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Abstract 

This thesis investigates the potential of the alkaloid isocryptolepine 16 as a lead 

compound in antimalarial drug development. Fifteen derivatives of the parent 

alkaloid were prepared and fully characterised, twelve of which were novel 

compounds. A select group of compounds were subsequently evaluated for both 

antimalarial activity and cytotoxicity.  

N

N

16  

Three previously reported synthetic methodologies to the parent alkaloid were 

initially investigated; wherein two approaches were able to be reproduced or 

improved. These two synthetic methodologies were subsequently applied to the 

preparation of derivatives. The first of these methodologies, the Jonckers Method, 

involved two consecutive palladium catalysed coupling reactions. During the course 

of these investigations it was found that these two reactions could be combined into a 

single ‘domino’ reaction resulting in a reduction in the number of steps required to 

prepare the parent alkaloid. This methodology was then applied to the preparation of 

both ring-substituted and structural isomers. The second methodology, The Molina 

Method, involved a benzotriazole-mediated strategy and was applicable to preparing 

isocryptolepine derivatives with ring substituents on the quinoline ring. Finally a 

method for selective electrophilic aromatic substitution was developed and applied to 

the preparation of a further range of halogenated derivatives. 

Eight of the prepared derivatives were selected for biological evaluation. 

Antimalarial activity was assessed against a chloroquine sensitive and resistant strain 

of P. falciparum, whilst cytotoxicity was evaluated against mouse embryonic 

fibroblasts (3T3 cells). All compounds were found to be more active compared to the 

parent alkaloid against the chloroquine resistant strain of P. falciparum; specifically 

8-bromo-2-chloroisocryptolepine 107 (IC50 = 85 nM) and 8-bromo-3-chloroiso-

cryptolepine 105 (IC50 = 100 nM) were the most potent. Cytotoxicity evaluations 
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revealed that ring substitution did not enhance cytotoxicity and the most potent 

antimalarial derivative, 8-bromo-2-chloroisocryptolepine 107 (IC50 = 9.01 μM), 

displayed a 4-fold reduction in cytotoxicity.  

N

N

Cl

N

N Br

107105

Br

Cl

 

In conclusion, isocryptolepine 16 and its derivatives have significant potential as 

antimalarial lead compounds, with many derivatives possessing enhanced bioactivity 

versus the parent. This study has also identified 8-bromo-2-chloroisocryptolepine 

107 to be a very promising lead compound which warrants further biological or 

pharmaceutical investigation.  
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P. falciparum Plasmodium falciparum 

PPA Polyphosphoric acid  

P(t-Bu)3 Tri-tert-butylphosphine  

SEM [2-(Trimethylsilyl)ethoxy]methyl  

THF Tetrahydrofuran 

TLC Thin Layer Chromatography 

XANTPHOS 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene 
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1.1. Malaria 

The parasitic disease malaria, whilst treatable, is still a major global health issue, 

especially in many tropical regions. Over 200 million cases of infection occur 

annually, leading to an estimated 800,000 deaths.1 Some of the poorest nations in the 

world have the highest malaria burden, specifically Africa where approximately 89% 

of all cases occur. Children under five are the most vulnerable and an estimated 

732,000 children die from malaria annually.2  

Malaria is caused by the protozoan parasite of the genus Plasmodium, of which 

there are four strains that infect humans; Plasmodium falciparum (P. falciparum), 

Plasmodium vivax (P. vivax), Plasmodium malariae (P. malariae) and Plasmodium 

ovale (P. ovale). A fifth strain, the simian parasite Plasmodium knowlesi (P. 

knowlesi), has more recently also been found to infect humans.3 P. falciparum and P. 

vivax are the most common strains, with P. falciparum generally resulting in more 

severe symptoms and causing 98% of malaria related deaths.1 Although P. vivax is 

generally regarded as benign, it can still result in death and has the ability to remain 

dormant in vivo leading to relapse months or years post-infection.4 

Malaria was once endemic in regions such as Central America, India and the 

Caribbean. However, the disease is no longer prevalent in these areas due to large 

scale health strategies: mass spraying with the insecticide DDT, distribution of 

insecticide treated nets and improved access to antimalarial drugs.5 In contrast 

similar strategies employed in sub-Saharan Africa have not had the same outcome, 

with many of the countries still being classified as endemic. This is predominately 

because P. falciparum is the more prevalent strain in Africa and has developed 

resistance to many antimalarial drugs.6 On the other hand, in Asia and the Americas 

the less severe form of the disease linked to P. vivax is more prevalent and drug-

resistance to this strain is less widespread.7 

1.1.1. The Plasmodium Life Cycle 

The life cycle of the Plasmodium parasite is significantly more complicated than 

most other parasitic diseases as the parasite requires two hosts, a human and a female 

Anopheles mosquito. The life cycle has been comprehensively detailed8-10 and will 

be briefly described here.  
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The disease begins when an infected mosquito feeds on a human, resulting in the 

simultaneous injection of immature parasites (sporozoites; ; Figure 1.1). These 

sporozoites subsequently migrate towards the liver and here the parasite enters the 

‘Liver Stage’ . Upon entry into the liver cells (hepatocytes) the sporozoites quickly 

mature into schizonts, which later rupture to release thousands of daughter cells 

(merozoites) into the blood stream. In the case of P. vivax, it is at this particular stage 

that dormant forms of the parasite (hypnozoites) can develop.4  

 

Figure 1.1: The life cycle of the Plasmodium parasite.11  

Once in the bloodstream the merozoites infect red blood cells (erythrocytes) and 

the parasite enters the ‘Blood Stage’. Within erythrocytes the parasites develops into 

their feeding forms (trophozoites), which consume haemoglobin and mature into 

schizonts. The schizonts then rupture and daughter merozoites are released  which 

subsequently infect more erythrocytes and a blood-cycle, which lasts 48 hours (72 

hours for P. malariae), recommences. The rupturing of schizonts during this stage 
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results in the release of cell debris and toxins into the blood, which is believed to be 

responsible for many of the symptoms associated with malaria (i.e. fever and chills). 

After multiple cycles of the ‘Blood Stage’ the parasites enters their ‘Sexual 

Stage’, where merozoites can develop into the sexual form of the parasite 

(gametocytes; ). When a gametocyte is ingested by a feeding mosquito it 

undergoes sexual reproduction within the insect’s gut to form sporozoites, which 

migrate to the salivary glands of the mosquito thus reinitiating the parasitic life cycle. 

1.1.2. Antimalarial Drugs 

One of the first known antimalarial drugs was the natural product quinine 1 (Figure 

1.2), which was originally isolated from the bark of the South American cinchona 

tree in 1820 by Pelletier and Caventou.12 From a historical perspective bark extracts 

derived from the tree were used to treat malaria in Europe as early as the 1640s. The 

bark, and later the isolated alkaloid, was the most effective treatment for malaria in 

Europe for the next 300 years.12 During World War II quinine 1 supply issues 

prompted the development of the synthetic derivative chloroquine 2 (a 4-

aminoquinoline; Figure 1.2), which subsequently became widely used in malaria 

affected areas.13 Quinine 1 is currently mainly used to treat the most severe case of 

malaria, principally acute cerebral malaria.14 

NN

O

HO
HNN

N

Cl

1 2  

Figure 1.2: Quinine 1 and its synthetic derivative chloroquine 2 

Chloroquine 2, and other related 4-aminoquinolines, act during the ‘Blood 

Stage’ of the parasite and accumulate in the parasitic food vacuole.15 Within this 

particular organelle, host haemoglobin is digested by the parasite resulting in 

amassing of toxic free haem (ferriprotoporphyrin IX). The parasite is able to 

sequester haem by converting it into highly insoluble crystalline haemozoin. 

Haemozoin (termed β-haematin when synthetically prepared) is a cyclic dimer of 

ferriprotoporphyrin IX (FPP IX).16  
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Figure 1.3: The structure of haemozoin; two FPP IX units linked via coordination of 

propionate groups and ferric (Fe3+) centres 

Chloroquine 2 disrupts the parasitic feeding process by interrupting haem 

detoxification. How this is accomplished is not completely understood, but there is 

strong evidence to suggest that the drug directly interacts with haemozoin.17,18 It has 

been proposed that the quinoline ring of the drug may intercalate into the porphyrin 

rings on the surface of haemozoin to interrupt crystal formation and cause a build-up 

of toxic haem within the parasite.19 

Since its development chloroquine 2 had been the cheapest and most effective 

antimalarial available until clinical reports began to emerge of resistance in the 

1960s.20 In the last 50 years chloroquine P. falciparum resistance has spread to most 

of Asia, South America and Africa and the drug is currently only effective in some 

areas of Central America.6 Recent studies have found that chloroquine resistance is 

linked to gene mutations that effect proteins involved in the drug’s transport into the 

food vacuole.21 P. falciparum has similarly developed resistance to a number of other 

quinoline based drugs, e.g. mefloquine 3 (a quinoline methanol) and amodiaquine 4 

(a 4-aminoquinoline; Figure 1.4).6 

One of the first drug alternatives to chloroquine 2, introduced following the 

discovery of resistance, was the combination of pyrimethamine 5 and sulfadoxine 6 

(Figure 1.5). Implemented in the 1940s under the commercial name Fansidar, the 

pharmacological activity of these drugs is much better understood in comparison to 

the quinoline antimalarials.22 
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Figure 1.4: The quinoline based drugs mefloquine 3 and amodiaquine 4 

These drugs, often termed antifolate antimalarials, act during the blood and sexual 

stages of the parasite by inhibiting folate biosynthesis, a process that is essential to 

parasitic DNA synthesis. This is achieved via inhibition of essential enzymes in the 

folate cycle, pyrimethamine 5 inhibits dihydrofolate reductase whilst sulfadoxine 6 

inhibits dihydropteroate synthetase. The emergence of resistance to these drugs was 

noted during the 1980s23 and arose due to the development of gene mutation in the 

target enzymes.22 

N

N
H2N

NH2

Cl

N N

MeO

OMe

N
H

S

5

O

O

NH2

6  

Figure 1.5: The antifolate antimalarials pyrimethamine 5 and sulfadoxine 6 

The most recently introduced class of antimalarials are those based on the 

natural product artemisinin 7 (Figure 1.6), initially isolated from the Chinese plant 

Artemisia annua (also known as qing hao or sweet wormwood).24  

O

O

H

H
O
O

7

O

H
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CO2H

O

H

H
O
O

OH

9  

Figure 1.6: Artemisinin 7 and some of its synthetic derivatives; artemether 8, 

artesunate 9 and dihydroartemisinin 10 
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Although a highly effective antimalarial agent, artemisinin 7 suffers from poor 

solubility in both water and oil, which prompted the development of various 

derivatives that could be administered intravenously or intramuscularly.9 The oil 

soluble derivative artemether 8 and the water soluble artesunate 9 (Figure 1.6) are 

amongst the most potent antimalarial drugs currently available. The metabolite of 

both these drugs, dihydroartemisinin 10, possesses enhanced antimalarial activity in 

comparison to the parent artemisinin 7 and is also a common antimalarial drug.9 

The artemisinin based drugs act during both the blood and sexual stages of the 

parasite but, like the quinoline antimalarials, their pharmacological mode of action is 

not fully understood. The endoperoxide unit has been found to be essential for 

activity and one of the earlier theories suggested that this unit interacted with Fe2+ 

ions, or haem, to form free radicals which inhibited the formation of essential 

proteins to ultimately cause parasite death.25 More recent evidence suggests that 

artemisinins more likely interfere directly with essential proteins or transporters.26 

The calcium transporter sarcoplasmic endoplasmic reticulum Ca2+ ATPase 

(SERCA)27,28 is one such proposed target, but is a source of much contention. Some 

studies have reported artemisinins to have an inhibitory affect on SERCA27,28 whilst 

others found no such relationship.29  

Recently there have been reports of increasing tolerance to the artemisinin based 

drugs, with failure rates rising in areas of Cambodia and French Guinea.30,31 This 

may be the beginnings of artemisinin resistance and, in order to minimise further 

development, it is now recommended that these drugs be used in combination not as 

a monotherapy. Combination therapies reduce the possibility of resistant parasites 

surviving drug treatment as a fast acting artemisinin, which typically has a short half-

life, is combined with a long half-life drug such as a quinoline. The World Health 

Organisation (WHO) recommends combinations such as artesunate 9 and mefloquine 

3, or artemether 8 and lumefantrine 11 (an aryl aminoalcohol; Figure 1.7), depending 

upon the inherent resistance present in the infection area.14 
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Cl

Cl

HO

N(CH2CH2CH2CH3)2

Cl

11  

Figure 1.7: The common antimalarial combination partner lumefantrine 11 

1.1.3. Current Research in Antimalarial Therapy 

A variety of therapeutic modalities are currently under investigation in order to 

combat malaria and tackle drug resistance. In the last ten years there has been an 

extensive amount of research into the development of a malaria vaccine; however 

this process must overcome many obstacles. Not only does the Plasmodium parasite 

have over 5,000 genes that could be targeted as potential antigens, but the complex 

life cycle of the parasite adds another level of difficulty to vaccine development.32 

Despite these issues there are a variety of vaccine candidates currently in clinical 

trials and many are based on the circumsporozoite protein (CSP), one of the earliest 

antigens identified from Plasmodium, which is found on the surface of sporozoites 

and infected liver cells.33 RTS,S represents one such vaccine candidate based on 

CSP, which has been co-developed by Glaxo-Smith Kline (Belgium) and the Walter 

Reed Army Institute of Research (USA).34 This vaccine has shown promising results 

in phase II clinical trials but does not provide complete protection against the parasite 

and its efficacy is reduced over time. Improved formulation methods are currently 

being investigated in attempts to address these issues. Thus it is generally believed 

that a viable vaccine is still many years away.32   

In the meantime, novel antimalarial drugs are being explored by various drug 

research groups globally.8,35 Ideally these new antimalarial drugs should function 

upon the parasite in a different manner to previous drugs to negate or delay the 

emergence of resistance.  
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1.2. Alkaloids in Drug Therapy 

Natural products have historically played an important role in medicine and, in the 

last 25 years, over one thousand compounds based on natural products have been 

used as either drugs or vaccines to treat a variety of human diseases.36 Due to their 

chemical diversity and range of therapeutic properties natural products are an 

attractive group of medicinal compounds, especially with respect to novel drug 

identification.37,38  

An important sub-class of natural product are the alkaloids, which make up 18% 

of all characterised natural products.39 Approximately 27,000 alkaloids have been 

identified and they possess a variety of biological and medicinal properties. These 

complex heterocyclic compounds are predominantly plant based, but are also found 

in bacteria, fungi and marine animals. Most alkaloids are bitter tasting and possess a 

degree of toxicity as they are believed, for the most part, to act as deterrents to 

animal predation.40 Alkaloids have also found application in many areas of medicine; 

for example the analgesic drugs morphine 12 and codeine 13 (Figure 1.8) are both 

well known medicinal alkaloids that were originally derived from the opium poppy 

(Papaver somniferum).41  

O

N
CH3

O

HO

H
H

R

 

Figure 1.8: Alkaloids morphine 12 (R = H) and codeine 13 (R = CH3) 

Many alkaloids have also been found to possess significant antimalarial activity. 

These alkaloids have been reviewed recently,42 and a notable example is the 

aforementioned quinine 1. The attractiveness of alkaloids in the field of antimalarial 

drug development stems from the fact that novel alkaloids may have different 

antimalarial modes of action to previous drugs. In addition synthetic derivatives can 

often have superior biological activities in comparison to their parent alkaloid, as 

demonstrated by quinine 1 from which has stemmed a range of synthetic derivatives 

(i.e. chloroquine 2, mefloquine 3 and amodiaquine 4) that have been applied 

therapeutically with some success. 
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1.3. Antimalarial Alkaloids from Cryptolepis sanguinolenta 

The West African climbing shrub Cryptolepis sanguinolenta (of the Periplocaceae 

family; Figure 1.9) represents an essential component in many traditional African 

herbal remedies. In areas of Ghana and Senegal root decoctions have been used to 

treat fevers, urinary infections, stomach disorders and malaria.43,44 These medicinal 

properties have been mostly attributed to the various bioactive indoloquinoline 

alkaloids that are present in both the leaves and roots of this plant. 

 

The image of Cryptolepis sanguinolenta (Addae-Kyereme, J. Cryptolepis 

sanguinolenta. In Traditional Medicinal Plants and Malaria, 1st ed.; Wilcox, 

M.; Bodeker, G.; Rasoanaivo, P., Eds. CRC Press: Boca Raton, FL, 2004; 

pp 131-139.) is unable to be reproduced here due to copyright resirictions. 

  

Figure 1.9: The climbing shrub Cryptolepis sanguinolenta44 

The major bioactive alkaloid, cryptolepine 14 (Figure 1.10), was isolated from 

the roots of Cryptolepis sanguinolenta in 1951.45 In subsequent years a range of 

other alkaloids with a similar indoloquinoline skeleton have been isolated. These 

include quindoline 15, isocryptolepine 16,46 hydroxycryptolepine 17,47 cryptoheptine 

18, and neocryptolepine 19.48,49 However, only cryptolepine 14, isocryptolepine 16 

and neocryptolepine 19 have been shown to possess any significant biological 

activity.  
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Figure 1.10: Alkaloids isolated from Cryptolepis sanguinolenta; cryptolepine 14, 

quindoline 15, isocryptolepine 16, hydroxycryptolepine 17, cryptoheptine 18 and 

neocryptolepine 19 

Cryptolepine 14 (5-methyl-5H-indolo[3,2-b]quinoline) has demonstrated 

antibacterial,50,51 antimuscarinic,52 antifungal53 and antihyperglycemic54 properties. It 

has also been found to possess in vitro activity against both sensitive and resistant 

strains of P. falciparum.45,55-58 In one of the most recent studies, Van Miert et al.59 

reported cryptolepine 14 to have an IC50 (the concentration at which 50% of parasites 

are killed in vitro) of 0.12 µM against the chloroquine resistant strain K1 (Table 1.1). 

Therefore in relative terms cryptolepine 14 is approximately three-fold less active 

compared to artemisinin 7 (IC50 = 0.042 µM) and is similar in activity to chloroquine 

2 (IC50 = 0.17 µM). Its therapeutic application as a potential antimalarial drug, 

however, is impeded by its high cytotoxicity. Cryptolepine 14 has been found to be 

cytotoxic in non-cancerous cell lines such as L-6 cells (rat skeletal myoblast).58,59 

Based on recent in vitro cytotoxicity results for artemisinin 7,60 cryptolepine 14 is 

approximately four hundred times more cytotoxic. In addition a recent in vivo study, 

conducted on P. berghei infected mice, reported cryptolepine 14 to be toxic to the 

mice after two doses of 20 mg kg-1.57 

The isomeric analogue of cryptolepine 14, isocryptolepine 16 (5-methyl-5H-

indolo[3,2-c]quinoline), was first isolated from Cryptolepine sanguinolenta in 1995 

by Pousset et al.46 This alkaloid possesses antimalarial activity (IC50 = 0.78 µM),59 

and is nearly seven-fold less active than cryptolepine 14. In addition it displayed 

cytotoxicity at similar levels to cryptolepine 14. Neocryptolepine 19 (5-methyl-5H-
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indolo[2,3-b]quinoline), isolated independently by Cimanga et al.61 and Sharaf et 

al.48 in 1996, also possesses antimalarial62 and antibacterial properties.63 Against P. 

falciparum it displayed antimalarial activity (IC50 = 2.61 µM)59 at levels 

approximately 20-fold lower than cryptolepine 14. In contrast it was nearly three-

fold less cytotoxic against non-cancerous cells. 

Table 1.1: Bioactivity of Cryptolepis Alkaloids 14, 16 and 19. 

Compound a 
Antimalarial activity; 

IC50 (µM) b 

Cytotoxicity; 

IC50 (µM) c 

Selectivity 

Index (SI) 

Cryptolepine 14 0.12 59 1.12 59 9.3 

Isocryptolepine 16 0.78 59 1.19 59 1.5 

Neocryptolepine 19 2.61 59 3.24 59 1.3 

Artemisinin 7 0.042 59 450.5 60 10,726 

Chloroquine 2 0.17 59 - - 
a Tested in salt form. b In vitro activity against P. falciparum (K1). c In vitro cytotoxicity against L-6 

cells. 

The ratio of cytotoxicity to antimalarial activity, known as the selectivity index 

(SI), is a useful guide for assessing the potential of a compound for use as an 

antimalarial agent. A high SI value indicates a compound is more therapeutically 

viable; for example artemisinin 7 has an SI of over 10,000. In contrast cryptolepine 

14, isocryptolepine 16 and neocryptolepine 19 have SI values 9.3, 1.5 and 1.2 

respectively (Table 1.1).59 Despite these low SI values the cryptolepis alkaloids 

represent an interesting set of novel lead structures and have been studied over the 

past ten to fifteen years for their potential as antimalarial drugs.  

1.3.1. Antimalarial Mode of Action of Cryptolepis Alkaloids 

The antimalarial mechanism of cryptolepine 14, isocryptolepine 16 and 

neocryptolepine 19 is not fully understood. At present there is evidence to suggest 

that at least two different modes of action may be occurring concurrently.64  

These alkaloids have been found to inhibit the formation of β-haematin 

(synthetic haemozoin) and therefore are assumed to act upon the parasite in a similar 

manner to chloroquine 2.59 The most bioactive alkaloid, cryptolepine 14, exhibits 

greater inhibition towards β-haematin than either neocryptolepine 19 or 

isocryptolepine 16. In contrast neocryptolepine 19 inhibits β-haematin more 
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efficiently than isocryptolepine 16 despite being less bioactive. In addition Arzel et 

al.65 found that cryptolepine 14 most likely accumulates in parasitic nuclei, 

indicating that cryptolepine 14 does not have sufficient affinity for haem to cause 

accumulation in the food vacuole.66 Therefore β-haematin inhibition is not the 

primary mode of action and there must be another mechanism responsible for the 

antimalarial activity associated with some of these alkaloids. 

DNA intercalation, the process whereby a molecule binds between the base pairs 

in DNA resulting in inhibition of DNA biosynthesis, has also been proposed as a 

possible mechanism for the antimalarial activity of these alkaloids.59 Cryptolepine 14 

has been shown to intercalate into DNA via binding to guanine-cytosine (GC) rich 

sequences containing non-alternative cytosine-cytosine (CC) sites (Figure 1.11).67 

Usually a compound binds into DNA at an alternating site (i.e. CG) and thus 

cryptolepine 14 represents the first compound to bind into DNA in this particular 

manner. This novel mode of DNA intercalation has been attributed to the asymmetry 

of cryptolepine 14 and the tight binding observed can be ascribed to its highly planar 

ionised character at physiological pH.  

 

Figure 1.11: Cryptolepine 14 intercalating into DNA (image prepared using VMD 

Molecular Graphics Viewer)68-69 

Whilst DNA intercalation into parasitic DNA may result in antimalarial activity, 

non-specific intercalation into human DNA is likely to cause the unfavourable 

cytotoxicity observed with these alkaloids. In addition cryptolepine 14 has been 

found to inhibit topoisomerase II, thus inducing DNA cleavage, a process that may 

play a minor role in the alkaloid’s cytotoxicity.70,71 Neocryptolepine 19 has also been 

shown to bind with DNA in a similar manner as cryptolepine 14, preferring to 
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intercalate into GC rich sequences.72 It has a lower affinity for DNA compared to 

cryptolepine 14, and this may account for the lower cytotoxicity observed with this 

alkaloid. Whilst the ability of isocryptolepine 16 to intercalate into DNA has yet to 

be confirmed, its interaction with DNA in simple assays suggests that intercalation is 

likely.59  

More recently an additional antimalarial mode of action of cryptolepine 14 has 

been proposed. Cryptolepine 14 has been found to inhibit NF-кB, a protein which 

controls DNA transcription.73 Such a process has been linked with anti-inflammatory 

effects but NF-кB may also be important in the pathogenesis of malaria.74 

1.3.2. Synthetic Derivatives of Cryptolepis Alkaloids 

As demonstrated with quinine 1 and artemisinin 7, synthetic derivatives of natural 

products can often have improved bioactivity compared to their parent compounds. 

In recent years numerous synthetic derivatives of both cryptolepine 14 and 

neocryptolepine 19 have been prepared, and biologically evaluated, in efforts to 

improve antimalarial activity and decrease cytotoxicity versus the parent form.  

In relation to cryptolepine derivatives, the N-methyl group was found to be 

essential for activity as the desmethyl analogue quindoline 15 displayed significantly 

reduced antimalarial activity.65 In addition halogen ring substituted derivatives were 

the most promising compounds, as determined by a comprehensive study of a range 

of mono and disubstituted cryptolepine derivatives.57,75 Generally chloro and bromo 

compounds were more active than their methyl, methoxy or nitro counterparts. 

Activity was also strongly dependent on the position of the substituent; compounds 

with groups aligned with the long axis of the molecule (i.e. C2, C3, C7 and C8) were 

generally more active than those with groups orthogonal to the long axis of the 

molecule (i.e. C1, C4, C6 and C9; Figure 1.12).  

2

3 N

N

7

8

R

R R

R

4

1

N

N

6

9

R

R

R

R  

Figure 1.12: Cryptolepine 14 with R groups aligned with the long axis of the 

molecule (left) and groups orthogonal to the long axis of the molecule (right)  
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For example 2-chlorocryptolepine 20 (Figure 1.13) displayed a three-fold increase in 

antimalarial activity compared to the parent, 3-chlorocryptolepine 21 had similar 

activity and 4-chlorocryptolepine 22 was approximately 11-fold less active (Table 

1.2).  
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Figure 1.13: Various ring-substituted cryptolepine derivatives previously prepared 

and biologically evaluated by Wright et al.57 

In addition dihalogenated derivatives displayed higher activity than their mono 

analogues; specifically 7-bromo-2-chlorocryptolepine 23, 7-bromo-3-chlorocryptole-

pine 24 and 2,7-dibromocryptolepine 25 were the most active of all the derivatives 

assessed in this particular study.  

Table 1.2: Bioactivity of cryptolepine derivatives 20 - 2557 

Compound a 
Antimalarial activity; 

IC50 (µM) b 

Cytotoxicity;  

IC50 (µM) c 

Selectivity Index 

(SI) 

20  0.17 2.24 13 

21  0.49 1.75 3.6 

22  4.69 3.54 0.8 

23 0.03 1.73 58 

24 0.037 1.14 31 

25 0.049 6.04 123 
a Tested in salt form. b In vitro activity against P. falciparum (K1). c In vitro cytotoxicity against MAC 

15a cells (murine adenocarcinoma of the colon). 
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Both compounds 23 and 25 also suppressed parasitaemia in P. berghei infected mice 

by over 90% (25 mg kg-1) with no observed toxicity, whilst cryptolepine 14 was 

toxic.57 Unfortunately, the cytotoxicity of the most promising derivative 25 is still 

too high for drug applications (approximately 75-fold more cytotoxic than 

artemisinin 7). 

The latest study of cryptolepine analogues found that alkyl diamine chains at 

position C11 can result in enhancement of antimalarial activity.76 However, the most 

active derivative (a piperidine analogue) was still too cytotoxic to be therapeutically 

applicable. The recurrent cytotoxicity issues with cryptolepine derivatives has led to 

a shift in focus in recent years and these compounds are now under investigation for 

their potential as anticancer agents.77-79 

Various derivatives of neocryptolepine 19 have also been synthesised and 

investigated. Jonckers et al.58 also found that halogenated derivatives of 

neocryptolepine 19 were the most promising derivatives and generally such 

derivatives had reduced cytotoxicity. In addition the position of the substituent 

greatly affected activity. For example 2-bromoneocryptolepine 26 (Figure 1.14) was 

approximately four-fold more active against P. falciparum (chloroquine resistant 

strain W2) compared to the parent alkaloid. 3-Bromoneocryptolepine 27 displayed a 

three-fold increase in activity and the derivative with an orthogonal group, 1-

bromoneocryptolepine 28, displayed no antimalarial activity (Table 1.3). 

N N

26

N N
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Figure 1.14: Various ring-substituted neocryptolepine derivatives previously 

prepared and biologically evaluated by Jonckers et al.58 

This study also found 3-methoxyneocryptolepine 29 to possess the highest 

antimalarial activity of the tested derivatives, but unfortunately it also displayed 



18 
 

enhanced cytotoxicity compared to the parent alkaloid. Interestingly, compound 29 

was found to have no inhibitory effect on β-haematin and less affinity for DNA in 

comparison to the parent alkaloid, which indicates that a hitherto unknown 

antimalarial mechanism may be active with this particular alkaloidal derivative. 

Table 1.3: Bioactivity of neocryptolepine derivatives 26 - 2958 

Compound a 
Antimalarial activity; 

IC50 (µM) b 

Cytotoxicity;  

IC50 (µM) c 

Selectivity Index 

(SI) 

26  4.0 >32 >8 

27  >32 >32 - 

28 4.7 18.5 4 

29  1.7 3.5 2 

19 14 11 0.8 
a Tested in salt form. b In vitro activity against P. falciparum (W2). c In vitro cytotoxicity against 

MRC-5 cells (human diploid embryonic lung). 

A recent study relating to neocryptolepine derivatives found that alkyl-amino 

substituents (e.g. (4-(diethylamino)-1-methylbutyl)amino) significantly enhanced 

antimalarial activity and SI values, but these compounds were only evaluated against 

a chloroquine sensitive strain of P. falciparum.80 In addition when selected 

derivatives were evaluated in vivo, using P. berghei infected mice, they were either 

toxic or did not sufficiently suppress parasitaemia to be of apparent therapeutic 

benefit. 

Synthetic structural isomers of the cryptolepis alkaloids have also been prepared 

and assessed for their antimalarial activity. Isoneocryptolepine 30 (5-methyl-5H-

indolo[2,3-c]quinoline; Figure 1.15)81 is one such compound which possesses in 

vitro bioactivity against P. falciparum (IC50 = 0.23 µM; Table 1.4).59 This non-

natural compound was also found to be less cytotoxic against non-cancerous cells, 

but did not sufficiently suppress parasitaemia in vivo.59 The synthesis and biological 

evaluation of the isoquinoline analogues 6-methyl-6H-indolo[3,2-c]isoquinoline 31 

and 6-methyl-6H-indolo[2,3-c]isoquinoline 32 was also recently reported (Table 

1.4).82 
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N

30 31 32  

Figure 1.15: Synthetic cryptolepis alkaloid analogues; isoneocryptolepine 30, 6-

Methyl-6H-indolo[3,2-c]isoquinoline 31 and 6-methyl-6H-indolo[2,3-c]isoquinoline 

32 

Both compounds were active against P. falciparum in vitro, with compound 31 found 

to be appreciably more active than cryptolepine 14. Both were also evaluated for 

cytotoxicity against L-6 cells and were slightly less cytotoxic than cryptolepine 14. 

