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Abstract

We consider a discrete time dynamic system described by a difference equation with pe-

riodic coefficients and with additive stochastic noise. We investigate the possibility of the

periodicity of the solution. In particular, we established sufficient conditions for convergence

of the solution in mean square or almost surely to some stochastic periodic process.
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1 Introduction and problem setting

The a.s. asymptotic stability of stochastic discrete time processes has been widely addressed;

see, e.g., [1] – [8], [12] and the bibliography here. However, periodicity of these processes are not

so well represented. In [11, 14], conditions of periodicity in the distributions were obtained for

discrete time systems; a review of periodicity for nonlinear discrete time equations can be found

in [6]. In [7, 9, 10], conditions of periodicity in the distributions were obtained for continuous time

systems. In this article we obtain sufficient conditions for convergence of solutions to a periodic

process in a strong sense. We consider processes described by stochastic difference equations with
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periodic coefficients and with decaying additive stochastic noise. We investigate the asymptotic

properties. In particular, we found some sufficient conditions when this convergence can be

achieved almost surely.

Let (Ω,F ,P) be a complete probability space, with elementary events ω ∈ Ω.

Consider a stochastic process Xn = Xn(ω), ω ∈ Ω, with the values in Rd, where d ≥ 1, that

evolves as

Xn+1 = Xn +AnXn + σnξn+1, n = 0, 1, 2, ..,

X(0) = X0.

Here X0 ∈ Rd, {σn} is a nonrandom sequence of matrices from Rd×d, {An} = {An(ω)} is a

random periodic sequence of matrices from Rd×d, and {ξn} = {ξn(ω)} is a sequence of random

vectors from Rd.

We assume that {An} is a bounded periodic sequence of random matrices with a period K,

i.e. An+K = An a.s. for all n = 0, , 1, 2, .... We use the standard abbreviation “a.s.” for the

wordings ”almost sure” or ”almost surely” throughout the text.

We assume that (I + AK−1)(I + AK−2) · · · (I + A0) = LI a.s., where L ∈ R and I is the

unit matrix in Rd×d. This assumption is quite restrictive for d > 1; we consider this case for

the sake of generality.

We assume that σn → 0 as n→ +∞.

We assume that there exists p ∈ [1,+∞] such that ∥ξk∥Lp(Ω) ≤ 1 for all k.

For the brevity, we denote Lp(Ω) = Lp(Ω,F ,P;Rd).

We denote by | · | the Euclidean norm for vectors and Frobenius norm for matrices.

2 The main results

Theorem 1 (i) If ess supω |L| < 1 then ∥Xn∥Lp(Ω) → 0 as n→ +∞.

(ii) Assume that p ≥ 2, ess supω |L| > 1, ξn are mutually independent and also independent

on {An}, and either X0 ̸= 0 or supnE|σnξn|2 > 0. Then limsup∥Xn∥Lp(Ω) → +∞ as

n→ +∞.

(iii) If L = 1 a.s. then ∥Xn −Xn+K∥L2(Ω) → 0 as n→ +∞.

(iv) If L = 1 a.s. and limn→∞ σnξn+1 = 0 a.s. then Xn −Xn+K → 0 a.s. as n→ +∞.
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Remark 1 Condition when, a.s., limn→∞ σnξn+1 = 0, are given e.g. in [3, 4].

Starting from now and up to the end of this paper, we assume that L = 1 and that the

following condition is satisfied:

Condition 1 One of the following conditions is satisfied:

(i)
∑∞

k=0 |σk| < +∞; or

(ii) p = 2,
∑∞

k=0 |σk|2 < +∞, and {ξn} is a sequences of independent on {An} and mutually

independent identically distributed random vectors such that Eξn = 0.

Lemma 1 The sum

Ȳ =
∞∑
k=0

σkξk.

belongs to ∈ Lp(Ω,F ,P;Rd); it is defined as the limit of the partial sums in this space.

Let

bk,n = (I +An−1)(I +An−2) · · · (I +Ak), 0 ≤ k < n, bn,n = I,

and let

X̄n = b0,nȲ .

