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L E A S T - S Q U A R E S  SOLUTION 

Abstract 

In this paper a particular class o f  non-linear least-squares problems for which 
it is possible to take advantage o f  the special structure o f  the non-linear model, is 
discussed. The non-linear models are o f  the ruled-type (Teunisson, 1985a). The 
proposed solution strategy is applied to the 2D non-linear Symmetric Helmert 
transformation which is defined in the paper. An exact non-linear least-squares 
solution, using a rotational invariant covariance structure is given. 

1. Introduction 

The aim of the present paper is to derive an exact non-linear least-squares 
solution for the 2D non-linear Symmetric Helmert transformation. In section two 
we discuss a particular class of non-linear least-squares problems for which it is possible 
to take advantage of the special structure of the non-linear model. The non-linear models 
are manifolds of the ruled-type (see Teunissen, 1985a). We show that for this class of 
non-linear least-squares problems a two-step procedure can be devised. The first step 
consists of a linear least-squares problem, while the second step consists of a non-linear 
least-squares problem of a reduced dimension. In general the second step has to be 
solved through the use of linearization and iteration techniques, such as Gauss'method 
or variations thereof. A theorem is given which justifies the proposed two-step 
procedure. 

In section three we generalize the stochastic model of the classical linear 2D 
Helmert transformation to rotational-invariant covariance matrices. The linear least- 
squares solution is given. 

in section four we introduce our new non-linear 2D Symmetric Helmert 
transformation. A rotational-invariant covariance structure is assumed. The non-linear 
least-squares solution is derived with the proposed two-step procedure. We show that 

~ t  

the product of the scale estimators ~kS[,l and XSH of the Symmetric Helmert 
M r 

transformation and its inverse satisfies ~SH " ;kSH = 1 . We also show that in general 

one systematically underestimates the scale when using the classical Helmert 
transformation. 

Bull. G~od. 62 (1988)pp. 1-15. 
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The appendix contains a proof of an expression for the derivative of an 
orthogonal projector. This result is useful in itself for pertu(bation analysis and is 
needed when one wants to apply Gauss'iteration method to the second step of the 
proposed two-step procedure. 

2. A particular class of Non-Linear Least-Squares Problems 

We wi l l  study a method that takes advantage of a special structure of an 
opt imizat ion problem, which is expressed so that the opt imizat ion wi th respect to some 
of the variables is easier than wi th respect to the others. 

Example : Orthogonal projection onto a ruled surface (see Teunissen, 1985a) 

A ruled surface is a surface which has the property that through every point  of 
the surface there passes a straight line which lies entirely in the surface. Thus the 
surface is covered by straight lines, called rulings which form a family depending on 
one parameter. 

In order to f ind a parametrization of a ruled surface choose on the surface a 
curve transversal to the rulings. Let this curve be given by c ( v ) ,  v EE R .  A t  any point  
of this curve take a vector t of the ruling which passes through this point. This vector 
obviously depends on v .  Thus we have t (v ) .  Now we can wri te the equation of the 
surface as 

a ( u ,  v) = c ( v ) +  u t ( v ) ,  u ,  v E R ,  a ,  c ,  t e. R a (2.1) 

The parameter v indicates the ruling on the surface and the parameter u 
shows the posit ion on the ruling. 

Now let us assume that we have to solve for the fo l lowing non-l inear least- 
squares problem : 

rain. I l y - a ( u ,  v) ll 2 , (2.2) 
t l ~ V  

with the norm 11.112 = ( . ) , Q ; I  ( . )  J 

Since the ruled surface is flat in the directions of the rulings, whi lst curved in 
the directions transversal to it, it becomes advantageous to perform the adjustment in 
two steps. In the first step one would then solve for a linear least-squares adjustment 
problem, and i n  the second step for a non-l inear adjustment problem of a reduced 
dimension. That is, one first solves for 

min. I I ( y - c ( v ) ) -  t ( v ) u l l  2 , (2.3) 
u 

which gives 

u (v) = [ t*  (v) Qy-1 t (v)] - t  t* (v) Q y l  (y _ c (v)) . (2.4) 

Then in the second step one solves for the non-l inear problem; 

rain. I l y - ( c ( v ) +  t (v)  u ( v ) ) l l 2  (2.5) 
Y 



THE NON-LINEAR 2D SYMMETRIC HELMERT ..... 