Of these non-natural heterocycles, compound 31 had the highest SI value of 

approximately 33 and represents a potential lead compound. 

Table 1.4: Bioactivity of synthetic cryptolepis alkaloid analogues 30, 31 and 32 

Compound a 
Antimalarial 

activity; IC50 (µM) b 

Cytotoxicity;  

IC50 (µM) c 

Selectivity Index 

(SI) 

30 0.2359 1.3259 19 

31 0.0482 1.3182 33 

32 0.6882 1.4882 2 
a Tested in salt form. b In vitro activity against P. falciparum (K1). c In vitro cytotoxicity against L6 

cells. 



20 
 

1.4. Project Aims 

Although isocryptolepine 16 has a similar SI to neocryptolepine 19, no ring-

substituted derivatives have been investigated with the aim of improving bioactivity. 

The reasoning for the neglect of this potential lead compound is unclear. 

Isocryptolepine 16 may possess similar structure activity relationships as 

neocryptolepine 19, which may result in substituted derivatives with improved 

antimalarial activity without enhanced cytotoxicity. Given that isocryptolepine 16 

possesses higher antimalarial activity than neocryptolepine 19, derivatives may also 

be superior in this respect. Needless to say there is the possibility that derivatives will 

behave more like cryptolepine derivatives and possess enhanced cytotoxicity. The 

primary aim of this research project was thus to investigate the potential of the 

naturally occurring indoloquinoline alkaloid isocryptolepine 16 as a lead compound 

for future antimalarial drugs. In order to accomplish this aim a range of synthetic 

derivatives of isocryptolepine 14 were prepared and biologically evaluated for both 

antimalarial activity and cytotoxicity.  

Previous studies of cryptolepine 14 and neocryptolepine 19 have established that 

halogenated derivatives, particularly chloro and bromo, showed the most 

improvement in biological activity in comparison to the parent alkaloid. In addition 

derivatives with substituents aligned with the long axis of the molecule were often 

more active than compounds with groups orthogonal to the long axis of the molecule. 

Routes to corresponding isocryptolepine derivatives were a priority (i.e. halogen ring 

substituents at positions C2, C3, C8 and C9; Figure 1.16) in an effort to ascertain if 

similar structure activity relationships existed.  

N

N

R1

R2

R4

R3

R1, R2, R3, R4 = Cl or Br

 

Figure 1.16: Proposed isocryptolepine derivatives 

The previously published synthetic methodologies to isocryptolepine 16 were 

thoroughly assessed and a selection chosen for further investigation based on 
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numerous factors: compound yield (intermediates and total), the number of steps, 

reproducibility and the ease of compound isolation and purification. The chosen 

methodologies were accordingly optimised (Chapter 2) and a selection were applied 

to the preparation of the proposed derivatives in Figure 1.16 (Chapter 3).  

At the commencement of this research project the structural isomer of 

isocryptolepine 16, 6-methyl-6H-indolo[3,2-c]isoquinoline 31, had yet to be 

reported. Developing a synthetic route to this compound was initially a secondary 

aim. However, following the report of its synthesis, and potent biological activity, 

the focus shifted to improving the published synthetic method with the aim to 

confirm its antimalarial activity.  

The final step of the research project involved the biological evaluation of a 

selection of the prepared derivatives (Chapter 4). Compounds were assessed for 

antimalarial activity against a chloroquine sensitive and chloroquine resistant strain 

of P. falciparum. Additionally the same set of derivatives was assessed for 

cytotoxicity. 

The data obtained from these latter studies has facilitated the elucidation of 

certain structure activity relationships and allowed the identification of 

isocryptolepine derivatives with potential for future investigation. This research 

represents the first analysis of isocryptolepine derivatives in relation to their 

prospects as lead compounds in antimalarial drug development. 

 

 



 
 



 
 

 

Chapter 2 

Synthesis of Isocryptolepine 
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2.1. Introduction 

Numerous synthetic routes to isocryptolepine 16 have previously been reported and 

most are accomplished by means of either indole or quinoline containing 

compounds. These synthetic methods to the parent alkaloid are described and 

evaluated below. Based on the number of synthetic steps involved, reported yields 

and the ease with which synthetic routes may be modified, various published 

synthetic procedures were considered for application with respect to future synthesis 

of isocryptolepine derivatives. However, prior to the application of these approaches 

to the preparation of analogues efforts were made to reproduce, and if possible 

optimise, these methodologies. 

The first reported synthesis of isocryptolepine 16 was conceived by Kermack 

and Storey83 in 1950, long before the compound was isolated from Cryptolepis 

sanguinolenta (Scheme 2.1). This four step synthesis proceeds from 4-

chloroquinoline 33, which was initially coupled to o-phenylenediamine to give 4-(2-

aminoanilino)quinoline 34. 
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Scheme 2.1: Kermack and Storey83 synthetic route to isocryptolepine 16 

Subsequent treatment of intermediate 34 with nitrous acid (formed in situ) resulted in 

diazotisation and cyclisation to yield 4-(1-benzotriazolyl)quinoline 35. Acid 
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catalysed cyclisation of the later intermediate in polyphosphoric acid (PPA), via a 

modified Graebe-Ullmann mechanism, afforded 11H-Indolo[3,2-c]quinoline 36. 

Finally N-methylation of the cyclic intermediate 36, with iodomethane, gave 

isocryptolepine 16 in an overall yield of 30% from 4-chloroquinoline 33.  

Molina et al.84 adapted the above synthetic route by directly coupling 

benzotriazole to 4-chloroquinoline 33, to generate the benzotriazole intermediate 35 

in high yield (96%). The cyclic intermediate 36 was obtained in 83% yield, using the 

same reaction conditions as applied by Kermack and Storey,83 but the yields of N-

methylation were improved by using acetonitrile as the solvent (92%). Consequently 

the overall yield of isocryptolepine 16 from 4-chloroquinoline 33 was enhanced to 

73%, an increase of 44% from the original synthesis.  

Jonckers et al.58 developed an alternative synthetic route towards isocryptolepine 

16, which also applied 4-chloroquinoline 33 as the primary starting material (Scheme 

2.2).  
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Scheme 2.2: Jonckers et al.58 synthetic route to isocryptolepine 16 

Initially compound 33 was coupled to 2-chloroaniline via a Buchwald-Hartwig 

reaction, catalysed by tris(dibenzylideneacetone)dipalladium (Pd2(dba)3) and the 

heterocyclic xanthene bidentate ligand XANTPHOS. The resulting intermediate 4-
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(2-chlorophenylamino)quinoline 37 was subsequently cyclised to give 36 via an 

intramolecular Heck-type reaction, catalysed by Pd2(dba)3 and the phosphate ligand 

tri-tert-butylphosphine (P(t-Bu)3). Finally, the cyclised intermediate 36 was N-

methylated, using iodomethane, to afford isocryptolepine 16 in moderate overall 

yield (58%).  

Dhanabal et al.85 modified this synthesis by removing the palladium based 

catalysts and conducting the coupling reaction at high temperatures (200 °C). 

Similarly the cyclisation was achieved by photochemical irradiation, negating the 

need for a catalyst. Whilst simplifying the reaction processes these modifications 

also resulted in a slight reduction of the overall synthetic yield (48%).  

Grellier et al.45 reported a single step synthesis of isocryptolepine 16 from N-

methyl-2,3-dihydro-4-quinolone 38 (Scheme 2.3), which was itself prepared from 

propiolactone and N-methyl aniline. Phenylhydrazine and 38 undergo a Fischer 

indole synthesis to provide isocryptolepine 16 in fairly low yield (15%).  

N

O NH
NH2

N

N

38 16

CH3COOH

15%  

Scheme 2.3: Grellier et al.45 synthetic route to isocryptolepine 16 

Timári et al.86 reported a synthetic route to the parent alkaloid which proceeded 

from 3-bromoquinoline that was initially coupled to a phenylboronic acid via a 

Suzuki reaction. Isocryptolepine 16 was obtained in five steps in an overall yield of 

47% - lower than some of the previously described quinoline based methodologies. 

In comparison to the quinoline mediated routes there are fewer synthetic 

methods that initially progress via indole containing moieties. The three step 

procedure reported by Kumar et al.87 proceeded from commercially available indole-

3-carboxaldehyde 39 (Scheme 2.4). Compound 39 was initially coupled to aniline, in 

glacial acetic acid, thus forming the Schiff base 40 which underwent photo-induced 

cyclisation to provide indoloquinoline 36. Final N-methylation of 36 was achieved 

with dimethyl sulfate to give isocryptolepine 16 in moderate overall yield (47%). 
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Scheme 2.4: Kumar et al.87 synthetic route to isocryptolepine 16 

Murray et al.88 described a six step synthetic procedure to isocryptolepine 16 

starting from [2-(trimethylsilyl)ethoxy]methyl (SEM) protected indole 41 (Scheme 

2.5). Treatment of N-SEM-indole 41 with n-butyllithium and subsequent quenching 

with tributyltin chloride afforded the stannane 42. Stille coupling of intermediate 42 

with 2-iodonitrobenzene, catalysed with tetrakis(triphenylphosphine)palladium 

(Pd(PPh3)4), gave the nitro intermediate 43, which was reduced, formylated and 

methylated to give isocryptolepine 16 in moderate overall yield (34%). 

Of the remaining synthetic methodologies to isocryptolepine 16 not yet 

discussed, the 11 step procedure reported by Fresneda et al.89 was considered too 

long. Similarly the three step procedure described by Dhanabal et al.90 produced 

isocryptolepine 16 in low overall yield (28%). In addition a number of alternative 

synthetic methodologies have been described following the commencement of the 

present research project and could not be considered.91,92 Some may be applied to the 

preparation of further derivatives at a later stage, notably the method reported by 

Kumar et al.93 This synthetic route to isocryptolepine 16 was an adaption of the 

single step method developed by Grellier et al. (Scheme 2.3)45 and the final yield of 

isocryptolepine 16 was improved to 83% using p-toluenesulfonic acid as the catalyst 

instead of glacial acetic acid. 
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Scheme 2.5: Murray et al.88 synthetic route to isocryptolepine 16 
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2.2. Approaches to an Improved Synthesis of Isocryptolepine 16 

The three step synthetic procedures described by Molina et al.,84 Jonckers et al.94 and 

Kumar et al.87 provide isocryptolepine 16 in moderate overall yields (47-73%). The 

method reported by Molina et al., henceforth referred to as the Molina Method, was 

the highest yielding and also involved relatively straightforward synthetic steps, of 

which the first two proceeded without the need for a solvent. The reproduction of this 

particular procedure is outlined in Section 2.5. 

The synthesis reported by Jonckers et al., henceforth referred to as the Jonckers 

Method, requires expensive palladium catalysts. It was hypothesized that the 

relatively exotic and expensive palladium catalyst Pd2(dba)3 could be substituted for 

more readily available and less costly catalysts, such as palladium acetate 

(Pd(OAc)2) or Pd(PPh3)4. In addition, with the substitution of 4-chloroquinoline 33 

for its bromo analogue, 4-bromoquinoline, the reaction rates and yields of the 

palladium catalysed reactions may be improved. Optimisation of both palladium 

catalysed coupling reactions was thoroughly investigated and the results obtained are 

discussed in Section 2.4. 

The highest yielding indole based method, described by Kumar et al., could not 

be reproduced owing to the lack of photochemical reaction facilities at our 

laboratories. The procedure outlined by Murray et al., henceforth referred to as the 

Murray Method, was instead investigated at the commencement of the project. 

Although this was a six step procedure, it represents the next highest yielding indole 

based method and its application may afford an alternative route to isocryptolepine 

derivatives. It was postulated that the overall reaction yield could be improved with a 

more easily removable indole protecting group, as Murray et al. reported that the 

removal of the SEM group was problematic and resulted in a low yield of the 

alkaloid during the final step of the synthesis. During the early stages of research a 

variety of N-protecting groups were trialled and the outcomes of this particular trial 

process are discussed in the following section. 
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2.3. Isocryptolepine 16 via the Murray Method 

There are a wide variety of N-protecting groups available that are compatible with 

indoles. The tert-butoxycarbonyl (Boc) group is widely used, as it can be easily 

added and its removal is relatively straightforward; generally treatment with 

trifluoroacetic acid is sufficient.95 The Boc protected indole 47 was synthesised in 

70% yield from indole 48, as previously reported,96-98 by reaction with 4-

dimethylaminopyridine (DMAP) and di-tert-butyl dicarbonate (Scheme 2.6). 

Subsequent lithiation of compound 47, with n-butyllithium and quenching with 

tributyltin chloride gave the desired stannane 49 (as confirmed by TLC initially). 

Attempts were made to purify the stannane 49, but it was found to be unstable and 

degraded on the silica. The stannane 49 was thus used without further purification in 

the subsequent Stille cross-coupling with 2-iodonitrobenzene, catalysed by 

Pd(PPh3)4. Unfortunately the coupling reaction did not produce the desired product 

50 and for the most part resulted in premature indole deprotection to produce 2-(2-

nitrophenyl)indole 51 in low yield (36%), which was confirmed by NMR 

spectroscopy.99 Consequently the Boc protecting group was deemed too labile and 

unsuitable for this synthetic route resulting in a discontinuation of its further use.  
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Scheme 2.6: Attempted synthesis of intermediate 50 
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The benzyl group has been infrequently used as an N-indole protecting group in 

comparison to Boc and SEM. However, it has still proven useful in the synthesis of a 

range of heterocycles and is well tolerated in palladium-catalysed reactions.100,101 N-

benzylindole 52 was synthesised via an adaptation of a previously reported procedure 

used to prepare similar compounds (Scheme 2.7).102 Deprotonation of indole 48 with 

sodium hydride and subsequent reaction with benzyl chloride gave N-benzylindole 

52 in high yield (95%). Lithiation of compound 52 and subsequent quenching with 

tributyltin chloride did not produce the desired stannane intermediate 53 as only the 

deprotected indole 48 was isolated. It was postulated that the lithiation process was 

facilitating debenzylation and in order to confirm this, quenching of the lithiated 

species with iodomethane was attempted. However, this reaction did not form 2-

methyl-N-benzylindole 54 but again resulted in the isolation of deprotected indole 

48, thus confirming that the 2-lithiated species was not forming. This finding is in 

agreement with the literature report by Suzuki et al.103 that linked the use of lithium 

bases, such as lithium diisopropylamine and methyllithium, to the debenzylation of 

N-benzylindoles. As a result this particular protecting group was also deemed 

unsuitable and its further use was not pursued.  
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Scheme 2.7: Attempted synthesis of intermediate 53 

As a final resort the carboxyl protecting group was investigated as it had 

previously been successfully used for N-indole protection in a report by Hudkins et 

al.104 Indole 48 was initially reacted with n-butyllithium and quenched with carbon 

dioxide, which reportedly forms N-carboxylindole 55 in situ (Scheme 2.8). However 
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subsequent lithiation and quenching with tributyltin chloride did not form the desired 

stannane 56. Preliminary TLC analysis indicated the presence of mainly indole 48, 

implying that the stannane intermediate may have decomposed. Similarly it is 

possible that the N-protected indole 55 may not have been formed in the first 

instance. The instability of the carboxy intermediate 55 was also reported by Hudkins 

et al.104 as it was found to degrade in acid and base or at high temperature. 

Subsequent attempts to generate intermediate 55 under various reaction conditions 

were unsuccessful and formation of the stannane 56 was not achieved via this route. 

Hence this synthetic pathway was abandoned. 
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Scheme 2.8: Attempted synthesis of intermediate 56 

Because attempts thus far to find an alternative protecting group to SEM were 

unsuccessful, efforts were made to reproduce the Murray Method (Scheme 2.5) and 

optimise the later removal of the SEM protecting group. N-SEM-indole 41 was 

synthesised via previously reported procedures105,106 (in 84% yield), lithiated, 

quenched with tributyltin chloride and coupled to give 2-(2-nitrophenyl)-N-SEM-

indole 43 in 63% yield. The high yields reported by Murray (98%) were not 

reproduced despite multiple attempts. Tributyltin residues were also detected by 

NMR analysis but removal attempts, by chromatography on neutral alumina, were 

unsuccessful and the unpurified product was used. Subsequent reduction, formylation 

and methylation of the nitro intermediate 43 resulting in low overall yield (48%) of 

2-[2-(N-methyl)formylaminophenyl]-N-SEM-indole 46. The low yield of 

intermediate 46 was attributed to inadequate hydrogenation apparatus on site which 

impeded the stoichiometric reduction of the nitro intermediate 43. The concluding 

acid catalysed cyclisation and N-deprotection step produced the desired 

isocryptolepine 16 in only 23% yield. The overall yield of isocryptolepine 16 from 

N-SEM-indole 41 was significantly lower (7%) than reported by Murray (34%) and 

further efforts were unable to improve reaction yields. Thus this synthetic route to 

isocryptolepine 16 was judged unsuitable for our purposes. 
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Recently Kraus et al.99 reported a novel synthesis of 2-(2-nitrophenyl)indole 51 

from o-nitrobenzaldehyde 57 and a phosphonium salt in moderate yield (72%; 

Scheme 2.9). The authors subsequently demonstrated that compound 51 could be 

reduced to 2-(2-aminophenyl)indole 58 and finally cyclised to 11H-indolo[3,2-

c]quinoline 36 without the need of an N-protecting group. Although there are some 

inconsistencies in this paper (i.e. the intermediate via which 58 cyclises to 36 cannot 

be a 3-formylindole as this would result in a dihydro product) this synthetic 

methodology represents a possible novel high yielding route to isocryptolepine 16. 

This synthetic methodology could not be investigated in the present project but it 

may be later applied to the preparation of additional derivatives. 
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Scheme 2.9: Kraus et al.99 synthetic route to 11H-indolo[3,2-c]quinoline 36 
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2.4. Isocryptolepine 16 via the Jonckers Method 

The application of 2-bromoaniline and 4-bromoquinoline 59 as starting materials to 

the previously described Jonckers Method was initially investigated (Scheme 2.10).  

N

HN

Br

60

N

Br

N

HN

N

N

59 36 16  

Scheme 2.10: Proposed adaptation to the Jonckers synthetic route to isocryptolepine 

16 

The formation of 4-(2-bromophenylamino)quinoline 60 (via a Buchwald-Hartwig 

reaction) and the subsequent intramolecular Heck-type reaction to give 11H-

indolo[3,2-c]quinoline 36 were each optimised by assessing a range of different 

catalysts and reaction conditions. Final N-methylation of intermediate 36, to give the 

parent alkaloid isocryptolepine 16, was investigated using different solvents in an 

effort to improve the yield of this last synthetic step. 

2.4.1. Synthesis of 4-(2-Bromophenylamino)quinoline 60 

The Buchwald-Hartwig reaction, developed independently by two research groups, 

allows the amination of aryl halides to be achieved under mild conditions with the 

assistance of a palladium based catalyst.107-110 This reaction has been extensively 

studied and utilised synthetically since its development, and been applied to a wide 

range of aryl halides in addition to various amines.111 Similarly a range of both 

palladium based catalysts and associated ligands have been investigated. The main 

role of the ligand is to stabilise the catalytic intermediates during the coupling 

process and quite often the choice of ligand is fine-tuned to a particular reaction in 

order to improve its efficiency and scope. Notable ligands that have proven highly 

effective in Buchwald-Hartwig aminations include bidentate phosphines (i.e. 

BINAP; 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl),112 chelating alkylphosphines 

(i.e. DBtPF; 1,1′-bis(di-tert-butylphosphino)ferrocene)113 and monophosphinobiaryl 
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ligands (i.e. XPhos; 2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphenyl) (Figure 

2.1).114  

O

PPh2 PPh2

XANTPHOS

PCy2

i-Pr

i-Pr

i-PrPPh2

PPh2

P(t-Bu3)2

P(t-Bu3)2
Fe

BINAP DBtPF XPhos  

Figure 2.1: Common ligands utilised in Buchwald-Hartwig reactions 

The palladium catalyst Pd(OAc)2 is commonly combined with BINAP and its 

intermediates in the Buchwald-Hartwig catalytic cycle have been extensively 

investigated.112 The three main chemical steps within the catalytic cycle include; (i) 

oxidative addition by coordination to an aryl halide (Ar-X), (ii) coordination to the 

amine (NH2-R) facilitated by a base (BA) and finally (iii) reductive elimination to 

give the coupled product (R-NH-Ar) and regeneration of the catalyst (Figure 2.2).  
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Figure 2.2: General catalytic cycle of a Buchwald-Hartwig reaction. Pd(OAc)2 

catalyses the coupling of an aryl halide (Ar-X) to an amine (NH2-R)  

Aryl halide reduction and homocoupling can produce various side-products 

during a Buchwald-Hartwig reaction that reduces the efficiency of the catalytic 

cycle. It has been postulated that aryl halide reduction proceeds via a β-hydride 

elimination pathway115 and may be suppressed by the presence of bidentate 
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phosphine ligands.112,116 These ligands may block the vacant coordination site on the 

palladium metal centre that is required for β-hydride elimination to occur. Another 

ligand commonly applied to the amination of aryl halides is XANTPHOS (Figure 

2.1).117-119 Only two bidentate phosphine ligands (i.e. BINAP and XANTPHOS) 

were investigated in the current study. 

The starting material for the Buchwald-Hartwig reaction, 4-chloroquinoline 33, 

was prepared from commercially available 4-quinolinol 61 via chlorination with 

phosphorus oxychloride (POCl3) in good yield (79%) using a previously reported 

procedure (Scheme 2.11).120 Similarly 4-bromoquinoline 59 was prepared, in high 

yield (80%), by bromination of 4-quinolinol 61 with phosphorus tribromide (PBr3) 

again via a previously reported procedure.121 
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Scheme 2.11: Synthesis of 4-chloroquinoline 33 and 4-bromoquinoline 59  

The Buchwald-Hartwig coupling of 2-chloroaniline to 4-chloroquinoline 33, 

catalysed by Pd(OAc)2 (2 mol%) and BINAP (2 mol%) in refluxing dioxane, gave 

the intermediate 4-(2-chlorophenylamino)quinoline 37 in comparable yields (62%) to 

those reported by Jonckers et al.94 under the same conditions (60%).  

The coupling of 2-bromoaniline to 4-bromoquinoline 59, using the above 

reaction conditions, resulted in the formation of the novel compound 4-(2-

bromophenylamino)quinoline 60 in slightly lower yield (55%). The structure of the 

product was confirmed by proton and carbon NMR spectroscopy and spectral signals 

were fully assigned with the assistance of 2D-NMR spectroscopy (notably COSY, 

HSQC and HMBC).  

Aryl bromides are generally considered more reactive than aryl chlorides in 

palladium coupling reactions under the same conditions,122 and it was initially 

predicted that the bromo coupled intermediate 60 would be formed in higher yields 

than the chloro coupled intermediate 37. However, this was not the case and it was 

hypothesized that the bromo based reactants were also increasing the rates of side-

product formation resulting in the observed reduction in product yield.  



38 
 

In an effort to optimise the synthesis of the coupled intermediate 60, a series of 

small scale (50 mg of 4-haloquinoline) reactions were conducted using a variety of 

reaction conditions. Reaction mixtures were analysed by HPLC, whereby starting 

materials and products were identified via spectrophotometric detection. The 

percentage of the coupled product formed was determined by calculating the ratio of 

products to starting material, after correcting for the different extinction coefficients 

of the compounds with a set of standards. For example, assessment of the standards 

determined that quinoline 59 was generally 1.8-fold more UV absorbing than 

intermediate 60. This method of reaction evaluation has previously been used to 

monitor Buchwald-Hartwig reactions for similar quinolines and anilines117,123 and the 

various results of the present HPLC study are summarised in Table 2.1.  

Table 2.1: Optimisation of the Buchwald-Hartwig coupling of quinoline 59 and 2-

bromoaniline a 

Catalyst Ligand Base Solvent % Conversion b 

Pd(OAc)2 BINAP K2CO3 Dioxane 87 (55) 

Pd(OAc)2 XANTPHOS K2CO3 Dioxane 96 (65) 

Pd2(dba)3 XANTPHOS Cs2CO3 Dioxane 99 (72) 

Pd(PPh3)4 - K2CO3 Dioxane 93 

Pd(OAc)2 BINAP K2CO3 DMF 96 (38) 

a Reagents and Conditions: 24hr; reflux or 110 °C; Pd2(dba)3 (1 mol%), Pd(OAc)2 (2 mol%) or 

Pd(PPh3)4 (10 mol%); XANTPHOS (2.2 mol%) or BINAP (2 mol%); K2CO3 (20 mol eq.) or Cs2CO3 

(1.3 mol eq.). b Conversion 60/(59+60) by HPLC-UV; isolated yield of 60 in parenthesis. 

The above HPLC investigation found that all the reaction conditions trialled 

resulted in approximately 90% conversion of quinoline 59 to intermediate 60, 

indicating that the majority of the starting material 59 had been consumed. However, 

when these reaction conditions were applied on a larger scale, the isolated yields did 

not correlate to the percentage conversions. For example, reaction with the catalytic 

combination Pd(OAc)2 (2 mol%) and XANTPHOS (1.1 mol%) resulted in the 

coupled intermediate 60 being isolated in 65% yield whilst HPLC indicated 96% 

conversion. Possibly side-product formation was resulting in the consumption of 

quinoline 59, giving a percentage conversion that did not accurately represent the 

reaction yield. In hindsight the use of an inert internal standard would have provided 
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clearer results and may be applied at a later stage to more thoroughly investigate this 

particular reaction.  

The Buchwald-Hartwig reaction of 2-bromoaniline and 4-bromoquinoline 59 

with Pd(OAc)2 (2 mol%) gave the coupled intermediate 60 in higher isolated yields 

with XANTPHOS (65%) compared to BINAP (55%). It is conceivable that 

XANTPHOS may be more effective at suppressing side-product formation than 

BINAP. The palladium catalyst Pd(PPh3)4 is not commonly applied to the Buchwald-

Hartwig reaction and as expected the use of Pd(PPh3)4 (10 mol%) resulted in a 

mixture of products. Therefore this catalyst was unsuitable for this particular 

reaction.  

The preparation of the coupled intermediate 60 using Pd2(dba)3 (1 mol%) and 

XANTPHOS (2.2 mol%) with caesium carbonate in refluxing dioxane gave much 

improved yields (72%). Similarly Jonckers et al.94 found that the catalytic 

combination of Pd2(dba)3 with XANTPHOS was superior to Pd(OAc)2 with BINAP. 

However, both methods used different palladium catalysts and different bases and 

thus are not directly comparable.  

When the reaction was conducted in DMF using Pd(OAc)2 (2 mol%) and 

BINAP (2 mol%) at 120 °C the yield of the coupled product 60 was significantly 

reduced (38%). Both TLC and HPLC analysis indicated that 11H-indolo[3,2-

c]quinoline 36 was forming, but it was unclear if this was due to the solvent or the 

slightly elevated reaction temperature. Thus attempts were made to determine if the 

Buchwald-Hartwig reaction and intramolecular cyclisation could be undertaken as a 

single step reaction process (i.e. the coupled product 60 cyclising to 36 in situ 

without the addition of extra reagents).  

2.4.2. Synthesis of 11H-Indolo[3,2-c]quinoline 36 

The palladium-catalysed intramolecular Heck-type cyclisation of the coupled product 

60 proceeds via a slightly different mechanism to that of a traditional Heck reaction, 

which is normally applied to the coupling of unsaturated halides and alkenes.124 The 

cross-coupling of an electron-rich heterocycle with an aryl halide is more accurately 

termed a palladium-catalysed direct C-H arylation. The catalytic cycle for this 

reaction involves three general steps; (i) oxidative addition of an aryl halide (Ar-X), 
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(ii) electrophilic metallation of a heterocycle (Het-H) and (iii) reductive elimination 

to afford the coupled product (Het-Ar) and regenerate the catalyst.125 
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(i)(iii)

Het-Ar

Het-H +  

Figure 2.3: General catalytic cycle of a direct C-H arylation. PdL2 catalyses the 

coupling of an aryl halide (Ar-X) to a heterocycle (Het-H) 

Palladium-catalysed direct C-H arylation has been successfully applied to a wide 

range of substrates; aryl iodides, bromides and chlorides are all applicable.126 Aryl 

bromides and chlorides, however, are less susceptible to oxidative addition and often 

require more electron-rich and sterically hindered phosphine ligands (such as P(t-

Bu)3).
125 

The catalyst PdCl2(PPh3)2 and also the catalytic combination of Pd2(dba)3 and 

P(t-Bu)3 have previously been used with great success for the intramolecular direct 

C-H arylation of heterocyclic bromides and chlorides.58,81,82 However, given the aim 

of attempting to prepare compound 36 in a single synthetic step from 4-

bromoquinoline 59, whereby the cyclisation of intermediate 60 occurs in situ, the 

catalysts applied to the direct C-H arylation must also be applicable to the Buchwald-

Hartwig reaction. Therefore only the catalytic combinations discussed in Section 

2.4.1 were investigated in attempts to optimise the cyclisation of the coupled 

intermediate 60 to the cyclised intermediate 36.  

Cyclisation of the coupled intermediate 60 with Pd(OAc)2 (2 mol%) and BINAP 

(2 mol%), in refluxing dioxane, resulted in no product. However, when the reaction 

was conducting in DMF at 150 °C the cyclised product 36 was isolated in moderate 

yield (71%). Other catalytic combinations were also investigated and a series of 

small scale reactions were conducted. The reaction mixtures obtained were analysed 

by the HPLC method previously described (Section 2.4.1) wherein compound 36 was 
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generally 3.5-fold and 5-fold more UV absorbing than intermediates 37 and 60 

respectively. Unlike the Buchwald-Hartwig reaction, the intramolecular nature of this 

reaction prevents the formation of side-products and HPLC analysis gives a much 

clearer indication of reaction efficiency. The results of this particular study are 

summarised in Table 2.2.  

