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Abstract. We consider a class of path design problems which arise when
an object needs to traverse between two points through a specified region.

The path must optimise a prescribed criterion such as risk, reliability or cost
and satisfy a number of constraints such as total travel time. Problems of

this type readily arise in the defence, transport and communication industries.

We specifically look at the problem of determining an optimal (in terms of
minimizing the overall probability of detection) transit path for a submarine

moving through a field of sonar sensors, subject to a total time constraint. A

computational strategy along with results are presented.

1. Introduction. A fundamental network design problem is that of designing “ef-
ficient” routes for moving products, resources and information through a network.
Usually the route must satisfy a variety of constraints. The efficiency of a network
can be measured in terms of cost, reliability, throughput or length of path used.
The constraints of a network can consist of delivery/pickup time deadlines, network
availability, the need to visit specific nodes of the network, or resource restrictions
such as vehicle capacity, fleet size or transmission rates to name a few.

We consider a class of path design problems which arise when an object needs to
traverse between two points through a specified region, the Transit Path Problem
being one such problem. The Transit Path Problem is to determine an optimal
path, in terms of minimizing risk or cost or maximizing reliability, for an object,
such as a robot or vehicle, that needs to traverse a specified region between two
points. This problem arises in many areas of real life. For example, the routing of
military vehicles through a detection field or the routing of a new highway in a given
terrain. Other applications include motion planning for robot manipulators through
a field of obstacles and the generation of optimal trajectories for air, space, naval
and land vehicles. We specifically look at the problem of determining an optimal
transit path for a submarine moving through a field of sonar sensors, subject to a
total time constraint.

The strategy presented involves a two stage approach. The first stage is a dis-
cretization of the problem and the development of a network heuristic method to
solve the resulting network. The second stage involves the use of an optimal control
model and a solution procedure that utilizes the solution obtained in the first stage
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as a starting point. In this phase of our procedure we make use of the optimal
control software package MISER3.

In the proposed model each of the sensors can detect the presence of the subma-
rine with a probability which is a given function depending on the distance between
the two and on the speed of the submarine. This function is not a simple analytical
expression, but depends upon a range of factors, including the characteristics of
the ocean floor and ocean surface, depths of the sensor and the submarine, and the
temperature and salinity of the water.

In this paper, we use probability of detection functions reported in Hallam [12].
These were constructed under the assumptions that the geographic location and
environmental conditions are known and that the submarine remains at a constant
depth. Furthermore, each of the given functions is constructed for a particular con-
stant vessel speed. While there are still further factors influencing the probability
of detection (such as machinery states, frequency of the sensor, alertness of sensor
operators or quality of the automatic detection, the relative aspect of the subma-
rine and the sensor, the effect of sudden changes in travel direction or speed), the
functions from Hallam [12] display sufficient complexity to test the feasibility of the
proposed method. The overall probability of detection at any point in time can
then be calculated as an appropriate combination of these individual probabilities
of detection. Here, we make the assumption that the probability of detection for
any one sensor is independent of the probabilities of detection for the other sensors.
The objective then is to find a transit path between two fixed positions in the sensor
field which will minimize the overall probability of detection while still satisfying a
maximum travel time constraint. The difficulty is due to the fact that the transit
time must satisfy an upper bound constraint.

In an earlier paper [5] we addressed the same transit path problem with the
objective of testing the efficiency of various non-linear optimization routines used
within MISER3 for the optimal control phase of our procedure. In this paper we
investigate the effects of different degrees of coarseness of discretization used in the
problem. In particular, we show how the subsequent number of switching points
needed within the optimal control phase can make a significant difference on the
final solution obtained.

This paper is organized as follows. In Section 2 we describe the general optimal
control formulation. The CPET technique is explained in Section 3. Section 4
presents the computational strategy we used to solve the problem. In Section 5 we
give numerical results. Finally we summarize our conclusions in Section 6.