As a generalization of the foregoing example, we are interested in solving the 
non-l inear model 

Ely  I = A(z)x ,Cov. ly I = % , ( 2 . 6 )  

in a least-squares sense, where y is the m dimensional vector of observational 
variates, E l .  } stands for the mathematical expectation, A ( z ) i s  a m.'~n 1 matrix, 

Qy is the mxa'n positive definite covariance matrix of y ,  and • and z are 

respectively the n l -  and n 2 dimensional vectors of unknown parameters. We wi l l  

assume that matr ix A (z) has constant ful l  rank for all z of interest. We can wri te (2.6) 
in index notation as 

E l y i l  = A i~ (z)x  ~ , C o y .  l y i l  = gij (2.6') 

We wi l l  assume that the mn~ functions A i (z) are cont inuously 
(z 

differentiable. We define 

a) f (x ,z)  ~ I l y - A ( z )  x l l  2 

J- 12 b) fl(z) A= I I PA(z) y I (2.7) 

c) x (z) A_ A- (z) y 

where I I . l l  2 = ( . ) * Q y l  ( . ) ,  PA(z) is the orthogonal projector projecting onto 

the rangespace of A (z) P I ' A(z) = I -- PA(z) is the orthogonal projector projecting 

onto the orthogonal complement of the rangespace of A (z) and A -  (z) is the least- 
squares inverse of A (z ) .  

Since x (z) is the solution of rain. f ( x ,  z) we have that 
X 

l a) 

b) 

f l(z)  = f (x ( z ) , z )=  rain. f (x ,z )  V z 
X 

fl (z)~_ f(x,z) V x,z . 
(2.8) 

From (2.7) also fol lows that 

a) ax f(x,z)= -2(y-A(z)  x)*Qyl A(z) 

b) a z f ( x , z )=  - 2 ( y - A ( z ) x ) * Q y  1 azA(Z)X 

c) a z fl (z) = -2(pIA(z)y)*OylazPA(z)y �9 

(2.9) 

In the appendix it is proved that 
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= ([ -- PA (z)) 0z A (z) A-  (z) 4- [Qy 1 (I - PA (z)) a z A (z) A -  (z) Qy] * 

Since 

l .L* -1 p I 1 p l  
a) PA(z) Qy A(z) = Q ;  A(z) 

P J" 0 b) A -  (z) A(z) = ' 

substitution of (2.10) into (2.9c) gives 

- p l  cq 8 z f l ( z )  = - 2 y * Q y  1 A(z) 

(2.11) 

(2.10) 

A(z) A- (z)y . (2.12) 
Z 

We are now ready to proof the following theorem, which gives a justification 
for the discussed two-step procedure. 

Theorem 

( i ) .  If :X and z" are such that 

then 

a) 8 z f l  (2) = 0 ,  b) ~, = A -  (~.)y , (2.13) 

a) f, (~ )=  f ( x ,  z) ,  b) a x f ( ~ ,  ~') = O, c) 8 z f ( ~ , z ) =  0 .(2.14) 

then 

( i i ) .  If x and 'z are such that 

a) fl  (~) ~- f l ( z )  V z,  

f ( x ,  z) -<- f ( x , z )  V x , z  . 