Table 2.2: Optimisation of the intramolecular direct C-H arylation of the coupled 

intermediates 37 and 60 a 

Reactant Catalyst Ligand Base Solvent % Conversion b 

37 Pd2(dba)3 XANTPHOS Cs2CO3 Dioxane 3 

37 Pd(OAc)2 BINAP K2CO3 Dioxane 4 

37 Pd(OAc)2 BINAP K2CO3 DMF (150°C) 9 

60 Pd2(dba)3 XANTPHOS Cs2CO3 Dioxane 7 

60 Pd(OAc)2 BINAP K2CO3 Dioxane 8 

60 Pd(OAc)2 BINAP K2CO3 DMF (150°C) 93 (71) 

60 Pd2(dba)3 XANTPHOS Cs2CO3 DMF (150°C) 7 

60 Pd(PPh3)4 - K2CO3 DMF (150°C) 98 (68) 

a Reagents and Conditions: 24 hr; reflux or 150°C; Pd2(dba)3 (1 mol%), Pd(OAc)2 (2 mol%) or 

Pd(PPh3)4 (10 mol%); XANTPHOS (2.2 mol%) or BINAP (2 mol%); K2CO3 (20 mol eq.) or Cs2CO3 

(1.3 mol eq.). b Conversion: 36/(37 (or 60)+36) by HPLC-UV; isolated yield of 36 in parenthesis. 

From these results it is evident that the cyclisation of the chloro coupled 

intermediate 37 does not occur with the catalytic combinations Pd2(dba)3 (1 mol%) 

and XANTPHOS (2.2 mol%) or Pd(OAc)2 (2 mol%) and BINAP (2 mol%) in 

refluxing dioxane. Similarly when the reaction was conducted in DMF at elevated 

temperature (150 °C) cyclisation was not observed. Also the cyclisation of the bromo 

coupled intermediate 60 does not occur with either catalyst in refluxing dioxane. 

However, when the reaction was conducted with Pd(OAc)2 (2 mol%) and BINAP (2 

mol%), or Pd(PPh3)4 (10 mol%), in DMF at elevated temperatures (150 °C) 

cyclisation was observed. 

As a consequence of previous findings, larger scale coupling reactions with 

Pd(PPh3)4 (10 mol%) were conducted and the cyclised product 36 was isolated in 

moderate yield (68%). In contrast, Jonckers et al.94 were able to obtain compound 36 

from the chloro coupled intermediate 37 using Pd2(dba)3 and P(t-Bu)3 in high yield 
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(95%) after a period of only 3 hours. By using the more reactive bromo coupled 

intermediate 60, cyclisation could be conducted with the less costly catalytic 

combinations (Pd(OAc)2 and BINAP or Pd(PPh3)4), albeit in lower yield (reduced by 

26%) and with an extended reaction time (24 hours).  

The two optimum catalytic combinations described above, were subsequently 

applied to the coupling of 2-bromoaniline and 4-bromoquinoline 59. By both HPLC 

and TLC analysis, the cyclised product 36 was detected within 2 hours. However, the 

reaction with Pd(PPh3)4 (10 mol%) appeared to have formed multiple products, 

presumably due to side-products being produced during the Buchwald-Hartwig 

reaction, and therefore was not pursued further. In contrast application of Pd(OAc)2 

(2 mol%) and BINAP (2 mol%) resulted in the isolation of the cyclised product 36 in 

moderate yield (60%) and if the reaction temperature was increased, such that the 

solution was refluxing, the yield could be improved further to 82%. At high 

temperatures DMF is known to decompose and can result in the formation of 

undesirable side-products to reduce reaction yields.127 Similarly the breakdown of 

catalytic intermediates can be an issue but if these processes are occurring they are 

not at sufficient levels to significantly impede this particular reaction.  

A detailed investigation of the combined coupling and cyclisation reaction was 

later undertaken via monitoring of the reaction mixture over a 24 hour period by 

HPLC analysis. It was found that the coupled intermediate 60 formed within 30 

minutes; presumably the coupling reaction occurs at a sufficiently rapid rate to 

prevent excessive side-product formation. The cyclised product 36 was formed after 

20 hours of reaction and hence it was surmised that the intramolecular direct C-H 

arylation was the rate limiting process. Based on recent reports82,117 it was proposed 

that future investigations of the synthesis of compound 36 under microwave 

conditions may permit a reduction in both reaction time and also the catalytic 

loading. 

During these investigations of the preparation of the cyclised intermediate 36 in 

a single step from 4-bromoquinoline 59, a similar report appeared in the literature. 

Meyers et al.128 described the preparation of the cyclised intermediate 36 in 82% 

from 4-chloroquinoline 33 and 2-chloroaniline using Pd2(dba)3 (5 mol%) and P(t-

Bu)3 (20 mol%) in dioxane (125 °C). Performing both the Buchwald-Hartwig and 

intramolecular direct C-H arylation reactions in one pot represents an example of a 

‘tandem’ or ‘domino’ reaction, where one catalyst activates multiple reaction 
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processes.129,130 By combining the Buchwald-Hartwig and C-H arylation reactions 

into a single synthetic step the original Jonckers Method to isocryptolepine 16 has 

been reduced to two steps. Although previously reported by Meyers et al., the 

present optimised ‘domino’ Jonckers Method allows the use of less costly and more 

readily available palladium catalysts. 

2.4.3. Synthesis of Isocryptolepine 16 from Intermediate 36 

The N-methylation of the cyclised intermediate 36 can be achieved via reaction with 

methylating agents such as dimethyl sulfate or iodomethane.84,87,92,94,128 This 

particular N-methylation is an example of a Menshutkin reaction, where an alkylated 

quaternary salt is formed from the reaction of tertiary amines and an alkyl halides 

(proceeding via a SN2 based mechanism).131 The use of aprotic solvents (e.g. 

acetonitrile and toluene) generally enhance SN2 reaction rates in comparison to protic 

solvents (e.g. methanol and water) but other factors, including nucleophilicity of the 

reactant, can also affect the final product yield. 

Iodomethane was chosen as the methylating reagent due to its lower toxicity in 

comparison to dimethyl sulfate. The cyclised intermediate 36 was reacted with a 

large excess of iodomethane (100 molar equivalents) in refluxing acetonitrile for 20 

hours and the resulting methiodide salt of isocryptolepine 16 isolated (Scheme 2.12). 

The free base was liberated on treatment with ammonia and purification by flash 

column chromatography gave isocryptolepine 16 in high yield (94%).  
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Scheme 2.12: Synthesis of isocryptolepine 16 from intermediate 36 

When N-methylation was conducted in toluene, isocryptolepine 16 was isolated 

in only moderate yield (61%). It was observed that the cyclised intermediate 36 was 

less soluble in toluene, compared to acetonitrile, and reaction in the former solvent 

may be impeded by lower dissolution of the reactant. Previous literature reports have 

reported that toluene and acetonitrile both give high yield of isocryptolepine 16 (91-
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92%).84,92 However, Agarwal et al.92 employed toluene as the solvent with a very 

large excess of iodomethane (200 molar equivalents); i.e. there was approximately a 

1:1 ratio of solvent to methylating agent. Thus the methylating agent may also have 

affected solubility and direct comparison with this report is unfeasible. 

The polar aprotic solvent DMF is also applicable as a solvent in N-methylation 

reactions. However, the literature indicates that the high solubility of DMF may 

encourage dimethylation,117 which could account for the slightly lower yield (75%) 

of isocryptolepine 16 obtained by Jonckers et al.94 Consequently DMF was not 

utilised as a solvent.  

2.4.4. Optimised ‘domino’ Jonckers Method 

The optimum conditions for the synthesis of isocryptolepine 16 via the Jonckers 

Method are depicted in Scheme 2.13. The original method has been reduced from a 

three step to a two step synthesis by combining the Buchwald-Hartwig and C-H 

arylation reactions into a single ‘domino’ reaction. This was possible through the 

substitution of 4-chloroquinoline 33 and 2-chloroaniline for their more reactive 

analogues, 4-bromoquinoline 59 and 2-bromoaniline. The cyclised intermediate 36 

was prepared in comparable high yield (82%) to Meyers et al.128 but utilised more 

accessible palladium catalysts. N-methylation was also achieved in higher yield than 

Jonckers et al.94 (75%), but in comparative yields to Molina et al.84 (92%). Although 

this procedure has previously been reported, the present method is able to produce 

isocryptolepine 16 in higher overall yield (77%) than Meyers et al.128 (61%). 

Similarly the overall yield is higher than reported by Molina et al. (73%),84 which 

was previously the highest yielding literature method to isocryptolepine 16. 
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Scheme 2.13: Optimised ‘domino’ Jonckers Method to isocryptolepine 16 
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2.5. Isocryptolepine 16 via the Molina Method 

To conclude, the final synthetic route to isocryptolepine 16 that was investigated was 

the three step Molina Method. 4-(1-Benzotriazolyl)quinoline 35 was synthesised by 

reaction of 4-chloroquinoline 33 with benzotriazole at 110 - 120 °C in the absence of 

a solvent (Scheme 2.14). The resulting solid was recrystallised from ethanol to give 

the desired benzotriazole intermediate 35 in lower yields (77%) than those previously 

reported by Molina (92%).  

The cyclised intermediate 36 was prepared by reaction of the benzotriazole 

intermediate 35 with polyphosphoric acid at 150 °C (1 hour). On quenching with 

water a precipitate formed, most likely a water insoluble phosphate salt, which was 

collected and re-suspended in water before conversion to the free base. Purification 

was achieved by washing with an organic solvent (e.g. dichloromethane) to give the 

cyclised product 36 in high yield (84%).  

Finally, the cyclised intermediate 36 was N-methylated as previously described 

(Scheme 2.12) using iodomethane in acetonitrile. The optimum conditions for the 

synthesis of isocryptolepine 16 via the Molina Method are shown in Scheme 2.14. 

An overall yield of 61% is comparable to that reported by Molina et al.84 (73%). 
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Scheme 2.14: Optimised Molina Method to isocryptolepine 16 
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3.1. Introduction 

As outlined in Section 1.3.2, certain substituted derivatives of cryptolepine 14 and 

neocryptolepine 19 have displayed improved biological activities, in comparison to 

their parent alkaloid. Halogenated derivatives, specifically dihalogenated bromo or 

chloro compounds, have shown the most promise with respect to their potential as 

antimalarial agents. Whilst the synthesis of several isocryptolepine derivatives has 

previously been described,85,132 there have been no reports of their antimalarial 

activity. The previous synthetic methods to derivatives were assessed and as many 

involved photochemical routes they could not be applied in this project, due to the 

lack of necessary facilities (previously outlined in Section 2.1). In addition the single 

step procedure to isocryptolepine 16 reported after the commencement of the present 

project by Kumar et al.93 could not be considered. Therefore the optimised routes to 

isocryptolepine 16, discussed in Chapter 2, were more attractive synthetic methods to 

prepare derivatives.  

The Molina Method (Section 2.5) was first employed to prepare ring-substituted 

isocryptolepine derivatives and this synthetic strategy is examined in the following 

section. The optimised ‘domino’ Jonckers Method (Section 2.4.4) was also applied 

and this strategy is discussed in Section 3.3. A synthetic procedure involving the 

electrophilic aromatic substitution of the parent alkaloid, and a selection of the 

previously prepared derivatives, was developed and is described in Section 3.4. The 

synthesis of the isomeric analogue 6-methyl-6H-indolo[3,2-c]isoquinoline 31 was 

briefly investigated and attempts were made to apply both the aforementioned 

synthetic methods in the preparation of this compound, which is described in Section 

3.5. 
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3.2. Ring-Substituted Derivatives via the Molina Method  

The Molina Method was first applied to the preparation of isocryptolepine 

derivatives due to its simplicity; it does not require the use of palladium catalysts and 

purification is readily achieved without chromatography. Also a similar 

benzotriazole strategy has previously been applied in the preparation of methyl 

substituted neocryptolepine derivatives.133 This particular study found that 

substituents on the quinoline ring did not negatively affect the yields of both 

benzotriazole coupling and acid catalysed cyclisation. This finding encouraged the 

application of the Molina Method to various substituted 4-chloroquinolines (Scheme 

3.1) and each step in this methodology will be described. 
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Scheme 3.1: Proposed route to isocryptolepine derivatives via the Molina Method 

Substituted benzotriazoles were not applied to the Molina Method as it was 

predicted that the coupling would be non-specific and a mixture of products would 

be formed. This hypothesis was confirmed in a recent report by El Sayed et al.80 

where it was observed that reaction of 2-chloroquinoline with 5-chlorobenzotriazole 

produced a 1:1 mixture of the two inseparable regioisomers.  

3.2.1. Synthesis of C3 Substituted Isocryptolepines 

Isocryptolepine 16 with substituents at positions C2 and C3 were a priority, and 

required 4-chloroquinolines substituted at positions C6 or C7. 4-Chloroquinolines 

substituted at position C7 were available commercially and the most readily available 

of these, 4,7-dichloroquinoline 62 and 4-chloro-7-trifluoromethylquinoline 63, were 

applied to the preparation of 3-chloroisocryptolepine 64 and 3-trifluoromethyl-

isocryptolepine 65 (Scheme 3.2).  

 



51 
 

N

Cl

N

HN

N

N

62 R = Cl
63 R = CF3

N

N

N

N

CH3I

CH3CN

PPA

N
H

N

N

R R

RR

66 R = Cl    (78%)
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Scheme 3.2: Synthesis of the isocryptolepine derivatives 64 and 65  

Initially the above 4-chloroquinolines 62 and 63 were thermally coupled to 

benzotriazole and the novel benzotriazole intermediates 4-(1-benzotriazolyl)-7-

chloroquinoline 66 and 4-(1-benzotriazolyl)-7-trifluoromethylquinoline 67 obtained 

in moderate yields (77 – 78%).  

The following step in the Molina Method required the acid catalysed cyclisation 

of the benzotriazole intermediates 66 and 67. 4-(1-Benzotriazolyl)-7-chloroquinoline 

66 was initially cyclised under the same reaction conditions as 4-(1-

benzotriazolyl)quinoline 35, in polyphosphoric acid at 150 °C until the evolution of 

nitrogen ceased. Whilst this appeared to occur after 1 hour, the reaction was allowed 

to continue for an additional hour to ensure complete reaction. The product 3-chloro-

11H-indolo[3,2-c]quinoline 68 was isolated in 77% yield and could be purified by 

washing the solid with an organic solvent (i.e. dichloromethane). The reaction was 

also attempted at a slightly lower temperature (140 °C) for three hours and found to 

have little effect on the yield; with 68 being isolated in 78% yield. The benzotriazole 

intermediate 67 was subsequently cyclised at 140 °C (3 hours) and 3-trifluoromethyl-

11H-indolo[3,2-c]quinoline 69 obtained in 39% yield.  

The N-methylation of the above 11H-indolo[3,2-c]quinolines 68 and 69 was 

conducted using the same method applied to prepare isocryptolepine 16 from 11H-

indolo[3,2-c]quinoline 36 (Section 2.4.3). Reaction of the chloro intermediate 68 
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with iodomethane in refluxing acetonitrile (20 hours), followed by conversion to the 

free base and subsequent purification via flash column chromatography, resulted in 

the isolation of 3-chloroisocryptolepine 64 in moderate yield (61%; Scheme 3.2). 

Reaction of the trifluoromethyl cyclised intermediate 69 was conducted in the same 

manner except that 3-trifluoromethylisocryptolepine 65 was purified, by column 

chromatography, as its methiodide salt because the free base was found to be 

unstable on silica. 

The structures of the novel products 64, 65, 66, 67 and 69 were confirmed by 

proton and carbon NMR spectroscopy by comparison with the spectra of 4-(1-

benzotriazolyl)quinoline 35, 11H-indolo[3,2-c]quinoline 36 or isocryptolepine 16. 4-

(1-Benzotriazolyl)-7-chloroquinoline 66 and 3-chloroisocryptolepine 64 possessed a 

number of signals in their carbon NMR spectra that were close together and both 

HMBC and HSQC experiments were required to unequivocally assign the peaks. The 

synthesis of 3-chloro-11H-indolo[3,2-c]quinoline 68 has previously been reported, 

via a Fisher indolisation of a chlorotetrahydroquinoline, but the compound was not 

previously fully characterised nor used to prepare its isocryptolepine analogue.134 

3.2.2. Synthesis of C2 Substituted Isocryptolepines 

4-Chloroquinolines with a halogen substituent at position C6, the necessary starting 

materials required for the preparation of C2 substituted isocryptolepines, were not 

commercially available but could be prepared via literature methods. The quinolines 

required to synthesise 2-bromoisocryptolepine 70 and 2-chloroisocryptolepine 71, 6-

bromo-4-chloroquinoline 72 and 4,6-dichloroquinoline 73 respectively, were thus 

prepared from readily available anilines (Scheme 3.3).135 

Initially 4-bromoaniline 74 and 4-chloroaniline 75 were condensed with diethyl-

ethoxymethylmalonate (DEMM), followed by cyclisation in diphenyl ether (Ph2O) to 

give 6-halo-3-carbethoxy-4-hydroxyquinolines 76 and 77. The esters 76 and 77 were 

hydrolysed in aqueous sodium hydroxide solution to give 6-halo-3-carboxy-4-

hydroxyquinolines 78 and 79 and subsequently decarboxylated upon boiling in 

diphenyl ether to generate the 4-quinolones 80 and 81 in moderate yield (61% and 

49% respectively from the 4-haloanilines 74 and 75). The 3-carbethoxy-4-

hydroxyquinoline and 4-quinolone intermediates were identified by melting point 

and infrared spectroscopy, to ensure that decarboxylation had occurred. 
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Scheme 3.3: Synthesis of 4-chloroquinoline 72 and 73 

Finally 6-bromo-4-quinolone 80 and 6-chloro-4-quinolone 81 were chlorinated with 

phosphorus oxychloride (POCl3) to afford 72 and 73 in high yield (89% and 72% 

respectively). Although compounds 80, 72 and 73 were known compounds, they had 

not previously been fully characterised in the literature and both NMR and mass 

spectra were acquired for each.  

As per the preparation of novel benzotriazole intermediates 66 and 67 (Section 

3.2.1), the 4-chloroquinolines 72 and 73 were coupled with benzotriazole to produce 

4-(1-benzotriazolyl)-6-bromoquinoline 82 and 4-(1-benzotriazolyl)-6-chloromethyl-

quinoline 83 in moderate yields (70 – 77%; Scheme 3.4).  

The benzotriazole intermediates 82 and 83 were subsequently cyclised at 140 °C 

(3 hours). 2-Chloro-11H-indolo[3,2-c]quinoline 85 was obtained in moderate yield 

(77%) and could be purified by washing the product obtained with an organic 

solvent. In contrast the cyclisation of 4-(1-benzotriazolyl)-6-bromoquinoline 82 to 2-

bromo-11H-indolo[3,2-c]quinoline 84, and subsequent washing with 

dichloromethane, did not produce a pure compound. Chromatography was not 

possible as the product 84 possessed very low solubility in organic solvents. After 

several attempts it was found that washing the solid with methanol produced 

relatively pure 84 in 54% yield. During this process a by-product was observed by 

TLC analysis and this compound was significantly more polar and UV absorbing 

than 84. Attempts were made to isolate this compound but its high polarity made 

chromatography difficult. 
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Scheme 3.4: Synthesis of isocryptolepine derivatives 70 and 71 

It was postulated that a lower reaction temperature may negate the formation of this 

secondary compound. However, reaction at 130 °C resulted in similar yields of 84 

and the secondary product was still observed by TLC analysis. 

A re-examination of the cyclisation of intermediates 66 and 67 (Scheme 3.2) 

also revealed the presence of a secondary product in the preparation of the 

trifluoromethyl cyclised product 67 but not the chloro 66. The cyclisation of a similar 

benzotriazole coupled quinoline 86 (Scheme 3.5) was recently reported, and it was 

found that reaction at high temperature, under microwave irradiation, produced both 

87 (27%) and 88 (35%).136  
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Scheme 3.5: Beauchard et al.136 synthetic route to 87 and 88 
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Therefore there appears to be a secondary site of cyclisation and the formation of 

similar by-products during the cyclisation of certain benzotriazole intermediates (i.e. 

67 and 82) may have caused the reduced yields observed. Such a by-product would 

need to be isolated for confirmation but the major aim at this stage of the project was 

to prepare isocryptolepine derivatives for biological evaluation and improving the 

yields was a secondary priority. If these compounds prove particularly active, a re-

investigation of the synthetic method to improve yields would be warranted.  

The 11H-indolo[3,2-c]quinolines 84 and 85 were N-methylated as per 68 and 69 

and the derivatives 2-bromoisocryptolepine 70 and 2-chloroisocryptolepine 71 

isolated in yields of 90% and 88% respectively.  

The structures of all novel compounds were confirmed by proton and carbon 

NMR spectroscopy by comparison with the spectra of their parent compounds. The 

exception was 2-bromo-11H-indolo[3,2-c]quinoline 84, wherein the peaks in the 

carbon spectrum due to C2 and C11a were close together and a HMBC experiment 

was needed to definitively assign the signals.  

3.2.3. Synthesis of C4 Substituted Isocryptolepines 

4-Chloroquinolines substituted at positions C8 were also available commercially and 

although initial aims did not include preparing isocryptolepine derivatives substituted 

at position C4, the accessibility of the starting materials prompted an investigation. 

4,8-Dichloroquinoline 89 and 4-chloro-8-trifluoromethylquinoline 90 were thus 

applied to the preparation of 4-chloroisocryptolepine 91 and 4-trifluoromethyl-

isocryptolepine 92 respectively. 

The above 4-chloroquinolines 89 and 90 were thermally coupled to 

benzotriazole and the novel benzotriazole intermediates 4-(1-benzotriazolyl)-8-

chloroquinoline 93 and 4-(1-benzotriazolyl)-8-trifluoromethylquinoline 94 were 

obtained in moderate yield (66-71%; Scheme 3.6). Again substituents did not greatly 

affect yields of this reaction, such that the intermediates 89 and 90 were isolated in 

comparable yields to unsubstituted 4-(1-benzotriazolyl)quinoline 35 (77%; Scheme 

2.14). This observation is in agreement with previous studies, which have reported 

that both methyl and chloro quinoline ring substituents had little impact on yields of 

benzotriazole coupling.80,84,133 
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Scheme 3.6: Synthesis of isocryptolepine derivatives 91 and 92 

Acid catalysed cyclisation in polyphosphoric acid, at 140 °C, of intermediates 93 

and 94 produced 4-chloro-11H-indolo[3,2-c]quinoline 95 and 4-trifluoromethyl-11H-

indolo[3,2-c]quinoline 96 in low yields (33 - 43%). It was found that if the 

cyclisation of 93 was conducted at a lower temperature of 130 °C yields were much 

improved (56%). However neither this result or the additional product observed 

during the cyclisation of the trifluoromethyl intermediate 94 was further investigated.  

N-Methylation of 4-chloro-11H-indolo[3,2-c]quinoline 95 in acetonitrile 

resulted in low yield (25%) of the product 4-chloroisocryptolepine 91 and can partly 

be attributed to steric affects. Peczyńska-Czoch et al.133 reported the N-methylation 

of a variety of substituted neocryptolepine derivatives and found that a substituent at 

position C4 resulted in reduced yields. This theory is further confirmed by the lack of 

reactivity of 4-trifluoromethyl-11H-indolo[3,2-c]quinoline 96. Attempts at N-

methylation in acetonitrile, or on more extreme heating in DMF, gave no product. 

Hence the bulky trifluoromethyl group may be blocking the reaction site to a larger 

extent than the chloro group.  

Toluene was also trialled as a reaction solvent as Meyers et al.128 reported its 

success in the N-methylation of some 11H-indolo[3,2-c]quinolines and it was 

envisioned that the higher reaction temperature may improve the yield of compound 

91. The N-methylation of all 11H-indolo[3,2-c]quinolines, however, gave lower 
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yields of the corresponding isocryptolepines (56-68%) compared to when the 

reaction was conducted in acetonitrile (Table 3.1). This observation is in agreement 

with our early findings for the N-methylation of 11H-indolo[3,2-c]quinoline 36 

(Section 2.4.3).  

Table 3.1: Yields of isocryptolepines 64, 65, 70, 71, 91 and 92 a 

Products 
Isolated yield (%) a 

acetonitrile toluene 

3-Chloroisocryptolepine 64 61 56 

3-Trifluoromethylisocryptolepine 65 63 59 

2-Bromoisocryptolepine 70 90 68 

2-Chloroisocryptolepine 71 88 68 

4-Chloroisocryptolepine 91 25 no rxn 

4-Trifluoromethylsocryptolepine 92 no rxn - 

a Reaction conditions: i) CH3I (100 mol eq.), ii) NH3(aq) 

Another effect governing the reactivity of SN2 reactions is the nucleophilicity of 

the reactants. Increased basicity often corresponds to an increased nucleophilicity of 

a reactant and consequently improved reaction yields.131 Previously it has been noted 

that N-methylation of various indoloquinolines proceeds in reduced yield in the 

presence of electron-withdrawing groups (which reduce basicity and nucleophilicity 

of a reactant).117,128 Thus the pKa values of the 11H-indolo[3,2-c]quinolines were 

predicted, using the Advanced Chemistry Development Interactive Laboratory 

(ACD/I-Lab) web service,137 and a similar observation was made. The most basic 

compounds were predicted to be 2-bromo-11H-indolo[3,2-c]quinoline 84 and 2-

chloro-11H-indolo[3,2-c]quinoline 85 (pKa values of 6.45 and 6.52 respectively) and 

these compounds were those N-methylated in highest yields. 4-Chloro-11H-

indolo[3,2-c]quinoline 95 and 4-trifluoromethyl-11H-indolo[3,2-c]quinoline 96 were 

the least basic (pKa values of 5.62 and 5.27 respectively) and also the least reactive. 

Consequently there are two different effects impeding the formation of 4-

chloroisocryptolepine 91 and 4-trifluoromethylisocryptolepine 92, both the position 

of the substituent and the electronic nature of the starting material. 
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3.3. Ring-Substituted Derivatives via the Jonckers Method  

A similar synthetic methodology to the Jonckers Method has previously been applied 

to the synthesis of isoneocryptolepine 30 and substituted derivatives.117 The authors 

successfully applied substituted anilines and this report prompted a similar 

investigation of the optimised ‘domino’ Jonckers Method in efforts to develop routes 

to derivatives with substituents at positions C8 or C9 (Scheme 3.7).  
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Scheme 3.7: Proposed synthetic route to isocryptolepine derivatives via the Jonckers 

Method 

During the course of the present project, Meyers et al.128 reported the application 

of substituted anilines to the Jonckers Method, further confirming that this synthetic 

strategy should allow the preparation of the desired derivatives. Although a method 

to prepare isocryptolepine derivatives with ring substituents on the quinoline ring 

(Molina Method) has already been developed, attempts were also briefly made to 

assess if substituted quinolines could be applied to the Jonckers Method. 

3.3.1. Synthesis of 9-Methylisocryptolepine 97 

The preparation of isocryptolepine derivatives substituted at positions C8 or C9, via 

the optimised ‘domino’ Jonckers Method, required the application of 2-

bromoanilines substituted at positions C4 or C5. 5-Methyl-2-bromoaniline was 

readily available commercially, the starting material required to form 9-

methylisocryptolepine 97 (Scheme 3.8). Although methyl derivatives were not target 

compounds this species was used to investigate the application of substituted anilines 

to this synthetic methodology.  

Initially the optimum conditions determined for the ‘domino’ preparation of 

11H-indolo[3,2-c]quinoline 36 from 4-bromoquinoline 59 were applied. Reaction of 

5-methyl-2-bromoaniline and 4-bromoquinoline 59 with Pd(OAc)2 (2 mol%), 

BINAP (2 mol%) and potassium carbonate in refluxing DMF resulted in the isolation 

of the cyclised product 9-methyl-11H-indolo[3,2-c]quinoline 98 in good yield (74%). 
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Scheme 3.8: Proposed synthetic route to 9-methylisocryptolepine 97 

The novel product 98 was confirmed by NMR spectroscopy and the proton spectrum 

could be fully assigned with reference to the spectrum of 11H-indolo[3,2-c]quinoline 

36, but 2D-NMR correlation spectroscopy was needed for the assignment of the 

carbon spectrum.  

When the reaction was conducted in refluxing dioxane the coupled compound 4-

(2-bromo-5-methylphenylamino)quinoline 99 was the major product (58%), as was 

the case on reaction of 4-bromoquinoline 59 and 2-bromoaniline under the same 

conditions (Section 2.4.1). When the catalytic combination Pd2(dba)3 (1 mol%), 

XANTPHOS (2.2 mol%) and caesium carbonate were employed (refluxing dioxane) 

the yield of the coupled product 99 was much improved (76%). The coupled product 

69 was similarly confirmed by NMR spectroscopy and could be fully assigned with 

reference to the spectrum of 4-(2-bromophenylamino)quinoline 60.  

The differences in reaction yields of compounds 99 and 60 can, to some extent, 

be explained due to the differences in nucleophilicity of the amines. The amine 

coordinated to the metal centre in a Buchwald-Hartwig reaction is essentially acting 

as a nucleophile and an electron-donating group would increase nucleophilicity to 

possibly improve yields. In contrast an electron-withdrawing group may have the 

opposite effect. In line with these predictions Hostyn et al.117 found that the 

Buchwald-Hartwig coupling of 3-bromoquinoline to substituted 2-bromoanilines 

resulted in higher yields of the coupled products when anilines with electron-

donating groups (i.e. Me) were employed compared to electron-withdrawing groups 

(i.e. Cl). Therefore, in the case of the reaction of 5-methyl-2-bromoaniline and 4-

bromoquinioline 59 it was expected that the Buchwald-Hartwig coupling would 

occur in higher yields than in the coupling of the unsubstituted aniline. This was 

found to be the case, 4-(2-bromo-5-methylphenylamino)quinoline 99 was formed in 
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higher yield (76%) than 4-(2-bromophenylamino)quinoline 60 (72%) with Pd2(dba)3 

(1 mol%) and XANTPHOS (2.2 mol%); albeit only slightly. 

