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Abstract Global Navigation Satellite System positioning
of gravity surveys permits geoid computation via Hotine’s
integral. A suite of modifications is presented so that the
user can tune the relative contributions of truncation and data
errors in a combined solution for a regional geoid model from
gravity disturbances.

Keywords Hotine’s integral · Geoid ·
Kernel modifications · Gravity disturbances · Filters

1 Motivation

Most gravity surveys are now positioned using Global
Navigation Satellite Systems (GNSSs), which deliver the 3D
geodetic coordinates of each gravity observation after correc-
tions for offsets between the GNSS antenna reference point
and the gravity sensor. These can then be used to compute
the gravity disturbance

δgS = gS − γS (1)

where γS is normal gravity at the same 3D position as the
gravity observation gS that has been reduced to gravity datum
and corrected for instrumental drift and tides. To a second-
order approximation near the Earth’s surface, γS can be com-
puted analytically from the GNSS-derived ellipsoidal height
h and geodetic latitude ϕ of the observation point S using
(e.g., Heiskanen and Moritz 1967, p 79)
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]
(2)

with

γ = γe
1 + k sin2 ϕ√
1 − e2 sin2 ϕ

(3)

where f is the geometrical flattening of the normal ellipsoid,
m is the ratio of gravitational and centrifugal accelerations at
the equator of the normal ellipsoid, a is the equatorial radius
of the normal ellipsoid, k is the normal gravity constant, γe

is normal gravity acceleration at the equator, and e is the first
numerical eccentricity of the normal ellipsoid. Numerical
values of these parameters for the GRS80 normal ellipsoid
are given in Moritz (1980) and reprinted in the Geodesist’s
Handbook.

While the downward continuation of gravity disturbances
is beyond the scope of this article, it nevertheless requires
that: (1) δgS are downward-continued to the geoid to give δg
before being convolved with Hotine’s kernel or some mod-
ification thereof; and (2) the gravity disturbances must cor-
respond to a harmonic disturbing potential in the solution
domain. The availability of these downward-continued grav-
ity disturbances δg then allows for computation of the geoid
N by Hotine’s integral (Hotine 1969, Chap 29), which is a
solution to a fixed or the second boundary-value problem of
potential theory in spherical approximation (e.g., Heiskanen
and Moritz 1967, p 36).

One advantage of using gravity disturbances over gravity
anomalies to compute the geoid is that they are not adversely
affected by, e.g., uncertain or ambiguous realisations of verti-
cal datums and their associated height systems. In Australia,
for instance, the vertical datum contains a confirmed tilt with
respect to the geoid (Featherstone and Filmer 2012), regional
distortions [e.g., Featherstone et al. (2011) and the citations
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therein], and uses a height system that is not compatible with
the geoid (Filmer et al. 2010). These will cause errors in the
computed terrestrial gravity anomalies (cf. Heck 1990) that
can propagate into the combined geoid solution unless mod-
elled and/or filtered out (cf. Vaníček and Featherstone 1998;
Wang et al. 2011; Featherstone et al. 2011).

Modern regional geoid models are often computed from
an Earth gravitational model (EGM) augmented by one, more
or all of land, airborne, ship-borne and altimeter-derived
marine gravimetry, depending on data availability and the
region of interest. GNSS is used to coordinate and navigate
ship-borne gravity surveys, which results in better Eötvös
corrections and horizontal locations so that crossover adjust-
ments are more effective (cf. Wessel and Watts 1988). As the
mean sea surface departs from the geoid by up to ∼2 m,
account also has to be made for mean dynamic topogra-
phy (MDT) in the derivation of gravity disturbances from
satellite altimetry (Zhang 1998). Land and airborne gravity
surveys are also coordinated with GNSS, thus facilitating
the direct computation of gravity disturbances. A prior geoid
model would be needed to determine gravity anomalies from
GNSS-coordinated gravity surveys, resulting in a circular
argument (cf. Vaníček et al. 1992), and reinforcing the bene-
fit of directly using gravity disturbances in Hotine’s integral.

Hotine’s integral, or its inverse, has been used for:
(1) geoid determination from GNNS-positioned airborne
gravimetry (e.g., Schwarz and Li 1996; Kearsley et al. 1998;
Forsberg et al. 2000; Novák and Heck 2002; Novák 2003;
Novák et al. 2003; Alberts and Klees 2004; Serpas and Jekeli
2005; Sjöberg and Eshagh 2009) or land gravimetry (e.g.,
Kirby 2003), (2) marine gravity field and MDT estimation
from satellite radar altimetry (e.g., Rapp 1980; Zhang and
Blais 1993; Rapp and Wang 1994; Zhang and Sideris 1996;
Zhang 1998), and (3) global Earth and planetary gravity field
modelling (e.g., Sjöberg 1989; Barriot and Balmino 1992).

However, the spatial coverage of GNSS-coordinated grav-
ity data is currently limited, so there is a need to modify
Hotine’s integral to reduce the truncation error that results
from the omission of gravity disturbances in the far zones
beyond the area of interest. Admittedly, this truncation error
can be reduced by the inclusion of a high-degree EGM
(Sect. 2.2). However, the kernel modification and cap radius
can be used additionally as a filter to tune the relative data
contributions (cf. Vaníček and Featherstone 1998; Kern et
al. 2003; Featherstone 2003a). It is this property that will be
emphasised more than only reduction of the truncation error.

