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ABSTRACT 

 

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) was 

first reported in remote indigenous communities living in the sparsely populated 

Kimberley region of Western Australia (WA).  Between 1989 and 1995 five Panton 

Valentine leucocidin (PVL) negative clones were isolated from these communities: 

ST1-MRSA-IVa [2B] (WA-MRSA-1), ST78-MRSA-IVa [2B] (WA-MRSA-2), ST5-

MRSA-IVa [2B] (WA-MRSA-3), ST45-MRSA-V [5C2] (WA-MRSA-4), and ST8-

MRSA-IVa [2B] (WA-MRSA-5).     

 

Between 1995 and 2003, S. aureus screening of the indigenous populations living in 

11 of these remote communities showed the S. aureus population consisted of 13 

multilocus sequence type clonal complexes (CCs) and two Singleton lineages.  

Although five lineages contained MRSA, the MRSA lineages were not the 

predominant methicillin-susceptible S. aureus (MSSA) lineages.  There was greater 

diversity amongst the MSSA, while the MRSA appeared to have emerged clonally 

following acquisition of the staphylococcal cassette chromosome mec (SCCmec) 

element.  The emergence of CA-MRSA clones in different CCs indicates horizontal 

transmission of the SCCmec element into S. aureus had occurred on at least six 

occasions: SCCmec IVa [2B] into CC1 (ST1), CC5 (ST5), CC8 (ST8), CC45 (ST45), 

CC88 (ST78) and SCCmec V [5C2] into CC45 (ST45).  Based upon the spa type and 

the DNA microarray profile six evolutionary events have subsequently occurred on 

at least three occasions from these clones (i.e. vertical transmission of the SCCmec 

element): twice from WA-MRSA-1, WA-MRSA-3, and WA-MRSA-5.  Vertical 

transmission of the SCCmec element has not been identified for WA-MRSA-4 or 

WA-MRSA-2.  The most prevalent MSSA lineage in the communities was the PVL-

positive Singleton ST93 clone.  As ST93-MRSA-IVa [2B], colloquially known as 

Queensland CA-MRSA, has become the most prevalent CA-MRSA in Australia, it 

was surprising in an environment of high β-lactam use and frequent horizontal 

transmission of SCCmec IVa a methicillin-resistant variant of ST93-MSSA was not 

found.   

 

Within these indigenous communities people colonised with MSSA tended to 

harbour clones of a different genetic lineage at each anatomical site while people 
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colonised with MRSA tended to harbour clones of the same lineage at each site. 

Although the anterior nares is the preferred screening site for population studies, in 

this study many isolates of S. aureus would have been missed if throat and skin 

lesions had not also been swabbed. Three MRSA clones (WA-MRSA-1, WA-

MRSA-2, and WA-MRSA-3) considered to be endemic in these communities have 

subsequently become predominant clones in the wider Australian community.   

 

Although WA-MRSA-1, WA-MRSA-2, WA-MRSA-3 and Queensland CA-MRSA 

predominate, the CA-MRSA population in Australia is genetically diverse.  In WA, 

between 2003 and 2010, 83 unique pulsed-field gel electrophoresis (PFGE) strains 

were described from which 46 multilocus sequence types have been characterised.  

Forty five of these sequence types (STs) were from 18 CCs and two Singletons.  

While SCCmec IV and V were the predominant SCCmec elements, SCCmec VIII 

and several novel and composite SCCmec elements were present.  The emergence of 

MRSA in diverse S. aureus CCs suggest horizontal transmission of the SCCmec 

elements has occurred on multiple occasions.  Furthermore, DNA microarray and spa 

typing suggest horizontal transfer of SCCmec elements has also occurred within the 

same CC.  For many single and double locus variant CA-MRSA clones only a few 

isolates were detected.  This suggests the successful evolution of a CA-MRSA clone 

may not only depend on the mobility of the SCCmec element but also on other 

genetic determinants.            

 

As WA CA-MRSA, colloquially known as “WA-MRSA” are typically PVL negative 

many of the MRSA infections in WA have been superficial skin infections.  

However with the recent introduction of PVL-positive CA-MRSA more severe skin 

and soft tissues infections accompanied with a significant decrease in the age of 

patients have been observed.  

 

In 2010, 22% of CA-MRSA isolated in WA were PVL positive, with Queensland 

CA-MRSA being the predominant PVL-positive clone.  The emergence of 

Queensland CA-MRSA (ST93-MRSA-IVa [2B]) has been due to independent 

acquisitions of different dru-defined type IV and type V SCCmec elements in several 

spa-defined ST93-MSSA backgrounds.  Rearrangement of the spa sequence in 

ST93-MRSA has subsequently occurred in some of these strains.  Although multiple 
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ST93-MRSA strains were identified, PVL-positive ST93-MRSA-IVa [2B]-t202-dt10 

was the predominant strain.  Whether this strain arose from one PVL-positive ST93-

MSSA-t202 or by independent acquisition of SCCmec-IVa [2B]-dt10 into multiple 

PVL-positive ST93-MSSA-t202 strains is yet to be determined.    

 

Several international PVL-positive clones have been introduced into WA, including 

the CC59 strain ST59-MRSA-VT [5C2&5] (Taiwan CA-MRSA clone), and the CC8 

strain ST8-MRSA-IV [2B] (USA300).  Genetic analysis of these strains indicated 

they are distinct from WA CA-MRSA clones.   

 

Although ST59-MRSA-VT [5C2&5] (Taiwan CA-MRSA clone) was found to be the 

most prevalent CC59 clone isolated in WA, independent evolution of PVL-negative 

CC59 CA-MRSA has occurred.  Using a variety of molecular techniques, six distinct 

groups of CC59 were differentiated.  Within these groups at least seven different 

variants of SCCmec elements were distinguished; (IVa [2B], IVb [2B], IVd [2B], 

IVa [2B]&5, IVv [2B], Vv [5C2], and V [5C2&5].  This suggests rapid evolution 

and/or multiple transfer events of SCCmec have occurred within this CC.  Although 

some CC59 isolates in WA have overseas origins (eg Taiwan CA-MRSA clone and 

possibly USA1000), PVL-negative CC59 lineages unique to WA have acquired 

various SCCmec types on multiple occasions. 

 

The PVL-positive ST8-MRSA-IV [2B] strain isolated in WA was found to be closely 

related to USA300, with most isolates unable to be distinguished from USA300-

TC1516.  Some isolates however varied in their carriage of resistance and virulence 

determinants and therefore USA300 in Australia cannot be regarded as being 

genetically homogeneous.  Altogether 16 variants were identified.  Notably some 

isolates did not harbour the ACME locus, which is intriguing because this locus is 

assumed to be involved in facilitating the spread of USA300 by skin contact.      

 

In conclusion, this thesis has shown “WA-MRSA” arose in remote indigeneous 

communities located in WA, and three of these clones have subsequently become the 

most prevalent MRSA clones in Australia.  However “WA-MRSA” did not arise 

from the predominant MSSA clones isolated from these remote communities.  

Although the vertical and horizontal transmission of SCCmec elements into S. aureus 
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has occurred on multiple occasions in the WA community only three “WA-MRSA” 

clones have found an ecological niche.  These three PVL negative clones harbour 

few additional resistance and virulence genes which paradoxically may contribute to 

their success. PVL-positive CA-MRSA infections have become more prevalent in 

young Australians. Although primarily due to Queensland CA-MRSA, international 

PVL-positive CA-MRSA clones are present in Australia.    
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1. INTRODUCTION and OVERVIEW  

 

Staphylococcus aureus is one of the major bacterial pathogens of man, causing a 

variety of infections from mild skin and soft-tissue infections (SSTIs) to severe 

invasive infections with high mortality.  The 1990s emergence of methicillin-

resistant Staphylococcus aureus (MRSA) strains causing community-onset infections 

represented a major change in the epidemiology of S. aureus with a variety of 

community-associated MRSA (CA-MRSA) with divergent genetic backgrounds 

having emerged globally.    

 

Since 1982 colonisation or infection with MRSA has been a notifiable condition in 

Western Australia (WA).  For infection control purposes all MRSA isolated in the 

state since 1997 have been referred to the Australian Collaborating Centre for 

Enterococcus and Staphylococcus Species (ACCESS) Typing and Research where 

based on molecular markers they are characterised as either healthcare-associated 

MRSA (HA-MRSA) or CA-MRSA. 

 

Colloquially known as “WA-MRSA”, CA-MRSA was first reported in WA in the 

early 1990s from indigenous people living in different communities in the Kimberley 

health region, a remote, sparsely populated country health region in the northern-

most part of the state [1].  “WA-MRSA” has subsequently been identified throughout 

the state and now accounts for up to 14% of the state’s community S. aureus 

infections 

(http://www.agargroup.org/files/FED%20REPORT%20SAP210%20MRSA%20FIN

AL%20shrink.pdf). 

        

In 1983 the overall rate of MRSA notifications was 10/100,000 in the country health 

regions and 7/100,000 in the metropolitan health regions [2].  By 2010, the state’s 

MRSA notification rate increased to 216/100,000 of which 181/100,000 were CA-

MRSA.  In the metropolitan health regions, the CA-MRSA notification rate was 

154/100,000, whilst in the Kimberley health region the CA-MRSA notification rate 

has increased 80-fold to 840/100,000 (http://www.asainc.net.au/aasp/wamer) 
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CA-MRSA is thought to emerge when a locally prevalent strain of methicillin 

susceptible S. aureus (MSSA) acquires a staphylococcal cassette chromosome mec 

(SCCmec) element and utilizes mobile genetic elements and single nucleotide 

polymorphisms to establish local and geographic niches [3].  As WA is a remote 

region in which all MRSA isolates are referred to a central typing laboratory it is an 

ideal environment to determine if the Australian Community MRSA endemic is due 

to the spread of a small number of clones or has involved multiple evolutionary 

events.    

 

The major objectives of this thesis were:  

 

• To determine the colonisation dynamics and genetics of S. aureus in 

remote indigenous communities and thereby gain an insight into the 

emergence of “WA-MRSA”. 

 

• To determine the genetic relatedness of “WA-MRSA” clones within 

different multilocus sequence type clonal clusters providing an insight 

into the frequency of S. aureus SCCmec acquisition within a region.     

 

• To determine if the increased prevalence of Panton Valentine 

leucocidin (PVL) positive CA-MRSA in Australia is due to the 

widespread transmission of a single clone or to multiple independent 

acquisitions of the SCCmec element by PVL positive local MSSA; or 

by the dissemination of international PVL positive MRSA. 
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2. LITERATURE REVIEW  

 

2.1. History 

 

Staphylococcus aureus is a ubiquitous bacterium, colonising 20-30% of humans [4], 

that has the genetic versatility to acquire multiple virulence and resistance genes.  

Beyond asymptomatic carriage, S. aureus causes a wide range of infections, such as 

skin and soft tissue infections (SSTIs), bone, joint and implant infections, pneumonia, 

septicaemia and various toxicoses such as toxic shock syndrome.  It also occurs in 

many different species of animals, where it may cause comparable disease such as 

bovine mastitis. 

 

Shortly after the introduction of penicillin in the 1940s, the first penicillinase-

producing S. aureus strains were detected [5], leading to the development of the 

penicillinase-resistant semi-synthetic penicillins such as methicillin, oxacillin, and 

the first/second generation cephalosporins.  Methicillin-resistant S. aureus (MRSA) 

was detected soon after the introduction of methicillin in the UK in 1960 [6] and in 

Australia in 1968 [7]; and isolation rates increased until the early 1970s [8]. These 

earlier nonmultiresistant MRSA strains (termed “classic MRSA”) were genetically 

similar to each other and were thought to have evolved from a single clone [9].  

 

Gentamicin-resistant MRSA was first noted in Australia in 1976 [10] and hospital 

outbreaks occurred in Victoria (Vic) in the late 1970s and early 1980s [10,11].  In 

1985 it became evident that these “modern” strains of MRSA carried epidemic 

potential not possessed by MRSA isolated in the 1960s and early 1970s and that they 

were genetically different from the earlier “classic MRSA” [12].  Since 1990, 

international and intercontinental spread of MRSA (known as epidemic MRSA or 

EMRSA) has increased.  In 2002, Enright et al using multilocus sequence typing 

(MLST) combined with staphylococcal cassette chromosome mec [also known as 

staphylococcal chromosome cassette] (SCCmec) typing, established that relatively 

few major EMRSA clones existed [13].  These clones emerged as either descendants 

of pre-existing EMRSA clones or by horizontal transfer of the SCCmec into 

methicillin-susceptible S. aureus (MSSA). 
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EMRSA became endemic in hospitals in eastern Australian states (New South Wales 

[NSW], Vic, and Queensland [Qld]) in the late 1980s and 1990s, with some spread to 

hospitals in South Australia (SA), the Northern Territory (NT) and Tasmania (Tas) 

[14,15,16].  A state-wide MRSA policy, introduced in 1982 following a hospital 

outbreak of EMRSA, prevented these strains from becoming established in hospitals 

located in Western Australia (WA).  

 

In the early 1990s, non multidrug-resistant MRSA (nmMRSA) were observed in WA, 

initially from indigenous people living in remote communities [1] but subsequently 

in Perth, the state capital.  These strains became known as “WA-MRSA”.  By 2006 

nmMRSA from indigenous people living in remote areas outside of WA were 

reported in the NT [17], Qld [18] and central Australia [19].  In Qld, NSW, Vic and 

the Australian Capital Territory (ACT) an association between Polynesian ethnicity 

and the occurrence of community-acquired MRSA SSTIs was described in 1997 [20].  

Isolates causing these infections were indistinguishable by phage typing and pulsed-

field gel electrophoresis (PFGE) from those previously reported in New Zealand 

[21,22,23].  In 2003 community acquired nmMRSA infections were reported in 

Caucasians living in Qld [24]. 

 

Many different strains of community-acquired nmMRSA, also known as 

“community-acquired” or ‘community-associated” MRSA (CA-MRSA) have been 

reported worldwide.  This occurrence of concurrent epidemics of CA-MRSA in 

many countries due to multiple different clones has been striking [25] and represents 

a major change in the epidemiology of S. aureus.  Some of these CA-MRSA strains 

harbour genes encoding the bi-component PVL toxin [26].  Although this toxin was 

identified in S. aureus as early as 1932, its presence in MRSA is a very recent 

phenomenon [27].  These strains are frequently associated with chronic/recurrent 

SSTIs as well as with life-threatening necrotising pneumonia [28], often in 

previously healthy young people.  PVL-positive CA-MRSA have become a  serious 

public health concern because of their virulence, their ability to cause outbreaks in 

households and close contact social groups, and their rapid spread in many countries. 
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To fully understand the epidemiology of CA-MRSA requires an understanding of the 

genetics of MRSA and the molecular epidemiological tools that are available to 

characterise MRSA strains. 

 

2.2. MRSA Genotyping 

 

Methicillin resistance in staphylococci is due to a modified penicillin binding protein 

(PBP2’ or PBP2a) encoded by the mecA gene [29,30].  Apart from ceftobiprole [30] 

and ceftaroline, the presence of PBP2a confers resistance to all β-lactam antibiotics 

including the semi-synthetic β-lactamase resistant penicillins, such as methicillin and 

oxacillin.  As methicillin and oxacillin can be used as indicators of resistance, 

PBP2a- or mecA-positive S. aureus are referred to as either MRSA or oxacillin-

resistant S. aureus (ORSA). 

 

2.2.1. SCCmec Element 

 

The mecA gene is located on a complex mobile genetic element known as SCCmec 

[31,32].  In addition to mecA, SCCmec elements are comprised of unique site-

specific recombinases designated as cassette chromosome recombinase (ccr) genes, 

regulatory elements, and variably additional genes encoding resistance to other 

antimicrobials, such as aminoglycosides or macrolides, and to heavy metals, and 

virulence determinants such as the pls gene and phenol sobulin modulins [33,34]. 

 

The emergence of methicillin-resistant staphylococcal lineages is due to the 

acquisition and insertion of the SCCmec element into the chromosome of susceptible 

strains.  SCCmec elements are highly diverse in their structural organization and 

genetic content and have been classified into types and subtypes [35]. 

 

SCCmec elements share a number of characteristics:  

• Carriage of mecA in a mec gene complex 

• Carriage of ccr gene(s) (ccrAB or ccrC) in a ccr gene complex 

• Integration at a specific site in the staphylococcal chromosome, referred to as 

the integration site sequence (ISS) for SCC, which serves as a target for ccr-

mediated recombination  
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• The presence of flanking direct repeat sequences containing the ISS  

• J, or joining regions 

 

SCCmec types are defined by the combination of the class of the mec gene complex 

and the type of ccr gene complex, which is represented by ccr gene allotype, and 

subtyped by the content of the J regions (http://www.sccmec.org). 

 

2.2.2. mec Gene Complex  

 

The mec gene complex is composed of mecA, its regulatory genes, mecR1 and mecI, 

and associated insertion sequences.   

 

The class A mec gene complex (class A mec) is the prototype complex, which 

contains mecA, the complete mecR1 (encoding the signal transducer protein MecR1) 

and mecI (encoding the repressor protein MecI) regulatory genes upstream of mecA, 

and the hypervariable region (HVR) and insertion sequence IS431 downstream of 

mecA.   

 

The class B mec gene complex (class B mec) is composed of mecA, a deleted mecI, 

and truncated mecR1 resulting from the insertion of IS1272 upstream of mecA and 

HVR and IS431 downstream of mecA. 

 

The class C mec gene complex (class C mec) contains mecA, a deleted mecI, and 

truncated mecR1 by the insertion of IS431 upstream of mecA, and HVR and IS431 

downstream of mecA.  There are two distinct class C mec gene complexes; in the 

class C1 mec gene complex, the IS431 upstream of mecA has the same orientation as 

the IS431 downstream of mecA (next to HVR), while in the class C2 mec gene 

complex, the orientation of IS431 upstream of mecA is reversed.  C1 and C2 are 

regarded as different mec gene complexes since they have likely evolved 

independently.    

 

The class E mec gene complex (class E mec) contains a highly divergent blaZ-mecA-

mecR1-mecI.  The mecALGA251 gene shares only 70% nucleotide homology with 

mecA [36].     
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2.2.3. ccr Gene Complex  

 

The ccr gene complex is composed of the ccr gene(s) and surrounding open reading 

frames (ORFs).  Currently three phylogenetically distinct ccr genes, ccrA, ccrB and 

ccrC, have been identified in S. aureus with DNA sequence similarities below 50%.  

In general ccr genes with nucleotide identities of more than 85% are assigned to the 

same allotype, whereas, ccr genes that belong to different allotypes have lower 

nucleotide identities of between 60% and 82% of each other.  ccrA and ccrB have 

been found to be encoded together. Six ccrA/ccrB gene allotypes have so far been 

classified in S. aureus (Table 1).   

           

Table 1: Currently identified SCCmec types in S. aureus 

 

SCCmec Type ccr gene 

complex 

mec gene complex 

I [1B] 1 (A1B1) B (IS431-mecA-∆mecR1-IS1272) 

II [2A] 2 (A2B2) A (IS431-mecA-mecR1-mecI) 

III [3A] 3 (A3B3) A (IS431-mecA-mecR1-mecI) 

IV [2B] 2 (A2B2) B (IS431-mecA-∆mecR1-IS1272) 

V [5C2] 5 (C1) C2 (IS431-mecA-∆mecR1-IS431) 

two IS431s arranged opposite orientations 

VI [4B] 4 (A4B4) B (IS431-mecA-∆mecR1-IS1272) 

VII [5C1] 5 (C1) C1 (IS431-mecA-∆mecR1-IS431) 

two IS431s arranged same orientation 

VIII [4A] 4 (A4B4) A (IS431-mecA-mecR1-mecI) 

IX [1C2] 1 (A1B1) C2 (IS431-mecA-∆mecR1-IS431) 

two IS431s arranged opposite orientations 

X [7C1] 7 (A1B6) C1 (IS431-mecA-∆mecR1-IS431) 

two IS431s arranged in the same direction 

XI [8E] 8 (A1B3) E (blaZ-mecALGA251-mecR1LGA251-mecILGA251) 

 

All ccrC variants identified to date in staphylococci have >86% similarity, and 

therefore there is only one ccrC allotype called ccrC1.  ccrC1 genes with sequence 



 - 9 - 

differences of 87% or greater have been given allele numbers.  For example, ccrC1 

allele 2 and ccrC1 allele 8 for the two ccrC1 genes found in the Tawian clone 

composite SCCmec Type V (5C2&5).    

 

2.2.4.  J Regions 

 

Besides the mec and ccr gene complexes the SCCmec element contains three J or 

joining regions, which constitute nonessential components of the cassette.  J1 is the 

region between the right chromosomal junction and the ccr gene complex; J2 is 

between the ccr gene complex and the mec gene complex; and J3 is between the mec 

gene complex and the left chromosomal junction.  Variations in the J regions within 

the same mec-ccr gene complex are used for defining SCCmec subtypes. 

 

2.2.5.  SCCmec Nomenclature 

 

To date eleven SCCmec types have been described for S. aureus (Table 1 and 

Figures 1a, 1b and 1c).   

 

The first three SCCmec elements were designated as types I, II, and III [32,33].  

These were followed by reports of SCCmec types IV to VIII [37,38,39,40,41].  Since 

2011 three additional SCCmec element types have been described in S. aureus 

including IX and X [42] and XI [36,43]. 

 

In 2009 the International Working Group on the Classification of SCCmec 

recommended a standardised and more informative system for naming SCCmec and 

SCC elements [35]. The structural type is indicated by a Roman numeral, with a 

lowercase letter indicating the subtype, and the ccr complex and the mec complex are 

indicated by an Arabic numeral and an uppercase letter respectively in parenthesis.  

For example type IVa [2B] SCCmec indicates a SCCmec harbouring a type 2 ccr and 

a class B mec gene complex with a subtype “a” J region structure. Recently SCCmec 

elements carrying two ccr gene complexes have been identified.  For example, the 

SCCmec carried by S. aureus ZH47 is composed of a ccrC and SCCmec with a class 

B2 mec gene complex (a subclass of class B mec gene complex into which a 

transposon Tn4001 has been integrated), a type 2 ccr gene complex and a J1 region 
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with homology to type IVc SCCmec [44].  Where there is an extra ccr element, this 

is indicated by “&” and an Arabic numeral designating the ccr type.  For example, as 

per Figure 1, S. aureus ZH47 SCCmec element is type IV (2B&5).   

 

For the purpose of this thesis and with an understanding of the limitations of 

SCCmec typing by PCR only, when there is an extra ccr element present and the 

precise location is unknown, it is indicated by an “&” and ccr number outside the 

parentheses.             

 

Three methods have been used to describe subtypes of SCCmec elements:  

(i) expressing the J1 region differences as lower case letters, e.g., IVa, IVb, 

and IVc;  

(ii)  expressing the differences due to the presence or absence of mobile 

genetic elements as capital letters, e.g., IA, IIA, and IVA;  

(iii)  expressing the differences in each J1, J2, and J3 region in Arabic numbers, 

which are given in the order of discovery, e.g., II.1.1.1, II.1.1.2, and 

II.2.1.1. 

 

In this thesis SCCmec subtypes have been expressed using lower case letters, eg IVa. 

 

SCCmec types I [1B], II [2A] and III [3A] are typically restricted to MRSA strains 

associated with healthcare infections and are not found widely among the healthy 

population [45].  These strains, which were known in the 1990s as EMRSA, are now 

known as “hospital-acquired” or “healthcare-associated MRSA” (HA-MRSA).  The 

presence of their SCCmec elements correlates with a relatively slower growth rate 

and it has been assumed that the mobile element may confer a selective disadvantage 

in the absence of antibiotics [46,47].  Consequently, strains carrying these elements 

may be less fit to survive in a competitive environment with faster growing wild type 

strains once antibiotic therapy is discontinued. 

 

Strains carrying SCCmec types IV [2B] and V [5C2] predominantly evolved outside 

of healthcare settings or proved capable of spreading outside of hospitals, infecting 

not only patients but also colonising healthy contact persons. 
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Figure 1a: Basic structures of representative SCCmec elements I – VIII.   

The structures of SCCmec elements of representative strains are illustrated 

based on the following nucleotide sequences deposited in databases: 

NCTC10442 (AB033763), N315 (D86934), 85/202 (AB037671), CA05 

(AB063172), ZH47 (AM292304), WIS (AB121219), TSGH17 (AB5122767), PM1 

(AB462393), HDE288 (AF411935), JCSC6082 (AB373032), and C10684 

(FJ390057) [35]. (Reproduced courtesy of American Society for Microbiology) 
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Figure 1b:  Basic structures of representative SCCmec elements IX and X from 

MRSA CC398 strains JCSC6943 and JCSC6945 respectively [42].  

(Reproduced courtesy of American Society for Microbiology)  

 

 

 

 

 

 

 

 

 

 

    

 

 

Figure 1c: Schematic diagram showing the genetic organisation of the SCCmec 

element designated SCCmec XI in the ST130 MRSA isolate M10/0061 

(GenBank accession number FR823292) [43] (Reproduced courtesy of American 

Society for Microbiology)  
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Since 2003, some notable MRSA strains carrying SCCmec IV, V, IX or X have 

spread among livestock revealing the zoonotic potential of S aureus/MRSA.  These 

strains have been dubbed “livestock-associated MRSA” (LA-MRSA) [42,48].   

 

2.3. MRSA Nomenclature 

 

2.3.1. Multilocus Sequence Typing   

 

Different criteria and different methods have been applied to define and name MRSA 

strains.  As a result the same MRSA strain may be known by several names.   For 

example the Rhine-Hesse Epidemic strain in Germany, EMRSA-3 in the United 

Kingdom, USA100 in the USA, CMRSA-2 in Canada, AR07.3, AE07.4 or AE11 in 

Ireland, and New York-Japan MRSA in Australia and Asia are all the same clone 

[45].  For this reason in Tokyo in 2002, a subcommittee of the International Union of 

Microbiology Societies accepted the Enright et al [13] proposal that MRSA clones 

be named according to their multilocus sequence type and their SCCmec type in the 

form ST-resistance phenotype (i.e. MRSA and MSSA)-SCCmec type (e.g. I, II, III).  

It was anticipated that this nomenclature would “replace or at least supplement 

existing arbitrary designations of MRSA clones, based on geographical location or 

other less satisfactory typing methods, since multilocus sequence typing (MLST) is 

systematic and objective, and provides a key for investigators to search for clones in 

the MLST website databases” [49]. MLST/SCCmec typing is now widely regarded as 

the reference method for defining MRSA clones. 

 

MLST, which is based on the principles of multilocus enzyme electrophoresis [50], 

is an unambiguous procedure for characterising isolates of bacterial species using the 

sequences of approximately 450 – 500 bp internal fragments of seven house-keeping 

genes (arcC, aroE, glpF, gmk, pta, tpi, and yqiL).  Using the MLST website 

(http://www.mlst.net), different sequences for each house-keeping gene are assigned 

as distinct alleles, and for each isolate, the alleles at each of the seven loci define the 

allelic profile or sequence type (ST) [51].  The number of nucleotide differences 

between alleles is ignored and sequences are given different allele numbers whether 

they differ at a single nucleotide site or at many sites.   The rationale is that a single 



 - 14 - 

genetic event resulting in a new allele can occur by a point mutation (altering only a 

single nucleotide site), or by a recombinational replacement (that will often change 

multiple sites) -  weighting according to the number of nucleotide differences 

between alleles would imply that the latter allele was more distantly-related to the 

original allele than the former, which would be true if all nucleotide changes 

occurred by mutation, but not if the changes occurred by a recombinational 

replacement.  

 

The S. aureus MLST website currently contains >2,000 isolates from humans and 

animals from multiple countries. 

 

The “clock speed” or secular rate of change in the coding regions used in MLST is 

relatively slow, as befits a system designed to analyse the population structure of 

entire bacterial species.  Consequently compared to other molecular methods (e.g. 

pulsed-field gel electrophoresis), MLST has a lower discriminatory power.   

 

2.3.2 Defining a MRSA Clone 

 

A strain is defined as “an isolate or group of isolates that can be distinguished from 

other isolates of the same genus and species by phenotypic characteristics or 

genotypic characteristics or both” [52,53], which is essentially the same as a clone 

which is defined as “a group of isolates that are distinguishable from each other by a 

variety of genetic tests” [52,53].  Thus the definition of a clone or strain depends on 

the discriminatory power of the test and/or the number of different tests applied. 

 

Although defining S. aureus clones as the ST-resistance phenotype-SCCmec type has 

allowed investigators to unambiguously identify S. aureus clones, this nomenclature 

has shortcomings if clearly different strains have the same ST and SCCmec type 

(such as the ST8-MRSA-IV [2B] strains USA300 and WA-MRSA-5).  Additional 

information such as PVL status or carriage of superantigens may be of relevance in 

defining a clone or strain. For example the presence or absence of lukS-PV/lukF-PV 
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PVL encoding genes differentiates the PVL-positive ST8-MRSA-IV [2B] (USA300) 

and PVL-negative ST8-MRSA-IV [2B] (WA-MRSA-5).  

 

Although all previously defined S. aureus strains, based upon their variable genes, 

could be subdivided into a considerable number of variants, it is not practical to 

regard all variants as different strains and apply different names; for example the 

variants of ST22-MRSA-IV [2B] which just differ in carriage of erm(C) or sec+sel.   

 

When scrutinised by additional molecular methods, such as genome sequencing or 

microarray hybridisation, strains have been shown not to be static blocks comprised 

of identical isolates, but rather consist of isolates with similar sequences.  For 

example ST5-MRSA-II [2A] is thought to have evolved from different ST5-MSSA 

strains  acquiring the same SCCmec element independently on several occasions [54].  

These sequences might differ in single point mutations (as sometimes obvious in 

MLST e.g. Taiwan CA-MRSA clone isolates may have different gmk alleles); in the 

composition and sequence of single loci (such as the variable region of the 

chromosomal spa gene or the dru region within the SCCmec element) or in the 

presence or absence of complete genes or multi-gene mobile elements.  Thus the 

concept of the “quasispecies” could be applied in which the genome cannot be 

described as a defined structure, but rather as a weighted average of a large number 

of individual sequences [45].     

 

In addition to MLST/SCCmec typing, methods used in this thesis to discriminate 

CA-MRSA clones were pulsed-field gel electrophoresis (PFGE), sequencing of the 

repeat region of the S. aureus protein A (spa) type and PVL type [55].  Further 

discrimination of strains was achieved by DNA microarray profiling and sequencing 

the repeat regions of the dru gene.  

 

2.3.3. Clonal Complex 

 

eBURST (Based Upon Related Sequence Types) is a novel clustering algorithm for 

analysing MLST data (http://eburst.mlst.net/1.asp).  In MLST, S. aureus isolates with 

identical sequences for the seven house keeping loci are referred to as clonal.  A 

clonal complex or cluster (CC) comprises genetically related isolates that differ at 
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only one or two loci (termed single [SLV] and double locus variants [DLV], 

respectively).  The primary founder of a complex is defined as the ST that differs 

from the largest number of other STs at only a single locus (i.e. the ST that has the 

greatest number of SLVs).  DLVs of the founder are only linked if the intermediate 

SLV on the path from the founder to the DLV is present.  

 

Some STs may not share alleles at five out of seven loci with any other STs and are 

termed “Singleton” STs. 

 

S. aureus has a highly clonal population structure, which is dominated by a dozen 

major CCs and comprises several hundred multilocus sequence types [51].  All major 

HA-MRSA clones can be grouped into five CCs: CC5, CC8, CC22, CC30 and CC45 

(Table 2) [56].   Different SCCmec acquisition has on occasion resulted in MRSA 

from similar MSSA isolates e.g. ST5-MSSA has produced ST5-MRSA-I and ST5-

MRSA-II pandemic clones.  The “classic MRSA”, ST250-MRSA-I, evolved from 

ST250-MSSA that arose from ST8-MSSA, a common cause of epidemic MSSA 

disease and itself a genotype containing at least two major MRSA clones (ST8-

MRSA-II and ST8-MRSA-IV).  ST8-MSSA is therefore the ancestral genotype of 

the first MRSA [13].  

 

Unlike HA-MRSA, CA-MRSA has evolved from multiple genetic backgrounds [57].   

In Australia, by 2008, 33 STs, from 14 CCs and 4 singletons had been identified [2].  

In addition to CC5, CC8, CC30 and CC45, CA-MRSA evolved from CC1, CC9, 

CC59, CC72, CC88, CC121, CC188 and CC361.  Although most STs had acquired 

SCCmec IV [2B], SCCmec V [5C2] and several novel SCCmec types were identified.  

Thus CA-MRSA represents novel combinations of SCCmec type and MSSA clone 

type. 

 

2.4.  Molecular Epidemiological Typing Techniques  

 

In addition to MLST and SCCmec typing other molecular techniques were used in 

this thesis. 
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2.4.1. Pulsed-field Gel Electrophoresis  

 

Pulsed-field gel electrophoresis (PFGE) is considered the method of choice for 

studying S. aureus epidemiology.  It is highly discriminatory, and has been widely 

used for local outbreak investigation and as part of typing systems for long term 

surveillance of MRSA infections at regional and national levels [58,59]. The 

technique enables the resolution of large fragments of DNA that cannot be resolved 

by conventional gel electrophoresis [60].   

 

Table 2: Details of pandemic HA-MRSA clones and their previous designations 

 

CC Clone MST allelic profile Previous name of MRSA clone 

5 ST5-MRSA-I [1B] 1-4-1-4-12-1-10 UK EMRSA-3 

5 ST5-MRSA-II [2A] 1-4-1-4-12-1-10 New York-Japan 

5 ST228-MRSA-I [1B] 1-4-1-4-12-24-29 Southern German  

8 ST8-MRSA-II [2A] 3-3-1-1-4-4-3 Irish-1 

8 ST8-MRSA-IV [2B] 3-3-1-1-4-4-3 UK EMRSA-2, -6 

8 ST239-MRSA-III [3A] 2-3-1-1-4-4-3 UK EMRSA-1, -4, -11, 

Portuguese, Brazilian, Viennese 

8 ST247-MRSA-I [1B] 3-3-1-12-4-4-16 UK EMRSA-5, -17, Iberian  

8 ST250-MRSA-I [1B] 3-3-1-1-4-4-16 Classic MRSA 

22 ST22-MRSA-IV [2B] 7-6-1-5-8-8-6 UK EMRSA-15, Barnim 

30 ST36-MRSA-II [2A] 2-2-2-2-3-3-2 UK EMRSA-16 

45 ST45-MRSA-IV [2B] 10-14-8-6-10-3-2 Berlin 

         

The procedure involves the application of controlled electric fields that change 

direction at a predetermined angle to samples of DNA that have been embedded in 

an agarose gel matrix and digested with a restriction endonuclease.  By embedding 

bacterial cultures in an agarose block mechanical shearing of the high molecular 

mass chromosomal DNA is prevented.  The restriction endonuclease selected 

generates 10 – 20 fragments, the sizes of which range between 10 and 700kb.  For S. 

aureus, which has a low genomic GC content, the most frequently used restriction 

endonuclease is Sma1, which cleaves at the high GC recognition site of CCCGGG.   
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Due to advances in the standardisation of electrophoresis conditions [60,61,62] and 

the development of normalisation and analysis software [63] multicentre studies have 

become possible.  Interpretive criteria for use in comparing complex PFGE patterns 

in outbreaks have been applied to non outbreak situations to track the national and 

international dissemination of S. aureus clones [53].  Although the use of PFGE 

typing with adjusted interpretation criteria for grouping patterns with <7 bands 

difference has been shown to correspond to MLST CCs [64], attribution of PFGE 

clusters to genetic lineages can be problematic [65]. 

         

2.4.2. spa Sequence Typing 

 

Although PFGE is considered a gold standard for strain typing of MRSA, it is time-

consuming and the inter-laboratory comparability of results requires extensive effort 

using harmonization of protocols [61]. DNA sequence-based approaches are 

becoming more frequently used because of the ease with which sequence data can be 

transferred between laboratories via the internet. 

 

Epidemiologically useful bacterial strain typing has been achieved by analysing 

sequence polymorphisms in a single genetic locus. In S. aureus HVR consisting of 

24bp repeats within the 3’ coding region of the spa gene (Protein A) is particularly 

effective for typing MRSA from healthcare institutions [66,67]. The repeat region of 

the spa gene is subject to spontaneous mutations as well as the loss and gain of 

repeats.  By sequencing this polymorphic repeat region, each new repeat variant 

determined can be assigned a unique repeat code.  The repeat succession for a given 

strain, determines the strain’s spa type. 

 

spa sequence typing has become one of the primary typing methods for regional and 

national MRSA surveillance schemes [65].  Its popularity is attributable to its many 

practical advantages, including absolute reproducibility which allows internet-based 

type assignment and comparison with a worldwide database [68,69].  However, spa-

typing has been hampered in the past by the lack of consensus on assignments of new 

spa-repeats and -types.  To ensure uniform code terminology usage, repeats and spa 

types are now determined by online software that allows rapid repeat determination, 
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data management and retrieval.  There are two websites to facilitate standardisation 

of spa nomenclature; http://tools.egenomics.com/ and http://ridom.de/staphtype. 

 

In Europe nearly all national reference centres (e.g. Robert Koch Institute, Germany, 

Health Protection Agency, UK, and the National Institute for Public Health and the 

Environment, The Netherlands) are Ridom StaphType users.  The Ridom SpaServer 

can be used to collate and harmonize data from various geographic regions. To 

simplify spa-type nomenclature, a numerical repeat code is used, where repeats are 

assigned a numerical code and the spa-type is deduced from the order of specific 

repeats (Figure 2).  This approach was chosen despite the currently existing different 

alpha-numerical nomenclatures, because numerical codes are now widely used for 

MLST. An online conversion of the old terminology into the new one is possible.  

 

 

Figure 2: Generation of spa type using the numerical code established by Ridom 

Staphtype (http://ridpm.de/staphtype) 

 

Although PFGE provides better typeability and discriminatory power [70] [71], spa 

typing has a very good predictive power over the clonal relationships defined by 

eBURST [70], and is valuable for the tracking of epidemic isolates [72].  The 

technique has limitations in that some genetic ST lineages (e.g. ST1, ST8, and ST80) 

are not able to be reliably inferred.  In these cases, the use of PCR for the analysis of 

additional markers, such as toxin and antibiotic resistance genes located on clone-

specific mobile genetic elements is needed for correct ST delineation and assignment 

[69,73].  Repeat-based spa locus polymorphism is also subject to misclassification 

bias, owing to both horizontal DNA transfer and recombinations (e.g. ST239) and 

homoplasy (e.g. in ST5 subclones) [54].        



 - 20 - 

2.4.3. DNA Microarray-based Typing 

 

DNA microarray-based typing methods allow the detection of clone specific single-

nucleotide polymorphisms (SNPs), genes, or genomic islands.  Studies using 

“genome chips” have shown that insertion and deletion of entire genes is a major 

source of genetic variation among isolates, with as much as 22% of the S. aureus 

genome being “dispensable” [74].  Consequently there are literally hundreds of strain 

specific genes that may be present in or absent from individual isolates and therefore 

may provide a uniquely discriminatory typing system. 

    

In this thesis the Alere StaphType DNA microarray was employed using protocols 

and procedures previously described in detail [75,76].  The DNA microarray covers 

334 target sequences (170 distinct genes and their allelic variants) including species 

markers, SCCmec, capsule and agr group typing markers, resistance genes, 

exotoxins, genes encoding microbial surface components recognising adhesive 

matrix molecules of the host (MSCRAMM) and immune evasion genes carried on 

beta haemolytic converting phages.     

 

Results are regarded as negative if the normalised intensity for a given probe is 

below 25% of the median value of species markers (coa, eno, fnbA, gapA, katA, nuc, 

rrn, sarA, sbi, spa, vraS) and a biotin staining control.  If the normalised intensity of 

a given probe is higher than 50% of this breakpoint, it is interpreted as positive.  If it 

is between 25% and 50% the result is regarded as ambiguous.  For some markers, for 

which allelic variants are to be discriminated (bbp, clfA, clfB and fnbB as well as 

some set/ssl genes, isaB, mprF and isdA) a different approach is used because these 

alleles differ only in single nucleotides.  For these markers only the probe with the 

strongest signal value is regarded as positive, provided that it exceeds the 50% 

breakpoint. All others are regarded as ambiguous, or if below the 25% breakpoint, as 

negative.      

  

2.4.4. dru Typing 

 

In MRSA the direct-repeat unit (dru) HVR region adjacent to IS431 in SCCmec has 

proved useful in the epidemiological analysis of highly uniform epidemic strains 
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such as ST22-MRSA-IV [77], ST36-MRSA-II [77,78], ST239-EMRSA-III [79], and 

in the tracking of the horizontal movement of SCCmec.  In 2008 Goering et al 

proposed a uniform system of nomenclature [77] (Figure 3).  In a manner similar to 

that applied for staphylococcal protein A gene (spa) typing [72], a prefix (dr; dru 

repeat) is used, combined with numbers to identify specific 40-bp repeat sequences, 

whereas a different prefix (dt; dru type), combined with numbers is used to identify 

repeat combinations.  An additional alphabetical designation is used to indicate 

different locations of change (for example dr2a and dr2b both differ from the 

consensus by two nucleotides, but at different positions within the sequence.  An 

additional alphabetical designation is also used in the dru type to indicate different 

tandem arrangements of specific repeats; for example dt8a and dt8b both contain the 

same eight dru repeats but in different arrangements 

 

The www.dru-typing.org website allows user generated 40-bp repeat sequences to be 

searched against the current database of dru repeats (dr) and identified, if known. 

Specific combinations of repeats can be queried against the database and if 

recognized, the resulting dru type (dt) will be identified.  New dru repeat and/or dru 

type chromatograms can be submitted online for verification and inclusion into the 

database. 

 

 

Figure 3: Generation of dru type (dt) using the nomenclature system proposed 

by Goering et al [77] and the BioNumerics polymorphic HVR sequencing typing 

plug in. 

 

When compared to PFGE, MLST and spa and SCCmec typing, the discriminatory 

power of dru typing in the epidemiological analysis of MRSA has been shown to be 

similar to PFGE (Simpson’s index of diversity values over 89%) [79] and may be 
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particularly useful in the epidemiological analysis of highly clonal MRSA strains. 

Although the stability of specific dru types over time has not been established, an 

investigation on EMRSA-16 isolates from the HARMONY collection suggests the 

dru sequences are sufficiently stable to have strain-associated significance [77].      

 

2.4.5. Panton Valentine Leucocidin 

 

The worldwide emergence of CA-MRSA strains has been linked to the carriage of 

the genes encoding the bi-component Panton-Valentine leucocidin (PVL) toxin.   

 

PVL is a well characterised virulence factor of S. aureus, and is composed of two 

distinct protein components which together form heptameric pores in leucocytes. 

Although PVL-positive strains have been associated with a variety of diseases 

including chronic and recurrent SSTIs [25,28,80,81,82], necrotising pneumonia, 

[83,84,85,86,87] necrotising fasciitis [88], purpura fulminans [89]  and Waterhouse-

Friderichsen syndrome [90], the contribution PVL has to CA-MRSA pathogenesis 

remains controversial.  

 

PVL was initially described in 1932.  During the 1950s/1960s the pandemic spread 

of a PVL-positive β-lactamase producing MSSA strain (phage type 80/81) occurred, 

but receded after the introduction of penicillinase-resistant β-lactam agents such as 

oxacillin [91].  PVL-positive S. aureus strains carrying SCCmec-IV [2B] were 

identified in the 1990s [92], and by 2003 global spread of these strains had been 

reported [25].   

 

Since PVL is bacteriophage encoded, PVL-positive MRSA clones are found in many 

CCs and STs including CC1, CC5, CC8, CC22, CC30, CC59, ST72, CC80, CC88, 

ST45, ST93, ST154, ST398 and ST772 [45].  The PVL genes have been found to 

have allelic sequence single nucleotide polymorphisms (SNPs) and to be carried on 

different bacteriophages that appear to have specificities for particular lineages of S. 

aureus [93].  

 

The epidemiology of PVL-positive CA-MRSA can be distinguished by three crude 

observations.  First, in many European countries (e.g. Germany [76,94], United 
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Kingdom [95], Malta [96,97,98] and Ireland [97,98] ) the prevalence of PVL-positive 

MRSA is low and has remained low for many years.  In these countries a variety of 

different strains have been identified and individual cases can often be traced to 

travel histories or to foreign patients. Secondly, in Australia PVL-positive MRSA 

have recently become common and a number of different strains co-exist [2].  As 

Australia has had a recent immigration of people from all over the world, it can be 

assumed that these people have introduced epidemic strains from their respective 

home countries, for example ST30-MRSA-IV [2B] from New Zealand and ST772-

MRSA-V [5C2] from India.  Thirdly, the extensive spread of a single strain 

effectively marginalises all other strains. This has occurred in the USA with ST8-

MRSA-IV [2B] (USA300) [99], and similarly in Taiwan where most infections are 

caused by ST59-MRSA-V [5C2&5] [100,101].  A comparable picture may evolve in 

Australia due to a significant increase in ST93-MRSA-IV [2B] infections [102]. 

 

2.5.  Community MRSA 

 

Based on phenotypic and genotypic typing methods, community onset MRSA 

infections are caused by HA-MRSA, which appear to have been transferred from 

hospitals or healthcare facilities into the community by patients or healthcare 

workers [103], or by CA-MRSA which have been isolated from people who have 

had little or no contact with healthcare facilities or healthcare workers [104].  This 

distinction between community and healthcare facility associated MRSA however 

has become blurred with the replacement of HA-MRSA with CA-MRSA in hospitals 

[105,106].  For these reasons differentiating CA-MRSA from HA-MRSA strains by 

only using epidemiological criteria (onset of infection within 48 hours of 

hospitalisation) is neither sensitive nor specific.   

 

In contrast to HA-MRSA, CA-MRSA are generally more susceptible to non beta-

lactam antibiotics, grow significantly faster, have different clonal backgrounds, carry 

smaller SCCmec elements, have enhanced virulence properties and frequently 

harbour genes expressing PVL [25,57,107,108].  Rather than a worldwide spread of a 

single clone, multiple CA-MRSA clones have emerged from diverse genetic 

backgrounds.  Several well characterised CA-MRSA clones predominate in different 

regions: ST8-MRSA-IV [2B] (USA300) and ST1-MRSA-IV [2B] (USA400) in 
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North America [109,110]; ST80-MRSA-IV [2B] (European clone) in Europe [25] , 

North Africa [111], and the middle east [112]; ST59-MRSA-V [5C2&5] (Taiwan 

CA-MRSA clone) in Taiwan [113]; ST93-MRSA-IV [2B] (Queensland clone) in 

Australia [58] ; ST30-MRSA-IV [2B] (South West Pacific [SWP] clone)  in the 

Western Pacific [20,21] ; and ST772-MRSA-V [5C2] (Bengal Bay clone) in India 

and Bangladesh [95].  Transmission of these clones into other regions has occurred 

[2,114].  Prominent features of these clones have been their ability to cause severe 

infections in young otherwise healthy people and the carriage of the lukS-PV/lukF-

PV PVL encoding genes. 

 

It has been suggested two potential markers for defining CA-MRSA are the carriage 

of the PVL encoding genes and SCCmec IV [2B] [25].  However although PVL 

genes are present in the majority of CA-MRSA reported in the literature, the majority 

of CA-MRSA strains in Australia lack lukS-PV/lukF-PV.  Furthermore SCCmec V 

has been well described in CA-MRSA isolates [57,107,115] and SCCmec IV [2B] in 

some HA-MRSA isolates [59,116,117].  

 

Consequently the most sensitive and specific process for differentiating CA-MRSA 

from HA-MRSA is using molecular typing complemented with patient epidemiology 

[118]. 

    

2.5.1. Community MRSA in Western Australia 

 

2.5.1.1. “Kimberley MRSA” 

 

Although MRSA infections acquired in the community were first reported in the 

USA in 1982 [119], these patients had predisposing healthcare-associated risk factors 

for infection such as previous hospital admission or intravenous drug abuse. 

 

The first genuine cases of CA-MRSA infection were reported in 1993 in infected 

indigenous people from remote communities in the sparsely populated Kimberley 

region of WA [1]. Approximately one-half of the people living in the Kimberley 

regions are indigenous, many of whom live in poor socioeconomic conditions.  

Infected skin lesions and staphylococcal sepsis occur frequently in this population 
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and antistaphylococcal therapy is often prescribed.  Like the “classic MRSA” 

reported in the 1960s, “Kimberley MRSA” were nonmultiresistant, however while 

the “Kimberley MRSA” isolates were streptomycin and erythromycin susceptible 

they harboured a tetracycline resistance plasmid.  In addition their PFGE patterns 

differed from the “classic MRSA” and the epidemic healthcare associated “EA-

MRSA” clone found in hospitals on the east coast of Australia.  Subsequent 

MLST/SCCmec have characterised “Kimberley MRSA” as ST8-MRSA-IV [2B], and 

the “classic MRSA” and “EA-MRSA” clones as ST250-MRSA-I [1B] and ST239-

MRSA-III [3A] respectively.  However using eburst analysis all three clones belong 

to CC8, suggesting they have evolved from the same S. aureus lineage. 

 

During the 1990s, CA-MRSA in WA, subsequently termed “WA-MRSA”, were 

isolated in most regions of the state [120,121], and a substantial number of cases of 

infection and colonisation occurred in metropolitan Perth by 1997 [122].   

 

Although CA-MRSA isolated in WA were typically nonmultiresistant, all strains 

analysed harboured a large β-lactamase plasmid and cadmium resistance plasmid that 

could vary in size and EcoR1 restriction fragment length patterns [123].  In addition 

some isolates were reported to carry a 41.4 kb plasmid that encoded β-lactamase and 

resistance to mupirocin, tetracycline, trimethoprim and cadmium, and a smaller 

plasmid (2 kb) that encoded erythromycin resistance.  Chromosomal fusidic acid and 

tetracycline resistance determinants were also reported [115,123].   

 

2.5.1.2. Notification of MRSA 

 

Following the successful control of an “EA-MRSA” hospital outbreak [124], state 

legislation was passed in 1982 requiring notification of all MRSA isolates in WA.  

The referral of these isolates to the Australian Collaborating Centre for Enterococcus 

and Staphylococcus Species (ACCESS) Typing and Research Unit allowed 

unparalleled epidemiological study of CA-MRSA within a defined geographical 

region.  Since 1982 all patients or healthcare workers who are colonised or infected 

with MRSA are notified to the Western Australia Department of Health and included 

in an electronic microbiology alert system [125].   
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2.5.1.3. 1980 - 2002 

 

In the 1980s, the proportion of S. aureus that was MRSA varied from 10 to 30% in 

states other than WA, while WA remained at 0.4% [126].  After a relatively low 

number of MRSA notifications in the 1980s, the number in WA increased 

significantly in the 1990s.  This was due almost exclusively to community-associated 

“WA-MRSA” with notifications increasing from 14% in 1989 to 94% of total MRSA 

notifications in 1998 with the increase occurring mainly in rural areas.  In 1983, the 

overall rate of notifications in the rural regions was 10/100,000 compared with the 

metropolitan area rate of 7/100,000 [120].  In 2002, notification rates in rural and 

metropolitan regions were 108 and 104 notifications per 100,000 persons 

respectively. 

 

2.5.1.4. 2003 - 2004 

 

A further study was conducted on isolates notified between July 2003 and December 

2004 [59].  4,099 MRSA were epidemiologically typed by ACCESS Typing and 

Research, of which 77.5% were characterised as CA-MRSA. Twenty two clones 

were identified by MLST/SCCmec typing.  Most clones harboured type IV or type V 

SCCmec with three clones harbouring novel SCCmec elements.   The clones were 

grouped into ten clonal complexes and two singletons, suggesting horizontal transfer 

of the SCCmec element had occurred on multiple occasions in the WA community.  

