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Abstract

In this paper a particular class of non-linear least-squares problems for which
it is possible to take advantage of the special structure of the non-linear model, is
discussed. The non-linear models are of the ruled-type (Teunissen, 1985a) The
proposed solution strategy is applied to the 2D non-linear Symmetric  Helmert
transformation which is defined in the paper. An exact non-linear least-squares
solution, using a rotational invariant covariance structure is given.

1. Introduction

The aim of the present paper is to derive an exact non-linear least-squares
solution for the 2D non-linear Symmetric Helmert transformation. In section two
we discuss a particular class of non-/inear least-squares problems for which it is possibte
to take advantage of the special structure of the non-~linear model. The non-linear models
are manifolds of the ruled-type (see Teunissen, 1985a). We show that for this class of
non-linear least-squares problems a two-step procedure can be devised. The first step
consists of a linear least-squares probiem, while the second step consists of a non-linear
least-squares problem of a reduced dimension. In general the second step has to be
solved through the use of linearization and iteration techniques, such as Gauss' method
or variations thereof. A theorem is given which justifies the proposed two-step
procedure.

In section three we generalize the stochastic model of the classical linear 2D
Helmert transformation to rotational-invariant covariance matrices. The linear least-
squares solution is given.

in section four we introduce our new non-linear 2D Symmetric Helmert
transformation. A rotational-invariant covariance structure is assumed. The non-linear
least-squares solution is derived with the proposed two-step procedure. We show that

the product of the scale estimators )‘SH and RSH of the Symmetric Helmert
transformation and its inverse satisfies ASH ASH = 1. We also show that in general

one systematically underestimates the scale when using the classical Helmert
transformation.
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The appendix contains a proof of an expression for the derivative of an
orthogonal projector. This result is useful in itself for perturbation analysis and is
needed when one wants to apply Gauss‘iteration method to the second step of the
proposed two-step procedure.

2. A particular class of Non-Linear Least-Squares Problems

We will study a method that takes advantage of a special structure of an
optimization problem, which is expressed so that the optimization with respect to some
of the variables is easier than with respect to the others.

Example : Orthogonal projection onto a ruled surface (see Teunissen, 1985a)

A ruled surface is a surface which has the property that through every point of
the surface there passes a straight line which lies entirely in the surface. Thus the
surface is covered by straight lines, called rulings which form a family depending on
one parameter.

In order to find a parametrization of a ruled surface choose on the surface a
curve transversal to the rulings. Let this curve be given by ¢ (v), v € R . At any point
of this curve take a vector t of the ruling which passes through this point. This vector
obviously depends on v. Thus we have t(v). Now we can write the equation of the
surface as

a(u,vV)=c(™+ut(, u,v €ER, a,c,t € R, (2.1)

The parameter v indicates the ruling on the surface and the parameter u
shows the position on the ruling.

Now let us assume that we have to solve for the following non-linear least-
squares problem :

min. 11y —a(u, v) 112, (2.2)
u,v
with the norm ||.H2=(.)*Qy"(-)-

Since the ruled surface is flat in the directions of the rulings, whilst curved in
the directions transversal to it, it becomes advantageous to perform the adjustment in
two steps. In the first step one would then solve for a /inear least-squares adjustment
problem, and in the second step for a non-linear adjustment problem of a reduced
dimension. That is, one first solves for

min. 11(y—c()) —tMull?, (2.3)
which gives
u® = [ WO tMIT MO v -c() . (2.4)

Then in the second step one solves for the non-linear problem;

min. 11y —(c(W)+ t(Wyu@))Ii? . (2.5)

v
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As a generalization of the foregoing example, we are interested in solving the
non-linear model

E{y} = A@x, Cov.{y} = Q, , (2.6)

in a least-squares sense; where y is the m dimensional vector of observational
variates, E‘} stands for the mathematical expectation, A(z) is a mxn, matrix,

Qy is the mxm positive definite covariance matrix of y, and x and z are

respectively the n, - and n, dimensional vectors of unknown parameters. We will

2
assume that matrix A (z) has constant full rank for all z of interest. We can write (2.6)

in index notation as
E{Yi} = Aia @) x%* , Cov. {yi} = gl | . (2.6")

We will  assume that the mn, functions A'a(z) are continuously

differentiabie. We define

1

a) f(x,z2) &lly—A@=x1?

b @ A11Ps, Y7 (2.7)
) x( 4A” @y

where 11.11% = ()* Qy_1 (.), PMZ) is the orthogonal projecior projecting onto

the rangespace of A (z), PA(z) =1~ PA(z) is the orthogonal projector projecting

onto the orthogonal complement of the rangespace of A(z) and A~ (z) is the least-
squares inverse of A (2) .