A 

b) x = A -  ( z ) y  , (2.15) 

then 

( i i i ) .  If x and z are such that 

f ( x , ~ )  ~- f ( x ,  z) V x , z  , 

(2.16) 

a) f l ( ~ ) =  f ( x , ~ ) ,  b) f l (~ )  ~- f l ( z )  V z . 

proof of (i) : 

(2.14a) foilows from (2.7c), (2.13b) and (2.8a). 
/ 

(2.14b) follows from (2.13b), (2.9a), (2.1 la) and the fact that PA(z) 

(2.14c) follows from (2.13a), (2.13b), (2.9b), (2.11a) and (2.12). 

(2.17) 

(2.18) 

A (z) = O. 

4 
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Thus if ~. is a stationary point of f l  (z) and x is defined by (2.13b) then 

( x , ~ )  forms a stationary point of f ( x ,  z ) .  

proof of ( i i )  : 

We will give the proof by contradiction. Assume that a ~ and z" exist such 

that [ ( y , ,  z) < f ( x ,  2 ) .  With (2.8b) this gives : f l  (~) --< f ( x '  ~) < [ ( x ,  z ) .  

With (2.15b), (2.7c) and (2.8a) this gives : [l(z-")_-< s  [ ( x , ' z ) =  

[ ( x ( z ) , ' 2 )  = [ i  ( z ) .  But this contradicts our assumption that f l  (~) m_ [ ( z )  V z.  

Hence no x and z" exist such that f ( } , ,  }.) < [ ( . x ,  ~,). 

Thus if ~. is a global minimum of f l  (z)  and x is defined by (2.15b) then 

( x ,  z) is a global minimum of [ ( •  z ) .  

proof of Off)  : 

First we will proof (2.18a). 

From (2.8b) fol!ows that [1 ('~) <= f ' ( ~ '  ~ ' )  Now let x = A -  ( z ) y .  With 

(2.7c) and (2.8a) follows then that f l  (~:) = s (~' '  ~) ~ f (~ ' '  ~ ' )  Since (~ ,  ~) is a 

global minimum of [ ( •  z) we must have equality, i.e. [1 (z)  = [ ( , x , z )  = f ( x ,  z ) .  
We wili proof (2.18b) by contradiction. 

Assume that a z" exists such that f l  (~) < f l  ( ~ )  Now let x = A -  (z.)y . 

With (2.7c) and (2.8a) this gives �9 f l  (~) = [(x(z---'), z) = s  z) < f l  ( ~ )  

According to (2.18a) we have f l  (z) = f ( x ,  z) and thus f l  (~) = f ( x ( z ) , z )  = 

f ( x ,  z-) < f t  (~) = f ( x '  ~ )  But this contradicts our assumption that f (~ . ,  ~) _-< 
A 

f ( x ,  z) "9' x ,  z.  Henceno 2 exists such that f l  (Z) < f l  ( z ) .  

Thus if ( :x,  z) is a global minimum of f ( x ,  z) then ~. isaglobal  minimum 
of f l  ( z ) .  This concludes the proof of the theorem. 

From ( i i )  and ( i i i )  of the Theorem follows that if the global minimum 

(.~, ~.) of f ( x ,  z) is unique, then also the global minimum of f l  (z) is unique and 

is given by ~.. Conversely, if the global minimum ~ of f l  (z)  unique then the global 

minimum of f ( x ,  z) is unique and is given by ( x ,  z ) .  The uniqueness of the x-  

component follows from the uniqueness of the least-squares inverse A - ( z ) ,  since 
A (z)  is assumed to be of constant full rank. 

When one applies the above described two-step procedure one still has to solve 

for the non-linear problem rain, II p.l. 2 A(z) y II This can be done by Gauss'iteration 
Z 

method or variations thereof. In this paper we will not discuss the application of the 
Gauss'iteration method to the above problem, but see e.g. (Teunissen, 1984, 1985a 
and b) for more details. Instead we will use the described two-step procedure to solve 
for the 2 dimensional non-linear Symmetric Helmert transformation in an analytical 
way. 
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3. The 2 D  He lmer t  t ransformat ion  wi th  a rotat ional  invar iant  covariance structure 

The linear model of the 2D Helmert transformation reads 

,r'], ix 1 E = X  + 

LYiJ sin 0 cos v i ty 

, i =  l . . . . . . .  n , (3 .1)  

where ( x  i , y i )  are the observed cartesian coordinates, ( u i ,  v i )  are the fixed, given 

coordinates and ;k, 8 ,  t x and ty  are respectively the four unknown scale, 

orientation and translation parameters. 