Early modifications to Stokes’s kernel (e.g., Molodensky
et al. 1962) were formulated to reduce the truncation error
alone because of limited spatial coverage of terrestrial gravity
anomalies at that time. Many of the subsequent modifications
also consider EGMs (Appendix A). The limited spatial cover-
age of gravity disturbances coordinated by GNSS is probably
the same now as it was in the years soon after the portable

gravimeter was developed, so the motivation for modifica-
tions to Hotine’s kernel is similar now to as it was then for
Stokes’s kernel. However, the advent of new EGMs derived
from dedicated satellite gravimetry (e.g., Pail et al. 2011) and
EGM2008 (Pavlis et al. 2012) has changed the approaches to
regional geoid computation for a couple of reasons: (1) the
truncation and approximation errors are lessened consider-
ably when a very high-degree EGM is used (Sect. 2.2), and
(2) a satellite-derived EGM that is more reliable in the low
and medium degrees allows for higher degrees of modifica-
tion so as to place more reliance on the geoid derived from
satellite gravimetry (e.g., Sects. 3.1 and 5).

Mostly in analogy to those already proposed and used
for Stokes’s integral and gravity anomalies (Appendix A),
this article will present: (1) deterministic modifications to
Hotine’s integral, where the user can control the errors
in some prescribed ways; (2) stochastic modifications to
Hotine’s integral, where error spectra are embedded in an
attempt to control the balance amongst data and/or trunca-
tion errors; and (3) their band-limited hybrid combinations,
where they are combined according to the perceived relative
benefits of each. For instance, the ‘user’ may have a good
understanding of the data errors in parts of the geopotential
spectrum so can use a stochastic modifier in those bands, but
say use a deterministic modifier in other bands (cf. Sect. 5).
The options are many, but the hybrid combinations do pro-
vide much more flexibility for the ‘user’.

Previous authors who have investigated modifications to
Hotine’s kernel comprise Jekeli (1979, 1980b); Guan and
Li (1990); Sjöberg and Nord (1992); Vaníček et al. (1992);
Zhang and Blais (1993); Zhang (1998); Novák (2003); Novák
et al. (2003); Alberts and Klees (2004); and Sjöberg and
Eshagh (2009), so their results will only be summarised as
part of the review component of this paper. Importantly, most
of these authors conclude that Hotine’s integral with gravity
disturbances can be superior to Stokes’s integral with gravity
anomalies. The other modifications to Hotine’s kernel pre-
sented herein will be based on adaptations of the principles
previously applied to Stokes’s kernel, as well as some new
formulations that can be applied back to Stokes’s or other
kernels.

2 Basics

2.1 Spherical Hotine integral

In terms of spherical polar coordinates of spherical distance
ψ and azimuthα centred on each computation point, Hotine’s
integral in spherical approximation reads

N = r

4πγ

2π∫
0

π∫
0

Hδg sinψ dψdα (4)
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and the spherical Hotine kernel is

H = csc (ψ/2)− ln (1 + csc (ψ/2))

=
∞∑

n=0

2n + 1

n + 1
Pn(cosψ) (5)

where Pn(cosψ) is the Legendre polynomial of degree n,
and r is the radius to the surface of the normal ellipsoid,
which can reduce the ellipsoidal correction for the spherical
approximation to a manageably small value (cf. Claessens
2006, Chap 6), and γ is normal gravity on the surface of the
normal ellipsoid (Eq. 3) as is demanded by Bruns’s formula
(e.g., Heiskanen and Moritz 1967, p 85).

When the integration domain in Eq. (4) is truncated to
a spherical cap of radius ψ0 centred on each computation
point, this results in an approximation of the geoid height

N̂1 = r

4πγ

2π∫
0

ψ0∫
0

Hδg sinψ dψdα (6)

where the corresponding truncation error (N = N̂1 + 	N )
is

	N = r

2π

∞∑
n=0

⎡
⎢⎣

π∫
ψ0

H Pn(cosψ) sinψ dψ

⎤
⎥⎦ δgn (7)

and δgn is the n-th degree spherical harmonic of the grav-
ity disturbance, and the integral in square parentheses yields
the truncation coefficients. Recursion formulas for Eq. (7)
are given in, e.g., the Appendices of Jekeli (1979). In the
remainder of this article, only the integral forms will be pre-
sented instead of cluttering the presentation with [too many]
recursions.

2.2 Inclusion of an EGM

One very simple way to reduce 	N in Eq. (7) is by sub-
tracting the gravity disturbances computed from an EGM
to spherical harmonic degree L (δgL ) from the observed
and downward-continued δg, and then add back the geoid
contribution of the same EGM to the same degree. In phys-
ical geodesy, this is commonly referred to as the remove–
compute–restore technique.

Albeit well known for Stokes’s integral (e.g., Vincent
and Marsh 1974; Rapp and Rummel 1975), this strategy for
Hotine’s integral seems first-attributable to Rapp (1980). This
gives the residual gravity disturbance

δgL = δg −
L∑

n=0

δgn (8)

Equation (6) then becomes

N̂2 = NL + r

4πγ

2π∫
0

ψ0∫
0

HδgL sinψ dψdα (9)

where NL is the geoid undulation given by an EGM to degree
L, and the truncation error becomes

	N L = r

2π

∞∑
n=L+1

⎡
⎢⎣

π∫
ψ0

H Pn(cosψ) sinψ dψ

⎤
⎥⎦ δgn (10)

If
∥∥δgL

∥∥ < ‖δg‖ over the far zones beyond the spherical
cap (ψ0 < ψ ≤ π ), then δN L should be <δN , indicating
that this strategy can reduce the truncation error (cf. Vaníček
and Sjöberg 1991). However, the practical implementation is
not as simple as the theory may imply. Any EGM is imper-
fect, and if the terrestrial gravity data contain low-frequency
errors, there will be leakage of errors during the evaluation of
the last term in Eq. (9) (cf. Vaníček and Featherstone 1998).
Therefore, it is important to consider the kernel modification
not only as means to reduce the truncation error, but also as a
filter to reduce leakage of any low-frequency errors from the
terrestrial data (cf. Omang and Forsberg 2002; Featherstone
et al. 2011; Wang et al. 2011).

