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ABSTRACT
We present a method for subtracting point sources from interferometric radio images via
forward modelling of the instrument response and involving an algebraic non-linear mini-
mization. The method is applied to simulated maps of the Murchison Wide-field Array but
is generally useful in cases where only image data are available. After source subtraction,
the residual maps have no statistical difference to the expected thermal noise distribution at
all angular scales, indicating high effectiveness in the subtraction. Simulations indicate that
the errors in recovering the source parameters decrease with increasing signal-to-noise ratio,
which is consistent with the theoretical measurement errors. In applying the technique to
simulated snapshot observations with the Murchison Wide-field Array, we found that all 101
sources present in the simulation were recovered with an average position error of 10 arcsec
and an average flux density error of 0.15 per cent. This led to a dynamic range increase of
approximately 3 orders of magnitude. Since all the sources were deconvolved jointly, the
subtraction was not limited by source sidelobes but by thermal noise. This technique is a
promising deconvolution method for upcoming radio arrays with a huge number of elements
and a candidate for the difficult task of subtracting foreground sources from observations of
the 21-cm neutral hydrogen signal from the epoch of reionization.

Key words: methods: data analysis – methods: numerical – techniques: interferometric –
cosmology: observations – dark ages, reionization, first stars – diffuse radiation.

1 IN T RO D U C T I O N

The deconvolution of radio point sources is a problem that has been
studied for several decades in radio astronomy.

When calibration errors can be neglected, the problem of sub-
tracting point sources from deconvolved radio images ultimately
reduces to a problem of fitting their positions and flux densities as
accurately as the instrumental noise permits.

The methods used to deconvolve point source sidelobes are typ-
ically based on the CLEAN algorithm (Hogbom 1974; Clark 1980).
The CLEAN algorithm looks for the brightest pixel in the image and
subtracts a fraction of the dirty beam from the image at that loca-
tion, forming a residual image. The search and subtraction loop is
repeated until the sidelobes are reduced below the thermal noise
level.

The model components that are found through this iterative pro-
cess can be convolved with a two-dimensional Gaussian and in-
troduced back into the residual image. The best estimate of flux
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density and position for each source is then found by fitting a two-
dimensional Gaussian to the source.

The subtraction of point sources performed in this way has the
known problem that the dynamic range achievable is limited by
pixelization effects, i.e. by the fact that data are averaged and ar-
ranged into a regular grid. Therefore even a simple point source
that does not lie at the centre of the grid cell cannot be represented
by a single delta function model, but requires a potentially infinite
number of components to be fully represented (Perley 1999; Briggs
& Cornwell 2005).

In presence of the visibility data, the pixelization problem can
be minimized and the dynamic range improved by subtraction of
sources from the ungridded visibilities (Noordam & de Bruyn 1982;
Voronkov & Wieringa 2004) and by centring the local pixel grid on
the source to be deconvolved (Cotton & Uson 2008).

When the number of antenna elements to be correlated becomes
extremely large, however, it becomes harder and harder to store the
visibility data and the deconvolution has to be performed on images
with, again, a limitation of the dynamic range due to pixelization
effects.
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This is a relevant issue for upcoming radio telescopes like the
Murchison Wide-field Array (MWA; Lonsdale et al. 2009) or future
instrumentation like the square kilometer array (SKA)1 since they
will produce a huge number of correlated visibilities. MWA will
generate data at such a rate (approximately a PByte d−1) that will be
impractical to store the raw visibilities and go through the traditional
self-calibration loop, and the deconvolution of radio sources will
happen in the image plane.

The deconvolution of bright point sources is also a prominent
issue in the view of the detection of the epoch of reionization (EoR)
through the redshifted 21-cm line emission, which is one of the
main goals of the MWA.

The problem of foreground subtraction for EoR experiments has
been studied by various authors in the literature (Di Matteo, Ciardi
& Miniati 2004; Morales & Hewitt 2004; Santos, Cooray & Knox
2005; McQuinn et al. 2006; Morales, Bowman & Hewitt 2006;
Wang et al. 2006; Gleser, Nusser & Benson 2008; Jelić et al. 2008;
Bowman, Morales & Hewitt 2009; Harker et al. 2009a; Harker et al.
2009b; Liu, Tegmark & Zaldarriaga 2009a; Liu et al. 2009b). Most
of their efforts have been devoted to demonstrations that the diffuse
Galactic synchrotron radiation and the classical confusion noise due
to unresolved radio sources can be subtracted if it is assumed that
they are spectrally smooth and absent of calibration errors. Recent
observations (Ali, Bharadwaj & Chengalur 2008; Bernardi et al.
2009; Pen et al. 2009; Bernardi et al. 2010; Parsons et al. 2010)
have started to characterize the diffuse foreground component.