2. Optimal Control Formulation. The optimal control formulation follows the
treatment given in Rehbock et al. [23]. A sonar field is positioned in the Cartesian
plane with coordinates (x, y) indicating the latitudinal and longitudinal distance (in
kms) from the origin. Letting (x(t), y(t)) represent the location of the submarine
at time t, the system’s dynamics is described by:

ẋ(t) = s(t) cos(θ(t)), x(0) = 0,
ẏ(t) = s(t) sin(θ(t)), y(0) = 0,

(1)

where θ(t) represents the heading angle of the vessel in radians and s(t) is the speed
of the vessel in km/h. Note that θ and s are control functions satisfying:

0 ≤ θ(t) ≤ 2π, ∀t ∈ [0, T ), and (2)

s(t) ∈ {s1, s2, s3, ..., } ∀t ∈ [0, T ). (3)
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Suppose that a total of ns sensors are located at positions (xi, yi), i = 1, 2, ..., ns,
in the field. We assume for simplicity that these positions remain fixed during
the journey and that the sonars are all of the same type with the same detection
capabilities. At any instant of time, the distance of the submarine from each sensor
is given by ri(t) =

√
(x(t)− xi)2 + (y(t)− yi)2, i = 1, ..., ns. For a vessel speed

s, a probability of detection profile, p(r, s) can be constructed as a function of
the physical distance r(t). Assuming that the sensors operate independently, the
instantaneous probability of the vessel being detected is then given by:

P ((x(t), y(t), s(t)) = 1−
ns∏
i=1

(1− pi(ri(t), s(t))). (4)

Our aim is to minimize the cumulative probability of being detected over the entire
journey. This is equivalent to minimizing the objective functional:

g(θ, s, T ) =
∫ T

0

P ((x(t), y(t), s(t))dt. (5)

For the submarine to arrive at its intended destination within a prescribed total
time, we have constraints:

x(T ) = xT , y(T ) = yT , (6)

T ≤ TMAX . (7)
Note that the terminal time, T , is variable in this problem. In summary, then, the
optimal control model of the submarine transit path problem can be stated as: Find
a terminal time T (satisfying (7)), and control functions θ(t) (satisfying (2)) and
s(t) (satisfying (3)) such that the objective functional (5) is minimized subject to
the vessel dynamics (1) and the constraints (6).

The fact that the control s is restricted to a discrete set of values places this
problem into a general class of discrete valued optimal control problems. Examples
of these problems are studied in Howlett et al. [15] and Lee et al. [20]. The
main difficulty with these problems is to determine the exact time points where the
discrete valued control should switch between its allowed values. Since the gradients
with respect to these switching time parameters are discontinuous, ordinary gradient
based solution methods perform poorly. An additional difficulty is to determine
exactly how many such switching times are involved in an optimal solution. The first
of these difficulties has been successfully overcome by the Control Parameterization
Enhancing Transform (CPET), which was initially applied to a similar class of
time optimal control problems in Lee et al. [19] and later directly to discrete
valued optimal control problems in Lee et al. [20]. The second difficulty can be
partially addressed by solving a sequence of problems which are transformed via
CPET, but this remains an active area of research. Essentially, CPET involves
a scaling of the time horizon, [0, T ], via an auxiliary control function known as
the enhancing control. This transforms the original problem into an equivalent
canonical form which can then be solved by ordinary gradient based methods such
as control parameterization described in Teo et al. [27] and incorporated into the
optimal control software MISER3 [17].

3. CPET Technique. We briefly explain CPET through its application to the
example at hand. For a more thorough review and discussion of these techniques,
see Rehbock et al. [22]. Our first task is to set a limit to the number of course/speed
switchings to be allowed and the allowable speeds s. Note that the heading angle
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control function, θ(t), is modelled as a piecewise constant function, which is natural,
given that the heading angle ought to remain constant between course changes.
Furthermore, for the sake of simplicity, we assume that the switching times for
the course changes coincide with switching times for the speed changes. This may
appear to be restrictive, but note that this formulation does allow for only one of
the controls to change value at a particular switching time, so full generality of the
control structure is actually preserved.

In our computations, the submarine is restricted to two speeds, 8 km/h and 14
km/h. The control constraint (3), therefore, becomes:

s(t) ∈ {8, 14}, ∀t ∈ [0, T ). (8)

The detection profiles are given in the form of a set of data points and cubic splines
are used to interpolate this data to generate smooth p(r, s) curves [5].

