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ABSTRACT
In a field operation that uses coiled tubing in its applica-

tions, fibre-reinforced polymer matrix composite tubing is 
seldom used. Fibre-composite coiled tubes offer advantages, 
compared to steel material, through a reduction in weight and 
improvement in fatigue life.

The stiffness of composite material degrades progressively 
when increasing the number of cyclic loading. The fatigue 
damage and failure criteria of fibre-reinforced composite 
coiled tubes are more complex than that of steel; hence, fail-
ure predictions are somewhat unreliable.

Among the defects in composite materials, interlaminar 
delamination is the foremost problem in fibre-reinforced 
composite material, and it leads to a reduction in strength 
and stiffness especially in cyclic-load conditions. Delami-
nation causes a redistribution of the load path along the 
composite structure, which is unpredictable; therefore, de-
lamination in a composite coiled tube in an oil and gas field 
eventually leads to final failure, which could be catastrophic. 

A-ply-by-ply mathematical modelling and numerical 
simulation method was developed to predict interlaminar 
delamination of filament-wound composite coiled tubes 
under a combination of different loading scenarios with 
consideration to low-cycle fatigue.

The objective of this paper is to explain interlaminar 
delamination as an initial crack and source of stress con-
centration in composite coiled tubes in the framework of 
meso-cracking progression of matrix damage modelling of 
composite laminates.

The paper focuses on delamination failure because the 
largest span of the composite lifecycle is at the crack propaga-
tion phase, which manifests itself in the form of delamination. 
The analysis shows that the crack front tip is not uniform, 
and also shows that carbon fibre possesses higher stiffness 
values compared to glass fibre. The paper confirms that 2D 
modelling cannot express the real release strain energy rate 
at the crack front tip. Mode-I testing, however, showed that 
the double cantilever beam (DCB) only represents the normal 
stress from the release strain energy rate. The results also 
indicated that there were other sources contributing to the 
strain energy release rate, such as inter-layer frictions and 
normal stress in the end notched flexure (ENF) testing mode.
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INTRODUCTION

Coiled tubes are under different loading conditions, and 
cyclic bending and straightening during running in and pull-
ing out of wellbores. Reifsnider et al (1983) concluded that the 
damage index value of composite material follows a non-linear 
graph for cyclic loading (as shown in Fig. 1). During the period 
of fatigue life many modes of damage—including matrix cracks, 
interfacial de-bonding, interlaminar failure (delamination) 
and fibre breakage—can be observed in composite materials 
(Ochoa and Reddy, 1992).

Delamination is a common failure mode that causes an un-
predictable redistribution of the load path along the composite 
structure and leads to a reduction in the strength and stiffness 
of the fibre-reinforced composite material (Szekrenyes, 2002). 
Although delamination occupies the highest percentage of the 
middle period of the fatigue life, the changes in the damage 
index are not available; as a result, the investigation of crack 
propagation between the layers is unclear and, consequently, 
composite materials often need to be over-designed with an 
additional margin of safety to compensate for the deficiency in 
predicting its lifetime in cyclic-load conditions (Degrieck and 
Van Paepegem, 2001).

The damage index, as a physical parameter that quantifies 
the degradation of composite material (Gibson, 2011), can be 
calculated using Equation 1 according to Wu and Yao (2010).
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Refer to the nomenclature section of this paper for defini-
tions of each variable.

According to Figure 1, when the crack density saturation 
(CDS) occurs in the matrix, the tip of the delamination initi-
ates and propagates. Based on the meso-scale damage mod-
el, therefore, a composite laminate is defined as a stacking 
sequence (Jones, 1998) of elementary composite layers and 
interfaces (Fig. 2) with different mechanical properties. The 
meso-scale damage model helps to define the interlaminar 
delamination phenomenon as interface cracking or loss of 
cohesion between layers (Burlayenko and Sadowski, 2008).