Since x(z) is the solution of min. f(x, z) we have that
X

a) f,(2)=1(x@),2) = min.f(x,z) Vz

) (2.8)
b) f,@Sf(kx,2) V x,z.
From (2.7} also follows that
) 3,f(x,2)= —20-A@X*Q, ' A®
b) 3,f(x,0)= —2(/-A@x)*Q; '3, A@)x (2.9)

1 -1
¢c) 9, f () = —2(PA(z)y)"'Qy azPA(Z)y.

In the appendix it is proved that
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8,Pacy = [-Pa,))3, A@A™ @ +[Q, (1-P, )3, A@A™ (2)Q]*- (210

Since
I* (-1l _ A-1p1
) Pl Qy Pam=Qy Paw
(2.11)
- 1
b) A (z)PA(Z):O,
substitution of (2.10) into {2.9c) gives
1.l _
3 f, @)= —2y*Qy1PA(Z)E)zA(Z)A @y . (2.12)

We are now ready to proof the following theorem, which gives a justification
for the discussed two-step procedure.

Thearem
(i). f X and Z are such that
a) 3, f =0, D) X=A" @y, (2.13)
then

) f(2)=f(x.2), b) 3,f(x,2)=0, ¢) 3,f(x,2)=0.(214)

(ii). If X and Z aresuch that
) DS f(DVz, b)x=A4(2)y, (2.15)
then
X, DS f(x,2)V x,z . (2.16)
(iii) . f X and z are such that
£(x,2)S f(x,2) V x,z, (2.17)
then
a) f,(2) = f(X,2), b) f,(2)S £,V z. (2.18)
proofof (i) :

{2.14a) follows from (2.7c}, (2.13b) and (2.8a).
(2.14b) follows from (2.13b), (2.9a), (2.11a) and the fact that P;\L(z) A(z)= 0.

(2.14c) foliows from (2.13a), (2.13b), (2.9b}, {2.11a) and (2.12).
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Thus if z is a stationary point of f1 (z) and x is defined by (2.13b) then

(;( . z) formsa stationary point of f(x, z).
proof of (ii) :

We wili give the proof by contradiction. Assume that a8 X and Z exist such
that £(X, z) < f(x,2). With (2.80) this gives : f, (Z) S f(X,Z) < f(x,2).
With (2.18b), (2.7c) and (2.8a) this gives : f (Z) S f(X,7) < f(x.2) =
f(x(2),2) = £, (z) . But this contradicts our assumption that f, Z)Sf@)V z.
Hence no X and Z exist such that f(X, Z) < f(X, z).

Thus if Z is a global minimum of fl (z) and x is defined by (2.15b) then
(2 , 2) is a global minimum of f{x, z).
proof of (iii) :

First we will proof (2.18a).

From (2.8b) follows that f, (2) S f(X,2z). Now let X = A~ (2)y . With
(2.7¢) and (2.8a) follows then that f, (2) =f(X,2) S 1(x,2).Since (X,2) isa
global minimum of f(x, z) we must have equality, i.e. f, (z) = (X, z) f(;(, 2).
We wili proof (2.18b) by contradiction.

Assume that a z exists such that f, (z) < f, (Z) . Now let X = A~ (2)y.
With (2.7c) and (2.8a) this gives : f, (z) f(x(2),z) =f(x,2) < f,(2).
According to (2.18a) we have f| (z) f(x z) and thus f, (2) = f(x(2),2z) =
f(x,z) < £, (2) = f(x, z). But this contradicts our assumptlon that f(x z) £
f(x,z) V x, z.Henceno Z exists such that fl () < fl (z).

Thus if (X, z) is a global minimum of f(x, z) then Z is a global minimum
of f, (z) . This concludes the proof of the theorem.

From (ii) and (iii) of the Theorem follows that if the global minimum
(x, z) of f(x, z) is unique, then also the global minimum of f, (z) is unique and
is given by z . Conversely, if the global minimum z of f, (z) unigue then the global
minimum of f(x, z) is unique and is given by (X, z). The uniqueness of the x-
component follows from the uniqueness of the least-squares inverse A~ (z), since
A (z) is assumed to be of constant full rank.

