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Small cationic peptides [1, 2] are abundant in nature and have been described as ‘nature′s 

antibiotics’ or ‘cationic antimicrobial peptides’. They are found in every complex species [3] 

and are generally defined as having 12 to about 50 amino acids with 2–9 positively charged K 

or R residue and up to 50% hydrophobic amino acids. These peptides are folded in three 

dimensions, so that they have both a hydrophobic face comprising non-polar amino acid side 

chains, and a hydrophilic face of polar and positively charged residues: these molecules are 

amphipathic. The nature of the primary structure of cationic peptides appears to be of great 

significance for the activity, as a high content of cationic amino acids is a prerequisite for 

their initial association with negatively charged membrane components [4, 5]. The ratio 

between the cationic K and R residues influences membrane selectivity as the guanidino 

functionalities of R promote a more efficient interaction with eukaryotic membranes as 

compared with K. However, a high K content has been correlated with selectivity towards 

bacterial cells over eukaryotic cells [6]. Another important factor reported for some 

antimicrobial peptides is related to their propensity to fold into a well-defined secondary 

structure (i.e. α-helix); thus, the antimicrobial activity of α-helical antimicrobial peptides 

depends on their propensity to form an α-helix [7, 8]. 

 

Joliot et al. [9] reported that the 60 amino acid homeodomain of the Antennapedia protein of 

Drosophila was able to translocate over cell membranes. In order to understand the driving 

force for the internalization, the homeodomain was modified by site-directed mutagenesis 

leading to the discovery that its third helix was necessary and also sufficient for membrane 

translocation, which resulted in the development of a 16 amino acid-long cell-penetrating 

peptide (CPP) called penetratin [10]. Thus, penetratin [1], a synthetic 16-amino acid peptide 

from the third helix of Antennapedia homeodomain [10, 11], is a cationic amphipathic peptide 

and might penetrate cell membrane via a postulated ‘inverted micelle’ pathway. Penetratin has 

been proposed as a universal intracellular delivery vehicle [12]. Thus, there are in the 

literature many articles reporting the cell-penetrating properties associated with penetratin 

[13-15]. In addition, there is much information about the structural aspects of this interesting 

peptide as well [16, 17]. Regarding the antimicrobial activities, the antifungal activity of 

penetratin against Candida albicans (C. albicans) and Cryptococcus neoformans (C. 

neoformans) was first reported by our group [18]. Moreover, the antibacterial effects of this 

CPP have been demonstrated [19-22]. Activity against both Gram-positive [19-21] and Gram-

negative [21] bacteria has been reported for native penetratin. More recently, Bahnsen et al. 

[22] have reported the antimicrobial effects of penetratin and several derivatives of this CPP. 

It is interesting to remark that penetratin did not show cytotoxic effects against mammalian 

cells [20, 22]. Zhu and Shin [20] reported that two-stranded penetratin markedly increased 

cytolytic activity against human erythrocytes and NIH-3T3 mouse fibroblast cells without a 

significant effect on antimicrobial activity. 

 

Peptides capable of both internalization into mammalian cells and killing of bacterial 

pathogens might well constitute potential candidates to search new structures as antibacterial 

agents. Thus, in this study, we tested first penetratin and other previously reported derivatives 

against several pathogenic bacteria. To better characterize the structure–antibacterial activity 
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relationship of penetratin and derivatives, we also synthesized and tested new peptides 

structurally related to penetratin. The present search explored influences of amino acid 

substitutions and deletions on its antibacterial activity. In addition, to determine the 

tridimensional structure of peptides reported here, an exhaustive conformational analysis of 

penetratin and its derivatives was carried out using different approaches. Molecular dynamics 

(MD) simulations were carried out using two different media, water and a mixture of 

trifluoroethanol (TFE) and water trying to simulate the peptides inserted in the membrane. 