Another benefit of including an EGM in is that the residual
geoid height computed from the last term in Eq. (9)—as well
as its variants presented in the remainder of this article—is
smaller in magnitude (a metre or so vs. up to 100 m), so are
less subject to approximation errors. Also, as EGMs become
more homogeneously reliable—notably those derived from
satellite gravimetry—the motivation for using the remove–
compute–restore approach will become stronger.

In order to remain as general as possible, and in line
with current widespread practice of utilising an EGM in
regional geoid computations under the remove–compute–
restore scheme, the following modifications will be applied
only to Eqs. (5) and (9). The constants outside the integral
terms will be abbreviated to κ = r/(4πγ ) and c = r/(2π).

3 Deterministic and hybrid modifications

3.1 Remove Legendre polynomials (modification D1)

A simple deterministic kernel modification is to subtract
polynomial terms from Eq. (3). For Stokes’s kernel, this
approach is generally attributed to Wong and Gore (1969),
though de Witte (1967) alluded to it.

Vaníček et al. (1992) and Sjöberg and Nord (1992)
have applied this approach to Hotine’s kernel, thus Eq. (9)
becomes what herein is termed the spheroidal Hotine kernel
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̂ND1 = NL + κ

2π∫
0

ψ0∫
0

HD1 (M) δg
L sinψ dψdα for M ≤ L

(11)

with the subscript D1 denoting this as the first deterministic
modification and so on

HD1(M) = H −
M∑

n=0

2n + 1

n + 1
Pn(cosψ)

=
∞∑

n=M+1

2n + 1

n + 1
Pn(cosψ) (12)

and

	ND1 = c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

HD1 (M) Pn (cosψ) sinψ dψ

⎤
⎥⎦ δgn

(13)

This modification makes Eq. (11) less sensitive to low-
frequency errors in the terrestrial gravity disturbances by
partially filtering them out (cf. Omang and Forsberg 2002;
Wang et al. 2011). However, the filtering is only ever partial
because the truncated integration domain allows for spectral
leakage (cf. Vaníček and Featherstone 1998).

In the context of band-limited kernel modifications, the
summation in Eq. (12) does not necessarily have to start at
degree n = 0 (cf. Featherstone 2003a). Such a band-limited
modification to Stokes’s kernel was used by Li and Sideris
(1994) and to Hotine’s kernel by Novák and Heck (2002)
and Novák et al. (2003); also see Colombo (1977). Extend-
ing this yet further, and not violating the restriction M ≤ L
(otherwise components of the combined geoid model will
be omitted), the band-limited modification can be applied
over multiple bands of the user’s choice. This modification
is straightforward to implement in existing software as recur-
sion routines for Legendre polynomials are widely available
(e.g., Press et al. 2007, Chap 6.7).

Figure 1 shows an example of the D1-modified Hotine ker-
nel (Eq. 12) in relation to the spherical Hotine kernel (Eq. 5).
The degree of D1 modification has been chosen arbitrarily
at M = 50. As the degree of modification increases, the
D1-modified kernel oscillates more rapidly. Thus, high
degrees of modification can slow the numerical integration
because more nodes are needed to determine the integral
mean value of the modified kernel over each element (cf.
Hirt et al. 2011).

3.2 Set kernel to zero at ψ0 (modification D2)

Another easy-to-implement deterministic modification is
to set the kernel to zero at the truncation radius ψ0 by
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Fig. 1 Solid line The spherical Hotine kernel (Eq. 5); dotted line a
spheroidal Hotine kernel (Eq. 12) for M = 50

subtraction. There is some conjecture as to whether this type
of modification, albeit for Stokes’s integral, should be first-
attributed to Ostach (1970) or Meissl (1971), but the latter
author has gained wider acceptance in the literature on mod-
ifications to Stokes’s kernel.

Rapp (1980) applied this strategy to Hotine’s integral, then
attributing it to Jekeli (1980b), presumably because both
papers were under consideration at around the same time;
this is

̂ND2 = NL + κ

2π∫
0

ψ0∫
0

HD2(ψ0)δg
L sinψ dψdα (14)

with

HD2(ψ0) = H − H(ψ = ψ0) (15)

and

	ND2 = c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

HD2(ψ0)Pn(cosψ) sinψ dψ

⎤
⎥⎦ δgn

(16)

Recursion formulas for the integral term in Eq. (16) are given
in Guan and Li (1990) and Jekeli (1980b).

By forcing the kernel to zero at the truncation radius
accelerates the convergence rate of the truncation error from
O (

n−1
)

to O (
n−2

)
(cf. Jekeli 1980a, 1981; Featherstone

et al. 1998). However, faster convergence of a series does
not necessarily guarantee smaller values of its coefficients.
Since the truncation error is the sum of all terms (Eq. 16),
the truncation error may even increase, as shown by Jekeli
(1980a, 1981) for Stokes’s kernel. However, Guan and Li
(1990) claim that this Ostach–Meissl-type modification to
the Hotine kernel does decrease the truncation error.
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3.3 Deterministic hybrid (modification D3)

The deterministic modifications in Eqs. (12) and (15) can be
combined, as first proposed by Heck and Grüninger (1987)
for Stokes’s integral, such that the Legendre polynomials are
removed to some degree M such that (s.t.) the zero-crossing
point of the D1-modified Hotine kernel in Eq. (12) coincides
with the truncation radius ψ0; this is

̂ND3 = NL + κ

2π∫
0

ψ0∫
0

HD3(M, ψ0)δg
L sinψ dψdα (17)

with

HD3(M, ψ0)= H(M) s.t. HD3(M, ψ0)=0 at ψ=ψ0 (18)

and

	ND3 =c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

HD3(M, ψ0)Pn(cosψ) sinψ dψ

⎤
⎥⎦ δgn

(19)

This hybrid modification simultaneously exploits the partial
high-pass filtering properties of Eq. (12) and the accelerated
rate of convergence of the truncation error from Eq. (16).
However, this hybrid is less flexible to implement because
M and ψ0 are inextricably linked in this case. For instance,
a small ψ0 will dictate that M has to be large (cf. Fig 1) and
possibly too much filtering will occur, and vice versa.