In relation to the intramolecular C-H arylation reaction, Hostyn et al. observed 

that this reaction proceeded in higher yield with an electron-withdrawing group 

compared to an electron-donating group. This observation may be explained by the 

increased electron density on the aniline when an electron-donating group was used, 

which would increase electron density within the C-Br bond and possibly reduce 

susceptibility to oxidative addition. It was expected that the intramolecular C-H 

arylation of 4-(2-bromo-5-methylphenylamino)quinoline 99 would proceed in 

reduced yield in comparison to 4-(2-bromophenylamino)quinoline 60. This was 

demonstrated by the lower yields of 9-methyl-11H-indolo[3,2-c]quinoline 98 isolated 

after Buchwald-Hartwig coupling and in situ cyclisation (74%) in comparison to 

11H-indolo[3,2-c]quinoline 36 (82%). Meyers et al.128 also found that anilines 

bearing electron-donating groups (i.e. OMe and tBu) gave reduced yields of the 

substituted 11H-indolo[3,2-c]quinolines 100 and 101, following application of a 

similar ‘domino’ Jonckers Method (Scheme 3.9).  
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Scheme 3.9: Meyers et al.128 synthetic route to 36, 100 and 101 

N-Methylation of 9-methyl-11H-indolo[3,2-c]quinoline 98 was conducted as for 

the preparation of the parent alkaloid, by reaction with iodomethane in refluxing 

acetonitrile. Following conversion to the free base and chromatography, 9-

methylisocryptolepine 97 was isolated in high yield (84%). Reaction in non-polar 

aprotic toluene gave reduced yield (61%), as was observed during the N-methylation 

of 36. The structure of the novel methyl isocryptolepine derivative 97 was confirmed 

by NMR spectroscopy and the spectra could be assigned with reference to the 

previously reported assigned spectrum of isocryptolepine 16.48  
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The optimum conditions for the preparation of 9-methylisocryptolepine 97 are 

shown in Scheme 3.10. As originally predicted substituted anilines are applicable to 

the optimised ‘domino’ Jonckers Method, although this was only assessed using one 

such derivative. This synthetic method provided a route to an isocryptolepine 

derivative substituted at position C9 but was not further pursued due to time 

constraints, and the Molina Method had already supplied a range of novel 

derivatives. 
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Scheme 3.10: Optimised synthetic route to 9-methylisocryptolepine 97 

3.3.2. Attempts to Prepare 2-Bromoisocryptolepine 70 

Although the Molina Method allowed the preparation of 2-bromoisocryptolepine 70 

in good yield, efforts were made to quickly evaluate if substituted quinolines were 

applicable to the optimised ‘domino’ Jonckers Method. The required starting 

material 4,6-dibromoquinoline 102 was prepared via bromination of 6-bromo-4-

hydroxyquinoline 80 with phosphorus tribromide (82%; Scheme 3.11). 
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Scheme 3.11: Synthesis of 4,6-dibromoquinoline 102 

The Buchwald-Hartwig coupling and in situ cyclisation of 102 to 2-

bromoaniline, using the optimum catalytic conditions used to prepare 9-methyl-11H-

indolo[3,2-c]quinoline 98, was attempted. However, the major product was 4-(2-

bromophenylamino)-6-bromoquinoline 103, not the desired 2-bromo-11H-
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indolo[3,2-c]quinoline 84 (Scheme 3.12). The structure of the impure product was 

confirmed by NMR spectroscopy but no further attempts were made to improve this 

method. This preliminary investigation suggests that the optimised ‘domino’ 

Jonckers Method is applicable to substituted anilines, over quinolines, but a more 

thorough investigation of the effects of ring substitution is warranted. 
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Scheme 3.12: Attempted synthesis of 2-bromo-11H-indolo[3,2-c]quinoline 84
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3.4. Ring-Substituted Derivatives via Electrophilic Aromatic 

Substitution  

Electrophilic aromatic substitution was investigated as an additional method for 

preparing isocryptolepine derivatives. Previously cryptolepine 14 had been nitrated 

by reaction of the parent compound with concentrated nitric acid and glacial acetic 

acid.57 Substitution of this species occurred exclusively at positions C7 and C9 and 

this result prompted an investigation of similar reactions with isocryptolepine 16. 

Presumably corresponding positions on isocryptolepine 16 would also readily 

undergo electrophilic aromatic substitution and may provide an additional synthetic 

method to prepare derivatives with ring substituents on the indole ring. Figure 3.1 

illustrates the most susceptible positions of aromatic substitution on cryptolepine 14 

and the predicted positions on isocryptolepine 16.  
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Figure 3.1: Most susceptible sites of electrophilic aromatic substitution 

3.4.1. Synthesis of Halogenated Derivatives 

Initially bromination of isocryptolepine 16 was attempted using N-bromosuccinimide 

(NBS) as this brominating agent is generally one of the more selective reagents 

applied to the bromination of carbazoles.138-140 In addition related compounds to 

isocryptolepine 16 have previously been brominated with N-bromosuccinimide.141  

Reaction of isocryptolepine 16 with one molar equivalent of N-

bromosuccinimide in DMF (150 ⁰C) produced a single brominated product in 74% 

yield, which was easily purified via recrystallisation. The reaction was also 

monitored by HPLC analysis and it was found that bromination was completed 

within 30 minutes. The proton NMR spectra of the product and isocryptolepine 16 

(Figure 3.2) were compared in an effort to identify the product but the results were 

inconclusive.  



 
 
Figure 3.2:1H NMR spectra of isocryptolepine 16 and the brominated product (400 MHz, d6-DMSO).  
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Whilst the proton spectrum of the product indicated the presence of eight 

aromatic protons, confirming monobromination, it was unclear if this has occurred at 

positions C8 or C9 as the proton spectra of both 8-bromoisocryptolepine and 9-

bromoisocryptolepine would appear similar. Two triplets at 7.26 and 7.44 ppm (due 

to H-8 and H-9 respectively) were observed in the proton spectrum of 

isocryptolepine 16, but only a single doublet of doublets at 7.54 ppm was observed in 

the proton spectrum of the brominated product (either H-8 or H-9). In addition the 

proton spectrum of isocryptolepine 16 displayed a doublet at 8.12 ppm (3JH,H= 7.6 

MHz) due to H-7 while the spectrum of the product showed a doublet at 8.30 ppm 

with a lower coupling constant (4JH,H = 2.4 Hz) to indicate this proton is adjacent to 

the bromo group and could be either H-7 or H-10.  

In an effort to unequivocally determine the product, 1D NOE difference 

spectrometry was utilised. This common spectroscopic technique takes advantage of 

the nuclear Overhauser effect (the transfer of polarisation between nuclear spins) and 

is able to identify which protons are close through space. A single resonance (or 

peak) is irradiated at its resonance frequency (or saturated) and protons that are 

spatially close (can transfer polarisation) are enhanced. The NOE difference 

spectrum is then subtracted from the original proton spectrum, such that protons that 

are enhanced by NOE are observed as positive peaks and the irradiated proton as a 

negative peak. Patterns of positive and negative peaks are also often observed for 

protons that were coupled to the irradiated proton.  

The results of the 1D NOE difference experiments on the brominated product 

are shown in Figure 3.3. The saturation of the peak at 8.30 ppm results in a positive 

NOE peak at 9.39 ppm (H-6 based on our knowledge of the spectrum of the parent). 

As the peak at 8.30 ppm has arisen from a proton that is spatially close to H-6, it 

must be H-7 and not H-10. A pattern of positive and negative peaks at 7.54 and 7.71 

ppm was also observed and have consequently arisen from H-7 coupling to two other 

protons. The positive and negative peak at 4.25 ppm was a residual signal from 

NCH3, where it is well known that strong signals cannot be fully eliminated in a 

difference spectrum.142 A second NOE experiment was conducted where the peak at 

9.39 ppm (H-6) was saturated and this resulted in positive NOE peaks at 8.30 (H-7) 

and 4.25 ppm (N-CH3).  



 
 

Figure 3.3: 1D NOE difference spectra of compound 104. The arrow indicates the point of saturation (400 MHz, d6-DMSO).
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This observation further confirms the peak at 8.30 ppm is due to H-7, therefore its 

low coupling constant (4JH,H = 2.4 Hz) indicates it has no protons adjacent and that 

bromination has occurred at position C8. Therefore it was concluded that 8-

bromoisocryptolepine 104 was the product formed (Scheme 3.13).  

N

N

N

N Br

NBS

DMF

16 104
74%  

Scheme 3.13: Synthesis of 8-bromoisocryptolepine 104 

In order to prepare a dibrominated compound, isocryptolepine 16 was reacted 

with an excess of N-bromosuccinimide at 150°C in DMF. Analysis of the mixture by 

HPLC did not show any evidence of another compound peak (apart from the one due 

to 8-bromoisocryptolepine 104) and therefore a second brominated product had not 

formed. As previous reports have shown that reaction of bromine with carbazoles 

often gives mono and disubstituted products,138,139 this reagent was trialled as a 

brominating agent. A series of small scale bromination reactions were conducted 

with bromine in glacial acetic acid and the reaction mixtures analysed by HPLC, 

using the previously established methods for monitoring the palladium catalysed 

reactions in Chapter 2.  

Reaction of isocryptolepine 16 with bromine (1 mol eq.) in glacial acetic acid at 

room temperature (25 °C) did not result in the formation of another product. 

Increasing the molar equivalents of bromine also did not result in a second 

brominated compound. When the reaction was conducted at 60 °C using one molar 

equivalent of bromine a secondary peak was observed, albeit with a very low peak 

area. Increasing the molar equivalents of bromine, or increasing reaction temperature 

further, did not stimulate the formation of this compound. Consequently the 

formation of a dibrominated species via electrophilic aromatic substitution was 

deemed unattainable. Unlike cryptolepine 14 position C8 on the isocryptolepine 16 

ring is significantly more susceptible to electrophilic attack than position C10. 

The method used to synthesise the bromo derivative 104 was subsequently 

applied to the bromination of other monosubstituted derivatives of isocryptolepine 
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previously prepared (Scheme 3.14). Reaction of 3-chloroisocryptolepine 64, 2-

bromoisocryptolepine 70 and 2-chloroisocryptolepine 71 with N-bromosuccinimide 

produced 8-bromo-3-chloroisocryptolepine 105 (71%), 2,8-dibromoisocryptolepine 

106 (71%) and 8-bromo-2-chloroisocryptolepine 107 (77%). Bromination of the 

methyl derivative 97 produced 8-bromo-9-methylisocryptolepine 108 in slightly 

improved yield (80%) most likely due to the weakly activating nature of the methyl 

group. As for 104, the position of substitution was confirmed with 1D NOE 

difference spectrometry and all derivatives were also fully characterised via NMR 

and mass spectroscopy.  

N

N

N

N Br

64 R1 = H   R2 = Cl   R3 = H
70 R1 = Br  R2 = H    R3 = H
71 R1 = Cl   R2 = H   R3 = H
97   R1 = H    R2 = H   R3 = CH3

NBS

DMF

R1

R2

R3 R3

R1

R2

105 R1 = H   R2 = Cl   R3 = H
106 R1 = Br  R2 = H    R3 = H
107 R1 = Cl   R2 = H   R3 = H
108  R1 = H    R2 = H   R3 = CH3  

Scheme 3.14: Synthesis of 8-bromoisocryptolepines 105-108 

Chlorination of heterocyclic compounds can be selectively conducted by 

reaction with N-chlorosuccinimide (NCS).143,144 However, N-chlorosuccinimide has 

been noted to be less reactive compared to N-bromosuccinimide and this has been 

attributed to the stronger N-Cl bond.145 Reaction of isocryptolepine 16 with N-

chlorosuccinimide in DMF (150 °C) produced 8-chloroisocryptolepine 109 in low 

yield (41%) in line with the literature (Scheme 3.15).  

N

N

N

N Cl

NCS

DMF

16 109
41%  

Scheme 3.15: Synthesis of 8-chloroisocryptolepine 109 
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3.4.2. Attempts to Prepare Nitrated Derivatives  

Nitration of cryptolepine 14, in mixtures of concentrated nitric acid and glacial acetic 

acid, has previously been reported to exclusively occur at positions C7 and C9.57 It 

was found that reaction at room temperature produces mixtures of 7-nitrocryptole-

pine 110 and 9-nitrocryptolepine 111, whilst reflux produces solely the disubstituted 

7,9-dinitrocryptolepine 112 (Scheme 3.16). Given that bromination only occurs at 

position C8 on the isocryptolepine ring it was also predicted that nitration would 

occur here. However, the harsher conditions of nitration may force disubstitution. 

N

N

14

N

N

110

N

N

111

N

N

112

NO2

NO2

NO2

NO2

HNO3
CH3COOH
25 °C

HNO3
CH3COOH

reflux

+

45% 11%

69%

 

Scheme 3.16: Wright et al.57 synthetic route to nitrated cryptolepine derivatives 

Nitration of isocryptolepine 16 was attempted using the methiodide salt of the 

parent compound (16.HI), as Wright et al. had nitrated cryptolepine 14 in its 

methchloride salt form. Reaction in a 1:1 mixture of concentrated nitric acid (69%) 

and glacial acetic acid produced a single product that could be easily purified by 

recrystallisation. The proton NMR of the product (Figure 3.4) indicated the presence 

of 8 protons, confirming monosubstitution, and 1D NOE difference spectroscopy 

confirmed that substitution had occurred at position C8. The carbon NMR spectrum 

(Figure 3.4) showed 16 carbon signals, as expected, but a peak at 83.2 ppm was 

inconsistent with a nitro product.  

 



 
 

Figure 3.4: 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra of the assumed nitro product (d6-DMSO). 
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Mass spectrometry was conducted in attempts to identify the product and the EI 

mass spectrum showed an intense fragment peak at 358, which was also inconsistent 

with nitro substituted isocryptolepine. A high resolution mass spectrum was 

subsequently obtained and an accurate mass of 357.997044 found, which indicated 

the product has a molecular formula of C16H11N2I and that the sample was iodo 

substituted isocryptolepine. On re-examination of the carbon spectrum the peak at 

83.2 ppm is consistent with an iodo substituted carbon atom to further confirm that 

the product is 8-iodoisocryptolepine 113 (Scheme 3.17), which has been formed in 

moderate yield (57%). Therefore the methiodide salt has most likely reacted with the 

nitric acid to form an iodo based electrophile.131 Reaction of 9-methylisocryptolepine 

97, in its methiodide salt form, produced 8-iodo-9-methylisocryptolepine 114 in 71% 

yield (Scheme 3.17). 

N

N IHNO3 
CH3COOH

N

HN

I

16.HI R = H  
97.HI R = CH3

113 R = H  
114 R = CH3

R R

25 °C

 

Scheme 3.17: Synthesis of 8-iodoisocryptolepines 113 and 114 

If the source of iodide was removed, by using isocryptolepine 16 in its free base 

form, it was envisioned that nitration could be achieved. Reaction of isocryptolepine 

16 with a 1:1 mixture of concentrated nitric acid and glacial acetic acid was 

subsequently conducted. However, in 69% concentrated nitric acid at room 

temperature overnight no reaction was observed. In 90% concentrated nitric acid a 

mixture of products was detected by both TLC and HPLC analysis. Attempts to 

separate these species by chromatography were unsuccessful as they had very similar 

retention times.  

Examination of the proton NMR spectrum of the mixture (Figure 3.5) revealed 

two distinct singlets at 9.76 and 9.66 ppm, which suggested there were two different 

H-6 peaks and thus two products have been formed. As the 9.76 ppm peak has an 

integral of 1.05 and the 9.66 ppm peak an integral of 0.77 it was inferred that the 

mixture contained approximately 60% of one species and 40% of another.  



 

Figure 3.5: 1H NMR spectrum of the mixed nitrated product (400 MHz, d6-DMSO).  
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Similarly the low coupling constants associated with the doublets at 9.16 ppm (4JH,H = 

2.4 Hz) and 8.60 ppm (4JH,H = 2.0 Hz) indicate the presence of two different protons 

adjacent to a nitro group. Thus the two products were predicted to be 8-

nitroisocryptolepine 115 and 9-nitroisocryptolepine 116 (Scheme 3.18).  

N

N NO2

16 115

N

N

116

NO2

+

N

N
HNO3 

CH3COOH

 

Scheme 3.18: Synthesis of nitrated isocryptolepine derivatives  

It was subsequently postulated that increasing the reaction temperature would result 

in the isolation of a single dinitrated product, as was the case in the nitration of 

cryptolepine 14. A series of small scale reactions, in 69% or 90% nitric acid, were 

conducted and the reaction mixtures analysed by HPLC, as for the bromination of 

isocryptolepine 16. Reaction at either 60 °C or 100 °C resulted in the formation of 

multiple products. As nitro compounds were not priority targets no further effort was 

made to separate and identify these compounds, most likely a mixture of mono and 

dinitrated isocryptolepines. 
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3.5. Isomeric Derivatives of Isocryptolepine 

The natural isomeric analogue of isocryptolepine 16, neocryptolepine 19, was prepared 

for reference purposes and its synthesis is briefly described in Section 3.5.3. The 

preparation of the synthetic isoquinoline analogue 6-methyl-6H-indolo[3,2-

c]isoquinoline 31 (henceforth referred to as MIQ) was attempted via application of both 

the Molina and Jonckers Methods and these attempts are described in the following 

section.  

3.5.1. Synthesis of MIQ 31 

The structural isomer of isocryptolepine 16, MIQ 31, had not been reported at the 

commencement of the present project and it was envisioned that this compound would 

also possess antimalarial activity. Although there had been previous reports of the 

synthesis of the desmethyl intermediate 11H-indolo[3,2-c]isoquinoline 117146-148 it was 

decided that the application of either the Molina and Jonckers Methods would be the 

best approach to prepare the desired compound. 

Initially attempts were made to substitute 4-bromoisoquinoline 118 into the Molina 

Method (Scheme 3.19). However it was found that 118 did not react with benzotriazole 

to form the desired intermediate 119.  

N

Br

N

HN

N

N

N

N

N

N

118 119 117 31  

Scheme 3.19: Proposed route to MIQ 31 via the Molina Method 

This observation can be attributed to the different nucleophilicity of the quinoline ring 

compared to the isoquinoline ring. Position C4 is the most susceptible position to 

nucleophilic substitution on a quinoline ring and accounts for the high reactivity of 4-

chloroquinolines in this particular reaction. However, on an isoquinoline ring position 

C1 is the most susceptible to nucleophilic substitution such that 1-(1-benzotriazolyl)-

isoquinoline can be readily synthesised from 1-bromoisoquinoline.149 The application of 
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the Molina method was thus not further explored for the preparation of MIQ 31 and it 

was envisioned that the Jonckers Method would provide a superior synthetic route. 

During investigation into the application of the Jonckers Method to the preparation 

of MIQ 31 (Scheme 3.20), Van Baelen et al.82 reported the synthesis of this compound 

also via an adaption of the Jonckers Method. The focus in the present project 

subsequently shifted to improving the reported synthetic method and confirming the 

potent antimalarial activity also reported by Van Baelen et al. 

N

Br

N

HN

Br

N

HN

N

N

118 120 117 31  

Scheme 3.20: Proposed synthetic route to MIQ 31 via the Jonckers Method 

Prior to applying the optimised ‘domino’ Jonckers Method, the preparation of the 

coupled intermediate 120 via the Buchwald-Hartwig reaction was briefly investigated. 

4-Bromoisoquinoline 118 was coupled to 2-bromoaniline using Pd(OAc)2 (2 mol%) and 

BINAP (2 mol%) with potassium carbonate in refluxing dioxane for 96 hours. 

Unfortunately, this resulted in the isolation of 4-(2-bromophenylamino)isoquinoline 120 

in low yield (17%). The reaction was repeated with a 5-fold increase in catalytic loading 

and the coupled intermediate 120 was subsequently isolated in moderate yield (50%). 

When the reaction was conducted using Pd2(dba)3 (5 mol%) and XANTPHOS (11 

mol%) with caesium carbonate the coupled intermediate 120 was obtained in improved 

yield (67%); comparable to the yield reported by Van Baelen et al. (74%) under the 

same reaction conditions.  

The coupled intermediate 120 was cyclised via the intramolecular C-H arylation 

reaction to form the cyclic intermediate 11H-indolo[3,2-c]isoquinoline 117 in moderate 

yield (58%) using Pd(OAc)2 (10 mol%), BINAP (10 mol%) and potassium carbonate in 

refluxing DMF. Van Baelen et al. were able to obtain the cyclised intermediate 117 in 

higher yield (78%), using a larger catalytic loading of PdCl2(PPh3)2 (20 mol%) in 

dimethylamine at 130 °C.  

No further attempts were made to improve the cyclisation of intermediate 120 as 

the priority was to conduct the cyclisation in situ in a ‘domino’ type reaction as for 
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intermediate 60. Attempts were made to monitor this reaction by HPLC but both the 

coupled intermediate 120 and cyclised intermediate 117 did not absorb well in the same 

areas of the UV spectrum. As a result, the catalytic conditions successfully used for the 

preparation of the methyl cyclised intermediate 98 (Scheme 3.10) were applied. 4-

Bromoisoquinoline 118 was reacted with 2-bromoaniline using Pd(OAc)2 (10 mol%), 

BINAP (10 mol%) with potassium carbonate in refluxing DMF. The cyclised 

intermediate 117 was isolated in 57% yield, comparable to the overall yield reported by 

Van Baelen et al. (58%) to give 117 in two steps. 

The N-methylation of the cyclised product 117 was achieved as for isocryptolepine 

16 (Scheme 2.12), by reaction in acetonitrile with a large molar excess of iodomethane. 

Purification of the product was achieved by flash column chromatography of the 

methiodide salt, as the free base was unstable on silica, and MIQ 31 was isolated in 

66% yield. When the reaction was conducted in non-polar aprotic toluene, the yield of 

MIQ 31 was improved to 89%. Van Baelen et al. isolated MIQ 31 in slightly reduced 

yield (76%) using polar aprotic THF as the solvent. Given that the isocryptolepine 

derivatives were isolated in higher yields when acetonitrile was used as the solvent, 

compared to reaction in toluene, the opposite result had been expected. It was postulated 

that the cyclised intermediate 117 was more soluble in toluene than the 11H-indolo[3,2-

c]quinolines, such that the higher yield obtained in toluene was simply due to the 

increase in reaction temperature. Assignment of the proton and carbon NMR spectra of 

MIQ 31 was achieved via 2D-NMR spectroscopy (COSY, HSQC and HMBC) and was 

in agreement with the data later published.82  

The optimum conditions for the preparation of MIQ 31 are shown in Scheme 3.21. 

This method allows the isolation of MIQ 31 in two steps in comparable yield (51%) to 

the three step procedure (44%) reported by Van Baelen et al.82.  
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K2CO3, DMF

89%57%  

Scheme 3.21: Optimised synthetic route to MIQ 31  
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Given a viable method to MIQ 31, and the promising biological activity reported for the 

compound, the preparation of some derivatives became an additional focus and this will 

be discussed in the following section. 

3.5.2. Attempts to Prepare Brominated MIQ Derivatives  

Given the ease with which both isocryptolepine 16 and its derivatives were brominated, 

attempts were made to brominate MIQ 31. However, reaction of MIQ 31 with N-

bromosuccinimide in DMF at 150 °C resulted in no reaction and stronger brominating 

conditions were sought. Subsequent attempts at bromination with bromine in glacial 

acetic acid, at room temperature, again resulted in no reaction. Reaction at 60 °C with 

one equivalent of bromine, for three days, resulted in some brominated product being 

detected by TLC analysis. Chromatography was conducted but a small amount of 

compound (9 mg; 4% yield) was isolated and the product was contaminated with 

starting material; clean separation could not be achieved owing to both the product and 

starting material being unstable on silica. Future chromatography could be conducted on 

neutral alumina or triethylamine treated silica. Proton NMR spectroscopy of the product 

(Figure 3.6) showed 8 protons, to indicate that monosubstitution had occurred, and the 

emergence of a peak at 111.8 ppm in the carbon spectrum was consistent with a bromo 

substituted carbon.  

On closer examination of the aromatic regions in the proton spectra, it was 

observed that the multiplet at 8.30 ppm due to H-7 and H-4 in the spectrum of MIQ 31 

had separated into two doublets in the spectrum of the product. In addition the doublet 

at 8.30 ppm (4JH,H = 2 MHz) in the proton spectrum was most likely due to H-7 and 

indicates that the bromo group is adjacent (at position 8). Similarly the two triplets at 

7.42 ppm (H-8) and 7.76 ppm (H-9) in the spectrum of MIQ 31 have become one 

doublet of doublets at 7.52 ppm in the spectrum of the product, also indicating 

substitution has occurred at position C8. Based on these observations the product was 

predicted to be 8-bromo-6-methyl-6H-indolo[3,2-c]isoquinoline 121 (Scheme 3.22) but 

1D NOE difference spectrometry was not conducted to confirm this in the absence of a 

pure product. Instead efforts were made to improve the efficiency of the synthesis. 



 

Figure 3.6: 1H NMR spectra of MIQ 31 and the impure brominated product (400 MHz, d6-DMSO).
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Scheme 3.22: Synthesis of 8-bromo-6-methyl-6H-indolo[3,2-c]isoquinoline 121 

A series of small scale bromination reactions were subsequently conducted and 

the reaction mixtures analysed by HPLC, as for the bromination of isocryptolepine 

16 (Section 3.4.1). On reaction of MIQ 31 with one molar equivalent of bromine in 

glacial acetic acid (at 60 °C) a product peak was observed, but a significant portion 

of unreacted MIQ 31 was also present after 24 hours of reaction. Increasing the 

reaction temperature (to 100 °C) or increasing the molar equivalents of bromine (to 

three) did not result in complete bromination of MIQ 31. Whilst electrophilic 

aromatic substitution of MIQ 31 appeared possible, it was extremely inefficient. 

Given that the parent 31 was formed in reduced yield, in comparison to 

isocryptolepine 16, and bromination was also low yielding it was judged that a better 

method to synthesise derivatives was necessary. However, at this late stage in the 

project further synthetic experiments were not pursued. Nevertheless, if the high 

biological activity of MIQ 31 is confirmed a more thorough investigation may be 

warranted.  

3.5.3. Synthesis of Neocryptolepine 19 

Neocryptolepine 19 also represents an isomeric derivative of isocryptolepine 16, 

which has previously been prepared by Peczyńska-Czoch et al.133 via a similar 

methodology to the Molina Method (Scheme 3.23). Initially 2-chloroquinoline 122 

was coupled to benzotriazole, followed by cyclisation to form 6H-Indolo[2,3-

b]quinoline 124 and finally N-methylation to give neocryptolepine 19 in an overall 

yield of 9%. Neocryptolepine 19 has been more extensively studied in comparison to 

isocryptolepine 16 and it was envisioned that this compound could be used as a 

reference compound during the biological evaluations. However, in the event, only a 

limited number of compounds were able to be biologically evaluated and as 

isocryptolepine 16 was available the examination of neocryptolepine 19 was not 
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considered necessary. Nevertheless this alkaloid was utilised in a later pKa 

experimental investigation.  

PPA
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Scheme 3.23: Peczyńska-Czoch et al.133 synthetic route to neocryptolepine 19 

The necessary starting material, 2-chloroquinoline 122, was prepared in two 

steps from quinoline 125 via a previously reported method (Scheme 3.24).150 

Reaction of 125 with glacial acetic acid and hydrogen peroxide gave quinoline-N-

oxide 126, which was subsequently reacted with phosphorous oxychloride. This 

produced a mixture of 4-chloroquinoline 33 and 2-chloroquinoline 122, which were 

separated via chromatography. 2-Chloroquinoline 122 was isolated in lower yield 

(17%) from compound 125 than Rodríguez et al. (47%)151 but no efforts were made 

at this stage to optimise this reaction.  

N

O

N ClN

H2O2

CH3COOH

POCl3

122125 126
17%33%  

Scheme 3.24: Synthesis of 2-chloroquinoline 85 

2-Chloroquinoline 125 was reacted with benzotriazole, applying the same 

reaction conditions used to prepare 35 (Scheme 2.14) and 2-(1-benzotriazolyl)-

quinoline 123 was isolated in 75% yield. Subsequent reaction in polyphosphoric acid 
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resulted in the isolation of 6H-indolo[2,3-b]quinoline 124 in 33% yield. Similarly 

Peczyńska-Czoch et al.133 were only able to isolate 124 in low yield, presumable due 

to the formation of a secondary cyclisation product.152 

The cyclised intermediate 124 was N-methylated under the same reaction 

conditions applied in the preparation of isocryptolepine 16 (Scheme 2.12). Reaction 

with iodomethane in acetonitrile, followed by chromatography of the methiodide 

salt, resulted in the isolation of neocryptolepine 19 in 37% yield. Again the yield was 

lower than previously reported, but no efforts were made to optimise the reaction as 

the principle aim was to prepare sufficient compound for use as a reference in the 

biological evaluations. 
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3.6. Summary 

The Molina Method allowed the preparation of five derivatives, 64, 65, 70, 71 

and 91, from substituted 4-chloroquinolines. This method is most suitable to the 

application of 4-chloroquinolines with ring substituents at positions C6 and C7 and 

further application could allow the synthesis of a wider range of 2 and 3-substituted 

isocryptolepines. In general this method is only limited by the availability of the 

necessary 4-chloroquinolines.  

The Jonckers Method allowed the preparation of the ring substituted derivative 

9-methylisocryptolepine 97. Initial investigations indicated that substituted anilines 

are more applicable to this method than substituted quinolines, but further 

examination of this approach is warranted. 

Electrophilic aromatic substitution was found to favour substitution at position 

C8 and bromination using this method was thoroughly investigated and allowed the 

preparation of five novel derivatives (104 - 108). The method was further applied to 

the preparation of chloro and iodo derivatives and three additional derivatives (109, 

113 and 114) were prepared. Although a method for selective mononitration was not 

perfected, the initial investigation undertaken here is a useful foundation for future 

studies.  

During the course of this work an alternative synthetic route to the chloro 

isocryptolepine derivatives 64 and 109 was reported by Kumar et al.93 The products 

were isolated in a single step from substituted 2,3-dihydro-4-quinolones and 

accordingly this synthetic method may be worthy of further investigation at a later 

stage. 

The isomeric derivative of isocryptolepine 16, MIQ 31, could be prepared via 

employment of the Jonckers Method, but the Molina Method was not applicable. 

Bromination of MIQ 31 was unsuccessful and a re-investigation of the synthetic 

procedures to the desmethyl intermediate 117 may be required in order to develop 

routes to substituted derivatives of this particular ring system. 