We can write (3.1) in a more convenient form by making use of the Kronecker 
product |  for which the fol lowing four properties hold (see e.g. Rao, 1973) " 

I 
(AOB)*= .A*| (AOB)-= A- @B- 

A I A 2 |  1 B 2 = (A I@B I ) ( A  2 |  2)  

(A+B)| = A@C+ B| 

Take therefore the definit ions " 

using any inverse 

(3.2) 

x A . . ) ,  ~ ) ,  z~ y , ) ,  = ( ' ' ' x i "  ' Y = ( ' ' ' Y i  . . . .  z = ( x *  , 

u -  -A ( . . . U  i . . . ) *  v=A( v i )* w A (u*  v * ) *  

S ~ X  , e ~=(l . . . .  l ) * ,  t ~ ( t x  t y ) *  , 
- sin 0 cos 0 

(3.3) 

and wri te (3.1) as 

E { z l  = (S|  n 1 2 |  (3.4) 

We assume the covariance matrix of z to be rotational invariant, i.e. 

Cov. Iz I = I 2 @ Q  z , (3.5) 

where Qz is an arbitrary n x n positive definite matr ix. The least-squares solut ion of 

the linear model ( 3 . 4 ) -  (3.5) of the 2D Helmert transformation wi th a rotational 
invariant covariance structure was given in (Teunissen, 1986) and reads �9 

6 
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~, = 
[[u* Qz 1 x'+ v* Qz 1 y]2 + Iv* Qz 1 x -  u* Qz ] ~]2 ]{ 

[u* Qz 1 u + v *  Qz 1 v] 

{ *  Qz 1 ~ - u . *  Q z l ~  
= tan - 1 (3.6) 

~ * Q z  Ix+~= Q z l ~  " 

; ,  = Xc-~,~o~u -~, i .b~ ~ 

;y = Yc - X c o s O  v c+ ~tsin*Ou c , 

where the weighted centred coordinates are defined by 

z ~ x ,  ;~  ; Pe ~ ~,'~ =Pey, u~ u ,  v 

~,Qft• ~*Qix y , ,e*Of~u ,~e*Qf~v 
= ' Yc ' Uc  e *  1 c 1 

Xc e * Q z  l e  e * Q z  l e  Qz e e*Q z e 

Pe J" { I n - e ( e *  Qz le )  -1 e* Oz 1 (3.7) 

Note that if Qz = I n '  solution (3.6) reduces to that of .the wel l -known classical 

Helmert transformation (He]mert, 1893). 

4. The 2D Symmetric Helmert transformation 

We define the non-l inear model of the 2D Symmet r i c  He lmer t  t ransformat ion 

wi th  a rotational invariant covariance structure as �9 

[:] r s.In I2.e 
{ }:  L i2. 0 

[:] [i2.oz 0 ] 
~ 

0 I2 | Qw 

(4.1) 

We wi l l  assume that. 