Although polyclonal, 96.5% of CA-MRSA consisted of five PVL negative clones; 

ST1-MRSA-IVa [2B] (WA-MRSA-1, 55.3%), ST78-MRSA-IVa [2B] (WA-MRSA-

2, 29.8%), ST5-MRSA-IVa [2B] (WA-MRSA-3, 8.6%), ST45-MRSA-V [5C2] (WA 

MRSA-4, 1.9%) and ST8-MRSA-IVa [2B] (WA-MRSA-5, 0.9%).  Many clones had 

acquired plasmids and chromosomal resistance determinants resulting in some 

isolates to be resistant to five non-β-lactam antimicrobial agents, including 

erythromycin, tetracycline, trimethoprim, ciprofloxacin, gentamicin, rifampin, 

fusidic acid, and mupirocin.  Unlike CA-MRSA isolated outside WA, “WA-MRSA” 

did not harbour genes encoding the bi-component toxin PVL. However, five PVL 

positive CA-MRSA clones were identified in this study, including ST93-MRSA-IV 

[2B] (Qld CA-MRSA), ST8-MRSA-IV [2B] (USA300), ST59-MRSA-V [5C2&5] 
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(Taiwan CA-MRSA), ST80slv-MRSA-IV [2B] (European CA-MRSA) and ST30-

MRSA-IV [2B] (SWP CA-MRSA).     

 

2.5.1.5. 2009 - 2010 

 

In 2009/2010, 83.8% of the 4,691 non duplicate MRSA isolates referred to ACCESS 

Typing and Research were characterised as CA-MRSA 

(http://www.asainc.net.au/aasp/wamer).  Since 2003/2004 PVL-positive and PVL-

negative CA-MRSA numbers in WA have increased significantly (P<0001) (Figure 

4).  

 

77.7% of CA-MRSA were PVL negative. Using MLST/SCCmec typing 34 clones 

(44 PFGE pulsotypes) consisting of 25 STs (12 CCs and one Singleton) were 

identified.  For the 34 MLST/SCCmec clones, 21, 7 and 6 carried SCCmec IV [2B], 

SCCmec V [5C2] and novel SCCmec element types respectively.  The emergence of 

MRSA in diverse clonal clusters with different SCCmec types once again suggested 

that horizontal transmission of SCCmec elements had occurred on multiple occasions.  

Furthermore, the results suggested that re-arrangement and/or novel generation of the 

the SCCmec was occurring.  Although multiple PVL negative CA-MRSA clones 

were identified, more than 95% of isolates were characterised as ST1-MRSA-IV 

[2B] (WA-MRSA-1, 52%), ST78-MRSA-IV [2B] (WA-MRSA-2, 31%) and ST5-

MRSA-IV [2B] (WA-MRSA-3, 12%). The original CA-MRSA identified in WA, 

ST8-MRSA-IV [2B] (WA-MRSA-5) accounted for <1% of PVL negative CA-

MRSA, suggesting the acquisition of the SCCmec by this clone did not necessarily 

provide an ecological advantage.       

 

22.3% of CA-MRSA harboured the lukS-PV/lukF-PV PVL encoding genes.  Since 

2003/2004 several non WA-MRSA PVL positive clones have increased significantly 

(P<0.0001); ST93-MRSA-IV [2B] (Qld CA-MRSA), ST8-MRSA-IV [2B] 

(USA300), ST59-MRSA-V [5C2&5] (Taiwan CA-MRSA), ST772-MRSA-V [5C2] 

(Bengal Bay CA-MRSA) and ST30-MRSA-IV [2B] (SWP CA-MRSA) (Figure 5).  

The Qld CA-MRSA clone increased from 0.7% of all MRSA in 2003/2004 to 13.3% 

in 2009/2010. 
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The highest prevalence of PVL positive infection and/or colonisation was in the 

Kimberley and Pilbara regions (287 and 115/100,000 population respectively).  As 

mentioned previously, approximately 50% of people in these regions are indigenous, 

many of whom live in poor socioeconomic conditions.  As many of the original CA-

MRSA strains isolated in these regions were PVL negative many of the infections 

were superficial skin infections such as impetigo.  However with the introduction of 

the PVL-positive Qld clone more severe skin and soft tissues infections have been 

observed (http://www.asainc.net.au/aasp/wamer), [24].  

 

 

 

 

 

 

 

Figure 4: Number of known PVL-positive and PVL-negative CA-MRSA, 

Western Australia July 2003 to June 2010 
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Figure 5: PVL positive clones isolated in WA, 2003/2004 to 2009/2010 

 

This introduction of PVL positive clones has a caused a significant change in the age 

of patients infected/colonised with CA-MRSA in WA (Figures 6 and 7). 
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Figure 6: Rate (per 100,000 population) of known PVL-negative CA-MRSA by 

age, Western Australia July 2009 to June 2010 
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Figure 7: Rate (per 100,000 population) of known PVL-positive CA-MRSA by 

age, Western Australia July 2009 to June 2010 

 

The average age of patients infected/colonised with PVL-positive CA-MRSA was 29 

years (median 26 years) – significantly younger (T=24.9554) than patients with 

PVL-negative CA-MRSA (mean 55 years, median 60 years) (Figure 8).  93% of PVL 

positive CA-MRSA strains were isolated from clinical specimens, predominantly 

SSTIs (as opposed to screening swabs), compared to 72% of PVL-negative CA-

MRSA.       
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Figure 8: Median age and range of patients infected or colonised with PVL-

positive and PVL-negative CA-MRSA 
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Owing to its geographical isolation and to a state-wide policy of screening all 

patients and healthcare-associated staff who have lived outside the state for MRSA 

the epidemiology of MRSA in WA has always differed from that in the rest of 

Australia [124].  

 

2.5.2. Community MRSA in Central Australia 

 

Emergence of non multiresistant MRSA causing infections outside the healthcare 

setting was noted in the Northern Territory (NT) not long after the initial 

observations in WA.  Like the Kimberley region, the NT has a high proportion of 

aborigines and is sparsely populated.  A retrospective study in 1995 found CA-

MRSA was first isolated at Royal Darwin Hospital (RDH) in 1991 [17].  One half of 

infections due to CA-MRSA (defined as MRSA susceptible to gentamicin and to 

tetracycline and/or erythromycin) were community acquired (risk factors for 

healthcare-associated acquisition were absent), whereas all infections due to HA-

MRSA (defined as MRSA resistant to gentamicin and/or to both tetracycline and 

erythromycin) were nosocomially acquired.  Community-acquired infections due to 

CA-MRSA were far more common in aborigines than non-aborigines; the relative 

risk (95% confidence interval) was 15.4 (7.9 – 30.3).  Overall the rate of CA-MRSA 

infections was highest in the western region of the NT, which borders the Kimberley 

region of WA.  The aboriginal populations of these two regions are in frequent 

contact and therefore spread from the Kimberley region to the NT could have 

occurred.  However NT isolates were neither typed nor compared with WA isolates 

at that time. 

 

A detailed study of community-onset S. aureus bacteraemia at RDH between 1998 

and 2001 identified 121 episodes, of which 15 (12.4%) were due to CA-MRSA 

(defined as MRSA resistant to two or fewer non-β-lactam antimicrobials) [127].  The 

proportion due to CA-MRSA increased steadily from 9% in 1998 to 20% in 2001.  

Most patients were aboriginal (86%) and most lived in remote areas or rural areas of 

the northern end of the NT (79%).  Two cases were preceded by skin or soft-tissue 

abscesses and two developed lung abscesses.  Endocarditis was diagnosed in three 

episodes.   Ten isolates from nine episodes were available for genetic testing and all 
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contained the type IV [2B] SCCmec element.  Three pairs of isolates were 

indistinguishable by PFGE, but they were not compared with strains from WA. 

           

2.5.3. Community MRSA in Eastern Australia 

 

Infections due to nonmultiresistant MRSA that were not associated with healthcare 

settings first appeared in eastern Australia in the mid 1990s. 

 

An association between polynesian ethnicity and the occurrence of CA-MRSA SSTIs, 

particularly furunculosis, was first noted in Brisbane, Sydney, Canberra and 

Melbourne in 1997 [20].  It seemed likely that the strain causing these infections was 

the same as that causing similar infections in the polynesian population in Auckland, 

New Zealand [21]. Subsequent detailed studies in Brisbane and Sydney concluded 

that the strains in Australia and New Zealand were indistinguishable by PFGE and 

bacteriophage typing [22,128].  These studies confirmed that people of Polynesian 

ethnicity were overrepresented in the infected population.  They also showed the 

medium age of patients with CA-MRSA was significantly lower than that of patients 

with HA-MRSA.  SSTIs, most notably furunculosis, predominated.  In the Brisbane 

study, 74% of CA-MRSA infections had no risk factors for healthcare acquisition, 

while in Sydney the figure was 44%.  The clone responsible proved to be PVL-

positive ST30-MRSA-IV [2B] (SWP CA-MRSA) [25].  This clone is closely related 

to the 80/81 MSSA clone that caused major outbreaks of neonatal infection in 

Australia and became pandemic in the 1950s [91,129]. 

 

The number of cases of CA-MRSA infection seen in the Caucasian population 

increased in the city of Ipswich in southeast Qld in 2000.  PFGE showed that some of 

these cases were due to a unique pulsotype, which was subsequently typed as PVL-

positive ST93-MRSA-IV [2B] (Qld CA-MRSA) [24,25]. This has proven to be a 

very important clone in Australia; it has become the predominant CA-MRSA in Qld 

and NSW and has also spread widely in the rest of the country [115].  ST93-MRSA-

IV [2B] is notably virulent, causing necrotising pneumonia (including fatal cases), 

deep abscesses, osteomyelitis, septic arthritis and bacteraemia [130,131]. 
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2.5.4. Recent Australian Epidemiology of CA-MRSA  

 

At a national level, the Australian Group for Antimicrobial Resistance (AGAR) has 

been conducting regular surveys of clinical S. aureus in all states and territories since 

1986.  From the 2000 survey typing of all MRSA isolates has been performed by 

ACCESS Typing and Research [59,115,132,133].   

 

2.5.4.1.  AGAR 2010 Community-Onset Staphylococcus aureus Surveillance 

Programme 

[http://www.agargroup.org/files/FED%20REPORT%20SAP210%20MRSA%20FIN

AL%20shrink.pdf] 

 

The AGAR biennial community-onset Staphylococcus aureus surveillance 

programme (SAP) commenced in 2000. In the 2010 community programme 

(SAP2010) up to 100 clinically significant isolates of S. aureus from different 

patients with community onset infections were collected by each of 30 institutions 

located across Australia. Isolates were collected from GP clinics, hospital outpatients, 

nursing homes, long-term care facilities and hospice patients. Day surgery and 

dialysis patients were excluded. MRSA isolates were referred to ACCESS Typing 

and Research for clone characterization and detection of the PVL determinants. Of 

the 539 S. aureus classified as MRSA (18.0%) molecular typing was performed on 

532 (98.7%) isolates.  Overall 66.7% of MRSA were characterised as CA-MRSA.  

Since the 2000 survey the percentage of S aureus characterised nationally as CA-

MRSA has almost doubled from 6.6% to 11.6%.  Prevalence varied markedly 

between states and territories ranging from 3.0% in Tas to 29.0% in NT (Figure 9).   

 

As in previous AGAR community-onset S. aureus surveys although CA-MRSA was 

multiclonal (32 clones) the majority of isolates (84.3%) could be characterised into 

six clones (Figure 10).    
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Figure 9: AGAR SAP2010 Community-Onset Staphylococcus aureus 

Surveillance Programme: Percentage of S. aureus characterised as CA-MRSA 

per state and territory. ACT = Australian Capital T erritory; NSW = New South 

Wales; NT = Northern Territory; Qld = Queensland; SA = South Australia; Tas 

= Tasmania; Vic = Victora; WA = Western Australia; Aust = Australia 
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Figure 10: AGAR SAP2010 Community-Onset Staphylococcus aureus 

Surveillance Programme: Percentage of CA-MRSA clones per state and 

territory  
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PVL-positive ST93-MRSA-IV [2B] (Qld CA-MRSA) was the most frequently 

isolated CA-MRSA clone in the Australian community accounting for 41.4% of all 

CA-MRSA and 27.6% of all MRSA infections.  Although the prevalence of Qld CA-

MRSA has increased in all states and territories (Figure 11), PVL-negative ST1-

MRSA-IV [2B] (WA-MRSA-1) was the most prevalent strain in WA and SA and 

PVL- negative ST45-MRSA-V [5C2&5] (WA-MRSA-84) the most common in Vic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: AGAR SAP2000 to SAP2010 Community-Onset Staphylococcus 

aureus Surveillance Programme: Regional Distribution of ST93-MRSA-IV [2B] 

Queensland CA-MRSA. ACT = Australian Capital Territory; NSW = New 

South Wales; NT = Northern Territory; Qld = Queensland; SA = South 

Australia; Tas = Tasmania; Vic = Victora; WA = Western Australia; Aust = 

Australia 

 

Overall 62.5% of CA-MRSA were PVL positive, a 21% increase when compared to 

the 2006 survey.  The mean age of patients with PVL-positive CA-MRSA infections 

(31 years; median 25 years) was significantly lower (P<0.0001) than the mean age of 

patients with PVL-negative CA-MRSA (53 years; median 57 years).  The increase in 

PVL-positive MRSA was not only due to ST93-MRSA-IV [2B] but also to the 

introduction of several international CA-MRSA clones including ST30-MRSA-IV 
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(Taiwan CA-MRSA), ST80-MRSA-IV [2B] (European CA-MRSA) and the 

hypervirulent ST772-MRSA-V [5C2] (Bengal Bay CA-MRSA).    

 

2.5.4.2. AGAR 2009  Hospital-Onset S. aureus Surveillance Programme 

http://www.agargroup.org/files/SAP09%20MRSA%20TYPING%20REPORT%20FI

NAL%20shrink.pdf 

 

The AGAR biennial hospital-onset Staphylococcus aureus surveillance programme 

(SAP) commenced in 2005. In the 2009 hospital-onset programme (SAP2009) up to 

100 clinically significant isolates of S. aureus from different patients were collected 

by each of 30 institutions located across Australia. Isolates were collected from 

hospitalised patients (>48 hours post-admission at the time of specimen collection). 

MRSA isolates were referred to ACCESS Typing and Research for clone 

characterization and detection of the lukS-PV/lukF-PV PVL encoding genes. Of the 

916 S. aureus classified as MRSA (33.6%) molecular typing was performed on 899 

(98.1%) isolates.  Overall 32.3% of MRSA were characterised as CA-MRSA.    

Since the 2005 survey the percentage of S. aureus characterised nationally as CA-

MRSA has significantly increased from 6.5% to 10.6% (P<0.002).  Prevalence varied 

markedly between regions ranging from 8.2% in Tas/Vic to 20.4% in WA (Figure 

12).   

 

As in previous AGAR hospital-onset S. aureus surveys although CA-MRSA was 

multiclonal (28 clones) the majority (87.9%) of isolates could be characterised into 

six clones (Figure 13).    

 

PVL-negative ST1-MRSA-IVa [2B] (WA-MRSA-1) was the most frequently 

isolated CA-MRSA clone in Australian hospitals accounting for 31.7% of all CA-

MRSA and 10.2% of all MRSA infections.  Although since 2000 the prevalence of 

WA-MRSA-1 has increased in most regions (Figure 14), PVL-positive ST93-

MRSA-IV [2B] (Qld CA-MRSA) was the most prevalent strain in NT/Qld and 

NSW/ACT and PVL-negative ST45-MRSA-V [5C2&5] (WA-MRSA-84) in Tas/Vic 
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Figure 12: AGAR SAP2009 Hospital-Onset Staphylococcus aureus Surveillance 

Programme: Percentage of S. aureus characterised as CA-MRSA per region. 

ACT/NSW = Australian Capital Territory/New South Wa les; NT/Qld = 

Northern Territory/Queensland; SA = South Australia; Tas/Vic = 

Tasmania/Victora; WA = Western Australia; Aust = Australia 

 

South Australia:South Australia:
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Figure 13: AGAR SAP2009 Hospital-Onset Surveillance Staphylococcus aureus 

Programme: Percentage of MRSA characterised as CA-MRSA per region 
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Figure 14: AGAR SAP2005 to SAP2009 Hospital-Onset Staphylococcus aureus 

Surveillance Programme Regional Distribution of ST1-MRSA-IV [2B] WA-

MRSA-1. ACT/NSW = Australian Capital Territory/New South Wales; NT/Qld 

= Northern Territory/Queensland; SA = South Australia; Tas/Vic = 

Tasmania/Victora; WA = Western Australia; Aust = Australia  

 

Overall 28.3% of CA-MRSA were PVL positive, a much lower proportion than seen 

in the outpatient community-onset surveys.  In this survey an increase in PVL-

positive MRSA was observed, whIch was not only due to the ST93-MRSA-IV [2B] 

clone but also due to two international CA-MRSA clones; ST30-MRSA-IV [2B] 

(SWP CA-MRSA) and ST59-MRSA-V [5C2&5] (Taiwan CA-MRSA). 

 

The AGAR 2009 hospital-onset Staphylococcus aureus surveillance programme has 

demonstrated how the distinction between community and healthcare facility has 

become blurred, with 10.6% of S. aureus hospital onset infections due to CA-MRSA 

strains.  Similarly in the AGAR 2010 community-onset Staphylococcus aureus 

surveillance programme 5.9% of S. aureus community onset infections were due to 

HA-MRSA. 
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2.6. Summary   

 

Having started as a series of geographically separate epidemics involving different 

clones, CA-MRSA has increased in prevalence in all areas of Australia. There has 

been remarkable diversity in the clones that have acquired SCCmec types IV [2B], V 

[5C2] and [5C2&5], and novel SCCmec types.  Most CA-MRSA do not harbour 

genes encoding the bi-component PVL toxin.  However the PVL positive clones 

have been associated with the most severe infections and one of them ST93-MRSA-

IV [2B] (Qld CA-MRSA) has now become the most prevalent CA-MRSA clone in 

Australia. 

 

The notification of MRSA in WA has facilitated the collection of numerous isolates 

from all parts of the state providing the necessary resource to address the important 

questions of colonisation dynamics and genetics of S. aureus; frequency of SCCmec 

acquisition; and the genetic basis for the increasing prevalence of PVL-positive CA-

MRSA in WA. 

 

Furthermore the nationwide AGAR program has allowed comparison of “WA-

MRSA” with CA-MRSA isolated elsewhere in Australia.    
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3. RESEARCH DESIGN 

 

3.1. Objective One 

 

The first true CA-MRSA without known healthcare associated risk factors 

described in the world were reported in 1993 in infected indigenous people 

living in remote communities in the sparsely populated Kimberley region of 

Western Australia (WA) [112].  As a consequence of this remoteness, these 

communities provided a unique opportunity to study the evolution of CA-

MRSA within a confined isolated population which has had limited contact 

with healthcare institutions and therefore HA-MRSA. 

 

The first objective of this thesis was to “determine the colonisation dynamics 

and genetics of S. aureus in remote indigenous communities and thereby gain 

an insight into the emergence of WA-MRSA”.  

 

Within these confined communities we proposed to: 

  

- Determine the prevalence of different MSSA and MRSA clones in 

selected remote communities and compare the MRSA prevalence 

to the rest of the state. 

 
- Examine the relationship between MSSA and MRSA STs thereby 

providing an insight into SCCmec acquisition. 

 
- Determine if clonal dissemination has occurred. 

 
- Investigate the emergence of resistance in S. aureus. 

 
- Determine any differences in the colonisation dynamics between 

MSSA and MRSA.    
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3.2. Objective Two 

 

Having examined the MSSA/MRSA dynamics in remote communities we then 

proposed to expand our analysis to a wider region concentrating on the 

evolution of CA-MRSA, with particular reference to SCCmec acquisition. 

 

The second objective was therefore to “determine the genetic relatedness of 

WA-MRSA clones within different multilocus sequence type clonal clusters 

providing an insight into the frequency of S. aureus SCCmec acquisition within 

a region”.   

 

The genetic profile of these clones may also offer an explanation why only a 

few “WA-MRSA” clones have successfully adapted to the community 

environment. 

 

The following minor objective was also to:    

 

• Determine the antibiotic resistance profile and resistance 

determinants of “WA-MRSA” isolated in WA.  
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3.3. Objective Three 

 

The results from Objective 2 demonstrated the emergence of PVL-positive CA-

MRSA in WA.  This is of clinical significance given the greater potential of 

these clones to cause increased SSTIs and life threatening infections 

particularly in young otherwise healthy people. 

 

The next objective of this thesis was therefore “to determine if the increased 

prevalence of Panton Valentine leucocidin (PVL)-positive CA-MRSA in 

Australia is due to the widespread transmission of a single MRSA clone, or 

multiple independent acquisitions of the SCCmec element by a local PVL-

positive MSSA clone(s); or the dissemination and subsequent evolution of 

international PVL-positive MRSA”. 

 

PVL is a necrotising toxin that causes leucocyte destruction and tissue necrosis 

and is associated with abscesses and severe pneumonia.  It is present in the 

majority of CA-MRSA studied in Europe and USA.  Initial studies have shown 

Western Australian CA-MRSA infrequently carried the genes encoding PVL.  

However, due to the emergence and dissemination of the Qld CA-MRSA clone 

(ST93-MRSA-IV [2B]) and the introduction of several international CA-

MRSA clones the proportion of PVL-positive CA-MRSA in WA increased 

from 2% of CA-MRSA in 2003/2004 to 22.3% in 2009/2011.   

 

As the increased prevalence of PVL positive CA-MRSA in WA may be due to 

more than a single evolutionary event the following three PVL-positive CA-

MRSA clones were investigated: ST93-MRSA-IV [2B] (Qld CA-MRSA); 

ST59-MRSA-VT [5C2&5] (Taiwan CA-MRSA); ST8-MRSA-IV [2B] 

(USA300). 
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3.3.1. ST93-MRSA-IV [2B] (Qld CA-MRSA) 

 

From 2003/2004 to 2009/2010 Qld CA-MRSA, SWP CA-MRSA, Taiwan CA-

MRSA, USA300 and Bengal Bay CA-MRSA have increased significantly 

(P<0.0001) in WA.  Qld CA-MRSA however has showed the greatest increase 

from 0.7% of all MRSA in 2003/2004 to 13.3% in 2009/2010.  Although Qld 

CA-MRSA was first detected in WA in 2003, as demonstrated in our first 

objective, PVL-positive ST93-MSSA was identified as the most prevalent        

S. aureus lineage in WA’s remote indigenous communities in the mid 1990s 

and the early 2000s. By 2009/2010 Qld CA-MRSA were isolated in all public 

health regions with the highest prevalence in the Kimberley (237/100,000).   

 

The increase in numbers of ST93-MRSA has major clinical implications 

therefore it was important to determine if the increased prevalence of Qld CA- 

MRSA in WA was due to the widespread transmission of a single clone or was 

due to multiple independent acquisitions of the SCCmec element.  Hence the 

objective of this study was “to examine the genetic relatedness of S. aureus 

ST93 isolated throughout Australia over an extended period.”       

 

3.3.2. ST59-MRSA-VT [5C2&5] (Taiwan CA-MRSA) 

 

In the Asia Pacific region a distinct genotype, CC59, has become widespread. 

ST59 CA-MRSA is an important cause of morbidity in Taiwan.  The so called 

“Taiwan CA-MRSA clone” has acquired a composite type V SCCmec element 

(V [5C2&5] also known as VT). Since 2003 multiple CC59 strains have been 

characterised in WA (WA MRSA-9, -15, -24, -52, -55, -56 and -73).  These 

strains differ from each other in ST designation, PFGE pattern, SCCmec 

element and PVL carriage.  Whether CC59 in WA is the result of the 

importation and expansion of the ST59-MRSA-VT [5C2&5] Taiwan CA-

MRSA clone with subsequent genetic changes or due to SCCmec acquisition 

by local CC59 MSSA isolates was not known. 

 

The objective of this study was therefore “to determine if CC59 MRSA isolated 

in WA are genetically related to Taiwan CA-MRSA”.  
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3.3.3. ST8-MRSA-IV [2B] (USA300) 

 

PVL-positive USA300 has been the dominant MRSA strain in the North 

American community for over a decade.  It is responsible for increased clinical 

disease, and has entered the hospital setting. First reported in WA in 2003, by 

2009/2010 USA300 was the third most frequently isolated PVL-positive 

MRSA and the sixth most isolated CA-MRSA in WA.  Almost 50% of patients 

presenting with a USA300 infection reported a recent travel history.  The 

majority of USA300 (80%) were isolated from patients living in the Perth 

metropolitan region.  

 

Given the importance of this international clone further examination of WA 

strains was indicated. The objective of this study was therefore “to determine if 

USA300-like isolates that have been identified in WA were USA300, and if so 

had they undergone further diversification.” 

 

 

 

The materials and methods used in each study are described in the relevant 

publication.  

 



 - 45 - 

4. REVIEW   

 

In Paper One (Population dynamics of methicillin-susceptible and -resistant 

Staphylococcus aureus in remote communities) we showed that between the years 

1995 and 2003 the S. aureus population structure in the geographically remote 

regions of WA was different to other regions.  In European and the North American 

S. aureus population studies, five main genotypic clusters have been identified: CC5, 

CC8, CC22, CC30 and CC45.  These clusters form the essential genetic backgrounds 

of S. aureus, with differences occurring principally in the local prevalence of the 

genotypes and the presence of minor clones [134,135]. In a study performed in 

Indonesia, which has prehistoric links with remote WA, a similar S. aureus 

population structure to that of Europe and the USA was reported [136].  The 

differences found in WA are probably a consequence of the geographic and cultural 

isolation of the remote population in WA; however these differences had an 

important influence on the epidemiology of MRSA in the entire WA community.   

 

The most prevalent MSSA identified were ST93-MSSA from the Singleton ST93 

lineage (21.4% of MSSA), ST15-MSSA from CC15 (14.9%), ST72-MSSA from 

CC5 (10.1%) and ST45-MSSA from CC45 (5.9%).   

 

When compared with MSSA, we found less diversity in the MRSA lineages.  Five 

MRSA lineages consisting of seven clones were identified in the communities 

screened in the 1995 surveys.  No additional lineages were found in these or other 

remote communities in subsequent surveys within this study.  ST1-MRSA-IVa [2B] 

(WA-MRSA-1) was the most frequently isolated MRSA clone (42.7%), followed by 

ST73-MRSA-IVa [2B] (WA-MRSA-65) (17.6%), ST5-MRSA-IVa [2B] (WA-

MRSA-3) (13.4%), ST45-MRSA-V [5C2] (WA-MRSA-4) and ST45-MRSA-IVa 

[2B] (WA-MRSA-75) (12.5%), ST78-MRSA-IVa [2B] (WA-MRSA-2) (12.5%), and 

ST8-MRSA-IVa [2B] (WA-MRSA-5) (1.3%).  Although all lineages containing 

MRSA also contained MSSA, they were not the most prevalent MSSA lineages.  The 

CC1 MRSA clone, ST1-MRSA-IVa [2B] formed 42.7% of all MRSA while the 

methicillin susceptible counterpart ST1-MSSA, formed only 1.3% of the MSSA 

population.  Similarly, in CC5, ST5-MRSA-IVa [2B] was 13.4% of the MRSA while 

ST5-MSSA formed only 0.6% of the MSSA and ST78-MRSA-IVa [2B] was 12.5% 
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of the MRSA while the corresponding MSSA was only 3.6% of the MSSA 

population.  MRSA were not found in the largest MSSA lineages of Singleton ST93 

and CC15. 

 

Two lineages of MSSA harboured PVL determinants; seven of eight ST93-MSSA 

tested were found to carry lukS-PV/lukF-PV and of three ST121-MSSA tested one 

carried the determinant.  No MRSA carried PVL. 

 

Very few of the S. aureus isolates were resistant to multiple antimicrobials; however 

the potential for the emergence of resistance was indicated by the presence of several 

antimicrobial resistance determinants.  In addition to the SCCmec element, 

determinants for resistance to penicillin, fusidic acid, MLSBi (inducible erythromycin 

resistance and erythromycin inducible resistance to lincomycin), tetracycline, 

gentamicin, kanamycin, mupirocin, trimethoprim and chloramphenicol were present.  

The resistance determinants for β-lactamase production, MLSBi, mupirocin and 

trimethoprim in remote WA community MRSA have been shown to be plasmid 

borne [123,137], and gentamicin and kanamycin resistance have been demonstrated 

to be on transposons while those for erythromycin, tetracycline and chloramphenicol 

are on plasmids. 

 

Subsequent data have shown that the four MRSA clones considered endemic in 

Paper One have become the most prevalent CA-MRSA clones in the wider WA 

community [59].  State wide surveillance has revealed that in December 2006, ST1-

MRSA-IVa [2B], ST78-MRSA-IVa [2B] and the CC5 clones (ST73-MRSA-IVa 

[2B] and ST5-MRSA-IVa [2B]) comprised 56.7%, 30.5% and 8.9% of CA-MRSA in 

WA, respectively.  The CC45 clones (ST45-MRSA-V [5C2] and ST45-MRSA-IVa 

[2B]), and ST8-MRSA-IVa [2B], which were not found in the communities after 

1998, formed only 1.9% and 0.8% of CA-MRSA respectively in WA in 2006 

suggesting that they were not as well adapted to the WA community environment.         

 

With the exception of ST8-MRSA-IVa [2B], the MRSA did not belong to the most 

prevalent MSSA lineages.  However the MRSA strains did form the greater 

proportion of isolates present in the lineage to which they belonged, suggesting that 

an advantage was gained by acquisition of the SCCmec element.  It would appear, 
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however, that only a limited number of clones acquired and maintained the SCCmec 

element, even though β-lactamase-stable β-lactams were widely used in the 

communities.  The clonal structure of MRSA and the small amount of genetic 

diversity when compared with MSSA indicate not only the more recent emergence of 

MRSA, but also the dissemination of MRSA has probably occurred  along clonal 

lines by well-adapted community clones that could support the SCCmec element. 

 

The most prevalent MSSA lineage was the PVL-positive Singleton ST93 clone 

ST93-MSSA, which has been rarely found outside Australia.  No Singleton ST93-

MRSA was found during the periods of the surveys.  PVL-positive ST93-MRSA-IVa 

[2B], also known as the Qld clone, however, is an important Australian CA-MRSA 

that was originally found in a Caucasian population in Qld in 2000 and has been 

reported in indigenous people from Qld [18,24] and the NT [138].  It is interesting 

that in an environment of high β-lactam use a methicillin-resistant variant of ST93-

MSSA was not found in WA during these surveys. 

  

S. aureus isolates from most of the lineages were found at all anatomical sites tested.  

The highest recovery of MSSA of 42.6% was from the throat while for MRSA the 

highest recovery of 51.6% was from the anterior nares.  Although the anterior nares 

is the preferred screening site for population studies, in this study many isolates of S. 

aureus would have been missed if the throat and skin lesions had not also been 

swabbed. 

 

The clonal nature of MRSA and the tendency for people carrying MRSA at multiple 

anatomical sites to harbour clones of the same genetic lineage as opposed to those 

with MSSA, who tended to have different lineages at each site, indicates that MRSA 

in the WA remote communities are well adapted colonisers that could possibly 

displace MSSA as asymptomatic commensal organisms.   

 

The results of Paper One raised further questions regarding CA-MRSA molecular 

epidemiology in the wider WA region; in particular is there evidence for either clonal 

dissemination of these observed clones or ongoing SCCmec acquisition in different 

CCs, or have both occurred? 
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In Paper Two, which included CA-MRSA from metropolitan and regional WA 

(Evolution and diversity of CA-MRSA in a geographical region), we identified an 

additional 41 CA-MRSA to those described in the remote communities. 

 

As the geographical spread of CA-MRSA over long distances and across cultural 

borders is believed to be a rare event compared to the frequency with which the 

SCCmec element is acquired by S. aureus [54], most of these clones are likely to 

have evolved in WA.  Some clones are slvs and dlvs of pre-existing CA-MRSA, and 

their SCCmec type, spa type, and DNA microarray profile suggests vertical 

transmission of the SCCmec element has occurred.  However the emergence of 

MRSA in several unrelated S. aureus CCs suggests horizontal transmission of the 

SCCmec element has also occurred.  SCCmec and spa type, and DNA microarray 

results also suggest horizontal transfer of SCCmec elements has occurred into the 

same CC on more than one occasion. 

 

In 2010 approximately 88% of CA-MRSA were identified as WA-MRSA-1 (40% of 

MRSA), WA-MRSA-2 (24%) and WA-MRSA-3 (8%).  For many slv and dlv CA-

MRSA only a small number of isolates have been detected suggesting changes in the 

housekeeping genes may have conferred a fitness cost or did not allow the SCCmec 

element to be maintained.  For example WA-MRSA-45 and WA-MRSA-57 are slvs 

of ST1 and their SCCmec and spa type and DNA microarray profile suggest they 

have evolved from WA-MRSA-1.  WA-MRSA-45 was first identified in 2006 and 

WA-MRSA-57 in 2007.  Although WA-MRSA-1 has become the most successful 

CA-MRSA clone in the WA community only one isolate of WA-MRSA-45 and two 

isolates of WA-MRSA-57 have so far been identified 

(http://www.asainc.net.au/aasp/wamer).   

 

In Paper Two we identified six PVL-positive globally disseminated MRSA lineages 

of which three have been shown to have local and national significance.  The three 

clones (ST93-MRSA-IV [Qld CA-MRSA], ST59-MRSA-VT [Taiwan CA-MRSA], 

and ST8-MRSA-IV [USA300]) were investigated further to determine if they have 

emerged due to clonal dissemination following importation, with or without genetic 

evolution, or due to multiple independent acquisitions of SCCmec elements. 
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In Australia ST93-MRSA-IVa [2B] has recently become the predominant CA-MRSA.  

[http://www.agargroup.org/files/FED%20REPORT%20SAP210%20MRSA%20FIN

AL%20shrink.pdf].  This strain is associated with skin infection and severe invasive 

infection including necrotizing pneumonia, deep-seated abscess, osteomyelitis, septic 

arthritis and septicaemia [58,130,131].  In the 2010 Australian Group for 

Antimicrobial Resistance (AGAR) Community-onset Staphylococcus aureus 

Surveillance Programme (SAP10) the mean age of patients with Qld CA-MRSA 

infections (31 years, median 25 years) was significantly lower (P<0.0001) than the 

mean age of patients with PVL-negative CA-MRSA infections (53 years; median 57 

years).     

 

Although in the 1990s ST93 was the most prevalent MSSA isolated from indigenous 

people living in WA remote communities, the first ST93-MRSA-IVa [2B] was not 

identified in WA until 2003 [59].  By 2010 ST93-MRSA-IVa [2B] accounted for 

28.8% of the state’s CA-MRSA community-onset infections.   

 

Paper Three (The molecular epidemiology of the highly virulent ST93 Australian 

community Staphylococcus aureus strain) showed all 13 ST93-MSSA examined 

were homogeneous despite being isolated at varying times, 1993 to 2008, and 

locations (WA remote communities, Perth metropolitan area, NT and Vic). 

   

The 45 MRSA isolates were ≥ 80% related by PFGE with the majority of isolates 

falling into one pulsotype which was dispersed throughout Australia over eight years.   

 

Although rearrangement of the spa sequence has occurred several times, the PFGE 

patterns and DNA microarray profiles of the 13 ST93-MSSA isolates suggested the 

ST93 core and accessory genome is very stable.  All carried the PVL-encoding phage 

ΦSa2USA and their lukS-PV/lukF-PV genes had the same R variant SNP profile.  

The isolates produced similar expression levels of LukF-PV with no apparent 

relationship between PFGE subtypes and PVL expression.  The emergence of five 

different spa types, albeit four types assigned to the same cluster, suggested ST93-

MSSA emerged some time ago from a common spa type.  As the spa sequences are 

similar it is not possible to predict the ancestral strain; however one strain, ST93-

MSSA-t202, predominated and has successfully disseminated across Australia.   



 - 50 - 

Like ST93-MSSA, ST93-MRSA had multiple spa types; including the closely related 

t202 and t4178, both identified in ST93-MSSA, and t1811 and t6487, all of which 

could be assigned to the same cluster.  t202 had the largest number of isolates; 42 of 

the 45 ST93-MRSA.  SCCmec and dru typing indicated the SCCmec element had 

been acquired by ST93-MSSA-t202 on at least three occasions; dt10 (SCCmec type 

IVa [2B]), dt3b/dt4d (SCCmec type IVa [2B]) and dt11i (SCCmec type V [5C2&5]).  

Unlike ST93-MRSA-IVa [2B]-t202, ST93-MRSA-V [5C2&5]-t202 did not carry the 

lukS-PV/lukF-PV genes.  The PVL-negative ST93-MRSA-IVa [2B]-t1811 isolate 

may have arisen by independent acquisition of SCCmec IVa [2B] or by the 

subsequent rearrangement of the spa sequence.  Forty three of the 45 isolates carried 

the PVL-encoding phage ΦSa2USA.  The lukS-PV/lukF-PV genes had the same R 

variant SNP profile and produced similar expression levels of LukF-PV as reported 

in ST93-MSSA.  

 

Apart from the ermC gene which was identified in several early ST93-MSSA and 

ST93-MRSA isolates, ST93 S. aureus initially carried few antibiotic resistance 

elements.  However since 2008, in addition to mecA and ermC, some isolates of 

ST93-MRSA have acquired msr(A) and tetK.  Although the dfrA gene was not 

detected by the microarray, SAPWH53 was phenotypically trimethoprim resistant 

(presumably due to an alternative trimethoprim resistance gene or a different dfrA 

allele).  In addition, the quaternary ammonium compound resistance protein C gene 

qacC was carried by two isolates.  The acquisition of additional resistance genes by 

an epidemic PVL-positive CA-MRSA clone is not unique to ST93-MRSA-IVa [2B].  

The USA300 clone (ST8- MRSA-IV [2B]), initially resistant only to semi-synthetic 

penicillins and macrolides, is now, frequently resistant to other antimicrobial agents 

including clindamycin, tetracycline, mupirocin, and the fluoroquinolones.  In 

addition, USA300 is occasionally resistant to gentamicin and trimethoprim-

sulfamethoxazole, and may have reduced susceptibility to daptomycin [139]. 

   

In Paper Three we have shown the increased prevalence of Qld CA-MRSA in 

Australia is possibly due to independent acquisitions of four different dru-defined 

type IV SCCmecs and one type V SCCmec in several spa-defined ST93-MSSA 

backgrounds.  Although rearrangement of the spa sequences in ST93-MRSA had 

subsequently occurred in some of these strains the PVL-positive ST93-IVa [2B]-
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t202-dt10 strain is predominant across Australia.  Whether this strain arose from one 

PVL-positive ST93-MSSA-t202 or by independent acquisitions of SCCmec-IVa 

[2B]-dt10 into multiple ST93-MSSA-t202 strains is not known. 

 

CC59 MRSA is prevalent in WA.  Determining the genetic relatedness of various 

CC59 strains isolated in WA answers the question of whether there has been clonal 

dissemination following importation of the internationally recognised Taiwan CA-

MRSA clone ST59-MRSA-VT [5C2&5] (Taiwan CA-MRSA), or whether separate 

evolutionary events due to SCCmec acquisition have occurred.  

 

In Paper Four (Differentiation of clonal complex 59 community-associated 

methicillin-resistant Staphylococcus aureus in Western Australia) we examined 

multiple CC59 strains isolated in WA between 2003 and 2008.  These strains 

differed from each other in their ST designation, PFGE pattern, SCCmec element, 

and PVL carriage. 

 

In essence the results of this study indicated the increase in numbers of CC59 in WA 

arose primarily due to the clonal dissemination of the Taiwan CA-MRSA clone with 

evidence of further evolutionary diversification within this PVL positive clone. 

 

Although of lower numbers, other CC59 isolates were obtained.  These CC59 

isolates most likely had different origins.  For example WA73 being similar to 

USA1000 may be either a PVL-negative ancestor or a PVL-negative variant of that 

clone.  Three other groups with varying SCCmec types may indicate multiple 

episodes of SCCmec acquisition by PVL negative CC59 lineages unique to WA. 

 

A second important international CA-MRSA identified in WA was USA300 (ST8-

MRSA-IVa [2B]/t008).  First reported in WA in 2003, by 2010 USA300 had become 

the third most isolated PVL-positive clone and the sixth most isolated CA-MRSA in 

WA (http://www.asainc.net.au/aasp.wamer).  ST8-MRSA-IV [2B]/t008 has emerged 

as the dominant MRSA strain in North America, both in the community and hospital 

setting [84,99,109,140,141,142,143], and has been reported in Australia, Canada, 

Denmark, Germany, Japan, Switzerland and the UK [141,144,145,146,147].  

Because of its rapid spread, it has drawn considerable attention, resulting in the 
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sequencing of multiple complete genomes including; USA300-FPR3757, GenBank 

CP000255.1 and USA300-TCH1516, GeneBank CP000730.1 [3,146,148,149]. 

 

Locally known as WA MRSA-12, USA300-like isolates have been identified in 

Australia [2].  To determine whether WA MRSA-12 was USA300 in Paper Five 

(The molecular epidemiology and evolution of the Panton-Valentine leukocidin-

positive, methicillin-resistant Staphylococcus aureus strain USA300 in Western 

Australia) we investigated 76 PVL-positive ST8-MRSA-IV [2B] isolated between 

July 2003 and February 2009 from 72 patients living in the Perth area.    

        

Array hybridisation and PCR demonstrated that all WA-MRSA-12 isolates 

harboured the lukS-PV/lukF-PV PVL genes.  Carriage of capsule genes (type 5), 

biofilm (icaA, icaC, icaD) and MSCRAMM genes (bbp, clfA, clfB, ebh, ebpS, eno, 

fib, fnbA, fnB, map, sdrC, sdrD, and vwb) was identical to USA300-FPR3757 and 

USA300-TCH1516. Genes of the ACME locus (arcA-SCC, arcB-SCC, arcC-SCC 

and arcD-SCC) were detected in 64 (84.2%) of the WA-MRSA-12 isolates.  An 

absence of ACME was confirmed using two different arcA PCR primer sets. 

 

Microarray hybridization profiles identified 16 variants (variants A – P) among 76 

WA MRSA-12 isolates.  Forty seven isolates (61.8%) belonged to variant A.  An 

analysis of the genome sequence of USA300-TCH1516 predicted the same 

hybridisation pattern as that observed in variant A.  Thus USA300 and WA MRSA-

12 can be regarded as the same clone.  From this clone, most of the other variants 

may have evolved by a limited number of gene losses or acquisitions.  Variations in 

carriage of virulence and resistance-associated genes allow distinction of variants or 

sub-clones.  The 16 variants differed in the carriage of resistance genes (blaZ/I/R, 

ermC, msrA + mpbBM, aadD + mupR, aphA3 + sat, tetK, qacC, merA/B/R/T), 

immune evasion clusters (IEC) and enterotoxins (sek + seq, were not detected in four 

isolates).  Notably the ACME locus was absent in 12 isolates.  The mercury 

resistance operon (mer) was found in several ACME-negative isolates.     

  

In summary in Paper Five we have shown PVL positive WA-MRSA-12 is the 

USA300 clone. However, in WA USA300 cannot be regarded as genetically 

homogeneous with variations in the carriage of resistance and virulence determinants 



 - 53 - 

identified.  The most common variant in WA was genetically closely related to 

USA300-TC1516, a geographically widespread strain found in Texas, Germany and 

in Switzerland.       
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5. DISCUSSION 

 

5.1. Paper One 

 

“Population dynamics of methicillin-susceptible and -resistant Staphylococcus 

aureus in remote communities” 

 

5.1.1. Findings 

 

In Paper One we found the S. aureus population in the 11 remote indigenous 

communities consisted of 13 clonal complexes and two Singleton lineages together 

with 56 sporadic isolates. This population structure was different to that reported in 

Europe, the USA and in neighbouring Indonesia.  Five lineages contained MRSA; 

however these did not arise from the predominant MSSA lineages.  There was 

greater genetic diversity amongst the MSSA lineages, while the MRSA lineages 

appear to have emerged clonally following acquisition of SCCmec IVa [2B] and V 

[5C2].  In an environment of high β-lactam use, the horizontal transfer of the 

SCCmec IVa element into the MSSA was found to have occurred on at least five 

occasions (CC1, CC5, CC8, CC45 and CC88).  It was therefore surprising that a 

methicillin-resistant variant of ST93-MSSA was not found, particularly as ST93-

MRSA-IVa [2B] has become the predominant CA-MRSA in Australia and is now 

frequently isolated in WA.  The three MRSA lineages we considered to be endemic 

in the remote WA communities (CC1, CC5 and CC88) have subsequently become 

the predominant lineages of CA-MRSA in the wider WA and Australian community.  

People colonised with MSSA tended to harbour clones of a different genetic lineage 

at each anatomical site, while people colonised with MRSA tended to harbour clones 

of the same lineage at each site.  The MRSA isolates were resistant to few 

antimicrobials. However, the potential for the emergence of resistance was 

demonstrated by the presence of several antimicrobial resistance determinants known 

to be on mobile elements.  PVL determinants were identified in only two MSSA 

lineages (ST93-MSSA and ST121-MSSA), and no PVL-positive MRSA were 

isolated. 
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5.1.2. Limitations and Future Directions 

 

Subsequent to Paper One, PVL-positive ST5-MRSA-IVa (WA-MRSA-3) and ST73-

MRSA-IVa (WA-MRSA-65) isolates from the Kimberley region have been 

identified by ACCESS Typing and Research (http://www.asainc.net.au/aasp/wamer).  

To determine if the bacteriophages from the PVL-positive MSSA have subsequently 

been acquired by “WA-MRSA”, the bacteriophages harbouring the PVL 

determinants in ST121-MSSA and in WA-MRSA-3 and WA-MRSA-65 should be 

characterised and the lukS-PV/lukF-PV genes sequenced.  The ability for these 

bacteriophages to be acquired by other S. aureus lineages including PVL negative 

WA-MRSA-3 and WA-MRSA-65 should also be investigated.  PVL-positive ST1-

MRSA-IVa [2B] (WA-MRSA-1) and ST78-MRSA-IVa [2B] (WA-MRSA-2) have 

also been reported in Australia  

[http://www.agargroup.org/files/FED%20REPORT%20SAP210%20MRSA%20FIN

AL%20shrink.pdf].  As per WA-MRSA-3 and WA-MRSA-65, the PVL element 

harboured by these strains should be investigated.   

 

In Paper One, only one representative isolate from each PFGE pulsotype and sub-

pulsotype was tested for the presence of the PVL determinant.  PCR for the detection 

of PVL determinants should be performed on all S. aureus isolated in this study. 

 

During the period of Paper One, no ST93-MRSA was detected despite the high 

prevalence of ST93-MSSA.  Since the conclusion of the Paper One study ST93-

MRSA-IVa [2B] has become the predominant CA-MRSA in Australia.  Repeat 

surveys of the remote communities may shed light on whether ST93-MRSA-IVa 

[2B] has subsequently emerged in these locations.  Genetic investigation would then 

be required to answer the question of whether SCCmec acquisition has occurred 

locally or if the clone has been imported from other regions.   

 

The potential for the emergence of antibiotic resistance was indicated by the 

presence of several other antimicrobial resistant determinants among the population.  

The possible emergence of multiresistant CA-MRSA in these communities should be 

investigated and linked to the communities’ antimicrobial use as a potential 

resistance selection pressure.  
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5.1.3. Conclusion 

 

Paper One showed “WA-MRSA” arose in remote indigeneous communities with 

horizontal transfer of the SCCmec element on at least six occasions.  This leads on to 

the next objective where the frequency of SCCmec acquisition in the greater WA 

region was investigated. 
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5.2.  Paper Two 

 

“Evolution and diversity of community-associated methicillin-resistant 

Staphylococcus aureus in a geographical region” 

.   

5.2.1. Findings 

 

In Paper Two we have shown that the CA-MRSA population in WA is genetically 

diverse consisting of 83 unique PFGE strains from which 46 STs have been 

characterised.  The STs confirm CA-MRSA have not evolved from the major 

Australian HA-MRSA clones; ST22-MRSA-IV [2B] and ST239-MRSA-III [3A] 

[133].  Forty five of these STs were from 18 clonal clusters and two Singletons.  

While SCCmec IVa [2B] and V [5C2] were the predominant SCCmec elements, 

SCCmec IV subtypes b, c and d, SCCmec VIII, and several novel and composite 

SCCmec elements were present.  The emergence of MRSA in diverse S. aureus 

clonal clusters suggests horizontal transmission of the SCCmec element has occurred 

on multiple occasions.  The DNA microarray and spa typing data suggest horizontal 

and vertical transfer of SCCmec elements has occurred within a clonal complex.  

Despite the movement of different SCCmec elements, three clones predominate in 

WA; WA-MRSA-1, WA-MRSA-2 and WA-MRSA-3.  For many single and double 

locus variant CA-MRSA clones only a few isolates were detected suggesting changes 

in the housekeeping genes may have conferred a fitness cost or did not allow the 

SCCmec element to be maintained.  Multiple PVL positive clones, including ST93-

MRSA-IVa [2B] and five international pandemic clones were identified.      

 

5.2.2. Limitations and Future Directions 

 

In Paper Two only the initial isolate of each PFGE pulsotype was investigated.  

Therefore subsequent genetic changes within each pulsotype would not have been 

detected.  To determine if such evolution is occurring in the successful CA-MRSA 

clones found in the WA community genetic profiles of subsequent isolates should be 

investigated.   Clonal complexes that should be investigated include CC1, CC5, 

CC88, CC45 and Singleton ST93. 
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5.2.3. Conclusion 

 

Although the horizontal and vertical transmission of SCCmec elements into S. aureus 

has occurred on multiple occasions in the WA community, only three “WA-MRSA” 

clones have found an ecological niche.  These three PVL negative clones harbour 

few additional resistance and virulence genes which paradoxically may account for 

their success. Additional genetic elements may confer a fitness cost. The 

identification of PVL positive clones signalled the potential for an increased burden 

of disease.  This leads to a more in depth analysis of PVL positive clones to explain 

their emergence.   
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5.3. Paper Three  

 

“The molecular epidemiology of the highly virulent ST93 Australian community 

Staphylococcus aureus strain”  

 

5.3.1. Findings 

 

In Paper Three we demonstrated that although multiple rearrangements of the spa 

sequence have occurred, the core genome in ST93 S. aureus is very stable.  From 

2008, PVL-positive ST93-MSSA-t202 has become the predominant ST93-MSSA 

across Australia.  We have shown the emergence of ST93-MRSA has been due to 

independent acquisitions of different dru-defined type IV and type V SCCmec 

elements in several spa-defined ST93-MSSA backgrounds.  Rearrangement of the 

spa sequence in ST93-MRSA has subsequently occurred in these strains.  Although 

many ST93-MRSA strains were identified in this study, little genetic diversity was 

identified for most MRSA isolates, with PVL-positive ST93-IVa [2B]-t202-dt10 

being predominant across Australia.     