When one applies the above described two-step procedure one still has to solve

for the non-linear problem min. || Pi(z)yllz'. This can be done by Gauss’iteration
Z

method or variations thereof. In this paper we will not discuss the application of the
Gauss 'iteration method to the above problem, but see e.g. (Teunissen, 1984, 19853
and b) for more details. Instead we will use the described two-step procedure to solve
for the 2 dimensional non-linear Symmetric Helmert transformation in an analytical
way.
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3. The 2D Helmert transformation with a rotational invariant covariance structure

The linear model of the 2D Helmert transformation reads

X, cos 8 sin @ u. t
E{ }:)\ + , i=1,..... ,n,  (3.1)

Y; ~sin 8 cos@ || v, ty

where (x;, yi) are the observed cartesian coordinates, (u;, Vi) are the fixed given

coordinates and A, 8,t_ and ty are respectively the four unknown scale,

X
orientation and transiation parameters.

We can write (3.1) in a more convenient form by making use of the Kronecker
product ® , for which the following four properties hold (see e.g. Rao, 1973) :
(A®B)*= A*®B* (A®B) = A~ ® B~ usingany inverse
A A, ®B, B2= (A1®Bl)(A2®B2) , (3.2)

(A+B)®C = AgC+ B®C

Take therefore the definitions :

Xé—( xi' )*s yé( yl )* ) Zé(x\* y*)* )

us (.ooup )%, vE(.vi. )Y, wE (urve)r, {(3.3)
cos 6 sin 8

R ,ed( 1)*,té(txty)*,
—sin 0 cos @

and write (3.1) as

E{z} = (s®I, 12®e)<w> (3.4)

t

We assume the covariance matrix of z to be rotational invariant, i.e.

Cov.{z! =L®Q, , (3.5)

where Qz is an arbitrary n x n positive definite matrix. The least-squares solution of

the linear model {3.4) —(3.5) of the 2D Helmert transformation with a rotational
invariant covariance structure was given in {Teunissen, 1986) and reads :
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‘ [[E*Q X+ v* Q' FP +F*Q L x—u*Q;1y? 12

[u*Q; 'u+v*Q,!v]

5 = tan~! i (3.6)

ty=X,—Acosfu, —Asinfv,_
t, = Yo —Acosb v + Asinfu_ ,

where the weighted centred coordinates are defined by

-anl —-—a ol Al —A nd
x=P'x, y=SPy, usPu, v=Pv
-1 -1 - -1

. ée*Qz X , Ae*Qz y . Ae"‘Qzlu , Ae*Qz v
c = — > Je = ~ > Ve T — Y T _

e*Qzle e*Qzle e*Qzle e*Qzlc
la —1.5-1 w1
P =1 —e(e*Q, e) " e*Q, (3.7)

Note that if QZ = In, solution {3.6) reduces to that of .the well-known classical
Helmert transformation {Helmert, 1893).

4. The 2D Symmetric Helmert transformation

We define the non-linear model of the 2D Symmetric Helmert transformation
with a rotational invariant covariance structure as :

z S®I I,®e w' I,®Q 0

E{ }: , S

w L, © t 0 LLeQ,

We will assume that.

Q, =02Q,, s €RT. (4.2)
Our problem is to solve for model (4.1) in a least-squares sense. We define
z S®In 12®e w
f(w',t,\, )& - n2, (4.3)
w 12n 0 t



Peter J.G. TEUNISSEN

where

h.n? =(.)* (). (4.4)

In order to solve

min. f(w',t,A,0), (4.5)

w' t,n,0

we proceed in two steps. First we fix A and 6 , and solve for

min. f(w',t,A.0) . (4.6)

Wt
This is a linear least-squares problem. Its solution is denoted by w' (A, 8),

t (X, 8) . In the second step we solve for

min. £, (A, 0) = min. f(w' (\,0),t(\,6),1,0) . (4.7)

A, 0 AL0
Once we have found the solution A and @ of this non-linear least-squares

problem, the complete solution of (4.5) is given by

(r.0)
(4.8)

Step 7 : (X and 6 fixed)
For A and 6 fixed we find from (4.2), (4.3), (4.4) and {4.6) that

- -1 ~
W [P +e)1LeQ ! s*@0 e[ s*eq ! «?1,0Q;"
(4.9)