All the simulations conducted so far, however, have assumed that
the brightest point sources were perfectly subtracted from the data.
Bowman et al. (2009) and Liu et al. (2009b) indicated that point
sources should be subtracted down to a 10–100 mJy threshold in
order to detect the EoR.

Datta, Bhatnagar & Carilli (2009) and Datta, Bowman & Carilli
(2010) studied the problem of subtraction of bright sources in the
presence of calibration errors and concluded that sources brighter
than 1 Jy should be subtracted with a positional precision better than
0.1 arcsec if calibration errors remain correlated over ∼6 h of obser-
vation. If the errors are correlated on a shorter time length, however,
they will tend to average down with time, and the requirement for
positional accuracy will be less stringent.

Pindor et al. (2010) developed a technique based on matched fil-
ters to subtract bright point sources in MWA images in the presence
of diffuse emission. They showed that the dynamic range of the
residual images can be improved by a factor of ∼2–3 in this way.

In this paper, we present a method of subtracting point sources
from MWA dirty images that involves forward modelling and a
non-linear minimization scheme. Forward modelling is a general
concept that can be used to extract astrophysical parameters from
the data.

We applied our method to simulated MWA images to show that
point sources can be deconvolved with an accuracy limited by ther-
mal noise even without storing the visibility data.

The paper is organized as follows: in Section 2 we present the
method; in Section 3 we apply the method to MWA simulated
images and we conclude in Section 4.

2 TH E M E T H O D

The method presented here relies on the fact that the sky emission
can be forward modelled. Forward modelling is a generative model,

1 http://www.skatelescope.org/

i.e. a model that is related to the astrophysical parameters to be
measured, is based on physical assumptions and can be generated
a priori, independent of the actual data. Once the forward model is
determined, a minimization scheme (generally non-linear) can be
implemented to fit for the astrophysical parameters of interest.

Forward modelling has already been used in several astrophysi-
cal contexts; for example, Bailer-Jones (2010) used a forward mod-
elling algorithm to estimate stellar parameters from optical spectra.
Forward modelling finds a natural application in point source sub-
traction from radio images where visibility data are not accessible
anymore.

In this case, the forward model does not need to be approxi-
mated by any analytical function, but it is simply the synthesized
beam calculated at that particular position in the sky and scaled for
the source flux density. In traditional radio astronomy, the synthe-
sized beam can be considered to remain constant throughout the
whole field of view. If we consider the future arrays which will
operate at low frequencies, however, the synthesized beam changes
as a function of position in the map due to wide field effects and
direction-dependent primary beams. If very high dynamic range
imaging is required – as it is to detect the EoR signal – the exact
synthesized beam should be computed at each location in the map
without relying on any analytical approximation. For the MWA,
real-time calibration data will be stored in a data base and will be
used to generate an accurate set of visibilities for each point source
of interest. These visibilities can then be imaged and averaged in
the same way that the true visibilities were imaged and averaged,
resulting in a synthesized beam map for each source.

In the case of point source deconvolution, the astrophysical pa-
rameters that have to be determined via forward modelling are the
position and flux density of each point source.

For a single point-source case, our algorithm can be described
as follows. The image pixels are grouped into an N-element vector
y, where N is the number of pixels in the map. Right ascension,
declination and flux density of the source – i.e. the parameters to
be fitted – are grouped into a three-element vector x. The forward
model m(x) is also an N-element vector.

The nth iteration of the method is described as follows.

(i) Generate the forward model (i.e. an image of the synthe-
sized beam) mn = m(xn) for the current parameter estimate: right
ascension; declination and flux density.

(ii) Compute the N × 3 Jacobian matrix, J, which contains the
derivatives of the forward model-synthesized beam with respect to
the parameters computed at the current parameter estimate xn,

Jij =
(

∂mi

∂xj

)
x=xn

.

(iii) Estimate the difference between the data and the model

�m = y − mn.

(iv) Estimate the shift in each parameter which is the solution of
the linear system of equations

(JTJ)�x = JT�m
�x = (JT J)−1JT�m.

(1)

(v) Compute the new estimate of the parameters

xn+1 = xn − �x.

Steps (i)–(v) are repeated until convergence is reached (Fig. 1).
Equation (1) shows that the problem of source subtraction has

become a non-linear least-squares minimization.
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Figure 1. Flow chart of the source subtraction scheme.

The forward model has a linear dependence on flux density, but
non-linear on position; therefore the partial derivatives with respect
to right ascension and declination are computed numerically using
finite difference approximation.

Practically, the partial derivative with respect to right ascension
is computed by generating an image of the synthesized beam with
a small right ascension offset from the current estimated position.
An image of the synthesized beam with a small declination offset
is generated to compute the partial derivative with respect to dec-
lination. The derivative with respect to flux density is just a scaled
version of the synthesized beam.