 

5.3.2. Limitations and Future Directions 

 

To determine if ST93-MRSA-IVa [2B]-t202-dt10 has arisen from one PVL-positive 

ST93-MSSA-t202 or by independent acquisitions of SCCmec-IVa [2B]-dt10 into 

multiple PVL-positive ST93-MSSA-t202 strains will require whole genomic 

sequencing of the isolates.  Furthermore comparative genomic sequencing may 

further enhance our understanding of the molecular basis for the emergence and 

increased virulence of ST93 CA-MRSA.  At a time when this clone is acquiring 

additional resistance genes and an increased potential for infections in the healthcare 

setting, understanding the mechanism of SCCmec acquisition, the role of virulence 

determinants and how MRSA transmission occurs is crucial if we are to prevent this 

clone from becoming established in hospitals.   
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5.3.3. Conclusion 

 

Although, multiple ST93-MSSA strains have emerged in Australia, Paper Three has 

shown, although ST93-MRSA has acquired different SCCmecs, ST93-MRSA-IVa 

[2B]-t202-dt10 is the predominant MRSA strain.   
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5.4. Paper Four  

 

“Differentiation of clonal complex 59 community-associated methicillin-resistant 

Staphylococcus aureus in Western Australia” 

 

5.4.1. Findings 

 

Paper Four found in WA there are at least six discernible groups of CC59 CA-MRSA 

strains, which can be differentiated by PFGE, MLST, presence or absence of PVL, 

determination of the SCCmec type, and microarray analysis.  Within the study 

isolates at least seven different variants of SCCmec elements were distinguished.  

This suggests rapid evolution and/or multiple transfer events of SCCmec elements 

have occurred.  Genetically CC59 displays a high degree of variability, affecting not 

only SCCmec markers but also a variety of other mobile genetic elements.   

 

ST59-MRSA-VT [5C2&5] (Taiwan CA-MRSA) was found to be the most prevalent 

CC59 clone in WA.  We have demonstrated that this clone has undergone further 

evolutionary events.  Some CC59 isolates in WA however have evolved from 

different origins (e.g. USA1000) while other isolates with varying SCCmec types and 

absence of PVL indicate multiple episodes of SCCmec acquisition by WA CC59 

clones. 

 

5.4.2. Limitations and Future Directions 

 

Further studies should investigate the variability and evolution of CC59 strains in 

other geographical locations where this clonal complex has been detected.  Apart 

from data for the Taiwan CA-MRSA clone there are little data available on the 

distribution of CC59 clones outside WA.  It can be assumed that these isolates are 

usually identified as USA1000 or the Taiwan CA-MRSA clone and their true 

diversity remains unrecognized.  This might also obscure routes of transmission of 

CC59 CA-MRSA and hinder the understanding of their spread. 
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As the six CC59 groups showed minimal genetic variation, a marker for the Taiwan 

CA-MRSA clone should be found among the rather limited number of genes which 

are variable within CC59.  Full genome sequencing of representative strains of CC59 

may provide a marker and overcome the limitations of the microarray. 

  

The bacteriophages harbouring the PVL determinants in WA-MRSA-9, WA-MRSA-

52, WA-MRSA-55 and WA-MRSA-56 should be characterised and the ability for 

these bacteriophages to be acquired by PVL-negative WA CC59 strains including 

WA-MRSA-9, WA-MRSA-15, WA-MRSA-24, WA-MRSA-55, and WA-MRSA-73 

should be investigated.  To confirm the PVL determinants in CC59 are the same, 

sequencing of the lukS-PV/lukF-PV genes in each strain should be performed. 

      

5.4.3. Conclusion 

 

Paper Four has shown the PVL-positive WA-MRSA-9 and WA-MRSA-52 strains 

are the Taiwan CA-MRSA clone. Furthermore the closely related PVL positive 

Group 3 strains (WA-MRSA-55 and WA-MRSA-56) may have evolved from the 

same branch of the CC59 complex.  This suggests PVL positive CC59 isolates have 

not evolved from WA CC59 MRSA strains but have been introduced, and the PVL 

negative strains have evolved independently.      
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5.5.  Paper Five  

 

“The molecular epidemiology and evolution of the Panton-Valentine leukocidin-

positive, methicillin-resistant Staphylococcus aureus strain USA300 in Western 

Australia” 

 

5.5.1. Findings 

 

Paper Five has shown PVL-positive ST8-MRSA-IV [2B] WA-MRSA-12 isolates 

have not arisen locally but are the USA300 clone. The isolates varied in their 

carriage of resistance and virulence determinants and therefore cannot be regarded as 

genetically homogeneous. Several isolates did not harbour the ACME locus.  This is 

intriguing because this locus is assumed to be involved in facilitating the spread of 

USA300 by skin contact.   The most common variant in WA was genetically closely 

realted to USA300-TC1516, a geographically widespread strain found in Texas, 

Germany and in Switzerland.       

 

5.5.2. Limitations and Future Directions 

 

Because of the limited presence of USA300 in WA, further studies should focus on 

possible changes in the ratio of ACME-positive to ACME-negative variants.  This 

may improve our understanding of the clinical significance of this element and its 

proposed role in the rapid spread of USA300. 

 

In this study subtyping of the SCCmec was only performed on two isolates.  Both 

isolates were subtype IVa [2B].  As USA300 has been shown to harbour different 

SCCmec IV [2B] subtypes [3], subtyping of all isolates should be performed.  

 

The explosive expansion of USA300 warrants further study.  The first CA-MRSA 

identified in WA was PVL-negative ST8-MRSA-IVa [2B], known as WA-MRSA-5.  

Whole genome sequencing of WA-MRSA-5 and ACME negative USA300 isolates 

may contribute to understanding which genes are responsible for the global spread of 

the USA300-TC1516 strain.      
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As the prevalence of USA300 is increasing in the Australian community, the 

susceptibility of “WA-MRSA” strains to the bacteriophage harbouring the PVL 

determinant in USA300 should be investigated.   

 

5.5.3. Conclusion 

 

Paper Five confirms PVL-positive USA300 (ST8-MRSA-IV [2B]) has been 

introduced into WA possibly with subsequent evolutionary changes. 
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6. CONCLUSIONS 

 

Staphylococcus aureus is one of the most successful bacterial pathogens, responsible 

for a wide spectrum of infections, from uncomplicated SSTIs through to necrotizing 

pneumonia, necrotizing fasciitis and bacteraemia.  In recent years a MRSA pandemic 

due to CA-MRSA, which carried highly mobile SCCmec elements, has occurred.  In 

addition some CA-MRSA strains harbour the prophage encoded virulence factor 

PVL, a bicomponent toxin that forms polymeric pores in leucocyte membranes.  

Multiple PVL-positive CA-MRSA strains from different clonal groups have evolved.  

Some have been confined to certain regions or localised outbreaks, whereas others 

have spread worldwide. 

 

In Australia we have shown the initial CA-MRSA arose in remote communities and 

have subsequently disseminated into the wider community.  However these strains 

did not arise from the predominant MSSA clones in these communities.  Although 

the vertical and horizontal transmission of SCCmec elements into S. aureus has 

occurred on multiple occasions in the WA community, only three WA-MRSA clones, 

ST1-MRSA-IVa [2B] (WA-MRSA-1), ST78-MRSA-IVa [2B] (WA-MRSA-2), and 

ST5-MRSA-IVa [2B] (WA-MRSA-3),  have found an ecological niche and are now 

isolated Australia wide.  These three PVL-negative clones harbor few additional 

resistance and virulence genes.  Low fitness cost paradoxically may account for their 

success. PVL positive CA-MRSA infections however are becoming more prevalent 

in Australians, particularly in the young. Although this is primarily due to a single 

strain of Qld CA-MRSA (ST93-MRSA-IVa [2B]-t202-dt10), international PVL 

positive CA-MRSA clones are now frequently isolated in Australia.   

 

The studies included in this thesis show the ongoing evolutionary potential of S. 

aureus and in particular CA-MRSA.  The movement of SCCmec is central to this 

changing epidemiology.  Ultimately defining the external pressures that facilitate 

SCCmec acquisition (antibiotic exposure or other factors), and the ability of certain 

strains to then successfully maintain the SCCmec element may provide insight into 

control of this epidemic.   
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Objectives: Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) was first
reported in remote regions of Western Australia (WA) in 1992 and is now the predominant MRSA iso-
lated in the State. To gain insights into the emergence of CA-MRSA, 2146 people living in 11 remote
WA communities were screened for colonization with S. aureus.

Methods: Antibiogram analysis, contour-clamped homogeneous electric field electrophoresis, multi-
locus sequence typing, Panton–Valentine leucocidin determinant detection and accessory genetic
regulator typing were performed to characterize the isolates. MRSA was further characterized by
staphylococcal cassette chromosome mec typing.

Results: The S. aureus population consisted of 13 clonal complexes and two Singleton lineages
together with 56 sporadic isolates. Five lineages contained MRSA; however, these were not the pre-
dominant methicillin-susceptible S. aureus (MSSA) lineages. There was greater diversity amongst the
MSSA while the MRSA appeared to have emerged clonally following acquisition of the staphylococcal
cassette chromosome mec. Three MRSA lineages were considered to have been endemic in the com-
munities and have subsequently become predominant lineages of CA-MRSA in the wider WA commu-
nity. People colonized with MSSA tended to harbour clones of a different genetic lineage at each
anatomical site while people colonized with MRSA tended to harbour clones of the same lineage at
each site. Overall, the isolates were resistant to few antimicrobials.

Conclusions: Although the evidence suggests that in WA CA-MRSA strains arose in remote commu-
nities and have now disseminated into the wider community, there is no evidence that they arose from
the predominant MSSA clones in these communities.

Keywords: S. aureus, community methicillin-resistant Staphylococcus aureus, population structure, colonization

Introduction

Staphylococcus aureus is one of the most successful pandemic
bacterial pathogens. It is also a ubiquitous inhabitant of human
microbiological flora, with up to 30% of humans persistently colo-
nized asymptomatically, and up to 70% intermittently colonized.1

Initially MRSA was found almost exclusively in hospitals
where it became known as healthcare-associated MRSA
(HA-MRSA). However, it has now emerged in communities
around the world where it is known as community-associated
MRSA (CA-MRSA). The earliest reports of CA-MRSA involved
infections in people from isolated Indigenous2 or disadvantaged
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communities,3 suggesting that these were the primary environ-
ments from which it emerged. In Australia the first CA-MRSA,
colloquially known as ‘WA MRSA’, was reported in 1993 in
infected Indigenous people from remote communities in the
sparsely populated Kimberley region of Western Australia
(WA).2 This was followed by reports of CA-MRSA from
Indigenous people in the Northern Territory,4 Queensland5 and
Central Australia.6

CA-MRSA is responsible for a wide spectrum of infections,
from uncomplicated skin and soft tissue infections through to
necrotizing pneumonia, necrotizing fasciitis and bacteraemia,
which can be fatal in otherwise healthy people. This virulence
has been attributed to the possession of virulence determinants,
such as the Panton–Valentine leucocidin (PVL).7 Apart from
isolated instances, CA-MRSA was resistant to few non-b-lactam
antibiotics and did not initially spread in hospitals. However, the
epidemiology of CA-MRSA is changing and multiply resistant
CA-MRSA spreading in hospitals, communities and internation-
ally has been reported.8,9

To prevent the transmission of MRSA in WA hospitals,
MRSA was made a notifiable organism and a ‘search and destroy’
policy was introduced in 1982. As part of this policy all isolates
are sent to a reference centre for typing and storage.10 Although
this strategy has not prevented the spread of CA-MRSA, which
now comprises 77.5% of MRSA isolated in WA,11 it has enabled
its spread to be closely monitored.. Surveillance data have shown
that between 1983 and 2002 the notification rates for CA-MRSA
in WA increased .50- and 70-fold in rural and metropolitan
health regions, respectively.12,13

CA-MRSA utilizes mobile elements and single nucleotide
polymorphisms to establish local and geographic niches14 and is
thought to emerge when a locally prevalent strain of methicillin-
susceptible S. aureus (MSSA) acquires a staphylococcal cassette
chromosome mec (SCCmec) element. The remote WA
Indigenous communities provide an ideal environment in which
to study the natural genetics of S. aureus and CA-MRSA as the
population has limited contact with healthcare institutions and
therefore HA-MRSA. Consequently, surveys of populations from
remote WA communities were undertaken between 1995 and
2003. The aims of this study were to determine the colonization
dynamics and genetics of S. aureus in the communities and to
gain insights into the emergence of CA-MRSA.

Materials and methods

Ethics approval for the screening of Indigenous communities was
obtained from the WA Aboriginal Health Information and Ethics

Committee and the Curtin University of Technology Human
Research Ethics Committee. Prior to each survey a senior member
of the team travelled to each community to obtain permission from
the community Elders and Councils. Remote region healthcare pro-
fessionals and Indigenous aides provided valuable support.

Although participation in the survey was voluntary, on most
occasions participation was near to 100%. Written informed consent
was obtained from each adult individual, parent or guardian.

Communities

The inhabitants of 11 major remote communities from three geo-
graphical regions of WA, the Kimberley, the Pilbara and the
Goldfields, were screened for S. aureus colonization (Figure 1). The

community population sizes were between 60 and 400 people.
Small fringe or satellite communities with populations of between
9 and 51 were also screened and their results were combined with
results for the larger community in their geographical proximity.

The communities were 700–2000 km from the capital city Perth
and their geographical regions accounted for 6.4% of the total WA
population. While for each episode of community screening inhabi-
tants were screened only once, it was not possible to determine the
number of times an individual was screened over the 9 year duration

of the surveys due to ethical constraints and the nomadic nature of
the population. Therefore, each screening episode has been enumer-
ated as a set of screening swabs only.

Screening

Overall, 2146 sets of screening swabs were collected; 924 from
three Kimberley communities, 258 from a Pilbara community and

964 from seven Goldfields communities. Community 2 was screened
in June (dry season) and December (wet season) of 1995, commu-
nities 3 and 4 were screened in 1995, 1999 and 2003, and commu-
nity 7 was screened in 1999 and 2003. The remaining communities,
1, 5, 6, 8, 9, 10 and 11, were screened once in 1995, 1996, 1998,

1999, 2001, 2001 and 2001, respectively (Figure 1).
The anterior nares, throat and, when applicable, up to two skin

lesions were swabbed with moistened cotton wool swabs. Swabs
were placed in Amies transport medium (Interpath services, Pty Ltd,
West Heidelberg, Australia) and transported in insulated containers

by road and air to the laboratory in Perth. All swabs were processed
within 48 h of collection.

Laboratory processing

Swabs were plated onto mannitol salt agar (MSA) (Oxoid,
Basingstoke, UK) for detection of S. aureus and methicillin aztreonam
mannitol salt agar (MAMSA)15 or methicillin MSA (MMSA) (MSA

containing 4 mg of methicillin/mL) for detection of MRSA. All plates
were incubated at 358C. The MAMSA plates were read after 20 h incu-
bation and the MSA and MMSA plates were read after 48 h incu-
bation. Mannitol-fermenting colonies were cultured overnight in
brain–heart infusion broth (Gibco Diagnostics, Gaithersberg, MD,

USA) and identified as S. aureus by the tube coagulase test.

Susceptibility testing

Antimicrobial susceptibility testing was performed by disc diffusion
on Mueller–Hinton agar (MHA) (BBL, Becton Dickinson,
Cockeysville, MD, USA) using Oxoid discs according to the method
of the CLSI (formerly the NCCLS),16 with fusidic acid susceptibility

criteria as previously published.17 All staphylococci were initially
tested for methicillin resistance using a 1 mg oxacillin disc (Oxoid,
Basingstoke, UK). MRSA was confirmed by detection of the mecA
and nuc genes in a multiplex PCR.18 Following multilocus sequence
typing (MLST) a representative MSSA from each sequence type (ST)

was screened by PCR to confirm the absence of the mecA gene.19

For all MRSA an 18-antimicrobial antibiogram was performed
using the following drugs: gentamicin, kanamycin, neomycin, strep-
tomycin, erythromycin, lincomycin, chloramphenicol, minocycline,
tetracycline, trimethoprim, sulfamethoxazole, fusidic acid, rifampi-

cin, novobiocin, vancomycin, mupirocin, spectinomycin and cipro-
floxacin. Erythromycin-inducible resistance to lincomycin was
determined by the D-test.20 For MSSA isolated after and including
1998 an eight-antimicrobial antibiogram was performed (erythromy-
cin, tetracycline, trimethoprim, mupirocin, gentamicin,
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ciprofloxacin, rifampicin and fusidic acid). The 18-antimicrobial

antibiogram and penicillin susceptibility testing were performed on
representatives of all MSSA STs. All S. aureus that had an
18-antimicrobial antibiogram were tested for b-lactamase production
using Nitrocefin discs according to the instructions of the manufac-
turer (BBL, Becton Dickinson, Franklin Lakes, NJ, USA).

Resistograms were performed as previously described21 on all
MRSA, and all MSSA isolated after 1998.

Contour-clamped homogeneous electric field electrophoresis

Contour-clamped homogeneous electric field electrophoresis
(CHEF) was performed as previously described22 on all

isolates. Chromosomal banding patterns were scanned with a

Fluor-S MultiImager and analysed by MultiAnalyst/PC (Bio-Rad
Laboratories, Hercules, CA, USA) with a 0.8% band position tol-
erance. S. aureus isolates with �80% similarity were considered
to belong to the same CHEF pulsotype; sub-pulsotypes were
assigned according to the sub-clustering of patterns within the

�80% similarity threshold. S. aureus NCTC8325 was used as the
size standard. MRSA CHEF pattern pulsotypes were designated
as previously published23 and MSSA CHEF pattern pulsotypes
were designated numerically. Isolates with pulsotypes containing
fewer than three isolates were considered to be sporadic and,

apart from PVL and antibiogram testing, were not investigated
further in this study.

200 kilometres 
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Figure 1. Geographical regions of WA, locations of surveyed communities and years of screening. Geographical regions are named, communities are

indicated numerically.
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MLST

MLST was performed as previously described.24 All MRSA pulso-

types and sub-pulsotypes and all MSSA pulsotypes and sub-
pulsotypes that contained three or more isolates were characterized
by MLST. The sequences were submitted to http://mlst.net where an
allelic profile was generated and an ST assigned. Clonal complex

(CC) was determined using the eBURST V3 algorithm at the same
website. Clones that diverged at no more than one of the seven
MLST loci were considered to belong to the same CC. Double
locus variants (dlvs) were included if the linking single locus
variant (slv) was present in the MLST database. An S. aureus clone

was defined by its ST. Isolates that belonged to the same CC were
considered to be of the same genetic lineage.

SCC mec typing

SCCmec typing was performed using previously published primers
that identified the class of mec complex and type of cassette
chromosome recombinase (ccr) complex encoded on the element.25

Structural architecture was determined with the multiplex PCR
primers of Zhang et al.26 and extra primers were utilized to test for

SCCmec type IV subtypes a, b, c and d.27 SCCmec nomenclature
was as proposed by the International Working Group on the
Classification of Staphylococcal Cassette Chromosome (IWG-SCC)
Elements. Briefly, the structural type is indicated by Roman
numerals with a lower case Arabic letter indicating the sub-type and

the ccr and mec complexes are indicated by an Arabic number and
letter, respectively, in parentheses.

PVL

The PVL determinant was detected using previously published
primers28 and confirmed by sequencing.

Accessory genetic regulator (agr)

agr was typed using either the ArrayTube System according to the
manufacturer’s instructions (Clondiag, Jena, Germany) or primers
from previous studies.29,30

Arginine catabolic mobile element (ACME)

The ACME was detected by PCR as described previously.31

Criteria for testing

A colony was selected from each plate from each anatomical site. If
there was more than one morphological colony type a representative
of each was tested. If these isolates were subsequently found to be
different by the typing methods they were included in the study as

individual strains.

Results

Of the 2146 sets of screening swabs, 663 sets grew MSSA and
153 grew MRSA. Table 1 presents the sites that were positive
for MSSA or MRSA for each set of screening swabs. Of the
1172 S. aureus isolated, 933 were MSSA and 239 were MRSA.
Overall, 762 isolates of S. aureus consisting of 523 MSSA
(from 454 sets of screening swabs) and 239 MRSA (from 153
sets of screening swabs) were characterized in this study.

There was a variation in the ratio of MSSA and MRSA
carriage between the three geographical regions. MRSA com-
prised 4%, 24% and 32% of total S. aureus from the Kimberley,
Pilbara and Goldfields regions, respectively.

There were differences in the colonization sites of MSSA and
MRSA. MSSA was grown from 249 (37.6%), 283 (42.7%) and
305 (46%) anterior nares, throat and skin lesion swabs, respect-
ively, while 79 (51.6%), 56 (36.6%) and 59 (38.6%) anterior
nares, throat and skin lesion swabs, respectively, grew MRSA.
For MSSA the highest rates of colonization were from skin
lesions followed by throat and for MRSA they were anterior
nares followed by skin lesions. When considering the overall
positive screening sites, the highest recovery of MSSA per
screening set was from throat and/or skin lesion swabs (79%)
while the highest recovery of MRSA was from anterior nares
and/or skin lesion swabs (80.4%). Of 59 sets of screening swabs
in which MRSA was cultured from skin lesions, 15 (25%)
demonstrated co-colonization with MRSA in the anterior nares.

Genetic lineages

Using CHEF the 523 MSSA were classified into 84 pulsotypes,
of which 27 pulsotypes had three or more isolates (Table 2).
The 239 MRSA were classified into five pulsotypes (Table 3).
These five pulsotypes also contained MSSA, with MRSA pulso-
types WA-1, -2, -3, -4 and -5 corresponding to MSSA pulso-
types MSSA1, 5, 3, 14 and 26, respectively (Tables 2 and 3).
Overall 92.7% (467 MSSA and 239 MRSA) of the 762
S. aureus clustered into 27 pulsotypes, from which 21 STs
belonging to 13 CCs and two Singleton lineages were identified
by MLST (Table 4). Eight lineages (CC15, CC121, CC101,
CC25, CC20, CC398, CC12 and CC188) and the two Singleton
lineages (Singleton 93 and Singleton 760) contained MSSA
only. Five lineages (CC1, CC5, CC88, CC45 and CC8) con-
tained MSSA and MRSA. CC5 contained two MRSA clones,
ST5-MRSA-IVa (2B) and ST73-MRSA-IVa (2B) (Figure 2) and
CC45 contained two MRSA clones, ST45-MRSA-V (5C2) and
ST45-MRSA-IVa (2B).

Seven previously undescribed STs were identified: Singleton
ST760-MSSA; the CC1 clones ST761-MSSA and ST762-MSSA;
the CC5 clone ST73-MSSA; the CC15 clone ST832-MSSA; the
CC398 clone ST813-MSSA; and ST833-MSSA from CC188.
Together with the previously reported ST73-MRSA-IVa (2B)32

and ST93-MRSA-IVa (2B), which are rarely found outside

Table 1. Sites of isolation of MSSA and MRSA from people in

remote WA communities

Site of isolation MSSA MRSA

Anterior nares only 139 49

Anterior nares and throat 56 15

Anterior nares and skin lesions 33 9

Anterior nares, throat and skin lesions 21 6

Throat only 163 30

Throat and skin lesions 43 5

Skin lesions only 208 39

Total positive screening sets 663 153
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Australia, these isolates appear to represent geographically
limited clones that have probably emerged in Australia.

The lineages of S. aureus that contained the most isolates
were CC1 (18%), CC5 (17.5%), Singleton 93 (14.7%), CC15
(10.6%), CC45 (8.4%), CC88 (6.4%) and CC121 (4.6%). There
was no evidence of the emergence of new dominant clones of
S. aureus during the period of the surveys.

MSSA. The most prevalent MSSA were ST93-MSSA from the
Singleton 93 lineage (21.4%), ST15-MSSA from CC15 (14.9%),
ST73-MSSA from CC5 (10.1%) and ST45-MSSA from CC45
(5.9%) (Table 4).

Four lineages of MSSA (CC1, CC5, CC15 and CC45) con-
tained slvs, with CC1 also containing a dlv (ST761-MSSA)
(Table 2). ST760-MSSA was an ST1-MSSA dlv; however,

because the linking allele could not be found in the MLST data-
base it was classified as a new Singleton lineage.

Some of the MSSA lineages showed divergence of CHEF
pattern pulsotypes (Table 2). CC15 had diversified into five
unrelated pulsotypes, of which one was the slv ST832-MSSA.
CC5 contained three pulsotypes representing each of the CC5
clones, ST73-MSSA, ST5-MSSA and ST6-MSSA. There were
four unrelated pulsotypes in CC45, one of them being the slv
ST508-MSSA clone. CC121 had three pulsotypes, and CC20
had two. The remaining lineages each had one CHEF pulsotype.
CC1 isolates also belonged to only one pulsotype; however,
there were three sub-pulsotypes that represented the clones
ST1-MSSA, ST761-MSSA and ST762-MSSA. ST6-MSSA
(CC5) and ST12-MSSA (CC12), although genetically unrelated
by MLST, both had the same MSSA12 pulsotype.

Table 2. Characteristics of representative methicillin-susceptible S. aureus from remote WA communities

Isolate Resistance/Bla Pulsotype CC ST, allelic profile PVL agr type

W17S PCd Blaþ MSSA6 S 93, 6-64-44-2-43-55-51 þ III

N126S PELICd Blaþ MSSA6 S 93, 6-64-44-2-43-55-51 þ III

C229T Cd Blaþ MSSA6 S 93, 6-64-44-2-43-55-51 þ III

W20S s Bla2 MSSA2 15 15, 13-13-1-1-12-11-13 2 II

WL90T PELICd Blaþ MSSA25 15 15, 13-13-1-1-12-11-13 2 II

N133T PCCd Blaþ MSSA29 15 15, 13-13-1-1-12-11-13 2 II

W16S PCd Blaþ MSSA25 15 15, 13-13-1-1-12-11-13 2 II

P3S PECd Blaþ MSSA20 15 15, 13-13-1-1-12-11-13 2 II

J27T PCd Blaþ MSSA30 15 15, 13-13-1-1-12-11-13 2 II

K43T PCd Blaþ MSSA22 15 832, 13-13-111-1-12-11-13 2 II

WL6N PCd Blaþ MSSA27 5 5, 1-4-1-4-12-1-10 2 II

K185N PCd Blaþ MSSA3 5 73, 1-4-27-4-12-1-10 2 II

K153N PCdEb Blaþ MSSA3 5 73, 1-4-27-4-12-1-10 2 II

WL36N P Blaþ MSSA3 5 73, 1-4-27-4-12-1-10 2 II

K112L PCd Blaþ MSSA12 5 6, 12-4-1-4-12-1-3 2 I

Y15S PFCd Blaþ MSSA1a 1 1, 1-1-1-1-1-1-1 2 III

Y74T PCd Blaþ MSSA1b 1 761, 1-1-104-1-1-103-1 2 NT

K45S PECdHg Blaþ MSSA1c 1 762, 1-1-104-1-1-1-1 2 III

K120L PCd Blaþ MSSA1c 1 762, 1-1-104-1-1-1-1 2 III

C38S PTCd Blaþ MSSA11 S 760, 10-1-1-1-1-102-1 2 III

C49N PCd Blaþ MSSA14 45 45, 10-14-8-6-10-3-2 2 I

C54N s Bla2 MSSA14 45 45, 10-14-8-6-10-3-2 2 I

C30S P Blaþ MSSA21 45 45, 10-14-8-6-10-3-2 2 IV

M11N PCd Blaþ MSSA17 45 45, 10-14-8-6-10-3-2 2 I

K102N PCd Blaþ MSSA28 45 508, 10-40-8-6-10-3-2 2 I

K25S PCd Blaþ MSSA7 121 121, 6-5-6-2-7-14-5 þ IV

Y1S P Blaþ MSSA23 121 121, 6-5-6-2-7-14-5 2 IV

WB94E P Blaþ MSSA19 121 121, 6-5-6-2-7-14-5 2 IV

W67N PCd Blaþ MSSA5 88 78, 22-1-14-23-12-53-31 2 III

W91T PCd Blaþ MSSA4 101 101, 3-1-14-15-11-19-3 2 I

W11T PCd Blaþ MSSA33 25 25, 4-1-4-1-5-5-4 2 I

C57S PCd Blaþ MSSA13 20 20, 4-9-1-8-1-10-8 2 I

J107N PCd Blaþ MSSA24 20 20, 4-9-1-8-1-10-8 – I

N91T P Blaþ MSSA26 8 8, 3-3-1-1-4-4-3 2 I

W101S s Bla2 MSSA10 329 813, 3-37-19-2-20-26-32 2 I

C33S PCd Blaþ MSSA12 12 12, 1-3-1-8-11-5-11 2 II

W36S PCd Blaþ MSSA8 188 833, 100-1-1-8-12-1-1 2 III

Bla, b-lactamase; C, chloramphenicol; Cd, cadmium acetate; E, erythromycin; Eb, ethidium bromide; F, Fusidic acid; Hg, mercuric chloride; L, lincomycin;
P, penicillin; T, tetracycline; superscript I, inducible; superscript þ, positive; superscript 2, negative; s, susceptible to all antimicrobials tested; S, singleton
lineage; NT, non-typeable.

O’Brien et al.

688

 at R
oyal Perth H

ospital on M
arch 8, 2012

http://jac.oxfordjournals.org/
D

ow
nloaded from

 

http://jac.oxfordjournals.org/


MRSA. When compared with MSSA there was less diversity in
the MRSA lineages. Five lineages were identified in the commu-
nities screened in the 1995 surveys. No additional lineages were
found in these or the other communities in subsequent surveys.
ST1-MRSA-IVa (2B) was the most frequently isolated MRSA
clone (42.7%), followed by ST73-MRSA-IVa (2B) (17.6%),
ST5-MRSA-IVa (2B) (13.4%), ST45-MRSA-V (5C2) and
ST45-MRSA-IVa (2B) (12.5%), ST78-MRSA-IVa (2B) (12.5%)
and ST8-MRSA-IVa (2B) (1.3%) (Tables 3 and 4).

The five MRSA lineages corresponded to five CHEF pulso-
types that have previously been identified.11,33 Four of the pulso-
types had sub-pulsotypes. Although all lineages containing
MRSA also contained MSSA, they were not the largest MSSA
lineages (Table 4). The CC1 MRSA clone, ST1-MRSA-IVa
(2B), formed 42.7% of all MRSA while the methicillin-
susceptible counterpart, ST1-MSSA, formed only 1.3% of the
MSSA population. Similarly, in CC5, ST5-MRSA-IVa (2B) was
13.4% of the MRSAs while ST5-MSSA formed only 0.6% of
the MSSAs and ST78-MRSA-IVa (2B) was 12.5% of the
MRSA while the corresponding MSSA was only 3.6% of the
MSSA population. MRSAs were not found in the largest MSSA
lineages of Singleton 93 and CC15.

Antimicrobial resistance

MSSA. A full 18-antimicrobial antibiogram and penicillin sus-
ceptibility testing was performed on 37 MSSA clones represen-
tative of the lineages. All were resistant to penicillin and
produced b-lactamase except for three, which were fully sus-
ceptible (Table 2). Two isolates expressed an MLSBi resistance
phenotype (inducible resistance to erythromycin and
erythromycin-inducible resistance to lincomycin), an additional

Table 3. Characteristics of representative MRSA from remote WA communities

Isolate Resistance and Bla Pulsotype CC ST, allelic profile SCCmec PVL agr type ACME

WBG8287 ELIFCd Blaþ WA-1 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

WBG8375 ELICd Blaþ WA-1a 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

WBG9409 ELIFCd Blaþ WA-1c 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

WBG8361 ELICd Blaþ WA-1d 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

M28S Cd Blaþ WA-1f 1 1, 1-1-1-1-1-1-1 IVa (2B) 2 III 2

WBG8366 ELI Blaþ WA-2 88 78, 22-1-14-23-12-53-31 IVa (2B) 2 III 2

WL106N EL Blaþ WA-2a 88 78, 22-1-14-23-12-53-31 IVa (2B) 2 III 2

C219N Cd Blaþ WA-2c 88 78, 22-1-14-23-12-53-31 IVa (2B) 2 III 2

C8N ELICd Blaþ WA-3 5 5, 1-4-1-4-12-1-10 IVa (2B) 2 II 2

WBG8381 s Bla2 WA-3a 5 5, 1-4-1-4-12-1-10 IVa (2B) 2 II 2

WB43S ELI Blaþ WA-3b 5 73, 1-27-1-4-12-1-10 IVa (2B) 2 NT 2

WL36N Cd Bla2 WA-3b 5 73, 1-27-1-4-12-1-10 IVa (2B) 2 II 2

WBG8379 ELICd Blaþ WA-3c 5 5, 1-4-1-4-12-1-10 IVa (2B) 2 II 2

WB101N ELI Blaþ WA-3h 5 5, 1-4-1-4-12-1-10 IVa (2B) 2 II 2

WBG8404 CdAs Blaþ WA-4 45 45, 10-14-8-6-10-3-2 45 V (5C2) 2 Ia 2

WBG8399 CdAs Blaþ WA-4a 45 45, 10-14-8-6-10-3-2 45 V (5C2) 2 I 2

WBG8355 CdAs Blaþ WA-4b 45 45, 10-14-8-6-10-3-2 45 IVa (2B) 2 I 2

WBG7583 ELITCd Blaþ WA-5 8 8, 3-3-1-1-4-4-3 IVa (2B) 2 I 2

As, sodium arsenate; Bla, b-lactamase; Cd, cadmium acetate; E, erythromycin; F, fusidic acid; L, lincomycin; superscript I, inducible; superscript þ, positive;
superscript 2, negative; s, susceptible to all antimicrobials tested; NT, non-typeable.

Table 4. Genetic lineages of S. aureus present in remote WA

communities

Genetic lineage,

CC and ST MRSA number (%) MSSA number (%)

Singleton (93) and 93 112 (21.4)

15 and 15 78 (14.9)

15 and 832 3 (0.6)

5 and 5 32 (13.4) 3 (0.6)

5 and 73 42 (17.6) 53 (10.1)

5 and 6 3 (0.6)

1 and 1 102 (42.7) 7 (1.3)

1 and 761 7 (1.3)

1 and 762 21 (4)

Singleton (760) and 760 19 (3.6)

45 and 45 30 (12.5) 31 (5.9)

45 and 508 3 (0.6)

121 and 121 35 (6.7)

88 and 78 30 (12.5) 19 (3.6)

101 and 101 15 (2.8)

25 and 25 16 (3.1)

20 and 20 13 (2.5)

8 and 8 3 (1.3) 16 (3.1)

398 and 813 5 (1)

12 and 12 4 (0.8)

188 and 833 4 (0.8)

Sporadic 56 (10.7)

Totals 239 (100) 523 (100)
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isolate had constitutive erythromycin resistance and another was
chloramphenicol resistant.

An eight-antimicrobial antibiogram was performed on 363
isolates. Eighty-three (22.9%) were fully susceptible to all anti-
microbials; 134 (36.9%) were erythromycin resistant, six (1.7%)
were fusidic acid resistant, 4 (1.1%) were gentamicin resistant, 6
(1.7%) were trimethoprim resistant and 9 (2.5%) were tetra-
cycline resistant.

A resistogram was performed on 423 MSSA. Of these, 254
(60%) were cadmium resistant, 4 were arsenate resistant, 1 was
mercuric chloride resistant, 1 was mercuric chloride and phenyl
mercuric acetate resistant, and 4 were ethidium bromide resist-
ant. There were no associations between antimicrobial resistance
profile and genetic lineage.

MRSA. All except two of the 239 MRSA isolates were addition-
ally resistant to fewer than two antibiotic classes and therefore
non-multi-resistant.10 Fifty-nine (24.7%) of the isolates were
fusidic acid resistant, all of which were ST1-MRSA-IVa (2B).
Within CC1, 59 (57.8%) of the 102 MRSA isolates were fusidic
acid resistant. One hundred and thirty three isolates (55.6%),
including isolates from ST1-MRSA-IVa (2B), ST78-MRSA-IVa
(2B), ST5-MRSA-IVa (2B) and ST73-MRSA-IVa (2B), were ery-
thromycin resistant, four (1.7%) isolates, two from ST5-MRSA-
IVa (2B) and one each from ST45-MRSA-V (5C2) and
ST8-MRSA-IVa (2B), were mupirocin resistant and three (1.3%),
two from ST8-MRSA-IVa (2B) and one ST1-MRSA-IVa (2B)
were tetracycline resistant. All except two of the representative
MRSA (WBG8381 and WL36N) produced b-lactamase (Table 3).

The most prevalent MRSA lineage was also resistant to the
most antibiotics. Forty-two of the ST1-MRSA-IVa (2B) isolates
that were fusidic acid resistant also expressed the MLSBi resist-
ance phenotype; one of these was additionally tetracycline resist-
ant and therefore was multi-resistant by definition.10 The other

multi-resistant isolate was an ST45-MRSA-V (5C2) skin lesion
isolate that had the MLSBi resistance phenotype as well as being
gentamicin, kanamycin and mupirocin resistant. Interestingly,
the individual who harboured this clone also harboured
ST45-MRSA-V (5C2) isolates from the anterior nares and throat
that were susceptible to all antibiotics except the b-lactams.

All except 10 of the MRSA (95.8%) were cadmium resistant
and 26 (10.9%) were arsenate resistant. Arsenate resistance was
exclusively linked with ST45-MRSA-V (5C2) and
ST45-MRSA-IVa (2B) clones.

PVL

At least one representative isolate from all MSSA and MRSA
CHEF pulsotypes and sub-pulsotypes was tested for the presence
of the PVL determinant. Two lineages of MSSA harboured the
determinant; seven of eight ST93-MSSA tested were found to
carry PVL and of three ST121-MSSA tested one carried the
determinant (Table 2). No MRSA carried PVL.

agr and ACME

The agr type was determined on representative clones and
revealed four major agr types in the S. aureus isolates (Tables 3
and 4). Five lineages (CC101, CC25, CC20, CC329 and CC8)
were agr I, two (CC15 and CC12) were agr II, five (Singleton
93, CC1, Singleton 760, CC88 and CC188) were agr III, and
one lineage (CC121) was type IV. CC5 isolates were agr II
except for a ST6-MSSA clone that was type I. CC45 had
members in agr types I, Ia and IV. Two isolates (WB43S and
Y74T) were non-typeable.

MSSA clones from all agr groups were present; however, no
agr type IV MRSA was found. The PVL-positive clones
ST93-MSSA and ST121-MSSA belonged to agr groups III and
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IV, respectively. There was no correlation between site of colo-
nization and agr type, and clones with both the same and differ-
ent agr types colonized the same individual and/or sites (not
shown).

Representative MRSA were tested for the presence of the
ACME and none encoded the element.

Geographical distribution

There were local differences in the S. aureus clones present in
the geographical regions (Figure 3). ST1 was the predominant
clone in the Goldfields region and ST93 and ST73 were predo-
minant in Kimberley and Pilbara. Thirteen of the 21 clones (STs
1, 6, 8, 15, 20, 25, 45, 73, 78, 93, 121, 760 and 762) were found
in all geographical regions.

The MRSA clones ST1-MRSA-IVa (2B), ST78-MRSA-IVa
(2B) and ST45-MRSA-V (5C2) were found in all regions,
ST5-MRSA-IVa (2B) and ST45-MRSA-IVa (2B) were found
only in the Goldfields, and ST8-MRSA-IVa (2B) was found
only in the Kimberley region. The most prevalent MRSA clone
in the Goldfields was ST1-MRSA-IVa (2B) (47%) followed by
ST73-MRSA-IVa (2B) (18%). Similarly, in the Pilbara region
the prevalent MRSA clones were ST1-MRSA-IVa (2B) (32%)
and ST73-MRSA-IVa (2B) (26%), while in Kimberley the pre-
dominant clone was ST45-MRSA-V (5C2) (62.5%).

Clones ST1-MRSA-IVa (2B), ST78-MRSA-IVa (2B),
ST5-MRSA-IVa (2B) and ST73-MRSA-IVa (2B) were found in
all years of the surveys and were considered to be endemic in
the communities. The ST8-MRSA-IVa (2B), ST45-MRSA-V
(5C2) and ST45-MRSA-IVa (2B) clones were not found sub-
sequent to 1998.

Genetics of colonization

There was no apparent correlation between ST and site of iso-
lation (not shown).

People harboured clones belonging to a diversity of genetic
lineages at the same or multiple sites. MRSA and MSSA were
found together in 79 sets of screening swabs; all clones from 30
of these were characterized. No person was found to have
MRSA and MSSA of the same genetic lineage at either the
same or different sites. Two hundred and fifty-seven (12%) sets

of screening swabs had MSSA at more than one site. Of 56 with
characterized clones at multiple sites, only 12 (21%) had clones
of the same genetic lineage at all sites and 44 (79%) had a
different lineage at each site. Two sets of screening swabs that
yielded MSSA at three sites had isolates of a different genetic
lineage at each site.

In contrast to MSSA, of 39 sets of screening swabs where
MRSA was found at multiple sites, 36 (92%) had clones of the
same genetic lineage at all sites with only three (8%) harbouring
MRSA of different lineages.

Discussion

Population studies of S. aureus thus far have identified five main
genotypic clusters, CC5, CC8, CC22, CC30 and CC45, as
forming the essential genetic backgrounds of S. aureus, with
differences occurring principally in the local prevalence of the
genotypes and the presence of minor clones.34 – 36 Although
these studies have been from Europe and the USA, a study by
Melles et al.34 performed in Indonesia, which has prehistoric
links with remote WA, reported a similar S. aureus population
structure to that of Europe and the USA. This study, however,
reveals that the population structure of S. aureus in the geo-
graphically remote regions of WA is different. This difference is
probably a consequence of the geographic and cultural isolation
of the remote populations of WA; however, it has had an impor-
tant influence on the epidemiology of MRSA in the entire WA
community.

From a genetically diverse background consisting essentially
of 21 clones of S. aureus, seven clones of MRSA belonging to
five CCs were found. Four of the clones were considered to have
been endemic in the communities and have subsequently
become the most prevalent CA-MRSA clones in the wider WA
community.23 State-wide surveillance has revealed that in
December 2006, ST1-MRSA-IVa (2B), ST78-MRSA-IVa (2B)
and the CC5 clones [ST73-MRSA-IVa (2B) and ST5-MRSA-
IVa (2B)] comprised 56.7%, 30.5% and 8.9% of clinical and
surveillance CA-MRSA in WA, respectively. The CC45 clones
[ST45-MRSA-V (5C2) and ST45-MRSA-IVa (2B)], and ST8-
MRSA-IVa (2B), which were not found in the remote commu-
nities after 1998, formed only 1.9% and 0.8%, respectively, of
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clinical and surveillance CA-MRSA in WA in 200611 suggesting
that they are not as well adapted to the WA community
environment.

The MRSA did not belong to the most prevalent MSSA
lineages, yet, with the exception of ST8-MRSA-IVa (2B), they
formed the greater proportion of isolates present in the lineage to
which they belonged, suggesting that an advantage was gained by
acquisition of the SCCmec element. It would appear, however,
that only a limited number of clones acquired and maintained the
SCCmec element, even though b-lactamase-stable b-lactams
were widely used empirically in the communities. The clonal
structure of MRSA and the small amount of genetic diversity
when compared with MSSA indicate not only the more recent
emergence of MRSA, but also that dissemination of MRSA has
probably occurred along clonal lines by well-adapted community
clones that could support the SCCmec element.

The most prevalent MSSA lineage was the PVL-positive
Singleton 93 clone ST93-MSSA, which has been rarely found
outside Australia. No Singleton 93 MRSA was found during the
period of the surveys. PVL-positive ST93-MRSA-IVa (2B), also
known as the Queensland clone, however, is an important
Australian CA-MRSA that was originally found in a Caucasian
population in Queensland in 2000 and has been reported in
Indigenous people from Queensland5,37 and the Northern
Territory.38 It is interesting that in an environment of high
b-lactam use a methicillin-resistant variant of ST93-MSSA was
not found in WA during these surveys.

S. aureus isolates from most of the lineages were found at all
sites tested. The highest recovery of MSSA of 42.6% was from
the throat while for MRSA the highest recovery of 51.6% was
from the anterior nares. Although the anterior nares is the pre-
ferred screening site for population studies, in this study many
isolates of S. aureus would have been missed if the throat and
skin lesions had not also been swabbed. It has been established
previously that there is a high incidence of skin pathology
associated with S. aureus in remote Australian communities38

and the recovery figures in this study are clearly influenced by
the high numbers of skin lesions found amongst the survey
participants.

The clonal nature of MRSA and the tendency for people car-
rying MRSA at multiple sites to harbour clones of the same
genetic lineage as opposed to those with MSSA, who tended to
have different lineages at each site, indicates that MRSA in the
WA remote communities are well-adapted colonizers that could
possibly displace MSSA as asymptomatic commensal organ-
isms. Furthermore, unless the use of b-lactamase-stable anti-
biotics is curtailed they could become the predominant
colonizing organisms in the communities.

Very few remote region S. aureus isolates were resistant to
multiple antimicrobials; however, the potential for the emer-
gence of resistance was indicated by the presence of several anti-
microbial resistance determinants amongst the population. In
addition to the SCCmec element, determinants for resistance to
penicillin, fusidic acid, MLSBi, erythromycin, tetracycline, gen-
tamicin, kanamycin, mupirocin, trimethoprim and chlorampheni-
col were present.

The resistance determinants for b-lactamase production,
MLSBi, mupirocin and trimethoprim in remote WA community
MRSA are plasmid borne,33,39 and other studies have shown that
those for gentamicin and kanamycin are on a transposon while
those for erythromycin, tetracycline and chloramphenicol are on

plasmids. In view of the increased isolation rates of CA-MRSA
in clinical specimens in WA it would be instructive to assess the
current status of CA-MRSA in the remote communities to deter-
mine if there is a need to control the local use of antibiotics.
Such control could be predicated upon the known resistance
determinants in the S. aureus populations of the communities. It
is imperative that careful antibiotic management guidelines are
established and administered in the communities to prevent
CA-MRSA acquiring additional resistance determinants and
spreading further. The importance of this was indicated from
results (not shown) from communities 4 and 5. When these com-
munities were initially screened the prevalence of MRSA was
43% and 22%, respectively. As a consequence, non-b-lactam
antibiotics replaced the empirical administration of b-lactam
antibiotics for S. aureus infections and re-screening of the com-
munities four years later revealed that the prevalence of MRSA
had dropped to 11% and 7%, respectively.
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methicillin-resistant Staphylococcus aureus in a
geographical region
Geoffrey W Coombs1,2*, Stefan Monecke3, Julie C Pearson1, Hui-leen Tan1, Yi-Kong Chew1, Lynne Wilson1,
Ralf Ehricht3, Frances G O’Brien2 and Keryn J Christiansen1,2

Abstract

Background: Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) was first reported in
remote regions of Western Australia and is now the predominant MRSA isolated in the state. The objective of this
study is to determine the genetic relatedness of Western Australian CA-MRSA clones within different multilocus
sequence type (MLST) clonal clusters providing an insight into the frequency of S. aureus SCCmec acquisition
within a region.

Results: The CA-MRSA population in Western Australia is genetically diverse consisting of 83 unique pulsed-field
gel electrophoresis strains from which 46 MLSTs have been characterised. Forty five of these sequence types are
from 18 MLST clonal clusters and two singletons. While SCCmec IV and V are the predominant SCCmec elements,
SCCmec VIII and several novel and composite SCCmec elements are present. The emergence of MRSA in diverse S.
aureus clonal clusters suggests horizontal transmission of the SCCmec element has occurred on multiple occasions.
Furthermore DNA microarray and spa typing suggests horizontal transfer of SCCmec elements has also occurred
within the same CC. For many single and double locus variant CA-MRSA clones only a few isolates have been
detected.

Conclusions: Although multiple CA-MRSA clones have evolved in the Western Australian community only three
clones have successfully adapted to the Western Australian community environment. These data suggest the
successful evolution of a CA-MRSA clone may not only depend on the mobility of the SCCmec element but also
on other genetic determinants.

Background
Based on phenotypic and genotypic typing methods,
community onset methicillin-resistant Staphylococcus
aureus infections are caused by healthcare-associated
MRSA (HA-MRSA) strains, which appear to have been
transferred from hospitals or healthcare facilities into
the community by patients or healthcare workers [1], or
by community-associated MRSA (CA-MRSA) strains,
which have been isolated from people who have had lit-
tle or no contact with healthcare facilities or healthcare

workers [2]. This distinction between community and
healthcare facility however has become blurred with the
replacement of HA-MRSA with CA-MRSA in hospitals
[3,4].
In contrast to HA-MRSA, CA-MRSA strains are gen-

erally more susceptible to non beta-lactam antibiotics,
grow significantly faster, have different clonal back-
grounds, carry smaller staphylococcal cassette chromo-
some mec (SCCmec) elements (most commonly
SCCmec type IV or type V), have enhanced virulence
properties and frequently harbor genes expressing Pan-
ton-Valentine leukocidin (PVL) [5-8]. Rather than a
worldwide spread of a single clone multiple CA-MRSA
clones have emerged from diverse genetic backgrounds.
Several well characterized CA-MRSA clones predomi-
nate in different regions: Sequence type (ST) 8-IV [2B]
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(USA300) and ST1-IV [2B] (USA400) in North America
[9,10]; ST80-IV [2B] (European clone) in Europe [8],
North Africa [11] and the Middle East [12]; ST59-V
[5C2&5] (Taiwan clone) in Taiwan [13]; ST93-IV [2B]
(Queensland clone) in Australia [14], ST30-IV [2B]
(South West Pacific [SWP] CA-MRSA) in the Western
Pacific [15,16], and ST772-V [5C2] (Bengal Bay clone)
in India and Bangladesh [17]. Transmission of these
clones into other regions has occurred [18,19]. This
occurrence of concurrent epidemics of CA-MRSA in
many countries by different clones has been striking.
Equally noteworthy are a number of common features
of these epidemics, prominent among them the ability
to cause severe infections in young otherwise healthy
people and the carriage of the lukF-PV/lukS-PV PVL
encoding genes by the organism.
The earliest report of CA-MRSA infections involved

indigenous people living in remote communities in the
sparsely populated Kimberley region of Western Austra-
lia (WA) [20]. Approximately 50% of the people in this
region are indigenous, many of whom live in poor socio-
economic conditions. Infected skin lesions and staphylo-
coccal sepsis occur frequently and empirical
antistaphylococcal therapy is often prescribed. Colloqui-
ally known as “WA-MRSA”, the early isolates have a
similar pulsed-field gel electrophoresis (PFGE) pattern
and have subsequently been characterized as a single
clone; PVL-negative WA5 (ST8-IV/spa t008) [21]. By
2006 22 CA-MRSA clones were identified in WA, with
PVL-negative WA 1 (ST1-IV [2B]/t127) replacing WA5
as the predominant clone [22]. At this time CA-MRSA
from indigenous people living in remote areas outside of
WA were reported in the Northern Territory [23],
Queensland [24] and Central Australia [25]. As may be
expected in a geographically large country with relatively
few dense concentrations of population, often separated
by large areas of desert, different CA-MRSA clones
evolved in these communities.
In 1982 colonization or infection with MRSA became

a notifiable condition in WA. For infection control pur-
poses all MRSA isolated in the state since 1997 have
been referred to the Australian Collaborating Centre for
Enterococcus and Staphylococcus Species (ACCESS) Typ-
ing and Research where based on molecular markers
they are characterized as either HA-MRSA or CA-
MRSA [26]. Although a state-wide policy of screening
all patients and healthcare workers who have lived out-
side the state for MRSA has prevented HA-MRSA from
becoming endemic in Western Australian hospitals, it
has not prevented CA-MRSA from becoming estab-
lished in the community. In WA the public health sys-
tem is divided into two metropolitan health regions and
seven country health regions. The state encompasses an
area of 1.02 million square miles and has a population

of approximately 2.24 million people. In 1983, the over-
all rate of MRSA notifications was 10 per 100,000 per-
sons in the rural country health regions and 7/100,000
in the metropolitan regions [27]. By 2006 notifications
rates throughout the state had increased to 179/100,000
persons of which 144/100,000 were CA-MRSA. In the
metropolitan health regions the CA-MRSA notification
rate was 134/100,000 whilst in the Kimberley health
region the CA-MRSA notification rate had increased 40-
fold to 391/100,000 [18].
CA-MRSA is thought to emerge when a locally preva-

lent strain of methicillin susceptible S. aureus (MSSA)
acquires a SCCmec element and utilizes mobile genetic
elements and single nucleotide polymorphisms to estab-
lish local and geographic niches [28]. As WA is a
remote region in which all MRSA isolates are referred
to a central typing laboratory it is an ideal environment
to study the emergence and evolution of CA-MRSA.
MLST, SCCmec, spa typing and microarray DNA is per-
formed on all isolates with a unique PFGE pulsotype.
The aim of this study is to determine the genetic relat-
edness of WA CA-MRSA clones within different MLST
clonal clusters (CC) providing an insight into the fre-
quency of S. aureus SCCmec acquisition within a region.
The genetic profile of these clones may also offer an
explanation why only a few WA CA-MRSA clones have
successfully adapted to the community environment.