Delamination (inter-ply damage) growth causes a reduc-
tion of the load capacity by both tensile and shear stresses 
at the delaminated interface, which would eventually cause 
failure to the laminate composite structure (Szekrenyes, 
2002). Tensile and shear stresses in the pre-existing delami-
nated layer can be measured by Mode-I and Mode-II inter-
laminar fracture toughness testing methods, respectively. 
The interlaminar fracture toughness of composite material 
can be quantified by the strain energy release rate (G

I
) in 
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Mode-I testing for pure normal stress,  (G
II
) in Mode-II test-

ing for pure shear stress, and (G
III

) for pure sliding stress. As 
shown in Equation 2, the total strain energy release rate (G

T
) 

expresses the total pure strain energy release rates from nor-
mal, shear and sliding stresses. Interlaminar fracture tough-
ness shows the resistance of composite materials to delami-
nation (Thakur, 2013); therefore, it is an important composite 
property and widely acknowledged by designers.

G
T
 = G

I
 + G

II
 + G

III
	 (2)

Ply-by-ply mathematical modelling and numerical simula-
tions were developed to predict interlaminar delamination of 
filament-wound composite coiled tubes. Fracture test models 
such as the double cantilever beam (DCB) and end-notched 
flexure (ENF) models can be used to extract fracture param-
eters. 

 Three-dimensional commercial finite element software—
ANSYS/APDL version 15.0—was used for all simulations. The 
virtual crack closure technique (VCCT) and cohesive zone 
model (CZM) were used to determine delamination growth 
in an initially delaminated composite model. The finite ele-
ment model was evaluated under a combination of different 
loading scenarios. A comparison between the crack propaga-
tion in glass- and carbon-fibre in composite material was then 
performed.

Hashin’s failure criteria for unidirectional fibre 
composites

One of the critical problems in the design and modelling of 
fibre-reinforced composite material under cyclic loading is to 
establish meaningful fatigue failure criteria. There are many 
failure criteria for the design and modelling of composite ma-
terial (Barbero, 2013). 

Hashin (1980) proposed a failure criterion for unidirec-
tional fibre-composite materials based on quadratic stress 
polynomials. Hashin’s failure criteria indicated that there are 

two independent failure modes in unidirectional fibre com-
posites: fibre failure and inter-fibre failure. In the fibre failure 
mode, composite material fails due to a rupture resulting from 
a tension force and buckling from a compressional force. Ma-
trix (inter-fibre) failure occurs in a plane parallel to the fibres 
(Hashin, 1980).

Unidirectional fibre composites are transversely isotropic 
in the fibre direction; therefore, fibre-reinforced failure modes 
consider the uni-axial stress state in the fibre direction, while 
matrix failure modes consider the tri-axial stress state. 

Hashin’s failure criteria involved four failure modes for fi-
bres and matrices (Hashin, 1980):
1.	 tensile fibre failure for σ

11
 ≥ 0;

2.	 compressive fibre failure for σ
11

 < 0;
3.	 tensile matrix failure for σ

22
 + σ

33
 ≥ 0; and,

4.	 compressive matrix failure for σ
22

 + σ
33

 < 0.

Interlaminar fracture (delamination)

 Three crack propagation failure modes of delamination are 
shown in Figure 3 for interlaminar crack displacements. The 
numerical simulation of the crack propagation follows two 
procedures. The first is based on fracture mechanics, and the 
second is based on a mixture of damage mechanics and soften-
ing plasticity (Spada et al, 2009).

The mechanical parameters indicate that delamination hap-
pens through the interface layer. The resistance of the interface 
to propagate the interlaminar crack under the opening mode 
(Mode-I) is different from under the shear mode (Mode-II). 
The increase of force applied in Mode-I and Mode-II gives rise 
to tensile and shear stresses at the delamination crack front, 
respectively (Mathews and Swanson, 2007). 

A delamination crack propagates when the strain energy 
release rate is equal to or greater than the value of the critical 
energy release rate (Alfano and Crisfield, 2001).

Crack opening mode (Mode-I)

According to Wisheart and Richardson (1998), the strain 
energy release rate can be statically measured using a DCB 
test for Mode-I delamination. The model is designed with a 
pre-existing crack. By applying an opposite direction force to 
the end of the sample, perpendicular to the crack surface, the 
pre-existing crack will extend. Figure 4 shows the crack geom-
etry, the reaction forces and crack displacements. The reaction 
forces are calculated according to Equation 3 and the resul-
tant crack displacements are used to calculate the total frac-
ture toughness energy (G

I
). A schematic diagram of the DCB 

is shown in Figure 5. 