The generalization of the single point source case to M sources
is straightforward, since the vector of parameters becomes a 3M
vector, and the Jacobian matrix becomes a N × 3M matrix, and
all the sources are fitted simultaneously at each iteration. It is also
important to note that the matrix JTJ that has to be inverted does
not depend upon the number of pixels in the map, but only upon
the number of parameters; therefore its size increases linearly only
with the number of sources to be subtracted.

In principle, an initial estimate of the parameters could be ob-
tained by generating a grid of likely models, with a range of right
ascension, declination and flux densities for each source, and se-
lecting the model, x0, that best fits the data [i.e. minimizes ( y −m)T

( y −m)]. In practice, it is easier and faster to fit an elliptical Gaus-
sian to the source position and use its best-fitting parameters as the
initial guess.

Equation (1) can be generalized by assigning a weight to each
pixel of the image. In this case, it becomes the general expression
for non-linear weighted least squares:

�x = (JTWJ)−1JTW�m, (2)

where W is the N × N weight matrix. Although different weighting
schemes could be explored, in the following applications of our
method we will assume that W is a diagonal matrix with each

diagonal element equal to the signal-to-noise ratio (S/N) of the
corresponding pixel.

The advantage of this method compared to other image-based
deconvolution techniques is that the forward model can be generated
with an arbitrary level of precision in the parameter space grid and,
therefore, is not affected by any pixelization effect. In the following
section, we will apply this method to simulated MWA images.

3 A PPLI CATI ONS

In this section, we test the method with simulated MWA images
obtained through the real-time system (RTS; Mitchell et al. 2008).
The main RTS data product will be dirty images – i.e. images where
the synthesized beam has not been deconvolved – integrated over a
period that can range from 8 s to a few minutes. It is these integrated
images that require subtraction of point sources. The RTS will
also save calibration information (primary beam and atmospheric
models) to facilitate accurate off-line deconvolution.

3.1 Simulation set-up

We simulated a realistic MWA observation, with 20◦ × 20◦ images
covering the MWA field of view. The simulations were constructed
as follows. We populated the field of view with point sources ac-
cording to the following log N–log S distribution:

dN = N0S
−2.5dS,

where dN is the differential source count, N0 is the number of
sources per steradian per Jy−1.5 and S is the source flux density. We
have chosen N0 in such a way that there are 100 sources greater than
1 Jy in a 20◦ × 20◦ field. Random positions were assigned to the
sources with no constraint on the minimum distance among them.

Visibility data were then created for the sources at 150 MHz,
with a 2-s cadence and over a 40-kHz channel width using the MAPS

package (Wayth et al. 2010).
Random noise was added to each ij visibility, for each polariza-

tion, according to the following expression:

Nij = SEFD√
�t�f

, (3)

where we have assumed a System Equivalent Flux Density
(SEFD) = 10 000 Jy, �t = 2 s and �f = 40 kHz.

The visibilities were imaged through the RTS, which performs
calibration and imaging of raw visibility data. However, since we
assumed a perfect calibration in this work, only the imaging part
was used. The RTS imaging pipeline is described by Ord et al.
(2010), and we briefly summarize it here, referring the reader to the
paper for a more detailed presentation.

Each MWA tile is constituted of 16 dipoles arranged in a 4 × 4
square configuration. The dipoles are fixed to the ground; therefore
their projection on the sky changes with time. The primary beam
response to the sky brightness is, therefore, time variable. We have
assumed that the tile primary beams can be described by the sum
of 16 complex numbers that represent gain terms for the individual,
known, dipole beams. Since we are not dealing with calibration,
all tile beams are assumed to have the same shape, amplitude and
phase.

The RTS expects visibility data from the correlator to be inte-
grated over 2 s and 40 kHz. The visibility data are then averaged and
imaged over 8 s (Mitchell et al. 2008). Each individual 8-s snapshot
is then resampled into the HEALPIX frame (Górski et al. 2005) and
integrated over time, with wide-field distortions corrected during
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Figure 2. Simulated 32T uv coverage integrated over 10 min (top panel)
and simulated 512T uv coverage for an 8-s snapshot (bottom panel). The
image centre is at 4h right ascension and −30◦ declination.

the resampling. The time integration is performed, for each pixel,
by summing over the measured values weighted by the complex
conjugate of their primary beam response (the total weight is now
the square of the beam). The sum of the weights – i.e. the square
of the primary beam response integrated over the duration of the
observation – is divided out at the end of the integration.

We generated images centred at 4h right ascension and −30◦ dec-
lination, which is one of the potential fields for EoR observations.
We have assumed that the field was observed 1 h before transit.