 
 

 

Chapter 4 

Biological Evaluation of  

Isocryptolepine Derivatives 
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4.1. Introduction 

Eight of the fifteen synthesised isocryptolepine derivatives were selected for 

biological testing based on efficacy of related cryptolepine analogues and the 

diversity and number of substituent groups present; monosubstituted, disubstituted, 

halogenated and alkyl substituted derivatives (Figure 4.1). The isomer of 

isocryptolepine 16, MIQ 31, was also evaluated to confirm its previously reported 

potent antimalarial activity.82  
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Figure 4.1: Isocryptolepine 16, MIQ 31 and the isocryptolepine derivatives selected 

for biological evaluation 
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The biological evaluation of derivatives for antimalarial activity and cytotoxicity 

was conducted in collaboration with Professor Tim Davis (School of Medicine and 

Pharmacology; University of Western Australia) and Dr Simon Fox (School of 

Pharmacy; Curtin University) respectively. Compounds were assessed for 

antimalarial activity as their hydrochloride salts against two strains of Plasmodium 

falciparum (chloroquine sensitive 3D7 and chloroquine resistant W2mef) and for 

cytotoxicity against the 3T3 cell-line (mouse embryonic fibroblasts). 
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4.2. Determination of Physicochemical Properties 

A compound which displays high or adequate bioactivity also needs to possess 

appropriate pharmacological and pharmacokinetic properties (i.e. absorption, 

metabolism, excretion and bioavailability). Unfavourable pharmacological properties 

are one of the main causes of attrition in drug discovery and development.153 The 

physicochemical properties of compounds (i.e. solubility, Log P values and pKa) can 

profoundly affect the above biological properties and hence before the 

isocryptolepine derivatives were biologically evaluated a variety of important 

physicochemical properties were determined for the compounds under investigation. 

4.2.1. Solubility 

Isocryptolepine derivatives, in the free base form, displayed poor aqueous solubility 

as expected due to their polyaromatic nature. However, solubility markedly increased 

if the compounds were converted to their hydrochloride salts. All cryptolepine and 

neocryptolepine derivatives that have previously been biologically evaluated were 

presented in their salt forms, presumably also due to solubility issues associated with 

the free base forms.  

Even though the salt did improve aqueous solubility, it did not allow adequately 

high concentrations of compounds for satisfactory biological evaluation. Low 

concentrations of ethanol, acetic acid or DMSO in water were compatible with the 

biological cells but initial investigations found that compounds were insoluble in 

water-ethanol or water-acetic acid mixtures, but aqueous solubility improved with 

the addition of DMSO.  

Whilst solubility was not quantitatively determined, some observations were 

made. The parent alkaloid 16, 9-methylisocryptolepine 97, 8-bromoisocryptolepine 

104 and 8-bromo-9-methylisocryptolepine 108 were soluble in a 50% solution of 

DMSO in water and 15 mM solutions were achievable. MIQ 31 and 8-

chloroisocryptolepine 109 were moderately soluble (10 mM solutions were 

achievable). 3-Chloroisocryptolepine 64, 8-bromo-3-chloroisocryptolepine 105, 2,8-

dibromoisocryptolepine 106 and 8-bromo-2-chloroisocryptolepine 107 were poorly 

soluble and an 80% solution of DMSO in water was needed for complete dissolution 
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to give 5 mM concentrations. 8-Bromo-3-chloroisocryptolepine 105 was the least 

soluble as precipitation occurred upon refrigeration at these concentrations. 

4.2.2. Stability 

The stability of the resultant water-DMSO solutions was also investigated to assess if 

compound degradation was apparent during the biological testing. Initially the 

percentage purity of the compound (as hydrochloride salts) was assessed by HPLC 

analysis via a similar method previously applied to assess the purity of 

neocryptolepine derivatives.58,80 The HPLC conditions used were the same as those 

previously applied to monitor the Buchwald-Hartwig and C-H arylation reactions, 

(Section 2.4) in addition to the electrophilic substitution of isocryptolepine (Section 

3.4). If compound purity was below 95% the samples were further purified by flash 

column chromatography. These relatively pure compound samples were 

subsequently used to prepare stock solutions (in water-DMSO) for biological testing 

purposes. A selection of these stock solutions were later re-examined post testing to 

assess their percentage purity over a period of three months. The purity analysis 

results pre- and post-biological testing is summarised in Table 4.1.  

Table 4.1: Preliminary Stability Analysis 

Compound 
Initial % 

purity 

% Purity in solution (days) 

1st test 2nd test 

Isocryptolepine 16 99.9 96.5 (40) 94.0 (107) 

MIQ 31 99.1 - 99.5 (107) 

3-Chloroisocryptolepine 64 98.9 98.9 (25) 71.5 (93) 

9-Methylisocryptolepine 97 98.7 99.5 (32) - 

8-Bromoisocryptolepine 104  99.5 100 (40) 100 (107) 

8-Bromo-3-chloroisocryptolepine 105 97.6 98.5 (25) 89.1 (93) 

8-Bromo-9-methylisocryptolepine 108 97.5 - 95.2 (99) 

 

The majority of the compound solutions did not display reduced percentage purity 

over the three month period and can be considered relatively stable. However, after 

90 days in solution 3-chloroisocryptolepine 64 and 8-bromo-3-chloroisocryptolepine 

105 displayed reduced percentage purity (< 90%). Consequently all compounds were 
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considered stable for a period of up to 25 days, after which time fresh solutions were 

made for testing purposes. 

4.2.3. Log P values  

The log P value of a compound describes its tendency to partition into non-polar over 

aqueous environments. It is often quantitatively described by the log of the 

equilibrium distribution of a compound between octanol and water. The log P of a 

compound is in essence an indicator of a compound’s lipophilicity but also provides 

information relating to aqueous solubility. A high log P can be associated with issues 

such as low aqueous solubility, which may in some cases lead to poor oral 

absorption.154 The log P values of the isocryptolepine derivatives were estimated 

using the ACD/I-Lab web service,137 as previously described in Section 3.2.3 for the 

estimation of pKa values for certain 11H-indolo[3,2-c]quinolines. Based on these 

calculated log P values all isocryptolepine derivatives were moderately lipophilicity 

with a log P in the range 2.06 to 4.13. According to Lipinski’s rule of five,155 

moderate compound lipophilicity (i.e. Log P < 5) is associated with compounds that 

display a good balance between aqueous solubility and cell membrane permeability. 

Thus these compounds may possess acceptable oral absorption in vivo. 
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4.3. Antimalarial Evaluation  

The in vitro antimalarial activity of the selected isocryptolepine derivatives was 

determined by assessing their ability to inhibit the growth of Plasmodium 

falciparum. Percentage growth inhibition was determined using the standard [3H]-

hypoxanthine assay156,157 and involves supplying the parasite with [3H]-hypoxan-

thine, which is essential for parasite growth.158 The difference in [3H]-hypoxanthine 

uptake between the drug sample and a drug-free control provides a measure of 

percentage parasite growth which can then be used to calculate IC50 values for the 

compounds under investigation. 

Stock solutions of the isocryptolepines derivatives were prepared in either 50% 

sterile DMSO in water or 80% DMSO in water, as described in Section 4.2.1. Stock 

solutions of 8-bromo-3-chloroisocryptolepine 105 were prepared fresh on the day of 

testing due to the precipitation issues. Stock solutions were serially diluted with cell 

media into 96-well plates and the optimum concentration range for testing pre-

determined by a pilot study. Initially, a working standard of 1600 µM for 

isocryptolepine 16 was tested resulting in a tested concentration range of 12.5 - 800 

µM, but was later found to be too concentrated. A working standard of 12 µM, 

giving a concentration range of 94 - 6000 nM, was found to be adequate on a second 

attempt. Consequently other derivatives were initially tested in this range and the 

concentrations adjusted accordingly.  

Each compound was tested in triplicate with a drug-free control, chloroquine 2 

was used as the positive control and statistically significant data was assured by 

conducting the assay a minimum of three separate times on each strain of P. 

falciparum. Due to the high dilution factors undertaken the concentration of DMSO 

was always below 0.05% and did not affect parasite growth. 

The results of the antimalarial evaluation of the isocryptolepines are summarised 

in Table 4.2. The parent alkaloid 16 displayed in vitro antimalarial activity (IC50 = 

1177 nM) against the chloroquine resistant strain (W2mef) at levels consistent with 

previous literature reports (IC50 = 780 nM, K1).59 Similarly chloroquine 2 was active 

against the resistant strain (IC50 = 144 nM) at comparable levels to published data 

(IC50 = 171 - 246 nM).57,59,75,157 The structural isomer MIQ 31 also showed in vitro 

antimalarial activity (IC50 = 273 nM, W2mef) and although it was nearly 4-fold more 
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potent than isocryptolepine 16 its antimalarial activity was not as high as previously 

reported by Van Baelen et al. (IC50 = 40 nM, K1).82  

Table 4.2: Antimalarial Activity of Selected Isocryptolepine Derivatives 

Compound 
Antiplasmodial activity; IC50 (nM) a 

3D7 W2mef 

Isocryptolepine 16 665 ± 221 1177 ± 390 

MIQ 31 58.5 ± 16.0 273 ± 95.6 

3-Chloroisocryptolepine 64 130 ± 11.8 316 ± 205 

9-Methylisocryptolepine 97 448 ± 83.0 760 ± 268 

8-Bromoisocryptolepine 104 84.9 ± 33.1 184 ± 46.9 

8-Bromo-3-chloroisocryptolepine 105 50.4 ± 4.38 100 ± 16.3 

2,8-Dibromoisocryptolepine 106 127 ± 98.0 112 ± 11.7 

8-Bromo-2-chloroisocryptolepine 107 57.4 ± 14.3 85.0 ± 5.64 

8-Bromo-9-methylisocryptolepine 108 62.2 ± 38.9 131 ± 55.1 

8-Chloroisocryptolepine 109 117 ± 15.9 218 ± 34.6 

Chloroquine 2 b 20.4 ± 26.6 144 ± 10.5 
a IC50 ± standard deviation. b Evaluated as a diphosphate. 

Isocryptolepine derivatives were found to be more bioactive than the parent 

compound, against both strains of P. falciparum. Of the monosubstituted derivatives, 

8-bromoisocryptolepine 104 (IC50 = 184 nM, W2mef) was the most potent, being 

approximately 6-fold more active than the parent. 9-Methylisocryptolepine 97 (IC50 = 

760 nM, W2mef) was the least active of all derivatives, albeit 1.5-fold more active 

than the parent alkaloid.   

The disubstituted analogues 8-bromo-3-chloroisocryptolepine 105 (IC50 = 100 

nM, W2mef) and 8-bromo-9-methylisocryptolepine 108 (IC50 = 131 nM, W2mef) 

were more active than either of their corresponding mono-substituted counterparts. 8-

Bromo-2-chloroisocryptolepine 107 (IC50 = 85.0 nM, W2mef) was the most potent of 

the derivatives, being nearly 14-fold more active than the parent. 8-Bromo-3-

chloroisocryptolepine 105 and 2,8-dibromoisocryptolepine 106 (IC50 = 112 nM, 

W2mef) were the next most bioactive derivatives, being 12-fold and 11-fold more 

potent respectively compared to the parent alkaloid. The analogous cryptolepine 

derivative of 107, 7-bromo-2-chlorocryptolepine 23 (IC50 = 30 nM, K1; Figure 1.13), 

was found to be the most potent derivative in the study by Onyeibor et al.75 In 
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addition 7-bromo-3-chlorocryptolepine 24 (IC50 = 37 nM, K1) and 2,7-dibromo-

cryptolepine 25 (IC50 = 49 nM, K1), analogues of 105 and 106 respectively, 

displayed significantly enhanced antimalarial activity in comparison to cryptolepine 

14. This similarity in the effects of ring substituents on the enhancement of 

antimalarial activity suggests that these compounds may act upon the Plasmodium 

parasite in a similar manner. 

Most derivatives were more bioactive against the chloroquine sensitive strain, 

rather than the chloroquine resistant, which may indicate that they have a similar 

mode of action to chloroquine 2. 2,8-Dibromoisocryptolepine 106 was the only 

exception, being slightly more potent against W2mef (IC50 = 112 nM) than 3D7 (IC50 

= 127 nM). However, there is unlikely to be a practical difference between these IC50 

values and formal mechanistic studies would be required to ascertain if this indicates 

an alternative mode of action to chloroquine. 

Recently Wong et al.157 reported the antimalarial activity of some current 

antimalarial drugs against the W2mef and 3D7 strains of P. falciparum using the 

same methods to determine parasite growth inhibition as described above. 

Consequently these results are directly comparable to that particular report. The 

study found dihydroartemisinin 10 (Figure 1.6) and lumefantrine 11 (Figure 1.7) 

possessed IC50 values of 3.1 nM and 55.5 nM respectively, against the W2mef strain. 

Whilst the isocryptolepine derivatives are not as potent as dihydroartemisinin 10 

certain compounds, notably 8-bromo-2-chloroisocryptolepine 107 (IC50 = 85.0 nM), 

are in the same range as lumefantrine 11 and may possess adequate potency for 

therapeutic applications. 

4.3.1. Cross Resistance Estimation 

Cross-resistance between two drugs is often estimated using the Spearman 

correlation coefficient (r), which measures the statistical dependence between two 

variables.159 Chloroquine cross-resistance with isocryptolepine derivatives was 

estimated, where the significance level (P) was set at 0.05. A significant positive 

correlation was found between chloroquine 2 and the derivatives 3-

chloroisocryptolepine 64 (r = 0.73; P = 0.031), 8-bromoisocryptolepine 104 (r = 

0.75; P = 0.026), 8-bromo-2-chloroisocryptolepine 107 (r = 0.89, P = 0.033) and 8-

chloroisocryptolepine 109 (r = 0.70; P = 0.043). A positive correlation may suggest 
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common modes of action, drug uptake or resistance mechanism between the 

derivatives and chloroquine 2.160 It should be noted that the Spearman correlation test 

is normally conducted when field isolates are analysed, but in this case the same 

strains of P. falciparum were used for testing. This may indicate that the results are 

not statistically viable and can only be used as an indication of a possible correlation.  

4.3.2. Vacuole Accumulation Estimation 

As mentioned in Section 1.1.2, chloroquine 2 accumulates in the food vacuole of the 

plasmodium parasite wherein it inhibits haemozoin. The extent of vacuole 

accumulation of various cryptolepine derivatives has previously been estimated by 

Onyeibor et al.75 using Equation 4.1, which affords the vacuole accumulation ratio. 

This ratio is a percentage of vacuole drug concentration (ሾܳሿ௩) against external drug 

concentration (ሾܳሿ௘). The two values ሾܪାሿ௩ and ሾܪାሿ௘ denote the vacuole and 

external ion concentrations respectively, where the vacuole and external pH are 

assumed to be 5.5 and 7.4 respectively.161 

ሾܳሿ௩

ሾܳሿ௘
ൌ

1 ൅
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ଶ
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ଶ
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Equation 4.1: Equation used to estimate vacuole accumulation75 

Whilst Onyeibor et al.75 concluded that there is no correlation between vacuole 

accumulation and antimalarial activity (or haemozoin inhibition), this ratio does 

provide an indication of compound accumulation in the food vacuole. It is proposed 

that if a compound does not accumulate but still shows good antimalarial activity 

then the compound may possess a different mode of action or may be extremely 

potent against haemozoin at low levels.  

In order to apply the above equation, Ka values of the isocryptolepine derivatives 

were required. These values were estimated from calculated pKa values obtained 

using the ACD/I-Lab web service137 and are presented in Table 4.3. The pKa of 

isocryptolepine 16 was predicted to be 8.9 (± 0.20), which deviated slightly from the 

value of 9.8 reported by Grycová et al.162 (obtained via NMR spectroscopy). 

However the predicted pKa values of cryptolepine 14 (11.19 ± 0.20) and 

neocryptolepine 19 (7.58 ± 0.20) were found to be close to the reported values (11.0 
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and 7.1 respectively) and were therefore deemed suitable for the pKa estimation. The 

pKa values of the isocryptolepine derivatives were subsequently calculated and found 

to lie in the range 8.92 to 4.58. 

The calculated pKa value for MIQ 31 (14.05 ± 0.20) was found to be unusually 

high which suggested very high compound basicity. As a result a conventional 

laboratory based investigation of its pKa was undertaken. The pKa values of 

neocryptolepine 19 (included as a reference) and MIQ 31 were determined 

spectrophotometrically as previously reported,75,133,163 and found to be 7.75 (± 0.46) 

and 8.71 (± 1.96) respectively. The values obtained for neocryptolepine 19 was 

consistent with the ACD/I-Lab value in addition to previously reported experimental 

values but it is unclear why the ACD/I-Lab software predicted such a high pKa value 

for MIQ 31. It should be noted that the spectrophotometric determinations were only 

conducted in duplicate and were envisioned to only act as a guide that would quickly 

indicate if the ACD/I-Lab pKa value for MIQ 31 was reasonable.  

The above pKa values were adjusted to afford Ka values, which were applied in 

the calculation of the vacuole accumulation ratios for the derivatives (Table 4.3).  

Table 4.3: pKa and Vacuole Accumulation of Selected Isocryptolepine Derivatives 

Compound pKa 
a Vacuole accumulation (%) 

Cryptolepine 14 11.16 79 

Neocryptolepine 19 7.58 48 

Isocryptolepine 16 8.90 77 

MIQ 31 14.05 76 b 

3-Chloroisocryptolepine 64 6.02 4 

9-Methylisocryptolepine 97 8.92 77 

8-Bromoisocryptolepine 104 5.83 3 

8-Bromo-3-chloroisocryptolepine 105 5.33 2 

2,8-Dibromoisocryptolepine 106 4.58 1 

8-Bromo-2-chloroisocryptolepine 107 4.65 1 

8-Bromo-9-methylisocryptolepine 108 6.26 6 

8-Chloroisocryptolepine 109 5.78 3 

a Values obtained via the ACD/I-Lab web service137; pKa ± 0.20. b Value obtained using experimental 

pKa of 8.71. 



95 
 

With the exception of 9-methylisocryptolepine 97 and MIQ 31, all isocryptolepine 

derivatives displayed low vacuole accumulation ratios ranging from 1 - 6%. Given 

that the derivatives also displayed higher antimalarial activity compared to 

isocryptolepine 16, which has a high vacuole accumulation ratio (77%), there may be 

an alternative mechanism in operation with respect to their antimalarial activity. It 

should be noted that an alternative mode of action to chloroquine 2 would be highly 

advantageous for novel antimalarial drugs, which may display delayed emergence of 

drug resistance. This result suggests further, more formal mechanistic studies are 

warranted with these compounds in order to confirm this prediction. 
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4.4. Cytotoxicity Evaluation  

The cytotoxicity of the selected isocryptolepine derivatives was determined by 

assessing their ability to inhibit the growth of mouse embryonic fibroblasts (3T3 

cells). Percentage growth inhibition was determined using the standard MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) colorimetric assay.164,165 This assay 

involves measuring cell population after a period of incubation with compound 

solutions by adding MTT, which is reduced to blue formazan in the presence of 

living cells. Blue formazan is dissolved by the addition of DMSO and its absorbance 

measured spectrophotometrically. The difference in absorption of drug treated cells 

compared to drug-free controls provides a measure of the percentage growth 

inhibition, which can be used to calculate compound IC50 values.  

Stock solutions of the isocryptolepine derivatives were prepared as for the 

antimalarial evaluation in either 50% or 80% sterile DMSO in water (5 - 10 mM). 

The optimum concentration range of each compound for testing was pre-determined 

via a pilot study, with the concentrations applied for the antimalarial testing utilised 

as a starting point. A concentration range of 100 - 0.001 µM was found to be 

adequate for all derivatives. The pilot study also revealed the fragile nature of the 

3T3 cells (which can readily deabsorb from the plate surface and perish). However 

this particular issue was negated by culturing the cells on plates which were pre-

coated with gelatine.  

Each compound was tested in quadruplicate with a drug-free control, 

isocryptolepine 16 was used as the positive control and statistically significant data 

was assured by conducting the assay a minimum of three separate times. The highest 

DMSO concentration (1.6 %) was found to affect cell growth and a vehicle control 

arm was including in the experiments. Due to time constraints not all the derivatives 

previously assessed for antimalarial activity could be assessed for cytotoxicity. 

Cytotoxicity data on the dihalogenated isocryptolepines were deemed most 

important, as dihalogenated isocryptolepines displayed the best antimalarial activity, 

so these were examined first. Secondly, the monosubstituted derivatives were 

assessed but the assessment of MIQ 31, deemed low priority because it was a known 

compound, was not undertaken. Chloroquine 2, although also a known compound, 

was assessed because the inclusion of an established antimalarial drug for direct 
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comparison was regarded as essential. The results of the cytotoxicity evaluation are 

summarised in Table 4.4.  

Table 4.4: Cytotoxicity and Selectivity Indices of Selected Isocryptolepine 

Derivatives 

Compound 
Cytotoxicity;  

IC50 (μM) a 

Selectivity Index 

(SI) 

Isocryptolepine 16 2.19 ± 0.35 1.9 

3-Chloroisocryptolepine 64 2.26 ± 0.46 7.2 

9-Methylisocryptolepine 97 2.07 ± 0.33 2.7 

8-Bromoisocryptolepine 104 1.97 ± 0.36 11 

8-Bromo-3-chloroisocryptolepine 105 2.64 ± 0.66 26 

2,8-Dibromoisocryptolepine 106 2.59 ± 0.53 23 

8-Bromo-2-chloroisocryptolepine 107 9.01 ± 3.75 106 

8-Bromo-9-Methylisocryptolepine 108 2.50 ±0.35 19 

8-Chloroisocryptolepine 109 2.10 ±0.30 9 

Chloroquine 2 b  72.0 ±19.5 499 

a IC50 ± standard deviation. b Evaluated as a diphosphate. 

The selectivity indices of compounds were calculated using the chloroquine 

resistant (W2mef) antiplasmodial activity data. As previously mentioned (Section 

1.3) the selectivity index provides a guide for assessment of a compound potential as 

an antimalarial drug whereby a high SI value (artemisinin 7; SI > 10,000)60 indicates 

a compound is more therapeutically viable.  

Although chloroquine 2 cytotoxicity has previously been evaluated against 3T3 

cells, these studies did not apply the MTT assay and thus direct comparison is not 

possible. Riddell et al.166 compared the cytotoxicity of chloroquine 2 using three 

different cytotoxicity assays (neutral red uptake, kenacid blue and highest tolerated 

dose method) and obtained three very different results (IC50 = 43 - 139 μM). 

Nevertheless the cytotoxicity data obtained using the MTT assay for chloroquine 2 

(IC50 = 72.0 μM) was within the range reported. Similarly the cytotoxicity of 

isocryptolepine 16 had previously only been reported against L-6 cells and is not 

directly comparable. However, the selectivity index for isocryptolepine 16 derived 

from the present study (1.9) was consistent with previously reported (1.5)59 data.  



98 
 

The majority of the isocryptolepine derivatives (IC50 = 1.97 - 2.59 μM) had 

cytotoxicity similar to that of the parent alkaloid 16 (IC50 = 2.19 μM) but due to their 

improved antimalarial activity displayed improved selectivity indices ranging from 

2.7 to 26. 8-Bromo-2-chloroisocryptolepine 107 (IC50 = 9.01 μM) was the only 

derivative which displayed a significant reduction in cytotoxicity, being 

approximately 4-fold less cytotoxic compared to isocryptolepine 16. This derivative 

was also the most potent compound against P. falciparum (W2mef) and therefore 

had the highest SI of 106. 8-Bromo-2-chloroisocryptolepine 107 is therefore 

approximately 56-fold more biologically acceptable compared to the parent. 

Although this derivative is not as biologically acceptable as chloroquine (SI = 499), 

it still represents a distinct improvement. It has a higher SI compared to any of the 

cryptolepis compounds; cryptolepine 14 (SI = 9.3), isoneocryptolepine 30 (SI = 19), 

neocryptolepine 19 (SI = 1.2) and MIQ 31 (SI = 33).  

Compared to the previously reported neocryptolepine derivatives, 

isocryptolepine derivatives are superior with respect to antimalarial activity. Whilst 

similar neocryptolepine derivatives also showed improved bioactivity (i.e. 3-

chloroneocryptolepine displayed higher antimalarial activity and less cytotoxicity) 

compared to the parent neocryptolepine 19, these derivatives are not sufficiently 

active for biological application as they only possess IC50 values in the micro-molar 

range (1.7 - 1.4 μM).58 In addition, compared to previously reported similar 

cryptolepine derivatives, isocryptolepine analogues appear to display a level of 

superiority. The most potent antimalarial cryptolepine derivative, 7-bromo-2-

chlorocryptolepine 23 (Figure 1.13), possessed an IC50 value of 30 nM (against K1 P. 

falciparum) but was more cytotoxic compared to its parent cryptolepine 14.75 2,7-

Dibromocryptolepine 25 was the most selective of the cryptolepine derivatives (SI = 

123) in the same study but is more cytotoxic (IC50 = 6.04 μM, MAC15a) compared 

to 8-bromo-2-chloroisocryptolepine 107, the most selective compound identified in 

the present study. Therefore isocryptolepine derivatives represent superior 

therapeutic lead compounds in comparison to either cryptolepine or neocryptolepine 

derivatives and there is no justification for the previous lack of interest in this 

particular series of compounds. 
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4.5. Summary 

Preliminary investigations have indicated that isocryptolepine derivatives are 

reasonably stable in solution and also possess log P values that are conducive to 

therapeutic application. Antimalarial evaluation of the derivatives has concluded that, 

in general, isocryptolepine derivatives are more potent than the parent alkaloid. This 

study has also identified that dihalogenated derivatives represent the most potent 

compounds. Preliminary cross-resistance and vacuole accumulation estimations 

suggest that many of these derivatives may act upon the plasmodium parasite in a 

different manner to chloroquine 2 but formal mode of action studies are required to 

confirm these initial findings. Cytotoxicity evaluation of the derivatives concluded 

that ring substituents do not appear to result in an increased cytotoxicity, as was the 

case for many cryptolepine analogues. Furthermore the derivative 8-bromo-2-

chloroisocryptolepine 107 was identified as the only compound to display a 

significant reduction in cytotoxicity and thus represents a potential novel lead 

compound for antimalarial drug development. 



 
 



 
 

 

Chapter 5 

Conclusions and Future Directions  
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5.1. Conclusions 

The potential of the indoloquinoline alkaloid isocryptolepine 16 as a lead compound 

in antimalarial drug design was investigated during the course of this project. A 

variety of synthetic routes for a range of mono and disubstituted isocryptolepine 

derivatives were developed and a series of novel isocryptolepine compounds were 

prepared and fully characterised. A selection of these derivatives was evaluated for 

both antimalarial activity and cytotoxicity. This investigation represents the first of 

its kind in relation to the improvement of bioactivity for ring substituted 

isocryptolepine derivatives and at its conclusion has identified a potential novel lead 

compound for future antimalarial therapy. 

Literature methods for the synthesis of isocryptolepine 16 were discussed in 

Chapter 2, and the Jonckers and Molina Methods were found to be the most 

promising with respect to the synthesis of derivatives. The Jonckers Method was 

optimised and isocryptolepine 16 could be prepared by this methodology in two steps 

from 4-bromoquinoline 59 (Scheme 2.13) in high yield (77%). This optimised 

‘domino’ Jonckers Method represents the highest yielding method for the synthesis 

of isocryptolepine 16 to date. The Molina Method was also reproduced and allowed 

the preparation of isocryptolepine 16 in three steps from 4-chloroquinoline 33 

(Scheme 2.14) in high yield (61%).  

The preparation of fourteen derivatives of isocryptolepine was outlined in 

Chapter 3. Substituted 4-chloroquinolines were applicable to the Molina Method and 

derivatives with halogen ring substituents at positions C2 and C3 were easily 

prepared via this methodology. The optimised ‘domino’ Jonckers Method was found 

to be more suitable to substituted anilines and was used to prepare 9-

methylisocryptolepine 97 in addition to the isomeric derivative MIQ 31. A further 

range of halogenated derivatives (104 - 109, 113 and 114) were prepared via 

electrophilic aromatic substitution of the indoloquinoline ring system. It was found 

that isocryptolepine 16 and the monosubstituted derivatives prepared via the previous 

two methods could be selectively brominated, iodinated and chlorinated with 

exclusive substitution occurring at position C8.  

Biological evaluation of a selection of isocryptolepine derivatives for 

antimalarial activity and cytotoxicity was described in Chapter 4. All derivatives 
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were more potent against P. falciparum compared to the parent alkaloid and 

dihalogenated compounds were clearly the most promising therapeutic candidates. In 

particular 8-bromo-2-chloroisocryptolepine 107 (Scheme 5.1) was the most potent 

analogue against the chloroquine resistant strain of P. falciparum (W2mef), being 

approximately 14-fold more potent compared to the parent alkaloid. Cytotoxicity 

testing ascertained that most derivatives possessed a similar cytotoxicity compared to 

the parent alkaloid. 8-Bromo-2-chloroisocryptolepine 107 was the exception, being 

the only derivative to display a reduced cytotoxicity; an approximate 4-fold 

reduction. This particular compound has an SI of greater than 100, representing a 

significant improvement in bioactivity compared to the parent alkaloid, and has been 

identified as a promising novel lead compound. Scheme 5.1 summarises the synthetic 

route to 8-bromo-2-chloroisocryptolepine 107, previously outlined in Chapter 3, 

which allows the target derivative to be obtained in an overall yield of 40% from 4,6-

dichloroquinoline 73. 
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Scheme 5.1: The synthesis of the novel lead compound 8-bromo-2-chloroiso-

cryptolepine 107 from 4,6-dichloroquinoline 73 

In conclusion, isocryptolepine 16 represents a lead compound in the design and 

development of antimalarial drugs. As a demonstration of this fact a superior 

potential novel lead compound has been identified from an investigation of its 
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derivatives. This research represents the first study of the synthesis and biological 

evaluation of isocryptolepine derivatives which has demonstrated that there is the 

potential to significantly increase the antimalarial activity and decrease the 

cytotoxicity of these compounds with the addition of ring substituents. Unlike similar 

cryptolepine derivatives, these isocryptolepine derivatives do not display increased 

cytotoxicity. Similarly unlike neocryptolepine derivatives, isocryptolepine 

derivatives possess antimalarial activity in the therapeutically applicable nano-molar 

range. 
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5.2. Future Directions 

Future investigations of isocryptolepine derivatives could follow two different 

pathways. The first would involve additional in vitro and in vivo studies conducted 

on the promising novel lead compound 107. A second investigative pathway may 

involve preparing a further range of derivatives based on this compound. 

