
NIST SRM 278  0.06  
   
BHVO-2 1 0.17  
BHVO-2 2 0.09  
BHVO-2 3 0.08  
BHVO-2 4 0.09  
BHVO-2 5 0.07  
BHVO-2 6 0.08  
Average ± 2σ 0.10 ± 0.07  
   
AGV-2 1 0.09  
AGV-2 2 0.12  
AGV-2 3 0.16  
AGV-2 4 0.11  
AGV-2 5 0.09  
AGV-2 6 0.13  
AGV-2 7 -0.02  
AGV-2 8 0.16  
Average ± 2σ 0.10 ± 0.11  
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Table 2: Isotopic composition and concentration of Cu in tektites and in a Libyan desert glass. 1 
The isotopic composition is represented using the δ notation (parts per 1000 deviation from a 2 
terrestrial Cu standard NIST XX). The Cu concentrations are in ppm. The  external 3 
reproducibility (2σ) of δ65Cu is 0.10 . 4 
 5 
Sample name δ65Cu  [Cu] ppm 
Ivory Coast 3395 4.20  1.9a 
Bediasite 8402 2.60  6.5b 
Bediasite 8401 2.60  3.8b 
Moldavite Jankov 2 5.03  0.1b 
Moldavite Jankov 3 6.98  0.1 
Moldavite Jankov 4 4.41  0.1b 
Moldavite Clum 1.99  0.4 
Hainan HSF1 3.11  2.2b 
Muong Nong 8301 -0.05  17.7c 
Muong Nong 8309 0.02  11.4c 
Muong Nong 8314 -0.06  20.2c 
Muong Nong X102 0.04  6d 
Muong Nong X103 0.02  16.3d 
Large Muong Nong 0.13  12.9 
Philippinite 1995 4.54  3.8b 
Philippinite P9201 4.81  2.2b 
Thailandite 8204 4.88  0.8b 
Thailandite 9201 2.73  0.6 
Australite 5772 Core 4.03  4.5 
Australite 5772 Rim 5.37  0.9b 
Australite T8205 5.41  1.8b 
Libyan Desert Glass LDG8501 0.05  1.3b 
a(Koeberl et al., 1997) 6 
b(Moynier et al., 2009) 7 
c(Koeberl, 1992) 8 
d(Glass and Koeberl, 1989) 9 
 10 
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Fig. 2 1 
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