Results
The 83 unique PFGE strains isolated in Western Austra-
lia from 1989 to 2010 were nuc and mecA gene positive
by PCR. The DNA microarray S. aureus species markers
gapA (glyceraldehyde 3-phosphate dehydrogenase) and
rrn STAU (S. aureus ribosomal marker) were detected
in all strains. The array’s linear primer elongation
method detected the katA (catalase A), coA (coagulase),
nuc, spa (protein A) and sbi (IgG-binding protein) S.
aureus species markers in 78 strains. These markers
were either not detected or detected only by random
amplification in five strains (WA8, WA47, WA72,
WA76 and WA79).
Forty six STs were identified by MLST. Using the

MLST website’s eBURST V3 algorithm 45 STs were
grouped into 18 CCs and two singletons (Figure 1). The
CC for WA76 (ST1303) has not been determined.
Several SCCmec types and subtypes, novel SCCmecs,

and composite SCCmecs were identified. Forty five
strains harbor SCCmec IVa-d [2B] (31 IVa, 2 IVb, 9
IVc, 3 IVd), 12 strains SCCmec V [5C2] and two
strains SCCmec VIII [4A]. Two strains have non type-
able SCCmec IV subtypes and four strains have a
SCCmec element with a novel ccr gene complex
including three with a class B mec gene complex and
one with a class A mec complex. Eighteen strains
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harbor SCCmec elements with composite ccr gene
complexes including 12 with SCCmec V [5C2&5] (5C2
plus ccrC1 allele 8), three with SCCmec IVa [2B]&5
(2B plus a type 5 ccr gene complex), one with V (5C2)
&2 (5C2 plus a type 2 ccr gene complex) and two with
V [5C2&5]&2 (a composite SCCmec V element plus a
type 2 ccr gene complex).
The MLST, spa type, agr type, capsule type, SCCmec,

antibiogram, resistance genotype, lukF/S-PVL genes,
enterotoxin genes and bacteriophage associated viru-
lence genes of each unique PFGE strain are provided in
Additional File 1. Information on target genes, probes,
and primers is provided in Additional File 2. Complete
hybridization profiles for the individual strains can be
provided on request.

Clonal Complex 1
CC1 contains five strains including the PVL positive
Bengal Bay clone (ST772 [a single locus variant {slv} of
ST1]-V [5C2]/t3387). This strain is epidemiologically

linked to a healthcare worker from India and is not con-
sidered a WA CA-MRSA.
Based on the agr/capsule and SCCmec type, the

remaining four strains are divided into two groups:
Group 1
agr type III/capsule type 8 SCCmec IVa [2B] contains
PVL negative WA1 (ST1/t127), WA45 (ST872 [slv of
ST1]/t127), and WA57 (ST1005 [ST1 slv]/t127). WA1
and WA45 harbor a ccrA-1 and ccB-1 gene complex
and Q6GD50 (fusidic acid resistance marker) indicating
the presence of the mobile fusidic acid SCC element
SCCfur. WA1 is known to carry multiple plasmids such
as a 2-kb plasmid encoding resistance to erythromycin
[29] and this presumably accounts for the differences in
the antibiogram and resistance genotype for WA1,
WA45 and WA57. In addition to enterotoxin genes the
three strains harbor a type D immune evasion cluster
[IEC] (seA+sak+scn) [30]. Group 2
agr type II/capsule type 5 SCCmec V [5C2] contains

PVL negative WA10 (ST573 [ST1 slv]/t5073. WA10

Figure 1 eBURST generated population snapshot of CA-MRSA clones isolated in Western Australia (http://www.mlst.net/). Each
sequence types (STs) is represented by a black dot. The ancestral ST of a clonal complex is represented by a blue dot. The size of the dot
reflects the number of WA CA-MRSA clones with this ST. STs that diverge at no more than one of the seven MLST loci belong to the same
clonal complex. Double locus variants (DLVs) are included if the linking single locus variant (SLV) was present in the MLST database. SLVs and
DLVs of a sequence type are represented by pink and blue line respectively. Purple lines represent overlapping pink and blue lines.
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carries several enterotoxin genes including the entero-
toxin egc cluster [seG+seI+seM+seN+seO+seU/Y]).
Unlike WA1, WA45 and WA57, WA10 does not carry
the type D IEC, the pathogenicity island harboring the
leukocidin D/E component, the protease splA gene and
the hsdS gene. The ssl/set genes and cell surface adhe-
sions encoding genes of WA10 are closely related to the
Bengal Bay clone.

Clonal Complex 5
CC5 contains 27 strains. Based on the agr/capsule type
the isolates are divided into two groups which are
further divided into subgroups based on the SCCmec
type.
Group 1

agr type I/capsule type 8 (2 strains)
i. SCCmec IVa [2B] contains WA51 (ST6 [ST5
dlv]). The protein A variable region in WA51
could not be amplified and therefore a spa type
cannot be allocated.
ii. SCCmec IVa [2B]&5 contains WA66 (ST6/
t701).

WA51 and WA66 harbor a type D IEC Neither
strain harbors the lukF-PV/lukS-PV PVL encoding
genes.

Group 2
agr type II/capsule type 5 (25 strains)
Unlike Group 1 strains, these 25 strains harbour the
enterotoxin egc cluster. Ten spa types were identi-
fied, of which nine are closely related: t002, t045,
t071, t442, t688, t1265, t2666, t3378, t4065.

i. SCCmec IVa [2B] contains WA3 (ST5/t002),
WA64 (ST5/t3778), WA71 (ST5/t002), WA82
(ST5/t002), WA25 (ST575 [ST5slv]/t002), WA50
(ST73 [ST5slv]/t002) and WA65 (ST73/t002). PVL
negative WA3, WA71, WA82, WA25, WA50 and
WA65 harbor a type F IEC (seP+sak+chp+scn).
PVL positive WA64 harbors a type A IEC (seA+sak
+chp+scn). WA64 and WA65 also harbor edinA
(epidermal cell differentiation inhibitor A gene).
ii. SCCmec IVc [2B] contains PVL negative
WA74 (ST5/t002) which harbors a type F IEC.
iii. SCCmec IV [2B] contains PVL negative
WA39 (ST526 [ST5slv]/t4065) which has a non
typeable SCCmec IV [2B] element and a type B
IEC (sak+chp+scn).
iv. SCCmec V [5C2] contains PVL negative
WA14 (ST5/t442), WA35 (ST5/t688), WA81
(ST5/t045) [a non related spa type] and WA90
(ST5/t1265). WA81 harbors a type F IEC; WA14
and WA90 a type G IEC (seP+sek+scn) and
WA35 a type B IEC.

v. SCCmec V [5C2&5] contains PVL negative
WA11 (ST5/t045), WA86 (ST5/t002), WA34
(ST5/t458), WA80 (ST5/t071), WA85 (ST5/
t2666), and WA87 (ST835 [ST5slv]/t002). WA85
and WA86 harbor a type F IEC; WA34, WA80
and WA87 a type B IEC and WA11 a type E IEC
(sak + scn). WA80 harbors the ACME (arginine
catabolic mobile element) genes.
vi. SCCmec V [5C2]&2 contains PVL negative
WA61 (ST641 [ST5slv]/t002) which harbors a
type E IEC.
vii. SCCmec V [5C2&5]&2 contains PVL negative
WA40 (ST835 [ST5slv]/t002) and WA46 (ST835/
t002). WA40 harbors a type B IEC while WA46
a type E IEC.
viii. SCCmec novel [novel B] contains PVL nega-
tive WA18 (ST5/t002), WA21 (ST5/t002) and
WA48 (ST835/t002) harboring ccrA-1 and a
class B mec complex (mecA and a truncated
mecR1 genes). WA18 harbors a type F IEC;
WA21 a type D IEC; and WA48 a type B IEC.

Clonal Complex 8
The 12 CC8 strains are all agr type I/capsule type 5.
Seven closely related spa types were identified: t008,
t024, t064, t334, t711, t1635, t2238.
The CC8 strains include the ST8-MRSA-IVc [2B]/t008

USA300 MRSA clone [31]. Based on the SCCmec type
the remaining 11 strains are divided into seven sub-
groups:

i. SCCmec IVa [2B] contains WA5 (ST8/t008), WA6
(ST8/t008), WA62 (ST923 [ST8slv]/t1635), and
WA83 (ST1634 [ST8slv]/t711). WA5, WA62, and
WA83 harbor a type B IEC. An IEC was not
detected in WA6. Unlike the other WA CC8 strains,
WA62 is PVL positive.
ii. SCCmec IVd [2B] contains WA58 (ST1173
[ST8slv]/t064) and WA20 (ST612 [ST8dlv]/t064)
which harbor a type D IEC.
iii. SCCmec IVa [2B]&5 contains WA92 (ST1757
[ST8slv]/t024) which does not harbor an IEC.
iv. SCCmec IV [2B] contains WA31 (ST576
[ST8slv]/t334) which does not harbor an IEC. The
SCCmec IV element is non typeable.
v. SCCmec V [5C2] contains WA77 (ST8/t008)
which harbors a type D IEC, the ACME determi-
nant, and SCCfus.
vi. SCCmec V ([5C2&5]) contains WA53 (ST8/
t2238) which harbors a type D IEC.
vii. SCCmec VIII (4A) contains WA16 (ST8/t024)
which harbors a type D IEC.
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Clonal Complex 12
CC12 contains two agr group II/capsule type 8
strains which harbor a type G IEC. Neither strain
harbor the lukF-PV/lukS-PV PVL encoding genes.
Based on the SCCmec type the two strains are
divided into two subgroups:

i. SCCmec IVa [2B] contains WA69 (ST12/t160).
ii. SCCmec novelA contains WA59 (ST12/t160)
which harbors a class A mec complex (mecA,
complete mecR1 and mecI regulatory genes). The
ccr genes were not detected by DNA microarray
and did not amplify with PCR primers.

Clonal Complex 30
CC30 contains two agr group III/capsule type 8 strains:
PVL positive ST30-IVc [2B]/t019 and PVL negative
WA68 (ST39 [ST30dlv]-IVc [2B]/t2643). Their protease,
haemolysin, leukocidin, ssl/set, hsdS, and cell surface
adhesion profiles are not homogeneous and their spa
types are not closely related.
The DNA microarray profile of ST30-IVc [2B]/t019 is

homogeneous with the South Western Pacific (SWP)
ST30-IV clone as is therefore not considered a WA CA-
MRSA.
WA68 harbors a type D IEC and tst-1genes.

Clonal Complex 45
CC45 contains four PVL negative strains. Based on the
agr group/capsule type the four isolates are divided into
two groups which are further divided into subgroups
based on the SCCmec type.
Group 1
agr group I/capsule 8 (two strains)

i. SCCmec IVa [2B] contains WA75 (ST45/t1424).
ii. SCCmec V [5C2] contains WA4 (ST45/t123)
which harbors tst1 genes.

Both strains harbor a type B IEC. The spa types
are not closely related.

Group 2
agr group IV/capsule type 8 (two strains)

i. SCCmec IVc [2B] contains WA23 (ST45/t1575)
ii. SCCmec V [5C2&5] contains WA84 (ST45/t1081).

Both strains harbor a type B IEC and closely
related spa types.

Clonal Complex 59
CC59 agr type I/capsule type 8 contains seven strains.
The DNA microarray profiles of ST59/ST952-V

[5C2&5] t437/t1950 are homogeneous with the Taiwan

clone and therefore are not considered WA CA-MRSA
[32].
Based on the SCCmec types the remaining five strains

are divided into three subgroups:

i. SCCmec IVa [2B] contains PVL positive WA55
and WA56 (ST59/t437). WA55 harbors a type B IEC
while WA56 a type A IEC.
ii. SCCmec IVb [2B] contains two PVL negative
strains with unrelated spa types: WA73 (ST59/t528)
and WA24 (ST87 [ST59slv]/t216). WA73 harbors a
type C IEC (chp+scn) and WA24 a type B IEC.
iii. SCCmec IVa [2B]&5 contains PVL negative
WA15 (ST59/t976) which harbors a type A IEC.

Clonal Complex 72
CC72 contains two agr group I/capsule type 5 strains
with closely related spa types. Based on the SCCmec
type the two strains are divided into two subgroups:

i. SCCmec IVa [2B] contains PVL positive WA44
(ST72/t791) harboring a type B IEC.
ii. SCCmec V (5C2) contains PVL negative WA91
(ST72/t3092) harboring a type E IEC and tst1 genes.

Clonal Complex 75
CC75 contains three PVL negative strains which are agr
group/capsule nontypeable by DNA microarray: WA8
(ST75-IVa [2B]), WA79 (ST75-IVa [2B]) and WA72
(ST1304 [ST75slv]-IVa [2B]) [33]. The three strains have
the same spa sequence (259-23-23-17-17-17-23-23-23-
17-16) which has not been allocated a spa type number
by the Ridom website. The three strains harbor a type E
IEC.

Clonal Complex 80
CC80 contains three PVL positive agr group III/capsule
type 8 strains: ST80-IVc [2B]/t044, ST583 [ST80slv]-IVc
[2B]/t044, and ST728 [ST80slv]-IVc [2B]/t044. The
DNA microarray virulence profiles are identical with the
European ST80-IV [2B] clone and therefore the three
strains are not considered WA CA-MRSA.

Clonal Complex 97
CC97 contains two PVL negative agr group I/capsule type
5 strains with closely related spa types: WA54 (ST953
[ST97dlv]-IVa [2B]/t359) and WA63 (ST1174[ST97dlv]-
IVa [2B]/t267). The strains harbor a type E IEC.

Clonal Complex 121
CC121 contains two PVL negative agr group IV/capsule
type 8 strains with closely related spa types. The two
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strains harbor a type E IEC and based on the SCCmec
type, are divided into two subgroups:

i. SCCmec V [5C2] contains WA22 (ST577 [ST121
dlv]/t3025) which harbors etA (exfoliative toxin sero-
type A) and edinA genes.
ii. SCCmec V [5C2&5] contains WA93 (ST121/t159).

Clonal Complex 188
CC188 contains two PVL negative agr group I/capsule
type 8 strains: WA38 and WA78 (ST188-IVa [2B]/t189).
The two strains have a type B IEC.

Clonal Complex 361
CC361 contains three PVL negative agr group I/capsule
type 8 strains. The spa types are closely related. Based
on the SCCmec type the three strains are divided into
three subgroups:

i. SCCmec IVa [2B] contains WA29 (ST672
(ST361slv)/t1309) which harbors a type E IEC and
tst1 genes.
ii. SCCmec V [5C2] contains WA70 (ST672/t1309).
iii. SCCmec VIII [4A] contains WA28 (ST361/t315)
which harbors a type B IEC.

The following CCs contained a single strain:

Clonal Complex 9
PVL negative WA13 (ST834-IVc [2B]/t3029) is agr
group I/capsule type 8 and harbors a type B IEC and
tst1 genes.

Clonal Complex 88
PVL negative WA2 (ST78-IVa [2B]/t3205) is agr group
III/capsule type 8 and harbors a type B IEC.

Clonal Complex 152
PVL positive WA89 (ST1633-V [5C2]/t355) is agr group I/
capsule type 5 and harbors a type E IEC and edinB genes.

Clonal Complex 398
Although PVL negative ST398-V [5C2&5]/t034 is fre-
quently associated with livestock, the strain is increas-
ingly isolated from human patients [34]. Rarely
identified in Australia, the DNA microarray profile of
this isolate is homogeneous with the European live-
stock-associated ST398 strain and is therefore not con-
sidered a WA CA-MRSA.

WA76 (Clonal Complex not Determined)
PVL negative WA76 (ST1303-IVa [2B]) is agr group III
with a non typeable capsule by DNA microarray. The

spa sequence (259-25-17-17-16-16-16-16) has not been
allocated a spa type number by the Ridom website.

Queensland Clone (Singleton)
PVL positive ST93-IVa [2B]/t202 is agr group III/cap-
sule type 8 and harbors a type B IEC. The DNA micro-
array profile is homogeneous with the Queensland
clone. Due to its origin and widespread distribution out-
side WA the Queensland clone is not considered a WA
CA-MRSA.

WA47 (Singleton)
PVL negative WA47 (ST883-IVd [2B]/t7462) has a non
typeable agr group/capsule type by DNA microarray.

Discussion
As all MRSA isolated in WA are referred to a central
typing laboratory it is possible to investigate the emer-
gence and evolution of CA-MRSA in a remote region.
Prior to the global evolution and expansion of CA-

MRSA, five CA-MRSA clones were identified in the
indigenous population living in the remote communities
of the sparsely populated Kimberley, Pilbara and Eastern
Goldfield regions of WA [29]. These five PVL negative
clones include: WA1 (CC1: ST1-IVa [2B]/t127), WA2
(CC88: ST78-IVa [2B]/t3205), WA3 (CC5: ST5-IVa
[2B]/t002), WA4 (CC45 ST45-V (5C2)/t123) and WA5
(CC8: ST8-IVa [2B]/t008). WA5 and WA1 were origin-
ally isolated from clinical specimens in 1989 and 1995
respectively, and WA2, WA3 and WA4 from nasal car-
riage specimens in 1995. The emergence of CA-MRSA
clones in different MLST clonal clusters indicates hori-
zontal transmission of the SCCmec element into S. aur-
eus has occurred on at least five occasions in these
remote communities: SCCmec IVa [2B] into CC1 (ST1),
CC5 (ST5), CC8 (ST8), CC88 (ST78), and SCCmec V
[5C2] into CC45 (ST45). Based upon the spa type and
the DNA microarray profile at least six evolutionary
events have occurred on at least three occasions from
these clones (ie vertical transmission of the SCCmec ele-
ment): twice from WA1, WA3 and WA5 (Figure 2).
Vertical transmission of the SCCmec element has not
been identified for WA4 or WA2.
The emergence of WA1, WA2 and WA3 has been due

to the acquisition and insertion of the small and highly
mobile type IVa [2B] SCCmec element, presumably har-
bored by methicillin resistant coagulase negative staphylo-
cocci (MRCNS). Several hypotheses to explain the
transmission of a SCCmec element from MRCNS to S.
aureus have been proposed including the increased use of
antimicrobials within a community [35]. Many of the Kim-
berley indigenous population live in poor socioeconomic
conditions. Staphylococcal skin lesions, commonly result-
ing from scabies infestation, trachoma and venereal
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diseases such as chlamydia and gonorrhea occur fre-
quently in this population. Consequently empirical therapy
using b-lactamase stable penicillins and azithromycin is
often prescribed [36]. The frequent use of these antimicro-
bials may have assisted in the acquisition of the SCCmec
element and erm genes into S. aureus. Genetic studies
however have shown these newly emerged CA-MRSA
clones did not originate in the predominant methicillin-
susceptible S. aureus (MSSA) clones found in these com-
munities, suggesting not all clones are able to acquire or
retain the SCCmec element [37]. The subsequent dissemi-
nation of WA1, WA2 and WA3 into the wider community
suggests the acquisition of the SCCmec element and the
erm genes has given these clones a selective advantage.
WA4 and WA5 however have not been successful in
spreading beyond the indigenous communities suggesting
the acquisition of the SCCmec element does not provide a
universal selective advantage.
Many of the remaining 46 CA-MRSA clones, identi-

fied between July 2003 and June 2010, were not isolated

in remote WA indigenous communities. The geographi-
cal spread of CA-MRSA over long distances and across
cultural borders is believed to be a rare event compared
to the frequency in which the SCCmec element is
acquired by S. aureus [38]. Most of these clones are
therefore likely to have evolved in WA. Some clones are
slvs and dlvs of pre-existing CA-MRSA, and their
SCCmec type, spa type and DNA microarray profile sug-
gests vertical transmission of the SCCmec element has
occurred. However the emergence of MRSA in several
unrelated S. aureus clonal clusters suggests horizontal
transmission of the SCCmec element has also occurred.
SCCmec typing and spa typing and DNA microarray
results also suggests horizontal transfer of SCCmec ele-
ments has occurred into the same CC on more than
one occasion.
Although several SCCmec elements have been

acquired by multiple S. aureus clones from which many
CA-MRSA clones have emerged, only a few clones have
successfully adapted to the WA community

Figure 2 Proposed evolution of CA-MRSA from WA-1 (ST1-MRSA-IV), WA-3 (ST5-MRSA-IV) and WA-5 (ST8-MRSA-IV).
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environment. Between July 2009 to June 2010 4,691
MRSA were referred to ACCESS Typing and Research
of which 3,931 were characterized as CA-MRSA. Overall
84% (3,024) of isolates were from clinical infections and
the 16% (907) from colonized patients. Approximately
88% of CA-MRSA were identified as WA1 (40%), WA2
(24%) and WA3 (8%). For most clones, including WA4
and WA5 only a few isolates were detected. (http://
www.public.health.wa.gov.au/3/896/3/camrsa.pm).
For many slv and dlv CA-MRSA only a small number

of isolates have been detected suggesting changes in the
housekeeping genes may have conferred a fitness cost or
did not allow the SCCmec element to be maintained.
For example WA45 and WA57 are slvs of ST1 and their
SCCmec and spa type and DNA microarray profile sug-
gest they have evolved from WA1 (Figure 2). WA45 was
first identified in 2006 and WA57 in 2007. Although
WA1 has become the most successful CA-MRSA clone
in the WA community only one isolate of WA45 and
two isolates of WA56 have so far been identified (http://
www.public.health.wa.gov.au/3/896/3/camrsa.pm).
Six PVL positive pandemic CA-MRSA clones (plus

three closely related clones) have been isolated in WA:
Bengal Bay CA-MRSA (ST772-V [5C2]/t3387), USA300
MRSA (ST8-IVc [2B]/t008), SWP CA-MRSA (ST30-IVc
[2B]/t019), Taiwan CA-MRSA (ST59-V [5C2&5]/t437
and the slv ST952-V [5C2&5]/t1950), European CA-
MRSA (ST80-IVc [2B]/t044 and the slvs, ST583-IVc
[2B]/t044 and ST728-IVc [2B]/t044), and the Queens-
land CA-MRSA (ST93-IVa [2B]/t202). The epidemiology
of the USA300 and Taiwan CA-MRSA clones in WA
and the Queensland and SWP CA-MRSA clones in Aus-
tralia have previously been reported [18,31,32]. Patients
colonized or infected with the Bengal Bay clone have
been observed to be epidemiologically linked to Indian
healthcare workers (unpublished data). The USA300,
European, Taiwanese and Bengal Bay CA-MRSA clones
are not frequently isolated in WA. This may be due, in
part, to WA Health Department infection control inter-
ventions applied to patients who are colonized or
infected with international PVL positive pandemic
clones. A seventh pandemic clone has recently been
identified. The DNA microarray profile and the SCCmec
element of the PVL negative ST398-V [5C2&5] is indis-
tinguishable from the pandemic ST398 clone initially
isolated from pigs and pig farmers in the Netherlands
[39]. Only one isolate, from a patient with travel outside
of Australia, has been identified in WA.
The Queensland clone (ST93-IVa [2B]) first detected

on the east coast of Australia in the Caucasian popula-
tion in 2000 [40], has become one of the most prevalent
CA-MRSA isolated in Australia [18] and in 2010
accounted for 18% of CA-MRSA in WA. This suggests
the acquisition of the SCCmec element has given this

clone a selective advantage. Although the Queensland
clone is believed to have been introduced into WA in
2001 [22], PVL positive ST93-MSSA was identified as
the most prevalent S. aureus clone in WA’s remote indi-
genous communities in surveys performed in the mid
1990s. Although found in an environment of high b-lac-
tam use a methicillin-resistant variant of ST93-MSSA
was not found in WA during these surveys.
WA1, WA2 and WA3 are PVL negative and do not

harbor multiple virulence genes (Tables 1). Similarly the
successful Queensland clone, although PVL positive, car-
ries almost no other exotoxin genes and no additional
resistance genes. Although most other WA CA-MRSA
clones are also PVL negative, many of these clones have
acquired multiple resistance and/or virulence determi-
nants (Tables 1). For example WA78 (ST188-IVa [2B]/
t315) in addition to mecA and blaZ, harbors aacA-aphD,
tetK and cat and is phenotypically resistant to erythromy-
cin, trimethoprim and ciprofloxacin; WA64 (ST5-IVa
[2B]/t3778) has acquired seA enterotoxin genes and
edinA and lukF-PV lukS-PV virulence genes; and WA62
(ST923[ST8slv]-IVa [2B]/t1635) harbors seD+seJ+seR and
seK+seQ enterotoxin genes and lukF-PV lukS-PV. The
acquisition of multiple resistance and/or virulence genes
may have come at a high fitness cost as none of these
clones have established a niche in the WA community.
As WA1, WA2 and WA3 CA-MRSA lack PVL as well

as other virulence genes that are found in pandemic
international CA-MRSA clones, such ACME in USA300,
the epidemiology of CA-MRSA disease in WA is differ-
ent to other regions. Outside of WA the majority of dis-
eases related to CA-MRSA infection are severe skin and
soft tissue infections such as soft tissue abscess, carbun-
cles and furuncles. Many of these infections have
occurred in healthy individuals, especially children and
adolescents, usually via skin-to-skin contact [41]. In WA
the majority of CA-MRSA related diseases were initially
associated with the indigenous population and then
other groups normally susceptible to S. aureus infections
such as the elderly. As the original WA CA-MRSA are
PVL negative, many of these infections were superficial
skin infections such as impetigo. However with the
introduction of the PVL-positive Queensland CA-MRSA
clone more severe skin and soft tissues infections have
been observed.
The limitation of this study is that only the initial iso-

late of each PFGE pulsotype was included in the study.
To determine if the successful CA-MRSA clones found
in the WA community are evolving the genetic profiles
of subsequent isolates need to be investigated.

Conclusions
In conclusion although the vertical and horizontal trans-
mission of SCCmec elements into S. aureus has
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occurred on multiple occasions in the WA community
only three WA CA-MRSA clones have found an ecolo-
gical niche. These three PVL negative clones harbor few
additional resistance and virulence genes which para-
doxically may account for their success.

Methods
Isolates
The isolates studied are representative of the 83 CA-
MRSA unique PFGE strains identified in WA from 1989
to 2010 (Figure 3). They include five strains isolated
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Figure 3 Dendrogram of the 83 pulsed-field gel electrophoresis patterns of CA-MRSA isolated in Western Australia.
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from indigenous inhabitants living in remote WA rural
communities in 1989 (WA5 {WBG7583} [20]) and 1995
(WA1 {WBG 8287}, WA2 {WB8366}, WA3 {WBG8378},
and WA4 {WBG8404} [42]); and 78 strains identified
from 24,368 CA-MRSA referred to ACCESS Typing and
Research between July 2003 and June 2010.

nuc and mecA
S. aureus species and methicillin resistance was con-
firmed by the detection of nuc (thermostable extracellu-
lar nuclease) and mecA (methicillin resistance) genes by
PCR [43].

Susceptibility testing
An antibiogram was performed by disk diffusion on
Mueller-Hinton agar according to the Clinical and
Laboratory Standards Institute (CLSI) recommendations
[44]. A panel of eight antimicrobial drugs was tested:
erythromycin (15 μg), tetracycline (30 μg), trimethoprim
(5 μg), ciprofloxacin (5 μg), gentamicin (10 μg), rifampin
(5 μg), fusidic acid (10 μg), and mupirocin (5 μg). CLSI
interpretive criteria [45] were used for all drugs except
fusidic acid [46] and mupirocin [47].

PVL
PCR for the detection of PVL determinants was per-
formed as previously described [48].

PFGE
Electrophoresis of chromosomal DNA was performed as
previously described [49], using a contour-clamped
homogeneous electric field (CHEF) DR III system (Bio-
Rad Laboratories Pty Ltd). Chromosomal patterns were
examined visually, scanned with a Quantity One device
(Bio-Rad Laboratories Pty Ltd), and digitally analyzed
using FPQuest (Bio-Rad Laboratories Pty Ltd). S. aureus
strain NCTC 8325 was used as a reference strain.

MLST and spa typing
Chromosomal DNA for MLST and spa typing was pre-
pared using a DNeasy tissue kit (Qiagen Pty Ltd).
MLST was performed as previously described [50].

The sequences were submitted to http://www.mlst.net/
where an allelic profile was generated and an ST
assigned. Clonal complex (CC) was determined using
the eBURST V3 algorithm at the same website. Clones
that diverged at no more than one of the seven MLST
loci were considered to belong to the same CC. Double
locus variants (dlvs) were included if the linking single
locus variant (slv) was present in the MLST database.
spa typing, a DNA sequenced-based analysis of the

protein A gene variable region was performed as

previously described [51] using the nomenclature as
described on the Ridom website (http://spa.ridom.de/).

SCCmec typing
The strategy used for SCCmec typing was as previously
described [32]. SCCmec nomenclature is used as pro-
posed by the International Working Group on the Clas-
sification of Staphylococcal Cassette Chromosome
Elements (IWG-SCC) [52]. Briefly, the structural type is
indicated by a Roman numeral, with a lowercase letter
indicating the subtype, and the ccr complex and the mec
complex are indicated by an Arabic numeral and an
uppercase letter respectively in parenthesis. Where there
is an extra ccr element, this is indicated by “&” and an
Arabic numeral designating the ccr type. When there is
an extra ccr element present whose precise location is
unknown it is indicated by an “&” and ccr number out-
side the parentheses.

DNA microarray
Arrays and reagents were obtained from Alere Technolo-
gies, Jena Germany. The principle of the assay, related pro-
cedures, and a list of targets has been described previously
[53,54]. An iterated, linear primer elongation was
employed for the simultaneous amplification of all targets.
An alternative protocol was used for a few isolates in
which amplification and labeling was directed by random
primers [55]. This method detects target genes for which
the binding sites of the primers used in the first protocol
were deleted or changed by nucleotide polymorphisms.
Target genes included species markers, markers for acces-
sory gene regulator (agr) alleles and capsule types, viru-
lence factors, resistance genes, staphylococcal
superantigen-like/exotoxin-like genes (set/ssl genes) and
genes encoding adhesion proteins. Probes for mecA, ugpQ,
xylR, and two probes for mecR were used for SCCmec typ-
ing. The last two probes allowed detection and discrimina-
tion of untruncated mecR and ΔmecR, respectively. Probes
for the recombinase genes ccrA1, ccrB1, ccrA2, ccrB2,
ccrA3, ccrB3, ccrA4, ccrB4, and ccrC1; the fusidc acid resis-
tance marker Q6GD50; and the J region proteins, dcs, pls-
SCC and the kdp-operon were also included.

MRSA Strain Definition
MRSA strains are defined according to their unique
PFGE pulsotype

MRSA Clone Definition
MRSA clones are defined by the combination of the
multilocus sequence type (ST) and the SCCmec type
[56]. For instance ST1-SCCmec IVa [2B] is abbreviated
as ST1-IVa [2B].
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Additional material

Additional file 1: Characterisation of CA-MRSA isolated in Western
Australia.

Additional file 2: DNA Microarray Targets, Primers and Probes.
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Additional File  1: Characterisation of CA-MRSA isolated in Western Australia 

PFGE 
Pulsotype 

Year Reference 
Number 

MLST spa 
 type 

agr  
type 

Capsule 
type 

SCCmec 
type 

Antibiogram DNA Microarray 
Resistance  
Genotype 

lukF/S- PVL Enterotoxins 
 

Bacteriophage 
Associated 

Virulence Genes 

Clonal Complex 1 

Group 1 

WA1 1995 WBG8287 1 t127 III 8 IVa [2B] OxR EmR FAR mecA, blaZ, ermC, 
Q6GD50 

 seA, seH, seK+seQ sak, scn  

WA45 2006 06-16252 872 t127 III 8 IVa [2B] OxR EmR FAR 
TmR MpR 

mecA, blaZ, ermC, 
Q6GD50, (dfrA), 
mupR 

 seA, seH, seK+seQ sak, scn 

WA57 2007 07-16124 1005 t127 III 8 IVa [2B] OxR GmR TmR mecA, blaZ, aacA-
aphD, dfrA 

 seA, seH, seK+seQ sak, scn 

Group 2 

WA10 2003 03-16918 573 t5073 II 5 V [5C2] OxR TmR mecA, blaZ, fosB  seC+seL, egc-
cluster, ORF 
CM14 

scn 

Bengal Bay MRSA 

Bengal Bay 2007 07-17048 772 t3387 II 5 V [5C2] OxR EmR GmR 
TmR CpR 

mecA, blaZ, 
msr(A), 
mpbBM,aacA-
aphD, aphA, sat, 
fosB 

lukF/S- PVL seA, seC+seL, egc-
cluster, ORF 
CM14 

scn 

Clonal Complex 5 

Group 1 

WA51 2007 07-15545 6 DNA I 8 IVa [2B] OxR mecA, blaZ, fosB  seA sak, scn 

WA66 2007 07-17366 6 t701 I 8 IVa [2B]&5 OxR mecA, blaZ, fosB  seA, seK+seQ sak, scn 

Group 2 

WA3 1995 WBG8378 5 t002 II 5 IVa [2B] OxR EmR mecA, blaZ, ermC, 
fosB,qacC 

 seP, egc-cluster sak, chp, scn 

WA64 2007 07-16986 5 t3778 II 5 IVa [2B] OxR mecA, blaZ, fosB lukF/S- PVL seA, egc-cluster sak, chp, scn 

WA71 2008 08-17330 5 t002 II 5 IVa [2B] OxR mecA, blaZ, fosB  seP, egc-cluster sak, chp, scn 

WA82 2009 09-15628 5 t002 II 5 IVa [2B] OxR TmR mecA, blaZ, dfrA,  seP, egc-cluster sak, chp, scn 
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agr  
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Genotype 

lukF/S- PVL Enterotoxins 
 

Bacteriophage 
Associated 

Virulence Genes 
fosB, qacA, qacC 

WA25 2004 04-15184 575 t002 II 5 IVa [2B] OxR mecA, blaZ, fosB  seP, egc-cluster sak, chp, scn 

WA50 2006 06-18615 73 t002 II 5 IVa [2B] OxR mecA, blaZ, fosB  seP, egc-cluster sak, chp, scn 

WA65 2008 08-15231 73 t002 II 5 IVa [2B] OxR GmR MpR mecA, blaZ, aacA-
aphD, aadD, 
mupR, fosB, qacC 

 seP, egc-cluster sak, chp, scn 

WA74 2008 08-19202 5 t002 II 5 IVc [2B] OxR mecA, blaZ, fosB, 
qacC 

 seP, egc-cluster sak, chp, scn 

WA39 2005 05-18015 526 t4065 II 5 IV [2B] OxR EmR FAR mecA, Q6GD50, 
fosB 

 egc-cluster sak, chp, scn 

WA14 2003 03-17796 5 t442 II 5 V [5C2] OxR TeRTmR FAR mecA, tetM, 
Q6GD50, fosB 

 seP, egc-cluster sak, scn 

WA35 2005 05-16810 5 t688 II 5 V [5C2] OxR EmR TeR 
FAR CpR 

mecA, blaZ, ermC, 
aadD, tetK, tetM, 
fexA, fosB 

 seD+seJ+seR, 
egc-cluster 

sak, chp, scn 

WA81 2009 09-16404 5 t045 II 5 V [5C2] OxR GmR mecA, blaZ, fosB, 
qacC 

 seP, egc-cluster sak, chp, scn 

WA90 2009 09-20177 5 t1265 II 5 V  [5C2] OxR EmR TmR 
CpR 

mecA, blaZ, ermC, 
fosB 

 seP, seD, seJ, egc-
cluster 

sak, (scn) 

WA11 2003 03-17833 5 t045 II 5 V [5C2&5] OxR GmR mecA, blaZ, aacA-
aphD, fosB, qacA 

 seD+seJ+seR, 
egc-cluster 

sak, scn 

WA86 2009 09-18986 5 t002 II 5 V [5C2&5] OxR GmR TmR mecA, aacA-aphD, 
fosB, qacC 

 seP, egc-cluster sak, chp, scn 

WA34 2005 05-17463 5 t458 II 5 V [5C2&5] OxR mecA, fosB  seD+seJ+seR, 
egc-cluster 

sak, chp, scn 

WA80 2009 09-15037 5 t071 II 5 V [5C2&5] OxR mecA,  fosB  seD, seJ, egc-
cluster 

sak, chp, scn 

WA85 2009 09-17872 5 t2666 II 5 V [5C2&5] OxR TmR mecA, blaZ, fosB  seP, egc-cluster sak, chp, scn 

WA87 2009 09-18264 835 t002 II 5 V [5C2&5] OxR CpR mecA, blaZ, fosB  (seB), seC+seL,  
seD+seJ+seR, 
egc-cluster 

sak, chp, scn 

WA61 2007 07-18115 641 t002 II 5 V [5C2]&2 OxR CpR mecA, blaZ, fosB, 
qacC 

 seD+seJ+seR, 
egc-cluster 

sak, scn 

WA40 2005 05-18551 835 t002 II 5 V [5C2&5]&2 OxR CpR mecA, blaZ, fosB,  seD+seJ+seR, sak, chp, scn 
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Associated 

Virulence Genes 
qacC egc-cluster 

WA46 2006 06-16677 835 t002 II 5 V [5C2&5]&2 OxR CpR mecA, blaZ, fosB, 
qacC 

 seD+seJ+seR, 
egc-cluster 

sak, scn 

WA18 2004 04-16891 5 t002 II 5 novel B OxR mecA, blaZ, fosB  seP, 
seD+seJ+seR,  
seK+seQ, egc-
cluster 

sak, chp, scn 

WA21 2004 04-17091 5 t002 II 5 novel B OxR mecA, blaZ, fosB, 
qacC 

 seA, 
seD+seJ+seR, 
egc-cluster 

sak, scn 

WA48 2006 06-17586 835 t002 II 5 novel B OxR CpR mecA, blaZ, fosB  seD+seJ+seR, 
egc-cluster 

sak, chp, scn 

Clonal Complex 8 

WA5 1989 WBG7583 8 t008 I 5 IVa [2B] OxR TeR mecA, blaZ, tetK, 
fosB 

  sak, chp, scn 

WA6 2003 03-15521 8 t008 I 5 IVa [2B] OxR TeR mecA, blaZ, tetK, 
fosB 

   

WA62 2007 07-18116 923 t1635 I 5 IVa [2B] OxR EmR TeR mecA, blaZ, 
msr(A), mpbBM, 
tetK, fosB 

lukF/S- PVL seD+seJ+seR, 
seK+seQ 

sak, chp, scn 

WA83 2009 09-17714 1634 t711 I 5 IVa [2B] OxR EmR GmR 
TmR RfR 

mecA, blaZ, aacA-
aphD, dfrA, fosB 

  sak, chp, scn 

WA58 2007 07-16233 1173 t064 I 5 IVd [2B] OxR EmR GmR 
TeR TmR RfR 

mecA, blaZ, ermA, 
aacA-aphD, aphA, 
sat, tetM, dfrA, 
fosB 

 seA, seB+seK+seQ sak, scn 

WA20 2004 04-17052 612 t064 I 5 IVd [2B] OxR GmR TeR 
TmR RfR 

mecA, blaZ, aacA-
aphD, tetM, dfrA, 
cat, fosB 

 seA, seB+seK+seQ sak, scn 

WA92 2010 10-15552 1757 t024 I 5 IVa [2B]&5 OxR TmR mecA, blaZ, dfrA, 
fosB 

  scn 

WA31 2005 05-15529 576 t334 I 5 IV [2B] OxR mecA, blaZ, fosB    

WA77 2008 08-20001 8 t008 I 5 V [5C2] OxR TeR FAR mecA, blaZ, tetK, 
Q6GD50, fosB, 
qacC 

 seA, seK+seQ sak, scn 
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Bacteriophage 
Associated 

Virulence Genes 

WA53 2006 06-18088 8 t2238 I 5 V [5C2&5] OxR EmR GmR 
CpR 

mecA, blaZ, ermC, 
aacA-aphD, fosB 

 seA, seB+seK+seQ sak, scn 

 WA16 2003 03-16758 8 t024 I 5 VIII [4A] OxR EmR GmR 
CpR MpR 

mecA, blaZ, ermA, 
aacA-aphD, mupR, 
fosB, qacC 

 seA sak, scn 

USA300 MRSA 

USA300 2004 04-15086 8 t008 I 5 IVc [2B] OxR TeR mecA, blaZ, tetK, 
fosB 

lukF/S- PVL seK+seQ sak, chp, scn 

Clonal Complex 9 

WA13 2003 03-17992 834 t3029 I 8 IVc [2B] OxR EmR mecA, blaZ, 
msr(A), fosB 

 seC+seL sak, chp, scn 

Clonal Complex  12 

WA69 2007 07-19013 12 t160 II 8 IVa [2B] OxR mecA, blaZ, fosB  seP, seB, ORF 
CM14 

sak, scn 

WA59 2007 07-16590 12 t160 II 8 novel A  OxR mecA, fosB  seP, seB, ORF 
CM14 

sak, scn 

Clonal Complex  30 

WA68 2008 08-15775 39 t2643 III 8 IVc [2B] OxR mecA, blaZ, fosB  seA, seC+seL, seO sak, scn 

South Western Pacific MRSA 

SWP 2002 02-16663 30 t019 III 8 IVc [2B] OxR mecA, blaZ, fosB lukF/S- PVL egc-cluster sak, chp, scn 

Clonal Complex 45 

Group 1 

WA75 2003 03-17163 45 t1424 I 8 IVa [2B] OxR mecA, blaZ  (seB), seC+seL, 
egc-cluster 

sak, chp, scn 

WA4 1995 WBG8404 45 t123 I 8 V [5C2] OxR mecA, blaZ  seK+seQ, egc-
cluster 

sak, chp, scn 

Group 2 

WA23 2004 04-16679 45 t1575 IV 8 IVc [2B] OxR mecA, blaZ  seJ+ seR, egc-
cluster 

sak, chp, scn 
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WA84 2007 07-16502 45 t1081 IV 8 V [5C2&5] CpR mecA, blaZ  seJ, egc-cluster sak, chp, scn 

Clonal Complex 59 

WA55 2007 07-15432 59 t437 I 8 IVa [2B] EmR TeR mecA, blaZ, aphA, 
sat, tetK 

lukF/S- PVL seB+seK+seQ sak, chp, scn 

WA56 2007 07-15443 59 t437 I 8 IVa [2B] EmR mecA, blaZ, aphA, 
sat, cat 

lukF/S- PVL seA, seB+seK+seQ sak, chp, scn 

WA73 2005 05-16512 59 t528 I 8 IVb [2B] OxR mecA, blaZ  seB+seK+seQ chp, scn 

WA24 2004 04-17626 87 t216 I 8 IVb [2B] EmR mecA, blaZ, 
msr(A), mpbBM, 
aphA, sat 

 seB+seK+seQ sak, chp, scn 

WA15 2003 03-17565 59 t976 I 8 IVa [2B]&5 OxR mecA, blaZ  seA, seB+seK+seQ sak, chp, scn 

Taiwan CA-MRSA 

Taiwan 2003 03-16672 59 t437 I 8 V [5C2&5] EmR TeR mecA, blaZ, aphA, 
sat, tetK, cat 

lukF/S- PVL seB+seK+seQ chp, scn 

TaiwanA 2007 07-15076 952 t1950 I 8 V [5C2&5] EmR mecA, blaZ, aphA, 
sat, cat 

lukF/S- PVL seB+seK+seQ chp, scn 

Clonal Complex 72 

WA44 2006 06-15803 72 t791 I 5 IVa [2B] OxR TmR mecA, blaZ, dfrA, 
fosB 

lukF/S- PVL seC+seL, egc-
cluster 

sak, chp, scn 

WA91 2010 10-15302 72 t3092 I 5 V [5C2] OxR GmR TmR 
CpR 

mecA, blaZ, aacA-
aphD, fosB 

 seC+seL, egc-
cluster 

sak,scn 

Clonal Complex 75 

WA8 2003 03-17848 75 ND NT NT IVa (2B] OxR mecA, blaZ, fosB, 
qacC 

 seB, egc-cluster sak,scn 

WA79 2008 08-18362 75 ND NT NT IVa [2B] OxR mecA, blaZ, fosB  egc-cluster sak,scn 

WA72 2008 08-16706 1304 ND NT NT IVa [2B] OxR EmR MpR mecA, blaZ, ermC, 
aadD, mupR, fosB 

 seD+seJ+seR, 
egc-cluster 

sak,scn 

Clonal Complex 80 

European CA-MRSA 
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Virulence Genes 

European  2005 05-17006 80 t044 III 8 IVc [2B] OxR TeR FAR mecA, blaZ, aphA, 
sat, tetK, far1 

lukF/S- PVL  sak, scn 

EuropeanA 2004 04-15395 583 t044 III 8 IVc [2B] OxR TeR FAR mecA, blaZ, aphA, 
sat, tetK, far1 

lukF/S- PVL  sak, scn 

EuropeanB 2005 05-15062 728 t044 III 8 IVc [2B] OxR mecA, aphA, sat lukF/S- PVL  sak, scn 

Clonal Complex 88 

WA2 1995 WBG8366 78 t3205 III 8 IVa [2B] OxR, EmR mecA, blaZ, ermA  seC+seL sak, chp, scn 

Clonal Complex 97 

WA54 2007 07-15754 953 t359 I 5 IVa [2B] OxR    sak, scn 

WA63 2007 07-17920 1174 t267 I 5 IVa [2B] OxR    sak, scn 

Clonal Complex 121 

WA22 2004 04-16237 577 t3025 IV 8 V [5C2] OxR EmR mecA, blaZ, ermA, 
fosB 

 egc-cluster, ORF 
CM14 

sak, scn 

WA93 2010 10-15882 121 t159 IV 8 V [5C2&5]  mecA, blaZ, fosB  seB, egc-cluster, 
ORF CM14 

sak, scn 

Clonal Complex 152  

WA89 2009 09-20065 1633 t355 I 5 V [5C2] OxR TeR TmR mecA, blaZ, teK lukF/S- PVL  sak, scn 

Clonal Complex 188 

WA38 2005 05-17762 188 t189 I 8 IVa [2B] OxR EmR GmR 
TmR CpR RfR 

mecA, blaZ, aacA-
aphD 

  sak, chp, scn 

WA78 2008 08-20097 188 t189 I 8 IVa [2B] OxR EmR GmR 
TeR TmR CpR 

mecA, blaZ, aacA-
aphD, tetK, cat 

  sak, chp, scn 

Clonal Complex 361 

WA29 2005 05-15441 672 t1309 I 8 IVa [2B] OxR CpR mecA, blaZ, fosB  seB, egc-cluster sak, scn 

WA70 2008 08-18855 672 t1309 I 8 V [5C2] OxR GmR TmR 
CpR 

mecA, blaZ, aacA-
aphD, aphA, sat, 
fosB 

 egc-cluster  

WA28 2005 05-16157 361 t315 I 8 VIII [4A] OxR TeR mecA, blaZ, aphA, 
sat, tetK, fosB 

 egc-cluster sak, chp, scn 
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Clonal Complex 398 

Animal 2009 09-16670 398 t034 I 5 V [5C2&5] OxR EmR TeR 
TmR 

mecA, blaZ, ermA, 
(tetK),  tetM 

   

Singletons 

WA47 2006 06-16607 883 t7462 NT NT IVd [2B] OxR EmR mecA, ermC, (cat)  seB  

Queensland CA-MRSA 

Qld 2003 03-16790 93 t202 III 8 IVa [2B] OxR mecA, blaZ lukF/S- PVL ORF CM14 sak, chp, scn 

Clonal Complex not Determined 

WA76 2006 06-17540 1303 ND III NT IVa [2B] OxR mecA, blaZ, fosB  seB, egc-cluster scn 

 
PFGE, pulsed field gel electrophoresis; MLST, multilocus sequence type; spa Type: ND, Not Determined; NT, Non typeable; agr, accessory gene regulator 
SCCmec, staphylococcal cassette chromosome mec;  
Antibiogram: Ox, oxacillin; Cp, ciprofloxacin; Em, erythromycin; FA, fusidic acid; Gm, gentamicin; Mp, mupirocin; Rf, rifampicin; Te, tetracycline   
Resistance Genotype: mecA, methicilin; aacA-aphD, aminoglycoside; aadD, tobramycin; aphA, neomycin/kanamycin blaZ, beta lactamase; cat, chloramphenicol; dfrA, trimethoprim; ermA, erythromycin/clindamycin; 
ermC, erythromycin/clindamycin; far1, fusidic acid; fosB, fosfomycin; mpbBM, lysylphosphatidylglycerol synthetase;  msr[a], mercuric; mupR, mupirocin; Q6GD50, fusidic acid; qacA quaternary ammonium 
compound; qacC quaternary ammonium compound;  sat, streptomycin; tetM, tetracycline; tetK, tetracycline;  

 