In relation to the first suggestion, formal mechanistic studies are certainly 

warranted. It has been suggested that cryptolepis based compounds act via at least 

two different mechanisms, one being similar to chloroquine 2. Initial investigations 

in the present study have also indicated that there is most likely an additional mode 

of action to the chloroquine-analogous mechanism, which may either involve DNA 

intercalation or a mechanism unknown as yet. Furthermore in vivo testing on P. 

berghei infected mice is a possible route of investigation and formal solubility, pKa 

and bioavailability assessments could also be conducted.  

In relation to the proposed second investigative pathway a further range of 

derivatives could be synthesised and assessed. A possible series of compounds could 

focus on substituents at positions C2 and C8 and may involve the preparation of 

iodo, bromo, chloro, fluoro or trifluoromethyl derivatives (Figure 5.1; Series I). A 

second series could focus on dihalogenated compounds with bromo or chloro 

substituents at positions C2, C3, C8 and C9 (Figure 5.1; Series II). 

N

N

R

R

N

N

Series I Series II

R = Cl, Br, I, F, CF3 etc.

R

R

R

R

R = Cl, Br  

Figure 5.1: Suggestions for a second generation of isocryptolepine derivatives 

The synthetic methodologies developed in this thesis should provide suitable 

routes to many of the proposed second generation derivatives. Further studies could 

also improve the methodologies investigated. In relation to the optimised ‘domino’ 

Jonckers Method, an investigation of the effect of electron-withdrawing and donating 
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groups on the reaction rate and yield, in addition to the positioning of the substituent, 

is warranted. Furthermore a method for the preparation of disubstituted derivatives, 

via electrophilic aromatic substitution, may be developed based on the initial 

investigations presented here to represent a superior method compared to those 

previously applied to prepare these particular compounds. 

Despite cytotoxicity issues, the cryptolepis alkaloids are still an attractive group 

of compounds as demonstrated by the high number of publications in the last year 

relating to both the synthesis and biological activities of compounds based on these 

indoloquinoline alkaloids.79,132,167-170 Notable is the recent cryptolepine derivative 

study, reported early in 2011 by Lavrado et al.66 This thorough investigation of 

cryptolepine derivatives substituted with basic side chains discovered that some such 

derivatives (i.e. piperidine) displayed selectively indices of >1000. Similar 

derivatives of isocryptolepine represent an additional avenue of investigation and the 

derivatives presented in the thesis may also provide useful starting points for the 

synthesis of such compounds.  



 
 

 



 
 

 

Chapter 6 

Experimental  
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6.1. General 

Solvents and Reagents 

Solvents were purchased as analytical grade from Biolab (Australia) and dried as 

required using literature procedures.171 Anhydrous THF and dioxane were prepared 

by pre-drying over sodium before distillation under nitrogen from 

sodium/benzophenone. DMF and dichloromethane were pre-dried over calcium 

sulfate and subsequently distilled, the former under reduced pressure. Ether refers to 

diethyl ether and hexane to 95% n-hexane. Deuterated chloroform (CDCl3) was 

purchased from Cambridge isotope laboratories and deuterated DMSO (d6-DMSO) 

was purchased from Sigma-Aldrich. All reagents were purchased from Sigma-

Aldrich and used as received.  

Reactions and Chromatography 

All reactions were carried out in standard oven-dried glassware. Lithiation reactions 

were conducted using standard Schlenk glassware. Hydrogenation reactions were 

carried out using a simple hydrogenation apparatus based on literature 

descriptions.172 Reaction temperatures refer to bath temperatures; oil bath (> 50 °C), 

acetone and dry ice (< -50 ºC), ice and salt (-10 °C) or iced water (0 °C). Thin layer 

chromatography was performed with Merck Silica Gel 60 or Merck F254 Neutral 

Alumina aluminium supported sheets. Flash column chromatography was performed 

with Fluka silica gel 60 (0.035 – 0.07 mm) or Macherey-Nagel neutral alumina 90 

(0.05 - 0.2 mm). Final products were oven dried (< 40°) under high vacuum 

overnight. 

Analytical HPLC was performed using an Apollo C18 5 μm (4.6 mm × 150 mm) 

reverse phase column fitted with a Waters 486 tuneable spectrophotometric detector. 

A gradient solvent system was used whereby 20% acetonitrile in water with 0.5% 

formic acid was increased to 80% acetonitrile in water with 0.5% formic acid over a 

ten minute period. A flow rate of 1.5 mL minute-1 was applied and compound 

spectrophotometric detection was performed at a wavelength of 300 nm.΄ 

Compound Analysis and Characterisation 

Melting points (Mp) were recorded with a Barnstead Electrothermal digital melting-

point apparatus and (d) refers to decomposition of the compound at its melting point. 
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Ultraviolet-visible spectra (UV) were recorded using a Hewlett-Packard 8452A diode 

array spectrophotometer and absorption peaks are expressed as wavelength (λmax) 

values in nm. Infrared spectra (IR) were recorded with a Perkin Elmer FT-IR 

spectrometer and absorption peaks are expressed as frequency (νmax) values  in cm-1.  

Mass spectra (MS) were obtained by Dr Tony Reeder (School of Biomedical, 

Biomolecular and Chemical Sciences; UWA) via either electrospray ionization (EI) 

or fast atom bombardment (FAB) using a VG Autospec Mass Spectrometer. Mass 

spectral data is expressed as m/z (relative intensity) and only spectral peaks with 

intensity greater than 15% are reported. High resolution mass spectrometry (HRMS) 

was used to determine the accurate mass of the molecular ion in-lieu of elemental 

analysis. 

Nuclear magnetic resonance (NMR) spectra were recorded using Varian Gemini 

(200 MHz, 1H; 50 MHz, 13C), Bruker AV400 (400 MHz, 1H; 100 MHz, 13C) or 

Bruker AV600 (600 MHz, 1H) spectrometers. Spectra recorded on the Bruker AV600 

were obtained by Dr Lindsay Byrne (School of Biomedical, Biomolecular and 

Chemical Sciences; UWA). Chemical shifts (δ) are expressed in ppm relative to 

either d6-DMSO (1H, 2.49 ppm; 13C, 39.5 ppm) or CDCl3 (
1H, 7.26 ppm; 13C, 77.0 

ppm). Coupling constants (J) are expressed in Hertz (Hz). Assignment of 1H and 13C 

spectra were routinely made with the aid of COSY, HSCQ and HMBC 2D 

experiments performed using the Bruker AV400 spectrometer. Confirmation of ring 

substitution positions in the preparation of compounds 105 - 109, 113 and 114 were 

undertaken with the aid of 1D NOE difference spectrometry conducted on the Bruker 

AV400 or AV600 spectrometers. 

Known compounds were confirmed by NMR spectroscopy. Mass spectra and 

infrared spectra are only reported for these compounds if not previously reported in 

the literature. The carbon NMR spectra of known compounds was not normally 

assigned, expect in the cases of 16 and 30 as full assignment of these spectra was 

advantageous to the assignment of their novel derivatives. Novel compounds were 

fully characterised via NMR, mass and infrared spectroscopy. High resolution mass 

spectra were only recorded for the novel isocryptolepine derivatives, and their novel 

intermediates, which underwent biological evaluation. 

Experimental procedures and characterisation data for prepared compounds are 

summarised in the following section and are arranged numerically in compound 

order. 
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6.2. Preparation of Compounds 

Isocryptolepine 16 

2

3

4
4a

11b
1

N
6

6a

11a
6b

10a
N

7

8

910

 

The above known compound was prepared via two different methods, which were 

both adaptations of previously reported synthetic procedures, and are summarised as 

follows.84,88,94 

Method 1: A solution of 2-[2-(N-methyl)formylaminophenyl]-N-[2-(trimethyl-

silyl)ethoxymethyl]indole 46 (172 mg, 0.45 mmol) in ethanolic sulfuric acid (10%, 5 

mL) was refluxed for 4 hours. The reaction mixture was cooled and the solvent 

subsequently removed in vacuo. The residue was redissolved in dichloromethane (10 

mL) and extracted with aqueous hydrochloric solution (1M, 3 × 10 mL). The 

aqueous layer was basified with aqueous sodium hydroxide solution (10%), re-

extracted with ethyl acetate (3 × 10 mL) and the solvent removed in vacuo. The 

residue obtained was recrystallised from ethanol and water to give isocryptolepine 16 

as a yellow crystalline solid (24 mg, 23%). 

Method 2: To a solution of 11H-indolo[3,2-c]quinoline 36 (128 mg, 0.58 mmol) 

in acetonitrile (11 mL), iodomethane (3.5 mL, 56.22 mmol) was added and the 

resulting mixture refluxed for 20 hours. The reaction mixture was cooled, the solvent 

removed in vacuo and the residue obtained dissolved in a 1:1 solution of aqueous 

ammonia (30%) and dichloromethane (140 mL). The organic layer was extracted 

with dichloromethane (4 × 35 mL), dried (MgSO4) and the solvent removed in 

vacuo. The residue obtained was purified by silica flash column chromatography 

eluting with a mixture of dichloromethane, ethanol and aqueous ammonia (100:0:1 

increasing to 100:4:1) to give isocryptolepine 16 as a yellow crystalline solid (128 

mg, 94%).  

The spectroscopic data acquired was consistent with that published in the 

literature.48,84,88,91  

Mp: 138-139 ºC (lit.,91 132-133 °C). 
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1H NMR (400 MHz, d6-DMSO) δ: 4.25 (3H, s, NCH3), 7.26 (1H, ddd, J = 7.8, 

7.0, 0.8 Hz, H-8), 7.44 (1H, ddd, J = 8.0, 7.0, 1.0 Hz, H-9), 7.71 (1H, ddd, J = 7.8, 

7.0, 0.8 Hz, H-2), 7.79 (1H, d, J = 8.0 Hz, H-10), 7.84 (1H, ddd, J = 8.7, 7.1, 1.5 Hz, 

H-3), 8.04 (1H, d, J = 8.4 Hz, H-4), 8.12 (1H, d, J = 7.6 Hz, H-7), 8.78 (1H, dd, J = 

8.0, 1.2 Hz, H-1), 9.36 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 42.0 (NCH3), 115.9 (C-6a), 117.4 (C-4), 

117.9 (C-10), 119.4 (C-7), 119.8 (C-8), 120.6 (C-11b), 123.7 (C-1), 125.1 (C-2), 

125.2 (C-9), 125.4 (C-6b), 129.2 (C-3), 135.3 (C-4a), 138.2 (C-6), 151.9 (C-11a), 

153.5 (C-10a).  

UV (MeOH) λmax: 202, 232, 284, 347. 

Neocryptolepine 19 
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The above known compound was prepared as for isocryptolepine 16 (Method 2) but 

starting from 6H-indolo[2,3-b]quinoline 124 (260 mg, 1.19 mmol) and iodomethane 

(1.5 mL, 24.10 mmol) in acetonitrile (24 mL). The methiodide salt was purified by 

silica flash column chromatography eluting with a mixture of dichloromethane and 

methanol (1:0 increasing to 48:2) and then converted to the free base with a 1:1 

solution of aqueous ammonia (30%) and dichloromethane (150 mL). The organic 

layer was extracted with dichloromethane (3 × 50 mL), dried (MgSO4) and the 

solvent removed in vacuo to give neocryptolepine 19 as an orange crystalline solid 

(103 mg, 37%).  

The NMR data acquired was consistent with that published in the literature.48,58 

Mp: 106-108 ºC (lit.,58 102 ºC).  
1H NMR (200 MHz, d6-DMSO) δ: 4.34 (3H, s, NCH3), 7.22 (1H, td, J = 7.3, 1.0 

Hz, H-9), 7.48-7.66 (3H, m, H-2, H-7 and H-8), 7.89 (1H, ddd, J = 8.4, 7.0, 1.4 Hz, 

H-3), 8.01 (1H, d, J = 8.4 Hz, H-4), 8.16-8.20 (2H, m, H-1 and H-10), 8.97 (1H, s, 

H-11).  
13C NMR (50 MHz, d6-DMSO) δ: 32.5, 114.7, 117.0, 119.0, 120.0, 121.2, 121.6, 

123.7, 126.7, 128.5, 128.8, 129.7, 130.5, 136.4, 155.1, 155.2.  

UV (MeOH) λmax: 207, 273, 282, 3325, 351. 
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6-Methyl-6H-indolo[3,2-c]isoquinoline 31 
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The above compound was prepared as for isocryptolepine 16 (Method 2) but starting 

from 11H-indolo[3,2-c]isoquinoline 117 (241 mg, 1.11 mmol) and iodomethane (6.0 

mL, 96.38 mmol) in toluene (15 mL). The methiodide salt was purified by silica 

flash column chromatography eluting with a mixture of methanol and 

dichloromethane (10:90 increasing to 15:85) and then converted to the free base with 

a 1:1 solution of aqueous ammonia (30%) and dichloromethane (400 mL). The 

organic layer was extracted with dichloromethane (6 × 100 mL), dried (MgSO4) and 

the solvent removed in vacuo to give 6-methyl-6H-indolo[3,2-c]quinoline 31 as a red 

crystalline solid (230 mg, 89%).  

This above compound was reported during the course of this project and the 

NMR and MS data acquired was consistent with that published in the literature.82  

Mp: 214-215 ºC (lit.,82 208-210 °C (d)).  
1H NMR (400 MHz, d6-DMSO) δ: 4.85 (3H, s, CH3), 7.19 (1H, t, J = 7.4 Hz, H-

8), 7.44 (1H, t, J = 7.6 Hz, H-9), 7.76 (1H, t, J = 7.6 Hz, H-3), 7.83 (1H, d, J = 8.0 

Hz, H-10), 8.00 (1H, t, J = 7.6 Hz, H-2), 8.29 (1H, d, J = 7.6 Hz, H-7), 8.30 (1H, d, J 

= 7.6 Hz, H-4), 8.81 (1H, d, J = 8.4 Hz, H-1), 9.10 (1H, s, H-5).  
13C NMR (100 MHz, d6-DMSO) δ: 45.9 (NCH3), 117.2 (C-6b), 117.6 (C-8), 

118.1 (C-10), 120.7 (C-7), 122.3 (C-1), 123.7 (C-4a), 124.4 (C-6a), 124.7 (C-9), 

126.7 (C-3), 128.6 (C-11b), 128.9 (C-4), 132.0 (C-2), 132.8 (C-5), 141.5 (C-11a), 

150.4 (C-10a).  

MS (FAB): 154 (18), 233.1 (20), 233.1 (100, [M+1]+), 234.1 (20). 

HRMS (FAB): 233.1069 (C16H13N2[M+1]+ requires 233.1079).  

IR (KBr) νmax: 741, 1236, 1371, 1417, 1627, 3061, 3500.  

UV (MeOH) λmax: 227, 291, 391. 
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4-Chloroquinoline 33 

6

7

8
8a

4a
5

N 2

3
4

Cl

 

The above known compound was prepared via an adaptation of a previously reported 

synthetic procedure which is summarised as follows.120 Phosphorus oxychloride 

(2.50 mL, 27.31 mmol) was added to 4-quinolinol 61 (622 mg, 4.29 mmol) and the 

solution obtained refluxed for 19 hours. The reaction mixture was cooled, quenched 

with iced water, made alkaline with aqueous ammonia and extracted with ethyl 

acetate (3 × 100 mL). The combined extracts were washed with water (50 mL), dried 

(MgSO4) and the solvent removed in vacuo to give 4-chloroquinoline 33 as a pale 

yellow solid that was used without further purification (555 mg, 79%).  

The spectroscopic data acquired was consistent with that published in the 

literature.120,151 

Mp: 30-32 °C (lit.,120 28-29 °C).  
1H NMR (200 MHz, CDCl3) δ: 7.51 (1H, d, J = 4.8 Hz, H-3), 7.70 (1H, ddd, J = 

8.3, 6.8, 1.2 Hz, H-6), 7.81 (1H, ddd, J = 8.2, 6.8, 1.6 Hz, H-7), 8.17 (1H, d, J = 8.0 

Hz, H-5), 8.26 (1H, dd, J = 8.0, 1.4 Hz, H-8), 8.82 (1H, br d, J = 3.6 Hz, H-2).  
13C NMR (50 MHz, CDCl3) δ: 120.5, 123.4, 127.1, 128.5, 130.0, 142.6, 147.5, 

148.4.  

4-(1-Benzotriazolyl)quinoline 35 
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The above known compound was prepared via an adaptation of a previously reported 

synthetic procedure which is summarised as follows.84 Benzotriazole (1.30 g, 10.88 

mmol) and 4-chloroquinoline 33 (1.62 g, 9.89 mmol) were heated at 110 - 120 ºC for 

30 minutes. The resulting solid was cooled to room temperature, quenched with 
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water and collected by filtration (washing with water). The solid was recrystallised 

from ethanol to give 4-(1-benzotriazolyl)quinoline 35 as a white crystalline solid 

(1.87 g, 77%).  

The proton NMR data acquired was consistent with that published in the 

literature.84  

Mp: 132-133 ºC (lit.,83 132-133 ºC).  
1H NMR (400 MHz, CDCl3) δ: 7.53-7.65 (3H, m, H-4′, H-5′ and H-6′), 7.76 

(1H, t, J = 7.4 Hz, H-6), 7.88 (1H, br s, H-3), 7.99 (1H, ddd, J = 8.0, 7.2, 0.8 Hz, H-

7), 8.13 (1H, d, J = 8.4 Hz, H-5), 8.26 (1H, d, J = 8.4 Hz, H-7′), 8.61 (1H, J = 8.8 

Hz, H-8), 9.28 (1H, br s, H-2).  
13C NMR (50 MHz, d6-DMSO) δ: 110.6 (C-4′), 117.7 (C-3), 119.7 (C-7′), 122.4 

(C-4a), 122.8 (C-5), 124.9 (C-6′), 128.2 (C-5′), 129.0 (C-6), 129.5 (C-7), 130.6 (C-

8), 133.4 (C-3a′), 139.4 (C-4), 145.3 (C-7a′), 149.3 (C-8a), 149.5 (C-2).  

11H-Indolo[3,2-c]quinoline 36 
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The above known compound was prepared via three different methods, which were 

adaptations of previously reported synthetic procedures, and are summarised as 

follows.84,94,128 

Method 1: To a degassed solution of solution of Pd(OAc)2 (2.4 mg, 2 mol%) and 

BINAP (6.6 mg, 2 mol%) in dry DMF (5 mL), 4-(2-bromophenylamino)quinoline 60 

(155 mg, 0.52 mmol) and potassium carbonate (1.46 g, 10.57 mmol) were added. 

The suspension was flushed with nitrogen and heated at 150 ºC for 24 hours under 

nitrogen. Upon cooling, the reaction mixture was filtered through celite, washed with 

dichloromethane (50 mL) and the solvent removed in vacuo. The residue obtained 

was purified by silica flash column chromatography eluting with a mixture of ethyl 

acetate and methanol (100:0 increasing to 85:15) to give 11H-indolo[3,2-c]quinoline 

36 as a cream solid (80.6 mg, 71%).  

Method 2: To a degassed solution of Pd(OAc)2 (30 mg, 2.8 mol%) and BINAP 

(70 mg, 2.3 mol%) in dry DMF (50 mL), 4-bromoquinoline 59 (994 mg, 4.78 mmol), 



118 
 

2-bromoaniline (932 mg, 5.42 mmol) and potassium carbonate (13.34 g, 96.52 

mmol) were added. The suspension was flushed with nitrogen and refluxed for 24 

hours under nitrogen. Upon cooling, the mixture was filtered through celite, washed 

with dichloromethane (200 mL) and the solvent removed in vacuo. The residue 

obtained was washed with dichloromethane to give 11H-indolo[3,2-c]quinoline 36 as 

a cream solid (853 mg, 82%).  

Method 3: To 4-(1-benzotriazolyl)quinoline 35 (204 mg, 0.83 mmol), 

polyphosphoric acid (7.17 g) was added and the mixture heated at 150 ºC for 1 hour. 

The pink syrupy mixture obtained was cooled, quenched with water and the resulting 

precipitate collected by vacuum filtration. The solid was re-suspended in water, made 

alkaline with aqueous sodium hydroxide solution (10%) and collected as previously. 

The residue obtained was washed with dichloromethane to give 11H-indolo[3,2-

c]quinoline 36 as a cream solid (152 mg, 84%).  

The NMR data acquired was consistent with that published in the literature.86,92 

Mp: >300 ºC (lit.,92 >250 ºC).  
1H NMR (400 MHz, d6-DMSO) δ: 7.34 (1H, ddd, J = 8.0, 7.2, 0.8 Hz, H-8), 

7.50 (1H, ddd, J = 7.9, 6.7, 1.2 Hz, H-9), 7.69 (1H, ddd, J = 8.0, 6.8, 1.4 Hz, H-2), 

7.73 (1H, d, J = 8.4 Hz, H-10), 7.74 (1H, ddd, J = 8.2, 7.0, 1.4 Hz, H-3), 8.15 (1H, 

dd, J = 8.8, 1.2 Hz, H-4), 8.32 (1H, d, J = 7.6 Hz, H-7), 8.54 (1H, dd, J = 8.0, 1.2 

Hz, H-1), 9.60 (1H, s, H-6).  
13C NMR (100 MHz, d6-DMSO) δ: 111.9 (C-10), 114.3 (C-6a), 117.1 (C-11b), 

120.1 (C-7), 120.6 (C-8), 121.9 (C-6b), 122.1 (C-1), 125.5 (C-9), 125.7 (C-2), 128.0 

(C-3), 129.6 (C-4), 138.8 (C-10a), 139.8 (C-11a), 144.8 (C-6), 145.5 (C-4a).  

UV (MeOH) λmax: 237, 274, 291.  

4-(2-Chlorophenylamino)quinoline 37 
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The above known compound was prepared via an adaptation of a previously reported 

synthetic procedure which is summarised as follows.94 To a degassed solution of 
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Pd(OAc)2 (30 mg, 2.2 mol%) and BINAP (80 mg, 2.1 mol%) in dry dioxane (20 

mL), 4-chloroquinoline 33 (1.0 g, 6.11 mmol), 2-chloroaniline (860 mg, 6.74 mmol) 

and potassium carbonate (16.95 g, 122.6 mmol) were added. The suspension was 

flushed with nitrogen and the reaction mixture refluxed for 24 hours under nitrogen. 

After cooling, the mixture was filtered through celite, washed with dichloromethane 

(200 mL) and the solvent removed in vacuo. The residue obtained was purified by 

silica flash column chromatography eluting with a mixture of ethyl acetate and 

hexane (1:1 increasing to 1:0) to give 4-(2-chlorophenylamino)quinoline 37 as a 

white solid (971 mg, 62%).  

The NMR data acquired was consistent with that published in the literature.85,94  

Mp: 144-145 ºC (lit.,85 142 °C).  
1H NMR (200 MHz, CDCl3) δ: 7.04 (1H, br s, H-3), 7.10-7.17 (2H, m, H-4′ and 

H-6′), 7.34 (1H, t, J = 7.3 Hz, H-5′), 7.54 (1H, d, J = 8.4 Hz, H-3′) 7.60 (1H, t, J = 

7.0 Hz, H-6), 7.77 (1H, t, J = 7.0 Hz, H-7), 8.07 (1H, d, J = 8.4 Hz, H-5), 8.14 (1H, 

d, J = 8.4 Hz, H-8), 8.70 (1H, d, J = 5.2 Hz, H-2). 
13C NMR (50 MHz, CDCl3) δ: 103.0, 119.0, 119.7, 120.8, 123.5, 125.0, 126.8, 

128.7, 129.4, 136.4, 145.2, 148.5, 150.0.  

UV (MeOH) λmax: 202, 323.  

N-[2-(Trimethylsilyl)ethoxymethyl]indole 41 
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The above known compound was prepared via an adaptation of previously reported 

synthetic procedures which is summarised as follows.105,106 Indole 48 (501 mg, 4.27 

mmol) was added to a stirred solution of sodium hydride (268 mg; 60% dispersion in 

mineral oil, 6.75 mmol) in dry DMF (25 mL) and the suspension stirred at room 

temperature for 30 minutes. A further portion of sodium hydride (2.14 mmol) was 

added and the reaction mixture stirred for a further hour. SEM chloride (830 µL, 4.69 

mmol) was subsequently added and the reaction mixture stirred for a further 3 hours. 
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The reaction was quenched with water and the suspension obtained extracted with 

ethyl acetate (3 × 20 mL). The combined extracts were washed with saturated 

aqueous sodium hydrogen carbonate solution (10 mL), brine (10 mL) and dried 

(MgSO4). The solvent was evaporated in vacuo and the residue obtained was purified 

by flash column chromatography, on neutral alumina, eluting with a mixture of 

hexane and ether (100:0 increasing to 99:1) to give N-[2-(trimethylsilyl)ethoxy-

methyl]indole 41 as a yellow oil (885 mg, 84%).  

The spectroscopic data acquired was consistent with that published in the 

literature.105 
1H NMR (200 MHz, CDCl3) δ: 0.02 (9H, s, 3 × CH3), 0.96 (2H, t, J = 8.2 Hz, 

H-3′), 3.55 (2H, t, J = 8.2 Hz, H-2′), 5.56 (2H, s, H-1′), 6.61 (1H, d, J = 3.4 Hz, H-

3), 7.22-7.27 (2H, m, H-2 and H-6), 7.33 (1H, d, J = 7.6 Hz, H-5), 7.58 (1H, d, J = 

8.2 Hz, H-7), 7.72 (1H, dd, J = 6.8, 1.1 Hz, H-4).  
13C NMR (100 MHz, CDCl3) δ: -1.30, 17.8, 60.3, 75.7, 102.5, 109.8, 120.2, 

121.0, 122.2, 128.1, 129.2, 136.5.  

2-(2-Nitrophenyl)-N-[2-(trimethylsilyl)ethoxymethyl]indole 43 
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The above known compound was prepared via an adaptation of previously reported 

synthetic procedures which is summarised as follows.88,173 

i) To a solution of N-[2-(trimethylsilyl)ethoxymethyl]indole 41 (2.63 g, 10.6 

mmol) in dry THF (20 mL) under nitrogen at 0 ºC, n-butyllithium hexane solution 

(8.0 mL; 1.6 M, 12.8 mmol) was added and the solution stirred for 10 minutes. A 

further portion of n-butyllithium hexane solution (3.3 mL; 1.6 M, 5.28 mmol) was 

added and the reaction mixture stirred at room temperature for 1 hour. The solution 

was cooled to -78°C, tributyltin chloride (3.7 mL, 13.64 mmol) added and allowed to 

warm to room temperature over 30 minutes. The reaction was quenched with water 

and extracted with ether (3 × 100 mL). The combined extracts were washed with 
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water (50 mL), brine (50mL), dried (MgSO4) and the solvent removed in vacuo. The 

oil obtained, 2-(tributylstannyl)-N-[(2-trimethylsilyl)ethoxymethyl]indole 42, was 

used without further purification. 

ii) To a degassed solution of iodonitrobenzene (2.60 g, 10.44 mmol) and Pd(PPh3)4 

(0.25 g, 2 mol%) in dry THF (20 mL) under nitrogen, the above stannane 42 was 

added and the solution refluxed for 72 hours. The reaction mixture was quenched 

with water and extracted with ether (3 × 100 mL). The combined extracts were 

washed with brine (50 mL), dried (MgSO4) and the solvent removed in vacuo. The 

residue obtained was purified by flash column chromatography, on neutral alumina, 

eluting with a mixture of heptane and ether (100:0 increasing to 80:20) to give 2-(2-

nitro-phenyl)-N-[2-(trimethylsilyl)ethoxymethyl]indole 43 as a orange oil (2.45 g, 

63%).  

The proton NMR data acquired was consistent with that published in the 

literature.173 
1H NMR (200 MHz, CDCl3) δ: -0.01 (9H, s, 3 × CH3), 0.90 (2H, t, J = 8.4 Hz, 

H-3′′), 3.46 (2H, t, J = 8.3 Hz, H-2′′), 5.37 (2H, s, H-1′′), 6.59 (1H, s, H-3), 7.20-7.39 

(2H, m, H-5 and H-6), 7.59 (1H, d, J = 8.0 Hz, H-7), 7.62-7.75 (4H, m, H-4, H-4′, H-

5′ and H-6′), 8.10 (1H, d, J = 8.0 Hz, H-3′).  
13C NMR (50 MHz, CDCl3) δ: -2.4, 17.0, 65.0, 72.5, 103.5, 109.4, 119.8, 120.0, 

122.0, 123.3, 126.4, 127.3, 128.8, 131.3, 132.9, 134.4, 137.0, 149.2.  

2-[2-(N-methyl)formylaminophenyl]-N-[2-(trimethylsilyl)ethoxymethyl]indole 

46 
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The above known compound was prepared via an adaptation of a previously reported 

synthetic procedure which is summarised as follows.88 
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i) To a stirred solution of 2-(2-nitrophenyl)-1-[2-(trimethylsilyl)ethoxymethyl]-

indole 43 (107 mg, 0.29 mmol) in absolute ethanol (20 mL), palladium on carbon (17 

mg, 5.5 mol%) was added and the suspension stirred vigorously under an atmosphere 

of hydrogen for 20 hours. The reaction mixture was filtered through celite (washing 

with methanol) and the solvent removed in vacuo to give 2-(2-aminophenyl)-N-[2-

(trimethylsilyl)ethoxymethyl]indole 44, which was used without further purification.  

ii) To a solution of compound 44 in dry THF (10 mL) at -10 °C, acetic formic 

anhydride solution (220 μL, 1.48; prepared as described in the literature88) was 

added. The solution was stirred for 15 minutes then allowed to warm to room 

temperature. The solvent was removed in vacuo to give 2-(2-formylaminophenyl)-N-

[2-(trimethylsilyl)ethoxymethyl]indole 45 as an orange oil, which was used without 

further purification.  

iii) To a solution of compound 45 in dry THF (10 mL), sodium hydride (19 mg; 

60% dispersion in mineral oil, 0.47 mmol) was added and the mixture stirred at room 

temperature for 30 minutes. Iodomethane (100 μL, 1.6 mmol) and t-butanol (1 drop) 

were then added and the solution stirred for 2 hours. The reaction was quenched with 

aqueous ammonia and extracted with dichloromethane (3 × 20 mL). The combined 

extracts were washed with brine (10 mL), dried (Na2SO4) and the solvent removed 

in vacuo. The residue obtained was purified by silica flash column chromatography 

eluting with a mixture of hexane and ethyl acetate (100:0 increasing to 80:30) to give 

2-[2-(N-methyl)formylaminophenyl]-N-[2-(trimethylsilyl)ethoxymethyl]indole 46 as 

a pale yellow oil (49 mg, 48%).  