3.4 Deterministic hybrid (modification D4)

To counteract the above restriction, an alternative combina-
tion of Eqs. (12) and (15) can be implemented, where the
Legendre polynomials are removed to a user-chosen degree
M, and then the kernel is set to zero at the truncation radius
ψ0 by subsequent subtraction (cf. Heck and Grüninger 1987;
Featherstone et al. 1998).

This type of hybrid modified Hotine kernel was first intro-
duced by Alberts and Klees (2004), but they did not elaborate
upon its properties. In the notation adopted herein, this is

̂ND4 = NL + κ

2π∫
0

ψ0∫
0

HD4(M, ψ0)δg
L sinψ dψdα (20)

with

HD4(M, ψ0) = H(M)− H(M, ψ = ψ0) (21)

and

	ND4 = c
∞∑

n=L+1

×
⎡
⎢⎣

π∫
ψ0

HD4(M, ψ0)Pn(cosψ) sinψ dψ

⎤
⎥⎦δgn (22)

This hybrid offers the same properties as Eqs. (15) and (18)
in terms of the accelerated convergence rate of the truncation
error, but does not suffer the same restrictions, thus giving
the ‘user’ much more control over the degree of filtering and
integration domain chosen. Alberts and Klees (2004) chose
M = 20 and ψ0 = 5◦ from simulations and experiments
with airborne gravity in their case study area. Importantly, the
parameter values chosen depend on the study area, data sets
used, their resolution and spatial extent; indeed, this applies
to all the modifications.

3.5 Molodensky-type approach (modification D5)

Molodensky et al. (1962, Chap 7) presented an approach to
reduce the L2 norm of the truncation error for the spherical
Stokes’s kernel. This was later adapted for a higher-than-
second-degree reference spheroid by Vaníček and Kleusberg
(1987) and Vaníček and Sjöberg (1991); also see Martinec
and Vanicek (1997). The Molodensky et al. (1962) approach
for the spherical [not spheroidal] Hotine integral (Eq. 5) was
presented in Sjöberg and Eshagh (2009), and Novák (2003)
presented a band-limited version of the same kernel. How-
ever, neither of these modifications allow for the inclusion of
an EGM, whereas the presentation herein does.

In analogy, the Molodensky-type modification to the
spheroidal Hotine kernel (Eq. 12) was presented by Zhang
(1998) as

̂ND5 = NL +κ
2π∫

0

ψ0∫
0

HD5(M, ψ0)δg
L sinψ dψdα (23)

with

HD5(M, ψ0)= H(M)−
M∑

n=0

2n+1

2
hn(ψ0)Pn(cosψ) (24)

and

	ND5

=c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

HD5(M, ψ0)Pn(cosψ) sinψ dψ

⎤
⎥⎦ δgn

(25)

Once the values ofψ0 and M have been chosen by the ‘user’,
the hn(ψ0)modification coefficients are determined from the
solution of a set of linear equations. However, the formulation

123



W. E. Featherstone

of Zhang (1998, Sect. 2.2) is not particularly intuitive for
practical application, and also contains two typographical
errors. Thus, a clearer formulation is given below.

By inference from Vaníček and Sjöberg (1991, Eq.18), the
L2 norm of the Hotine truncation error (Eq. 25) is minimised
when
π∫

ψ0

HD5(M, ψ0)Pn(cosψ) sinψ dψ = 0, 0 ≤ n ≤ M

(26)

Inserting Eqs. (24) and (12) in Eq. (26) gives

π∫
ψ0

[
H(ψ)−

M∑
k=0

2k + 1

k + 1
Pk(cosψ)

−
M∑

k=0

2k + 1

2
hk(ψ0)Pk(cosψ)

]
Pn(cosψ) sinψ dψ = 0

(27)

Using the abbreviation

enk(ψ0) =
π∫

ψ0

Pn(cosψ)Pk(cosψ) sinψ dψ (28)

leaves the desired system of (M + 1) linear equations

M∑
k=0

2k + 1

2
hk(ψ0)enk(ψ0)

=
π∫

ψ0

H Pn(cosψ) sinψ dψ −
M∑

k=0

2k + 1

k + 1
enk(ψ0) (29)

A recursion formula for the second term in Eq. (29) (cf. Eq. 7)
is derived in the Appendices of Jekeli (1979), and recursions
for enk(ψ0) (Eq. 28) are given in Paul (1973) or Hagiwara
(1972, 1976). The right-hand-side of Eq. (29) is also the
recursion used to compute the integral term in Eq. (13). For
instance, the computer code from Featherstone (2003b) can
be adapted to compute Eq. (29) and thence Eq. (24), as well
as the other deterministic modifications presented herein.

3.6 Deterministic hybrid (modification D6)

The modified kernel in Eq. (24) can be forced to be zero atψ0

by appropriate selections of hn(ψ0), e.g., by varying M and
ψ0. This approach was first suggested for the Molodensky-
modified spheroidal Stokes’s integral (cf. Sect. 3.5) by Feath-
erstone et al. (1998), but it can also be applied to Eq. (24).
In analogy to modification D3 (Sect. 3.3), hn(ψ0) are cho-
sen such that the zero-crossing point of the modified Hotine
kernel in Eq. (24) coincides with the truncation radius ψ0

̂ND6 = NL + κ

2π∫
0

ψ0∫
0

HD6(M, ψ0)δg
L sinψ dψdα (30)

with

HD6(M, ψ0) = HD5(M, ψ0) s.t . HD6(M, ψ0)

= 0 at ψ = ψ0 (31)

and

	ND6 = c
∞∑

n=L+1

⎡
⎢⎣
π∫

ψ0

HD6(M, ψ0)Pn(cosψ) sinψ dψ

⎤
⎥⎦δgn

(32)

However, the practical evaluation of Eq. (31) can be quite
cumbersome because trial and error has to be used to meet
the condition that this modified Hotine kernel is zero at ψ0.
For some starting values of ψ0 and M, the kernel in Eq. (24)
has to be evaluated (involving the inversion of Eq. 29), then
plotted to see if it is zero at ψ0. If not, then the values of
ψ0 and/or M have to be adjusted until it is. Evidently, this
may involve a lot of work and is not so attractive given the
following option.