In this application, we have a practical limitation on the number of course/speed
changes during the time horizon, because course and speed changes physically re-
quire a minimum period of time to be implemented. Furthermore, a submarine
commander is unlikely to implement a solution which involves an excessive number
of course/speed changes. Hence, we assume that the maximum number of switch-
ings allowed is N − 1. The CPET technique may then be applied as follows.

We define a new time horizon [0, N ] and partition it into the subintervals I1 =
[0, 1), I2 = [1, 2), I3 = [2, 3), ..., IN = [N − 1, N). We then define u1(τ), τ ∈ [0, N)
to be a piecewise constant function on [0, N) that is consistent with this partition.
u1 is essentially the heading angle of the submarine in the transformed time scale
and we still require the control constraints:

0 ≤ u1(τ) ≤ 2π, ∀τ∈[0, N). (9)

Furthermore, we define

u2(τ) =
{

14, if τ∈Ik, k odd,
8, if τ∈Ik, k even. (10)

This (fixed) control function takes on the role of s(t) in the transformed problem.
Note that it is consistent with the constraint (8). Furthermore, we define the
enhancing control, u3(τ), to be a piecewise constant function consistent with the
above partition and subject to the following constraints:

0 ≤ u3(τ) ≤ TMAX . (11)

The constraint (11) arises due to the total time constraint (7), but, by itself, will
not be sufficient to replace (7) entirely. The main feature of the CPET method
is the scaling, via the enhancing control, which relates the original time horizon
[0, T ] to the new time horizon [0, N ]. This is done through the following differential
equation:

dt

dτ
= u3(τ), τ ∈ [0, N), t(0) = 0. (12)

Note that integration of (12) over [0, N) will allow us to recover the original time
horizon [0, T ], where T = t(N). To standardize notation, we set, x1 = x, x2 = y
and x3 = t. The transformed problem may then be stated as follows. Find control
functions u1(τ) and u3(τ) such that:∫ N

0

P (x1(τ), x2(τ), u2(τ))u3(τ)dτ, (13)
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is minimized subject to the dynamics

ẋ1(τ) = u3(τ)u2(τ) cos(u1(τ)), x1(0) = 0,
ẋ2(τ) = u3(τ)u2(τ) sin(u1(τ)), x2(0) = 0,
ẋ3(τ) = u3, x3(0) = 0,

(14)

and the constraints
x1(N) = xT ,
x2(N) = yT ,
x3(N) ≤ TMAX .

(15)

Note that the third constraint in (15) arises directly from (7).
The transformed problem now simply involves piecewise constant control func-

tions defined on a regular fixed partition of the fixed time horizon [0, N ]. As such, it
can be solved directly by the optimal control software MISER3 [18]. Note that the
optimal solution of the original problem can be recovered easily from the solution
of the transformed problem, as the original time scale is given by x3(τ).

4. Computational Strategy. The Transit Path Problem is likely to have a unique
optimal solution. However, in the solution region there are typically a large number
of peaks and troughs representative of local maxima and minima solutions. While
a locally optimal solution may be easily calculated, past numerical experiences [23]
suggests it is very much dependent on the initial guess one provides. It is unlikely
that, given an arbitrary initial guess, a direct optimal control solution of the problem
will generate a path which is globally optimal. To generate a good initial path we
solve a discretized approximation of the problem by first constructing a grid-like
network over the sensor field, then solve the resulting Constrained Shortest Path
Problem (CSPP). We regard the knot points of the grid as nodes and the grid lines
as edges, and thus think of the grid as a graph. We allow movement along edges
only and with each edge we can associate a cost value. The cost depends on the
location of the edge in the sensor field and speed at which the vessel travels along
the edge. It is calculated in the same manner as for the optimal control model.
Furthermore, since the distance along each edge and the travel speed are known,
we can calculate the time it takes the vessel to traverse each edge.