Qz = t r2Qw'  a E R + .  (4.2) 

Our problem is to solve for model (4.1) in a least-squares sense. We define 

[:11 f ( w ' , t , X ,  0 )~  II - II 2 , (4.3) 

I2n 
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where 

[oO,, 0j II . 112 = ( . ) ,  ( . )  ( 4 . 4 )  

Is ~Q~)  

In order to solve 

rain. f ( w ' , t , ~  ,0) , (4.5) 
s 

w , t ,h ,O 

we proceed in two steps. First we fix ~. and 8 , and solve for 

min. f ( w ' ,  t ,~ ,0) . (4.6) 
t 

W , t  

This is a l inear least-squares problem. Its solution is denoted by w'  (X,  8) 
t (~,, O). In the second step we solve for 

rain. f l ( X , O )  = rain. f ( w ' ( h , O ) , t ( ~ . , O ) , X , O )  . 
h, 0 h,O 

(4.7) 

Once we have found the solution ~ and 0 of this non - l i nea r  least-squares 
problem, the complete solution of (4.5) is given by 

if'  = w ( ~ , , ~ )  

t = t , ) 

^ 
8 = 

(4.8) 

Step jr �9 (2~ and /9 fixed) 

For X and O fixed we find from 14.2), {4.3), 14.4) and {4.6) that 

,(x,o).] Ls| e*O;le12] U2| o 
(4.9) 

___IX2+~ -1[12|174174 . 

- o - 2 ( e * Q z l e )  -1S |  (X +o2) o - 2 ( e * Q z l e )  --1 12 ] 

�9 S* |  I o 212~Qz ! 

I 2 |  1 

8 
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w'(X,O) = (X 2 +0'2) -1 [S*| o2 w] +Wc| 

t (X,O) z c - S w  c , 

where the weighted centred coordinates are defined as 

zr174162 {(I2| , Wc| {(I2|  

Pe ~ e(e* Qz le) - I  e*Qz 1 ~ A  = W _ W c |  e , = z - - z c @ e  , x~ A 

Step 2 �9 

Substitution of (4.10/ into (4.3) gives 

I:] rs" l[: f l ( x , o )  = 11 L '=o o <~,o~j 11 

- (X 2+o2)  - 1 S * |  [ ~ - ( S |  ] 

o r  

where 

f t(X,O) = o2(X2+o2)-1 I I~ - (S~[  n )~ l l2  , 

In order to 
reparametrization 

X = o tan 9 

we can write (4.13) as 

where 

II.II 2 = ( . )* I2 |  �9 

find ~ and 0 we 

fl (o tanO, O) = 

(4.10) 

sin ~ sin 

COS 

{4,11) 

(4.12) 

(4.13) 

(4.14) 

need to minimize (4.13). Using the 

(4.15) 

~ ] . a | s i n  4) sin 

c LCOS r 

, ( 4 . 1 6 )  
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a = a 2 ( ~ * Q z  1 ~ + ~ * Q z  lv-) , 

b = - a  (5*QZ -1 ~ '+r  ly )  , 

d = X*Qzl x + y * Q z l y  " 

(4.17) 
c = - o ( ~ ' *  Qz 1 5 - f i *  Q z  1 y )  

The minimizat ion problem 

rain. fl ( a tan ~ , 0 ) , 
~b,o 

(4.18) 

reduces to an eigenvalue p r o b l e m  : 

a - p  0 b 

0 a - p  c 

b c d - #  

= 0  (4.19) 

The three eigenvalues of (4.19) read �9 

P" ---- a 

1 
(a + d)_+ [(a + d) 2+4(b  2 +c 2 -ad ) ]  T 

# 1 , 2  = 2 

(4.20) 

Hence, the smallest eigenvalue reads " 

(a+ d ) -  [ ( a -  d)2 + 4(b 2 +02)] { 
Pmin = (4.21) 

From the three equations 

0 :] sinicos ][il. 
0 a - # r a i n  ] s i n  cosO = 

b c d -- Pmin L.COS 

, (4.22) 

we f ind that 

b o b 
c o s  = ~ c o s  = 

a - I d m i  n 

(4.23) 

~ sin O = a tan ~ sin 0 = - a c 

a - -  t . t m i  n 

From (4.10), (4.17), (4.21) and (4.23) fol lows therefore that the f inal least- 
squares solution of the n o n - l i n e a r  2D S y m m e t r i c  H e l m e r t  t r a n s f o r m a t i o n  (4 .1) - (4 .2)  
is given by : 