3.7 Deterministic hybrid (modification D7)

A far simpler way to set the D5-modified kernel (Eq. 24) to
zero atψ0 is by subtraction (cf. Sects. 3.2 and 3.4). This strat-
egy was suggested by Featherstone et al. (1998) for Stokes’s
kernel. It allows for more user control over the values chosen
for ψ0 and/or M in terms of the filtering properties of the
kernel.

̂ND7 = NL + κ

2π∫
0

ψ0∫
0

HD7(M, ψ0)δg
L sinψ dψdα (33)

with

HD7(M, ψ0) = HD5(M, ψ0)− HD5(M, ψ = ψ0) (34)

and

	ND7 = c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

HD7(M, ψ0)Pn(cosψ) sinψ dψ

⎤
⎥⎦ δgn

(35)

Practical implementation just involves the evaluation of Eqs.
(29) and (24) for the user-chosen values of ψ0 and M and
subtraction of the value of HD5(M, ψ0) at ψ0 for 0 <

ψ ≤ ψ0
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4 Stochastic and hybrid modifications

Stochastic kernel modifications can be more subjective than
deterministic modifications because reliable error spectra of
the data involved are not always available or reliable (e.g.,
Sjöberg and Hunegnaw 2000). The error spectra of EGMs can
be unrealistic if they are derived only from the diagonal of
their variance covariance (VCV) matrices and are global esti-
mates, so do not necessarily reflect the errors in a particular
region (cf. Sjöberg 2005). Attempts are sometimes made to
‘calibrate’ these error spectra; nevertheless, they still remain
global estimates.

The error spectra of terrestrial gravity data are even more
problematic to estimate (e.g., Kern et al. 2003) and can vary
quite considerably from region to region. Most often, simple
covariance models are used (e.g., Ellmann 2005a), which
render the stochastic modifiers more akin to least squares
collocation and thus subject to the same simplifying assump-
tions such as stationarity and isotropy. As such, the physical
acceptability of the stochastic modifiers is arguably less than
for the deterministic modifiers.

4.1 Wenzel-type approach (modification S1)

Wenzel (1981, 1982, 1983) implemented a Wiener-type filter
in Stokes’s integral, which can also be applied to Hotine’s
integral to give

̂NS1 = NL + κ

2π∫
0

ψ0∫
0

HS1δg
L sinψ dψdα (36)

with the subscript S1 denoting this as the first stochastic mod-
ification and so on

HS1 =
∞∑

n=0

2n + 1

n + 1
wn Pn(cosψ) (37)

and

wn = σ 2
n {δgEGM}

σ 2
n {δgEGM} + σ 2

n {δgT} 0 ≤ n ≤ L (38)

where σ 2
n {δgEGM} is the error degree variance of the gravity

disturbances from the EGM and σ 2
n {δgT} is the error degree

variance of the terrestrial gravity disturbances. This modifi-
cation is—by necessity—restricted to the degree L of EGM
used in the combined solution for the geoid, such that

HS1 =
L∑

n=0

2n + 1

n + 1
wn Pn(cosψ)+

∞∑
n=L+1

2n + 1

n + 1
Pn(cosψ)

(39)

leaving

	NS1=c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

H Pn(cosψ) sinψ dψ

⎤
⎥⎦δgn = 	N (40)

to show that no specific attempt has been made to reduce the
truncation error; it is just as large as for the truncated spherical
Hotine integral (Eq. 7). Nevertheless, the truncation error is
reduced already because of the use of the EGM to degree L
(cf. Sect. 2.2).

4.2 Stochastic hybrid (modification S2)

Similar to the D1 modification (Sect. 3.1), the degree to which
the Wiener-type filter is applied can be limited to any M ≤ L
or any band(s) in that domain.

̂NS2 = NL + κ

2π∫
0

ψ0∫
0

HS2(M)δg
L sinψ dψdα (41)

with, e.g.,

HS2(M) =
M∑

n=0

2n + 1

n + 1
wn Pn(cosψ)

+
∞∑

n=M+1

2n + 1

n + 1
Pn(cosψ) (42)

and 	NS2 = 	NS1 = 	N , showing again that there is no
reduction of the truncation error.

4.3 Stochastic hybrid (modification S3)

An Ostach–Meissl-type modification (cf. Sect. 3.2) can also
be applied to Eq. (42), noting that if M = L it degenerates
to Eq. (39) so can be implemented simply for both options.

̂NS3 = NL + κ

2π∫
0

ψ0∫
0

HS3(M, ψ0)δg
L sinψ dψdα (43)

with

HS3(M, ψ0) = HS2(M)− HS2(M, ψ = ψ0) (44)

and

	NS3 = c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

HS3(M, ψ0)Pn(cosψ) sinψ dψ

⎤
⎥⎦ δgn

(45)

This additional modification accelerates the rate of conver-
gence of the truncation error.

123



W. E. Featherstone

4.4 Stochastic hybrid (modification S4)

This stochastic hybrid is an analogue of Heck and Grüninger
(1987) and Featherstone et al. (1998) to achieve an acceler-
ated rate of convergence of the truncation error without sub-
traction (Eq. 45), but by selecting the value of M for which
the value of the kernel is zero at ψ0.