Note that b0,K = LI a.s., bk,K+k = LI a.s. for all k, and X̄n is a.s. a K-periodic process.

Theorem 2 limn→0 ∥Xn − X̄n∥Lp(Ω) = 0.

The following second question arises: Is it true that Xn − X̄n → 0 as n → +∞ a.s.? This

question is addressed in the following theorem.

Theorem 3 Let at least one of the following conditions is satisfied:

(i) supn≥0,ω∈Ω |ξn(ω)| < +∞, or

(ii) Condition 1(ii) is satisfied.

Then limn→0 |Xn − X̄n| = 0 a.s. and limn→0 |Xn −Xn+K | = 0 a.s.

Note that the assumption (i) in Theorem 3 does not require that ξn are independent and

independent from {Ak}.
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3 Proofs

For n ≥ 0 and m > 1, let

ψn,m = bn+1,n+mσn+1ξn+1 + bn+2,n+mσn+2ξn+2 + ...+ bn+m,n+mσn+mξn+m.

Proof of Theorem 1. We have that

Xn = b0,nX0 + b1,nσ1ξ1 + b2,nσ2ξ2 + ...+ bn,nσnξn.

We have that

Xn+K = b0,n+KX0 + b1,n+Kσ1ξ1 + b2,n+Kσ2ξ2 + ...+ bn+K,n+Kσn+Kξn+K

= b0,n+KX0 + b1,n+Kσ1ξ1 + b2,n+Kσ2ξ2 + ...+ bn,n+Kσnξn + ψn,K

= L(b0,nX0 + b1,nσ1ξ1 + b2,nσ2ξ2 + ...+ bn,nσnξn) + ψn,K .

It follows that

Xn+K = LXn + ψn,K . (1)

Let Yi = XiK and ηi = ψiK,K . By (1), it follows that

Yi+1 = LYi + ηi, i ≥ 0, Y0 = X0. (2)

Note that the set {bn+s,n+K , s ∈ {0, ...,K− 1}, n ≥ 0} is bounded in L∞(Ω,F ,P;Rd×d). By

the assumptions, σk → 0 as k → +∞. Hence ∥ηi∥L2(Ω) → 0 as i→ +∞ and ∥ψn,K∥L2(Ω) → 0 as

n → +∞. Then statement (iii) follows. Under the conditions of statement (iv), ψn,K → 0 a.s.

as n→ +∞. Then statement (iv) follows.

Let us prove statement (i). Let αi = ∥Yi+1∥L2(Ω), βi = ∥ηi∥L2(Ω), L0 = ess supω |L|. We have

that

αi+1 ≤ L0αi + βi, i ≥ 0, α0 = |X0|.

Consider the equation

ᾱi+1 = L0ᾱi + βi, i ≥ 0, ᾱ0 = |X0|.

By the properties of the solutions of this equation, we have that ᾱi → 0 as i → +∞. Since

0 ≤ αi ≤ ᾱi, we obtain statement (i).
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Let us prove statement (ii). Consider the event Q = {|L| > 1}. By the assumptions,

P(Q) > 0. We have that

Yi+1 = LiX0 + Li−1η1 + · · ·+ Lηi−1 + ηi

and

IQYi+1 = IQLiX0 + IQLi−1η1 + · · · IQLηi−1 + IQηi.

Note that IQ is non-random on the conditional probability space given {Ak}+∞
k=0, and the ran-

dom variables IQLm−1ηm are independent on the conditional probability space given {Ak}+∞
k=0.

Clearly, if X0 ̸= 0 then E|Yi|2 → +∞ as i→ +∞, and Theorem 1 is proved in this case.

For a vector x ∈ Rd, we will use notation Varx = Cov (x, x).

Assume that X0 = 0. In this case,

Var (IQYi+1|{Ak}) = Var (IQLi−1η1|{Ak}) + · · ·Var (IQLηi−1|{Ak}) + Var (IQηi|{Ak})

= Li−1Var (IQη1|{Ak}) + · · ·LVar (IQηi−1|{Ak}) + Var (IQηi|{Ak})

= IQ(Li−1Var (η1|{Ak}) + · · ·LVar (ηi−1|{Ak}) + Var (ηi|{Ak}).