In the optimal control formulation, we noted that the speed s of the submarine
can come from a finite discrete set (3). Therefore, for each of the speeds in the
discrete set, we need to have a corresponding edge between the node i and j in the
graph to represent each of the speeds s1, s2, s3, ... . Assuming that the speeds in the
set (3) are arranged in increasing order, s1 < s2 < s3 < ..., it is possible to perform
some elementary preprocessing. Letting the cost along the edge associated with
speed sn be denoted by cn

ij , we can clearly eliminate the edge (i, j) if cn
ij ≥ min{cm

ij}
∀ m > n.

Next we introduce dummy nodes and edges so as to avoid multiple edges. Of
those possible speeds that remain after preprocessing, we can leave the edge (i, j)
joining the slowest speed from node i to j. For each of the remaining speeds we
need a dummy node j′ and a dummy edge (j′, j), which has a zero cost and a zero
transit time.

With respect to the simple graph G = (N,A), where N = {1, 2, ..., n} is the set
of nodes, |N | = n, and A is the set of edges, each edge (i, j) has a corresponding
cost cij and a transit time tij . For convenience, we denote the start (origin) node by
′O′ and the destination node by ′D′. Also, let TMAX be the time limit. The CSPP
can be expressed as an Integer Programming Problem [1]. The CSPP has been
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studied by a number of authors and both exact algorithms and heuristics have been
proposed. Methods used to solve CSPP include: k-shortest path ideas ([3],[28]),
cost scaling and rounding ([10], [14], [21]), Dynamic Programming formulations ([8],
[16]), and label setting approaches ([2], [3], [10]). By using the Integer Programming
Formulation, solution strategies are: Lagrangian relaxation methods ([6], [13], [26]),
Branch and Bound algorithms [24], Branch and Cut methods [4], or to apply a linear
integer programming package such as CPLEX [7].

The CSPP is a computationally difficult problem to solve, because it is NP-
complete. For the purpose of evaluating our strategy we generate a feasible path
using a simple heuristic that finds a solution which is near optimal or optimal with
minimal computational time. Basically, each edge (i, j) in our graph has two weights
associated with it: cost cij and traverse time tij . The idea is to parameterize these
two weights into one label on the edge using the convex combination wij = αcij+(1−
α)tij , where α ∈ [0, 1]. Then, we solve the resulting SPP, using Dijkstra’s algorithm
[9], while incrementing α until a time feasible path, t(P ) ≤ TMAX , is found. This
path forms our initial guess for the optimal control phase of our approach. It
is envisaged that this path is reasonably close to the global optimal solution for
the continuous optimal control problem and, therefore, should be sufficient for our
purpose.

5. Computational Results. All the computational tests were carried out on two
separate machines. Our network heuristic was tested on a Sun Netra X1 with a
500MHz 64-bit Ultra SPRAC Processor and 256MB of RAM. Whereas the optimal
control model results were obtained via a Intel Pentium 4 PC with a 2.40GHz
Processor and 512MB of RAM.

Our approach uses the solutions obtained from our heuristic as initial starting
points for the corresponding optimal control model. The MISER3 software was used
in conjunction with several different nonlinear programming solvers (NLPQL [25],
FFSQP [29], & NPSOL [11]) to refine these initial solutions. FFSQP is based on
the concept of feasible sequential quadratic programming. Starting with a feasible
point (provided by the user or generated automatically), the algorithm produces
successive iterates that all satisfy the constraints. The objective function can be
decreased either after each iteration with an Armijo-type arc search or after at most
three iterations with a nonmonotone line search. The user has the option to choose
one of the two searches. The merit function used in both searches is the objec-
tive function itself. NLPQL is also based on a sequential quadratic programming
method. Working with a quadratic approximation of the Lagrangian function and
a linearization of the constraints, a quadratic subproblem is formulated and solved
by the dual code QL. Following this, a line search is performed with respect to two
alternative merit functions and the Hessian approximation is updated by the mod-
ified BFGS-formula. Unlike FFSQP, a feasibilty requirement is not imposed on the
iterates. Like NLPQL, NPSOL is also a sequential quadratic programming method
incorporating an augmented Lagrangian merit function and a BFGS quasi-Newton
approximation to the Hessian of the Lagrangian.