We simulated two different sets of observations related to two
different array configurations. First, we considered the 5 per cent
prototype of the array that is currently deployed on the ground and
is constituted by 32 tiles (32T). Secondly, we considered the full
MWA configuration which will consist of 512 tiles (512T). The
32T system has less sensitivity compared to the 512T system and
a coarser angular resolution since its longest baseline is ∼400 m,
whereas the longest baseline is ∼1500 m in the 512T configuration.
The instantaneous uv coverage of the 32T is also much worse than
the 512T one (Fig. 2).

The presence of wide-field effects makes the synthesized beam
position dependent even in the absence of calibration errors (Fig. 3).
Since we are aiming at achieving a high dynamic range subtraction,
we will generate the synthesized beam for each source at the specific
source location to account for the difference.

Figure 3. An example of the difference between synthesized beams at two
positions in the 512T simulated image. Solid line: the synthesized beam
profile at the image centre. Dashed line: the synthesized beam profile 9◦
away from the image centre. Dot–dashed line: the difference between the
two profiles. In this example, the difference is at the 10 per cent level.

3.2 32T results

We used the 32T simulations to test the applicability of our method
to integrated snapshot images. Since the long integration images
taken with MWA will be obtained by co-adding individual snapshots
– whose duration can vary from 8 s to ∼5 min – it is relevant to
test the capability of the algorithm to subtract sources over co-
added images, where fainter sources can become visible because of
sidelobe suppression and the lowering of thermal noise.

We used a 10-min integrated image, which has an rms thermal
noise of ∼52 mJy beam−1, enabling detection of sources brighter
than ∼300 mJy. However, since the computational load increases
with the number of sources and the length of the observation, we
limit ourselves to the 16 sources brighter than 4 Jy, working in a
case of high S/N.

The subtraction was performed without any a priori assumption
about the sky model, that is without identifying in advance sources
via catalogued coordinates. This enables us to test the robustness of
the algorithm under realistic conditions (i.e. without pre-supposition
of a sky model generated by the MWA), where sidelobe structure
from sources around the sky cannot be filtered.

For a 16-source model that includes thermal noise, only one
source (97 Jy) is clearly visible because its sidelobes are bright
enough to cover all the remaining sources (Fig. 4). The initial guess
regarding the sky brightness distribution is limited to the parameters
for this one source. The subtraction was performed according to the
following steps.

(i) The first source parameters were estimated through the for-
ward modelling minimization (three iterations, Fig. 5); the source
model was subtracted and initial guesses obtained for the three
newly visible sources.

(ii) The four brightest sources were included in the sky model
and subtracted. After three iterations another seven sources were de-
tected in the image (Fig. 6) and initial estimates of their parameters
were made.

(iii) A sky model made of 11 sources was subtracted. After three
iterations all the remaining sources were identified (Fig. 7) and an
initial estimate of their parameters performed.

(iv) The full sky model is minimized and subtracted jointly, giv-
ing the residual image of Fig. 8.
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Figure 4. Simulated image with the 32T uv coverage integrated over
10 min. The black and white scale runs linearly between −10 and
50 Jy beam−1. The sidelobes of the dominant source (∼97 Jy) obliterate
the other 15 sources between it and a 4-Jy floor.

Figure 5. Residual image, with the brightest source subtracted, after three
iterations. The black and white scale runs between −10 and 15 Jy beam−1.
Three new sources are visible.

In order to characterize the statistics of the residuals and the
accuracy of the subtraction, we compare the true flux densities and
positions to the final estimates and to the theoretical measurement
errors σ RA,DEC

theor computed as

σ RA,DEC
theor = �b

2 (S/N)
, (4)

where �b ∼ 18 arcmin is the synthesized beam (Fig. 9).

Figure 6. Residual image, with the four brightest sources subtracted, after
three iterations. The black and white scale runs between −2 and 5 Jy beam−1.
Seven new sources are visible.

Figure 7. Residual image, with the eleven brightest sources subtracted, after
three iterations. The black and white scale runs between −1 and 3 Jy beam−1.
Five new sources are visible.

We observe that the error distribution narrows with increasing flux
density and is within the theoretical values. No systematic offsets
appear in the recovered source parameters, based on estimates of
median and rms values (Table 1).

We also computed the angular power spectrum of the residual
images as (Seljak 1997; Bernardi et al. 2009)

C� = �

N�

∑
l

X(l)X∗(l), (5)
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Figure 8. Residual image, with all the sources subtracted, after three itera-
tions. The black and white scale runs between −0.4 and 0.4 Jy beam−1. The
image shows only thermal noise.

Table 1. Median and rms values of the off-
set between the model and the fitted param-
eters for the simulated 32T image.