Gene Synonyma Gene product /function Alleles Probe name Probe definition Primer name Primer definition

aacA-aphD bifunctional enzyme Aac/Aph, gentamicin resistance aacA-aphD_10,4 AB096217.1 [28286:28313] aacA-aphD_PM4 AB096217.1[28367:28386]

aadD aminoglycoside adenyltransferase,tobramycin resistance aadD_1,2 BA000017.4 [41203:41230:r] aadD_PM4 BA000017.4[41144:41164:r]

agrB-I agrB-I_11 CP000046.1 [2083620:2083646] agrB-I_51 CP000046.1[2083674:2083696:r]

agrB-II agrB-II_11 BA000017.4 [2156206:2156234] agrB-II_51 BA000017.4[2156235:2156253:r]

agrB-III agrB-III_11 BX571856.1 [2087653:2087682] agrB-III_51 BX571856.1[2184604:2184626:r]

agrB-IV agrB-IV_11 AF288215.1 [1200:1226] agrB-IV_51 AF288215.1[1255:1275:r]

agrC-I agrC-I_12 CP000046.1 [2084385:2084411] agrC-I_51 CP000046.1[2084470:2084490:r]

agrC-II agrC-II_11 BA000017.4 [2156768:2156793] agrC-II_51 BA000017.4[2156859:2156881:r]

agrC-III agrC-III_11 BX571856.1 [2185117:2185143] agrC-III_51 BX571856.1[2185152:2185173:r]

agrC-IV agrC-IV_11 AF288215.1 [1553:1580] agrC-Ia_51 AF288215.1[2049:2069:r]

agrC-IV_51 AF288215.1[1609:1631:r]

agrC-IV_52 AJ617711.1[867:889:r]

agrD-I agrD-I_11 CP000046.1 [2083761:2083788] agrD-I_51 CP000046.1[2083792:2083813:r]

agrD-I_12 CP000046.1 [2083765:2083788] agrD-II+I_51 CP000046.1[2083820:2083842:r]

agrD-I_13 CP000046.1 [2083761:2083783]

agrD-II agrD-II_11 BA000017.4 [2156525:2156554] agrD-II_51 BA000017.4[2156556:2156577:r]

agrD-III agrD-III_11 BX571856.1 [2184647:2184676] agrD-III_51 BX571856.1[2184683:2184699:r]

aphA3 3'5'-aminoglycoside phosphotransferase, neo-/kanamycin resistance aphA-3_18,3 AY602209.1 [105:130] aphA-3_PM4 AY602209.1[206:223]

arcA ACME-locus arcA-SCC hp_arcA_611 AE015929.1[102505:102530:r] lb_arcA_651_rv AE015929.1[102460:102479]

arcB ACME-locus: ornithincarbamoyltransferase arcB-SCC hp_arcB_611 AE015929.1[99281:99307:r] lb_arcB_651_rv AE015929.1[99256:99274]

arcC ACME-locus: carbamatkinase arcC-SCC hp_arcC_611 AE015929.1[98603:98631:r] lb_arcC_651_rv AE015929.1[98571:98590]

arcD ACME-locus: arginine/ornithine-antiporter arcD-SCC hp_arcD_611 AE015929.1[101412:101440:r] lb_arcD_651_rv AE015929.1[101381:101398]

aur (cons) hp_aur_613 CP000046.1 [2721001:2721030:r] lb_aur_651_rv CP000046.1[2721434:2721453]

aur (Other than MRSA252) hp_aur_611 CP000046.1 [2721468:2721496:r] lb_aur_653_rv CP000046.1[2720967:2720987]

aur (MRSA252) hp_aur_612 BX571856.1 [2812419:2812446:r] lb_aur_652_rv BX571856.1[2812384:2812405]

bap surface protein involved in biofilm formation hp_bap_611 AY220730.1 [7832:7860] lb_bap_651_rv AY220730.1[7869:7891:r]

bbp (cons) hp_bbp_614 CP000046.1 [640403:640431] lb_bbp_654_rv CP000046.1[640459:640476:r]

bbp (ST45) hp_bbp_611 AM076252.1 [3:31] lb_bbp_656_rv CP000046.1[642598:642620:r]

bbp (RF122) hp_bbp_612 AJ938182.1 [578264:578291] lb_bbp_651_rv AM076252.1[37:59:r]

bbp (MRSA252) hp_bbp_613 BX571856.1 [621217:621242] lb_bbp_653_rv BX571856.1[621266:621285:r]

bbp (COL+MW2) hp_bbp_616 CP000046.1 [642547:642573] lb_bbp_655_rv BX571856.1[621919:621939:r]

bbp (Mu50) hp_bbp_617 BA000017.4 [638429:638457] lb_bbp_657_rv BA000017.4[638483:638502:r]

lb_bbp_652_rv AJ938182.1[578305:578327:r]

blaI beta lactamase repressor (inhibitor) hp_blaI_611 BX571856.1 [1911923:1911949:r] lb_blaI_651_rv BX571856.1[1911882:1911903]

hp_blaR_611 BX571856.1 [1912975:1913002:r] lb_blaR_652_rv BX571856.1[1912922:1912942]

hp_blaR_612 BX571856.1 [1912288:1912317:r] lb_blaR_653_rv BX571856.1[1912251:1912274]

blaZ_11 AB074882.1 [417:441] blaZ_PM4 BX571856.1[1914099:1914121]

blaZ_4,2 BX571856.1 [1913997:1914021] lb_blaZ_651_rv BX571856.1[1914034:1914054:r]

hp_blaZ_611 BX571856.1 [1914503:1914531] lb_blaZ_652_rv BX571856.1[1914553:1914570:r]

lb_blaZ_653_rv DQ016047.1[1101:1120:r]

capH1 hp_capH1_611 U10927.2 [19165:19192] lb_capH1_651_rv U10927.2[19210:19230:r]

capH5 hp_capH5_611 CP000046.1 [161120:161144] lb_capH5_651_rv CP000046.1[161160:161180:r]

capH8 hp_capH8_611 BX571856.1 [176513:176541] lb_capH8_651_rv BX571856.1[176544:176565:r]

capI8 hp_capI8_612 BX571856.1 [178269:178298] lb_capI8_651_rv BX571856.1[178195:178214:r]

lb_capI8_652_rv BX571856.1[178312:178332:r]
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beta-lactamase regulatory proteinblaR

agrB accessory gene regulator B

accessory gene regulator CagrC
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capJ1 hp_capJ1_611 U10927.2 [21322:21350] lb_capJ1_651_rv U10927.2[21367:21385:r]

capJ5 hp_capJ5_611 CP000046.1 [163178:163206] lb_capJ5_651_rv CP000046.1[163216:163233:r]

hp_capJ5_612 CP000046.1 [163344:163373:r] lb_capJ5_652_rv CP000046.1[163316:163337]

capJ8 hp_capJ8_611 BX571856.1 [178770:178800] lb_capJ8_651_rv BX571856.1[178809:178826:r]

capK1 hp_capK1_611 U10927.2 [22439:22466] lb_capK1_651_rv U10927.2[22490:22508:r]

capK5 hp_capK5_611 CP000046.1 [164536:164564] lb_capK5_651_rv CP000046.1[164576:164595:r]

capK8 hp_capK8_611 BX571856.1 [178990:179017] lb_capK8_651_rv BX571856.1[179021:179045:r]

hp_capK8_612 BX571856.1 [179930:179956] lb_capK8_652_rv BX571856.1[179958:179980:r]

cat-pC221 hp_cat_613 M64281.1 [358:389] lb_cat_654_rv AB080798.1[2860:2878:r]

cat-pC223 hp_cat_611 AF507977.1 [17615:17642] lb_cat_653_rv AF507977.1[17658:17682:r]

cat-pMC524 hp_cat_612 AB080798.1 [2826:2854] lb_cat_655_rv AJ312056.2[587:605:r]

cat-pSBK203R hp_cat_615 M58515.1 [353:384] lb_cat_652_rv M58515.1[407:431:r]

ccrA-1 hp_ccrA-1_611 CP000046.1 [48646:48672:r] lb_ccrA-1_651_rv CP000046.1[48623:48642]

ccrA-2 hp_ccrA-2_611 BA000017.4 [66314:66342:r] lb_ccrA-1_652_rv CP000046.1[48372:48390]

ccrA-3 hp_ccrA-3_611 AB014436.1 [254:279] lb_ccrA-2_651_rv BA000017.4[66290:66306]

ccrA-4 hp_ccrA-4_612 AF411935.1 [8756:8782] lb_ccrA-2_652_rv BA000017.4[65738:65756]

lb_ccrA-2_653_rv AB063173.1[6486:6506:r]

lb_ccrA-3_651_rv AB014436.1[283:300:r]

lb_ccrA-3_652_rv AB014436.1[826:844:r]

lb_ccrA-4_651_rv AF411935.1[8582:8602:r]

lb_ccrA-4_652_rv AF411935.1[8803:8823:r]

ccrB-1 hp_ccrB-1_612 CP000046.1 [47628:47652:r] lb_ccrB-1_651_rv CP000046.1[47771:47788]

hp_ccrB-1_613 CP000046.1 [47794:47823:r] lb_ccrB-1_652_rv CP000046.1[47594:47614]

ccrB-2 hp_ccrB-2_611 BA000017.4 [63943:63970:r] lb_ccrB-2_651_rv BA000017.4[63916:63937]

ccrB-3 hp_ccrB-3_611 AB014436.1 [2110:2135] lb_ccrB-2_652_rv DQ483074.1[378:401:r]

ccrB-4 hp_ccrB-4_611 AY918294.1 [319:343] lb_ccrB-2_653_rv BA000017.4[63678:63697]

lb_ccrB-3_651_rv AB014436.1[2160:2179:r]

lb_ccrB-3_652_rv AB014436.1[2265:2286:r]

lb_ccrB-4_651_rv AE015929.1[59580:59600]

lb_ccrB-4_652_rv AE015929.1[59457:59474]

ccrC cassette chromosome recombinase hp_ccrC_611 AP008934.1 [57303:57333] lb_ccrC_651_rv AB037671.1[60643:60662]

cfr 23S rRNA methyltransferase hp_cfr_611 AJ249217.1 [1048:1074] lb_cfr_651_rv AJ249217.1[1075:1093:r]

hp_chp_611 BX571856.1 [2126835:2126861] lb_chp_651_rv BX571856.1[2126883:2126903:r]

hp_chp_612 BX571856.1 [2127086:2127114] lb_chp_652_rv BX571856.1[2127127:2127150:r]

clfA (cons) hp_clfA_611 CP000046.1 [881138:881166] lb_clfA_651_rv CP000046.1[881192:881211:r]

clfA (COL+RF122) hp_clfA_612 CP000046.1 [882182:882210] lb_clfA_652_rv CP000046.1[882220:882241:r]

clfA (MRSA252) hp_clfA_613 BX571856.1 [889789:889814]

clfA (Mu50+MW2) hp_clfA_614 BA000017.4 [888713:888737]

clfB (cons) hp_clfB_611 CP000046.1 [2713245:2713275:r] lb_clfB_651_rv CP000046.1[2713215:2713233]

clfB (COL+Mu50) hp_clfB_612 CP000046.1 [2712297:2712328:r] lb_clfB_652_rv CP000046.1[2712249:2712271]

clfB (MW2) hp_clfB_613 AM075901.1 [1069:1098] lb_clfB_654_rv AM075915.1[1125:1146:r]

clfB (RF122) hp_clfB_614 AJ938182.1 [2647736:2647765:r] lb_clfB_653_rv BX571856.1[2803198:2803221]

cna collagen-binding adhesin hp_cna_611 BX571856.1 [2879879:2879905:r] lb_cna_651_rv BX571856.1[2879853:2879871]

coA coagulase coa_consens_11 CP000046.1 [246925:246954] coa_consens_PM4 CP000046.1[246967:246988]

dcs-Q9XB68 hypothetical protein from SCCmec elements hp_Q9XB68_611 CP000046.1 [34948:34976] lb_Q9XB68_651_rv CP000046.1[35004:35027:r]

dfrA_12 AE017171.1 [2588:2614:r] dfrA_PM4 AE017171.1[2494:2513:r]

2,1-dfrA AB049452.1 [2076:2103]

ebh cell wall associated fibronectin-binding protein hp_ebh-3prime_611 CP000046.1 [1483834:1483860:r] lb_ebh-3prime_651_rv CP000046.1[1483793:1483813]

dihydrofolate reductase type 1

clumping factor B

O-antigen polymerase CapJ of capsule types 1, 5, and 8

capsular polysaccharide biosynthesis protein CapK of capsule types 1, 5, and 8

chloramphenicol acetyltransferase

cassette chromosome recombinase A

cassette chromosome recombinase B

chemotaxis-inhibiting protein (CHIPS)

clumping factor A

dfrA

clfB

capJ

capK

cat

ccrA

ccrB

chp

clfA
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ebpS (COL) hp_ebpS_613 CP000046.1 [1561278:1561303:r] lb_ebpS_651_rv CP000046.1[1561493:1561511]

hp_ebpS_612 CP000046.1 [1561514:1561541:r] lb_ebpS_652_rv CP000046.1[1561245:1561268]

hp_ebpS_614 CP000046.1 [1560815:1560839:r] lb_ebpS_653_rv CP000046.1[1560784:1560801]

ebpS-01-1111 (from CC45) hp_ebpS_611 AM075954.1 [148:172]

edinA epidermal cell differentiation inhibitor precursor edinA_11 M63917.1 [460:489] edinA_51 M63917.1[502:520:r]

edinB epidermal cell differentiation inhibitor B edinB_11 AB057421.1 [7445:7471] edinB_51 AB057421.1[7482:7501:r]

edinC epidermal cell differentiation inhibitor C edinC_11 AP003088.1 [1810:1839:r] edinC_51 AP003088.1[1755:1776]

eno enolase hp_eno_611 CP000046.1 [870472:870501] lb_eno_651_rv CP000046.1[870526:870544:r]

erm(A) ermA rRNA adenine N-6-methyltransferase, erythromycin/clindamycin resistance ermA_9,4 BA000017.4 [1762850:1762875] ermA_PM4 BA000017.4[1762907:1762928]

ermC_8,1 M17990.1 [1775:1799] ermC_PM4 AF466402.1[130:150]

ermC_8,2 M17990.1 [1840:1864]

etA exfoliative toxin serotype A etA_8,2 AP001553.1 [42317:42344] etA_PM4 AP001553.1[42387:42406]

etB exfoliative toxin serotype B etB_9,3 AP003088.1 [5389:5416] etB_PM4 AP003088.1[5438:5460]

etD exfoliative toxin D etD_11 AB057421.1 [5648:5677] etD_51 AB057421.1[5694:5715:r]

far1 fusB fusidic acid resistence far1_10 AY047358.1 [1787:1814] far1_11_PM4 AY047358.1[1818:1838:r]

fexA chloramphenicol/florfenicol exporter hp_fexA_611 AJ549214.1 [332:357] lb_fexA_651_rv AJ549214.1[364:382:r]

fib hp_fib_611 CP000046.1 [1177103:1177127] lb_fib_651_rv CP000046.1[1177131:1177148:r]

fib (MRSA252) hp_fib_612 BX571856.1 [1178081:1178105]

fnbA (cons) hp_fnbA_615 CP000046.1 [2570812:2570840:r] lb_fnbA_652_rv CP000046.1[2571555:2571576]

fnbA (COL) hp_fnbA_612 CP000046.1 [2571598:2571624:r] lb_fnbA_655_rv CP000046.1[2570764:2570784]

fnbA (MRSA252) hp_fnbA_613 BX571856.1 [2662314:2662342:r] lb_fnbA_653_rv BX571856.1[2662290:2662308]

fnbA (Mu50+MW2) hp_fnbA_611 BA000017.4 [2644424:2644451:r] lb_fnbA_651_rv BA000017.4[2644388:2644409]

fnbA (RF122) hp_fnbA_614 AJ938182.1 [2510055:2510084:r] lb_fnbA_654_rv AJ938182.1[2510030:2510048]

lb_fnbA_656_rv AM076033.1[1356:1379:r]

fnbB (COL) hp_fnbB_614 CP000046.1 [2567853:2567879:r] lb_fnbB_657_rv CP000046.1[2567809:2567829]

fnbB (COL+Mu50+MW2) hp_fnbB_616 CP000046.1 [2567182:2567212:r] lb_fnbB_658_rv CP000046.1[2567156:2567173]

fnbB (Mu50) hp_fnbB_611 BA000017.4 [2640460:2640489:r] lb_fnbB_653_rv BA000017.4[2640421:2640441]

fnbB (MW2) hp_fnbB_613 BA000033.2 [2578791:2578820:r] lb_fnbB_654_rv BA000017.4[2640538:2640560]

fnbB (ST15) hp_fnbB_612 AM076087.1 [758:783] lb_fnbB_656_rv AM076068.1[893:912:r]

fnbB (ST45-2) hp_fnbB_615 AM076078.1 [866:893] lb_fnbB_651_rv AM076087.1[905:925:r]

lb_fnbB_652_rv AM076079.1[914:933:r]

lb_fnbB_655_rv AM076078.1[900:920:r]

fosB metallothiol transferase fosB hp_fosB_611 CP000046.1 [2389191:2389221] lb_fosB_651_rv CP000046.1[2389252:2389271:r]

fosB-plasmid hp_fosB_612 AP006717.1 [448:478] lb_fosB_652_rv AP006717.1[508:527:r]

gapA glyceraldehyde 3-phosphate dehydrogenase, locus 1 gapA_11 CP000046.1 [865778:865806] gapA_51 CP000046.1[865816:865836:r]

hl putative membrane protein hl_11 CP000046.1 [927983:928011] hl_51 CP000046.1[928034:928052:r]

hla haemolysin alpha hla_11 CP000046.1 [1180134:1180163:r] hla_51 CP000046.1[1180098:1180120]

hp_hlb_611 CP000046.1 [2063898:2063922] hlb_51 CP000046.1[2063925:2063944:r]

hp_hlb_612 BA000017.4 [2126171:2126196]

hp_hlb_613 S72497.1 [366:390]

hlb, un-disrupted hlb_11 CP000046.1 [2063880:2063906]

hlb_12 S72497.1 [347:374]

hld haemolysin delta hld_11 CP000046.1 [2082840:2082864:r] hld_51 CP000046.1[2082797:2082819]

hlgA haemolysin gamma, component A hlgA_11 CP000046.1 [2479145:2479171] hlgA_51 CP000046.1[2479172:2479193:r]

cell surface elastin binding protein

erythromycin/clindamycin resistance

fibrinogen binding protein (19 kDa)

fibronectin-binding protein A 

fibronectin-binding protein B

haemolysin beta

ermC

ebpS

erm(C)

fib

fnbA

fnbB

hlb
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hlIII-consensus hp_hlIII_611 CP000046.1 [2239419:2239444:r] lb_hlIII_651_rv CP000046.1[2239376:2239397]

hlIII- other than RF122 hl-III_11 CP000046.1 [2239828:2239856:r] hl-III_51 CP000046.1[2239783:2239805]

hsdS1 type I site-specific deoxyribonuclease subunit, 1st locus hsdS1 (RF122) hp_hsdS-RF122-1_611 AJ938182.1 [317663:317689] lb_hsdS-RF122-1_651_rv AJ938182.1[317702:317723:r]

hsdS2 (ST5+ST8) hp_hsdS-COL-1_611 CP000046.1 [478949:478977] lb_hsdS-COL-1_651_rv CP000046.1[478988:479006:r]

hsdS2 (MW2+476) hp_hsdS-MW2-1_611 BX571857.1 [441641:441667] lb_hsdS-MW2-1_651_rv BA000033.2[443035:443058:r]

hsdS2 (RF122) hp_hsdS-RF122-2_611 AJ938182.1 [422326:422351] lb_hsdS-RF122-2_651_rv AJ938182.1[422376:422398:r]

hsdS2 (MRSA252) hp_hsdS-MRSA252-1_611 BX571856.1 [463045:463073] lb_hsdS-MRSA252-1_651_rv BX571856.1[463099:463120:r]

hsdS3 (Other Than RF122+MRSA252) hp_hsdS-CC25_611 CP000046.1 [1913615:1913643:r] lb_hsdS-COL-2_651_rv CP000046.1[1913581:1913598]

hsdS3 (ST8+ST1+RF122) hp_hsdS-COL-2_611 DQ309452.1 [57:85]

hsdS3 (Mu50+N315) hp_hsdS-Mu50-2_611 BA000017.4 [1935888:1935914:r] lb_hsdS-Mu50-2_651_rv BA000017.4[1935844:1935865]

hsdS3 (CC51+252) hp_hsdS-CC51_611 BX571856.1 [1983689:1983715:r] lb_hsdS-CC51_651_rv BX571856.1[1983667:1983686]

hsdS3 (MRSA252) hp_hsdS-MRSA252-2_611 BX571856.1 [1983034:1983063:r]lb_hsdS-MRSA252-2_651_rv BX571856.1[1983003:1983023]

hsdSx (CC25) hp_hsdS-CC25_612 CP000046.1 [1914582:1914609:r] lb_hsdS-CC25_651_rv CP000046.1[1914550:1914567]

hsdSx (CC15) hp_hsdS-CC15_611 DQ309450.1 [976:1000] lb_hsdS-CC15_651_rv DQ309450.1[1009:1031:r]

hsdSx (etd) hp_hsdS-etd_611 AB057421.1 [2572:2598:r] lb_hsdS-etd_651_rv AB057421.1[2543:2565]

hysA1 (MRSA252) hp_hysA_613 BX571856.1 [1975471:1975495] lb_hysA_652_rv BX571856.1[1975386:1975408:r]

hysA1 (MRSA252+RF122) and/or hysA2 (cons) hp_hysA_614 CP000046.1 [2275950:2275980] lb_hysA_651_rv CP000046.1[2275984:2276004:r]

hysA1 (MRSA252+RF122) / hysA2 (COL+USA300) hp_hysA_615 BX571856.1 [1975353:1975381]

hysA2 (All Other Than MRSA252) hp_hysA_611 CP000046.1 [2274647:2274673] lb_hysA_653_rv CP000046.1[2274574:2274597:r]

hysA2 (COL+USA300+NCTC8325) hp_hysA_617 CP000046.1 [2274542:2274572] lb_hysA_654_rv CP000046.1[2274687:2274705:r]

hysA2 (All Other Than COL+USA300+NCTC8325) hp_hysA_616 BX571856.1 [2376035:2376064]

hysA2 (All OtherThan COL+USA300+NCTC8325) hp_hysA_618 BA000017.4 [2343407:2343437]

hysA2 (MRSA252) hp_hysA_612 BX571856.1 [2376142:2376170]

icaA intercellular adhesion protein A hp_icaA_611 CP000046.1 [2764366:2764391] lb_icaA_651_rv CP000046.1[2764412:2764432:r]

icaC intercellular adhesion protein C hp_icaC_611 CP000046.1 [2766355:2766384] lb_icaC_651_rv CP000046.1[2766392:2766410:r]

icaD biofilm PIA synthesis protein D hp_icaD_611 CP000046.1 [2764671:2764700] lb_icaD_651_rv CP000046.1[2764728:2764750:r]

isaB hp_isaB_611 CP000046.1 [2722864:2722888:r] lb_isaB_651_rv CP000046.1[2722835:2722853]

isaB-MRSA252 hp_isaB_612 BX571856.1 [2813801:2813828:r] lb_isaB_652_rv BX571856.1[2813775:2813793]

isdA (cons) hp_isdA_611 CP000046.1 [1148523:1148547:r] lb_isdA_651_rv CP000046.1[1148500:1148518]

isdA (MRSA252) hp_isdA_612 BX571856.1 [1149423:1149447:r] lb_isdA_653_rv BX571856.1[1149379:1149401]

isdA (Other Than MRSA252) hp_isdA_614 CP000046.1 [1148394:1148422:r] lb_isdA_652_rv CP000046.1[1148360:1148382]

lb_isdA_654_rv AY175448.1[298:320:r]

katA katalase A katA_11 CP000046.1 [1374794:1374818] katA_PM4 CP000046.1[1374825:1374845]

hp_kdpA-SCC_611 BA000017.4 [77596:77622] lb_kdpA-SCC_651_rv BA000017.4[77655:77675:r]

lb_kdpA-SCC_652_rv BA000017.4[77890:77910:r]

kdpB potassium-transporting ATPase B, chain 1 hp_kdpB-SCC_611 BA000017.4 [79736:79763] lb_kdpB-SCC_651_rv BA000017.4[79776:79795:r]

hp_kdpC-SCC_612 BA000017.4 [81035:81061:r] lb_kdpC-SCC_651_rv BA000017.4[80962:80980:r]

lb_kdpC-SCC_652_rv BA000017.4[81011:81031]

kdpD sensor kinase protein hp_kdpD-SCC_611 BA000017.4 [76370:76397:r] lb_kdpD-SCC_651_rv BA000017.4[76331:76349]

kdpE KDP operon transcriptional regulatory protein hp_kdpE-SCC_611 BA000017.4 [73744:73769:r] lb_kdpE-SCC_651_rv BA000017.4[73717:73735]

linA_19,2 J03947.1 [866:890] linA_51 J03947.1[1049:1069:r]

linA_19,3 J03947.1 [938:962] linA_PM4 J03947.1[1036:1053]

lmrP (OtherThanRF122) hp_lmrP_611 CP000046.1 [181497:181522] lb_lmrP_651_rv CP000046.1[181530:181547:r]

lmrP (OtherThanRF122) hp_lmrP_613 CP000046.1 [182184:182210] lb_lmrP_653_rv CP000046.1[182214:182234:r]

lmrP (RF122) hp_lmrP_612 AJ938182.1 [140620:140646] lb_lmrP_652_rv AJ938182.1[140655:140672:r]

lmrP (RF122) hp_lmrP_614 AJ938182.1 [141308:141333] lb_lmrP_654_rv AJ938182.1[141338:141358:r]

lukD leukocidin D component lukD_11 CP000046.1 [1934731:1934760:r] lukD_51 CP000046.1[1934686:1934706]

lukE leukocidin E component lukE_11 CP000046.1 [1935944:1935968:r] lukE_51 CP000046.1[1935901:1935920]

hyaluronate lyase, second locus

immunodominant antigen B

transferrin-binding protein

potassium-translocating ATPase A, chain 2

potassium-translocating ATPase C, chain 2

Lincosaminid-Nucleotidyltransferase

hypothetical protein, similar to integral membrane protein LmrP

type I site-specific deoxyribonuclease subunit, unknown locus

hyaluronate lyase, first / second locus

putative membrane protein

type I site-specific deoxyribonuclease subunit, 2nd locus

type I site-specific deoxyribonuclease subunit, 3rd locus

hysA2

isaB

isdA

kdpA

kdpC

linA

lmrP

hsdSx

hysA1/2

hlIII

hsdS2

hsdS3
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lukF-hlg haemolysin gamma / leukocidin, component B lukF_10 CP000046.1 [2481634:2481659] lukF_11b_PM4 CP000046.1[2481663:2481680:r]

lukS lukS_10 CP000046.1 [2480644:2480668] lukS_11_PM4 CP000046.1[2480672:2480692:r]

lukS-ST45 hp_lukS-ST45_611 EF672356.1[663:686] EF672356.1[690:710:r]
EF672356.1[690:711:r]

lukF-PV Panton Valentine leukocidin F component lukF_PV_10 AB006796.1 [2256:2284] lukF-PV_11_PM4 AB006796.1[2295:2316:r]

lukS-PV Panton Valentine leukocidin S component lukS_PV_20 AB006796.1 [1628:1656] lukS-PV_21_PM4 AB006796.1[1679:1699:r]

lukF-PV83 F component from hypothetical leukocidin from ruminants lukF-PV-P83_11 AB044554.1 [42010:42037] lukF-PV-P83_51 AB044554.1[42053:42070:r]

lukM S component from hypothetical leukocidin from ruminants lukM_11 AB044554.1 [40866:40893] lukM_51 AB044554.1[40914:40932:r]

“lukX” SAV2004 leukocidin/haemolysin toxin family protein lukX_11 CP000046.1 [2065056:2065080:r] lukX_51 CP000046.1[2065011:2065033]

lukY lukY-var1_11 CP000046.1 [2066795:2066824:r] lukY-var2_51 CP000046.1[2066757:2066777]

lukY-MRSA252 lukY-var2_11 BX571856.1 [2171414:2171443:r]

map Major histocompatibility complex class II analog protein map (COL) hp_map_611 CP000046.1 [2063009:2063037:r] lb_map_652_rv CP000046.1[2062965:2062984]

 (=Extracellular adherence protein, eap) map (MRSA252) hp_map_613 BX571856.1 [2123661:2123688:r] lb_map_651_rv BX571856.1[2123618:2123636]

map (Mu50+MW2) hp_map_612 BA000017.4 [2082228:2082252:r] lb_map_653_rv BA000017.4[2082185:2082206]

mecA penicillin binding protein 2, betalactam resistance defining MRSA mecA_1,4 CP000046.1 [39915:39942:r] mecA_PM4 CP000046.1[39857:39876:r]

mecA_11 CP000046.1 [40041:40068:r] mecA_51 CP000046.1[40007:40025]

mecI meticillin-resistance regulatory protein hp_mecI_611 BA000017.4 [49133:49162] lb_mecI_651_rv BA000017.4[49169:49190:r]

mecR1-truncated only hp_mecR_611 CP000046.1 [41853:41882] lb_mecR_651_rv CP000046.1[41885:41906:r]

mecR1-untruncated hp_mecR_612 BA000017.4 [48685:48711] lb_mecR_652_rv BA000017.4[48726:48745:r]

hp_mefA_611 AB011259.1 [536:563] lb_mefA_651_rv AB011259.1[570:588:r]

hp_mefA_612 AB011259.1 [1045:1072] lb_mefA_652_rv AB011259.1[1078:1099:r]

merA mercury-reductase hp_merA_611 AB179623.1 [2351:2379:r] lb_merA_651_rv AB037671.1[39315:39334]

merB mercuric resistance operon regulatory protein hp_merB_611 AB179623.1 [1018:1043:r] lb_merB_651_rv AB037671.1[38000:38018]

hp_mpbBM_611 AB013298.1 [2664:2693] lb_mpbBM_651_rv AB013298.1[2700:2720:r]

hp_mpbBM_612 AB013298.1 [2896:2924] lb_mpbBM_652_rv AB013298.1[2929:2947:r]

mprF (COL+MW2) hp_mprF_611 CP000046.1 [1407488:1407518] lb_mprF_651_rv CP000046.1[1407519:1407542:r]

mprF (Mu50+252) hp_mprF_612 BA000017.4 [1442171:1442201]

msr(A) msrA energy-dependent efflux of erythromycin msrA_15,3 AB013298.1 [1525:1552] msrA_PM4 AB013298.1[1614:1635]

mupR mupA mupirocin resistence protein mupR_13,2 X75439.1 [1504:1531] mupR_PM4 X75439.1[1623:1642]

nuc1 thermostable extracellular nuclease hp_nuc1_611 CP000046.1 [888207:888233] lb_nuc1_651_rv CP000046.1[888249:888266:r]

hp_entCM14_611 AJ938182.1 [37154:37182] entCM14_51 U10927.2[32900:32918:r]

hp_entCM14_612 AJ938182.1 [37532:37557] lb_entCM14_651_rv AJ938182.1[37591:37610:r]

pls-SCC plasmin-sensitive surface protein hp_plsSCC_611 CP000046.1 [57330:57354] lb_plsSCC_651_rv CP000046.1[57378:57398:r]

Q2FXC0 hypothetical protein, located next to serine protease operon hp_Q2FXC0_611 CP000046.1 [1922667:1922692] lb_Q2FXC0_651_rv CP000046.1[1922702:1922721:r]

Q2YUB3 Unspecific efflux/transporter hp_Q2YUB3_611 AJ938182.1 [2026944:2026969:r] lb_Q2YUB3_651_rv AJ938182.1[2026920:2026937]

Q6GD50 hypothetical protein associated with fusidic acid resistance hp_Q6GD50_611 AF411935.1 [423:452:r] lb_Q6GD50_651_rv AF411935.1[372:390]

Q7A4X2 hypothetical protein hp_Q7A4X2_611 BA000017.4 [1952955:1952984] lb_Q7A4X2_651_rv BA000017.4[1953003:1953025:r]

hp_qacA_611 AF053771.1 [976:1004] qacA_PM4 AF053771.1[2361:2383]

lb_qacA_651_rv AB255366.1[19153:19173:r]

lb_qacA_652_rv AB255366.1[20475:20498:r]

qacC (cons) hp_qacC_611 AB125342.1 [2382:2411] lb_qacC_651_rv AB125342.1[2431:2450:r]

qacC (equine) hp_qacC_614 AJ512814.1 [1518:1545] lb_qacC_653_rv AJ512814.1[1567:1590:r]

qacC (SA5) hp_qacC_613 U81980.1 [2017:2043] lb_qacC_654_rv U81980.1[2065:2086:r]

qacC (Ssap) hp_qacC_612 Y16945.1 [1951:1981] lb_qacC_652_rv AE016833.1[8848:8869:r]

qacC (ST94) hp_qacC_615 Y16944.1 [1622:1649] lb_qacC_655_rv Y16944.1[1692:1714:r]

s_aur_rrn_1PM4 CP000046.1 [1979941:1979966:r] saur_rrn_1_6_PM4 CP000046.1[1979903:1979921:r]

saur_rrn_1_7_PM4 CP000046.1[1979866:1979882:r]

hp_saeS_611 CP000046.1 [788443:788471:r] lb_saeS_651_rv CP000046.1[788396:788417]

lb_saeS_652_rv CP000046.1[787918:787939]

hp_sak_611 BA000017.4 [2086572:2086601:r] lb_sak_651_rv BA000017.4[2086553:2086571]

sak_11 BA000017.4 [2086418:2086443:r] sak_51 BA000017.4[2086376:2086395]

defensin resistance protein

enterotoxin-like protein ORF CM14

quaternary ammonium compound resistance protein A

quaternary ammonium compound resistance protein C

Ribosomal sequence from S. aureus (genusspecific positive control)

histidine protein kinase, sae locus

staphylokinase

macrolide efflux protein A

probable lysylphosphatidylglycerol synthetase

haemolysin gamma / leukocidin, component C

leukocidin/haemolysin toxin family protein

signal transducer protein MecR1

mpbBM, mphBM

SAV2005

mecR

mprF

ORF CM14 

qacA

qacC

rrn STAU

saeS

sak

mph(BM)

lukS-hlg

“lukY”

mefA

mecR1
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sarA staphylococcal accessory regulator A hp_sarA_611 CP000046.1 [700076:700102:r] lb_sarA_651_rv CP000046.1[700049:700066]

sasG (COL+Mu50) hp_sasG_613 CP000046.1 [2562368:2562396:r] lb_sasG_651_rv CP000046.1[2562772:2562794]

sasG (MW2) hp_sasG_612 BX571857.1 [2552889:2552918:r] lb_sasG_652_rv CP000046.1[2562337:2562358]

sasG (OtherThan MRSA252+RF122) hp_sasG_611 CP000046.1 [2562815:2562842:r] lb_sasG_653_rv BA000033.2[2573526:2573543]

sat_17,2 U51474.1 [393:421] sat_PM4 U51474.1[488:505]

sat_17,3 U51474.1 [429:456]

sbi-var1_11 CP000046.1 [2476904:2476929] sbi-var1_51 CP000046.1[2476963:2476982:r]

sbi-var1_12 CP000046.1 [2477142:2477171] sbi-var1_52 CP000046.1[2477188:2477210:r]

scn Staphylococcal complement inhibitor (SCIN) hp_scn_611 BA000017.4 [2084397:2084425:r] lb_scn_651_rv BA000017.4[2084367:2084387]

sdrC (cons) hp_sdrC_613 CP000046.1 [633257:633283] lb_sdrC_651_rv CP000046.1[632900:632919:r]

sdrC (B1) hp_sdrC_612 AM076155.1 [1009:1036] lb_sdrC_652_rv AM076155.1[1039:1061:r]

sdrC (COL) hp_sdrC_615 CP000046.1 [633866:633892] lb_sdrC_653_rv CP000046.1[633304:633322:r]

sdrC (Mu50) hp_sdrC_614 BA000017.4 [630748:630774] lb_sdrC_655_rv CP000046.1[633915:633933:r]

sdrC (MW2+MRSA252+RF122) hp_sdrC_616 BX571856.1 [617689:617717] lb_sdrC_654_rv BX571856.1[617128:617145:r]

sdrC (Other Than MRSA252+RF122) hp_sdrC_611 CP000046.1 [632858:632886]

sdrD (cons) hp_sdrD_614 CP000046.1 [637654:637681] lb_sdrD_652_rv CP000046.1[637025:637046:r]

sdrD (COL+MW2) hp_sdrD_612 CP000046.1 [636995:637020] lb_sdrD_654_rv CP000046.1[637691:637712:r]

sdrD (Mu50) hp_sdrD_613 BA000017.4 [633896:633924] lb_sdrD_655_rv AM076208.1[854:875:r]

sdrD (other) hp_sdrD_611 AM076221.1 [157:186] lb_sdrD_653_rv BA000017.4[633928:633948:r]

lb_sdrD_651_rv AM076221.1[195:212:r]

sea entA_3,2 BA000017.4 [2088572:2088598:r] entA-var1_51 BA000017.4[2088473:2088492]

entA_3,3 BA000017.4 [2088482:2088456]

entA-var1_11 BA000017.4 [2088512:2088536:r]

sea-320E (entA-320E) entA-var2_11 AY196686.1 [508:532]

sea-N315 (entP, sep) entA-var3_11 BA000018.3 [2011518:2011545:r] entA-var3_51 BA000018.3[2011492:2011510]

entB_11 CP000046.1 [916903:916927] entB_51 CP000046.1[916957:916976:r]

entB_4,1 CP000046.1 [916583:916609] entB-41_PM4 CP000046.1[916642:916663]

entC_5,2 BA000017.4 [2134733:2134761:r] entC_PM4 BA000017.4[2134593:2134610:r]

entC_5,3 BA000017.4 [2134652:2134680:r]

sed entD enterotoxin D entD_11 M94872.1 [675:702] entD_51 M94872.1[705:723:r]

see entE enterotoxin E entE_11 AY518387.1 [305:328] entE_51 AY518387.1[348:365:r]

seg entG enterotoxin G entG_11 BA000017.4 [1954500:1954526:r] entG_51 BA000017.4[1954468:1954486]

seh entH enterotoxin H entH_11 AB060536.1 [139:164] entH_51 AB060536.1[178:196:r]

sei entI enterotoxin I entI_11 BA000017.4 [1957319:1957343:r] entI_51 BA000017.4[1957273:1957293]

sej entJ enterotoxin J entJ_11 AB075606.1 [1849:1876:r] entJ_51 AB075606.1[1804:1823]

hp_entK_611 CP000046.1 [905353:905384:r] entK_PM4 CP000046.1[904957:904979:r]

hp_entK_612 CP000046.1 [905035:905065:r] lb_entK_651_rv CP000046.1[905311:905334]

lb_entK_652_rv CP000046.1[904995:905017]

lb_entK_653_rv BA000033.2[2087412:2087433:r]

sel entL enterotoxin L entL_11 BA000017.4 [2134144:2134171] entL_51 BA000017.4[2134182:2134202:r]

entM_11 BA000017.4 [1958262:1958291:r] entM_51 BA000017.4[1958242:1958260]

entM_52 BX571856.1[1999451:1999468]

sen- other than RF122 entN_11 BA000017.4 [1955521:1955545:r] entN_51 BA000017.4[1955492:1955513]

sen-consensus hp_entN_611 BA000017.4 [1955741:1955768:r] lb_entN_651_rv BA000017.4[1955709:1955731]

seo entO enterotoxin O entO_11 BA000017.4 [1958936:1958962:r] entO_51 BA000017.4[1958904:1958925]

hp_entQ_611 CP000046.1 [906043:906072:r] entQ_PM4 CP000046.1[905715:905734:r]

hp_entQ_612 CP000046.1 [905818:905848:r] lb_entQ_651_rv CP000046.1[905997:906018]

lb_entQ_652_rv CP000046.1[905862:905881]

ser entR enterotoxin R entR_11 AB075606.1 [750:775] entR_51 AB075606.1[783:802:r]

enterotoxin Q

enterotoxin A

enterotoxin B

enterotoxin C

enterotoxin K

enterotoxin M

enterotoxin N

Ser-Asp rich fibrinogen-/bone sialoprotein-binding protein C

Ser-Asp rich fibrinogen-/bone sialoprotein-binding protein D

Staphylococcus aureus surface protein G

streptothricine-acetyltransferase

IgG-binding protein

entA, entP, sep

entB

entC

entK

entM

entN

entQ

sea

seb

sec

sek

sem

sen

seq

sdrC

sdrD

sasG

sbi

sat
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setB1 setB-SA1178_11 CP000046.1 [1182940:1182967:r] setB-SA1178_51 CP000046.1[1182916:1182934]

setB1-MRSA252 setB-SAR1139_11 BX571856.1 [1185070:1185094:r] setB-SAR1139_51 BX571856.1[1185043:1185061]

setB2 setB-SA1179_11 CP000046.1 [1183750:1183777:r] setB-SA1179_51 CP000046.1[1183717:1183736]

setB2-MRSA252 setB-SAR1140_11 BX571856.1 [1185785:1185812:r] setB-SAR1140_51 BX571856.1[1185730:1185749]

“setB3” MW0345 staphylococcal exotoxin-like protein, second locus setB3 setB-SA1180_11 CP000046.1 [1184568:1184596:r] setB-SA1180 CP000046.1[1184540:1184558]

“setC” staphylococcal exotoxin-like protein setC-MW0345_11 CP000046.1 [446394:446420] setC-MW0345_51 CP000046.1[446441:446462:r]

seu / sey Enterotoxin U and/or Y hp_entU_611 BA000017.4 [1956679:1956708:r] lb_entU_651_rv BA000017.4[1956633:1956653]

proteinA_12 CP000046.1 [107407:107435:r] proteinA_51 CP000046.1[107900:107917]

proteinA_52 CP000046.1[107378:107395]

splA Serinprotease A splA_11 CP000046.1 [1921021:1921046:r] splA_51 CP000046.1[1920987:1921005]

splB Serinprotease B splB_11 CP000046.1 [1920101:1920126:r] splB_51 CP000046.1[1920073:1920090]

splE Serinprotease E hp_splE_611 CP000046.1 [1917590:1917613:r] lb_splE_651_rv CP000046.1[1917552:1917572]

set6-COL (SACOL468): probe 1_11+probe 4_11 set6-var1_11 CP000046.1 [470653:470680] set6-var1_51 CP000046.1[470687:470707:r]

set6-Mu50  (SAV0422): probe 1_11+probe 1_12/ 4_11 set6-var1_12 BA000017.4 [467359:467382] set6-var1_52 CP000046.1[470893:470911:r]

set6-MW2 (MW0382): probe 2_11+probe 2_12 set6-var2_11 BX571856.1 [452856:452881] set6-var2_51 BX571856.1[452890:452909:r]

SAR0422 (MRSA 252): probe 2_11+probe 1_12 set6-var2_12 BA000033.2 [429731:429757]

set6-var4_11 CP000046.1 [470856:470879]

ssl01-RF122 hp_ssl01_611 AJ938182.1 [412017:412045] lb_ssl01_651_rv AJ938182.1[412058:412076:r]

ssl02 set7-var1_11 CP000046.1 [471582:471608] set7-var1_51 CP000046.1[471646:471665:r]

ssl02-MRSA252 set7-var2_11 BX571856.1 [453788:453814]

ssl03 set8_11 CP000046.1 [472456:472481] set8_51 CP000046.1[472502:472520:r]

hp_ssl03_611 AJ938182.1 [413800:413827]

ssl03-MRSA252 set-SAR0424_11 BX571856.1 [454824:454850]

ssl04 set9-var1_11 CP000046.1 [474254:474283] set9-var1_51 CP000046.1[474328:474349:r]

set9-var1_12 CP000046.1 [474511:474537] set9-var1_52 CP000046.1[474556:474575:r]

ssl04-MRSA252 set-SAR0425_11 BX571856.1 [456040:456064] set-SAR0425_51 BX571856.1[454869:454886:r]

set-SAR0425_12 BX571856.1 [455386:455412] set-SAR0425_52 BX571856.1[456703:456721:r]

ssl05 set3-var1_11 BA000017.4 [470660:470688] set3-var1_51 BA000017.4[470703:470720:r]

hp_ssl05_612 BA000017.4 [470300:470327] lb_ssl05_652_rv BA000017.4[470338:470359:r]

ssl05-MRSA252 set3-var2_11 BX571856.1 [457227:457253] set3-var2_51 BX571856.1[457263:457284:r]

ssl05-RF122 hp_ssl05_611 AJ938182.1 [415143:415170] lb_ssl05_651_rv CP000253.1[393062:393084:r]

set21_11 BA000033.2 [435210:435237] set21_51 BA000033.2[435244:435264:r]

hp_ssl06_611 BX571857.1 [433755:433784] lb_ssl06_651_rv BA000033.2[435132:435153:r]

lb_ssl06_652_rv CP000253.1[394288:394308:r]

ssl07 set1-var4_11 BA000017.4 [471560:471589] set1-var1_51 BA000017.4[471600:471617:r]

ssl07-MRSA252 set1-var1_11 BX571856.1 [458486:458515]

ssl07-FRI326 set1-var2_11 AF188836.1 [165:194]

ssl08 set12_11 BA000017.4 [472594:472621] set12_51 BA000017.4[472624:472644:r]

hp_ssl08_611 AJ938182.1 [417435:417464] lb_ssl08_651_rv AJ938182.1[417465:417488:r]

ssl09 set5-var1_11 CP000046.1 [475126:475152] set5-var1_51 CP000046.1[475171:475191:r]

hp_ssl09_611 CP000046.1 [475125:475151]

ssl09-MRSA252 set5-var2_11 BX571856.1 [459446:459472] set5-var2_51 BX571856.1[459498:459519:r]

ssl10 set4-var1_11 CP000046.1 [476429:476457] set4-var1_51 CP000046.1[476474:476491:r]

ssl10-MRSA252 hp_ssl10_611 AJ938182.1 [419736:419765]

ssl10-RF122 set4-var2_11 BX571856.1 [460746:460772] set4-var2_51 BX571856.1[460783:460800:r]

ssl11 (COL) set2-var4_11 CP000046.1 [480340:480368] set2-var4_51 CP000046.1[480377:480395:r]

ssl11 (Mu50+N315) set2-var3_11 BA000017.4 [478916:478945] set2-var3_51 BA000017.4[478947:478967:r]

ssl11 (MW2+MSSA476) set2-var1_11 BA000033.2 [443788:443816] set2-var1_51 BA000033.2[443857:443879:r]

ssl11 (MRSA252) set2-var2_11 BX571856.1 [464936:464964] set2-var2_51 BX571856.1[464979:464999:r]

staphylococcal superantigen-like protein 7

staphylococcal superantigen-like protein 8

staphylococcal exotoxin-like protein, second locus

staphylococcal exotoxin-like protein, second locus

staphylococcal superantigen-like protein 3

staphylococcal superantigen-like protein 4

staphylococcal superantigen-like protein 5 

staphylococcal superantigen-like protein 6

staphylococcal superantigene-like protein 11

staphylococcal superantigen-like protein 9

staphylococcal superantigen-like protein 10

Protein A

staphylococcal superantigen-like protein 1

staphylococcal superantigen-like protein 2

set8, set18

set9, set19

set3, set20

set21

set1, set22

set12, set23

set5, set24

set4, set25

set2, set26

set6, set16

set7, set17

ssl11

ssl10

ssl04

ssl02

ssl03

ssl09

ssl07

ssl08

ssl06

ssl05

spa

ssl01

“setB2”

“setB1”



Gene Synonyma Gene product /function Alleles Probe name Probe definition Primer name Primer definition

Additional File 2: DNA Microarray Targets, Primers and Probes

hp_sspA_611 CP000046.1 [1063762:1063789:r] lb_sspA_651_rv CP000046.1[1063730:1063748]

lb_sspA_653_rv CP000046.1[1063034:1063053]

lb_sspA_652_rv BA000017.4[1097992:1098012]

hp_sspB_611 CP000046.1 [1062809:1062834:r] lb_sspB_651_rv CP000046.1[1062777:1062797]

hp_sspB_612 CP000046.1 [1062120:1062149:r] lb_sspB_652_rv CP000046.1[1062098:1062116]

hp_sspP_611 CP000046.1 [2034882:2034908] lb_sspP_651_rv CP000046.1[2034918:2034936:r]

sspP (other than ST93) hp_sspP_612 CP000046.1 [2035388:2035416] lb_sspP_652_rv CP000046.1[2035421:2035442:r]

hp_tetEfflux_611 CP000046.1 [2238561:2238587:r] lb_tetEfflux_651_rv CP000046.1[2238525:2238546]

lb_tetEfflux_652_rv BX571856.1[2342013:2342032]

tetK_12,3 M16217.1 [1424:1452] tetK_PM4 M16217.1[1582:1604:r]
tetK_12,4 M16217.1 [1507:1535]

tet(M) tetM tetrazyklin-resistance tetM_11,3 BA000017.4 [440374:440400:r] tetM_51 BA000017.4[440340:440358]

tst1 (other than RF122) tst1_16,2 BA000017.4 [2137855:2137879] tst1_PM4 BA000017.4[2137910:2137930]

tst1 (consensus) hp_tst_611 BA000017.4 [2138016:2138044] lb_tst_651_rv BA000017.4[2138051:2138070:r]

ugpQ glycerophosphoryl diester phosphodiesterase, associated with mecA hp_ugpQ_611 CP000046.1 [38665:38690] lb_ugpQ_651_rv CP000046.1[38701:38719:r]

vanA vancomycin resistance gene vanA_18,2 AE017171.1 [35199:35226] vanA_PM4 AE017171.1[35302:35321]

vanB_11 AE016954.1 [78616:78640:r] vanB_PM4 AE016954.1[78518:78535:r]

vanB_19,3 AE016954.1 [78613:78638:r]

vanZ teicoplanin resistance gene from enterococci vanZ_20,3 AE017171.1 [37564:37589] vanZ_PM4 AE017171.1[37613:37632]

vatA virginiamycin A acetyltransferase vatA_15,3 AF117258.1 [2296:2323:r] vatA_PM4 AF117258.1[2229:2247:r]

vatB acetyltransferase inactivating streptogramin A vatB_16,3 U19459.1 [543:570] vatB_PM4 U19459.1[659:680]

vga vga_17,3 AF117259.1 [3729:3756] vga_PM4 AF117259.1[3779:3799]

vga-BM 3327 vgaA_18,3 AF186237.2 [6470:6497] vgaA_PM4 AF117259.1[3925:3944]

vgb virginiamycin B hydrolase vgb_19,2 M36022.1 [1040:1067] vgb_PM4 M36022.1[1126:1148]

hp_vraS_612 CP000046.1 [2005634:2005659:r] lb_vraS_651_rv CP000046.1[2005818:2005835]

lb_vraS_652_rv CP000046.1[2005605:2005624]

vwb (cons) hp_vwb_615 CP000046.1 [884859:884884] lb_vwb_651_rv CP000046.1[883877:883899:r]

vwb (COL+MW2) hp_vwb_612 CP000046.1 [883836:883864] lb_vwb_656_rv CP000046.1[884895:884914:r]

vwb (MRSA252) hp_vwb_613 BX571856.1 [891899:891927] lb_vwb_653_rv BX571856.1[891952:891972:r]

vwb (Mu50) hp_vwb_614 BA000017.4 [890919:890947] lb_vwb_654_rv BA000017.4[890960:890980:r]

lb_vwb_655_rv BA000017.4[891393:891412:r]

vwb (RF122) hp_vwb_611 AJ938182.1 [821019:821046] lb_vwb_652_rv AJ938182.1[821064:821083:r]

xylR homolog of xylose repressor, associated with SCCmec-elements hp_xylR_611 BA000017.4 [50113:50141] lb_xylR_651_rv BA000017.4[50152:50171:r]

glutamylendopeptidase

staphopain B, Protease

staphopain A (staphylopain A), Protease

tst1

tet(K)

"tetEfflux" Transport-/Effluxprotein

tetrazyklin-resistance

toxic shock syndrome toxin 1

vwb

vraS

vga

vanB

van Willebrand factor binding protein

tetK

vancomycin resistance gene from enterococci and Clostridium

ATP binding protein, streptogramin-A-resistance

sensor protein

sspP

sspA

sspB
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Abstract

In Australia the PVL - positive ST93-IV [2B], colloquially known as ‘‘Queensland CA-MRSA’’ has become the dominant CA-
MRSA clone. First described in the early 2000s, ST93-IV [2B] is associated with skin and severe invasive infections including
necrotizing pneumonia. A singleton by multilocus sequence typing (MLST) eBURST analysis ST93 is distinct from other S
aureus clones. To determine if the increased prevalence of ST93-IV [2B] is due to the widespread transmission of a single
strain of ST93-IV [2B] the genetic relatedness of 58 S. aureus ST93 isolated throughout Australia over an extended period
were studied in detail using a variety of molecular methods including pulsed-field gel electrophoresis, spa typing, MLST,
microarray DNA, SCCmec typing and dru typing. Identification of the phage harbouring the lukS-PV/lukF-PV Panton
Valentine leucocidin genes, detection of allelic variations in lukS-PV/lukF-PV, and quantification of LukF-PV expression was
also performed. Although ST93-IV [2B] is known to have an apparent enhanced clinical virulence, the isolates harboured few
known virulence determinants. All PVL-positive isolates carried the PVL-encoding phage WSa2USA and the lukS-PV/lukF-PV
genes had the same R variant SNP profile. The isolates produced similar expression levels of LukF-PV. Although multiple
rearrangements of the spa sequence have occurred, the core genome in ST93 is very stable. The emergence of ST93-MRSA is
due to independent acquisitions of different dru-defined type IV and type V SCCmec elements in several spa-defined ST93-
MSSA backgrounds. Rearrangement of the spa sequence in ST93-MRSA has subsequently occurred in some of these strains.
Although multiple ST93-MRSA strains were characterised, little genetic diversity was identified for most isolates, with PVL-
positive ST93-IVa [2B]-t202-dt10 predominant across Australia. Whether ST93-IVa [2B] t202-dt10 arose from one PVL-positive
ST93-MSSA-t202, or by independent acquisitions of SCCmec-IVa [2B]-dt10 into multiple PVL-positive ST93-MSSA-t202 strains
is not known.
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Introduction

The community-associated methicillin resistant Staphylococcus

aureus (CA-MRSA) worldwide epidemic is polyclonal, however

several well characterized clones predominate in different regions

of the world: Sequence type (ST) 8-IV [2B] (USA300) and ST1-IV

[2B] (USA400) in North America [1,2]; ST80-IV [2B] (European

clone) in Europe [3], North Africa [4] and the Middle East [5];

ST59-V [5C2&5] (Taiwan clone) in Taiwan [6], ST30-IV [2B]

(South West Pacific [SWP] CA-MRSA) in the Western Pacific

[7,8] and ST772-MRSA-V [5C2] (Bengal Bay clone) in India and

Bangladesh [9]. Transmission of these clones into other regions

has occurred [10,11]. The occurrence of concurrent epidemics of

CA-MRSA in many countries by different clones has been striking.