G
I
 = 

1
2 da R

y
dv 	 (3)

Figure 2. Meso-scale damage model of a laminate (Bordeu and Boucard, 2009).
Figure 3. Crack growth modes: (a) opening Mode-I; (b) sliding shear Mode-II; and, 
(c) scissoring shear Mode-III (Van Mier, 2012).

Figure 1. Damage index in composite material (Reifsnider et al, 1983).
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DCB (Mode-I)

The crack opening mode (Mode-I) test is generally 
performed on a unidirectional composite laminate specimen. 
In this method, the applied load versus crack displacement is 
linear, and the first deviation from linearity occurs as the crack 
initiation happens. According to fracture mechanics concepts, 
the propagation from a pre-existing delamination can be 
calculated by the amount of strain energy release rate and the 
fracture toughness of the interface (Choupani, 2008).

The interlaminar fracture toughness calculations are based 
on Equation 4 (Prasad et al, 2011).

G
I
 = 

3 Pδ
2ba

	 (4)

Crack sliding mode (Mode-II)

Mode-II delamination failure is a method for measuring 
shear stresses at the crack tip. A three-point bending load on 
the ENF specimen with a pre-existing crack (a, as shown in 
Fig. 6) can determine the strain elastic release energy rate. The 
pre-existing crack propagates as the bending load is applied 
to the specimen. The finite element model was designed to 
simulate a sample similar to the set up shown in Figure 6. Ac-
cording to Equation 5, the total fracture toughness energy (G

II
) 

is calculated from the reaction force at the crack tip, load point 
displacement and the crack propagation length.

G
II
 = 

1
2 da R

x
du 	 (5)

ENF (Mode-II)

The ENF test is a method for measuring interlaminar fracture 
toughness in composite materials under in-plane shear stress. 
The crack sliding mode (Mode-II) is a type of fracture testing 
method in which the crack initiation and propagation’s front 
faces slide on each other in the direction of the crack’s growth 
path and no crack opening mode occurs (Salehizadeh and Saka, 
1992). Mode-II interlaminar fracture toughness is calculated 
according to Equation 6 and is denoted by G

II
 (Zhu, 2009).

G
II
 = 

9P2a2

16E
11
b2h3

	 (6)

Finite element modelling analysis can use the virtual crack 
technique and/or cohesive crack model method to compute 
the strain energy release rate.

Virtual crack closure technique (VCCT)

The VCCT is a fracture mechanics method that is com-
monly used for modelling interlaminar delamination failure. 
The VCCT requires an initial crack in the structure between 
two layers to model the crack propagation. VCCT computes the 
strain energy release rate for crack growth. Delamination failure 
occurs when the strain energy release rate becomes equal to or 
greater than the critical energy release rate (Sun et al, 2009).

Cohesive zone model (CZM)

The CZM is based on strength criteria and fracture mechan-
ics concepts. It incorporates the initiation and propagation of 

a crack front; however, it cannot predict the initiation of the 
interlaminar crack. Mesh size and material parameters are im-
portant factors in CZM modelling. The interface between the 
adjacent layers of the composite structure is properly defined 
to determine the crack propagation. The CZM is considered to 
be a tool to evaluate the deterioration of cohesion between the 
layers, which uses the relationship between the separation and 
traction along the interface. Table 1 shows the strengths and 
weaknesses of the CZM and CVVT modelling methods. 

Interface

The laminated interface is a 3D medium and its thickness is 
negligible compared to the laminated specimen dimensions; 
therefore, modelling the interface layer is defined as a 2D entity 
to evaluate the relative displacement and reaction force from 
one layer to the next. Due to low-strength bonding between the 
adjacent layers, the interface offers the best path for the crack 
to propagate. The interface strength only depends on matrix 
properties. 

Figure 4. 2D crack geometry of the DCB (Krueger, 2004).

Figure 5. A schematic of the DCB specimen.

Figure 6. A schematic of the ENF specimen.
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FINITE ELEMENT MODELLING

To study the effect of crack initiation and propagation behav-
ior, a glass-fibre composite material and a carbon-fibre com-
posite material were modelled. The two approaches, VCCT and 
CZM, were implemented in the finite element analysis software 
(ANSYS/APDL version 15). The applied load modes evaluated 
were opening Mode-I using the DCB design according to ASTM 
D5528, and shear Mode-II using the ENF design according to JIS 
K7086 standards. The strain energy release rates—G

I
 and G

II
—

due to normal and shear stresses, respectively, were evaluated.