Parameter Median rms

RA −0.7 arcsec 9.6 arcsec
Dec. −0.3 arcsec 6.6 arcsec
Flux density 0.3 per cent 1.2 per cent

where � = 180/� is the usual multipole value, � is the angular
scale in degrees, � is the solid angle in radians, N� is the number
of Fourier modes around a certain � value, X and X∗ are the Fourier
transform of the image and its complex conjugate, respectively, and
l is the two-dimensional coordinate in Fourier space. The power
spectrum has a bin width of �� = 50.

The amplitude of the power spectrum of the residual images
decreases by more than 2 orders of magnitude as the number of
subtracted sources increases (Fig. 10).

Fig. 10 also shows the noise power spectrum, estimated as the
averaged power spectrum of 100 noise realizations. Each noise re-
alization was generated by imaging visibilities which included only
noise, following equation (3). A noise power spectrum was com-
puted from each image. The estimated noise power spectrum was
determined as the average among 100 power spectrum realizations.
The error bars are the standard deviation of the 100 power spectrum
realizations in each multipole bin.

It can be seen that the power spectrum of the residual image, after
the full 16-source sky model is subtracted, agrees with the estimated
thermal noise over the entire range of angular scales probed. This
indicates that no systematic errors or statistical deviations from
Gaussian-distributed noise are introduced by the method and that
the source subtraction is accurate down to the thermal noise level.

Figure 9. Errors in the fitted parameters for sources in the 32T simulated
image: right ascension (top panel), declination (middle panel) and flux den-
sity (bottom panel). Solid lines in the two upper plots indicate the envelope
of the theoretical measurement errors.

3.3 512T results

The 512T simulation included 101 sources brighter than 1 Jy, ob-
served in an 8-s snapshot and in a 40-kHz channel (Fig. 11). The
thermal noise in the 512T image is ∼26 mJy beam−1. Unlike the
32T case, the 512T image prior to forward modelling already ex-
hibits a great number of sources, due to the reduced sidelobes of the
synthesized beam.
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Figure 10. Power spectra of residual images for an increasing number of
subtracted sources. From top to bottom: after subtracting one source (Fig. 5);
after subtracting four sources (Fig. 6); after subtracting 11 sources (Fig. 7);
after the whole sky model is subtracted (Fig. 8). The error bars are at the 1σ

confidence level. The dashed line represents the noise power spectrum (see
text for details).

Figure 11. Simulated 8-s snapshot image with 512T uv coverage. The
black and white scale runs between −1 and 2 Jy beam−1. The very good
synthesized beam has low sidelobe levels and makes most of the sources
directly visible without any subtraction.

The subtraction was performed according to the following steps.

(i) The brightest 15 sources were identified and an initial guess of
their parameters estimated. They were then subtracted out through
the minimization scheme (Fig. 12).

(ii) Another 35 sources were identified and their parameters esti-
mated. The joint fit is now performed on 50 sources simultaneously
(Fig. 13).

(iii) All the sources were included in the sky model. The mini-
mization was carried out for all the 101 sources simultaneously and
convergence was reached after five iterations (Fig. 14).

Figure 12. Residual image, with the brightest 15 sources subtracted, after
five iterations. The black and white scale runs between −1 and 2 Jy beam−1.

Figure 13. Residual image, with the 50 brightest sources subtracted, after
five iterations. The black and white scale runs between −1 and 2 Jy beam−1.
The presence of negative peaks is due to a subtraction in the absence of a
full sky model.

The final residual image after the whole sky model is subtracted is
consistent with the initial thermal noise level, indicating an accurate
subtraction of the sources. It is worth noting that in the intermediate
steps, when only a partial sky model is subtracted, residual features
due to an imperfect subtraction exist and appear as positive adjacent
to negative peaks.

We computed the difference between the true flux density and
position values and their final estimates (Fig. 15) as was done for
the 32T simulation.

C© 2011 The Authors, MNRAS 413, 411–422
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Figure 14. Residual image, with all sources subtracted, after five iterations.
The black and white scale runs between −0.3 and 0.3 Jy beam−1. Only
thermal noise is left after the subtraction of the whole sky model.

As in the 32T case, errors increase with decreasing flux densi-
ties and are well matched to their expected theoretical limits. The
median and rms values show no systematic errors in the recovered
parameters (Table 2).

The power spectrum of the residual image after subtracting all
101 sources agrees with the expected thermal noise within 1σ error
for each multipole value, indicating that there is no significant sta-
tistical leftover from source subtraction (Fig. 16). The power spectra
spans almost 3 orders of magnitude because the 512T simulation
probes the log N–log S at lower flux densities. This demonstrates
that the algorithm is able to simultaneously remove a large number
of sources which span 2 orders of magnitude in flux density.