The proton NMR data acquired was consistent with that published in the 

literature.88  
1H NMR (200 MHz, CDCl3) δ: 0.13 (9H, s, 3 × CH3), 0.88 (2H, t, J = 8.3 Hz, 

H-3′′), 2.97 (3H, s, NCH3), 3.38 (2H, t, J = 8.3 Hz, H-2′′), 5.35 (2H, s, H-1′′), 6.56 

(1H, s, H-3), 7.23-7.35 (2H, m, H-5 and H-6), 7.53-7.65 (6H, m, H-4, H-7, H-3′, H-

4′, H-5′ and H-6′), 8.34 (1H, s, HC=O).  
13C NMR (50 MHz, CDCl3) δ: -2.4, 16.9, 31.9, 65.1, 72.0, 104.1, 109.6, 119.7, 

120.0, 121.8, 126.2, 126.7, 127.5, 128.5, 129.0, 132.3, 135.6, 136.8, 140.6, 162.0.  
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N-(tert-Butoxycarbonyl)indole 47 
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The above known compound was prepared via an adaptation of previously reported 

synthetic procedures which is summarised as follows.96,174 To a stirred solution of 

indole 48 (2.00 g, 17.07 mmol) and DMAP (422 mg, 3.45 mmol) in dry 

dichloromethane (60 mL), di-tert-butyl dicarbonate (3.69 g, 16.88 mmol) was added 

and the reaction mixture stirred at room temperature for 24 hours. The resulting 

solution was concentrated in vacuo and the residue obtained purified by silica flash 

column chromatography eluting with a mixture of dichloromethane and hexane 

(0:100 increasing to 30:70) to afford N-tert-butoxycarbonyl indole 47 as a colourless 

oil (2.54 g, 70%).  

The spectroscopic data acquired deviated slightly from that published in the 

literature, which was acquired in CDCl3.
96,174 

1H NMR (200 MHz, d6-DMSO) δ: 1.67 (9H, s, 3 × CH3), 6.72 (1H, d, J = 3.8 

Hz, H-3), 7.29 (1H, td, J = 7.4, 1.4 Hz, H-5), 7.35 (1H, ddd, J = 8.0, 7.3, 1.4 Hz, H-

6), 7.65 (1H, m, H-4), 7.69 (1H, d, J = 3.6 Hz, H-2), 8.12 (1H, dd, J = 7.4, 0.6 Hz, 

H-7).  
13C NMR (50 MHz, d6-DMSO) δ: 27.4, 83.5, 107.2, 114.5, 120.9, 122.4, 124.0, 

125.8, 130.0, 134.4, 148.9.  

2-(2-Nitrophenyl)indole 51  
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The above known compound was prepared via an adaptation of a previously reported 

synthetic procedure which is summarised as follows.95 

i) To a stirred solution of N-tert-butoxycarbonyl indole 47 (107 mg, 0.49 mmol) in 

dry THF (5 mL) at -78 ºC, under nitrogen, n-butyllithium hexane solution (600 µL; 

1.6 M, 0.96 mmol) was added and the solution stirred for 2 hours. The reaction was 

allowed to warm to -20 ºC over 1 hour, subsequently re-cooled to -78 ºC and then 
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tributyltin chloride (150 µL, 0.55 mmol) added. The reaction mixture was stirred for 

a further hour before warming to room temperature and quenching with water. The 

solution was extracted with ethyl acetate (3 × 15 mL) and the combined extracts 

washed with brine (10 mL) and dried (Na2SO4). The solvent was removed in vacuo 

to give the stannyl product 49 which was used without further purification. 

ii) To a degassed solution of iodonitrobenzene (110 mg, 0.44 mmol) and Pd(PPh3)4 

(11 mg, 1.9 mol%) in dry DMF (5 mL) under nitrogen, the above stannane 49 was 

added and the solution heated at 100 ºC for 20 hours. The reaction was quenched 

with water and extracted with ethyl acetate (3 × 15 mL). The combined extracts were 

washed with brine (10 mL), dried (Na2SO4) and the solvent removed in vacuo. The 

residue obtained was purified by flash column chromatography, on neutral alumina, 

eluting with a mixture of hexane and ethyl acetate (10:0 increasing to 3:8) to give 2-

(2-nitrophenyl)indole 51 as an orange solid (42 mg, 36%).  

The spectroscopic data acquired deviated slightly from that published in the 

literature, which was acquired in d6-acetone.99 
1H NMR (200 MHz, CDCl3) δ: 6.78 (1H, s, H-3), 7.17-7.35 (2H, m, H-5 and H-

6), 7.48 (1H, d, J = 7.8 Hz, H-7), 7.57 (1H, d, J = 7.8 Hz, H-4), 7.66-7.78 (3H, m, 

H-4′, H-5′ and H-6′), 7.88 (1H, d, J = 7.8 Hz, H-3′), 8.55 (1H, br s, N-H). 
 13C NMR (50 MHz, CDCl3) δ: 103.6, 110.4, 119.6, 120.1, 122.4, 123.4, 126.1, 

127.5, 127.8, 130.8, 131.5, 136.1, 148.1.  

N-Benzylindole 52 
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The above known compound was prepared via an adaptation of the previously 

reported synthetic procedure applied to prepare 3-acetyl-N-benzylindole and the 

synthesis is summarised as follows.102 To a solution of sodium hydride (660 mg; 

60% dispersion in mineral oil pre-washed with hexane, 16.50 mmol) in dry DMF (50 

mL) at 0 °C, indole 48 (1.01 g, 8.60 mmol) was added and the mixture stirred at 

room temperature for 30 minutes. To the resulting suspension benzyl chloride (1.5 

mL, 13.04 mmol) was added in a dropwise fashion and the reaction mixture stirred 
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for 3 hours at room temperature. The reaction was quenched with saturated sodium 

hydrogen carbonate solution and extracted with ethyl acetate (3 × 100 mL). The 

combined extracts were washed with water (50 mL), brine (50 mL), and dried 

(MgSO4). The solvent was removed in vacuo and the residue purified by silica flash 

chromatography eluting with a mixture of hexane and dichloromethane (8:2 

increasing to 0:1) to give N-benzylindole 52 as a yellow oil (1.69 g, 95%).  

The spectroscopic data acquired was consistent with that published in the 

literature.175,176 
1H NMR (200 MHz, CDCl3) δ: 5.42 (2H, s, H-1′), 6.70 (1H, d, J = 3.0 Hz, H-3), 

7.20-7.32 (5H, m), 7.38-7.44 (4H, m), 7.81 (1H, dd, J = 7.4 Hz, H-7).  
13C NMR (50 MHz, CDCl3) δ: 49.3, 100.9, 108.9, 118.8, 120.2, 120.9, 126.0, 

126.8, 127.5, 127.9, 135.6, 136.8.  

4-Bromoquinoline 59 
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The above known compound was prepared via an adaptation of a previously reported 

synthetic procedure which is summarised as follows.121 To a solution of 4-quinolinol 

61 (1.96 g, 13.48 mmol) in DMF (50 mL), phosphorus tribromide (1.4 mL, 14.90 

mmol) was added and the mixture stirred under nitrogen for 30 minutes. To the 

resulting suspension, iced water was added and the solution stirred for a further 30 

minutes. The solution was then made alkaline with aqueous sodium hydroxide 

solution (20%) and extracted with ethyl acetate (3 × 100 mL). The combined extracts 

were dried (Na2SO4) and the solvent removed in vacuo to give 4-bromoquinoline 59 

as an pale yellow oil which was used without further purification (2.24 g, 80%).  

The proton NMR data acquired was consistent with that published in the 

literature.121,177 
1H NMR (400 MHz, CDCl3): δ 7.62 (1H, t, J = 7.6 Hz, H-6), 7.70 (1H, d, J = 

4.4 Hz, H-3), 7.76 (1H, t, J = 7.2 Hz, H-7), 8.13 (1H, d, J = 8.4 Hz, H-5) 8.18 (1H, 

d, J = 8.4 Hz, H-8), 8.67 (1H, br s, H-2).  
13C NMR (100 MHz, CDCl3) δ: 125.2, 127.0, 128.1, 129.7, 130.7, 134.8, 148.6, 

149.6.  
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IR (nujol) νmax: 1377, 1461, 2854, 2924.  

UV (MeOH) λmax: 227, 290.  

4-(2-Bromophenylamino)quinoline 60 
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The above compound was prepared as for compound 37 but starting from 4-

bromoquinoline 59 (207 mg, 0.99 mmol), 2-bromoaniline (232 mg, 1.35 mmol), 

Pd2(dba)3 (9.8 mg, 1 mol%), XANTPHOS (13 mg, 2.3 mol%), and caesium 

carbonate (435 mg, 1.34 mmol) in dry dioxane (10 mL). The product was purified by 

silica flash column chromatography eluting with a mixture of ethyl acetate and 

hexane (8:2 increasing to 1:0) to afford 4-(2-bromophenylamino)quinoline 60 as a 

off-white solid (215 mg, 72%).  

Mp: 138-140 ºC.  
1H NMR (400 MHz, CDCl3) δ: 6.93 (1H, d, J = 5.6 Hz, H-3), 7.03 (1H, ddd, J = 

8.3, 7.1, 1.2 Hz, H-4′), 7.33 (1H, ddd, J = 8.0, 7.4, 1.2 Hz, H-5′), 7.53 (1H, dd, J = 

8.0, 1.6 Hz, H-6′), 7.57 (1H, t, J = 8.0 Hz, H-6), 7.65 (1H, dd, J = 8.0, 1.2 Hz, H-3′), 

7.72 (1H, td, J = 7.7, 1.2 Hz, H-7), 8.11 (1H, d, J = 8.4 Hz, H-8), 8.16 (1H, J = 8.4 

Hz, H-5), 8.56 (1H, d, J = 5.2 Hz, H-2).  
13C NMR (100 MHz, CDCl3) δ: 103.2 (C-3), 117.5 (C-2′), 120.0 (C-4a), 120.6 

(C-5), 123.0 (C-6′), 125.7 (C-4′), 126.2 (C-6), 128.6 (C-5′), 129.0 (C-8), 130.3 (C-7), 

133.7 (C-3′), 138.0 (C-1′), 147.6 (C-4), 147.8 (C-8a), 149.5 (C-2).  

MS (EI): 218 (40), 219 (100), 220 (19), 298 (33, [M]+, 79Br), 300 (32, [M]+, 
81Br).  

IR (KBr) νmax: 744, 762, 812, 1338, 1458, 1473, 1568, 2911, 3061.  

UV (MeOH) λmax: 217, 322. 
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3-Chloroisocryptolepine 64 
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The above compound was prepared as for isocryptolepine 16 (Method 2) but starting 

from 3-chloro-11H-indolo[3,2-c]quinoline 68 (438 mg, 1.73 mmol) and iodomethane 

(11 mL, 176.7 mmol) in acetonitrile (30 mL). The product was purified by silica 

flash column chromatography eluting with a mixture of dichloromethane, ethanol 

and aqueous ammonia (100:0:1 increasing to 100:2:1) to give 3-

chloroisocryptolepine 64 as a yellow crystalline solid (281 mg, 61%).  

Mp: 268-270 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 4.21 (3H, s, NCH3), 7.25 (1H, t, J = 7.5 Hz, 

H-8), 7.44 (1H, ddd, J = 7.8, 7.2, 0.6 Hz, H-9), 7.71 (1H, dd, J = 9.0, 1.8 Hz, H-2), 

7.79 (1H, br d, J = 8.4 Hz, H-10), 8.09-8.10 (2H, m, H-4 and H-7), 8.73 (1H, d, J = 

9.0 Hz, H-1), 9.27 (1H, s, H-6).  
13C NMR (100 MHz, d6-DMSO) δ: 42.2 (NCH3), 116.8 (C-6a), 117.2 (C-4), 

118.6 (C-10), 119.6 (C-11b), 119.7 (C-7), 120.1 (C-8), 125.4 (C-2), 125.6 (C-6b), 

125.7 (C-1), 125.8 (C-9), 133.9 (C-3), 136.2 (C-4a), 138.4 (C-6), 152.1 (C-11a), 

154.7 (C-10a).  

MS (FAB): 147 (18), 267 (100, [M+1]+, 35Cl), 268 (23), 269 (35, [M+1]+, 37Cl).  

HRMS (FAB): 267.0685 (C16H12N2Cl [M+H]+ requires 267.0689).  

IR (KBr) νmax: 739, 1125, 1224, 1329, 1456, 1599, 1638, 3426. 

3-Trifluoromethylisocryptolepine 65  
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The above compound was prepared as for isocryptolepine 16 (Method 2) but starting 

from 3-triflurormethyl-11H-indolo[3,2-c]quinoline 69 (223 mg, 0.78 mmol) and 
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iodomethane (4.8 mL, 77.10 mmol) in acetonitrile (13 mL). The methiodide salt was 

purified by silica flash column chromatography eluting with a mixture of methanol 

and dichloromethane (10:90 increasing to 15:85) and then converted to the free base 

with a 1:1 solution of aqueous ammonia (30%) and dichloromethane (200 mL). The 

organic layer was extracted with dichloromethane (3 × 50 mL), dried (MgSO4) and 

the solvent removed in vacuo to give 3-trifluoromethylisocryptolepine 65 as a yellow 

crystalline solid (147 mg, 63%).  

Mp: 238-240 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 4.31 (3H, s, NCH3), 7.31 (1H, t, J = 7.5 Hz, 

H-8), 7.49 (1H, t, J = 7.5 Hz, H-9), 7.83 (1H, d, J = 8.4 Hz, H-10), 7.99 (1H, d, J = 

8.4 Hz, H-2), 8.13 (1H, d, J = 7.8 Hz, H-7), 8.32 (1H, s, H-4), 8.93 (1H, d, J = 8.4 

Hz, H-1), 9.39 (1H, s, H-6).  
13C NMR (100 MHz, d6-DMSO) δ: 42.3 (NCH3), 115.2 (C-4, J = 4.4 Hz,), 117.1 

(C-6a), 119.0 (C-10), 119.8 (C-7), 120.5 (C-8), 120.8 (C-2, J = 3.3 Hz), 123.4 (C-

11b), 124.2 (CF3, J = 271 Hz), 125.3 (C-1), 125.6 (C-6b), 126.0 (C-9), 128.7 (C-3, J 

= 32 Hz), 134.8 (C-4a), 139.1 (C-6), 151.6 (C-11a), 154.8 (C-10a).  

MS (EI): 300 (100, [M]+), 301 (19).  

HRMS (EI): 300.0880 (C17H11N2F3 [M]+ requires 300.0874).  

IR (KBr) νmax: 745, 1086, 1113, 1131, 1225, 1320, 1356, 1642, 2931, 3367. 

4-(1-Benzotriazolyl)-7-chloroquinoline 66 

6

7
8

8a

4a5

N 2

3
4

N 7a'

3a'
N

N
7'

6'

5'4'

Cl
 

The above compound was prepared as for compound 35 but starting from 4,7-

dichloroquinoline 62 (392 mg, 1.98 mmol) and benzotriazole (265 mg, 2.22 mmol). 

The product 4-(1-benzotriazolyl)-7-chloroquinoline 66 was obtained as a white 

crystalline solid (432 mg, 78%).  

Mp: 190-192 ºC.  
1H NMR (600 MHz, CDCl3) δ: 7.48 (1H, d, J = 8.4 Hz, H-4′), 7.52 (1H, t, J = 

7.8 Hz, H-6′), 7.56 (1H, dd, J = 9.0, 2.4 Hz, H-6), 7.59 (1H, t, J = 7.8 Hz, H-5′), 7.62 
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(1H, d, J = 4.8 Hz, H-3), 7.83 (1H, d, J = 9.0 Hz, H-5), 8.24 (1H, d, J = 8.4 Hz, H-

7′), 8.29 (1H, d, J = 1.8 Hz, H-8), 9.14 (1H, d, J = 4.2 Hz, H-2).  
13C NMR (100 MHz, CDCl3) δ: 110.3 (C-4′), 117.0 (C-3), 120.9 (C-7′ and C-

4a), 125.2 (C-6′ and 5), 129.1 (C-8), 129.3 (C-5′), 129.4 (C-6), 133.8 (C-3a′), 137.2 

(C-7), 141.0 (C-4), 146.4 (C-7a′), 150.4 (C-8a), 151.5 (C-2).  

MS (EI): 99 (20), 135 (17), 162 (38), 190 (21), 217 (62), 252 (100), 253 (21), 

254 (34), 280 (25, [M]+).  

HRMS (EI): 280.0520 (C15H9N4Cl [M]+ requires 280.0516).  

IR (KBr) νmax: 769, 1032, 1074, 1288, 1455, 1502, 1562, 1615, 3052. 

4-(1-Benzotriazolyl)-7-trifluoromethylquinoline 67 
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The above compound was prepared as for compound 35 but starting from 4-chloro-7-

trifluoromethylquinoline 63 (1.00 g, 4.34 mmol) and benzotriazole (545 mg, 4.57 

mmol). The product 4-(1-benzotriazolyl)-7-trifluoromethylquinoline 67 was obtained 

as an off-white crystalline solid (1.05 g, 77%).  

Mp: 160-162 ºC.  
1H NMR (400 MHz, CDCl3) δ: 7.50 (1H, dd, J =8.8, 1.6 Hz, H-4′), 7.54 (1H, 

ddd, J = 8.2, 7.0, 1.0 Hz, H-6′), 7.62 (1H, ddd, J = 8.1, 7.1, 1.1 Hz,  H-5′), 7.78 (1H, 

d, J = 4.4 Hz, H-3), 7.80 (1H, dd, J = 9.2, 1.6 Hz, H-6), 8.08 (1H, d, J = 9.2 Hz, H-

5), 8.26 (1H, dd, J = 8.4 Hz, 1.6 Hz, H-7′), 8.63 (1H, s, H-8), 9.31 (1H, d, J = 4.4 

Hz, H-2).  
13C NMR (100 MHz, CDCl3) δ: 110.2 (C-4′), 118.5 (C-3), 121.0 (C-7′), 123.7 

(CF3, J = 271 Hz), 124.1 (C-6, J = 3 Hz), 124.7 (C-4a), 125.5 (C-5 and C-6′), 127.7 

(C-8, J = 4.3 Hz), 129.5 (C-5′), 132.9 (C-7, J = 33 Hz), 133.8 (C-3a′), 141.2 (C-4), 

146.4 (C-7a′), 148.9 (C-8a), 151.8 (C-2).  

MS (EI): 169 (30), 196 (32), 286 (100), 287 (21), 314 (22, [M]+).  

IR (KBr) νmax: 747, 769, 829, 1032, 1067, 1163, 1198, 1287, 1336, 1314, 1454, 

1519, 1612, 3040. 
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3-Chloro-11H-indolo[3,2-c]quinoline 68  
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The above known compound was prepared as for compound 36 (Method 3) but 

starting from 4-(1-benzotriazolyl)-7-chloroquinoline 66 (993 mg, 3.54 mmol) and 

polyphosphoric acid (31.32 g). The reaction mixture was heated at 140 °C for 3 

hours. The product 3-chloro-11H-indolo[3,2-c]quinoline 68 was obtained as a cream 

solid (695 mg, 78%).  

The proton NMR data acquired deviated slightly from that published in the 

literature, which was acquired in salt form in D2O.134 

Mp: >310 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 7.35 (1H, td, J = 7.5, 0.6 Hz, H-8), 7.51 (1H, 

ddd, J = 8.4, 7.2, 0.6 Hz, H-9), 7.73 (1H, dd, J = 8.4, 0.6 Hz, H-10), 7.74 (1H, dd, J 

= 8.7, 2.1 Hz, H-2), 8.16, (1H, d, J = 2.4 Hz, H-4), 8.33 (1H, dd, J = 7.5, 0.6 Hz, H-

7), 8.56 (1H, d, J = 8.4 Hz, H-1), 9.62 (1H, s, H-6), 12.88 (1H, br s, N-H).  
13C NMR (50 MHz, d6-DMSO) δ: 111.8 (C-10), 114.5 (C-6a), 115.5 (C-11b), 

120.0 (C-7), 120.6 (C-8), 121.5 (C-6b), 124.0 (C-1), 125.7 (C-9), 125.9 (C-2), 128.1 

(C-4), 132.2 (C-3), 138.7 (C-10a), 139.3 (C-11a), 145.7 (C-4a), 145.9 (C-6).  

MS (EI): 217 (16), 252 (100, [M]+, 35Cl), 253 (20), 254 (33, [M]+, 37Cl).  

HRMS (EI): 252.0454 (C15H9N2Cl [M]+requires 252.0454).  

IR (KBr) νmax: 756, 873, 1135, 1278, 1456, 1499, 1562, 1620, 3052. 

3-Trifluoromethyl-11H-indolo[3,2-c]quinoline 69 
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The above compound was prepared as for compound 36 (Method 3) but starting from 

4-(1-benzotriazolyl)-7-trifluoromethylquinoline 67 (322 mg, 1.02 mmol) and 

polyphosphoric acid (10.19 g). The reaction mixture was heated at 140 °C for 3 
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hours. The product 3-trifluoromethyl-11H-indolo[3,2-c]quinoline 69 was obtained as 

a pale yellow solid (115 mg, 39%).  

Mp: >350 ºC.  
1H NMR (200 MHz, d6-DMSO) δ: 7.42 (1H, t, J = 7.1 Hz, H-8), 7.59 (1H, t, J = 

7.2 Hz, H-9), 7.80 (1H, d, J = 7.4 Hz, H-10), 8.02 (1H, d, J = 8.4 Hz, H-2), 8.40 

(1H, d, J = 7.6 Hz, H-7), 8.48 (1H, s, H-4), 8.78 (1H, d, J = 8.4 Hz, H-1), 9.77 (1H, 

s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 112.0 (C-10), 115.5 (C-6a), 119.1 (C-11b), 

120.3 (C-7), 120.8 (C-8), 121.4 (C-2, J = 5 Hz), 123.8 (C-1), 124.1 (CF3,
 J = 275 

Hz), 126.1 (C-9), 126.6 (C-4, J = 4 Hz), 127.8 (C-3, J = 32 Hz), 138.9 (C-10a and C-

11a), 144.0 (C-4a), 146.3 (C-6).  

MS (EI): 286 (100), 287 (18).  

HRMS (EI): 286.0716 (C16H9N2F3 [M]+ requires 286.0718).  

IR (KBr) νmax: 739, 1073, 1128, 1170, 1284, 1509, 1572, 2960, 3050.  

2-Bromoisocryptolepine 70 

3

4

1

N 6

N

7

8

910

Br

 

The above compound was prepared as for isocryptolepine 18 (Method 2) but starting 

from 2-bromo-11H-indolo[3,2-c]quinoline 84 (206 mg, 0.69 mmol) and iodomethane 

(4.3 mL, 69.07 mmol) in acetonitrile (12 mL). The product was purified by silica 

flash column chromatography eluting with a mixture of dichloromethane, ethanol 

and aqueous ammonia (100:0:1 increasing to 100:2:1) to give 2-

bromoisocryptolepine 70 as a yellow crystalline solid (194 mg, 90%).  

Mp: 262-263 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 4.19 (3H, s, NCH3), 7.26 (1H, t, J = 7.5 Hz, 

H-8), 7.45 (1H, ddd, J = 7.8, 7.2, 0.6 Hz, H-9), 7.80 (1H, d, J = 7.8 Hz, H-10), 7.92 

(1H, dd, J = 9.6, 2.1 Hz, H-3), 7.96 (1H, d, J = 9.0 Hz, H-4), 8.10 (1H, d, J = 7.2 

Hz, H-7), 8.82 (1H, d, J = 2.4 Hz, H-1), 9.27 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 42.0 (NCH3), 116.6 (C-6a), 117.7 (C-2), 

118.6 (C-10), 119.5 (C-4), 119.9 (C-7), 120.0 (C-8), 122.3 (C-11b), 125.5 (C-6b), 
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125.6 (C-9 and C-1), 131.4 (C-3), 134.1 (C-4a), 138.1 (C-6), 151.2 (C-11a), 154.5 

(C-10a).  

MS (EI): 189 (16), 231 (44), 310 (100, [M] +, 79Br), 311 (19), 312 (88, [M] +, 
81Br), 313 (18).  

HRMS (EI): 310.0113 (C16H11N2Br [M] + requires 310.0106).  

IR (KBr) νmax: 738, 1118, 1217, 1344, 1365, 1447, 1595, 1637, 3047, 3394. 

2-Chloroisocryptolepine 71 
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The above compound was prepared as for isocryptolepine 18 (Method 2) but starting 

from 2-chloro-11H-indolo[3,2-c]quinoline 85 (51 mg, 0.20 mmol) and iodomethane 

(1.3 mL, 20.9 mmol), in acetonitrile (3.5 mL). The product was purified by silica 

flash column chromatography eluting with a mixture of dichloromethane, ethanol 

and aqueous ammonia (100:0:1 increasing to 100:2:1) to give 2-

chloroisocryptolepine 71 as a yellow crystalline solid (47 mg, 88%).  

This compound was reported during the course of this project and the 

spectroscopic data acquired was consistent with that published in the literature.93 

Mp: 248-249 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 4.19 (3H, s, NCH3), 7.26 (1H, t, J = 7.5 Hz, 

H-8), 7.45 (1H, t, J = 7.5 Hz, H-9), 7.79-7.81 (2H, m, H-3 and H-10), 8.02 (1H, d, J 

= 9.0 Hz, H-4), 8.10 (1H, d, J = 7.2 Hz, H-7), 8.66 (1H, d, J = 2.4 Hz, H-1), 9.25 

(1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 42.0 (NCH3), 116.4 (C-6a), 118.5 (C-4), 

119.5 (C-10), 119.7 (C-7), 120.0 (C-8), 121.9 (C-11b), 122.4 (C-1), 125.4 (C-6b), 

125.5 (C-9), 128.8 (C-3), 129.5 (C-2), 133.8 (C-4a), 138.1 (C-6), 151.3 (C-11a), 

154.4 (C-10a).  

MS (EI): 205 (28), 266 (100, [M]+, 35Cl), 267 (20), 268 (34, [M]+, 37Cl).  

HRMS (EI): 266.0603 (C16H11N2Cl [M]+ requires 266.0611).  

IR (KBr) νmax: 736, 1107, 1219, 1340, 1449, 1597, 1638, 3049, 3338.  
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6-Bromo-4-chloroquinoline 72 
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The above known compound was prepared via an adaptation of the synthetic 

procedure published by Lin and Loo135 which is summarised as follows. Phosphorus 

oxychloride (4.4 mL, 48.07 mmol) was added to 6-bromo-4-quinolone 80 (1.79 g, 

8.00 mmol) and the mixture refluxed for 19 hours. The reaction mixture was 

quenched with iced water and basified with aqueous ammonia. The resulting white 

precipitate was collected by vacuum filtration (washing with water) to give 6-bromo-

4-chloroquinoline 72 as a white solid (1.73 g, 89%) which was used without further 

purification.  

Mp: 110-111 °C (lit.,135 111-112°C).  
1H NMR (200 MHz, CDCl3) δ: 7.49 (1H, d, J = 4.8 Hz, H-3), 7.82 (1H, dd, J = 

9.2, 2.2 Hz, H-7), 7.97 (1H, d, J = 9.2 Hz, H-8), 8.37 (1H, d, J = 1.8 Hz, H-5), 8.77 

(1H, d, J = 4.8 Hz, H-2).  
13C NMR (50 MHz, CDCl3) δ: 121.1, 121.2, 125.6, 126.8, 130.8, 133.1, 140.7, 

147.0, 149.3.  

MS (EI): 127 (17), 162 (33), 241 (77, [M]+), 243 (100), 254 (24).  

IR (KBr) νmax: 677, 830, 842, 1180, 1342, 1487, 1550, 1578, 3083.  

4,6-Dichloroquinoline 73 
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The above known compound was prepared as for 6-bromo-4-chloroquioline 72 but 

starting from 6-chloro-4-quinolone 81 (381 mg, 2.12 mmol) and phosphorus 

oxychloride (1.2 mL, 13.10 mmol). 4,6-Dichloroquinoline 73 was obtained as a 

white solid (301 mg, 72%).  

Mp: 103-105°C (lit.,135 104-105°C).  



134 
 

1H NMR (200 MHz, CDCl3) δ: 7.50 (1H, d, J = 4.6 Hz, H-3), 7.69 (1H, dd, J = 

9.0, 2.2 Hz, H-7), 8.04 (1H, d, J = 9.2 Hz, H-8), 8.20 (1H, d, J = 2.2 Hz, H-5), 8.75 

(1H, d, J = 4.8 Hz, H-2).  
13C NMR (50 MHz, CDCl3) δ: 121.1, 122.3, 126.4, 130.5, 130.7, 133.0, 140.7, 

146.7, 149.2.  

MS (EI): 99 (19), 162 (52), 164 (16), 197 (100), 199 (67, [M]+, 35Cl).  

IR (KBr) νmax: 677, 823, 849, 1086, 1345, 1470, 1557, 1583, 3081.  

6-Bromo-4-quinolone 80 
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The above known compound was prepared via an adaptation of the synthetic 

procedure published by Lin and Loo135 which is summarised as follows.  

i) To 4-bromoaniline 74 (988 mg, 5.74 mmol), diethyl ethoxymethylene malonate 

(1.2 mL, 5.99 mmol) was added and the mixture stirred at room temperature until 

homogeneous. The reaction mixture was then heated at 100°C for 2 hours after 

which nitrogen was bubbled through the solution for 30 minutes. Diphenyl ether (10 

mL) was added and the solution refluxed for a further 2 hours. The reaction mixture 

was cooled, hexane added (10 mL) and the precipitate obtained collected by vacuum 

filtration (washing with hexane) to give 6-bromo-3-carbethoxy-4-hydroxyquinoline 

76 as a off-white solid which was used without further purification.  

Mp: 322-324 ºC (lit.,178 320-322 °C). 

ii) A solution of compound 76 in aqueous sodium hydroxide (10%, 10 mL) was 

refluxed for 2 hours. The mixture was then cooled, acidified with concentrated 

hydrochloric acid and the precipitate obtained collected by vacuum filtration 

(washing with water) to give 6-bromo-3-carboxy-4-quinolinol 78 as a white solid 

which was used without further purification.  

Mp: 281-282 ºC (lit.,179 297 ºC).  

iii) A solution of compound 78 in diphenyl ether (10 mL) was refluxed for 3 hours. 