FINITE ELEMENT MODEL

The mechanical properties of the unidirectional composite 
glass fibre/epoxy, carbon fibre/epoxy and interface epoxy resin 
are presented in Table 2.

The structure modelled a rectangular cross-section 150 mm 
long, 25 mm wide and 3 mm high. The pre-existing crack length 
was 50 mm, as listed in Table 3.

Static analysis is performed using regular mesh eight-node 
Brick elements with SOLID185 for both DCB and ENF laminates 
and interlaminar layers. 

To simulate Mode-I (the opening mode), one end of the DCB 
structure was fixed. The opposite free end (with the pre-exist-
ing crack) was subjected to a total of 20 mm of displacement, 
as shown in Figure 5. For Mode-II (the sliding shear mode), a 
three-point loading was simulated, similar to the ENF model. 
Both ends of the sample were supported on one side, and on 
the opposite side to the sample a 10 mm displacement was 
exerted through the point load at the centre, as illustrated in 
Figure 6. The 3D zero thickness interfaces were modelled as an 
inter-layer cohesive element between the laminate to direct the 
interlaminar crack propagation front paths. 

RESULTS AND DISCUSSION

A DCB was used to determine Mode-I interlaminar fracture 
toughness, and the ENF beam was used to determine Mode-II 
interlaminar fracture toughness. The finite element 3D models 
are shown in Figure 7 for ENF and DCB. The models illustrate 
the von-Mises stress distribution in both the ENF and DCB 
models. According to Equations 2 and 3, the resultant stresses 
represent the reaction forces, and consequently the energy 
release rates G

I
 for the DCB and G

II
 for the ENF models were 

calculated. 
Figure 8 shows a contour plot for the crack front face versus 

total strain energy release rate (G
T
) for the DCB model in both 

carbon- and glass-fibre composite laminates. The G
I 
and G

T
 val-

ues are equal at the crack front face for both the carbon- and 
glass-fibre composite materials. The graphs illustrate that the 
release energy rate by the carbon fibre was almost three times 
more than that for the glass-fibre. The results of the Mode-I 
testing method confirm that the DCB model represents only 
the pure normal stress from the release strain energy rate G

I 

(Brunner et al, 2008). 
As presented in Figure 9, the total energy release rate (G

T
) 

and shear energy release rate (G
II
) obtained from the ENF model 

correspond to a crack initiation during the application of slide 
shear load, Mode-II. The results show that the G

T
 values are 

slightly more than the G
II 

values (almost 2.5% and 1% at the 
edges for glass fibre and carbon fibre, respectively). The narrow 
difference between G

T
 and G

II 
indicates that, apart from shear 

stress (the evaluation of which was based on the strain energy 
release rate Mode-II), there are other sources contributing to the 
strain energy release rate (such as inter-layer frictions and nor-
mal stress) in the ENF testing mode. The result confirms Brun-
ner et al’s (2008) suggestion that the ENF testing method cannot 
represent pure shear stress in delamination crack testing.

Effect of load force on testing approach 

The results from the analyses of the load point displacement 
responses of the applied force to the ENF and DCB models for 
the carbon- and glass-fibre composite materials are shown in 
Figures 10 and 11. The contour plots present a meaningful re-
lationship between carbon fibre and glass fibre in Mode-I and 
Mode-II modelling. In the Mode-I DCB model, for a 10 mm 
load point displacement, the applied force to the pre-existing 
crack edges of the model for carbon- and glass-fibre composites 
are 20 N and 5.6 N, respectively. A 10 mm load point displace-
ment to the center of Mode-II ENF model illustrates 1,500 N 
for carbon fibre and 470 N for glass fibre. This means that the 
applied load for the same load displacement in carbon fibre 
is almost three times more than that of glass fibre in the DCB 
and ENF models. 