Equally noteworthy are a number of common features of these

epidemics, prominent among them the ability to cause severe

infections in young otherwise healthy people and the carriage of

lukS-PV/lukF-PV Panton Valentine Leukocidin (PVL) encoding

genes by the organism.

In Australia the PVL - positive ST93-IV [2B], colloquially

known as ‘‘Queensland CA-MRSA’’, has recently emerged to

become the dominant CA-MRSA clone. First described in the

early 2000s, ST93 is a singleton by MLST eBURST analysis and

is therefore distinct from other S aureus clones [12].

In the 2010 Australian Group for Antimicrobial Resistance

(AGAR) Community S aureus Surveillance Programme (SAP10)
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ST93-IV [2B] accounted for 41.4% of all CA-MRSA, 27.6% of all

MRSA and 4.9% of all S aureus community-onset infections

(http://www.agargroup.org/files/FED%20REPORT%20SAP

210%20MRSA%20FINAL%20shrink.pdf.). The mean age of

patients with ST93-IV [2B] infections (31 years, median

25 years) was significantly lower (P,0.0001) than the mean

age of patients with PVL negative CA-MRSA infections

(53 years; median 57 years).

ST93-IV [2B] is associated with skin infection and severe

invasive infection including necrotizing pneumonia, deep-seated

abscess, osteomyelitis, septic arthritis and septicaemia [13,14,15].

Although ST93-IV [2B] has an apparent enhanced clinical

virulence, the recently sequenced ST93-IV [2B] strain

‘‘JKD6159’’ has a relative paucity of recognizable virulence

determinants [16,17]. This strain however does contain genes

encoding three important CA-MRSA virulence factors, Hla, PVL

and a-type phenol soluble modulins (PSMs), and when compared

to three other well-characterised Australian MRSA strains, ST1-

IV [2B], ST30-IV [2B] and ST239-III [3B] and the epidemic

North American strain, USA300, was shown to be the most

virulent in two in vivo models [17].

While predominately an Australian strain, ST93-IV [2B] has

been reported in New Zealand, accounting for 5.1% of all MRSA

referred to the Institute of Environmental Science and Research in

2010 (http://www.surv.esr.cri.nz/PDF_surveillance/Antimicrobial/

MRSA/aMRSA_2010.pdf), and in the United Kingdom, [18], where

many cases have epidemiological links to Australia.

In Western Australia (WA) ST93-IV [2B] was first identified in

2003 [19] and in SAP10 accounted for 28.8% of the state’s CA-

MRSA community-onset infections. In the mid 1990s S aureus

screening of indigenous people living in WA remote communities

demonstrated the most prevalent methicillin susceptible S aureus

(MSSA) linage isolated was the PVL-positive ST93 MSSA clone

[20]. Although seven CA-MRSA clones from genetically diverse

backgrounds were identified in these communities, no ST93

MRSA was found during this time.

As Australia is a geographically large country with the majority

of the population densely concentrated in a few major cities which

are separated in many instances by vast desert areas, it is to be

expected that different CA-MRSA clones will have evolved in

different areas of Australia. To better understand the molecular

epidemiology of ST93-IV [2B], the aim of this study was to

analyse the genetic relatedness of S. aureus ST93 isolated

throughout Australia over an extended period and to determine

if the increased prevalence of ST93-IV [2B] has been due to the

widespread transmission of a single strain of ST93-IV [2B] or has

been due to multiple independent acquisitions of the SCCmec

element into different strains of ST93 MSSA.

Materials and Methods

Bacterial Strains and Identification
Overall 58 ST93 S. aureus were included in the study. The 13

ST93-MSSA included four isolates from remote aboriginal

communities in WA, isolated from 1995 to 2003; two isolates

from the Northern Territory, isolated in 1992; five isolates from

WA, isolated in 2008; and single isolates from Victoria, isolated in

2007, and Queensland, isolated in 2008. The 45 ST93-MRSA

included 30 isolates from across Australia from the 2000 to 2008

AGAR Community onset S. aureus programs, and 15 isolates from

WA from 2003 to 2009. S. aureus species and methicillin resistance

was confirmed by the detection of nuc (thermostable extracellular

nuclease) and mecA (methicillin resistance) genes by PCR as

previously described [21].

Susceptibility Testing
An antibiogram was performed by disk diffusion on Mueller-

Hinton agar according to the Clinical and Laboratory Standards

Institute (CLSI) recommendations [22]. A panel of eight

antimicrobial drugs was tested: erythromycin (15 mg), tetracycline

(30 mg), trimethoprim (5 mg), ciprofloxacin (5 mg), gentamicin

(10 mg), rifampin (5 mg), fusidic acid (10 mg), and mupirocin

(5 mg). CLSI interpretive criteria [23] were used for all drugs

except fusidic acid [24] and mupirocin [25].

PFG
Electrophoresis of chromosomal DNA was performed as

previously described [26], using a contour-clamped homogeneous

electric field (CHEF) DR III system (Bio-Rad Laboratories Pty

Ltd). Chromosomal patterns were examined visually, scanned with

a Quantity One device (Bio-Rad Laboratories Pty Ltd), and

digitally analyzed using FPQuest (Bio-Rad Laboratories Pty Ltd).

S. aureus strain NCTC 8325 was used as a reference strain.

MLST and Spa Typing
Chromosomal DNA for MLST and spa typing was prepared

using a DNeasy tissue kit (Qiagen Pty Ltd).

MLST was performed as previously described [27]. The

sequences were submitted to http://www.mlst.net/where an

allelic profile was generated and an ST assigned.

spa typing, a DNA sequenced-based analysis of the protein A

gene variable region was performed as previously described [28]

using the nomenclature as described on the Ridom website

(http://spa.ridom.de/). Cluster analysis of spa sequences was

performed using the spa typing plug-in tool of the BioNumerics

software program (version 6.6; Applied Maths, Ghent, Belgium).

The analysis compares and aligns sequences via an algorithm

based on potential tandem spa repeat duplications, substitutions,

and indels (the DSI model) [29]. A minimum spanning tree (MST)

was generated from the similarity matrix with the root node

assigned to the sequence type with the greatest number of related

types. The default software parameters were used for analysis with

a bin distance of 1.0%. Thus, the distance between spa types of

99% to 100% similarity was 0, 98% to 99% similarity was assigned

a distance of 1, etc., on the MST. For cluster analysis, only spa

types separated by an MST distance of #1 (i.e., if they were

$98% similar) were considered closely related and assigned to the

same cluster.

DNA Microarray
Arrays and reagents were obtained from Alere Technologies,

Jena Germany. The principle of the assay, related procedures, and

a list of targets has been described previously [30,31]. Target genes

included species markers, markers for accessory gene regulator

(agr) alleles and capsule types, virulence factors, resistance genes,

staphylococcal superantigen-like/exotoxin-like genes (set/ssl genes)

and genes encoding adhesion proteins and immune evasion

factors. Probes for mecA, ugpQ, xylR, kdp, ccr’s, mecI and two probes

for mecR were used for SCCmec typing.

SCCmec Typing
The strategy used for SCCmec typing was as previously

described [32]. SCCmec nomenclature is used as proposed by

the International Working Group on the Classification of

Staphylococcal Cassette Chromosome Elements (IWG-SCC)

[33]. Briefly, the structural type is indicated by a Roman numeral,

with a lowercase letter indicating the subtype, and the ccr complex

and the mec complex are indicated by an Arabic numeral and an

Molecular Epidemiology of ST93 Community S aureus
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uppercase letter respectively in parenthesis. Where there is an

extra ccr element, this is indicated by ‘‘&’’ and an Arabic numeral

designating the ccr type. When there is an extra ccr element present

whose precise location is unknown it is indicated by an ‘‘&’’ and ccr

number outside the parentheses.

PVL
PCR for the detection of PVL determinants was performed as

previously described [34].

PVL Phage Identification
PCRs were performed to detect the six PVL-encoding phages

(WSa2MW, WSa2958, WPVL, W108PVL, WSLT and WSA2USA)

as previously described [35,36].

Detection of Allelic Variations in Luks-PV/lukF-PV Genes
Detection of single nucleotide polymorphisms (SNPs) in a

defined region of the lukS-PV/lukF-PV genes were performed as

previously described [36,37]. Sequences obtained were compared

to the proposed progenitor PVL gene in WSLT/ST30.

Quantification of In vitro LukF-PV Expression
PVL is a 2-component exotoxin and both LukS-PV and LukF-

PV are required for activity. LukF-PV was measured instead of

LukS-PV to obtain an anti-LukF-PV antibody with increased

specificity of binding as there was more sequence divergence

between lukF-PV and the orthologous 2-component S. aureus

exotoxins compared to lukS-PV. To produce recombinant LukF-

PV lukF-PV was PCR amplified using primers, forward 59-

CACCATGGCTCAACATATCACAC and reverse 59-GCTCA-

TAGGATTTTTTTCC. The resulting PCR product was then

TOPO cloned into pENTR/SD/D-TOPO (Invitrogen). This

plasmid was sequenced using M13 primers to confirm that the

insert was present in the correct orientation without mutations.

lukF-PV was subsequently cloned using an LR recombination

reaction into the expression vector pET-DEST42 (Invitrogen)

which introduced a C-terminal 6x-Histidine tag. This expression

clone was used to transform Rosetta2 E. coli (Novagen). Soluble

recombinant LukF-PV was produced by the Protein Production

Unit, Monash University by growth of the expression strain in

Auto Induction media at 28uC. The resulting recombinant LukF-

PV was purified by Nickel purification followed by gel filtration

and eluted in 100 mM NaP04, pH 7.4, 150 mM NaCl buffer.

Aliquots were frozen and stored at 280uC. The concentration of

recombinant LukF-PV was determined using the 2100 Bioanalyser

P230 kit (Agilent).

Quantification of LukF-PV Expression
Bacteria were grown in CCY media (3% yeast extract (Oxoid),

2% Bacto Casamino Acids (Difco), 2.3% sodium pyruvate (Sigma-

Aldrich), 0.63% Na2HPO4, 0.041% KH2PO4, pH 6.7). Overnight

cultures were diluted 1:100 into fresh media and then incubated at

37uC with shaking (180 rpm) until stationary phase (OD600 ,
1.8). Culture supernatants were harvested by centrifugation and

filter sterilized. The LukF-PV expression experiments were

performed in at least duplicate for each S. aureus strain.

Trichloroacetic acid was added to culture supernatants and

incubated at 4uC overnight. Precipitates were then harvested by

centrifugation, washed with acetone, air-dried and solubilized in a

sample buffer containing 1.7% SDS and 1% 2-mercaptoethanol.

The proteins were separated on 12% SDS-PAGE.

A peptide sequence specific to LukF-PV, HWIGNNYKDEN-

RATHT was synthesized and HRP conjugated polyclonal chicken

IgY raised against this peptide (Genscript). This antibody was used

to detect LukF-PV with enhanced chemiluminescence. Images

generated from the western blots were quantitated using GS800

Calibrated Densitometer and Quantity One (BioRad). 50 mg of

recombinant LukF-PV was used as an internal standard on each

gel, and was the positive control. Results observed with this

standard were set to 1.0. All other results were shown as a ratio

relative to this standard. RN4220 was used as a negative control.

Dru Typing
Sequence analysis of the mec-associated dru region was

performed as previously described [38]. A cluster analysis of dru

sequences was performed using the Polymorphic VNTR plug-in

tool of the BioNumerics software program (version 6.6; Applied

Maths, Ghent, Belgium). The analysis compares and aligns

sequences via an algorithm based on potential tandem dru repeat

duplications, substitutions, and indels (the DSI model) [29]. A

MST was generated from the similarity matrix with the root node

assigned to the sequence type with the greatest number of related

types. The default software parameters were used for analysis with

a bin distance of 1.0%. Thus, the distance between dru types of

99% to 100% similarity was 0, 98% to 99% similarity was assigned

a distance of 1, etc., on the MST. For cluster analysis, only dru

types separated by an MST distance of #1 (i.e., if they were

$98% similar) were considered closely related and assigned to the

same cluster.

Control Strain
The sequenced ST93-IVa [2B] strain JKD6159 (NCBI

GenBank Accession No. CP002114 and CP002115) was included

in this study for comparison [17].

Results

Susceptibility results, SCCmec typing together with a summary

of the resistance genes, spa types (using the Ridom Nomenclature)

and dru type are shown in Table 1. Further characterisations are as

follows:

Molecular Typing
By PFGE the 58 isolates (13 MSSA and 45 MRSA) had $80%

similarity with the sequenced JKD6159 strain (Figure 1). Eleven

pulsotypes were identified. The MSSA isolates consisted of three

pulsotypes, ‘‘A’’ – ‘‘C’’ with 12 of the 13 isolates grouped into two

closely related pulsotypes; ‘‘A’’ (9 isolates) and ‘‘C’’ (3 isolates). The

MRSA isolates consisted of eight pulsotypes (‘‘C’’ – ‘‘K’’) with 39

of the 45 isolates grouped into two closely related pulsotypes; ‘‘D’’

(36 isolates) and ‘‘J’’ (3 isolates). The MSSA pulsotypes ‘‘A’’ and

‘‘C’’ and the MRSA pulsotypes ‘‘D’’ and ‘‘J’’ were 92% related;

the difference presumably due to the insertion of the SCCmec type

IVa [2B] element into an existing restriction fragment in the two

MRSA pulsotypes. Single isolates of closely related MRSA

pulsotypes ‘‘I’’ (SAPWH71) and ‘‘K’’ (SAPWH53) lacked a

PVL-encoding phage. MRSA pulsotype ‘‘H’’ (20198) also lacked

a PVL-encoding phage, however unlike the other MRSA, carried

the SCCmec type V element with an additional ccr element

[5C2&5]. The remaining MSSA and three MRSA isolates were

classified into four unique pulsotypes (pulsotypes B, E, F, G).

Isolates representing each pulsotype were identified as ST93 by

MLST.

Seven spa types were identified with the majority of isolates

characterised as t202 (8/13 MSSA and 42/45 MRSA). The MST

algorithm clustered the spa types into two significantly different

Molecular Epidemiology of ST93 Community S aureus
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Figure 1. Dendrogram of the 58 pulsed-field gel electrophoresis patterns (PFGE) of ST93 (13 MSSA and 45 MRSA). Sequenced
JKD6159 strain was used as the ST93 control. S. aureus strain NCTC 8325 was used as the reference strain.
doi:10.1371/journal.pone.0043037.g001
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groups; t202, t4178, t5767; t1811, t4699; plus t6487; and t6485

(Figure 2).

DNA Microarray
The b-lactamase operon (blaZ, blaI, blaR) was detected in all

isolates (Table 1). Apart from isolate 20198, the MRSA carried

mecA as a part of the SCCmec type IVa [2B] element. Carriage of

other resistance genes was infrequent and variable. Five of the

MSSA were phenotypically erythromycin resistant and carried

ermC. Of the five erythromycin resistant MRSA isolates, three

carried ermC and one the staphylococcal msr(A) macrolide efflux

protein gene. A macrolide resistance gene was not detected in one

isolate that demonstrated phenotypic resistance (SAPWH39). Two

ermC harbouring MRSA isolates were not phenotypically erythro-

mycin resistant. A single MRSA isolate harboured the tetK

tetracycline resistant gene (isolated in Victoria in 2008), and two

MRSA isolates carried the quaternary ammonium compound

resistance protein C (qacC) gene (isolated in WA in 2009).

The 58 isolates were agr group III and capsule type 8. Although

the enterotoxin and tst1 genes were absent from all isolates, the

enterotoxin homologue ORF CM14 was present in 34 isolates

(4 MSSA and 30 MRSA) (Table S1). All isolates carried the hlb, hld

and hlIII hemolysin genes; the staphylokinase (sak), chemotaxis

inhibitory protein (chp) and staphylococcal complement inhibitor

(scn) genes; and the aur, splA, sspA, sspB, sspP protease genes.

Although the gene for a biofilm-associated protein, bap, was

absent, the biofilm operon icaACD was present in all isolates.

Most isolates carried the leukocidin lukX and lukY genes, the hl, hla

hemolysin genes and the splE protease genes.

The staphylococcal superantigen like or exotoxin-like genes (set

or ssl genes) and genes encoding MSCRAMMS (microbial surface

components recognizing adhesive matrix molecules) and the

immune evasion factors were homogeneous and characteristic

for ST93 (Tables S2, S3, S4 and S5).

Panton Valentine Leukocidin (PVL)
Apart from three MRSA isolates (SAPWH71, SAPWH53 and

20198) the lukS-PV/lukF-PV genes were detected in all isolates by

array hybridisation and PCR. All lukS-PV/lukF-PV positive isolates

carried the PVL-encoding phage WSa2USA. Using the proposed

progenitor PVL gene in WSLT/ST30 as a reference sequence, all

isolates were similar, having the same R variant SNP profile with

three substitutions compared to WSLT. This SNP profile is

associated with the WSa2USA phage.

lukF-PV expression is shown in Figure 3 and was measured to

determine if there was a consistent expression profile across

different ST93 strains. As expected, ST93 isolates which did not

contain lukS-PV/lukF-PV did not express LukF-PV. However, there

Figure 2. Minimum spanning tree (MST) of the seven ST93 spa types. Cluster analysis was performed using the spa typing plug-in tool of the
BioNumerics program. spa types separated by an MST distance of #1 (i.e., if they were $98% similar) were considered closely related and assigned to
the same cluster. MSSA and MRSA spa types are designated in red and green print respectively. Pulsed-field gel electrophoresis (PFGE) pulsotypes
and dru types (dt) are recorded for each spa type.
doi:10.1371/journal.pone.0043037.g002

Molecular Epidemiology of ST93 Community S aureus

PLOS ONE | www.plosone.org 8 August 2012 | Volume 7 | Issue 8 | e43037



were three isolates (SAPCRGH95 isolated in NSW, SAPAH21

isolated in Vic, and 15587 isolated in WA) which were PVL

positive by array hybridization and PCR but did not express

LukF-PV indicating that there may be regulatory differences such

as an agr defect in these isolates to account for the absence of

LukF-PV. All other isolates produced LukF-PV, with expression

levels similar between most strains.

dru Typing
Six dru types were identified (Table 1). The majority of isolates

(35/45) were dt10 (33 dt10a, 1 dt10 g and 1 dt10i). The remaining

nine SCCmec type IVa [2B] isolates were dru type dt4d (three

isolates) and dt3b (6 isolates). The SCCmec type V [5C2&5] isolate

(20198) was dt11i. The MST algorithm clustered the six dru types

into three significantly different groups; dt10, dt4d plus dt3b, and

dt11 (Figure 4). This suggests the SCCmec element may have been

acquired on at least three occasions by ST93.

Discussion

CA-MRSA is thought to emerge when a locally prevalent strain

of methicillin susceptible S. aureus (MSSA) acquires a SCCmec

element and utilizes mobile genetic elements and single nucleotide

polymorphisms to establish local and geographic niches [39].

Although the vertical and horizontal transmission of SCCmec

elements into S. aureus has occurred on multiple occasions in the

Australian community only a small number of clones have

successfully found an ecological niche to predominate over other

CA-MRSA clones [40]. PVL-positive ST93-IV [2B] is one such

clone, and since 2000 has been reported across Australia and is

responsible for the increasing prevalence of CA-MRSA infections

nationwide [13].

Conflicting hypotheses have been proposed to explain the

molecular evolution of ST93-MRSA. In 2008 Munckhof and

colleagues found little genetic diversity within ST93-IV [2B]

suggesting it arose from one PVL-positive binary subtype of ST93

MSSA after the acquisition of SCCmec [41]. However in 2009

Tong and colleagues identified multiple spa types in ST93-MRSA

and ST93-MSSA and proposed their data supported an early

acquisition of SCCmec with subsequent rearrangement of the spa

sequence or multiple independent acquisitions of SCCmec and

coexistence of MSSA and MRSA versions of the same lineage

[42]. Although seven spa types were described in this study, cluster

analysis of the seven spa sequences using the Spa typing plug-in

tool of the BioNumerics software program shows six of the spa

types are closely related and can be assigned to a single cluster

(data not shown).

Unlike the Tong study, which examined the spa types of

geographically localized ST93 S aureus collected over a short

period, the current study examined ST93 S aureus isolated across

Australia over sixteen years using a variety of molecular tools,

providing greater power to detect unique evolutionary events in

geographically diverse regions.

Prior to the isolation of ST93-IV [2B], S aureus surveillance

screening of aboriginal people living in 11 remote Western

Australian communities identified ST93 as the most prevalent

MSSA lineage [20]. Although located in three geographically

distant regions of WA, the ST93-MSSA examined from these

communities, (W17S isolated in 1995, Y113S in 1996 and C229T

and N126W in 2003, and) exhibit limited diversity within their

PFGE patterns, spa types and microarray DNA profiles. Their two

spa types, t202 [3 isolates (‘‘PFGE C’’)] and t5767 (‘‘PFGE A’’) are

closely related and are assigned to the same cluster. The

microarray DNA profiles for the two ST93-MSSA isolated in

the Northern Territory in 1992 (WBG7735 and WBG7762) are

homogeneous with the four WA remote community ST-93 MSSA.

In addition their PFGE patterns are either identical (‘‘PFGE A’’)

or 90% related (‘‘PFGE B’’), and their spa types, t4699 and t4178,

Figure 3. Relative LukF-PV expression in ST93 isolates. All isolates were tested for LukF-PV expression using western blot and LukF-PV specific
antibody. Results are expressed as optical density of test strain relative to a 50 mg control of rLukF-PV that was run on every gel. All experiments were
performed with multiple replicates and mean and range is shown. Positive control, rLUKF-PV; negative control, RN4220.
doi:10.1371/journal.pone.0043037.g003
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are assigned to the same cluster. The DNA microarray profiles for

the five ST93-MSSA, (9506160A, 9509712N, 9524093R,

9525206A and 9529120L) isolated in the state’s capital, Perth in

2008 (located 700–2000 km from the remote communities and

over 3,000 km from the Northern Territory border) are also

homogeneous with the Western Australian remote community

strains. The PFGE pattern for these isolates is ‘‘PFGE A’’. The spa

types for four of these strains are t202 (3 isolates) and t5767. The

spa type for 9509712N (t6485) cannot be assigned to the same

cluster. The PFGE patterns, spa types and microarray DNA

profiles for the MSSA isolated on the Australian eastern seaboard

(UQ40– Queensland in 2008 and DP2039– Victoria in 2007) are

identical to three Perth ST93-MSSA-t202 isolates.

As shown in Figure 1 the MRSA isolates are $80% related by

PFGE with the majority of isolates falling into pulsotype D. Similar

to the MSSA pulsotypes, pulsotype D was dispersed throughout

Australia over the eight years. Although rearrangement of the spa

sequence has occurred several times, the PFGE patterns and

microarray DNA profiles of the 13 ST-93 MSSA isolates suggests

the ST93 core and accessory genome is very stable. All carry the

PVL-encoding phage WSa2USA and their lukS-PV/lukF-PV genes

have the same R variant SNP profile. The isolates produce similar

expression levels of LukF-PV with no apparent relationship

between subtype and PVL expression. The emergence of five

different spa types, albeit four types assigned to the same cluster,

suggests ST93-MSSA emerged some time ago from a common spa

type. As the spa sequences are similar it is not possible to predict

the ancestral strain; however one strain, ST93-MSSA-t202,

predominates and has successfully disseminated across Australia.

Like ST93-MSSA, ST93-MRSA has multiple spa types;

including the closely related t202 and t4178, identified in ST93-

MSSA, t1811 and t6487, all of which are assigned to the same

cluster. t202 has the largest number of isolates; 42 of the 45 ST93-

MRSA. SCCmec and dru typing indicates the SCCmec element has

been acquired by ST93-MRSA-t202 on at least three occasions;

dt10 (SCCmec type IVa [2B]), dt3b/dt4d (SCCmec type IVa [2B])

and dt11i (SCCmec type V [5C&5]). Unlike ST93-IVa [2B]-t202,

ST93-V [5C&5]-t202 does not carry the lukS-PV/lukF-PV genes.

The PVL-negative ST93-IVa [2B]-t1811 isolate may have arisen

by independent acquisition of SCCmec IVa [2B] or by the

subsequent rearrangement of the spa sequence.

As for ST93-MSSA, the PFGE patterns and microarray DNA

profiles of the 45 ST-93 MRSA isolates suggests the ST93 core

and accessory genome is stable. Forty three of the 45 isolates carry

the PVL-encoding phage WSa2USA. The lukS-PV/lukF-PV genes

have the same R variant SNP profile and produce similar

expression levels of LukF-PV as reported in ST93-MSSA.

Apart from the ermC gene which was identified in several early

ST93-MSSA and ST93-MRSA isolates, ST93 S. aureus initially

carried few antibiotic resistance elements. However since 2008, in

addition to mecA and ermC, some isolates of ST93-MRSA have

acquired the msr(A) and tetK resistance genes. Although the dfrA

gene was not detected by the microarray DNA, SAPWH53 is

phenotypically trimethoprim resistant (presumably due to an

alternative trimethoprim resistance gene or a different dfrA allele).

In addition, the quaternary ammonium compound resistance

protein C gene qacC is carried by two isolates. The acquisition of

several resistance genes by an epidemic PVL-positive CA-MRSA

clone is not unique to ST93-IV [2B]. The USA300 clone (ST8-IV

[2B]), initially resistant only to semi-synthetic penicillins and

macrolides, is now, frequently resistant to other antimicrobial

agents including clindamycin, tetracycline, mupirocin, and the

fluoroquinolones; occasionally resistant to gentamicin and tri-

methoprim-sulfamethoxazole, and may have reduced susceptibil-

ity to daptomycin [43].

Single strain outbreaks of ST93-IV [2B] have not been reported

in Australian hospitals, however as has been reported in United

States hospitals with USA300 [44], ST93-IV [2B] has become a

Figure 4. Minimum spanning tree (MST) of the six ST93 dru types. Cluster analysis was performed using the Polymorphic VNTR plug-in tool
of the BioNumerics program. dru types separated by an MST distance of #1 (i.e., if they were $98% similar) were considered closely related and
assigned to the same cluster. Pulsed-field gel electrophoresis (PFGE) pulsotypes and spa types are recorded for each dru type.
doi:10.1371/journal.pone.0043037.g004
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major cause of healthcare-associated/onset infection. In 2008

Munckhof and colleagues reported nearly three quarters of

nmMRSA infections in their hospital-based study were healthcare

associated, of which ST93-IV [2B] predominated [41].

Conclusion
This study has demonstrated that although multiple rearrange-

ments of the spa sequence have occurred, the core genome in

ST93 S. aureus is very stable. Since 2008 PVL-positive ST93-

MSSA-t202 has become the predominant ST93-MSSA across

Australia. We have shown the emergence of ST93-MRSA has

been due to independent acquisitions of different dru-defined type

IV and type V SCCmec elements in several spa-defined ST93-

MSSA backgrounds. Rearrangement of the spa sequence in ST93-

MRSA has subsequently occurred in some of these strains.

Although several ST93-MRSA strains have been identified in this

study, little genetic diversity was identified for most MRSA

isolates, with PVL-positive ST93-IVa [2B]-t202-dt10 predominant

across Australia. However to determine if ST93-IVa [2B] t202-

dt10 has arisen from one PVL-positive ST93-MSSA-t202, or by

independent acquisitions of SCCmec-IVa [2B]-dt10 into multiple

PVL-positive ST93-MSSA-t202 strains will require whole genomic

sequencing of the isolates. Furthermore, comparative genomic

sequencing may further enhance our understanding of the

molecular basis for the emergence and increased virulence of

ST93 CA-MRSA. At a time when this clone is acquiring

additional resistance genes and an increased potential for

infections in the healthcare setting, understanding the means for

SCCmec acquisition, virulence determinants and transmission

dynamics is crucial if we are to prevent this clone from becoming

established in hospitals.
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Supplementary Table 1: ST93 virulence profile 

  Superantigenic Toxins 

Region Reference 

Number 

lukF/lukS PV 

Enterotoxins tst 

Leucocidins and Haemolysins sak/chp/scn et edin Proteases Biofilms ACME 

ST93 MSSA 

NT WBG7735 lukF/lukS PV   lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NT WBG7762 lukF/lukS PV   lukX/(Y), hl,( hla), hlb, hld, hlIII  sak, chp, scn   aur, splA,( splE), sspA, sspB, sspP icaA, icaC, icaD  

Qld UQ40 lukF/lukS PV   lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

Vic DP2039 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA C229T lukF/lukS PV   lukX, hl, (hla), hlb, hld, hlIII  sak, chp, scn   aur, splA, sspA, sspB, sspP icaA, icaC, icaD  

WA N126W lukF/lukS PV    lukX/Y,( hl),(hla), hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA W17S lukF/lukS PV    lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 113S lukF/lukS PV   (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 9506160A lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 9509712N lukF/lukS PV   lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 9524093R lukF/lukS PV (entCM14)  (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 9525206A lukF/lukS PV   (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 9529120L lukF/lukS PV (entCM14)  (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

ST93 MRSA 

ACT SAPTCH92 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

ACT SAPTCH53 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPRPAH96 lukF/lukS PV (entCM14)  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPWH23 lukF/lukS PV   lukD, lukX, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPWH39 lukF/lukS PV entCM14  (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPWH61 lukF/lukS PV entCM14  lukD, lukX, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA,  sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPWH64 lukF/lukS PV (entCM14)  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPWH94 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPWH71     lukX, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, (splE), sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPCRGH95 lukF/lukS PV    hlb, hld, hlIII  sak, chp, scn   aur, splA,  sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPRPAH21 lukF/lukS PV (entCM14)  (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPRPAH7 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPWH10 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NSW SAPWH53     lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NT SAPRDH61 lukF/lukS PV    lukX/(Y), hl, hlb, hld, hlIII  sak, chp, scn   aur, splA, (splE), sspA, sspB, sspP icaA, icaC, icaD  

NT SAPRDH27 lukF/lukS PV    lukX/Y, hl,( hla), hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

NT SAPRDH2 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

Qld SAPRBH98 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

Qld SAPRBH12 lukF/lukS PV    lukX, hl, hlb, hld, hlIII  sak, chp, scn   aur, splA,  sspA, sspB, sspP icaA, icaC, icaD  

Qld SAPGCH3 lukF/lukS PV    lukX/(Y),( hl), hla, hlb, hld, hlIII  sak, chp, scn   aur, splA,( splE), sspA, sspB, sspP icaA, icaC, icaD  

Qld SAPRBH14 lukF/lukS PV    lukX, hl, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

Qld SAPCBH10 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

Qld SAPGCH28 lukF/lukS PV (entCM14)  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

Qld SAPRBH1 lukF/lukS PV (entCM14)  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

SA SAPGPSA73 lukF/lukS PV (entCM14)  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  



Supplementary Table 1: ST93 virulence profile 

  Superantigenic Toxins 

Region Reference 

Number 

lukF/lukS PV 

Enterotoxins tst 

Leucocidins and Haemolysins sak/chp/scn et edin Proteases Biofilms ACME 

SA SAPIMVS24 lukF/lukS PV (entCM14)   lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

SA SAPIMVS31 lukF/lukS PV (entCM14)  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

Vic SAPRCH74 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

Vic SAPAH21 lukF/lukS PV   (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 16790 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 16815 lukF/lukS PV entCM14  lukD/(E), lukX/Y, hl, hla, hlb, hld, hlIII 

untruncated hlb 

sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 15586 lukF/lukS PV    lukX/(Y), hl,( hla), hlb, hld, hlIII  sak, chp, scn   aur, splA, sspA, sspB, sspP icaA, icaC, icaD  

WA 15587 lukF/lukS PV   (lukD), lukX/(Y), hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 16414 lukF/lukS PV    lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 16475 lukF/lukS PV   (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 17164 lukF/lukS PV entCM14  lukD/(E), lukX/Y, hl, hla, hlb, hld, hlII, 

untuncated hlbI  

sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 18158 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 18385 lukF/lukS PV   lukX/(Y), hl,( hla), hlb, hld, hlIII  sak, chp, scn   aur, splA,( splE), sspA, sspB, sspP icaA, icaC, icaD  

WA 18418 lukF/lukS PV   lukD, lukX/Y, hl, (hla), hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 20198  entCM14  lukD, lukX/Y, hl, hla, hlb,  hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA SAPRPH48 lukF/lukS PV (entCM14)  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 16908 lukF/lukS PV entCM14  (hlgA)lukD/E, lukX/Y, hl, hla, hlb, hld, 

hlIII, untruncated hlb  

sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 17090 lukF/lukS PV entCM14  lukD, lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 17195 lukF/lukS PV entCM14  (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

WA 20548 lukF/lukS PV (entCM14)   lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

Control Strain 

Vic JKD6159 lukF/lukS PV entCM14  (lukD), lukX/Y, hl, hla, hlb, hld, hlIII  sak, chp, scn   aur, splA, splE, sspA, sspB, sspP icaA, icaC, icaD  

 

Regions: ACT, Australian Capital Territory; NSW, New South Wales; NT, Northern Territory, Qld, Queensland; SA, South Australia; Vic, Victoria; WA, Western Australia 

 

lukF/lukS PV, Panton Valentine leucocidin F and S component genes; entCM14, enterotoxin-like protein ORF CM14; lukD/E, leucocidin D and E component genes;  lukX/ Y, leucocidin haemolysin toxin family protein genes; hl, 

putative membrane protein gene; hla, haemolysin alpha gene, hlb, haemolysin beta gene; hld, haemolysin delta gene; hlIII, putative membrane protein; sak, staphylokinase gene; chp, chemotaxis-inhibiting protein (CHIPS) gene; 

scn, staphylococcal complement inhibitor gene; aur aureolysin gene; splA, serinprotease A gene; splE, serinprotease E gene, sspA, glutamylendopeptidase gene, sspB, staphopain B protease gene, sspP, staphopain A protease 

gene, icaA, intracellular adhesion protein A gene; icaC, intracellular adhesion protein C gene; icaD, biofilm PIA synthesis protein D gene                

 

( ), gene detected but yielding weak or ambiguous signals    
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ST93 MSSA 

NT WBG7735 +     w +     w    +                +    

NT WBG7762 +      w         +                w    

Qld UQ40 +   +  + +     w  w  +     w           +    

Vic DP32039 +   +  + +     +  +  + +    +   +  +      +   w 

WA C229T +     w +         +        +  +      +    

WA N126W +     w +         +                +    

WA W17S +     + +     +  w  + w       +        +    

WA 113S +   +  + +     w  w  +        +        +    

WA 9506160A +   +  + +     +  w  + +    +     +      +    

WA 9509712N +   +  + +     +    + w    w   +        +    

WA 9524093R +   +  + +     +    + +    w   +        +    

WA 9525206A +   +  + +     w    +                +    

WA 9529120L +   +  + +     +    + w    w   +  +      +    

ST 93 MRSA 

ACT SAPTCH92 +   +  + +     +  w  + +    +   +  +      +    

ACT SAPTCH53 +   +  + +     +  w  + +    +     +      +    

NSW SAPRPAH96 +   +  + +     w    + w               +    

NSW SAPWH23 +      +         +                    

NSW SAPWH39 +   +  + +     +    + +    +   +  +      +    

NSW SAPWH61 +      +         +        +        +    

NSW SAPWH64 +   +  + +     +    + w    +           +    

NSW SAPWH94 +   +  + +     +  w  + +    +   +  +      +    

NSW SAPWH71 +      +         +                    

NSW SAPCRGH95 +               +                    

NSW SAPRPAH21 +   +  + +     +    + w    w   +        +    

NSW SAPRPAH7 +   +  + +     +  w  + +    +   +  +      +    

NSW SAPWH10 +   +  + +     +  w  + +    +   +  +      +    

NSW SAPWH53 +     w +     w    +                +    

NT SAPRDH61 +               +                    

NT SAPRDH27 +     w w         +                w    

NT SAPRDH2 +   +  + +     +    + w    +   +  +      +    

Qld SAPRBH98 +   +  + +     +  w  + +    +   +  +      +    

Qld SAPRBH12 +     +          +                    
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Qld SAPCBH10 +   +  + +     +  w  + +    +     +      +    

Qld SAPGCH28 +   +  + +     +    + w    +   +  +      +    

Qld SAPRBH1 +   +  + +     +    + w    +   +        +    

SA GPSA73 +   +  + +     +    + +    w   +        +    

SA SAPIMVS24 +     w +     +    + w               +    

SA SAPIMVS31 +   +  + +     +    + w    +   +  +      +    

Vic SAPRCH74 +   +  + +     +  w  + +    +   +  +      +    

Vic SAPAH21 +   +  + +     +    + w    +           +    

WA 16790 +   +  + +     +  w  + +    +   +  +      +    

WA 16815 +   +  + +     + w +  + +    + w  +  +      +  w + 

WA 15586 +      w         +                w    

WA 15587 +     w +       w  +        +        w    

WA 16414 +      +     w    +                +    

WA 16475 +   +  + +     +  +  + w    w   +  +      +   w 

WA 17164 +   +  + +    w + w +  + +    + +  +  +      +  + + 

WA 18158 +   +  + +     +  w  + +    +   +        +    

WA 18385 +      w         +                    

WA 18418 +   +  + +     +  +  + +    +   +  +      +    
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WA SAPRPH48 +   +  + +     +  +  + +    +   +  +      +  w w 
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WA 17195 +   +  + +     +  w  + +    +   +  +      +    

WA 20548 +   +  + +     +    + w    w   +        +    

Control Strain 

Vic JKD6159 +   +  + +     +    + +    +           +    

 

Regions: ACT, Australian Capital Territory; NSW, New South Wales; NT, Northern Territory, Qld, Queensland; SA, South Australia; Vic, Victoria; WA, Western Australia 

 

setC, staphylococcal exotoxin-like protein gene; ssl01/set6, staphylococcal superantigen-like protein 1 gene (alleles); ssl021/set7, staphylococcal superantigen-like protein 2 gene; ssl03/set8, staphylococcal superantigen-like 

protein 3 gene; ssl04/set9, staphylococcal superantigen-like protein 4 gene (alleles); ssl51/set3, staphylococcal superantigen-like protein 3 gene (alleles); ssl06/set21, staphylococcal superantigen-like protein 6 gene (alleles); 



ssl07/set1, staphylococcal superantigen-like protein 7 gene (alleles); ssl08/set6, staphylococcal superantigen-like protein 8 gene; ssl09/set9, staphylococcal superantigen-like protein 9 gene (alleles); ssl10/set4, staphylococcal 

superantigen-like protein 10 gene (alleles); ssl11/set2, staphylococcal superantigen-like protein 1 gene (alleles); setB3, staphylococcal exotoxin-like protein gene, second locus (alleles); setB2, staphylococcal exotoxin-like protein 

gene, second locus (alleles); setB1, staphylococcal exotoxin-like protein gene 

 

+, gene detected; w, gene detected but yielding weak or ambiguous signals    
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ST93 MSSA 

NT WBG7735 +   +   +   + +   +   +  + +   +      +       

NT WBG7762 +   +   +   + +   +   +  + +   +      +       

Qld UQ40 +   +   +   + +   +   +  + +   +      + w      

Vic DP2039 +   +  w +   + +   +   +  + +  + +      + +      

WA C229T +   +   +   + +   +   +  + +   +      +       

WA N126W +   +   +   + +   +   +  + +   +      +       

WA W17S +   +   +   + +   +   +  + +   +      +       

WA Y113S +   +   +   + +   +   +  + +   +      +       

WA 9506160A +   +   +   + +   +   +  + +  + +      + +      

WA 9509712N +   +   +   + +   +   +  + +   +      + w      

WA 9524093R +   +   +   + +   +   +  + +   +      + w      

WA 9525206A +   +   +   + +   +   +  + +   +      +       

WA 9529120L +   +   +   + +   +   +  + +   +      + w      

ST93 MRSA 

ACT SAPTCH92 +   +   +   + +   +   +  + +  + +      + +      

ACT SAPTCH53 +   +   +   + +   +   +  + +  w +      + +      

NSW SAPRPAH96 +   +   +   + +   +   +  + +   +      +       

NSW SAPWH23 +   +   +   + +   +   +  + +   +      +       

NSW SAPWH39 +   +   +   + +   +   +  + +  + +      + +      

NSW SAPWH61 +   +   +   + +   +   +  + +   +      +       

NSW SAPWH64 +   +   +   + +   +   +  + +   +      + w      

NSW SAPWH94 +   +   +   + +   +   +  + +  + +      + +      

NSW SAPWH71       +   + +   +   +  + +   +      +       

NSW SAPCRGH95 +   +   +   + +   +   +  + +   +      +       

NSW SAPRPAH21 +   +   +   + +   +   +  + +   +      + w      

NSW SAPRPAH7 +   +   +   + +   +   +  + +  + +      + +      

NSW SAPWH10 +   +   +   + +   +   +  + +  + +      + +      

NSW SAPWH53 +   +   +   + +   +   +  + +   +      +       

NT SAPRDH61 +   +   +   + +   +   +  + +   +      +       

NT SAPRDH27 +   +   +   + +   +   +  + +   +      +       

NT SAPRDH2 +   +   +   + +   +   +  + +   +      + +      

Qld SAPRBH98 +   +   +   + +   +   +  + +  w +      + +      
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Qld SAPRBH12 +   +   +   + +   +   +  + +   +      +       

Qld SAPGCH3 +   +   +   + +   +   +  + +   +      +       

Qld SAPRBH14 +   +   +   + +   +   +  + +   +      +       

Qld SAPCBH10 +   +   +   + +   +   +  + +  w +      + +      

Qld SAPGCH28 +   +   +   + +   +   +  + +   +      + +      

Qld SAPRBH1 +   +   +   + +   +   +  + +   +      + +      

SA SAPGPSA73 +   +   +   + +   +   +  + +  w +      + w      

SA SAPIMVS24 +   +   +   + +   +   +  + +   +      + w      

SA SAPIMVS31 +   +   +   + +   +   +  + +  w +      + +      

Vic RCH74 +   +   +   + +   +   +  + +  + +      + +      

Vic SAPAH21 +   +   +   + +   +   +  + +   +      + w      

WA 16790 +   +   +   + +   +   +  + +  + +      + +      

WA 16815 +   +  w +   + +   +   +  + +  + +      + +      

WA 15586 +   +   +   + +   +   +  + +   +      +       

WA 15587 +   +   +   + +   +   +  + +   +      +       

WA 16414 +   +   +   + +   +   +  + +   +      +       

WA 16475 +   +   +   + +   +   +  + +   +      + w      

WA 17164 +   +  w +   + +   +   +  + +  + +      + +      

WA 18158 +   +  w +   + +   +   +  + +   +      + +      

WA 18385 +   +   +   + +   +   +  + +   +      +       

WA 18418 +   +   +   + +   +   +  + +  w +      + +      

WA 20198 +   +   +   + +   +   +  + +  w +      + +      

WA SAPRPH48 +   +   +   + +   +   +  + +  + +      + +      

WA 16908 + +  +  w +   + + + w +  + +  + +  + +      + +      

WA 17090 +   +   +   + +   +   +  + +  + +      + +      

WA 17195 +   +  w +   + +   +   +  + +  w +      + +      

WA 20548 +   +   +   + +   +   +  + +   +      + w      

Control Strain 

Vic JKD6159 +   +   +   + +   +   +  + +   +      + +      

 

Regions: ACT, Australian Capital Territory; NSW, New South Wales; NT, Northern Territory, Qld, Queensland; SA, South Australia; Vic, Victoria; WA, Western Australia 

 

bbp, bone sialoprotein-binding protein gene (alleles); clfA, clumping factor A gene (alleles); clfB, clumping factor B gene (alleles); cna, collagen-binding adhesion gene; ebh, cell wall associated fibronectin-binding protein gene;  

eno, enolase gene; fib, fibrinogen binding protein gene (alleles); ebpS, cell surface elastin binding protein gene (alleles); fnbA, fibronectin-binding protein A gene (alleles); fnbB,  fibronectin-binding protein B gene (alleles)   



+, gene detected; w, gene detected but yielding weak or ambiguous signals    
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Vic DP2039     +  +      + + +         

WA C229T     +  +      + + +         
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WA 9509712N     +  +      + + +         

WA 9524093R     +  +      + + +         

WA 9525206A     +  +      + + +         

WA 9529120L     +  +      + + +         

ST93 MSSA 

ACT SAPTCH92     +  +      + + +         

ACT SAPTCH53     +  +      + + +         

NSW SAPRPAH96     +  +      + + +         

NSW SAPWH23     +  +      +  +         

NSW SAPWH39     +  +      + + +         
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NSW SAPWH64     +  +      + + +         
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NSW SAPRPAH21     +  +      + + +         

NSW SAPRPAH7     +  +      + + +         

NSW SAPWH10     +  +      + + +         

NSW SAPWH53     +  +      + + +         



Supplementary Table 4:  Microarray DNA ST93 MSCRAMMs and adhesion profile cont 

Region Reference 

Number 

m
a

p
 

m
a

p
 (

R
F

1
2

2
) 

m
a

p
 (

M
R

S
A

2
5

2
) 

m
a

p
 (

M
u

5
0

/M
W

2
) 

sd
rC

 (
a

ll
) 

sd
rC

 (
B

1
) 

sd
rC

 (
C

O
L)

 

sd
rC

 (
M

u
5

0
) 

sd
rC

 (
M

W
2

/M
R

S
A

2
5

2
/R

F
1

2
2

) 

sd
rc

 (
o

th
e

r 
th

a
n

 M
R

S
A

2
5

2
/R

F
1

2
2

) 

sd
rD

 (
C

O
L/

M
W

2
) 

sd
rD

 (
M

u
5

0
) 

sd
rD

  (
o

th
e

r)
 

sd
rD

 (
o

th
e

r 
th

a
n

 M
R

S
A

2
5

2
/R

F1
2

2
) 

 

v
w

b
 (

a
ll

) 

v
w

b
 (

C
O

L/
M

W
2

) 

v
w

b
 (

M
R

S
A

2
5

2
) 

v
w

b
 (

M
u

5
0

) 

v
w

b
 (

R
F

1
2

2
) 

sa
sG

 

sa
sG

 (
C

O
L/

M
u

5
0

) 

sa
sG

 (
M

W
2

) 

sa
sG

 (
O

th
e

r 
th

a
n

 M
R

S
A

2
5

2
/R

F
1

2
2

) 

NT SAPRDH61     +  +      + + +         

NT SAPRDH27     +  +      + + +         

NT SAPRDH2     +  +      + + +         

Qld SAPRBH98     +  +      + + +         

Qld SAPRBH12     +  +      +  +         

Qld SAPGCH3     +  +      + + +         

Qld SAPRBH14     +  +      + + +         

Qld SAPCBH10     +  +      + + +         

Qld SAPGCH28     +  +      + + +         

Qld SAPRBH1     +  +      + + +         

SA SAPGPSA73     +  +      + + +         

SA SAPIMVS24     +  +      + + +         

SA SAPIMVS31     +  +      + + +         

Vic SAPRCH74     +  +      + + +         

Vic SAPAH21     +  +      + + +         

WA 16790     +  +      + + +         

WA 16815     +  +      + + +         

WA 15586     +  +      + + +         

WA 15587     +  +      + + +         

WA 16414     +  +      + + +         

WA 16475     +  +      + + +         

WA 17164     +  +      + + +         

WA 18158     +  +      + + +         

WA 18385     +  +      + + +         

WA 18418     +  +      + + +         

WA 20198     +  +      + + +         

WA SAPRPH48     +  +      + + +         

WA 16908     +  + w w    + + +         

WA 17090     +  +      + + +         

WA 17195     +  +      + + +         

WA 20548     +  +      + + +         

Vic JK06159     +  +      + + +         

Regions: ACT, Australian Capital Territory; NSW, New South Wales; NT, Northern Territory, Qld, Queensland; SA, South Australia; Vic, Victoria; WA, Western Australia 

 



map, major histocompatability complex class II analogue protein gene (alleles); sdrC, ser-asp rich fibrinogen-/bone sialoprotein-binding protein C gene (alleles); sdrD, ser-asp rich fibrinogen-/bone sialoprotein-binding protein D 

gene (alleles);vwb, van Willebrand factor binding protein gene (allele); sasG, Staphylococcus aureus surface protein G gene (alleles)  

 

+, gene detected; w, gene detected but yielding weak or ambiguous signals    

 



Supplementary Table 5: Microarray DNA ST93 immunevasion and miscellaneous profile 
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ST93 MSSA 

NT WBG7735 + +    +  + +            +     +  + +  +   

NT WBG7762 + +    +  + +            +     +  + +  +   

Qld UQ40 + +    +  + +            +     +  + +  +  w 

Vic DP2039 + + w  w + w + +  w   w       + w w   +  + +  +  + 

WA C229T + +    +  + +     +       +     +  + +  +   

WA N126W + +    +  + +            +     +  + +  +   

WA W17S + + w  w +  + +  w          + w    +  + +  +  w 

WA Y113S + +    +  + +     +       +     +  + +  +   

WA 9506160A + +    +  + +     +       +     +  + +  +  + 

WA 9509712N + +    +  + +     +       +     +  + +  +   

WA 9524093R + +    +  + +     +       +     +  + +  +   

WA 9525206A + +    +  + +            +     +  + +  +   

WA 9529120L + +    +  + +     +       +     +  + +  +   

ST93 MRSA 

ACT SAPTCH92 + +    +  + +     +       +     +  + +  +  + 

ACT SAPTCH53 + +    +  + +     +       +     +  + +  +  w 

NSW SAPRPAH96 + +    +  + +            +     +  + +  +   

NSW SAPWH23 + +    +  + +            +     +  w +  +   

NSW SAPWH39 + +    +  + +            +     +  + +  +  w 

NSW SAPWH61 + +    +  + +            +     +  w +  +   

NSW SAPWH64 + +    +  + +            +     +  + +  +   

NSW SAPWH94 + +    +  + +            +     +  + +  +  w 

NSW SAPWH71 + +    +  + +            +     +  + +  +   

NSW SAPCRGH95 + +    +  + +            +     +   +  +   

NSW SAPRPAH21 + +    +  + +            +     +  + +  +   

NSW SAPRPAH7 + +    +  + +     +       +     +  + +  +  + 

NSW SAPWH10 + +    +  + +     w       +     +  + +  +  + 

NSW SAPWH53 + +    +  + +            +     +  + +  +   

NT SAPRDH61 + +    +  + +            +     +  + +  +   

NT SAPRDH27 + +    +  + +            +     +  + +  +   

NT SAPRDH2 + +    +  + +            +     +  + +  +   

Qld SAPRBH98 + +    +  + +     +       +     +  + +  +  w 
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Qld SAPRBH12 + +    +  + +            +     +   +  +   

Qld SAPGCH3 + +    +  + +            +     +  + +  +   

Qld SAPRBH14 + +    +  + +            +     +  w +  +   

Qld SAPCBH10 + +    +  + +     +       +     +  + +  +  w 

Qld SAPGCH28 + +    +  + +     +       +     +  + +  +   

Qld SAPRBH1 + +    +  + +     w       +     +  + +  +   

SA SAPGPSA73 + +    +  + +     w       +     +  + +  +   

SA SAPIMVS24 + +    +  + +            +     +  + +  +   

SA SAPIMVS31 + +    +  + +     w       +     +  + +  +   

Vic SAPRCH74 + +    +  + +     +       +     +  + +  +  w 

Vic SAPAH21 + +    +  + +     w       +     +  + +  +   

WA 16790 + +    +  + +     +       +     +  + +  +  w 

WA 16815 + + +  + + w + +  +   w       + + w +  +  + +  +  + 

WA 15586 + +    +  + +            +     +  + +  +   

WA 15587 + +    +  + +     +       +     +  + +  +  w 

WA 16414 + +    +  + +            +     +  + +  +   

WA 16475 + + w  w +  + +     w       + w    +  + +  +  w 

WA 17164 + + +  + + w + +  +   w       + + w   +  + +  +  + 

WA 18158 + +    +  + +  w   +       + w w   +  + +  +  w 

WA 18385 + +    +  + +            +     +  + +  +   

WA 18418 + + w  w +  + +            +     +  + +  +  w 

WA 20198 + +    +  + +            +     +  + +  +   

WA SAPRPH48 + + w  w +  + +            + w    +  + +  +  + 

WA 16908 + + + w + + + + +  +   w       + + w   +  + +  +  + 

WA 17090 + +    +  + +  w          +     +  + +  +  w 

WA 17195 + + w  w +  + +  w          + w w   +  + +  +  w 

WA 20548 + +    +  + +            +     +  + +  +   

Control Strain 

Vic JK06159 + +    +  + +     +       +     +  + +  +   

 

Regions: ACT, Australian Capital Territory; NSW, New South Wales; NT, Northern Territory, Qld, Queensland; SA, South Australia; Vic, Victoria; WA, Western Australia 

 



isaB, immunodominant antigen B gene (alleles); mprF, defensin resistance gene protein gene (alleles); isdA, transferrin-binding protein gene (alleles); ImrP, hypothetical protein, similar to integral membrane protein LmrP gene 

(alleles); Q2YUB3, Unspecific efflux/transporter gene; hsdS1, type 1 site-specific deoxyribonuclease subunit, 1
st
 locus gene; hsdS2, type 1 site-specific deoxyribonuclease subunit, 2

nd
 locus gene (alleles); hsdS3, type 1 site-specific 

deoxyribonuclease subunit, 3
rd

 locus gene (alleles); hsdSx, type 1 site-specific deoxyribonuclease subunit, unknown locus gene (alleles); Q2FXCO, hypothetical protein gene, located next to serine protease operon; Q7A4X2, 

hypothetical protein gene; hysA1, hyaluronate lyase first locus gene (alleles);  hysA2, hyaluronate lyase second locus gene (alleles)                                                                 

 

+, gene detected; w, gene detected but yielding weak or ambiguous signals    
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Differentiation of Clonal Complex 59 Community-Associated
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Clonal complex 59 (CC59) community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) strains
were characterized using pulsed-field gel electrophoresis, spa typing, multilocus sequence typing, diagnostic DNA
microarrays, and PCRs targeting staphylococcal cassette chromosome mec (SCCmec) elements and Panton-Valen-
tine leukocidin (PVL). Six distinct groups within CC59 were characterized. At least seven different variants of
SCCmec elements were identified (IVa [2B], IVb [2B], IVd [2B], IV variant [2B], IVa [2B&5], V variant [5C2], and
V [5C2&5]). (The structural type is indicated by a Roman numeral, with a lowercase letter indicating the subtype,
and the ccr complex and the mec complex are indicated by an Arabic numeral and an uppercase letter, respectively.
Where there is an extra ccr element, this is indicated by “&” and an Arabic numeral designating the ccr type.) The
first group is similar to the American sequence type 59 (ST59) MRSA-IV CA-MRSA strain USA1000. The second
group includes a PVL-negative ST87 strain with an SCCmec element of subtype IVb (2B). The third group comprises
PVL-variable ST59 MRSA-IV strains harboring multiple SCCmec IV subtypes. PVL-negative ST59 MRSA strains
with multiple or composite SCCmec elements (IVa [2B&5]) form the fourth group. Group 5 corresponds to the
internationally known “Taiwan clone,” a PVL-positive strain with a variant SCCmec element (V [5C2&5]). This
strain proved to be the most common CC59 MRSA strain isolated in Western Australia. Finally, group 6 encom-
passes the ST59 MRSA-V variant (5C2). The differentiation of CC59 into groups and strains indicates a rapid
evolution and spread of SCCmec elements. Observed differences between groups of strains as well as intrastrain
variability within a group facilitate the tracing of their spread.