̂NS4 = NL + κ

2π∫
0

ψ0∫
0

HS4(M, ψ0)δg
L sinψ dψdα (46)

with

HS4(M, ψ0)= HS2(M) s.t HS4(M, ψ0)=0 at ψ=ψ0 (47)

and

	NS4 =c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

HS4(M, ψ0)Pn(cosψ) sinψ dψ

⎤
⎥⎦ δgn

(48)

As for modifications D3 and D6 (Sects. 3.3 and 3.6), this
requires cumbersome trial and error to determine the appro-
priate value of M, but is also complicated further by the choice
of EGM used to provide σ 2

n {δgEGM} and the model adopted
for σ 2

n {δgT} (i.e., via Eq. 38).

4.5 Sjöberg-type approach (modification S5)

Sjöberg (1980a, 1980b, 1981, 1984a, 1984b, 1986, 1991,
2003c) and Sjöberg and Hunegnaw (2000) have provided a
series of incremental stochastic modifications to Stokes’s ker-
nel, culminating in the variant in Sjöberg (2003b, Eq. 26). An
attractive aspect of most of the Sjöberg-type modifications
is that they attempt to simultaneously reduce the truncation
error and errors originating from the EGM and terrestrial
gravity data, or subsets thereof. The principal restriction is
reliably estimating the error spectra of the terrestrial gravity
disturbances σ 2

n {δgT }, as well as the other caveats mentioned
at the start of this Section.

Assuming that Sjöberg (2003b) gives the ‘final word’ on
this class of modifications for Stokes’s integral, when applied
to Hotine’s integral gives

̂NS5 =κ
2π∫

0

ψ0∫
0

HS5(M, L)δg sinψ dψdα + c
L∑

n=2

bn δgn (49)

with

HS5(M, L) = H −
M∑

n=0

2n + 1

2
sn Pn(cosψ) (50)

and

	NS5 = c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

HS5(M, L)Pn(cosψ) sinψ dψ

⎤
⎥⎦ δgn

(51)

Depending on the choices of M and L, the sn modification
coefficients are

2≤n ≤min(M, L) : sn = 2σ 2
n {δgT} (

cn{δg} + σ 2
n {δgEGM})

(n+1)dn{δg}
(52)

(L+1) ≤ n ≤ M : sn = 2σ 2
n {δgT}

(n+1)
(
σ 2

n {δgT} + cn{δg}) (53)

where

dn{δg} = cn{δg}σ 2
n {δgEGM}

+σ 2
n {δgT}

(
cn{δg} + σ 2

n {δgEGM}
)

(54)

and cn{δg} is the degree variance of the gravity disturbances.
For weighting the contribution of the EGM, the bn coeffi-
cients are

2 ≤ n ≤ min(M, L) : bn = 2σ 2
n {δgT}cn{δg}
(n + 1)dn{δg} (55)

n > min(M, L) : bn = 0 (56)

Ellmann (2005a, 2012) provides computer code that can
be adapted to compute the Sjöberg-type modifiers to Hotine’s
kernel, albeit only with an isotropic and stationary covariance
model for σ 2

n {δgT}.

4.6 Stochastic hybrid (modification S6)

An Ostach–Meissl-type modification (cf. Sects. 3.2 and 4.3)
can also be applied to Eq. (49) to give

̂NS6=κ
2π∫

0

ψ0∫
0

HS6(M, L , ψ0)δg sinψ dψdα+c
L∑

n=2

bn δgn

(57)

with

HS6(M, L , ψ0) = HS5(M, L)− HS5(M, L , ψ = ψ0) (58)

and

	NS6=c
∞∑

n=L+1

⎡
⎢⎣

π∫
ψ0

HS6(M, L , ψ0)Pn(cosψ) sinψ dψ

⎤
⎥⎦δgn

(59)

The case of varying the parameters in stochastic modification
S5 to achieve a zero crossing of the kernel at the truncation
radius ψ0 is not considered on the grounds of practicality;
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there are simply too many parameters to trial to make it fea-
sible versus the more pragmatic approach proposed here.

5 Hybrid and band-limited modifications: some
suggestions

This section is restricted to a brief discussion of only a few of
the options possible, though there are many others; the final
choices are left ultimately to the ‘user’. This style of pre-
sentation is deliberate to encourage the ‘user’ to experiment
with various combinations and permutations so as to tune the
data combination for their data sources and area(s) of inter-
est. As alluded to earlier, there is no specific requirement to
use any single modification in isolation or to any particular
degree or truncation radius, especially when treating them as
band-pass filters to reduce errors in the combined solution
for the geoid. This applies to Hotine’s, Stokes’s and many
other geodetic integrals.

Modern EGMs, particularly those derived from GRACE
and/or GOCE satellite gravimetry, are far superior at mod-
elling the low-frequency geoid than terrestrial data alone. As
such, it is logical to apply an as-strong-as-possible filter to
the terrestrial data, e.g., to the degree that the EGM is con-
sidered reliable, so as to rely more upon the low-frequency
geoid provided by that EGM. The D1 modification (Sect. 3.1)
is the most powerful filter because it removes the low-degree
polynomial terms altogether, but the amount of filtering also
depends on the truncation radius used (cf. Vaníček and Feath-
erstone 1998). The S1 and S2 modifications (Sects. 4.1 and
4.2) are less effective high-pass filters because they depend
on the estimates of σ 2

n {δgT}, noting that if σ 2
n {δgT} = 0, they

degenerate to the D1 modification.
One suggested strategy, but only in this author’s opinion

(cf. Featherstone 2003a), is to use the D1 modification for the
low degrees where the satellite-only EGM is superior to ter-
restrial data, then use other modifications in the bands where
the satellite-only EGM starts to deteriorate, e.g., because of
the attenuation of gravitation at satellite altitude. Assuming
that GRACE and/or GOCE static gravity field models (e.g.,
Pail et al. 2011) are better than terrestrial gravity data below
some degree L1, but start to deteriorate beyond this to degree
L2 (≤ L), e.g., the hybrid band-limited kernels from Eqs.
(12), (39) and (41) can be combined to give