These theoretical simulations were corroborated using experimental circular dichroism (CD) 

measurements for the most representative compounds in this series. Thus, the ability of each 

approach to obtain the different conformations was tested and compared. An electronic study 

for these peptides was carried out using molecular electrostatic potentials (MEPs) obtained 

from RHF/6-31G(d) calculations. This conformational and electronic study was carried out in 

order to identify a topographical and/or substructural template, which may be the starting 

structure for the design of new peptides with the ability to inhibit bacterial growth. Finally, we 

extended our study synthesizing and testing new small-size peptides structurally related to 

penetratin. The principal goal was to obtain new small-size peptides, which were short in size 

but of full antibacterial potential. 

 

 

Results and Discussion 

Antibacterial activity 

We first tested penetratin (peptide 1 in Table 1), which showed just a moderate antibacterial 

effect. In particular, this peptide displayed antibacterial activity against Escherichia coli 

ATCC 25922, LM1-Escherichia coli, LM2-Escherichia coli and Salmonella sp (LM). In 

contrast, peptide 1 was devoid of any significant antibacterial activity against Staphylococcus 

aureus methicillin-sensitive ATCC 29213, Staphylococcus aureus methicillin-resistant ATCC 

43300, Pseudomonas aeruginosa ATCC 27853, PI-Yersinia enterocolitica and MI-Salmonella 

enteritidis. Earlier investigations on the antibacterial activity of penetratin against E. coli 

reported MIC values of: 25 μm (K12) [19], 32 μm (ATCC 25922) [22] and 2 μm (KCTC 

1682) in a low nutrition 1% (w/v) peptone solution [21]. It is clear that our present results are 

in complete agreement with those reported in references [19] and [22]. Also, we extended our 

study measuring the MICs of penetratin towards LM1-E. coli and LM2-E. coli, which 

displayed a similar sensibility (40 and 25 μm, respectively; Table 1). 
 

Table 1. Antibacterial activity of penetratin and derivatives 

Compounds                                                                                  MICa (μm) 

                                                  S.a (ms) S.a (mr) E.c.LM1-E.c.LM2- E.c.Ps.a.PI-Y.e.MI-S.e. S sp (LM) 
RQIKIWFQNRRMKWKK-NH2 (1) >50 >50 25 40 25 >50 >50 >50 50 

KKWKMRRNQFWIKIQR-NH2 (2) >50 >50 >50 25 25 >50 >50 25 25 
RWWKWWWWWRRWKWKK-NH2 (3) >50 >50 >50 >50 50 >50 >50 25 50 

RQIRIWFQNRRMRWRR-NH2 (4) >50 >50 25 25 25 >50 >50 25 50 

KQIKIWFQNKKMKWKK-NH2 (5) >50 >50 >50 12.5 25 >50 >50 25 50 
RQIKIWFQNRRM[O]KWKK-NH2 (6) >50 >50 12.5 12.5 25 >50 25 25 25 

RQIKIFFQNRRM[O]KFKK-NH2 (7) >50 >50 50 12.5 12.5 >50 >50 12.5 25 

KQIKIWFQNKKM[O]KWKK-NH2 (8) >50 >50 >50 25 50 >50 >50 25 50 
NRRMKWKK-NH2 (9) >50 >50 >50 >50 >50 >50 >50 >50 >50 

RQIRRWWQR-NH2 (10) 50 25 25 12.5 12.5 >50 25 25 25 

RQIRRWWQW-NH2 (11) >50 >50 >50 40 >50 >50 >50 >50 30 
RQIWRWWQW-NH2 (12) >50 >50 >50 50 >50 >50 >50 >50 50 

RKFRRKFKK-NH2 (13) >50 >50 >50 >50 >50 >50 >50 >50 >50 

RQIRWQR-NH2 (14) >50 >50 >50 >50 >50 >50 >50 >50 >50 
RQIRW-NH2 (15) >50 >50 >50 >50 >50 >50 >50 >50 >50 

Cefb 0.5 0.5 0.5 5 0.5 7.5 0.5 12.5 0.5 

 

To study the structure–antibacterial activity relationship on this family of CPP, different 

penetratin derivatives and the effects of structural changes in their sequences were considered. 