Material 
properties Direction Glass fibre/

epoxy
Carbon fibre/

epoxy

Young’s 
modulus

X 135.3 GPa 40 GPa
Y 9 GPa 5 GPa
Z 9 GPa 5 GPa

Poisson’s 
ratio

XY 0.24 0.27
YZ 0.46 0.27
XZ 0.24 0.275

Shear 
modulus

XY 5.2 GPa 1.07 GPa
YZ 3.08 GPa 0.806 GPa
XZ 5.2 GPa 1.07 GPa

Interface
Minimum stress = 25 Mpa

Normal separation = 0.004 mm
Shear separation = 1,000 mm

Table 2. Mechanical properties.

Specimen 
dimensions

Length = 150 mm
Crack length = 50 mm

Height = 3 mm
Width = 25 mm

Maximum load displacement = 10 mm

Table 3. Modelled sample Dimensions.

CZM VCCT

Strengths
•  Prediction of initial and 

growth of crack.
•  Applicable to complex 

structures.

•  Based on fracture 
mechanics concept.

•  Crack growth related to 
strain energy release rate.

Weaknesses

•  Difficult to obtain 
characterisation data.

•  Accurate assessments 
are strongly tied to 
element size.

•  Necessary to assume 
number, location and size 
of the cracks.

•  Difficult to incorporate with 
complex structures.

Table 1. Comparison between the CZM and CVVT (ANSYS®, 2013). 

Continued next page.
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Figure 7. ANSYS model von-Mises stress distribution (N) for (a) ENF and (b) DCB.

Figure 8. Total energy release rate (Mode-I).

Continued from previous page.

Continued next page.
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Figure 9. Energy release rates (Mode-II) for (a) carbon fibre and (b) glass fibre.

Figure 10. Mode-I DCB testing for (a) carbon fibre and (b) glass fibre.

Figure 11. Mode-II ENF testing for (a) carbon fibre and (b) glass fibre.

Continued from previous page.

Continued next page.
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CONCLUSIONS

This paper presents the initial results of a study into the in-
fluence of failure on the properties of filament-wound coiled 
tubes. Numerical simulation was implemented in ANSYS/APDL 
software to measure the delamination fracture toughness of 
carbon- and glass-fibre composite laminates. The variation of 
strain release energy rates versus crack tip in Figures 8 and 9 
illustrate that the 2D modelling cannot express the real release 
strain energy rate at the crack front tip. The contour for G

I
 in-

creases—almost doubling in value—from the edge to the cen-
tre (from 5 J/m2 to approximately 10.2 J/m2), while G

II
 slightly 

decreases from the edge to the centre (from 10.4 to 9.9 J/m2). It 
is, therefore, necessary to investigate the crack propagation in 
composite laminates using 3D modelling. 

According to Figures 10 and 11, the applied load to load dis-
placement perpendicular to the crack plane for carbon fibre is 
almost three times more than that for glass fibre in Mode-I and 
Mode-II. The observations are similar to those of Williams (1988) 
in that the Mode-II interlaminar fracture toughness of compos-
ite laminate is several times higher than Mode-I interlaminar 
fracture toughness in the same material. Also, the DCB testing 
method (opening mode for normal stress) presents the weakest 
type of interlaminar delamination failure in composite materials.

NOMENCLATURE

δ	 Load point displacement
σ

11	
Normal stress parallel to the fibre direction

σ
22	

Normal stress transverse to the fibre-parallel direction 
σ

33
	 Normal stress transverse to the fibre-perpendicular 

	 direction
a	 Crack delamination length
b	 Sample width
D

n
	 Fatigue damage (equals 0 for n = 0 and equals 1 for n = N)

d
u
	 Crack displacement in the x direction

d
v
	 Crack displacement in the y direction

E
0
	 Initial Young’s modulus

E
f
	 Failure Young’s modulus

E
n
	 Young’s modulus of the material subjected to the nth 

	 cycling loading
 G

I
	 Strain energy release rate in Mode-I testing for pure 

	 normal stress
G

II
	 Strain energy release rate in Mode-II testing for pure 

	 shear stress
G

III
	 Strain energy release rate in for pure sliding stress

G
T
	 Total strain energy release rate

2h	 Sample thickness
N	 Fatigue life
P	 Load
R

X
	 Node reaction force in the x direction

R
Y
	 Node reaction force in the y direction
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