10 
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w = Wc |  + ~ 2 ) - 1  [(S |  ) ~ ' + ~  w] , 

~cos'O = 2 o2 < ~ , ' ~ >  

~ $in 0 = 

a 2 II w II 2 
1 

-- IIZ l[ 2 q- [(0 .2 II W ]t 2 - - I I~  II 2)2 4-402 ( ( ~ , W > 2  4 ,<Z ,W, ,>2)  ]2 

(4.24) 
2 o2 < ~ ' ,  ~ " >  

02 IIW If 2 -- tl~ll 2 Jr- [ (0  .2 Ilwll 2 -  IIZ'112) 2 4--40 " 2 ( < ~ , ~ > 2  4,<~'w,,>2)]22" 

with the inner product 

< . , . >  = ( . ) * I 2 |  , 

and ~ "  -- . 

Note that this solution reduces to that of (3.6) if o z -+oo. A l s o  note that the 
smallest eigenvalue /ami n of (4.21 } is not unique if 

I Iz ' l l  2 = l i e  II 2 < z , ~ > =  0 and < ~  w " > =  O 

If this is the case the matrix of (4.16) reduces to a scaled unit matrix and the 

solution for "~ and ~" becomes indeterminable. We shall disregard this exceptional 
case. 

Furthermore if 

< 2 , ~ >  = 0 and < 2 , ~ " >  = 0 , 

then I~,nin = a 2 I1~112 if a 2 I1~112 < I1~'112 and l~mi n = II z' l l  2 if I1~'11 = < 

o 2 11~112. From (4.22) fol lows then that 0 is indeterminable and cosO = 0 or 

sin 0 = 0 .  We shall also disregard this exceptional case. 

Let ;k be a scale parameter, i.e. positive, From (4.22) fol lows then that 

! 

?t/o = tan ~ (bZ + c2)7 d-~.,in 
= - l (4.25) 

a--I'tmin (b 2 4-c2)  T 

Let us denote the scale estimators of the Helmert transformation (3.4) by 

~ H '  of the corresponding transformation when interchanging the role of z and w 

11 
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A t 

by X H , of the Symmetric Helmert transformation (4.1) by ?~SH and of the 
f ~  

corresponding transformation when interchanging the role o f  z and w by X' SH" 
From (3.6), (4.17) and (4.25) fol lows then when e = I that " 

,, (b 2 + ca){ ,,, (b 2 + c 2 )'{- 
~H = ;~H = 

a ' d 

^ (b 2 4- c2) { d -Idmi n -,, (b 2 + c2) { 

~SH = ' a - - l a m i  n (b 2 + c 2 ) ~  ' ISH d - l a r n i n  

(4.26) 

a - t l m i  n 

(b 2 + c: )~  

This shows that for the 2D transformation �9 

~k H .X H =/= 1 , but XSH "~'SH = 1 (4.27) 

From (4.26) also fol lows that �9 

^ ~ a 
XSH = H" (4.28) 

a - / 2  m in 

Hence, we see that in general the classical Helmert transformation systematically 
underestimates the scale. 

The two scale estimates are identical if 

b 2 + c 2 - ad = 0 (4.29) 

That is, when E" is parallel to ~ or to ~ " .  

5, Concluding remarks 

In this paper we discussed a particular class of non-l inear least-squares 
problems for which a useful two-step procedure can be devised. Exact least-squares 
solutions are given for the 2D Helmert transformation and its non-l inear symmetrical 
generalization. For the two dimensional case a rotat ional- invariant covariance structure 
was assumed. Solutions of the linearized versions and teststatistics were already given 
in (Teunisscn, 1984). Our exact non-l inear least-squares solutions make the computat ion 
of approximate values, l inearization and iteration superfluous. 