Thus, we synthesized and tested peptides 2–5 (Table 1). It should be noted that compound 2 is 



the retro–inverso of penetratin, namely the position of the carbonyl and amino groups in each 

of the amide bonds of the polypeptide backbone was reversed, conferring a strong resistance 

to the peptide towards various proteases [41, 42]. The retro–inverso modification in peptides 

is a peptidomimetic approach able to transform short-lived biologically active peptides into 

much more stable molecules that retain their activity and are suitable for therapeutic use. 

Building the peptide in the reverse sense opposes the effect of the chirality inversion, thus 

leading to a high degree of topochemical equivalence, with the amino acid side chains 

properly arranged in space. In peptide 3, the residues Q, I, F, N and M of peptide 1 were 

replaced by W, thereby increasing the number of hydrophobic residues. It has been 

demonstrated that the presence of a significant number of hydrophobic residues along the 

sequence of these cationic antimicrobial peptides is also of importance for their biological 

effect [17]. Peptides 4 and 5 are analogues of 1 rich in R and K residues, respectively. In 

peptide 4, all K residues of peptide 1 were replaced by R residues, while in peptide 5, all R 

residues were substituted for K residues. All these derivatives (compounds 2–5) showed an 

antibacterial activity slightly stronger than penetratin (Table 1). Note that compounds 

possessing in their sequence a larger number of cationic residues (peptides 4 and 5) displayed 

better antibacterial effect in comparison with that obtained for peptides 3 (rich in W) and 2 

(the retro–inverso of penetratin). Although derivatives 2, 4 and 5 displayed an antimicrobial 

activity more potent than penetratin, they were just slightly better than this peptide. Our 

results are in good agreement with the antimicrobial effect against E. coli (ATCC 25922) 

reported for compounds 4 and 5 in reference [22]. In addition, we obtained a significant 

antibacterial effect against LM1-E. coli and LM2-E. coli for both peptides. 

 

On the basis of these results in the next step of our study, we attempted to obtain new peptides 

possessing more potent antibacterial activity. Previously, we reported that a particular 

combination of cationic and hydrophobic residues adopting a definite spatial ordering appears 

to be the key parameter for the transition from hydrophilic to hydrophobic phase, which could 

be a necessary step for these CPP to produce the antifungal activity [18, 25, 26]. Now, we 

considered the possibility that a polarity increase at the M residue may contribute to obtain a 

better electronic distribution in this moiety of the peptides which might facilitate the 

penetration of these compounds as well as their antimicrobial effects. In order to evaluate 

such situation, we performed a comparative conformational and electronic study of peptides 1 

and 6. In peptide 6, M residue of peptide 1 was replaced by M-[O] (methionine sulphoxide or 

methionine sulphone). An evident change on the electronic distribution in the vicinity of M 

and M-[O)] residues and their respective influence zone was obtained from the MEPs 

calculated for compounds 1 and 6 (see the results obtained from MEPs calculations). Due to 

these theoretical results, peptide 6 was synthesized and tested. Interestingly, compound 6 

displayed a marked increase in the antibacterial effect in comparison to that obtained for 

penetratin. Table 1 shows a comparison of the MIC values obtained against E. coli ATCC 

25922, LM1-E. coli, LM2-E. coli, PI-Y. enterocolitica, MI-S. enteritidis and Salmonella sp 

(LM) for both peptides (1 and 6). 

 

On the basis of the above results, peptides 7 and 8 possessing M-[O] residue in their structures 

were synthesized. Although both compounds displayed antibacterial effects, compound 7 was 

the most active peptide of this series. Peptide 7 showed antibacterial activity against LM1-E. 

coli, LM2-E. coli, MI-S. enteritidis and Salmonella sp (LM), being the first three the most 

sensible species. It is interesting to note that this compound yielded a significant inhibition 

percentage even at low concentrations (100% of inhibitory effect was observed at 12.5 μm). 