Several well-characterized community-associated methicil-
lin-resistant Staphylococcus aureus (CA-MRSA) strains pre-
dominate in different regions of the world. Many of these
strains harbor the bicomponent Panton-Valentine leukocidin
(PVL). Sequence type 8 (ST8) MRSA-IV (USA300), ST80
MRSA-IV, and ST93 MRSA-IV are the major CA-MRSA
strains reported to occur in the United States, Europe, and
Australia, respectively. In the Asia Pacific region, a distinct
genotype, clonal complex 59 (CC59)/ST59, has become wide-
spread. ST59 CA-MRSA strains are an important cause of
morbidity in Taiwan (1, 13, 17, 25, 29) This so-called “Taiwan
clone” has acquired a novel type V staphylococcal cassette
chromosome mec (SCCmec) element (V [5C2&5], also known
as VT) and ermB, a macrolide-lincosamide-streptogramin B
resistance gene (28) frequently reported to be present in strep-

tococci and other bacteria. Its properties have recently been
described in detail (24). ST59 MRSA-V and other CC59
strains have now been reported to occur in several countries,
including the United States (USA1000) (6), Sweden (11), Ger-
many (20), the United Kingdom (19), Vietnam (26), and Aus-
tralia (22).

In Western Australia (WA), all MRSA strains are referred
to the state’s central typing reference laboratory (the Gram-
Positive Bacteria Typing and Research Unit) for molecular
characterization (5). Multiple CC59 strains, colloquially char-
acterized as WA MRSA-9, -15, -24, -52, -55, -56, and -73, have
been identified. They differ from each other in ST designation,
pulsed-field gel electrophoresis (PFGE) pattern, SCCmec ele-
ment, and PVL carriage.

To better understand the molecular epidemiology of this
clonal complex, all CC59 MRSA strains isolated in Western
Australia were examined using PFGE, spa typing, multilocus
sequence typing (MLST), diagnostic DNA microarrays, and
PCRs targeting SCCmec elements and PVL.

MATERIALS AND METHODS

Isolates and patients. From July 2003 to June 2008, 43 MRSA strains from 40
individuals living in WA were characterized as CC59 MRSA by the Gram-
Positive Bacteria Typing and Research Unit. One person yielded three isolates
(WA MRSA-15 04-16657, 05-17619, and 06-17484) over a 3-year period, and a

* Corresponding author. Mailing address: Department of Microbiology
and Infectious Diseases, PathWest Laboratory Medicine WA, Royal
Perth Hospital, Perth, Western Australia, Australia. Phone: 61 8 9224
2446. Fax: 61 8 9224 1989. E-mail: geoffrey.coombs@health.wa.gov.au.

† Geoffrey W. Coombs, Stefan Monecke, Ralf Ehricht, and Frances
G. O’Brien contributed equally to this study.

� Published ahead of print on 8 March 2010.
‡ The authors have paid a fee to allow immediate free access to

this article.
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second yielded two isolates (WA MRSA-9 06-17363 and 07-17830) over a 2-year
period. Three isolates (WA MRSA-52 07-15076, 07-16295, and 07-16320) were
obtained from three family members over a 12-month period. Isolates were
recovered from 33 skin and soft tissue infections and seven nasal screening
swabs.

Control strains. Two reference strains of USA1000 ST59 MRSA-IV
(NARSA483 and NARSA676) were obtained from the Network on Antimicro-
bial Resistance in Staphylococcus aureus (NARSA) and have been included in
this study for comparison.

Susceptibility testing. An antibiogram was performed by disk diffusion on
Mueller-Hinton agar according to the Clinical and Laboratory Standards Insti-
tute (CLSI) recommendations (3). A panel of eight antimicrobial drugs, i.e.,
erythromycin (15 �g), tetracycline (30 �g), trimethoprim (5 �g), ciprofloxacin (5
�g), gentamicin (10 �g), rifampin (5 �g), fusidic acid (10 �g), and mupirocin (5
�g), was tested. CLSI interpretive criteria (4) were used for all drugs except
fusidic acid (2) and mupirocin (9).

PFGE. Electrophoresis of chromosomal DNA was performed as previously
described (23), using a contour-clamped homogeneous electric field (CHEF) DR
III system (Bio-Rad Laboratories Pty Ltd). Chromosomal patterns were exam-
ined visually, scanned with a Quantity One device (Bio-Rad Laboratories Pty
Ltd), and digitally analyzed using FPQuest (Bio-Rad Laboratories). CHEF pat-
terns were grouped according to the criteria of Tenover et al. (27), and a
dendrogram similarity of 80% or greater was used to assign strain relatedness. S.
aureus strain NCTC 8325 was used as a reference strain.

MLST and spa typing. Chromosomal DNA for MLST and spa typing was
prepared using a DNeasy tissue kit (Qiagen Pty Ltd).

MLST was performed as specified by Enright et al. (7). The method involves
bidirectional sequencing of 450- to 500-bp internal fragments of seven house-
keeping genes obtained by PCR using highly conserved primer pairs. Each allele
sequence is assigned a number by the curator of the MLST database (http:
//saureus.mlst.net), and the allelic profile determines the sequence type (ST).
Allelic profiles can be compared using the BURST (based upon related sequence
types) program (http://linux.mlst.net/burst.htm). Clusters of single-locus variants
(SLVs) and double-locus variants are referred to as clonal clusters.

To assign an ST, sequences were compared with the sequences on the MLST
website. By use of the MLST database, clones were subsequently grouped into
CC59.

spa typing, a DNA sequence-based analysis of the protein A gene variable
region, was performed as previously described (10) using the nomenclature as
described on the Ridom website (http://spa.ridom.de/).

PVL. PCR for the detection of PVL determinants was performed as previously
described (8).

SCCmec typing. SCCmec is a mobile genetic element that carries the mecA
gene, which encodes broad-spectrum beta-lactam resistance, and unique site-
specific recombinases designated cassette chromosome recombinases (ccr).
SCCmec elements are classified into types and subtypes by a hierarchical system
(15). Types are defined by the combination of the ccr gene complex (types 1 to
5, represented by the ccr gene allotypes [ccrA1, ccrA2, ccrA3, and ccrA4; ccrB1,
ccrB2, ccrB3, and ccrB4; and ccrC1]) and the mec gene complex (classes A, B, C1,
and C2). The SCCmec element also contains three nonessential components
known as the “J regions.” Variations in the J regions within the same mec-ccr
complex are used for defining SCCmec subtypes.

SCCmec was typed by PCR using the following strategy. The structural archi-
tecture and the mec complex were determined using primers described by Zhang
et al. (30). SCCmec type IV was further subtyped using published primers (18).
Cassette chromosome recombinase (ccr) typing and ccrC1 allele 2 and 8 allotyp-
ing were performed as published previously (12, 16). Nontypeable strains and the
type V SCCmec were characterized using previously published primers (15). An
ISSau4-like transposase (GenBank accession no. DQ680163) insertion in open
reading frame (ORF) V011 (GenBank accession no. AB12129) of the type V
SCCmec was detected by the production of a ca. 1,600-bp PCR product rather
than the characteristic 325-bp product in the multiplex reaction performed by
Zhang et al. (30) and confirmed by sequencing. SCCmec nomenclature is used as
proposed by the International Working Group on the Classification of Staphy-
lococcal Cassette Chromosome Elements (IWG-SCC) (15). Briefly, the struc-
tural type is indicated by a Roman numeral, with a lowercase letter indicating the
subtype, and the ccr complex and the mec complex are indicated by an Arabic
numeral and an uppercase letter, respectively. Where there is an extra ccr
element, this is indicated by “&” and an Arabic numeral designating the ccr type.

DNA microarray. The DNA microarray used for this study covered 334 target
sequences corresponding to 185 distinct genes and their allelic variants. A com-
plete list of targets has been provided previously (20, 21). Target genes included
species markers, virulence factors, resistance genes, staphylococcal superantigen-

like or exotoxin-like genes (set or ssl genes), and genes encoding adhesion
proteins, as well as markers for accessory gene regulator (agr) alleles and capsule
types. With regard to SCCmec typing, the array included probes for mecA, ugpQ
(GenBank accession no. BA000018.3, locus tag SA0036), mecI (BA000018.3,
SA0040), xylR (BA000018.3, SA0041), the dcs region (BA000018.3, SA0024
[EMBL accession no. Q9XB68]), and two probes for mecR (BA000018.3,
SA0039). The last two probes allowed detection and discrimination of untrun-
cated mecR and �mecR, respectively. Recombinase genes ccrA1, ccrB1, ccrA2,
ccrB2, ccrA3, ccrB3, ccrA4, ccrB4, and ccrC1 were also covered. A gene for a
“hypothetical protein” accompanying ccrC1 was also included, and alleles from
strain 85-2082 (GenBank accession no. AB037671.1, nucleotides 61250 to 62893)
and strain MRSAZH47 (GenBank accession no. AM292304.1, nucleotides 5654
to 7273) were distinguished. The mercury resistance and kdp operons were also
included, but they are not relevant for the CC59 strains discussed in this study.

Arrays and reagents were obtained from CLONDIAG. The principle of the
assay and related procedures have previously been described in detail (20, 21).
Briefly, DNA was obtained by enzymatic lysis of overnight cultures. All targets
were simultaneously amplified by linear PCR, and the products were labeled by
the incorporation of biotin–16-dUTP during the reaction. The labeled sample
was then hybridized to the array, followed by washing steps and the addition of
a blocking reagent. Horseradish peroxidase-streptavidin conjugate was added to
the array, followed again by incubation and washing. Finally, Seramun Green
precipitating dye (Seramun, Heidesee, Germany) was added. An image of the
array was recorded and analyzed using a dedicated reader and software.

SplitsTree analysis. To analyze similarities between DNA microarray profiles,
SplitsTree software (14) was used. DNA microarray results for relevant genes
(see the legend for Fig. 2) were converted into strings of information which were
handled as “sequences,” using “A” for “positive” and “T” for “negative.” These
“sequences” were used for tree construction using SplitsTree 4.10 (character
transformation, uncorrected P; distance transformation, Neighbor-Net; and vari-
ance, ordinary least squares).

RESULTS

Antibiogram analysis, PVL PCR, PFGE, spa typing, MLST,
SCCmec typing, and DNA microarray analysis (data not
shown) were performed on all isolates (Tables 1 and 2).

PFGE identified seven WA CC59 CA-MRSA strains: WA
MRSA-9, -15, -24, -52, -55, -56, and -73 (Fig. 1).

Shared properties of CC59 MRSA isolates. All isolates were
agr group I and capsule type 8 and carried the gamma-hemo-
lysin genes lukF, lukS, and hlgA, as well as the hl (GenBank
accession no. CP000046.1, locus tag SACOL0921), hla, hld,
and hlIII hemolysin genes. Three out of five probes for beta-
hemolysin yielded signals, which could be interpreted as an
indication of an as yet unsequenced allelic variant. Leukocidin
genes lukD and lukE were not detected. All isolates lacked
protease genes splA, splB, and splE but harbored aur, sspA,
sspB, and sspP. The carriage of set and ssl genes was uniform
among all isolates, including the presence of setC, ssl1 (in a
Mu50/N315-like allele), ssl3, ssl4, ssl5 (an unsequenced allele
giving signals with a probe derived from CC1/5/8 sequences as
well as with another one based on RF122), ssl7, ssl8, ssl9, ssl10,
and setB1 to setB3. The probe for ssl2 gave weaker or variable
results, indicating another as yet unsequenced allelic variant.

The biofilm operon icaACD was present. The gene for a
biofilm-associated protein, bap, was absent.

Genes encoding MSCRAMMs (microbial surface compo-
nents recognizing adhesive matrix molecules), bbp, clfA, clfB,
ebh, ebpS, eno, fib, fnbA, fnbB, map, sasG, sdrC, sdrD, and vwb
were detected in all isolates. The gene for collagen-binding
adhesin (cna) was absent.

Carriage of resistance genes, PVL, beta-hemolysin integrat-
ing phages, and superantigens was variable.
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TABLE 1. Antibiogram results, PVL PCR results, PFGE patterns, spa types, MLST results, and SCCmec types for the CC59 MRSA isolates

Group and isolatea Source Antibiogram
resultc

PVL
PCR

resultd
PFGE pattern spa sequence spa

type MLST sequence ST SCCmec
type

Group 1, “WA MRSA-73”
05-16512 Colonization N WA MRSA-73 04 t528 19-23-15-2-19-20-15 59 IVb (2B)

Group 2, “WA MRSA-24”
04-17626 SSTIb Eryr N WA MRSA-24 04-20-17-20-17-31-16-34 t216 19-23-15-2-41-20-15 87 IVb (2B)
06-15325 SSTI Eryr N WA MRSA-24 04-20-17-20-17-31-16-34 t216 19-23-15-2-41-20-15 87 IVb (2B)
06-16824 SSTI Eryr N WA MRSA-24 04-20-17-20-17-31-16-34 t216 19-23-15-2-41-20-15 87 IVb (2B)

Group 3, “WA
MRSA-55/56”

06-17947 SSTI Eryr Tetr P WA MRSA-55 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 IVa (2B)
06-16367 SSTI Eryr Tetr P WA MRSA-55 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 IVa (2B)
07-15432 SSTI Eryr Tetr P WA MRSA-55 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 IVa (2B)
07-15760 SSTI Eryr Tetr P WA MRSA-55 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 IVa (2B)
08-16180 SSTI Eryr Tetr P WA MRSA-55 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 IVd (2B)
08-17668 Colonization Eryr N WA MRSA-55 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 IVv (2B)
07-15443 SSTI Eryr P WA MRSA-56 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 IVa (2B)

Group 4, “WA MRSA-15”
03-17565 SSTI N WA MRSA-15 04-20-17-20-31-16-34 t976 19-23-15-2-19-20-15 59 IVa (2B&5)
04-16557 SSTI N WA MRSA-15 04-20-17-20-31-16-34 t976 19-23-15-2-19-20-15 59 IVa (2B&5)
04-17489 SSTI N WA MRSA-15 04-20-17-20-31-16-34 t976 19-23-15-2-19-20-15 59 IVa (2B&5)
05-17037 SSTI Eryr Tetr N WA MRSA-15 04-20-17-20-31-16-34 t976 19-23-15-2-19-20-15 59 IVa (2B&5)
05-17619 SSTI N WA MRSA-15 04-20-17-20-31-16-34 t976 19-23-15-2-19-20-15 59 IVa (2B&5)
06-15513 SSTI N WA MRSA-15 04-20-17-20-31-16-34 t976 19-23-15-2-19-20-15 59 IVa (2B&5)
06-17484 SSTI N WA MRSA-15 04-20-17-20-31-16-34 t976 19-23-15-2-19-20-15 59 IVa (2B&5)
07-19251 SSTI Eryr N WA MRSA-15 04-20-17-20-31-16-34 t976 19-23-15-2-19-20-15 59 IVa (2B&5)
08-15202 SSTI N WA MRSA-15 04-20-17-20-31-16-34 t976 19-23-15-2-19-20-15 59 IVa (2B&5)

Group 5, “WA MRSA-9/
52,” or “Taiwan
clone”

06-15672 SSTI Eryr Tetr P WA MRSA-9 04-20-17-25-34 t441 19-23-15-2-19-20-15 59 V (5C2&5)
06-17363 SSTI Eryr Tetr P WA MRSA-9 04-20-17-25-34 t441 19-23-15-2-19-20-15 59 V (5C2&5)
07-16447 SSTI Eryr Tetr P WA MRSA-9 04-20-17-25-34 t441 19-23-15-2-19-20-15 59 V (5C2&5)
07-17830 SSTI Eryr Tetr P WA MRSA-9 04-20-17-25-34 t441 19-23-15-2-19-20-15 59 V (5C2&5)
03-16672 SSTI Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
04-16811 SSTI Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
04-17021 SSTI Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
05-15724 SSTI Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
07-15919 SSTI Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
07-16753 SSTI Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
07-16861 SSTI Eryr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
07-18714 SSTI Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
08-15039 SSTI Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
08-18104 SSTI Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
08-18190 Colonization Eryr Tetr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-2-19-20-15 59 V (5C2&5)
07-17677 Colonization Eryr P WA MRSA-9 04-20-17-20-17-25-34 t437 19-23-15-48-19-20-15 338 V (5C2&5)
07-15076 Colonization Eryr P WA MRSA-52 04-20-17-20-17-34 t1950 113-23-15-2-19-20-15 952 V (5C2&5)
07-16295 Colonization Eryr P WA MRSA-52 04-20-17-20-17-34 t1950 113-23-15-2-19-20-15 952 V (5C2&5)
07-16320 Colonization Eryr P WA MRSA-52 04-20-17-20-17-34 t1950 113-23-15-2-19-20-15 952 V (5C2&5)
07-16355 SSTI Eryr P WA MRSA-9 04-20-16-34 t2365 19-23-15-2-19-20-15 59 V (5C2&5)

Group 6, “WA MRSA-9”
05-17759 SSTI N WA MRSA-9 04-20-17-31-16-34 t316 19-23-15-2-19-20-15 59 Vv (5C2)
08-15683 SSTI Eryr N WA MRSA-9 04-20-17-31-16-34 t316 19-23-15-2-19-20-15 59 Vv (5C2)
06-18653 SSTI Cipr N WA MRSA-9 04-20-17-25-34 t441 19-23-15-2-19-20-15 59 Vv (5C2)

NARSA control strains,
“USA1000”

NARSA483 Eryr P USA1000 04-20-17-31-16-34 t316 19-23-15-2-19-20-15 59 IVa (2B)
NARSA676 P USA1000 04-20-17-20-17-31-16-34 t216 19-23-15-2-19-20-15 59 IVa (2B)

a Group 1, PVL-negative ST59 MRSA-IVb (2B) (ccrA2B2 and mec complex class B); group 2, PVL-negative ST87 (59SLV) MRSA-IVb (2B) (ccrA2B2 and mec
complex class B); group 3, PVL-variable ST59 MRSA-IVa, -IVd, and -IVv (2B) (ccrA2B2 and mec complex class B); group 4, PVL-negative ST59 MRSA-IVa (2B&5)
(ccrA2B2, mec complex class B, and ccrC1); group 5, PVL-positive ST59/338 (59SLV)/952 (59SLV) MRSA-V (5C2&5) (mec complex class C2 and ccrC1); group 6,
PVL-negative ST59 MRSA-Vv (5C2) (mec complex class C2 and ccrC1); NARSA control strains, PVL-positive ST59 MRSA-IVa (2B) (ccrA2B2 and mec complex
class B).

b SSTI, skin and soft tissue infection.
c Eryr, erythromycin resistant; Tetr, tetracycline resistant; Cipr, ciprofloxacin resistant.
d N, negative; P, positive.
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DNA microarray-based analysis of the CC59 isolates clus-
tered them into six groups (Fig. 2).

Group 1, “WA MRSA-73” (PVL-negative ST59 MRSA-IVb
[2B]). “WA MRSA-73” (isolate 05-16512) is an ST59/spa type
t528 strain that has acquired an SCCmec IVb (2B) (ccrA2B2
and mec complex class B) element. Although lacking PVL, this
strain has a DNA microarray profile similar to that of
the NARSA ST59 MRSA-IVa “USA1000” control strain
(NARSA483). Both strains have acquired seb, sek, and seq

enterotoxin genes and lack antimicrobial resistance genes
apart from mecA and blaZ.

Group 2, “WA MRSA-24” (PVL-negative ST87 MRSA-IVb
[2B]). Three “WA MRSA-24” isolates (04-17626, 06-15325,
and 06-16824), collected from unrelated patients in 2004 and
2006, were identified as ST87 (an SLV of ST59 [59SLV])/spa
type t216 with a type IVb (2B) SCCmec. The beta-lactamase
operon (blaZ, blaI, and blaR), the msrA, mpbBM (macrolide),
aphA3 (neomycin), and sat (streptothricin) resistance genes,

FIG. 1. Representative pulsed-field gel electrophoresis patterns of the seven Western Australian CC59 MRSA strains.

FIG. 2. SplitsTree graph visualizing similarities of CC59 isolates and strains based on hybridization results for mecA, �mecR, ugpQ, the dcs
region, ccrA2, ccrB2, 85-2082 ccrC1, hypothetical ORF accompanying ccrC1, blaZ, blaI, blaR, ermB, ermC, msrA, mpbBM, aphA3, sat, tetK, pC221
cat, pC223 cat, sea, seb, sek, seq, lukF-PV, lukS-PV, and sak (Table 2). Isolate designations in boxes indicate PVL-positive isolates.
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and the seb, sek, and seq enterotoxin genes were present in all
three isolates. The isolates were also positive for staphyloki-
nase (sak), chemotaxis-inhibiting protein (chp), and staphylo-
coccal complement inhibitor (scn) genes, which are known to
be located on beta-hemolysin integrating phages. However, the
enterotoxin A (sea) gene, which is also located on beta-hemo-
lysin integrating phages, was not detected. PVL was not de-
tected.

Group 3, “WA MRSA-55/56” (PVL-variable ST59 MRSA-IV
[2B], structural subtypes IVa, IVd, and IVv). Group 3, a group
of seven ST59/spa type t437 isolates, is comprised of four very
similar strains that have acquired ermB (macrolide-lincos-
amide-streptogramin B), aphA3, sat, and tetK resistance genes.
In this regard, they resemble the “Taiwan clone” (see below).
The other three strains in this group differ by variable carriage
of PVL and enterotoxin A (sea) and SCCmec type IV subtype.

The first strain, PVL-positive “WA MRSA-55,” included
four isolates (06-16367, 06-17947, 07-15432, and 07-15760) col-
lected in 2006 and 2007. All four isolates harbored an SCCmec
IVa (2B) element, and their DNA microarray-based profiles
were identical. The beta-lactamase operon (blaZ, blaI, and
blaR), ermB, aphA3, sat, and tetK resistance genes as well as the
seb, sek, and seq enterotoxin genes, PVL genes (lukF-PV and
lukS-PV), and chp, scn, and sak genes were all detected in this
strain.

The second strain (08-16180) was also PVL positive and,
except for the absence of the sak gene and the presence of the
chloramphenicol resistance gene cat, yielded the same DNA
microarray hybridization pattern as the first strain in this
group. However, SCCmec analysis by PCR revealed that this
isolate harbored a type IVd (2B) SCCmec element.

The third strain, a PVL-negative isolate (08-17668), closely
resembled the PVL-positive strain “WA MRSA-55” in terms
of microarray hybridization and PFGE pattern. However, it
has acquired a novel type IV (2B) SCCmec which could not be
subtyped with primers specifying subtypes a to h.

The fourth strain, “WA MRSA-56,” consisted of one iso-
late (07-15443) collected in 2007. It was also identified as
PVL-positive ST59 MRSA-IVa (2B). However, unlike the
other group 3 strains, “WA MRSA-56” carried the entero-
toxin gene sea.

Group 4, “WA MRSA-15” (PVL-negative ST59 MRSA-IVa
[2B&5]). Group 4 consisted of nine isolates (03-17565, 04-
16557, 04-17489, 05-17037, 05-17619, 06-15513, 06-17484, 07-
19251, and 08-15202) collected from seven individual patients
between 2003 and 2008. One patient with various wound in-
fections yielded three identical isolates in three subsequent
years (2004 to 2006).

These isolates were identified as PVL-negative ST59
MRSA-IVa (2B&5) (ccrA2B2 mec complex class B and
ccrC1)/spa type t976.

All nine isolates carried the beta-lactamase operon (blaZ,
blaI, and blaR). Variable resistance genes, including msrA and
mpbBM (in two isolates), aphA3 and sat (in one isolate), and
tetK (in one isolate), were detected. All isolates were negative
for PVL genes but positive for the enterotoxin A gene (sea).
Seven out of nine isolates harbored seb, sek, and seq entero-
toxin genes.

Isolate 05-17037 differed in its carriage of resistance genes
(msrA, mpbBM, aphA3, sat, and tetK). DNA microarray-based

markers indicated that all isolates in this group encoded an
unusual SCCmec element with mec complex class B and ccr
complex type 2, characteristic of SCCmec type IV, and ccrC1,
which has thus far been found in SCCmec type V or SCC
elements. Positive hybridization signals for SCCmec markers
mecA, �mecR, ugpQ, the dcs region, ccrA2, ccrB2, 85-2082
ccrA, and 85-2082 ccrC1 were obtained. SCCmec PCR con-
firmed this observation. All isolates in the group were positive
for SCCmec type IVa (2B) structural elements, and all en-
coded a class B mec complex, a type 2 ccr complex, and ccrC1
allele 2. This suggests either the presence of a composite IVa
(2B) and V (5C2) SCCmec element or the additional presence
of an SCC element encoding ccrC1 allele 2.

Group 5, “WA MRSA-9/52,” or “Taiwan clone” (PVL-posi-
tive ST59/338/952 MRSA-V [5C2&5]). Group 5 consisted of 17
“WA MRSA-9” isolates identified as ST59/spa type t437, t441,
or t2365 and three “WA MRSA-52” isolates identified as
ST952 (a single-locus variant of ST59)/spa type t1950 (Table
1). The DNA microarray-based profiles for these 20 isolates
were similar, and consequently the two strains were classified
into one group. “WA MRSA-9” was the first SCCmec V
(5C2&5) (mec complex class C2 and ccrC1) CC59 strain found
in Western Australia (in 2003), and it appears to be the most
common and clinically relevant strain in this clonal complex.

For SCCmec markers on the array, all isolates yielded hy-
bridization signals with probes for mecA, ugpQ, 85-2082 ccrA,
and MRSAZH47 ccrA, as well as for ccrC1. When tested by
PCR, all 20 strains had mec complex C2 and ccrC1. ccrC1
allotyping revealed the presence of two ccrC1 complexes,
ccrC1 allele 2 and ccrC1 allele 8, which is characteristic of the
SCCmec encoded by the Taiwan clone. An ISSau4-like trans-
posase was found inserted into the structural gene V011 of all
isolates in this group.

All 20 “Taiwan clone” isolates carried the beta-lactamase
operon (blaZ, blaI, and blaR) as well as ermB, aphA3, and sat.
Variable resistance genes were tetK (in 14 isolates) and cat (in
17 isolates). All isolates were positive for lukF-PV and lukS-PV.
Enterotoxin genes seb, sek, and seq were present in 15 of the 20
isolates.

Group 6, “WA MRSA-9” (PVL-negative ST59 MRSA-Vv
[5C2]). Although characterized as “WA MRSA-9” by PFGE,
three isolates (05-17759, 08-15683, and 06-18653) were classi-
fied into group 6. These isolates carried an SCCmec type V
variant (5C2) (ccrC1 and mec complex class C2) element.
However, they yielded a DNA hybridization pattern different
from that of the “Taiwan clone” (group 5). They were positive
for mecA, ugpQ, 85-2082 ccrA, and 85-2082 ccrC1 but negative
with the MRSAZH47 ccrA probe.

PCR SCCmec analysis revealed that isolates from this group
did not amplify the SCCmec type V (5C2) specific structural
ORF V011 (GenBank accession no. AB12129) with or without
the ISSau4-like transposase insertion. However, they were pos-
itive for the type V (5C2) core genes for mec complex C2 and
ccrC1. Allotyping of the ccrC1 gene revealed that it was neither
allele 2 nor allele 8. On the basis of a lack of amplification of
the structural gene, the SCCmec of these strains has been
classified as a type V variant (Vv [5C2]). It is evident that this
group of isolates harbors an SCCmec element that is signifi-
cantly different from that of the Taiwan clone.

Two isolates carried the beta-lactamase operon, and one was
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positive for ermC (macrolide-lincosamide resistance) and cat.
All three isolates harbored seb, sek, and seq enterotoxin genes
as well as chp and scn. One isolate also yielded hybridization
signals for the staphylokinase gene sak. All isolates were PVL
negative.

DISCUSSION

In Western Australia there are at least six discernible groups
of CC59 CA-MRSA strains, which can be differentiated by
PFGE, MLST, determination of the presence or absence of
PVL, determination of the SCCmec type, or microarray anal-
ysis. Within the study strains, at least seven different variants of
SCCmec elements (IVa [2B], IVb [2B], IVd [2B], IVa [2B&5],
IVv [2B], Vv [5C2], and V [5C2&5]) were distinguished. This
suggests rapid evolution and/or multiple transfer events of
SCCmec elements. In a recent study by Takano et al. (24), at
least six SCCmec elements were described to occur in a col-
lection of ST59 MRSA strains isolated in Taiwan, including V
(5C), V (5C2&5), IVc (2B), IV (2B), and two novel elements.
This diversity of SCCmec types and subtypes can be expected
to cause ambiguities in nomenclature, which underscores
the need for sequence information. Consequently, the novel
SCCmec elements described in this study warrant further
characterization, although sequencing is beyond the scope of
this study. Another observation suggesting a rapid evolution
within CC59 is that groups 3 and 5 (“Taiwan clone”) appear to
be closely related to each other with regard to all markers but
SCCmec. Both groups share aphA3, sat, ermB, and usually also
cat as well as PVL. This indicates that groups 3 and 5 might
represent one branch of the CC59 complex that evolved into
separate groups by acquiring different SCCmec elements. Gen-
erally, CC59 displayed a high degree of variability, affecting not
only SCCmec markers but also a variety of other mobile
genetic elements. For instance, “USA1000” and “WA MRSA-
73” differ only in the presence of PVL. It cannot yet be deter-
mined whether “USA1000” evolved from a “WA MRSA-73”-
like ancestor by acquiring PVL, whether “WA MRSA-73” was
a deletion variant of USA1000, or whether both represent
independently evolved branches of one lineage. Similarly, iso-
late 08-17668 might represent either a PVL-negative ancestor
or a mere deletion mutant of group 3 strains. A high degree of
variability can also be detected within CC59 groups. For ex-
ample, the Taiwan clone (group 5) can be subdivided based on
resistance and toxin genes and spa and MLST sequences. Such
variation within a supposed “clone” might be used to trace
individual chains of infection, as in the case of the patients with
the ST952 variant of the “Taiwan clone” (“WA MRSA-52”)
who belonged to the same family.

Further studies should investigate the variability and evolu-
tion of CC59 strains in other locations where this clonal com-
plex has been detected. Apart from data for the Taiwan clone
(group 5), there are little data available on the distribution of
CC59 clones outside Western Australia. It can be assumed that
these strains are usually identified as “USA1000” or the “Tai-
wan clone” and that their true diversity remains unrecognized.
This might also obscure routes of transmission of CC59 CA-
MRSA strains and hinder the understanding of their interna-
tional spread.

If a variety of closely related strains exist simultaneously, it

can be assumed that they are in competition with each other
for “ecological” resources, i.e., for susceptible, as yet uncolo-
nized hosts. The ecological success of strains should result in
wide distribution and/or relatively high prevalence. The Tai-
wan clone (group 5) could be regarded as the most successful
strain among the CC59 CA-MRSA strains isolated in Western
Australia. In our study, nearly as many isolates belonged to
group 5 as to all other CC59 groups combined. Since the
groups are nearly isogenic, a marker determining such success
should be found among the rather limited number of genes
which are variable within CC59, and it should be present in the
Taiwan clone. Full genome sequencing of representative
strains of CC59 may provide the answer and overcome the
limitations of this study. Among the genes which were exam-
ined in this study, PVL genes could be related to the success of
the Taiwan clone.
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Abstract

Between 2003 and 2008, 76 clinical isolates of the Panton–Valentine leukocidin-positive Staphylococcus aureus strain ‘West Australian

methicillin-resistant Staphylococcus aureus (MRSA)-12’ (WA MRSA-12) were recovered from 72 patients living in the Perth area in

Western Australia. These isolates were found to belong to multilocus sequence type 8, and had a USA300-like pulsed-field gel electro-

phoresis pulsotype. All isolates were genotyped using diagnostic DNA arrays covering species markers, resistance factors, virulence-

associated, as well as MSCRAMM (microbial surface components recognizing adhesive matrix molecules) genes to prove the identity

between WA MRSA-12 and the pandemic strain USA300, as well as to detect possible genetic variability. In general, WA MRSA-12

isolates were similar to USA300, and the most common variant was identical to USA300-TC1516. From this clone, most of the other

variants may have evolved by a limited number of gene losses or acquisitions. Variations in carriage of virulence and resistance-associ-

ated genes allow distinction of variants or sub-clones. Altogether, 16 variants could be distinguished. They differed in the carriage of

resistance genes (blaZ/I/R, ermC, msrA + mpbBM, aadD + mupR, aphA3 + sat, tetK, qacC, merA/B/R/T) of b-haemolysin-converting phages

and of enterotoxins (sek + seq, which were deleted in four isolates). Notably, the arginine catabolic mobile element (ACME) was absent

in 12 isolates (15.8%). The mercury resistance (mer) operon, which is usually associated with SCCmec type III elements, was found in

several ACME-negative isolates. The present study emphasises the importance of genotyping in detecting the introduction and evolution

of significant MRSA strains within a community.
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Introduction

In recent years, a pandemic unfolded of methicillin-resistant

Staphylococcus aureus (MRSA) strains that carry novel and

apparently highly mobile chromosomal staphylococcal chro-

mosomal cassette elements harbouring mecA (SCCmec

elements). Such strains have emerged outside the hospital

setting and have been designated as ‘community-associated

MRSA’ (CA-MRSA). Some of them harbour the prophage-

encoded [1,2] virulence factor Panton–Valentine leukocidin

(PVL). PVL is a bicomponent toxin that forms polymeric

pores in leukocyte membranes [3], although its role in path-

ogenesis is still subject to discussion [4–6]. Several PVL-posi-

tive CA-MRSA strains from different clonal groups have

evolved. Some have been confined to certain regions or

localised outbreaks, whereas others have spread worldwide.

One of these strains, a clonal complex 8, spa type t008

MRSA carrying a SCCmec type IV element, has recently

emerged as the dominant MRSA strain in North America,

both in community and hospital settings [7–14]. Colloquially

known as USA300, it has also been reported from Australia,

Canada, Denmark, Germany, Japan, Switzerland and the UK

[10,15–18]. Because of its rapid spread, it has drawn consid-

erable attention, resulting in the sequencing of two complete
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genomes (USA300-FPR3757, GenBank CP000255.1 [19]

and USA300-TCH1516, CP000730.1 [20]). One remarkable

finding was the detection of an arginine catabolic mobile ele-

ment (ACME), which previously only has been found in

Staphylococcus epidermidis. It was hypothesised that ACME

contributed to the ability to metabolically alter the local pH

on the skin. This could increase the ability of USA300 to

persist on intact skin and, consequently, facilitate spread by

skin contact [19,21].

Locally known as WA MRSA-12, several USA300-like

isolates have been identified in Australia [22]. To determine

whether WA MRSA-12 was identical to USA300, we applied

previously developed DNA microarrays on a collection of

Australian PVL-positive ST8-MRSA IV isolates. Variations

detected within this strain may be relevant for typing or

therapeutic interventions.

Material and methods

Isolates and patients

Between July 2003 and February 2008, 76 MRSA isolates from

72 patients living in the Perth area, Western Australia (WA),

were characterised as PVL-positive WA MRSA-12 using

pulsed-field gel electrophoresis (PFGE) [23] and PCR for the

detection of PVL genes using previously published primers

[24]. Representative PFGE patterns are shown in Fig. 1. MLST

and SCCmec typing were performed on 16 isolates (see Sup-

porting Information, Table S1) using previously published

methods [25–28]. Some 62.5% of the patients were male, and

approximately 55% were older than 30 years (Table S1).

Skin and soft tissue infections were reported in 94.4% of

cases. The remaining cases were asymptomatic, and sub-

jected to contact screening. Necrotising pneumonia was not

observed.

To determine the stability of variants, follow-up isolates

from individual patients were also characterised.

The sequenced strain USA300-FPR3757 was included

in the study. Although the second sequenced strain,

USA300-TCH1516, was not tested, a prediction of its

hybridisation profile based on the published genome

sequence allowed a comparison to be made with the WA

isolates.

Array procedures

The DNA array used in the present study covers 334

target sequences. Depending on the nomenclature used,

this corresponds to approximately 185 distinct genes and

their allelic variants, and includes mainly clinically relevant

genes on mobile elements that are not covered by whole-

genome arrays derived from sequenced genomes [29].

The targets, related protocols, data interpretation and evalu-

ation procedures used have been described previously

[30,31].

Briefly, cultures were grown overnight on Columbia blood

agar. Culture material was harvested, lysed using lysostaphin,

lysozyme and ribonuclease A and treated with proteinase K.

DNA was purified using the Qiagen device EZ1 (Qiagen,

Valencia, CA, USA) according to the manufacturer’s tissue

lysis protocol. An iterated, linear primer elongation was

employed for the simultaneous amplification of all targets.

Within this step, amplicons were labelled by incorporation of

biotin-16-dUTP.

The labelled sample was denatured and hybridised to the

array. This was followed by washing steps and by the addi-

tion of a blocking reagent. Horseradish–peroxidase–strepta-

vidin conjugate was then added to the array, followed by

incubation and washing. The array tube was placed into the

ATR01 reading device (Clondiag, Jena, Germany), and Sera-

mun Green precipitating dye (Seramun, Heidesee, Germany)

FIG. 1. Pulsed-field gel electrophoresis pat-

terns of representative USA300 isolates from

the Perth area and their affiliations to variants

based on array hybridisations.
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was added. After 5 min, an image of the array was recorded

and analysed.

Results

Virulence-associated genes and the ACME locus

Array hybridisation and PCR [24] demonstrated that all WA

MRSA-12 isolates harboured the PVL genes, lukF-PV and

lukS-PV.

All but four isolates (94.7%) yielded hybridisation signals

for enterotoxin genes sek and seq. Negative results were

confirmed by PCR (primers sek_forward, ACAGAGAATTT

TCATTTGGATGT and sek_reverse, CACATTTTGCTTAT

CCCTCCT, with a melting temperature during PCR of

55�C, as well as primers seq_forward_2 GCTTCAAGGAGT

TAGTTCTGG and seq_reverse_2 CTTGACCAGTTCCGG

TGT, with a melting temperature of 54�C; see Supporting

Information, Table S1).

One isolate was negative for genes encoding staphylokin-

ase (sak), chemotaxis-inhibiting protein (chp) and staphylo-

coccal complement inhibitor (scn). Two isolates were

positive for sak and scn, but lacked chp. Carriage of set/ssl

genes was identical to USA300-FPR3757 and USA300-

TCH1516 genome sequences and to previously described

USA300 isolates from Germany [30].

Genes of the ACME locus (arcA-SCC, arcB-SCC, arcC-SCC

and arcD-SCC) were detected in 64 (84.2%) of the WA

MRSA-12 isolates. An absence of ACME was confirmed using

two different arcA PCRs [19,32].

Capsule, biofilm and microbial surface components recog-

nizing adhesive matrix molecules (MSCRAMM) genes

Carriage of capsule genes (type 5), biofilm (icaA, icaC, icaD)

and MSCRAMM genes (bbp, clfA, clfB, ebh, ebpS, eno, fib, fnbA,

fnbB, map, sdrC, sdrD and vwb) was identical to USA300-

FPR3757 and USA300-TCH1516.

Antibiotic resistance determinants

Apart from one isolate, all WA MRSA-12 isolates carried

mecA as a part of the SCCmec type IV element. This isolate

initially did not yield hybridisation signals for any of the

SCCmec-associated genes.

However, growth on a broth containing cefoxitin was

observed. DNA from this culture yielded signals for mecA

and all other SCCmec type IV probes (ugpQ, crrA-2, crrB-2,

truncated mecR). Except for these markers, the hybridisation

pattern remained unchanged and allowed assignment to var-

iant L (Figure 2).

The b-lactamase operon (blaZ, blaI, blaR), a gene encoding

a putative transport protein (SAUSA300_2128, USA300-

HOU_2160), and the fosfomycin resistance gene fosB

(SAUSA300_2280, USA300HOU_2313) were detected in all

isolates.

The neo-/kanamycin resistance gene aphA3 and the strep-

tothricin resistance gene sat were jointly detected in 64

(84.2%) isolates. Two genes for macrolide efflux proteins,

msrA and mpbBM were also always found together in 61

(80.3%) isolates.

Comparatively rare resistance determinants included the

rRNA adenine N-6-methyltransferase gene ermC (in seven

isolates, 9.2%), a gene for a tetracycline efflux protein, tetK

(eight isolates, 10.5%), a gene encoding an unspecific efflux

pump (qacC, one isolate, 1.3%), as well as the aminoglycoside

adenyltransferase gene aadD and a gene conferring high level

mupirocin resistance, mupR (two isolates, 2.6%). In WA

MRSA-12 isolates, aadD and mupR genes occurred together,

whereas, in USA300-FPR3757, only mupR was present.

MsrA/mpbBM or ermC were mutually exclusive in all

isolates but one.

The mer operon

The genes merA (encoding mercuric reductase), merB (orga-

nomercurial lyase), merR (regulatory protein) and merT

(transport protein) were detected in eight (10.5%) isolates,

with all of them being ACME-negative.

Variants of the WA MRSA-12 strain

Hybridization profiles identified 16 variants (variants A–P,

Fig. 2) among 76 WA MRSA-12 isolates. Forty-seven isolates

(61.8%) belonged to variant A. An analysis of the genome

sequence of USA300-TCH1516 predicted the same hybrid-

isation pattern as that observed in variant A. Strain CDC

2001-5114, which was used as reference for PFGE, repre-

sents a seventeenth variant. It differed from variant A only in

being tetK-positive. Thus, ‘USA300’ and ‘WA MRSA-12’ can

be regarded as synonyms for one strain. An eighteenth vari-

ant is represented by USA300-FPR3757. Its hybridisation

pattern was in full accordance with a prediction based on its

genome sequence. No clinical isolates of this variant were

found in WA.

To assess the stability of variants, attention focused on

follow-up isolates from individual patients and on isolates

from family members (Table S1). Identical follow-up isolates

from individual cases were recovered after 3, 76 and

580 days. In one case, a patient initially infected with variant

A cultured a follow-up isolate after 205 days, which differed

in the presence of aadD and mupR (variant G).
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In three separate episodes, USA300 was isolated from

family members. In one case, a girl was diagnosed with a

variant I infection, 295 days after the same variant was

recovered from her mother. In another case, two isolates

of variant A were sampled within 1 month from two

siblings.

In a third family, both parents and their two children

were, within a period of 7 months, infected with variant A.

Discussion

USA300 is a PVL-positive, CA-MRSA strain that has spread

rapidly in North America. Sporadic cases and outbreaks have

been reported from various European countries and in

Australia. In WA, the first infection with USA300/WA

MRSA-12 was reported in 2003. Subsequently, an increase in

the number of cases has occurred, particularly within 2007

and in 2008 (Fig. 3).

USA300 isolates were not identical to each other. Thus,

USA300 cannot be regarded as a genetically homogenous

unit. Whether, for example, ACME-positive and -negative

isolates should be regarded as variants of one strain, or as

two different strains, is a matter of definition, raising the

question of how to define a strain in general and USA300 in

particular. Variations within USA300 affected virulence

factors and antibiotic resistance determinants. MSCRAMM,

capsule or set/ssl gene carriage was uniform, and closely

resembled the other clonal complex 8 strains [30], including

NCTC8325 [33]. It can be assumed that the lack of variabil-

ity of these genes was due to the relatively short time-span

of USA300 proliferation, whereas virulence- and resistance-

associated genes varied on a faster time-scale because they

are situated on mobile elements.

FIG. 2. Variants of clinical West Austra-

lian MRSA-12 isolates. Experimental data

for the sequenced strain USA300-

FPR3757 and for strain CDC 2001-5114

(which was used as reference strain for

pulsed-field gel electrophoresis experi-

ments), as well as the predicted hybrid-

isation profile for the sequenced strain

USA300-TCH1516, are shown for

comparison.

FIG. 3. Number of isolates per 3 mont-

hs interval. Black, West Australian MRS-

A-12 variant A; Grey, isolates of other

ACME-positive variants; White, ACME-

negative isolates; asterisk, January and

February only.
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One isolate lacked the phage-born innate immune evasion

cluster (which truncates the hlb gene by introducing sak, chp

and scn [34,35]), and some isolates were negative for sek and

seq. Because ST80-MRSA IV also lacks enterotoxin genes

[36], it could be speculated that, for PVL-positive strains,

some virulence factors were expendable without selective

disadvantage.

Carriage of ACME was also variable. This is especially

intriguing because this locus is assumed to be involved in

facilitating the spread of USA300 by skin contact [19,21].

ACME-negative variants of USA300 appear to be common in

WA. They also exist in the USA but appear to be extremely

rare (one study found none [37] and another identified a

single isolate [38]), and they have been reported in Germany

[39]. Thus, they are not restricted to WA, and a strategy to

identify USA300 by multiplex PCR detection of PVL, mecA

and ACME can confirm, but not rule out, the presence of

USA300. Because of the limited time of the presence of

USA300 in WA, further studies should focus on possible

changes of the ratio of ACME-positive to -negative variants.

This may improve our understanding of the clinical signifi-

cance of this element and its proposed role in the rapid

spread of USA300.

The variability of resistance genes was not unexpected

because these genes are subjected to a high, but variable

selective pressure.

In one isolate, negative signals for SCCmec probes were

observed but, after passage on a cefoxitin-containing medium,

the resulting culture was positive for these genes. We assume

that a majority of cells lost the SCCmec element, but that a

small mecA-positive subpopulation below the detection limit of

linear amplification was still present. In the presence of cefoxi-

tin, this subpopulation had a selective advantage resulting in

displacement of the deletion variant. A loss of SCCmec ele-

ments from MRSA has occasionally been observed [40–42],

emphasising the mobility of the SCCmec gene cluster.

Other common, but variable resistance genes included the

b-lactamase operon and a fixed combination of sat and

aphA3. The latter genes are frequently detected in diverse

MRSA strains, including ST8-MRSA IV, ST45-MRSA IV, ST80-

MRSA IV and ST228-MRSA I [30]. Because neomycin is com-

monly used as topical preparation, aphA3 might confer an

advantage to a strain usually associated with skin infections.