Al though we had to make some simpl i fy ing assumptions in the covariance 
structure of the observational variates, it is felt that these assumptions are suf f ic ient ly  
general for many practical applications. When digit izing maps, the covariance matr ix 
of the digitized coordinates can o f ten even be simplif ied to a scaled uni t  matrix. The 
assumption of the rotational invariant covariance structure is also in many cases 
suff icient for geodetic networks. For instance, the 8aarda-Alberda substitute matr ix 
(see e.g. Brouwer et al., 1982 or Teunissen, 1984a) : 

12 
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x i 

xj 

Yi 

yj 

x i Xj Yi Yj 

d 2 

d 2 -d~ j  

d 2 -d~j 

d 2 

d 2 cl 2 - d .  2. 
U 

d 2 _ d .  2. d 2 
11 

d 2 : a parameter  

2 
d i-J : a covariance function 

is an example of a rotational-invariant covariance matrix. It describes the precision 
of many geodetic networks to a sufficient degree and can therefore be used in our 
formulae. 

In a forthcoming contribution we will derive some local and global distributional 
properties of our non-linear least-squares estimators. The approach wil l  make use of 
differential geometric methods of non-linear adjustment (Teunissen, 1984, 1985a, b). 

For a discussion of the 3D Helmert transformation we refer to (Sans6, 1973), 
(K6chle, 1982) and (Krarup, 1985) and for the 3D Helmert transformation with its 
symmetrical generalization to (Teunissen, 1985). 
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APPENDIX 

P r o o f  o f  " 

3zPA(z) = ( I -PA(z) )3  zA(z)  A - ( z ) + [ Q ; I  ( I -PA(z))a  zA(z)  A- (Z) Qy]*.(A1) 

where 

The orthogonal projector PA(z) and least-squares inverse A- (z) are given by 

a) PA(z) = A(z) N- I  (z) A* (Z)Qy I 

b) A-(z)=  N - I  (z) A * ( z ) Q ;  I , 

N (z) = A* (z) Qy I A (z) . 

From 

3z(N - I  ( z ) N ( z ) )  = 3zl = 0 = 3z N- I  (z) N(z)+  N - I  (z)O z N(z)  

(A2) 

follows that 

3 zN-I  ( z ) =  - N - I  (z) a zN(z)  N-I (z) . 

From 

azN(z)  = az(A*(ZlQy I A(z) )  

follows that 

azN(Z ) = OzA* (Z) Qy I A(z )+  A* (Z)Qy I azA(Z ) . 

(A3) 

(A4) 

(A5) 

From (A2) follows that 
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T H E  N O N - L I N E A R 2 D S Y M M E T R I C H E L M E R T  ..... 

0zpA(z ) = 0 zA(z) N -1 (z) A*(Z)Qy 1+ A(Z)0z N-I (z) A*(z)Q;  1 (A6) 

+ A(z) N -[ (Z) Oz A* (Z) Qy 1 

With (A4) and (A5) this gives : 

0zPA(z) = 0zA(Z) N-1 (z) A * ( z ) Q ; I +  A ( z ) [ - N - I  (z)(0 zA*(z) Qyl A(z) 

+ g *  (Z) Qy I Oz A(z))N -1 (z)] A*(z) Q;I + g (z )N -1 (Z)OzA* (Z)Qy 1 

= [ I - A ( z ) N  -1 (z)A*(Z)Qy 1] azA(Z)N - t  (z) A*(Z)Qy 1 

+ A(z) N - l  (Z)az A * ( z ) [ I - Q y  I A(z)N - l  (z)A* (z)] Qyl 

o r  w i t h  ( A 2 )  : 

i)z PA(z) = (I - PA(z))~z A (z) A- (z) + Qy A-* (z)O z A* (z) (I - PA(z))* Qyl , (A7) 

which is identical to (A1). 

Rece ived  : 0 2 . 0 7 . 1 9 8 7  

A c c e p t e d  : 1 3 . 1 1 . 1 9 8 7  
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