The inhibitory effect observed against Salmonella sp (LM) was lower than that obtained for 

MI-S. enteritidis, although it was still significant. 



 

In summary, from the analysis of the antibacterial effects of peptides 1–8, it is possible to 

infer that methionine sulphoxide derivatives exhibited the strongest activities in this series. In 

order to further understand the above experimental results, an exhaustive conformational and 

electronic study of the peptides reported here was performed using different approaches. 

These results are presented in the next section. 

 

Conformational study of penetratin and derivatives 

In order to better interpret the experimental results, a comparative conformational and 

structural study of this peptide series was carried out. To this end, two peptides without M-[O] 

residue in their structure (peptides 1 and 2) and three peptides possessing M-[O] residue in 

their sequence (peptides 6, 7 and 8) were selected. Linear peptides are highly flexible and 

therefore to determine the biologically relevant conformations is not an easy task. In a 

previous study [18], we performed an extensive conformational study of penetratin (1) using 

molecular mechanics, simulated annealing and MD simulations. From those theoretical 

results, we concluded that the three methods predicted a helix-like structure as the preferred 

form for peptide 1 in water solution. Others studies have suggested that this peptide in 

solution is either partially α-helical [43, 44] or has a partial β-hairpin structure [45]. On the 

other hand, experimental CD studies have demonstrated that, in aqueous solution, penetratin 

[46, 47] and analogues [23, 24] existed predominantly as a random coil, but in a membrane-

mimetic environment, these peptides displayed a clear tendency to form α-helical 

conformations. The structure determination from MD calculations may be used to monitor 

changes induced by the variation in the polarity of the molecular environment. Thus, peptides 

2, 6, 7 and 8 were simulated using an extracellular matrix-mimetic environment and a 

membrane-mimetic environment. The aqueous solution simulated the extracellular matrix, 

while solutions containing TFE mimicked a membrane-like molecular environment. 

Molecular dynamics simulations were completed in water and in a mixture of TFE and water 

(3:7). 

 

Peptide structure in highly aqueous medium 

Figure 1 shows the change in the secondary structure during 100 ns of MD simulation in 

water for peptides 6 (a) and 7 (b). Simulations obtained for peptides 2 and 8 are shown in 

Figure S1 (in Supporting information). For peptides 2, 6 and 8, the initial conformation 

returned and remained stable in these simulations, suggesting that the starting helical structure 

was destroyed to form a mixture of α-helix, β-turn and bend in the structure at residues 2–15. 

Such a conformational behaviour was observed until the end of the simulation. The initial and 

final amino acids appear to have a random coil structure because of the flexibility of these 

residues. These results are closely related to those previously reported for penetratin [18]. In 

contrast, peptide 7 displayed a different conformational behaviour. In this case, a mixture of 

coil, bend and turn conformations was formed after 70 ns of simulation. This mixture was 

observed until the end of the simulation. 

 

Peptide structure in a low dielectric environment 

Figure 1 shows the change in the secondary structure during 100 ns of MD simulation in 

TFE/water system for peptides 6 (c) and 7 (d). Simulations obtained for peptides 2 and 8 are 

shown in Figure S2 (in Supporting information). Peptide 1 was also included in this figure 

because it has been not previously reported in this environment. All the simulations 

performed using the TFE/water environment yielded very similar results. Residues 2–15 

adopt a helix-like conformation, being the α-helix the predominant form. Once again the 

initial and final residues appear to have a random coil structure. Figure 2 shows a snapshot of 



the peptide 1/TFE/water system at 80 ns of the MD simulation displaying the spatial 

orientation of this peptide in the membrane-like phase. Similar results were obtained for the 

rest of peptides reported here, being the results for peptide 1 representative of this series. 