-1 Lee*Q ! o w

t (A, 8) S®e* Q, e"Qz—lelz

A% +02)71{1,8Q,+(M/0)2 (* Q. 1) I mee*] 0~ 2 (e*Q; Le) ! s*ee

~072 (e 9T seer 2 +oRo 20 e,

it

$*®Q; '021,8Q; ||

Iee*Q, ! o w
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ar

w(n,0)= (A2 +0?) 1 [S*®L )i+ 0l W] +w B¢

_ (4.10)
t (k,6)=zc"swca
where the weighted centred coordinates are defined as
z.®¢ 2(1,8P )z, w.®e2(I,8P,)W
(4.11)
_1 -1 -
iéz—zc®e , \Véw—wc@m ., P, ‘ée(e*Qz 1e) e"‘QZ1
Step 2 :
Substitution of {4.10) into {4.3) gives
z Sel, I,®e w' (A, 0)
£,(x,0) = | - 2 (4.12)
w L, © t (x,0)
a2 (A2 +a) ! [Z-(S®l,) W]
= | I*
~(A\2+o?)"1s*@1 [Z-(S®I )W)
or
(0,0 = a2+ ) uz-(Sel)wul, (4.13)
where
.oz = (.)*12®Q;1(.) . (4.14)

A ~
In order to find A and § we need to minimize (4.13). Using the
reparametrization

A=otan ¢ (4.15)
we can write (4.13) as
sin ¢ cos 8 * a0b sin ¢ cos 6

f, (o tang, 0) = | sin $sin 8 0Oacllsinogsindg]| , (4.16)

cos ¢ bc¢d cos ¢

where
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)
]

o2(@*Q,'u+¥Q, 'V, d=x*Q; x+y*Q;'y
(4.17)
-0 (@Q T+ Q'Y , c=-0(F*Q;'%-1*Q]'Y)

o
|

The minimization problem

min. f, (o tan ¢,0) , (4.18)
¢,0

reduces to an eigenvalue problem :

0 a—u c =0 (4.19)

The three eigenvalues of (4.19) read :

M =3
1 {4.20)
_(a+d):[(a+d)2+4(b? +c? —ad)]?
“1,2 - 5
Hence, the smaliest eigenvalue reads :
@t d)-[a-d)?+ a0 +cDt o)
min :
2
From the three equations
a—M,. 0 b sin acos(s 0
0 a—p c sin cosd =} 0|, (4.22)
b c d—u, . cos ¢ 0
we find that
Acosh = atana)cosa -—9b
=My
(4.23)
Asin@ = otanpsinf = —2°
A= Hypin

From (4.10), (4.17), (4.21) and {4.23) follows therefore that the final least-
squares solution of the non-finear 2D Symmetric Helmert transformation (4.1)—(4.2)
is given by :

10



THE NON-LINEAR 2D SYMMETRIC HELMERT .....

>

"= w ®e+ (02 +A2)-1 [(§*®ln)f+o2 W],

W =
n . R cos § sin 0
t =z -Sw_, S=12 . 1>
—sin 0 cos 6
A - 202<7 W
Acos§ = o SLW> 1
oUW —NZ N2 +[(e2 W 12— 1Z12)? +40% (<Z, WD +<Z,w" > P
(4.24)
~ A 2 5 =
\sinf = 20°<Z,w">

— —_ —_ — - = - L
o2 W 12 —NZ 02 +[(e? IWN2—NZ1?)? 4402 (<Z,WwD? +<Z,Ww">?)]?
with the inner product

<,.>=()LeQ (),

\2
and w” =[ ] .
-1

Note that this solution reduces to that of (3.6) if g% - 0. Also note that the

smallest eigenvalue Hoin of (4.21) is not unique if

NZN2 =nwih?, <Z,w>=0 and <Z,W">=0

If this is the case the matrix of (4.16) reduces to a scaled unit matrix and the

. ~ ”~n . . . . .
solution for A and € becomes indeterminable. We shall disregard this exceptional
case.

Furthermore if
<Z,Ww>=0 and <Z,W'>=0,

e 2y =2 f a2 2 =2 — N2 if 2
Ihenumm-o Hwie if ocllwil® < HzZIl° and umm—llzll if 1zZie <

g2 Nnwi?. From (4.22) follows then that 5 is indeterminable and cos@ = 0 ar

sin é = (0 . We shall also disregard this exceptional case.