This is a relevant result in the light of EoR measurements, where
a high accuracy in source subtraction is required to achieve the
necessary dynamic range. The detection of the EoR is believed to
require this high accuracy in foreground subtraction because the
cosmological signal is 5–6 orders of magnitude below the strongest
sources in the sky. Due to the time constraints that come with the
real-time nature of the MWA, subtracting sources in the visibility
domain – ‘peeling’ – is only practical for the brightest sources which
are also required to accurately constrain antenna primary beam
models. In order to achieve accurate calibration and subtraction
using these sources, a comprehensive global sky model is required.
This will be obtained by surveying the sky in the first months
of operation with the full array. At the same time, the actual tile
beams will be measured and used to improve the beam models.
The knowledge of the sky and the beams can be improved in a
bootstrapping fashion by repeating the sky survey.

We expect that the initial 105–106 dynamic range can be alle-
viated by 2–3 orders of magnitude through a very precise peeling
procedure. A further subtraction of the remaining bright sources is
required in the integrated images.

If the dynamic range is expressed as the ratio between the bright-
est source in the map and the noise rms, the source subtraction

Figure 15. Same as Fig. 9, but for the 512T simulation. The synthesized
beam is now �b ∼ 11.8 arcmin. The solid line in the bottom figure indicates
the (S/N)−1 envelope.

in the 512T case achieves a dynamic range of ∼3400 through our
minimization scheme.

It is also interesting to introduce the relative dynamic range de-
fined as the ratio between the true flux density of a source and the
difference between the true and the recovered flux density (Pin-
dor et al. 2010). This is another way of estimating the residual
contamination due to an imperfect subtraction. Studies in the lit-
erature indicated that bright sources should be subtracted down to
the 100–10 mJy level in order not to affect the subtraction of fainter
foreground sources and, ultimately, the recovery of the EoR signal
(Bowman et al. 2009; Liu et al. 2009b).
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Figure 16. Power spectra of residual images for an increasing number of
subtracted sources. From top to bottom: initial image without subtracting
any source (Fig. 11); after subtracting 15 sources (Fig. 12); after subtracting
50 sources (Fig. 13); after the whole sky model is subtracted (Fig. 14). The
error bars are at the 1σ confidence level. The dashed line represents the
noise power spectrum.

Table 2. Median and rms values of the offset
between the model and the fitted parameters
for the simulated 512T image.

Parameter Median rms

RA 0.99 arcsec 17 arcsec
Dec. 0.56 arcsec 11 arcsec
Flux density −0.15 per cent 4 per cent

Figure 17. The relative dynamic range as a function of flux density. The
solid lines indicate the 10-mJy flux density threshold (upper) and the
100-mJy (lower) flux density threshold for source subtraction.

Fig. 17 displays the relative dynamic range for source subtraction
in the 512T simulation. It can be seen that, with the level of noise
present in our simulated image, ∼92 per cent of the sources are
above the 100-mJy threshold.

Since we are fitting all the sources simultaneously and iteratively,
the main limitation to the relative dynamic range comes from ther-
mal noise rather than sidelobe contamination. Given the behaviour
shown in Fig. 15, we expect the dynamic range to increase if we
consider a longer integration where the thermal noise decreases.
Section 3.4 will confirm this statement.

Figure 18. Simulated image with the 10-min 512T uv coverage. Five
sources are within the field of view and two outside. The colour scale
runs between −0.3 and 1 Jy beam−1.

3.4 Out-of-beam sources

An image has the limitation of excluding all the sources outside the
image itself (out-of-beam sources). If visibility data were accessible,
the information corresponding to out-of-beam sources would still
be accessible and they could be subtracted in a traditional self-
calibration–deconvolution loop. Once the image is generated and
visibility data discarded, information about out-of-beam sources is
lost, apart from the sidelobes, which will still contaminate the image
if they are bright enough.

We investigated how well our method subtracts out-of-beam
sources by minimizing their sidelobe contribution to the image,
i.e. by fitting the sidelobe pattern of a source, regardless of being
able to image the source itself.

In order to make sure that the out-of-beam source sidelobes have
good S/N, we integrated individual 8-s 512T snapshots up to 10 min
in a 40-kHz channel (Fig. 18). The thermal noise in our 10-min-
simulated image is 2.8 mJy beam−1.

In order to reduce the computational load, we included only the
brightest seven sources used in the 512T simulation; therefore the
faintest source is ∼6 Jy. Two sources were displaced from their
previous positions and moved 2◦ outside the edge of the image. The
out-of-beam sources had ∼14.1 and ∼12.7 Jy flux densities, and we
assumed that an initial estimate of their parameters is know from a
pre-existing source catalogue.

The subtraction was performed according to the following steps:

(i) an initial parameter estimate of the five sources within the
field of view was computed, and the sources were subtracted ignor-
ing the out-of-beam sources (Fig. 19);

(ii) the two out-of-beam sources were included in the sky model
and a joint parameter estimate performed. The best-fitting model is
subtracted from the image (Fig. 20).