HD1+S1 = H −
L1∑

n=0

2n + 1

n + 1
Pn(cosψ)

+
L2∑

n=L1+1

2n + 1

n + 1
wn Pn(cosψ) (60)

Likewise, hybrid band-limited versions of the more sophis-
ticated modifiers can be implemented together with the D1
modifier, which can reduce the truncation and other errors.
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Fig. 2 Solid line A hybrid band-limited D1+S1 modified Hotine kernel
(Eq. 60) for L1 = 50 and L2 = 2, 160 with σ 2

n {δgEGM} computed from
EGM2008 and an assumed σ 2

n {δgT} of 0.01 mGal2; dotted line A hybrid
band-limited D1 + S5-modified Hotine kernel (Eq. 61) for L1 = 50 and
L2 = 100 and ψ0 = 10◦

Just as two other examples, combining Eqs. (12), (24) and
(50) gives

HD1+D5 = H −
L1∑

n=0

2n+1

n+1
Pn(cosψ)−

L2∑
n=L1+1

2n+1

2
hn Pn(cosψ) (61)

HD1+S5 = H −
L1∑

n=0

2n+1

n+1
Pn(cosψ)−

L2∑
n=L1+1

2n+1

2
sn Pn(cosψ) (62)

The above three examples can be extended or simplified
depending upon one’s confidence in the terrestrial gravity
error spectra, say where the S5 modification is applied in
bands where the error spectra are known and the D5 modifi-
cation applied where they are not. Naturally, there are many
more and alternative options than suggested here.

Figure 2 shows two examples of the hybrid band-limited
modified Hotine kernels. Equation (60) is calculated using
L1 = 50, where polynomial terms are removed completely
in the band 0 ≤ n ≤ 50, and the Wenzel-type modifier
(S1) is computed to L2 = 2,160 (i.e., 51 ≤ n ≤ 2, 160).
EGM2008 (Pavlis et al. 2012) was used to provide the error
degree variances of the EGM and σ 2

n {δgT} are very crudely
assumed to be 0.01 mGal2 for all degrees in a band-limited
implementation of Eq. (38). The example presented for Eq.
(61) also removes polynomials to L1 = 50 and applies a band-
limited Vaníček–Kleusberg-type modifier (D5) to L2 = 100
(i.e., 51 ≤ n ≤ 100) computed for a spherical cap radius of
ψ0 = 10◦.

As well as using band-limited modifiers, it is also pos-
sible to truncate the modified kernel to some degree L3
that is commensurate with the spatial resolution of the data
(cf. Colombo 1977), and which can also avoid aliasing of
high-frequency errors (cf. Kern et al. 2003; Novák et al.
2003). Thus, Eqs. (12), (60), (61) and (62) are adapted to
omit the spherical Hotine kernel that contains infinite degrees
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(Eq. 5) and instead evaluate the kernel in bands that are driven
by the perceived reliability of the EGM (L1), the types of
modifications selected (L2) and the spatial resolution of the
terrestrial gravity disturbances (L3). The overbar is used to
distinguish these as the band-limited hybrid kernels.

H̄D1 =
L3∑

n=L1+1

2n + 1

n + 1
Pn(cosψ) (63)

H̄D1+S1 =
L2∑

n=L1+1

2n + 1

n + 1
wn Pn(cosψ)+

L3∑
n=L2+1

2n + 1

n + 1
Pn(cosψ) (64)

H̄D1+D5 =
L2∑

n=L1+1

2n + 1

2
hn Pn(cosψ)+

L3∑
n=L2+1

2n + 1

n + 1
Pn(cosψ) (65)

H̄D1+S5 =
L2∑

n=L1+1

2n + 1

2
sn Pn(cosψ)+

L3∑
n=L2+1

2n + 1

n + 1
Pn(cosψ) (66)

Naturally, multiple bands and modifiers are possible by com-
bining the above; again, the choices are left to the ‘user’
depending on their data source(s) and area(s) of interest.

The rate of convergence of the truncation error can be
accelerated by setting the Hotine kernels to zero at the trun-
cation radius, which removes the discontinuity. This zero can
be achieved by simple subtraction or appropriate choices of
L1, L2, L3,wn, hn and/or sn , but noting that some require iter-
ation and lessen the amount of control that the ‘user’ has over
the filtering properties of the modifications. Another way to
remove the discontinuity is to taper the kernel (cf. Forsberg
et al. 2003), though this was not presented as a means to
accelerate the convergence, but instead to avoid spectral dis-
continuities, which can lead to Gibbs fringing when trans-
forming the kernel from the spatial to the spectral domain in
FFT geoid computations.

In the most generic form that can be applied to any of the
modified Hotine kernels, this is

H∗ =
L3∑

n=0

αn
2n + 1

n + 1
mn Pn(cosψ) (67)

where H∗ is the modified Hotine kernel, mn are the modifi-
cation coefficients (e.g., 1,wn, hn or sn), and the tapering αn

can be implemented by the following, but other methods of
tapering can be used according to the user’s preference

αn =
⎧⎨
⎩

1 for 0 ≤ n < l1
(L3 − n)/(L3 − l1) for l1 ≤ n ≤ L3

0 for n > L3
(68)

where l1 is chosen by the ‘user’. Tapering could also be used
if a combination of the modified kernels causes other discon-
tinuities.

6 Closing remarks

As more and more terrestrial (land, marine and airborne)
gravity observations are coordinated by GNSS, gravity dis-

turbances are becoming available for regional geoid com-
putation via Hotine’s integral. Until large surface areas are
covered by these types of observations, the truncation error
will be larger than desired. As such, this article has presented
a suite of deterministic, stochastic, hybrid and band-limited
modifications that can be trialled with gravity disturbances
for regional geoid computation. Many are driven by modi-
fications already well established for Stokes’s integral and
gravity anomalies, some are new, and some can be applied
back to Stokes’s and other geodetic integrals, particularly
the band-limited and hybrid variants. However, the motiva-
tion for this work is not only the reduction of the truncation
error, but also the optimal combination and filtering of the
heterogeneous GNSS-based gravity data sources available
for regional geoid computation.