Let A Dbe a scale parameter, i.e. positive. From (4.22) follows then that

1
A (b +cH7  d-u,,;
Ao =tan¢ = = m'"L (4.25)
A—Hmin (b2+cz)2

Let us denote the scale estimators of the Helmert transformation (3.4) by

i . of the corresponding transformation when interchanging the role of z and w

1
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by i;{ of the Symmetric Helmert transformation (4.1) by XSH and of the
corresponding transformation when interchanging the role -of z and w by XSH'
From (3.6), (4.17) and (4.25) follows then when o = 1 that :

a d
(4.26)
o @ dop ., (OP4CDT a—p,,
SH = B P s T d—u,,m B (b2+02)-‘i’_

- e
a—Upin (b? + c?)?
This shows that for the 2D transformation :
~ l\' A 2, _
RH.AH;&I , but >‘SH')‘SH =1 (4.27)
From (4.26) also follows that :

—2 (4.28)

a=Hpyin

A ~
>‘SH = 7\H.

Hence, we see that in general the classical Helmert transformation systematically
underestimates the scale.

The two scale estimates are identical if
b2+c2—ad =0 (4.29)
That is, when Z is parallel to W orto wW" .

5. Concluding remarks

in this paper we discussed a particular class of non-linear least-squares
problems for which a useful two-step procedure can be devised. Exact least-squares
solutions are given for the 2D Helmert transformation and its non-linear symmetrical
generalization. For the two dimensional case a rotational-invariant covariance structure
was assumed. Solutions of the linearized versions and teststatistics were already given
in {Teunissen, 1984). Our exact non-linear least-squares solutions make the computation
of approximate values, linearization and iteration superfluous.

Although we had to make some simplifying assumptions in the covariance
structure of the observational variates, it is felt that these assumptions are sufficiently
general for many practical applications. When digitizing maps, the covariance matrix
of the digitized coordinates can ‘often even be simplified to a scaled unit matrix. The
assumption of the rotational invariant covariance structure is also in many cases
sufficient for geodetic networks. For instance, the Baarda-Alberda substitute matrix
{see e.g. Brouwer et al., 1982 or Teunissen, 1984a} :

12
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X xj Y; Yj
X; d? d? —dizj d? : aparameter
0 2 .
xj d? —di2j d? dij : a covariance function
2 12 2
Yi d d —dij
0
2 42 2
Y d dij d

is an example of a rotational-invariant covariance matrix. It describes the precision
of many geodetic networks to a sufficient degree and can therefore be used in our

formulae.

In a forthcoming contribution we will derive some local and giobal distributional
properties of our non-linear least-squares estimators. The approach will make use of
differential geometric methods of non-linear adjustment (Teunissen, 1984, 19853, b).

For a discussion of the 3D Helmert transformation we refer to (Sanso, 1973),
{K6chle, 1982) and (Krarup, 1985) and for the 3D Helmert transformation with its
symmetrical generalization to (Teunissen, 1985).
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APPENDIX

Proof of :

8,Payy = (1=Py ;) 3, A(2)A™ (2) +[Q; ' (I-P,,))3,A(2) A~ (2)Q,]* . (A1)

The orthogonal projector PA(z) and least-squares inverse A~ (z) are given by

) Py, =A@N(2)A*(2)Q,!

(A2)
b AT@=N"'(@A*@)0Q; ",
where
N(z) = A*(z)Q;1 A(z) . (A3)
From
3, (N1 (z)N(2)) =9,1 =0 =3 N1 (2)N(2)+ N~! (2)3, N (2)
follows that
,N1(2)= -N"1(2)a,N@2)N! (2) . (A4)
From
3,N(2) =3,(A*(2)Q, ' A(2))
follows that
3,N(2) = ,A*(2)Q; ' A(2)+ A*(2)Q; ' 3,A(2) . (AB)

From (A2) follows that

14
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3Py =9 A(z)N7! (z)A*(z)Q;1 + A(2)9, N1 (z)A*(z)Qy—l (AB)

+ A@N (2)9,A*(2)Q; !

with (A4) and {Ab) this gives :

3,Paqzy = 9, AN (2)A*(2) Q'+ A@)[-N! ()@, A*(2)Q, ' A(2)

FA* () Q AN @] A* (2 Q) ' + AN (2)9,A% (2)Q; !
=[I-A@N! @A*@)Q,'12,A@ N () A* () Q"

+ AN (@3, A* (@) [1-Q, ' A@N"! (2) A% (2)] Q"
or with {A2) :

3,P (I-P, ;)8 A(2)A™ (2)+Q, A™*(2)3, A* (2) (1= P, ,)* Q! , (A7)

Ay

which is identical to (A1).
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