The final image after the whole sky model was subtracted is
consistent with the thermal noise level and its power spectrum agrees
with the noise power spectrum at all angular scales (Fig. 21). It is
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Figure 19. Residual image, with only the five in-beam sources subtracted,
after five iterations. The colour scale runs between −0.2 and 0.2 Jy beam−1.
The five sources within the field of view were well removed, revealing the
sidelobe pattern of the unsubtracted out-of-beam sources.

Figure 20. Residual image where all the sources were subtracted. Five
iterations were performed. The colour scale runs between −0.03 and
0.03 Jy beam−1. The sidelobe pattern has been removed down to the thermal
noise level.

important to note that power spectrum of the residual image after
removing only the sources within the field of view is still well above
the expected noise power spectrum. The subtraction of the sidelobe
pattern of the out-of-beam sources improves the dynamic range by
a further factor of ∼5.

The plot of the relative dynamic range (Fig. 22) confirms the
results of Section 3.3. The relative dynamic range of the sources

Figure 21. Power spectra of residual images for an increasing number of
subtracted sources. From top to bottom: initial image without subtracting any
source (Fig. 18), after the sources within the field of view were subtracted
(Fig. 19), after all the sources (in and out-of-beam) were subtracted (Fig. 20).
The error bars are at the 1σ confidence level. The dashed line represents the
noise power spectrum.

Figure 22. As in Fig. 17, but for the out-of-beam sources. The two sources
with the poorest relative dynamic range are the out-of-beam sources for
which the S/N is lower.

inside the field of view has improved by ∼2 orders of magnitude
by longer integration, and the two sources with the worst dynamic
range are the out-of-beam sources, which have a poorer S/N. All
the sources within the field of view are now above the 10-mJy
threshold.

3.5 Computational costs

In our simulations, we have shown that forward modelling can
achieve a high level of precision in source subtraction. This comes,
however, with a significant computational cost. Up to the number of
sources that we have considered in our 512T simulation, the greatest
computational load comes from imaging rather than generating the
visibilities or fitting for the astrophysical parameters. In the case of
an 8-s snapshot image with a 20◦ × 20◦ field of view, we estimated
that ∼70 Gflops are required to generate each image; therefore each
iteration of the subtraction scheme requires ∼200 Gflops for every
source that has to be subtracted. It takes ∼40 s on a normal Dell
2.4 GHz 2 quad Core machine.
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Although such a computational need might require a very long
processing time – particularly for long integrations – there are
several ways of shortening the processing time length. The most
straightforward way is to implement a graphics processing unit
(GPU) pipeline in the most computationally intensive part of the
process, i.e. imaging. By running our simulations on a GPU, a factor
of ∼5 in time is gained.

The second shortcut is to parallelize the forward modelling loop.
Although the simulations presented in this work were performed in
serial, the calculation of the forward model and the partial deriva-
tives can be run in parallel, potentially on a dedicated GPU machine.

Finally, it is important to note that such a high level of precision in
source removal might be superfluous for very faint sources for which
calibration errors are larger. In this case, convenient approximations
in fitting source positions (e.g. Pindor et al. 2010) will speed up the
calculations and might eventually give the same level of accuracy
in the subtraction.

4 C O N C L U S I O N S

We have presented a point source deconvolution technique that
makes use of forward modelling and an algebraic non-linear mini-
mization scheme. The main motivation for this implementation was
achieving high dynamic range images in the absence of visibility
data. Current (MWA) and future (SKA) radio interferometers re-
quire such a huge number of elements that they are being forced to
rely more and more on real-time calibration and imaging, without
the use of traditional self-calibration techniques.

The basic idea of our scheme is to forward model the sky bright-
ness, i.e. to filter the sky model through the same instrumental re-
sponse that is applied to the data. In the case of radio point sources,
the forward model is the synthesized beam which is generated for
each source individually. In this way, position-dependent variations
of the synthesized beam are accounted for.

Point source astrophysical parameters are recovered through a
non-linear minimization over the image pixels. In this way, we
overcome the known dynamic range limitations of image-based
deconvolution due to pixelization effects. Since the presented tech-
nique minimizes all the sources simultaneously and in an iterative
way, it is minimally sensitive to sidelobe noise and essentially lim-
ited by thermal noise.

It is worth noting that this method can be applied to different
sky components and can incorporate calibration parameters such
as ionospheric displacements and primary beam shapes measured
from the actual data.

The technique was applied to three different simulated cases: a
10-min integration with the 32T MWA, an 8-s snapshot image of the
512T MWA and a 10-min integration with the 512T MWA where
sources were placed inside and outside the field of view.