To test our methodology, we ran two sets of test problems. Our first set of
problems allows us to not only test our approach but also compare the different
nonlinear solvers within MISER3. We generated our second set of problems so as
to measure the sensitivity of the optimal control phase subject to the initial grid
size employed. We tested our proposed method and the three different nonlinear
solvers on 480 problems that were generated as follows.
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We imposed 4 different grid sizes over the region for the network phase, these
being of dimension 20 × 20, 40 × 40, 60 × 60 and 80 × 80, which are all equally
spaced rectangular grids. We have restricted our test problems to sonar fields with
ns = 4 sensors, though any number can be easily incorporated. Furthermore, we
chose to look at a region of 80 km by 80 km. In addition, x0 = 0, y0 = 0, xT

= 80 and yT = 80, that is the starting point is (0, 0) km and the destination is
at the point (80, 80) km. We then constructed 30 different sets of sensor loca-
tions. The locations of the sensors were determined by randomly generating 240
integer values, {x1, x2, ..., x240}, between 0 and 80. We then paired these together,
(x1, x2), (x3, x4), ..., (x239, x240), to give the coordinates, in kilometres, of the sen-
sors in relation to the starting point of the journey. The first four pairs give the
sensor locations for the first set, the next four pairs represent the sensor locations
for the second set, and so on. We use the probability of detection curves given in
Hallam [12].

For each grid dimension and set of sensor locations, we imposed four different
time constraints TMAX , ranging from a low or ”tight” time constraint to a high or
”loose” time constraint. For each problem, we determined its minimum time path,
denoted by TL, and the time corresponding to the minimum unconstrained shortest
path, denoted as TH . The four time constraints are then found using the formulae
Tα = (1− α)TL + αTH for α = 0.2, 0.4, 0.6 and 0.8. T0.2 represents the ”tightest”
constraint and T0.8 the ”loosest” constraint.

Recall that the optimal control model does not require the path to move along
the grid lines. Instead, virtually any concatenation of straight line sections with
any direction and one of the two possible speeds is allowed. Clearly, the optimal
control model is less constrained than the network approximation, so we expect to
see an improvement in the optimal cost obtained.

From the first set of test problems, we were able to establish that each of the
three optimisation routines has its own advantage. NPSOL gives the best average
percentage improvement, NLPQL has the quickest CPU time and FFSQP is the
most ”accurate” in terms of meeting the optimal control constraints. It appears
that there is a three way trade-off between objective function value, CPU time and
accuracy. It is up to the user to use the optimisation routine that is most suited to
his or her needs. For a thorough presentation and discussion of these results refer
to Caccetta et al. [5].

To test the effect that the grid size has on the final solution, we generated 120
problems. To do this, we used the same set of sensor locations as in our previous
computational tests. The four different ”degrees” of tightness were also generated
in the same manner. However, we imposed the time constraint associated with the
20× 20 network to the other three grid dimensions. In addition, we only used the
NPSOL nonlinear programming solver for these test problems. By maintaining the
same time constraint for all the grid sizes, we are able to directly compare the effect
that the initial starting solutions generated via the different sizes has on the final
path obtained in the optimal control phase. We employed the NPSOL solver for
this because it has the greatest average percentage improvement, its CPU time is
reasonable and its ”accuracy” is comparable to the FFSQP solver.

In Table 1, we present the average number of switching points used within the
optimal control phase. A switching point is needed whenever the submarine makes a
course or speed change. We notice from Table 1 that as the grid size increases so does
the amount of switches required. The reason being that larger grid sizes have more
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edges associated with them therefore there is more opportunity for the submarine
to make a course or speed change than with a smaller grid size. The amount of
switches was always kept to a minimum, that is, we only used a sufficient amount
that allowed us to incorporate the heuristic solution into the required MISER input
format.

20× 20 40× 40 60× 60 80× 80
# Switches 17.64167 27.80833 39.375 49.425

Table 1. Average number of switching points.

In Table 2, we present the results for all the grid sizes. Each table displays
the average computational results for all 120 problems broken up into the cases
α = 0.2, 0.4, 0.6, 0.8 as well as the total average over all of the cases. We present the
percentage improvement achieved by use of the optimisation routine NPSOL, when
compared to the initial starting path. Also shown is the average computational time,
in minutes, taken to generate the solution by the NPSOL optimisation routine.