These various modifications to Hotine’s kernel have been
presented in a deliberately non-prescriptive manner so that
the ‘user’ has total freedom to experiment with their combi-
nations and permutations, provided that terms are not omit-
ted, which will result in an incomplete spectral representation
of the geoid model. It is suggested, but not necessarily rec-
ommended, that (1) D1 modifications (Sect. 3.1) are applied
routinely because of the superior data now being provided by
GRACE and/or GOCE EGMs, (2) the stochastic modifiers
can be applied when the ‘user’ is confident with estimates of
the error spectra of the data or wishes consider a stochastic
interpretation of the gravity field, and (3) the deterministic
modifiers can be applied when there is no reliable information
of the error properties of the data or the ‘user’ does not wish
to consider a stochastic interpretation of the gravity field.
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Appendix A: Review and classification of modifications
to Stokes’s kernel

Partial reviews of the modifications to Stokes’s kernel are
given in Featherstone (2003b) and Ellmann (2005b). Feath-
erstone (2003b) covers all the deterministic modifications
with the exceptions of Sjöberg (2003a) and and Evans and
Featherstone (2000). Ellmann (2005a) covers three stochas-
tic modifiers by Sjöberg (1984b; 1991; 2003c). However, the
“examples of use” column in Table 1 also includes some
review materials.
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Table 1 Review and classification of modifications to Stokes’s kernel

Deterministic Operation Motivation Examples of use

Molodensky et al. (1962) Minimise the L2 norm of the trun-
cation error for the Stokes’s (1849)
kernel

Reduce the truncation error Jekeli (1980a, 1981); Petro-
vskaya (1988); Petrovskaya and
Pishchukhina (1990); Smeets
(1994); Šprlák (2010)

Wong and Gore (1969), [also see de
Witte 1967]

Remove low-degree Legendre
terms from the spherical Stokes’s
kernel

Reduce the truncation error Smeets (1994); Omang and Fors-
berg (2002); Ellmann (2005b);
Šprlák (2010); Li and Wang (2011);
Wang et al. (2011)

Ostach (1970); Meissl (1971) Set the spherical Stokes’s kernel to
zero at the truncation radius by sub-
traction

Accelerate convergence of the trun-
cation error

Jekeli (1980a, 1981); Petrovskaya
(1988); Wichiencharoen (1984);
Smeets (1994); Featherstone and
Olliver (1994); Šprlák (2010)

Heck and Grüninger (1987) Set the Wong and Gore (1969) ker-
nel to zero at the truncation radius
by choice of degree of modification,
subtraction, or both

Accelerate convergence of the trun-
cation error

Smeets (1994); Omang and Fors-
berg (2002); Šprlák (2010); Li and
Wang (2011)

Vaníček and Kleusberg (1987);
Vaníček and Sjöberg (1991)

Minimise the L2 norm of the trun-
cation error for the Wong and Gore
(1969) kernel

Reduce the truncation error Vaníček et al. (1987, 1990); Kadir
et al. (1999); Featherstone et al.
(2004); Ellmann (2005b); Šprlák
(2010); Li and Wang (2011)

Featherstone et al. (1998) Set the Vaníček and Kleusberg
(1987) kernel to zero at the trunca-
tion radius by subtraction, choice of
degree of modification and/or cap
radius, or both

Reduce and accelerate convergence
of the truncation error

Featherstone et al. (2001); Feath-
erstone and Filmer (2012); Šprlák
(2010); Claessens et al. (2011); Li
and Wang (2011)

Evans and Featherstone (2000) Set the kernel and its higher order
derivatives to zero at the truncation
radius

Further accelerate convergence of
the truncation error

None found

Stochastic Operation Motivation Examples of use

Wenzel (1981, 1982, 1983) Wight the kernel according to the
relative error spectra for the EGM
and terrestrial gravity data

Does not aim to reduce the trun-
cation error, but to balance relative
data precision

Wichiencharoen (1984); Wang
(1993); Denker et al. (2009); Li and
Wang (2011)

Sjöberg (1980a,b, 1981, 1984a,b,
1986, 1991, 2003b,c); Sjöberg and
Hunegnaw (2000)

Minimise the truncation error,
potential coefficient errors and ter-
restrial gravity data errors, or com-
binations thereof. (Some variants
of the deterministic modifications
are also considered.)

Aims to reduce all errors rather than
just the truncation error alone

Wang (1993); Smeets (1994); Naha-
vandchi and Sjöberg (2001); Ell-
mann (2005a,b, 2012); Li and Wang
(2011)

Band limited Operation Motivation Examples of use

Colombo (1977) Band limit the kernel to the resolu-
tion of the terrestrial data and apply
a Molodensky-type modification

Lessen computational effort and
reduce the truncation error

Sjöberg (2003a)

Li and Sideris (1994) Remove banded Legendre terms
from the spherical Stokes’s kernel

Reduce propagation of terrestrial
gravity data errors

Li and Sideris (1994)

Featherstone (2003a) Use different deterministic modifi-
cations in different bands

Rely more on the geoid signal from
satellite gravimetry

None found

Kern et al. (2003) Use stochastic-deterministic modi-
fications in a banded combination

Rely more on the geoid signal from
satellite gravimetry and seek an
optimal data combination

Kern et al. (2003) but for simulated
data only

Others Operation Motivation Examples of use

Paul (1991) Use of delta functions to reduce the
truncation error

Local geoid determination None found

Zelin and Zuofa (1992);
Neyman et al. (1996)

Modification for a rectangular inte-
gration domain instead of a spheri-
cal cap

Reduce the truncation error None found

Sjöberg (2005) Inclusion of VCV matrices in a
localised stochastic modification

Local geoid determination None found
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