Here Var (· |{Ak}) is the conditional variance given {Ak}+∞
k=0. By the assumptions, there exists

m such that E|σmξm|2 > 0. If |L| > 1, we have that det bk,n ̸= 0. Hence there exists j such that

Var (ηj |{Ak}) ̸= 0 a.s. given that |L| > 1. We obtain immediately that E(|Yi|2|{Ak}) → +∞

as i → +∞ a.s. given that |L| > 1. Therefore, E|Yi|2 → +∞ as i → +∞. This completes the

proof of Theorem 1.

�
Proof of Lemma 1. Let

Ȳi
∆
=

i∑
j=0

σjξj .

We have that

Ȳi − Ȳi+m =
i+m∑
j=i+1

σjξj .

Let us assume first that Condition 1(i) is satisfied.

∥Ȳi − Ȳi+m∥Lp(Ω) =
∥∥∥ i+m∑
j=i+1

σjξj

∥∥∥
Lp(Ω)

≤
i+m∑
j=i+1

|σj |∥ξj∥Lp(Ω) ≤ sup
k≥0

∥ξk∥Lp(Ω)

i+m∑
j=i+1

|σj |

≤
∞∑

j=i+1

|σj |.
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By Condition 1(i),
∑∞

j=i+1 |σj | → 0 as j → +∞. Hence {Ȳi} is a Cauchy sequence in Lp(Ω).

Then the statement of lemma follows in this case.

Let us assume first that Condition 1(ii) is satisfied. Let

Ȳi
∆
=

i∑
j=0

σjξj .

We have that EYi = 0 and

Ȳi − Ȳi+m =

i+m∑
j=i+1

σjξj .

Hence

E|Ȳi − Ȳi+m|2 = E
( i+m∑
j=i+1

σjξj

)⊤( i+m∑
j=i+1

σjξj

)
=

i+m∑
j=i+1

E
(
σjξj

)⊤(
σjξj

)

≤ sup
k≥0

∥ξk∥2L2(Ω)

i+m∑
j=i+1

|σj |2 ≤
∞∑

j=i+1

|σj |2.

By Condition 1(ii),
∑∞

j=i+1 |σj |2 → 0 as j → +∞. Hence {Ȳi} is a Cauchy sequence in L2(Ω).

Then the statement of lemma follows in this case. This completes the proof of Lemma 1. �
Proof of Theorem 2. Let an integer m ∈ (0,K] be given. We have that

XnK+m = bnK,mXnK + ψnK,m = b0,mXnK + ψnK,m.

By the definition, X̄n = b0,mȲ and X̄nK+m = b0,mȲ . It gives

XnK+m = b0,mXnK + ψnK,m = b0,mYn + ψnK,m

= b0,mȲ + ψnK,m + b0,m(Yn − Ȳ )

= X̄nK+m + ψnK,m + b0,m(Yn − Ȳ ). (3)

Clearly, ∥b0,m(Yn− Ȳ )∥Lp(Ω) → 0. Further, we have that ∥ψnK,m∥Lp(Ω) → 0. This completes the

proof of Theorem 2. �
Up to the end of this paper, we assume that the assumptions of Theorem 3 are satisfied.

Let {Mn}n∈N be a square integrable martingale, M0 = 0 andMn =
∑n

i=1 ρi, where {ρn}n∈N
is a sequence of independent random vectors with Eρn = 0 and E|ρn|2 <∞. We define

⟨Mn⟩ = EMnM
⊤
n = Cov (Mn,Mn) =

n∑
i=1

Eρiρ
⊤
i .

A detailed exposition of the definitions and facts of the theory of random processes can be

found in, for example, [13].
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Lemma 2 Assume that Condition 1(ii) is satisfied. In this case,

(i) there exists a.s. finite random variable Ȳ such that, a.s.,

Ȳ = lim
i→∞

Yi.

(ii) limi→∞E|Yi − Ȳ |2 = 0 and E|Ȳ |2 <∞.