20× 20 40× 40 60× 60 80× 80
α % Imp. CPU Time % Imp. CPU Time % Imp. CPU Time % Imp. CPU Time

0.2 31.24 1.80 30.70 2.89 30.94 3.38 31.49 3.21
0.4 26.13 2.55 25.32 3.42 24.47 3.31 23.01 4.30
0.6 17.59 3.01 16.76 3.27 17.59 4.66 16.67 4.66
0.8 11.77 3.31 12.57 3.55 10.97 4.70 11.26 8.14
All 21.68 2.67 21.34 3.28 20.99 4.01 20.61 5.08

Table 2. Computational results for the comparison of different
grid sizes.

As we observed with our earlier results [5], Table 2 shows us that the percentage
improvement that is made over the initial solution decreases as the grid size in-
creases, the reason being that as we increase the grid size the solution generated via
the heuristic will be more closely representative of a continuous solution. Therefore
the change from the heuristic discrete solution to the optimal control continuous
solution wont be as dramatic as it would be for a smaller grid size. This is what
results in the lower average % improvement we see in Table 2. We also note that as
the grid dimension becomes larger the CPU time, in minutes, increases. The reason
being, as pointed out earlier, larger grid dimensions have more switches associated
with them. These switches increase the complexity of the optimal control problem
and thereby the CPU time required to solve it.

For both the heuristic and optimal control solution we measured the average
percentage of how far the results obtained were from the corresponding best so-
lution of that approach. For example, for the heuristic phase, after determining
the solution for each grid size using the same time constraint, we compared the
costs of these paths C(P ) against the best C(P ∗) of the four solutions using the
equation [(C(P )− C(P ∗))/C(P ∗)]× 100. This procedure was also followed for the
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20× 20 40× 40 60× 60 80× 80
0.2 2.83 2.25 1.87 1.57
0.4 3.02 2.39 1.43 1.40
0.6 2.68 2.33 1.92 1.42
0.8 4.04 2.09 0.83 0.20
All 3.14 2.27 1.51 1.15

Table 3. Heuristic: average % above best solution.

optimal control solutions. This tells us how far, in terms of percentage above the
best solution, the path was from the best solution obtained.

From Table 3, we see that, as the grid size increases from 20 × 20 to 80 × 80,
the quality of the Heuristic solution generated improves from 3.14% to 1.15% on
average above the best solution. However, when we look at Table 4 we note that
the best solution obtained via the optimal control phase comes from the starting
solution generated using the 60 × 60 grid. It is on average 4.56% above the best
solution. The worst solution, on average, was found when using the 20 × 20 path
which was 5.40% greater than the best solution.

20× 20 40× 40 60× 60 80× 80
0.2 6.03 6.26 5.15 4.32
0.4 4.35 4.88 5.05 7.07
0.6 5.74 6.53 4.89 5.65
0.8 5.48 2.55 3.16 2.25
All 5.40 5.05 4.56 4.82

Table 4. Optimal Control: average % above best solution.

This shows us that despite using a “better” path from the 80×80 grid dimension
as an initial guess the resulting optimal control path is not as good as the path
resulting from using the 60 × 60 grid starting solution. This contradicts our belief
that the best optimal control solution would be found by using a feasible path which
has the lowest cost. These results and observations are a direct consequence of the
different number of switching points used within the optimal control phase. We
still believe that the final optimal control solution is dependent on a good initial
solution. However, the number of switching points also has a large bearing on
the quality of result obtained. This would appear to be due to the nature of the
CPET transformation which tends to introduce a large number of local minima
in the transformed optimal control formulation of the problem. Consequently the
likelihood of getting stuck in a local minima increases with the number of switching
points.

6. Conclusions. We have considered the Transit Path Problem, and in particular,
the problem of finding an optimal submarine transit path through a field of sonar
sensors. Our approach to solving the problem was to use two phases. First, we
generate a good quality solution for the discretized network problem, using a simple
efficient heuristic. Then, we refine it by means of an optimal control approach. Our
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work seems to suggest that the number of switches employed is as an important
factor in determining a good solution as is the quality of the initial solution used
for the optimal control phase.
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