 

 

Structure of peptides based on CD spectra 

To corroborate the above theoretical results, in the next step, CD spectroscopic measurements 

were performed both in water and in a mixture of TFE and water (3:7) for peptides 7 and 8, 

which possess M-[O] residue in their structures. They were measured at room temperature 

using the following conditions (pH adjusted by HCl/NaOH solutions); concentration: 0.023 

mm; pH = 6.7. The exhaustive spectral analysis revealed that in water, peptides 7 and 8 

existed predominantly as a random coil structure (Figure 3, black lines). The ‘U’-type CD 

spectra reflected the presence of a very large number of different local conformations in a 

time average manner. Hence, in water, from the shape of these U-type CD curves, little 

characteristic secondary structure content could be extracted for any of these peptides (black 

lines). When the same peptides were recorded in the solvent mixture of 30% TFE and 70% 

H2O, significant changes in the shape of both curves were observed. The CD curves of 

polypeptides 7 and 8 (see red lines in Figure 3A, B, respectively) had spectral features similar 

to those of a C-type CD curve. Thus, the ‘red curves’ most probably reflected a 

conformational ensemble composed of α- or 310-helix combined with type I/III β-turns plus 

some percentage of still unstructured (or highly mobile) backbone foldamers. These results 

indicate that in the presence of a considerable amount of TFE, peptides 7 and 8 adopt an 

increased amount of helical and/or type I/III β-turn secondary structure. These results are in 

agreement with those previously obtained for penetratin [44, 45] (peptide 1) and retro–inverso 

of penetratin [23] (peptide 2). It is interesting to remark that these experimental measurements 

are also in complete agreement with our theoretical results giving an additional support to the 

MD simulations reported here. 

 

 

To better characterize the spatial orientation of these peptides, Edmunson wheel 

representations of peptides 1, 6 and 7 (Figure 4) and peptides 5 and 8 (Figure S2) were 

plotted. Previously, we reported that for these peptides, a balanced electronic distribution not 

‘too cationic’ and not ‘too hydrophobic’ is necessary to produce the antifungal effect [18, 24]. 

The results obtained here indicated that such electronic distribution pattern appears to be 

necessary for the antibacterial activity as well. From Figure 4 and Figure S3, it is clear that the 

wheel representations obtained for peptides 5–8 were very similar, showing two clearly 

differentiated facades: the ‘charged one’ (denoted by a dash line in these figures) and a more 

extended ‘uncharged one’ (denoted by a full line). The first face identifies the cationic 

residues accounting for the mutual coulombic binding, and the second face is more extensive 

and is formed by hydrophobic and polar residues. The wheel representations obtained for the 

antibacterial peptides 5–8 were closely related to that previously reported for penetratin 

(peptide 1) [18]. 

 

 

Molecular electrostatic potentials 

The electronic study of peptides 1 and 6 was performed using MEPs [39, 40]. The 

fundamental application in this study was to observe whether the substitution of M by M-[O] 

introduced significant electronic changes in this portion of the peptide structures. The MEPs 

of peptides 1 and 6 are shown in Figure 5. Comparing both MEPs, it is possible to observe the 

different electronic distribution obtained for the zones located in the vicinity of M and M-[O] 



residues for compounds 1 and 6, respectively. Note that M-[O] residue displayed a zone with 

potential values of about 0.133 el.au−3, whereas the M residue shows a more positive green 

zone with potential values in the order of 0.306 el.au−3, which clearly dominates this moiety. 

These results indicate that the replacement of M by M-[O] gives a more polarized potential. 

As previously remarked, it is reasonable to think that this different electronic distribution is 

operative to produce the biological response. 