(iii) Cov (Ȳ , Ȳ ) = limn→∞Cov (Yn, Yn) =
∑∞

i=0 σiσ
⊤
i .

The Proposition below is a variant of the martingale convergence theorem (see e.g. [13]).

Proposition 1 Let Condition 1(ii) be satisfied, let {σ̄n} be a sequence of matrices in Rd×d such

that
∑∞

n=0 |σ̄n|2 < +∞, and let

M0 = 0, Mn =

n−1∑
i=0

σ̄iξi+1, n > 0. (4)

Then

(i) there exists a.s. finite random variable M̄ such that, a.s.,

M̄ = lim
i→∞

Mi.

(ii) limi→∞E|Mi − M̄ |2 = 0 and E|M̄ |2 <∞.

(iii) Cov (M̄, M̄) = limn→∞Cov (Mn,Mn) =
∑∞

i=1 σ̄iσ̄
⊤
i .

Proof of Proposition 1. Item (i) is a variant of martingale convergence theorems (see e.g.

[13]).

For n > k, we have

∥Mn −Mk∥L2(Ω) = E

∣∣∣∣∣
n−1∑
i=k

σ̄iξi+1

∣∣∣∣∣
2

= E

n−1∑
i=k

|σ̄iξi+1|2 ≤ E

n−1∑
i=k

|σ̄i|2|ξi+1|2

≤
n−1∑
i=k

|σ̄i|2 → 0 as k → ∞,

It follows that {Mn}n∈N is a Cauchy sequence in L2(Ω). Fix ε > 0 and choose N ∈ N such that

∥Mn −Mk∥L2(Ω) < ε, as n, k ≥ N.
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Then, by the Fatou’s lemma and the fact that Mk → M̄ a.s., we have, for n ≥ N ,

∥Mn − M̄∥L2(Ω) = E|Mn − M̄ |2 = E|Mn − lim
k→∞

Mk|2

= E

{
lim
k→∞

|Mn −Mk|2
}

= E

{
lim inf
k→∞

|Mn −Mk|2
}

≤ lim inf
k→∞

E
{
|Mn −Mk|2

}
= lim inf

k→∞
∥Mn −Mk∥L2(Ω) < ε.

By Minkosvki inequality this also implies that M̄ ∈ L2(Ω), which completed the proof of (ii).

To prove (iii) we estimate,

EMnM
⊤
n −EM̄M̄⊤ = EMnM

⊤
n −EMnM̄

⊤ +EMnM̄
⊤ −EM̄M̄⊤

= EMn(M
⊤
n − M̄⊤) +E(Mn − M̄)M̄⊤

≤
√

E|Mn − M̄ |2
√

E|Mn|2 +E|M̄ |2 → 0 as n→ ∞.

Proof of Lemma 2. By (2), we have that Yi+1 = X0 +
∑i

j=0 ηi = X0 +
∑(i+1)K

n=0 σnξn. Hence

{Yi}i≥0 is a subsequence of {X0+Mn}n≥0. Then the proof follows immediately from Proposition

1 applied with σ̄n = σn.

Proof of Theorem 3. Let m ∈ (0,K]. (i) Let assumption (i) holds. In this case,

|Yn − Ȳ | ≤ sup
n,ω

|ξn|
∞∑
k=n

|σk| → 0 as n→ +∞ a.s.,

since
∑∞

k=0 |σk| < +∞, by Condition 1. It follows that b0,m(Yn − Ȳ ) → 0 a.s. Similarly,

|ψnK,m| ≤ K sup
n,ω

(1 + |Ak|)K sup
n,ω

|ξn|
∞∑
k=n

|σk| → 0 as n→ +∞ a.s.

By (3), the proof of Theorem 3 follows for this case.

Let assumption (ii) holds. By Lemma 2, it follows that b0,m(Yn − Ȳ ) → 0 a.s. Further,

we obtain that ψnK,m → 0 a.s., by Proposition 1 applied with σ̄n+k = bn+K,n+mσn+k on the

conditional probability space given {Ak}. By (3) again, the proof of Theorem 3 follows. �
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