Another apparently fixed combination of resistance genes

comprised aadD and mupR, encoding resistance to neomycin,

tobramycin and mupirocin. Although mupR was rare, it

deserves further attention because mupirocin is crucial for

the eradication of MRSA. Macrolide resistance genes were

common. The genes msrA/mpbBM or ermC, apart from a sin-

gle exception, proved to be mutually exclusive. This might

indicate that the maintenance of multiple genes conferring

similar resistance properties could result in an unnecessary

fitness cost. Because ermC encodes not only macrolide, but

also clindamycin resistance, it might confer a more significant

advantage. In other MRSA strains, erm genes are more abun-

dant than msrA [43] but, in USA300, msrA/mpbBM positive

isolates predominate. Thus, clindamycin can be considered as

therapeutic option, although a widespread application might

favour ermC positive variants of USA300.

Surprisingly, the mercury resistance (mer) operon was

found in ACME-negative USA300 isolates. It can be plasmid-

borne (GenBank L29436) but, similar to ACME, it can also

be associated with recombinases (GenBank AB037671, [44])

forming some kind of SCC element. Thus, its genetic back-

ground and its position in the USA300 genome remains to

be clarified.

Further isolates from diverse regions and over a longer

time-span need to be studied to determine whether the

described variability represents random variations, or an

early stage of a rift into separate strains. It will also be inter-

esting to observe the competition of variants which are—

except for a small number of genes—essentially isogenic. An

especially successful variant can be expected to combine

genetic traits that also are responsible for the success of

USA300, regardless of whether this might be the carriage of

PVL, ACME [19,21] or another factor yet to be identified. In

the present study, variant A appeared to be most successful.

Because it was the first USA300 variant detected in WA, it

can be regarded as the founder variant, from which variants

B–L, and possibly M, may have been derived by a limited

number of gene losses or acquisitions. Variant A appears to

be geographically widespread because it has been found in

Texas (USA300-TC1516), in the German states Saxony

[16,30] and Brandenburg, and in Switzerland (isolates cour-

tesy of T. Juratzek and B. Berger-Baechi).

The explosive expansion of USA300 still warrants further

study. DNA microarray technology might contribute to the

understanding of this phenomenon by resolving variants

below strain level. This might be helpful for tracing chains of

transmissions and elucidating the sources of importation of

that strain into a given region.
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Isolate
Date of sample 
collection

Gender Date of birth Postal code Clinical Presentation Comments PFGE TYPE MLST
SCCmec 
Typing

PVL-PCR as 
described by Fey 
2003

sek-PCR as 
described in this 
paper

seq-PCR as 
described in this 
paper

arcA-PCR as 
described by Diep 
2006

arcA-PCR as 
described by 
Zhang 2008

GENT ERYT CLIN TETR CIPR TMP FUSI RIFA MUPR Varint according to array analysis

03-16593 10-Jul-03 F 30-Sep-79 6029 Wound swab WA 12 POS S R S (non inducible) S R S S S S Variant A 

04-15400 10-Feb-04 F 10-Feb-60 6211 Surgical wound WA 12 ST8 IV POS POS S R S (non inducible) S S S S S S Variant A 

04-18066 22-Nov-04 M 04-Mar-98 6014 Abscess, leg Sibling of 04-18340 WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

04-18334 26-Dec-04 F 03-Oct-62 6111 SSTI WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

04-18340 23-Dec-04 F 13-Mar-00 6014 Wound swab Sibling of 04-18066 WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

05-15242 29-Jan-05 M 27-Aug-30 6010 Sputum Same patient as 05-15965 WA 12 ST8 IV S R S (non inducible) S R S S S S Variant A 

05-15965 15-Apr-05 M 27-Aug-30 6010 SSTI, neck Same patient as 05-15242 WA 12 S R S (non inducible) S R S S S R Variant A 

05-16235 14-May-05 F 03-Mar-94 6025 SSTI, shoulder WA 12 ST8 IV POS S R S (non inducible) S R S S S S Variant A 

05-16940 21-Jul-05 M 19-Apr-79 6155 SSTI, Wrist WA 12 POS S R S (non inducible) S S S S S S Variant A 

05-17243 19-Aug-05 M 09-Aug-34 6010 Scalp wound WA 12 POS S R S (non inducible) S R S S S S Variant A 

05-18090 10-Nov-05 M 08-Sep-67 6164 SSTI, elbow Same patient as 05-18104 WA 12 ST8 IV POS S R S (non inducible) S R S S S S Variant A 

05-18104 07-Nov-05 M 08-Sep-67 6164 SSTI, elbow Same patient as 05-18090 WA 12 POS S R S (non inducible) S R S S S S Variant A 

06-16044 12-Apr-06 M 14-Jun-37 6008 Wound swab WA 12 POS S R S (non inducible) S R S S S R Variant A 

06-16229 03-May-06 M 15-Jun-61 6025 Wound, knee WA 12 ST8 IVa POS POS S R S (non inducible) S S S S S S Variant A 

06-16691 14-Jun-06 F 03-Jul-41 6019 Nasal Swab (Patient) Same patient as 08-15180 WA 12 POS S R S (non inducible) S S S S S S Variant A 

06-16786 21-Jun-06 M 16-Aug-85 6230 SSTI, leg and forearms WA 12 POS S R S (non inducible) S R S S S S Variant A 

06-17275 16-Aug-06 F 25-Oct-82 6062 Bartholin. Abscess WA 12 ST8 IVa POS POS S R S (non inducible) S S S S S S Variant A 

06-17519 10-Sep-06 F 20-Jul-95 6168 Abscess, thigh Same family as 06-18270, 07-15379, 07-15590 WA 12 ST8 IV POS POS S R S (non inducible) S R S S S S Variant A 

06-17899 18-Oct-06 F 25-Jul-65 6057 Abscess WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

06-18011 24-Oct-06 M 03-Jun-65 6062 Nasal Swab (Patient) Same patient as 06-15950 WA 12 POS POS S R S (non inducible) S R S S S S Variant A 

06-18195 16-Nov-06 F 28-Feb-79 6230 Drainage of an abscess WA 12 POS POS S R S (non inducible) S R S S S S Variant A 

06-18270 21-Nov-06 M 02-Mar-77 6169 unknown Same family as 06-17519, 07-15379, 07-15590 WA 12 POS NEG S R S (non inducible) S R S S S S Variant A 

07-15220 15-Jan-07 M 19-Oct-55 6019 Wound swab WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

07-15379 02-Feb-07 F 21-Sep-63 6169 SSTI, finger Same family as 06-17519, 06-18270, 07-15590 WA 12 POS POS S R S (non inducible) S R S S S S Variant A 

07-15590 20-Feb-07 M 02-Mar-99 6169 Abscess, knee Same family as 06-17519, 06-18270, 07-15379 WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-16431 02-May-07 F 16-Nov-78 6155 SSTI, back WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

07-17131 28-Jun-07 F 20-Sep-33 6122 Swab, eye WA 12 POS POS S R S (non inducible) S R S S S S Variant A 

07-17307 18-Jul-07 F 31-Jul-75 6164 Wound swab WA 12 POS POS S R S S S S S S S Variant A 

07-17723 16-Aug-07 M 04-Nov-38 9999 Sputum WA 12 POS S R S (non inducible) S S S S S S Variant A 

07-17974 11-Sep-07 F 23-Aug-30 6105 SSTI WA 12 POS S R S (non inducible) S S S S S S Variant A 

07-18252 05-Oct-07 M 05-May-87 6102 Abscess WA 12 POS POS S R S S S S S S S Variant A 

07-18298 10-Oct-07 M 19-Sep-95 6169 SSTI WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-18413 21-Sep-07 M 23-Nov-35 6027 Abscess, neck WA 12 POS S R S (non inducible) S S S S S S Variant A 

07-18756 12-Nov-07 M 14-Mar-66 8888 Abscess, neck WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-18831 17-Nov-07 M 14-Aug-79 6008 SSTI, leg WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-18848 13-Nov-07 M 03-May-53 6010 Boil, axilla WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-18878 20-Nov-07 M 27-Aug-65 6017 SSTI WA 12 POS POS POS POS S R S (non inducible) S S S S S S Variant A 

07-18956 17-Nov-07 F 27-Aug-71 6025 SSTI WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-19150 10-Dec-07 M 15-Mar-59 6050 Furuncle WA 12 POS POS POS POS S R S (non inducible) S S S S S S Variant A 

08-15158 14-Jan-08 Sydney 20-Oct-34 6021 Abscess, axilla WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15180 15-Jan-08 F 03-Jul-41 6019 SSTI, leg Same patient as 06-16691 WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15332 21-Jan-08 M 21-Jan-88 6018 SSTI, elbow WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15361 28-Jan-08 M 18-Jan-70 6169 SSTI, elbow WA 12 POS S R S (non inducible) S R S S S S Variant A 

08-15503 08-Feb-08 M 21-Oct-47 6284 Wound swab WA 12 POS S R S (non inducible) S R S S S S Variant A 

08-15635 15-Feb-08 F 12-Jan-66 6030 Infected Boil WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15653 18-Feb-08 F 27-May-83 6025 Pus WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15674 20-Feb-08 F 01-Mar-68 6059 SSTI, buttock WA 12 POS POS POS POS S R S (non inducible) S S S S S S Variant A 

06-16917 03-Jul-06 M 14-May-44 6110 Nasal Swab (Patient) WA 12 POS POS S R S (non inducible) S R S S S S Variant B 

06-15051 06-Jan-06 M 03-Nov-88 6027 Elbow aspirate WA 12 POS NEG NEG POS S R S (non inducible) S S S S S S Variant C 

06-16748 14-Jun-06 M 26-Mar-71 6152 SSTI, cheek WA 12 POS NEG NEG POS S R S (non inducible) S S S S S S Variant C 

06-16898 06-Jul-06 F 21-Jan-85 6009 SSTI WA 12 POS NEG NEG POS POS S R S (non inducible) S R S S S S Variant D 

08-15694 19-Feb-08 M 09-Nov-84 6014 SSTI, leg WA 12 POS S R S (non inducible) R R S S S S Variant E 

06-17364 23-Aug-06 M 30-Oct-66 6281 SSTI, finger WA 12 ST8 IV POS POS S R S (non inducible) R R S S S R Variant F 

06-15950 02-Apr-06 M 03-Jun-65 6062 Perianal abscess Same patient as 06-18011 WA 12 ST8 IV POS POS S R S (non inducible) S R S S S R Variant G 

07-17473 28-Jul-07 M 01-Jul-85 6162 SSTI, buttock WA 12 POS POS S R constitutive R R S S S S S Variant H 

04-15151 19-Jan-04 F 25-Feb-74 6152 SSTI, Right hip Mother of 04-17898 WA 12 POS S R S (non inducible) S R S S S S Variant I 

04-17898 09-Nov-04 F 12-Apr-92 6152 Facial swab Daughter of 04-15151 WA 12 POS S R S (non inducible) S R S S S S Variant I 

07-17843 31-Aug-07 M 04-Mar-92 6011 SSTI, labial tissue WA 12 POS S R constitutive R S S S S S S Variant J 

06-18368 25-Nov-06 M 12-Oct-87 6030 SSTI, leg WA 12 POS POS S S S S S S S S Variant K 

07-16214 03-Apr-07 F 06-Feb-66 6060 SSTI, groin WA 12 POS POS S R constitutive R S S S S S S Variant L 

07-16814 06-Jun-07 F 30-Jan-93 6011 Putrid lesion WA 12 POS POS S R S (non inducible) S S S S S S Variant L 

07-17877 04-Sep-07 F 31-Jul-91 6009 Perianal abscess WA 12 POS POS S R constitutive R S S S S S S Variant L 

07-19108 07-Dec-07 M 14-Nov-88 6010 SSTI, groin WA 12 POS S R constitutive R S S S S S S Variant L 

07-16859 09-Jun-07 F 03-Feb-91 6003 Pus, thigh WA 12 POS POS S R S (non inducible) S S S S S S Variant L (with/without SCC deletion)

07-16974 05-Jun-07 M 22-Sep-76 6152 Abscess WA 12 ST8 IV POS NEG NEG S R S (non inducible) S R S S S S Variant M 

07-17882 06-Sep-07 M 20-Apr-86 6014 SSTI WA 12 POS NEG NEG S R S S R S S S S Variant M 

05-18180 14-Nov-05 M 09-Dec-51 6162 SSTI WA 12 ST8 IV POS NEG NEG S R S (non inducible) S R S S S R Variant M 

07-19147 12-Dec-07 M 30-Jun-84 6160 Abscess, forearm WA 12 POS NEG NEG S R S (non inducible) S R S S S S Variant M 

05-15946 12-Apr-05 M 12-Jun-59 6005 Abscess WA 12 ST8 IV POS NEG NEG S S S S S S S S Variant N 

05-17686 27-Sep-05 M 08-Jan-63 6025 SSTI, thigh WA 12 ST8 IV POS NEG NEG S S S S S S S S Variant N 

07-18464 15-Oct-07 F 21-Jan-67 6450 SSTI, leg WA 12 POS NEG S S S S S S S S S Variant N 

07-19345 28-Dec-07 M 27-Sep-85 6230 Facial abscess WA 12 POS NEG NEG NEG S S R S S S S S Variant O 

04-15086 08-Jan-04 M 12-Dec-78 6020 SSTI, swab WA 12 ST8 IV POS NEG NEG S S R S S S S S Variant P 

08-15094 02-Jan-08 M 20-Mar-80 Putrid boils WA 12 POS NEG S S S R S S S S S Variant P 

07-15566 13-Feb-07 F 14-Aug-41 6210 SSTI, buttock WA 12 ST8 IV POS NEG NEG S S R S S S S S Variant P 

06-17244 31-Jul-06 M 31-Jan-69 6160 Nasal swab (screening) WA 12 ST8 IV POS NEG NEG S S R S S S S S Variant P 



Isolate
Date of sample 
collection

Gender Date of birth Postal code Clinical Presentation Comments PFGE TYPE MLST
SCCmec 
Typing

PVL-PCR as 
described by Fey 
2003

sek-PCR as 
described in this 
paper

seq-PCR as 
described in this 
paper

arcA-PCR as 
described by Diep 
2006

arcA-PCR as 
described by 
Zhang 2008

GENT ERYT CLIN TETR CIPR TMP FUSI RIFA MUPR Varint according to array analysis

03-16593 10-Jul-03 F 30-Sep-79 6029 Wound swab WA 12 POS S R S (non inducible) S R S S S S Variant A 

04-15086 08-Jan-04 M 12-Dec-78 6020 SSTI, swab WA 12 ST8 IV POS NEG NEG S S R S S S S S Variant P 

04-15151 19-Jan-04 F 25-Feb-74 6152 SSTI, Right hip Mother of 04-17898 WA 12 POS S R S (non inducible) S R S S S S Variant I 

04-15400 10-Feb-04 F 10-Feb-60 6211 Surgical wound WA 12 ST8 IV POS POS S R S (non inducible) S S S S S S Variant A 

04-17898 09-Nov-04 F 12-Apr-92 6152 Facial swab Daughter of 04-15151 WA 12 POS S R S (non inducible) S R S S S S Variant I 

04-18066 22-Nov-04 M 04-Mar-98 6014 Abscess, leg Sibling of 04-18340 WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

04-18340 23-Dec-04 F 13-Mar-00 6014 Wound swab Sibling of 04-18066 WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

04-18334 26-Dec-04 F 03-Oct-62 6111 SSTI WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

05-15242 29-Jan-05 M 27-Aug-30 6010 Sputum Same patient as 05-15965 WA 12 ST8 IV S R S (non inducible) S R S S S S Variant A 

05-15946 12-Apr-05 M 12-Jun-59 6005 Abscess WA 12 ST8 IV POS NEG NEG S S S S S S S S Variant N 

05-15965 15-Apr-05 M 27-Aug-30 6010 SSTI, neck Same patient as 05-15242 WA 12 S R S (non inducible) S R S S S R Variant A 

05-16235 14-May-05 F 03-Mar-94 6025 SSTI, shoulder WA 12 ST8 IV POS S R S (non inducible) S R S S S S Variant A 

05-16940 21-Jul-05 M 19-Apr-79 6155 SSTI, Wrist WA 12 POS S R S (non inducible) S S S S S S Variant A 

05-17243 19-Aug-05 M 09-Aug-34 6010 Scalp wound WA 12 POS S R S (non inducible) S R S S S S Variant A 

05-17686 27-Sep-05 M 08-Jan-63 6025 SSTI, thigh WA 12 ST8 IV POS NEG NEG S S S S S S S S Variant N 

05-18104 07-Nov-05 M 08-Sep-67 6164 SSTI, elbow Same patient as 05-18090 WA 12 POS S R S (non inducible) S R S S S S Variant A 

05-18090 10-Nov-05 M 08-Sep-67 6164 SSTI, elbow Same patient as 05-18104 WA 12 ST8 IV POS S R S (non inducible) S R S S S S Variant A 

05-18180 14-Nov-05 M 09-Dec-51 6162 SSTI WA 12 ST8 IV POS NEG NEG S R S (non inducible) S R S S S R Variant M 

06-15051 06-Jan-06 M 03-Nov-88 6027 Elbow aspirate WA 12 POS NEG NEG POS S R S (non inducible) S S S S S S Variant C 

06-15950 02-Apr-06 M 03-Jun-65 6062 Perianal abscess Same patient as 06-18011 WA 12 ST8 IV POS POS S R S (non inducible) S R S S S R Variant G 

06-16044 12-Apr-06 M 14-Jun-37 6008 Wound swab WA 12 POS S R S (non inducible) S R S S S R Variant A 

06-16229 03-May-06 M 15-Jun-61 6025 Wound, knee WA 12 ST8 IVa POS POS S R S (non inducible) S S S S S S Variant A 

06-16691 14-Jun-06 F 03-Jul-41 6019 Nasal Swab (Patient) Same patient as 08-15180 WA 12 POS S R S (non inducible) S S S S S S Variant A 

06-16748 14-Jun-06 M 26-Mar-71 6152 SSTI, cheek WA 12 POS NEG NEG POS S R S (non inducible) S S S S S S Variant C 

06-16786 21-Jun-06 M 16-Aug-85 6230 SSTI, leg and forearms WA 12 POS S R S (non inducible) S R S S S S Variant A 

06-16917 03-Jul-06 M 14-May-44 6110 Nasal Swab (Patient) WA 12 POS POS S R S (non inducible) S R S S S S Variant B 

06-16898 06-Jul-06 F 21-Jan-85 6009 SSTI WA 12 POS NEG NEG POS POS S R S (non inducible) S R S S S S Variant D 

06-17244 31-Jul-06 M 31-Jan-69 6160 Nasal swab (screening) WA 12 ST8 IV POS NEG NEG S S R S S S S S Variant P 

06-17275 16-Aug-06 F 25-Oct-82 6062 Bartholin. Abscess WA 12 ST8 IVa POS POS S R S (non inducible) S S S S S S Variant A 

06-17364 23-Aug-06 M 30-Oct-66 6281 SSTI, finger WA 12 ST8 IV POS POS S R S (non inducible) R R S S S R Variant F 

06-17519 10-Sep-06 F 20-Jul-95 6168 Abscess, thigh Same family as 06-18270, 07-15379, 07-15590 WA 12 ST8 IV POS POS S R S (non inducible) S R S S S S Variant A 

06-17899 18-Oct-06 F 25-Jul-65 6057 Abscess WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

06-18011 24-Oct-06 M 03-Jun-65 6062 Nasal Swab (Patient) Same patient as 06-15950 WA 12 POS POS S R S (non inducible) S R S S S S Variant A 

06-18195 16-Nov-06 F 28-Feb-79 6230 Drainage of an abscess WA 12 POS POS S R S (non inducible) S R S S S S Variant A 

06-18270 21-Nov-06 M 02-Mar-77 6169 unknown Same family as 06-17519, 07-15379, 07-15590 WA 12 POS NEG S R S (non inducible) S R S S S S Variant A 

06-18368 25-Nov-06 M 12-Oct-87 6030 SSTI, leg WA 12 POS POS S S S S S S S S Variant K 

07-15220 15-Jan-07 M 19-Oct-55 6019 Wound swab WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

07-15379 02-Feb-07 F 21-Sep-63 6169 SSTI, finger Same family as 06-17519, 06-18270, 07-15590 WA 12 POS POS S R S (non inducible) S R S S S S Variant A 

07-15566 13-Feb-07 F 14-Aug-41 6210 SSTI, buttock WA 12 ST8 IV POS NEG NEG S S R S S S S S Variant P 

07-15590 20-Feb-07 M 02-Mar-99 6169 Abscess, knee Same family as 06-17519, 06-18270, 07-15379 WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-16214 03-Apr-07 F 06-Feb-66 6060 SSTI, groin WA 12 POS POS S R constitutive R S S S S S S Variant L 

07-16431 02-May-07 F 16-Nov-78 6155 SSTI, back WA 12 POS POS S R S (non inducible) S S S S S S Variant A 

07-16974 05-Jun-07 M 22-Sep-76 6152 Abscess WA 12 ST8 IV POS NEG NEG S R S (non inducible) S R S S S S Variant M 

07-16814 06-Jun-07 F 30-Jan-93 6011 Putrid lesion WA 12 POS POS S R S (non inducible) S S S S S S Variant L 

07-16859 09-Jun-07 F 03-Feb-91 6003 Pus, thigh WA 12 POS POS S R S (non inducible) S S S S S S Variant L (with/without SCC deletion)

07-17131 28-Jun-07 F 20-Sep-33 6122 Swab, eye WA 12 POS POS S R S (non inducible) S R S S S S Variant A 

07-17307 18-Jul-07 F 31-Jul-75 6164 Wound swab WA 12 POS POS S R S S S S S S S Variant A 

07-17473 28-Jul-07 M 01-Jul-85 6162 SSTI, buttock WA 12 POS POS S R constitutive R R S S S S S Variant H 

07-17723 16-Aug-07 M 04-Nov-38 9999 Sputum WA 12 POS S R S (non inducible) S S S S S S Variant A 

07-17843 31-Aug-07 M 04-Mar-92 6011 SSTI, labial tissue WA 12 POS S R constitutive R S S S S S S Variant J 

07-17877 04-Sep-07 F 31-Jul-91 6009 Perianal abscess WA 12 POS POS S R constitutive R S S S S S S Variant L 

07-17882 06-Sep-07 M 20-Apr-86 6014 SSTI WA 12 POS NEG NEG S R S S R S S S S Variant M 

07-17974 11-Sep-07 F 23-Aug-30 6105 SSTI WA 12 POS S R S (non inducible) S S S S S S Variant A 

07-18413 21-Sep-07 M 23-Nov-35 6027 Abscess, neck WA 12 POS S R S (non inducible) S S S S S S Variant A 

07-18252 05-Oct-07 M 05-May-87 6102 Abscess WA 12 POS POS S R S S S S S S S Variant A 

07-18298 10-Oct-07 M 19-Sep-95 6169 SSTI WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-18464 15-Oct-07 F 21-Jan-67 6450 SSTI, leg WA 12 POS NEG S S S S S S S S S Variant N 

07-18756 12-Nov-07 M 14-Mar-66 8888 Abscess, neck WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-18848 13-Nov-07 M 03-May-53 6010 Boil, axilla WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-18831 17-Nov-07 M 14-Aug-79 6008 SSTI, leg WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-18956 17-Nov-07 F 27-Aug-71 6025 SSTI WA 12 POS S R S (non inducible) S R S S S S Variant A 

07-18878 20-Nov-07 M 27-Aug-65 6017 SSTI WA 12 POS POS POS POS S R S (non inducible) S S S S S S Variant A 

07-19108 07-Dec-07 M 14-Nov-88 6010 SSTI, groin WA 12 POS S R constitutive R S S S S S S Variant L 

07-19150 10-Dec-07 M 15-Mar-59 6050 Furuncle WA 12 POS POS POS POS S R S (non inducible) S S S S S S Variant A 

07-19147 12-Dec-07 M 30-Jun-84 6160 Abscess, forearm WA 12 POS NEG NEG S R S (non inducible) S R S S S S Variant M 

07-19345 28-Dec-07 M 27-Sep-85 6230 Facial abscess WA 12 POS NEG NEG NEG S S R S S S S S Variant O 

08-15094 02-Jan-08 M 20-Mar-80 Putrid boils WA 12 POS NEG S S S R S S S S S Variant P 

08-15158 14-Jan-08 Sydney 20-Oct-34 6021 Abscess, axilla WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15180 15-Jan-08 F 03-Jul-41 6019 SSTI, leg Same patient as 06-16691 WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15332 21-Jan-08 M 21-Jan-88 6018 SSTI, elbow WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15361 28-Jan-08 M 18-Jan-70 6169 SSTI, elbow WA 12 POS S R S (non inducible) S R S S S S Variant A 

08-15503 08-Feb-08 M 21-Oct-47 6284 Wound swab WA 12 POS S R S (non inducible) S R S S S S Variant A 

08-15635 15-Feb-08 F 12-Jan-66 6030 Infected Boil WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15653 18-Feb-08 F 27-May-83 6025 Pus WA 12 POS S R S (non inducible) S S S S S S Variant A 

08-15694 19-Feb-08 M 09-Nov-84 6014 SSTI, leg WA 12 POS S R S (non inducible) R R S S S S Variant E 

08-15674 20-Feb-08 F 01-Mar-68 6059 SSTI, buttock WA 12 POS POS POS POS S R S (non inducible) S S S S S S Variant A 
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and analysis of their accessory gene regulator locus. 

Monecke S, Kanig H, Rudolph W, Müller E, Coombs G, Hotzel H, Slickers 

P, Ehricht R. 

PLoS One. 2010 Nov 17;5(11):e14025. PMID: 21103340  

 

2. Incidence, risk factors, and outcomes of Panton-Valentine leukocidin-positive 

methicillin-susceptible Staphylococcus aureus infections in Auckland, New 

Zealand. 

Muttaiyah S, Coombs G, Pandey S, Reed P, Ritchie S, Lennon D, Roberts S. 

J Clin Microbiol. 2010 Oct;48(10):3470-4. Epub 2010 Aug 4. PMID: 

20686081  

 

3. Clinical and laboratory features of invasive community-onset methicillin-

resistant Staphylococcus aureus infection: a prospective case-control study. 

Wehrhahn MC, Robinson JO, Pearson JC, O'Brien FG, Tan HL, Coombs 

GW, Pascoe EM, Lee R, Salvaris P, Salvaris R, New D, Murray RJ. 

Eur J Clin Microbiol Infect Dis. 2010 Aug;29(8):1025-33. Epub 2010 Jun 12. 

PMID: 20549534  

 

4. Rapid detection of H and R Panton-Valentine leukocidin isoforms in 

Staphylococcus aureus by high-resolution melting analysis. 

Tong SY, Lilliebridge RA, Holt DC, Coombs GW, Currie BJ, Giffard PM. 

Diagn Microbiol Infect Dis. 2010 Aug;67(4):399-401. PMID: 20638613  
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5. Community-acquired pneumonia due to pandemic A(H1N1)2009 

influenzavirus and methicillin resistant Staphylococcus aureus co-infection. 

Murray RJ, Robinson JO, White JN, Hughes F, Coombs GW, Pearson JC, 

Tan HL, Chidlow G, Williams S, Christiansen KJ, Smith DW. 

PLoS One. 2010 Jan 14;5(1):e8705. PMID: 20090931 
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11.4. 2009 PEER REVIEWED PUBLICATIONS 

 

1. Intrafamilial transmission of methicillin-resistant Staphylococcus aureus 

Pozzi Langhi SA, Robinson JO, Pearson JC, Christiansen KJ, Coombs GW, 

Murray RJ. 

Emerg Infect Dis. 2009 Oct;15(10):1687-9. PMID: 19861077 

  

2. Staphylococcus aureus bacteraemia: a major cause of mortality in Australia 

and New Zealand. 

Turnidge JD, Kotsanas D, Munckhof W, Roberts S, Bennett CM, Nimmo GR, 

Coombs GW, Murray RJ, Howden B, Johnson PD, Dowling K; Australia 

New Zealand Cooperative on Outcomes in Staphylococcal Sepsis. 

Med J Aust. 2009 Oct 5;191(7):368-73. PMID: 19807625  

 

3. Community-associated versus healthcare-associated methicillin-resistant 

Staphylococcus aureus bacteraemia: a 10-year retrospective review. 

Robinson JO, Pearson JC, Christiansen KJ, Coombs GW, Murray RJ. 

Eur J Clin Microbiol Infect Dis. 2009 Apr;28(4):353-61. Epub 2008 Oct 11. 

PMID: 18850122  

 

4. Prevalence of MRSA strains among Staphylococcus aureus isolated from 

outpatients, 2006. 

Coombs GW, Nimmo GR, Pearson JC, Christiansen KJ, Bell JM, Collignon 

PJ, McLaws ML; Australian Group for Antimicrobial Resistance. 

Commun Dis Intell. 2009 Mar;33(1):10-20. PMID:19618763  
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11.5. 2008 PEER REVIEWED PUBLICATIONS 

 

1. Frequent emergence and limited geographic dispersal of methicillin-resistant 

Staphylococcus aureus. 

Nübel U, Roumagnac P, Feldkamp M, Song JH, Ko KS, Huang YC, Coombs 

G, Ip M, Westh H, Skov R, Struelens MJ, Goering RV, Strommenger B, 

Weller A, Witte W, Achtman M. 

Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):14130-5. Epub 2008 Sep 4. 

PMID: 18772392  

 

2. Community-associated methicillin-resistant Staphylococcus aureus (MRSA) 

in Australia. 

Nimmo GR, Coombs GW. 

Int J Antimicrob Agents. 2008 May;31(5):401-10. Epub 2008 Mar 14. 

Review. 

PMID: 18342492  
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11.6. 2007 PEER REVIEWED PUBLICATIONS 

 

1. Comparative genomics and DNA array-based genotyping of pandemic 

Staphylococcus aureus strains encoding Panton-Valentine leukocidin. 

Monecke S, Berger-Bächi B, Coombs G, Holmes A, Kay I, Kearns A, Linde 

HJ, O'Brien F, Slickers P, Ehricht R. 

Clin Microbiol Infect. 2007 Mar;13(3):236-49. PMID: 17391377  
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11.7. 2006 PEER REVIEWED PUBLICATIONS 

 

1. Molecular typing of methicillin-resistant staphylococci isolated from cats and 

dogs. 

Malik S, Coombs GW, O'Brien FG, Peng H, Barton MD. 

J Antimicrob Chemother. 2006 Aug;58(2):428-31. Epub 2006 Jun 16. 

PMID: 16782740  

  

2. Non-multiresistant methicillin-resistant Staphylococcus aureus bacteraemia 

in Sydney, Australia: emergence of EMRSA-15, Oceania, Queensland and 

Western Australian MRSA strains. 

Gosbell IB, Barbagiannakos T, Neville SA, Mercer JL, Vickery AM, O'Brien 

FG, Coombs GW, Malkowski MJ, Pearson JC. 

Pathology. 2006 Jun;38(3):239-44. PMID: 16753746  

 

3. Methicillin-resistant Staphylococcus aureus in the Australian community: an 

evolving epidemic. 

Nimmo GR, Coombs GW, Pearson JC, O'Brien FG, Christiansen KJ, 

Turnidge JD, Gosbell IB, Collignon P, McLaws ML. 

Med J Aust. 2006 Apr 17;184(8):384-8. PMID: 16618236  

 

4. Methicillin-resistant Staphylococcus aureus clones, Western Australia. 

Coombs GW, Pearson JC, O'Brien FG, Murray RJ, Grubb WB, Christiansen 

KJ. 

Emerg Infect Dis. 2006 Feb;12(2):241-7. PMID: 16494749  
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11.8. 2005 PEER REVIEWED PUBLICATIONS 

 

1. Type V staphylococcal cassette chromosome mec in community 

staphylococci from Australia. 

O'Brien FG, Coombs GW, Pearson JC, Christiansen KJ, Grubb WB. 

Antimicrob Agents Chemother. 2005 Dec;49(12):5129-32. PMID: 16304184  

 

2. Macrolide, lincosamide and streptogramin B resistance in a dominant clone 

of Australian community methicillin-resistant Staphylococcus aureus. 

O'Brien FG, Zaini Z, Coombs GW, Pearson JC, Christiansen K, Grubb WB. 

J Antimicrob Chemother. 2005 Nov;56(5):985-6. Epub 2005 Oct 4. PMID:  

16204342  

 

3. Methicillin-resistant Staphylococcus aureus, Western Australia. 

Dailey L, Coombs GW, O'Brien FG, Pearman JW, Christiansen K, Grubb 

WB, Riley TV. 

Emerg Infect Dis. 2005 Oct;11(10):1584-90. PMID: 16318700  
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12.1. International Symposium on Staphylococci and Staphylococcal  

Infections (ISSSI) 

 

2012 

15th International Symposium on Staphylococci and Staphylococcal Infections 

(ISSI2012): Lyon, France 

 

Molecular Epidemiology of the Highly Virulent ST93 Australian Community 

S. aureus Strain 

Coombs G, Goering R, Chua K, Monecke S, Howden B, Stinear T, Ehricht R, 

O’Brien F, Christiansen K 

 

2010 

14th International symposium on Staphylococci and Staphylococcal Infections 

(ISSSI2010): Bath, United Kingdom  

 

Introduction of a Multi-Resistant Panton-Valentine Leucocidin Positive 

Community Associated MRSA into Western Australia 

Pearson J, Coombs G, Tan H-L, Cramer S, Wilson L, Chew YK, O’Brien F, 

Christiansen K 

 

Staphylococcus aureus Infection and Colonisation in the Community in 

Melbourne, Australia 

Bennett C, Coombs G, Wood G, Howden B, Quek T, Parrott C, Craven J, 

Johnson P 

12. RELEVANT CONFERENCE PAPERS  



 - 100 - 

2008 

13th International Symposium on Staphylococci and Staphylococcal Infections 

(ISSI 2008): Cairns, Australia  

 

Molecular Diversity of MRSA in Australia 

Coombs G 

 

Culture Confirmation of Positive BD GeneOhm MRSA Assay Results 

Coombs G, Lee R, Cramer S, Kay I, Christiansen 

  

Intra-strain Variability of USA300 MRSA Isolated in Western Australia 

Monecke S, Ehricht R, Slickers P, Tan HL, Coombs G 

 

Genotyping of Aberrant Australian CA-MRSA Strains which may contain a 

Novel agr Group 

Monecke S, Ehricht R, Slickers P, Tan HL, Coombs G 

 

Prevalence of MRSA Carriage in Health Care Workers Working in a Western 

Australian Acute Care Hospital 

Verwer P, Robinson O, Coombs G, Wijesuriya T, Murray R, Riley T, 

Nouwen J, Christiansen K 

 

Microarray Analysis of Staphylococcus aureus Colonising People in Remote 

Western Australia 

O’Brien FG, Chew YK, Coombs G, Christiansen KC, Grubb WB 
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Community and Healthcare Associated Staphylococcus aureus Bacteraemia: 

10 year Review 

Robinson JO, Pozzi-Langhi S, Pearson JC, Christiansen KJ, Coombs G, 

Murray RJ 

 

Community Onset Staphylococcus aureus Infections in Melbourne 

Bennett CM, Coombs G, Wood GM, Howden BP, Johnson LEA, Johnson 

PDR 

 

Evaluation of spa and Diversilab rep-PCR Typing in Characterising Western 

Australian Community MRSA Clones as Defined by MLST/SCCmec 

Coombs G, Pearson J, Wilson L, Tan H-L, Cramer S, O’Brien F 

   

Laboratory Features of Invasive Community-Onset Methicillin-Resistant 

Staphylococcus aureus – Correlation with Clinical Features in a Prospective 

Case-Control Study 

Wehrhahn MC, Pearson JC, O’Brien HG, Tan H-L, Robinson JO, Lee R, 

Chan J, Coombs G, Murray RJ 

 

International MRSA Clones Identified in Western Australia 

Tan H-L, Pearson J, Coombs G, Christiansen K, Murray R, Robinson O, 

O’Brien F 

  

Knowing MRSA Colonisation Status Increases Empiric Use of Glycopeptide 

in MRSA Bacteraemia and May Reduce Mortality 

Robinson JO, Pearson JC, Christiansen KJ, Coombs G, Murray RJ 
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Dynamics of Colonisation with Staphylococcus aureus in Remote Western 

Australian Communities 

O’Brien FG, Pearman JW, Coombs G, Christiansen KC, Grubb WB 

 

Dissemination of USA300 MRSA in Western Australia 

Pearson J, Coombs G, Christiansen K, Murray R, Robinson O, O’Brien F 

 

2006 

12th International Symposium on Staphylococci and Staphylococcal Infections: 

Maastricht, The Netherlands  

 

Virulence Determinants in Community-Associated MRSA Isolated in 

Australia are Clone Specific   

Coombs G, Pearson JC, Ngan P, Hui-Leen T, Pryce T, Kay I, Christiansen K, 

O’Brien F 

 

Population Genetics of Staphylococcus aureus and the Staphylococcal 

Cassette Chromosome mec in Remote Western Australian communities  

O’Brien FG, Coombs G, Christiansen KJ, Grubb WB  

 

         Microarray-Based Genotyping of Epidemic Strains of Staphylococcus aureus  

Monecke S, Berger-Bächi B, Coombs G, Holmes A, Kearns A, Kay I, Linde 

H-J, O´Brien F, Slickers P, Ehricht R  

 

Variations in Epidemic Methicillin Resistant Staphylococcus aureus-16 

(EMRSA-16) from the UK  
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Monecke S, Berger-Bächi B, Coombs G, Holmes A, Kearns A, Kay I, Linde 

H-J, O´Brien F, Slickers P, Ehricht R  
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12.2. Interscience Conference on Antimicrobial Agents and Chemotherapy  

(ICAAC) 

 

2011 

51st Interscience Conference on Antimicrobial Agents and Chemotherapy: 

Chicago, USA  

 

Importation of Bengal Bay MRSA (ST772-V [5C2]) into Australia   

Coombs G, Peterson A, Pearson J, Tan H-L, O’Brien F, Christiansen K 

 

Community Onset Staphylococcus aureus Household Cohort Study 

(COSAHC): Household Colonisation Patterns in Melbourne, Australia 

Bennett CM, Coombs GW, Wood GM, Howden BP, Quek T, Craven J, 

Parrot C, Johnson PDR 

 

Global Survey of Antibiotic Susceptibility and Molecular Epidemiology of 

Panton Valentine (PVL) Positive Methicillin-Resistant Staphylococcus 

aureus (MRSA)  

Macedo-Vinas M, Conly J, Aschbacher R, Blanc D, Coombs G, Daikos G, 

Dhawan B, Empel J, Etienne J, Figueiredo A, Hoang L, Ishii J, Kim H, 

Koeck R, Larsen A, Layer F, Li Q, Lo Y, Mulvey M, G Golding & CNISP, 

Pantosti A, Saga T, Schrenzel J, Simor A, Skov R, Tsiodras S, van Rijen M, 

Wang H, Zakaria Z, Harbarth S, for the Global PVL+MRSA Survey, Geneva 

(Switzerland). 
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2010 

50th Interscience Conference on Antimicrobial Agents and Chemotherapy: 

Boston, USA  

 

Long Term Care Facility (LTCF) Patients and Healthcare Workers (HCW) 

are a Reservoir of EMRSA-15 in Western Australia (WA) 

Coombs G, Pearson J, Peterson A, Christiansen K 

 

Community-Associated MRSA (CA-MRSA) in Western Australia (WA): The 

Emerging Patterns 

Coombs G, Pearson J, O’Brien F, Christiansen K 

 

2009 

49th Interscience Conference on Antimicrobial Agents and Chemotherapy: San 

Francisco, USA  

 

Evaluation of the BD GeneOhm™ StaphSR and Cepheid Xpert™ MRSA/SA 

Blood Culture Assays to Detect MRSA with Diverse Lineages 

Coombs G, Crammer S, Kay ID, Morgan J, Christiansen K 

 

PVL Positive EMRSA-15 in Western Australia: A Changing Epidemiology 

Coombs G, Pearson J, Heitz L, O’Brien FG, Christiansen K. 
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2008 

48th Interscience Conference on Antimicrobial Agents and Chemotherapy: 

Washington, USA  

 

Characterisation of USA300 MRSA Introduced into Western Australia 

Coombs G, Monecke S, Tan H-L, Pearson J, Christiansen F 

 

Evaluation of Positive BD GeneOhm MRSA Results with Culture 

Coombs G, Lee R, Cramer S, Kay I, Christiansen K 

 

Patient and Infection Characteristics Associated with Panton-Valentine 

Leukocidin in Community On-Set Staphylococcus aureus Infections in 

Australia 

Bennett CM, Wood GM, Coombs G, Howden BP, Johnson PDR 

 

2007 

47th Interscience Conference on Antimicrobial Agents and Chemotherapy: 

Chicago, USA  

 

Epidemiology of Community-Acquired Staphylococcus aureus Infections in 

Australia 

Bennett CM, Johnson PDR, Coombs G, Wood GM, Howden BP, Johnson L 

 

Detection of International Panton-Valentine Leucocidin (PVL) Positive 

cMRSA Clones in Western Australia  
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Coombs G, Pearson J, O’Brien F, Murray R, Christiansen K  

 

Australian Nosocomial Infections due to Community MRSA Clones  

Coombs G, Pearson J, O’Brien F, Nimmo G, Christiansen  

       

Evaluation of the IDI-MRSA™ PCR Assay to Detect MRSA with Variable 

SCCmec Types and Clonal Backgrounds  

      Coombs G, Kay IS, Gray K, Pearson JC, O’Brien FG, Christiansen KJ 

 

Community-Onset versus Hospital-Onset Methicillin Resistant 

Staphylococcus aureus (MRSA) Bacteraemia: 10-year Retrospective Review 

Robinson JO, Pearson JC, Christiansen, Coombs G, Murray RJ 

 

2006 

46th Interscience Conference on Antimicrobial Agents and Chemotherapy: San 

Francisco, USA  

    

         New York/Japan Epidemic MRSA Isolated in Australia. 

Coombs G, Pearson J, Christiansen K, Tan T, Van Gessel H, Godsell M, 

O’Brien F  

 

2005 

45th Interscience Conference on Antimicrobial Agents and Chemotherapy: 

Washington, USA  
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Epidemiology of Epidemic and Community MRSA Clones Isolated in 

Western Australia 

Coombs G, Pearson J, O’Brien F, Murray R, Grubb W, Christiansen K 
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12.3. European Congress of Clinical Microbiology and Infectious Diseases  

(ECCMID) 

 

2011 

21st European Congress of Clinical Microbiology and Infectious Diseases: Milan, 

Italy 

 

The Emergence of Novel and Composite SCCmec Element Types into 

Western Australian Community S aureus 

Coombs GW, Pearson JC, Monecke S, O’Brien FG, Christiansen KJ 

 

A Case Control Study Comparing Infections due Staphylococcus aureus with 

Panton Valentine Leucocidin (PVL) to those without PVL  

Boan P, Pearson J, Coombs G, Tan H-L, Christiansen K, Robinson O 

 

Distribution of the Arginine Catabolic Mobile Element in Staphylococci 

Monecke S, Coleman D, Coombs G, Deasy E, Ehricht R, Ip M, Shore A 

 

2010 

20th European Congress of Clinical Microbiology and Infectious Diseases 

Vienna, Austria 

 

Widespread dissemination of the Panton-Valentine leucocidin positive ST93-

MRSA-IV clone in the Australian community  

Coombs G, Pearson J, Nimmo G, Christiansen K on behalf of the Australian 

Group for Antimicrobial Resistance 



 - 110 - 

 

Development of an Automated Method for High-throughput Multilocus 

Sequence Typing of Staphylococcus aureus 

Pryce T, Coombs G, Lim L, O’Brien F, Smith L,  

 

2009 

19th European Congress of Clinical Microbiology and Infectious Diseases: 

Helsinki, Finland  

 

Differentiation of CC59 Community Acquired MRSA Strains 

Monecke S, O’Brien F, Coombs G, Tan H-L, Pearson J, Ehricht R 

 

2008 

18th European Congress on Clinical Microbiology and Infectious Diseases: 

Barcelona, Spain 

 

Emergence and Dissemination of USA300 MRSA in Australia 

Coombs G, Christiansen K, Pearson J, Murray R, Robinson O, O’Brien F 

 

2005 

15th European Congress of Chemotherapy and Infectious Diseases: Copenhagen, 

Denmark  

 

Efficient Genotyping of Methicillin Resistant Staphylococcus aureus Using a 

Combination of Single Nucleotide Polymorphisms and Binary Markers   
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Huygens F, Stephens AJ, Nimmo GR, Schooneveldt JM, Coombs G, Price 

EP, Giffard PM 

 

Community Acquired MRSA in Europe at Work: The Evolution of 

Community MRSA in Australia – Lessons for Europe 

        Riley TV, Coombs G, O’Brien F, Pearman J, Christiansen K, Grubb W 
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12.4. Australian Society for Antimicrobials Annual Scientific Meeting (ASA) 

 

2012 

Australian Society for Antimicrobials Annual Scientific Meeting: 

Antimicrobials 2012. Brisbane, Australia   

 

AGAR SAP10: Molecular Epidemiology of MRSA in the Australian 

Community  

Coombs G, Pearson J, Nimmo G, Christiansen K 

 

Searching for Organism Factors that may explain the Association between 

Elevated Vancomycin Minimum Inhibitory Concentration and Mortality in 

Staphylococcus aureus Bacteraemia 

Holmes N, Turnidge J, Munckhof W, Robinson JO, Korman T, O’Sullivan M, 

Anderson T, Roberts S,  Coombs G, Gao W, Johnson P, Howden B 

 

2011 

Australian Society for Antimicrobials Annual Scientific Meeting: 

Antimicrobials 2011: Melbourne, Australia   

 

Panton-Valentine Leukocidin (PVL) positive CA-MRSA clones in Western 

Australia 

Tan H-L, Pearson J,  Coombs G, Christiansen K, Robinson O, O’Brien F 
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2010 

Australian Society for Antimicrobials Annual Scientific Meeting: 

Antimicrobials 2010: Sydney, Australia   

 

Community Onset Infections in Australia: A Tale of Two Clones 

Coombs G, Nimmo G, Pearson J, Cramer S, Christiansen K 

 

CC59 Community Associated Methicillin-Resistant Staphylococcus aureus in 

Western Australia: Clonal Spread or Multiple Evolutionary Events? 

Coombs G, Monecke S, Ehricht R, Slickers P, Pearson J, Tan H-L, 

Christiansen K, O’Brien F 

 

Simultaneous Detection of Panton-Valentine leucocidin, mecA and nuc Genes 

in Clinical isolates of Staphylococci Using a Triplex Real-Time (Light Cycler 

2.0) PCR Assay 

Kay I, Coombs G  

   

2009 

Australian Society for Antimicrobials Annual Scientific Meeting: 

Antimicrobials 2009: Melbourne, Australia  

 

PVL-positive EMRSA-15 Detected in Western Australia 

Pearson J, Coombs G, Cramer S, Tan H-L, Chew Y, Wilson L, Kay I, 

O’Brien F, Christiansen K 

 

Whole Genome Sequence of ST93-MRSA-IV, a Unique Australian Clone of 

Community-Associated Methicillin-Resistant Staphylococcus aureus 
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Chua K, Coombs G, Seeman T, Davies JK, Moore R, Haring V, Stinear TP, 

Howden BP 

   

2008 

Australia Society for Antimicrobials Annual Scientific Meeting: Antimicrobials 

2008: Sydney, Australia  

 

More Common than we Thought? – Methicillin Resistance and PVL in 

Community-Onset Staphylococcus aureus Infections in Melbourne 

       Bennett CM, Coombs G, Wood GM, Johnson L, Howden BP, Johnson PDR 

 

       USA300 MRSA Identified in the Australian Community 

      Pearson J, Coombs G, Christiansen K, Murray R, Robinson O, O’Brien F 

 

Evaluation of Positive BD GeneOhm™ IDI-MRSA Assay Results from 

Nasal and Throat MRSA Screening Swabs 

       Coombs G, Cramer S, Kay I, Perry P, Christiansen K 

 

Evaluation of the BD GeneOhm™ StaphSR Assay for Direct Detection of 

Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus in 

Positive Blood Cultures  

Coombs G, Lloyd P, Kay I, O’Brien F, Wijesuriya T, Murray R, Christiansen 

K    
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2007 

Australian Society for Antimicrobials Annual Scientific Meeting: 

Antimicrobials 2007: Melbourne, Australia  

 

       Molecular Epidemiology of MRSA in Australian Hospitals  

        Coombs G, Pearson J, O’Brien F, Christiansen K 

 

Detection of Epidemic and Community MRSA Strains in Western Australia 

Using the IDI-MRSA® PCR Assay  

        Coombs G, Kay I, Gray K, Pearson J, O’Brien F, Christiansen K 

 

2006 

Australian Society for Antimicrobials Annual Scientific Meeting: 

Antimicrobials 2006: Sydney, Australia   

 

          An Outbreak of New York/Japan EMRSA in Rural Western Australia 

Pearson J, Coombs G, O’Brien F, Tan H-L, Van Gessell H, Godsell M-R, 

Christiansen K. 

 

CLSI Cefoxitin Disc Diffusion Susceptibility Testing of Coagulase-Negative 

Staphylococci 

          McCullough C, Coombs G, Pryce T, Price D, Christiansen K 

 

2005 

Australian Society for Antimicrobials Annual Scientific Meeting, 

Antimicrobials 2005: Lorne, Australia  
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Methicillin-Resistant Staphylococcus aureus in Australia – the 2003 AGAR 

Data 

Coombs G, Pearson J, Christiansen K, O’Brien F, Nimmo G, Collignon P  

 

NCCLS Cefoxitin Susceptibility Testing of MRSA Clones Isolated in 

Western Australia  

McCullough C, Coombs G, Christiansen K 
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12.5. Annual Scientific Meeting of the Australian Society for Microbiology 

 (ASM) 

 

2010 

Annual Scientific Meeting of the Australian Society for Microbiology: Sydney, 

Australia 

 

A Shift in the Epidemiology of Community Onset MRSA Infections in 

Australia 

Coombs G, Pearson J, Cramer S, Nimmo G, Christiansen K on behalf of the 

Australian Group for Antimicrobial Resistance 

 

2009 

Annual Scientific Meeting of the Australian Society for Microbiology: Perth, 

Australia  

 

Characterization of a Novel Staphylococcal Cassette Chromosome mec in a 

Western Australian Community-Associated Methicillin-Resistant 

Staphylococcus aureus 

Wilson L, Coombs G, Christiansen K, Pearson J, O’Brien F 

 

Automated High-throughput Multilocus Sequence Typing of Staphylococcus 

aureus 

Pryce T, Coombs G, Lim L, O’Brien FG, Smith LK  

 

Rapid Detection of Histidine (H) and Arginine (R) Panton-Valentine 

Leukocidin Variants by High-Resolution Melt Analysis  
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Tong S, Lilliebridge R, Holt D, Coombs G, Currie B, Giffard P 

2008 

Annual Scientific Meeting of the Australian Society for Microbiology: 

Melbourne, Australia  

 

Dynamics of Colonisation with Staphylococcus aureus in Remote Western 

Australian Communities 

O’Brien FG, Pearman J, Gracey M, Coombs G, Christiansen K, Grubb W 

 

Comparison of the BD GeneOhm StaphSR with Traditional Culture for 

Direct Detection of Staphylococcus aureus and Methicillin-Resistant 

Staphylococcus aureus in Positive Blood Cultures 

Lloyd P, Coombs G, Kay I, O’Brien FG, Murray R, Christiansen 

 

2005 

Annual Scientific Meeting of the Australian Society for Microbiology: Canberra, 

Australia  

 

Detection of Panton-Valentine Leucocidin (PVL) Toxin in Australian 

Community MRSA (cMRSA) 

            Coombs G, Tan H-L, Pearson J, Morgan D, O’Brien F, Christiansen K 
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