 

 

Searching novel small-size antibacterial peptides 

Considering the premise ‘the shorter the better’, peptides composed of nine, eight, seven and 

five amino acids residues instead of 16 were synthesized (peptides 9–15, Table 1). Cell 

penetration assays using cell cultures revealed that the C-terminal segment of penetratin (10-

mer to 7-mer analogues) was necessary and sufficient for efficient cell membrane 

translocation [48]. Thus, the 8-mer analogue of penetratin (peptide 9) was synthesized in 

order to test its ability to inhibit bacterial growth. Unfortunately, this shortened penetratin 

analogue was completely inactive (Table 1). Taking into account, the potent antifungal 

activity previously obtained for small-size peptides containing nine amino acids residues [25, 

26], at this point, we decided to test two non-apeptides as possible antibacterial agents. To this 

end, peptides 10 and 11, which were the strongest antifungal peptides of that series, were 

selected. Interestingly, peptide 10 displayed a significant antibacterial activity against all the 

species tested here except P. aeruginosa. It should be noted that this peptide was the only one 

in this group displaying antibacterial effect against S. aureus. Peptides 11 and 12 showed a 

markedly lower effect in comparison with peptide 10. Peptides 11 and 12 only inhibited the 

growth of E. coli and Salmonella sp (Table 1) displaying marginal effects. Thus, the low 

antibacterial activity of peptides 11 and 12 might be attributed to the inadequate balance 

between cationic and hydrophobic residues in their sequences. It should be noted that we 

gradually reduced the number of cationic R residues from peptide 10 (four R), peptide 11 

(three R) and peptide 12 (two R). These results are in agreement with other studies suggesting 

that in the antimicrobial activity of short peptides, the overall composition with respect to 

cationic and lipophilic residues is more important than the order of amino acids [49, 50]. In 

fact, the non-apeptide 13 containing seven cationic amino acids (R or K) in its sequence, 

thereby decreasing the number of hydrophobic residues, was completely inactive. Finally, 

peptides 14 and 15 were also devoid of any antibacterial activity. 

 

 

Conclusions 

In the present study, the synthesis and antibacterial effects of penetratin and analogues 

including derivatives containing methionine sulphoxide residues in their sequences are 

reported. Among the tested peptides, peptides 6 (RQIKIWFQNRRM[O]KWKK-NH2) and 7 

(RQIKIFFQNRRM[O]KFKK-NH2) displayed the most interesting inhibitory effect against E. 

coli ATCC 25922, LM1-E. coli, LM2-E. coli, MI-S. enteritidis and Salmonella sp (LM). Our 

results support the use of the MD simulations for this type of peptides. Such simulations 

provide useful information about the preferred conformations and molecular flexibility of 

penetratin and derivatives, which might be useful to better understand the biological response 

of these peptides. Comparing the results obtained from the conformational analysis using the 

different approaches, we can conclude that in general, these methods predict a helical 

structure for penetratin and its derivatives at the TFE/water environment. These results are in 

agreement with the experimental results obtained from CD measurements. With regard to the 

electronic study, peptide 6 displayed a different electronic behaviour compared with native 

penetratin showing that a single amino acid substitution of M to M-[O] gives rise to 



substantial changes in the antibacterial activity. Taking into account that penetratin has been 

proposed as a universal intracellular delivery vehicle, the antibacterial activity displayed for 

peptides 6 and 7 is very interesting by itself, but it is also important considering its potential 

use as a carrier for other known antibacterial drugs. On the other hand, the possibility of these 

peptides, administered with well-known antibacterial drugs, to exert a synergic effect might 

be evaluated. In addition, we found that the non-apeptide (RQIRRWWQR-NH2) having four 

R residues represents the most efficient motif for high antibacterial activity against the 

different bacteria tested in this study. Thus, we confirmed that the total amount and type of 

cationic and lipophilic residues used in short peptides is important for their antimicrobial 

activity. Our investigation of the antibacterial motif of small-size peptides regarding charge 

and lipophilicity/bulk opens the opportunity for development of novel and structurally diverse 

peptidemimetics. These compounds might provide a new source of antibacterial lead 

structures capable to overcome the pharmaceutical concerns such as high manufacturing 

costs, poor pharmacokinetic properties and low bacteriological efficacy. 
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