In all cases, we were able to subtract sources down to the ther-
mal noise without assuming an a priori knowledge of the sky, with
the exception of initializing the position and flux density of sources
placed outside the field of view. The final residual images are consis-
tent with the expected thermal noise on all the angular scales. Errors
in the fitted parameters decrease with increasing S/N, in agreement
with the expected theoretical measurement error distribution. Even
when sources were not physically present in the images, we could
subtract their sidelobes down to the thermal noise level.

The 512T simulations are relevant in the light of the MWA EoR
experiment. Since only a limited number of sources can be sub-
tracted in real time, an off-line subtraction of the residual sources
will have to be performed on the images to a high level of accuracy

in order to precisely remove them and their direction-dependent
synthesized beams.

In the simulation of an 8-s image with the 512T array, we achieved
a dynamic range of ∼3400, indicating that the subtraction of fore-
ground sources can be improved by 3 orders of magnitude through
this technique. Source parameters can be retrieved with an aver-
age error of 10 arcsec on positions and 0.15 per cent errors on flux
densities.

The relative dynamic range of our subtraction is limited by the
thermal noise and is above the 100-mJy threshold for 92 per cent
of the sources. Since the best-fitting parameters improve with the
S/N, a lower threshold – i.e. 10 mJy – can be reached by lower-
ing the thermal noise through a longer integration. In fact, in the
512T 10-min simulation all the five sources present in the image
had a dynamic range above the 10-mJy threshold, indicating that
bright sources can be subtracted to a level that should not affect the
detection of the EoR.

A sky model more realistic than only point sources could be
forward modelled by modifying the procedure presented here. Ex-
tended sky emission modelled as a list of delta functions (i.e. the
equivalent of CLEAN components) could be directly treated by the
present approach. More sophisticated modelling of extended emis-
sion that uses a set of basis functions like, for instance, shapelets
(Yatawatta 2010) or a principal component analysis (de Oliveira-
Costa et al. 2008) can be incorporated by convolving the model of
the brightness distribution with the instrumental primary beam and
then sampling it according to the uv distribution (see Wayth et al.
2010 for an example of this approach).

Future work will investigate these extensions and include a more
realistic instrument model to better simulate the strategies for the
EoR detection.
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Jelić V. et al., 2008, MNRAS, 389, 1319
Liu A., Tegmark M., Zaldarriaga M., 2009a, MNRAS, 394, 1575
Liu A., Tegmark M., Bowman J. D., Hewitt J. N., Zaldarriaga M., 2009b,

MNRAS, 398, 401

C© 2011 The Authors, MNRAS 413, 411–422
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



422 G. Bernardi et al.

Lonsdale C. et al., 2009, preprint (arXiv:0903.4890)
McQuinn M., Zahn O., Zaldarriaga M., Hernquist L., Furlanetto S. R., 2006,

ApJ, 653, 815
Mitchell D. M., Greenhill L. J., Wayth R. B., Sault R. J., Lonsdale C. J.,

Cappallo R. J., Morales M. F., Ord S. M., 2008, IEEE J. Selected Topics
Signal Processing, 2, 707

Morales M. F., Hewitt J. N., 2004, ApJ, 615, 7
Morales M. F., Bowman J. D., Hewitt J. H., 2006, ApJ, 648, 767
Noordam J. E., de Bruyn A. G., 1982, Nat, 299, 597
Ord S. M. et al., 2010, PASP, 122, 1353
Parsons A. R. et al., 2010, AJ, 139, 1468
Pen U., Chang T., Hirata C., Peterson J. B., Roy J., Gupta Y., Odegova J.,

Sigurdson K., 2009, MNRAS, 399, 181

Perley R. A., 1999, in Taylor G. B., Carilli C. L., Perley R. A., eds, ASP
Conf. Ser. Vol. 180, Synthesis Imaging in Radio Astronomy II. Astron.
Soc. Pac., San Francisco, p. 275

Pindor B., Wyithe J. S. B., Mitchell D. A., Ord S. M., Wayth R. B., Greenhill
L. J., 2010, Publ. Astron. Soc. Australia, in press (arXiv:1007.2264)

Santos M. G., Cooray A., Knox L., 2005, ApJ, 625, 575
Seljak U., 1997, ApJ, 74, 597
Voronkov M. A., Wieringa M. H., 2004, Exp. Astron., 650, 529
Wang X., Tegmark M., Santos M., Knox L., 2006, ApJ, 650, 529
Wayth R. B. et al., 2010, PASP, submitted
Yatawatta S., 2010, preprint (arXiv:1008.1892)

This paper has been typeset from a TEX/LATEX file prepared by the author.

C© 2011 The Authors, MNRAS 413, 411–422
Monthly Notices of the Royal Astronomical Society C© 2011 RAS