The mixture was cooled, hexane added (10 mL) and the precipitate obtained 

collected by vacuum filtration (washing with hexane). The precipitate was 



135 
 

decolourised with charcoal and recrystallised from methanol to give 6-bromo-4-

quinolone 80 as a white solid (786 mg, 61%).  

The spectroscopic data acquired was consistent with that published in the 

literature.180 

Mp: 290-291 ºC (lit.,180 286-291 ºC).  
1H NMR (200 MHz, d6-DMSO) δ: 6.06 (1H, dd, J = 7.2, 2.2 Hz, H-3), 7.51 (1H, 

dd, J = 8.8, 1.6 Hz, H-8), 7.75 (1H, dd, J = 9.2, 2.4 Hz, H-7), 7.92 (1H, dd, J = 7.2, 

2.2 Hz, H-2), 8.12 (1H, d, J = 2.0 Hz, H-5).  
13C NMR (50 MHz, d6-DMSO) δ: 108.8, 115.5, 120.8, 126.9, 134.1, 138.8, 

139.7, 175.4.  

6-Chloro-4-quinolone 81 
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The above known compound was prepared as for 6-bromo-4-quinolone 80 and the 

procedure is summarised as follows.  

i) Reaction of 4-chloroaniline 75 (1.05 g, 8.20 mmol) and diethyl ethoxymethylene 

malonate (1.60mL, 7.84 mmol) in diphenyl ether (10 mL) gave 6-chloro-3-

carbethoxy-4-hydroxyquinoline 77 as an off-white solid which was used without 

further purification.  

Mp: 310-312 ºC (lit.,181 >280°C).  

ii) Refluxing 77 in aqueous sodium hydroxide (10%, 10 mL) gave 6-chloro-3-

carboxy-4-quinolinol 79 as a white solid which was used without further purification.  

Mp: 288-290 ºC (lit.,181 261 °C).  

iii) Decarboxylation of 79 in diphenyl ether (10 mL) gave 6-chloro-4-quinolone 81 

as a white solid (701 mg, 49%).  

Mp: 266-268 ºC (lit.,182 261-263°C).  
1H NMR (200 MHz, d6-DMSO) δ: 6.06 (1H, d, J = 7.2 Hz, H-3), 7.62-7.64 (2H, 

m, H-7 and H-8), 7.92 (1H, d, J = 7.4 Hz, H-2), 7.99 (1H, d, J = 1.8 Hz, H-5), 12.00 

(br s, NH).  
13C NMR (50 MHz, d6-DMSO) δ: 108.7, 120.7, 123.7, 126.5, 127.6, 131.6, 

138.5, 139.7, 175.4.  
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MS (EI): 89 (19), 151 (46), 153 (16), 179 (100, [M]+, 35Cl), 181 (32, [M]+, 37Cl).  

IR (KBr) νmax: 826, 1212, 1353, 1514, 1587, 2817, 2892, 3051, 3435.  

4-(1-Benzotriazolyl)-6-bromoquinoline 82  
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The above compound was prepared as for compound 35 but starting from 4-chloro-6-

bromoquinoline 72 (401 mg, 1.65 mmol) and benzotriazole (212 mg, 1.78 mmol). 

The product 4-(1-benzotriazolyl)-6-chloroquinoline 82 was obtained as a white 

crystalline solid (376 mg, 70%).  

Mp: 181-182 ºC.  
1H NMR (200 MHz, CDCl3) δ: 7.46-7.57 (3H, m, H-4′, H-5′ and H-6′), 7.61 

(1H, d, J = 4.4 Hz, H-3), 7.91 (1H, dd, J = 9.2, 2.2 Hz, H-7), 8.05 (1H, d, J = 1.8 Hz, 

H-5), 8.14 (1H, d, J = 8.8 Hz, H-8), 8.24 (1H, dd, J = 7.6, 1.0 Hz, H-7′), 9.13 (1H, d, 

J = 4.6 Hz, H-2).  
13C NMR (50 MHz, CDCl3) δ: 109.1 (C-4′), 116.6 (C-3), 119.9 (C-7′), 121.8 (C-

6), 123.4 (C-4a), 124.2 (C-5), 124.9 (C-6′), 128.3 (C-5′), 130.9 (C-8), 132.9 (C-3a′), 

133.5 (C-7), 138.8 (C-4), 145.4 (C-7a′), 147.9 (C-8a), 149.8 (C-2).  

MS (EI): 100 (19), 127 (20), 190 (29), 206 (18), 208 (17), 216 (23), 217 (100), 

218 (20), 296 (55), 298 (58), 324 (17, [M]+, 79Br), 326 (17, [M]+, 81Br).  

HRMS (EI): 324.0005 (C15H9N4Br [M]+ requires 324.0011).  

IR (KBr) vmax: 750, 844, 1034, 1458, 1498, 1585, 3068, 3450.  
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4-(1-Benzotriazolyl)-6-chloroquinoline 83  

7

8

5

N
2

3

N

N

N
7'

6'

5'4'

Cl

 

The above compound was prepared as for compound 35 but starting from 4,6-

dichloroquinoline 73 (425 mg, 2.15 mmol) and benzotriazole (274 mg, 2.30 mmol). 

The product 4-(1-benzotriazolyl)-6-chloroquinoline 83 was obtained as a white 

crystalline solid (464 mg, 77%).  

Mp: 186-187 ºC.  
1H NMR (200 MHz, CDCl3) δ: 7.45-7.55 (3H, m, H-4′, H-5′ and H-6′), 7.61 

(1H,d, J = 4.8 Hz, H-3), 7.75 (1H, dd, J = 8.8, 2.2 Hz, H-7), 7.86 (1H, d, J = 2.2 Hz, 

H-5), 8.20 (1H, d, J = 8.8 Hz, H-8), 8.22 (1H, dd, J = 8.8, 1.2 Hz, H-7′), 9.10 (1H, d, 

J = 4.8 Hz, H-2).  
13C NMR (50 MHz, CDCl3) δ: 109.1 (C-4′), 116.7 (C-3), 119.9 (C-7′), 121.6 (C-

5), 122.9 (C-4a), 124.2 (C-6′), 128.3 (C-5′), 130.9 (C-7 and 8), 132.8 (C-3a′), 133.7 

(C-6), 138.9 (C-4), 145.3 (C-7a′), 147.7 (C-8a), 149.7 (C-2).  

MS (EI): 99 (44), 126 (15), 127 (18), 134 (31), 162 (49), 164 (19), 190 (29), 216 

(17), 217 (81), 252 (100), 253 (19), 254 (35), 280 (37, [M]+, 35Cl).  

HRMS (EI): 280.0515 (C15H9N4Cl [M]+ requires 280.0516).  

IR (KBr) νmax: 750, 1035, 1461, 1501, 1586, 3062, 3439.  

2-Bromo-11H-indolo[3,2-c]quinoline 84  
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The above compound was prepared as for compound 36 (Method 3) but starting from 

4-(1-benzotriazolyl)-6-bromoquinoline 82 (675 mg, 2.08 mmol) and polyphosphoric 

acid (16.71 g). The reaction mixture was heated at 140 °C for 3 hours. The product 
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was purified by washing the precipitate with methanol to give 2-bromo-11H-

indolo[3,2-c]quinoline 84 as a cream solid (332 mg, 54%).  

Mp: >350 ºC.  
1H NMR (400 MHz, d6-DMSO) δ: 7.34 (1H, ddd,  J = 7.9, 7.2, 0.8 Hz, H-8), 

7.50 (1H, ddd, J = 8.2, 7.0, 0.8 Hz, H-9), 7.75 (1H, dt, J = 7.2, 0.8 Hz, H-10), 7.83 

(1H, dd, J = 8.8, 2.0 Hz, H-3), 8.06 (1H, d, J = 9.2 Hz, H-4), 8.32 (1H, dt, J = 7.6, 

0.8 Hz, H-7), 8.85 (1H, d, J = 2.0 Hz, H-1), 9.62 (1H, s, H-6).  
13C NMR (100 MHz, d6-DMSO) δ: 112.3 (C-10), 114.9 (C-6a), 118.3 (C-2), 

118.7 (C-11b), 120.3 (C-7), 120.7 (C-8), 121.7 (C-6b), 124.7 (C-1), 125.9 (C-9), 

130.8 (C-3), 131.7 (C-4), 139.0 (C-10a), 139.2 (C-11a), 144.0 (C-4a), 145.4 (C-6).  

MS (EI): 190 (19), 216 (22), 217 (40), 296 (100, [M]+, 79Br), 297 (22), 298 (98, 

[M]+, 81Br), 299 (17).  

HRMS (EI): 295.9944 (C15H9N2Br [M]+ requires 295.9949).  

IR (KBr) νmax: 740, 822,  1236, 1339, 1363, 1459, 1506, 2983, 3084. 

2-Chloro-11H-indolo[3,2-c]quinoline 85 
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The above compound was prepared as for compound 36 (Method 3) but starting from 

4-(1-benzotriazolyl)-6-chloroquinoline 83 (608 mg, 2.17 mmol) and polyphosphoric 

acid (19.48 g). The reaction mixture was heated at 140 °C for 3 hours. The product 2-

chloro-11H-indolo[3,2-c]quinoline 85 was obtained as a cream solid (422 mg, 77%).  

Mp: >350 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 7.36 (1H, td, J = 7.5, 0.6 Hz, H-8), 7.52 (1H, 

td, J = 7.8, 1.2 Hz, H-9), 7.73-7.75 (2H, m, H-3 and H-10), 8.14 (1H, d, J = 9.0 Hz, 

H-4), 8.33 (1H, dd, J = 7.8, 0.6 Hz, H-7), 8.64 (1H, d, J = 2.4 Hz, H-1), 9.61 (1H, s, 

H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 111.9 (C-10), 114.7 (C-6a), 117.8 (C-11b), 

120.1 (C-7), 120.7 (C-8), 121.1 (C-1), 121.5 (C-6b), 125.8 (C-9), 128.1 (C-3), 129.8 

(C-2), 131.4 (C-4), 138.7 (C-10a and C-11a), 143.6 (C-4a), 145.1 (C-6).  

MS (EI): 252 (100, [M]+, 35Cl), 253 (18), 254 (34, [M]+, 37Cl).  
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HRMS (EI): 252.0453 (C15H9N2Cl [M]+ requires 252.0454).  

IR (KBr) νmax: 738, 823, 1088, 1230, 1341, 1364, 1459, 1508, 3085. 

4-Chloroisocryptolepine 91  
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The above compound was prepared as for isocryptolepine 18 (Method 2) but starting 

from 4-chloro-11H-indolo[3,2-c]quinoline 95 (135 mg, 0.53 mmol) and iodomethane 

(1 mL, 16.1 mmol) in acetonitrile (10 mL). The product 4-chloroisocryptolepine 91 

was obtained as a yellow crystalline solid (36 mg, 25%).  

Mp: 225-227 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 4.55 (3H, s, NCH3), 7.27 (1H, t, J = 7.2 Hz, 

H-8), 7.45 (1H, t, J = 7.5 Hz, H-9), 7.62 (1H, t, J = 7.8 Hz, H-2), 7.79 (1H, d, J = 

7.8 Hz, H-10), 7.89 (1H, dd, J = 7.2, 0.6 Hz, H-3), 8.12 (1H, d, J = 7.8 Hz, H-7), 

8.80 (1H, d, J = 7.8 Hz, H-1), 9.25 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 47.8 (NCH3), 116.6 (C-6a), 118.5 (C-10), 

119.7 (C-7), 120.2 (C-8), 122.1 (C-11b), 123.6 (C-1), 124.1 (C-4), 125.5 (C-9), 125.9 

(C-2), 128.9 (C-6b), 132.9 (C-3), 133.4 (C-4a), 141.2 (C-6), 152.4 (C-11a), 154.6 (C-

10a).  

MS (EI): 251 (21), 252 (16), 266 (100, [M]+, 35Cl), 267 (23), 268 (34, [M]+, 
37Cl).  

HRMS (EI): 266.0616 (C16H11N2Cl [M]+ requires 266.0611).  

IR (KBr) νmax: 756, 1074, 1323, 1480, 1640, 2926, 3326.  
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4-(1-Benzotriazolyl)-8-chloroquinoline 93 
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The above compound was prepared as for compound 35 but starting from 4,8-

dichloroquinoline 89 (165 mg, 0.84 mmol) and benzotriazole (110 mg, 0.92 mmol). 

The product 4-(1-benzotriazolyl)-8-chloroquinoline 93 was obtained as a white 

crystalline solid (167 mg, 71%).  

Mp: 208-210 ºC.  
1H NMR (200 MHz, CDCl3) δ: 7.48-7.65 (4H, m, H-4′, H-5′, H-6′ and H-6), 

7.76 (1H, d, J = 4.8 Hz, H-3), 7.83 (1H, dd, J = 8.4, 1.2 Hz, H-7), 8.04 (1H, dd, J = 

7.5, 1.3 Hz, H-5), 8.33 (1H, dd, J = 8.8, 1.2 Hz, H-7′), 9.33 (1H, d, J = 4.8 Hz, H-2).  
13C NMR (50 MHz, CDCl3) δ: 109.3 (C-4′), 117.1 (C-3), 119.8 (C-7′), 121.8 (C-

5), 123.8 (C-4a), 124.2 (C-6′), 127.2 (C-6), 128.3 (C-5′), 130.2 (C-7), 133.0 (C-3a′), 

133.6 (C-8), 140.4 (C-4), 145.4 (C-7a′), 150.0 (C-2 and C-8a).  

MS (EI): 99 (27), 126 (21), 162 (37), 190 (18), 217 (53), 218 (25), 252 (100), 

253 (23), 254 (47), 280 (23, [M]+, 35Cl).  

IR (KBr) νmax:782, 769, 814, 1036, 1056, 1216, 1292, 1427, 1506, 1597,1586, 

3061. 
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4-(1-Benzotriazolyl)-8-trifluoromethylquinoline 94 
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The above compound was prepared as for compound 35 but starting from 4-chloro-8-

trifluoromethylquinoline 90 (496 mg, 2.14 mmol) and benzotriazole (280 mg, 2.35 

mmol). The product 4-(1-benzotriazolyl)-8-trifluoromethylquinoline 94 was obtained 

as an off-white crystalline solid (446 mg, 66%).  

Mp: 215-217 ºC.  
1H NMR (600 MHz, CDCl3) δ: 7.47 (1H, dd, J =8.4, 1.2 Hz, H-4′), 7.54 (1H, 

ddd, J = 8.4, 7.2, 1.2 Hz, H-6′), 7.61 (1H, ddd, J = 8.4, 7.2, 1.2 Hz, H-5′), 7.68 (1H, 

br t, J = 7.8 Hz, H-6), 7.73 (1H, d, J = 4.2 Hz, H-3), 8.09 (1H, dd, J = 9.0, 1.2 Hz, 

H-5), 8.23 (1H, br d, J = 7.2 Hz, H-7), 8.27 (1H, dd, J = 8.4, 1.2 Hz, H-7′), 9.31 (1H, 

d, J = 4.8 Hz, H-2).  
13C NMR (100 MHz, CDCl3) δ: 110.1 (C-4′), 117.8 (C-3), 120.9 (C-7′), 121.3 

(CF3, J = 260 Hz), 123.8 (C-4a), 125.3 (C-6′), 126.9 (C-5), 128.2 (C-6), 128.7 (C-8, J 

= 30 Hz), 129.3 (C-5′), 129.4 (C-7, J = 5 Hz), 133.9 (C-3a′), 141.0 (C-4), 146.3 (C-

7a′), 146.6 (C-8a), 151.4 (C-2).  

MS (FAB): 315 (100, [M]+), 316 (21).  

IR (KBr) νmax: 744, 777, 1059, 1105, 1130, 1214, 2184, 1320, 1513, 1586, 1601, 

3089. 



142 
 

4-Chloro-11H-indolo[3,2-c]quinoline 95 
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The above compound was prepared as for compound 36 (Method 3) but starting from 

4-(1-benzotriazolyl)-8-chloroquinoline 93 (398 mg, 1.42 mmol) and polyphosphoric 

acid (13.39 g). The reaction mixture was heated at 130 °C for 4 hours. The product 4-

chloro-11H-indolo[3,2-c]quinoline 95 was obtained as a pale yellow solid (201 mg, 

56%).  

Mp: >350 ºC.  
1H NMR (200 MHz, d6-DMSO) δ: 7.40 (1H, t, J = 7.5 Hz, H-8), 7.60 (1H, t, J = 

7.5 Hz, H-9), 7.68 (1H, t, J = 7.9 Hz, H-2), 7.78 (1H, d, J = 8.0 Hz, H-10), 7.95 (1H, 

dd, J = 7.7, 1.2 Hz, H-3), 8.38 (1H, d, J = 7.6 Hz, H-7), 8.57 (1H, dd, J = 8.0, 1.0 

Hz, H-1), 9.72 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 112.0 (C-10), 115.0 (C-6a), 118.5 (C-11b), 

120.1 (C-7), 120.6 (C-8), 121.3 (C-1), 121.5 (C-6b), 125.5 (C-9), 125.8 (C-2), 128.0 

(C-3), 133.1 (C-4), 139.2 (C-10a), 139.9 (C-11a), 141.0 (C-4a), 145.1 (C-6).  

MS (EI): 252 (100, [M]+, 35Cl), 253 (18), 254 (34, [M]+, 37Cl).  

IR (KBr) νmax: 747, 764, 891, 1115, 1235, 1339, 1358, 1503, 3168. 

4-Trifluoromethyl-11H-indolo[3,2-c]quinoline 96 
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The above compound was prepared as for compound 36 (Method 3) but starting from 

4-(1-benzotriazolyl)-8-trifluoromethylquinoline 94 (188 mg, 0.60 mmol) and 

polyphosphoric acid (4.90 g). The reaction mixture was heated at 140 °C for 3 hours. 
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The product 4-trifluoromethyl-11H-[3,2-c]quinoline 96 was obtained as a pale 

yellow solid (73 mg, 43%).  

Mp: 312-314 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 7.38 (1H, ddd, J = 7.8, 7.0, 0.8 Hz, H-8), 

7.54 (1H, ddd, J = 8.1, 7.1, 1.2 Hz, H-9), 7.77 (1H, d, J = 8.0 Hz, H-10), 7.81 (1H, t, 

J = 7.8 Hz, H-2), 8.14 (1H, d, J = 7.2 Hz, H-3), 8.36 (1H, dd, J = 7.6, 0.8 Hz, H-7), 

8.87 (1H, d, J = 7.6, 0.8 Hz, H-1), 9.72 (1H, s, H-6).  
13C NMR (100 MHz, d6-DMSO) δ: 112.2 (C-10), 114.9 (C-6a), 117.9 (C-11b), 

120.4 (C-7), 120.9 (C-8), 121.6 (C-6b), 124.7 (CF3, J = 240 Hz), 124.5 (C-2), 126.1 

(C-9), 126.3 (C-3, J = 4.2 Hz), 126.5 (C-4, J = 33 Hz), 127.3 (C-1), 139.2 (C-10a), 

139.8 (C-11a), 141.4 (C-4a), 145.6 (C-6).  

MS (FAB): 286 (31), 287 (100, [M+H]+), 288 (18).  

IR (KBr) νmax: 750, 780, 1082, 1272, 1312, 1330, 1456, 1581, 1598, 3251.  

9-Methylisocryptolepine 97 
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The above compound was prepared as for isocryptolepine 16 (Method 2) but starting 

from 9-methyl-11H-indolo[3,2-c]quinoline 98 (222 mg, 0.95 mmol) and 

iodomethane (5.90 mL, 94.77 mmol) in acetonitrile (15 mL). The product 9-

methylisocryptolepine 97 was obtained as a yellow crystalline solid (197 mg, 84%).  

Mp: 259-260 ºC.  
1H NMR (600 MHz, CDCl3) δ: 2.58 (3H, s, CH3), 3.97 (3H, s, NCH3), 7.09 (1H, 

ddd, J = 7.8, 1.2, 0.6 Hz, H-8), 7.52-7.55 (2H, m, H-2 and H-4), 7.61 (1H, ddd, J = 

9.0, 7.8, 1.2 Hz, H-3), 7.73 (1H, d, J = 7.8 Hz, H-7), 7.77 (1H, br s, H-10), 8.12 (1H, 

s, H-6), 8.86 (1H, dd, J = 7.2, 2.1 Hz, H-1).  
13C NMR (50 MHz, d6-DMSO) δ: 21.7 (CH3), 42.1 (NCH3), 116.0 (C-6a), 117.4 

(C-4), 117.9 (C-10), 119.1 (C-7), 120.4 (C-11b), 121.5 (C-8), 122.7 (C-6b), 123.8 

(C-1), 125.1 (C-2), 129.2 (C-3), 134.9 (C-9), 135.3 (C-4a), 137.8 (C-6), 151.8 (C-

11a), 153.7 (C-10a).  

MS (EI): 231 (19), 245 (35), 246 (100, [M]+), 247 (19).  
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HRMS (EI): 246.1151 (C17H14N2 [M]+ requires 246.1157).  

IR (KBr) νmax: 752, 806, 1122, 1228, 1241, 1350, 1455, 1600, 1640, 3427. 

9-Methyl-11H-indolo[3,2-c]quinoline 98 
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The above compound was prepared as for compound 36 (Method 2) but starting from 

4-bromoquinoline 59 (206 mg, 0.99 mmol), 2-bromo-5-methylaniline (206 mg, 1.11 

mmol), Pd(OAc)2 (4.2 mg, 1.9 mol%), BINAP (13.2 mg, 2.1 mol%) and potassium 

carbonate (2.66 g, 19.24 mmol) in dry DMF (20 mL). The product 9-methyl-11H-

indolo[3,2-c]quinoline 98 was obtained as a cream solid (171 mg, 74%).  

Mp: >340 ºC (d).  
IH NMR (600 MHz, d6-DMSO) δ: 2.52 (3H, s, CH3), 7.16 (1H, dd, J = 7.8, 1.2 

Hz, H-8), 7.51 (1H, d, J = 0.6 Hz, H-10), 7.66 (1H, ddd, J = 8.1, 6.9, 1.2 Hz, H-2), 

7.72 (1H, ddd, J = 8.1, 6.9, 1.2 Hz, H-3), 8.11 (1H, dd, J = 8.4, 0.6 Hz, H-4), 8.17 

(1H, d, J = 7.8 Hz, H-7), 8.53 (1H, dd, J = 8.4, 1.2 Hz, H-1), 9.53 (1H, s, H-6).  
13C NMR (100 MHz, d6-DMSO) δ: 21.7 (CH3), 111.7 (C-10), 114.4 (C-6a), 

117.2 (C-11b), 119.6 (C-6b), 119.8 (C-7), 122.0 (C-1), 122.2 (C-8), 125.6 (C-2), 

127.8 (C-3), 129.5 (C-4), 135.2 (C-9), 139.3 (C-10a), 139.6 (C-11a), 144.6 (C-6), 

145.3 (C-4a).  

MS (EI): 231 (63), 232 (100, [M]+), 233 (19).  

HRMS (EI): 232.1002 (C16H12N2 [M] + requires 232.1000).  

IR (KBr) νmax: 757, 803, 1155, 1216, 1335, 1363, 1456, 1569, 1593, 2886, 3052. 
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4-(2-Bromo-5-methylphenylamino)quinoline 99 
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The above compound was prepared as for compound 37 but starting from 4-

bromoquinoline 59 (500 mg, 2.40 mmol), 2-bromo-5-methylaniline (490 mg, 2.63 

mmol), caesium carbonate (1.08 g, 3.31 mmol), Pd2(dba)3 (21.7 mg, 1 mol%) and 

XANTPHOS (29.8 mg, 2.1 mol%) in dry dioxane (10 mL). The product was purified 

by silica flash column chromatography eluting with a mixture of ethyl acetate and 

methanol (100:0 increasing to 95:5) give 4-(2-bromo-5-methylphenylamino)quino-

line 99 as an off-white solid (572 mg, 76%).  

Mp: 155-156 ºC.  
1H NMR (600 MHz, CDCl3) δ: 2.33 (3H, s, CH3), 6.84 (1H, dd, J = 8.4, 2.4 Hz, 

H-4′), 7.02 (1H, d, J = 5.4 Hz, H-3), 7.34 (1H, d, J = 2.4 Hz, H-6′), 7.52 (1H, d, J = 

7.8 Hz, H-3′), 7.54 (1H, ddd, J = 8.4, 7.2, 1.2 Hz, H-6), 7.71 (1H, ddd, J = 8.4, 7.2, 

1.2 Hz, H-7), 8.01 (1H, d, J = 8.4 Hz, H-8), 8.09 (1H, d, J = 8.4 Hz, H-5), 8.63 (1H, 

d, J = 4.8 Hz, H-2).  
13C NMR (100 MHz, CDCl3) δ: 21.3. (CH3), 102.8 (C-3), 114.5 (C-2′), 119.8 

(C-4a), 120.8 (C-5), 124.2 (C-6′), 126.3 (C-6), 127.1 (C-4′), 128.3 (C-8), 130.5 (C-

7), 133.3 (C-3′), 137.4 (C-5′), 139.0 (C-1′), 147.1 (C-8a), 148.4 (C-4), 148.9 (C-2).  

MS (EI): 218 (31), 231 (15), 232 (23), 233 (100), 234 (18), 312 (27, [M]+), 314 

(28).  

HRMS (EI): 312.0263 (C16H13N2Br [M] + requires 312.0262).  

IR (KBr) νmax: 594, 757, 1339, 1403, 1499, 1537, 2953, 3213. 
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4,6-Dibromoquinoline 102  
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The above known compound was prepared as for 4-bromoquinoline 59 but starting 

from 6-bromo-4-quinolone 80 (489 mg, 2.18 mmol) and phosphorus tribromide (300 

μL, 2.53 mmol) in DMF (12 mL). On basification, the product precipitated and 

therefore product extraction was unnecessary. The precipitate was collected by 

vacuum filtration (washing with water) to give 4,6-dibromoquinoline 102 as a white 

solid which was used without further purification (516 mg, 82%).  

The NMR data acquired was consistent with that published in the literature.121  

Mp: 140-146 °C.  
1H NMR (400 MHz, CDCl3) δ: 7.78 (1H, d, J = 4.8 Hz, H-3), 7.87 (1H, d, J = 

8.8 Hz, H-8), 8.07 (1H, dd, J = 9.2, 2.2 Hz, H-7), 8.38 (1H, s, H-5), 8.70 (1H, d, J = 

4.8 Hz, H-2).  
13C NMR (100 MHz, CDCl3) δ: 122.2, 123.0, 126.0, 126.8, 129.3, 130.9, 134.8, 

146.4, 149.3.  

IR (KBr) νmax: 659, 840, 1176, 1340, 1490, 1543, 1574, 1604, 3422.  

8-Bromoisocryptolepine 104 
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To a solution of isocryptolepine 16 (395 mg, 1.70 mmol) in DMF (20 mL), N-

bromosuccinimide (344 mg, 1.93 mmol) was added and the solution heated at 150°C 

for 24 hours. The reaction mixture was cooled, quenched with water and basified 

with aqueous sodium hydroxide solution (10%). The precipitate obtained was 

collected by vacuum filtration (washing with water) and recrystallised from ethanol 

to give 8-bromoisocryptolepine 104 as a yellow crystalline solid (392 mg, 74%).  

Mp: 257-258 ºC.  
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1H NMR (600 MHz, d6-DMSO) δ: 4.25 (3H, s, NCH3), 7.54 (1H, dd, J = 8.4, 

1.8 Hz, H-9), 7.71-7.74 (2H, m, H-2 and H-10), 7.85 (1H, ddd, J = 8.7, 7.2, 1.5 Hz, 

H-3), 8.05 (1H, d, J = 9.0 Hz, H-4), 8.30 (1H, d, J = 2.4 Hz, H-7), 8.76 (1H, dd, J = 

8.1, 1.5 Hz, H-1), 9.39 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 42.3 (NCH3), 111.7 (C-8), 115.2 (C-6a), 

117.5 (C-4), 120.0 (C-10), 121.0 (C-11b), 122.0 (C-7), 123.8 (C-1), 125.4 (C-2), 

127.5 (C-6b), 127.6 (C-9), 129.4 (C-3), 135.4 (C-4a), 139.2 (C-6), 153.0 (C-10a and 

C-11a).  

MS (EI): 189 (17), 215 (16), 216 (20), 231 (21), 310 (100, [M]+, 79Br), 311 (22), 

312 (100, [M]+, 81Br), 313 (19).  

HRMS (EI): 310.0110 (C16H11N2Br [M]+ requires 310.0106).  

IR (KBr) νmax: 748, 808, 1126, 1229, 1320, 1438, 1643, 2920, 3400. 

UV (MeOH) λmax: 202, 239, 293. 

8-Bromo-3-chloroisocryptolepine 105  
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The above compound was prepared as for compound 104 but starting from 3-

chloroisocryptolepine 64 (202 mg, 0.76 mmol) and N-bromosuccinimide (149 mg, 

0.84 mmol) in DMF (10 mL). The reaction mixture was heated for 24 hours and the 

product was recrystallised from methanol and water to give 8-bromo-3-

chloroisocryptolepine 105 as a yellow crystalline solid (187 mg, 71%).  

Mp: 247-250 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 4.23 (3H, s, CH3), 7.54 (1H, dd, J = 8.7, 2.1 

Hz, H-9), 7.73 (1H, d, J = 8.4 Hz, H-10), 7.76 (1H, dd, J = 8.4, 1.8 Hz, H-2), 8.16 

(1H, d, J = 1.8 Hz, H-4), 8.31 (H, d, J = 1.8 Hz, H-7), 8.74 (1H, d, J = 8.4 Hz, H-1), 

9.40 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 42.4 (NCH3), 112.0 (C-8), 115.7 (C-6a), 

117.4 (C-4), 119.6 (C-11b), 120.2 (C-10), 122.2 (C-7), 125.6 (C-2), 125.7 (C-1), 

127.4 (C-6b), 127.9 (C-9), 134.0 (C-3), 136.1 (C-4a), 139.6 (C-6), 152.4 (C-11a), 

153.2 (C-10a).  
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MS (FAB): 344 (18), 345 (80, [M+H]+), 346 (39), 347 (100), 348 (25), 349 (26).  

HRMS (FAB): 344.9798 (C16H11N2ClBr [M+H]+ requires 344.9794).  

IR (KBr) νmax: 810, 1220, 1338, 1432, 1458, 1594, 1616, 1641, 2854, 3400.  

2,8-Dibromoisocryptolepine 106 
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The above compound was prepared as for compound 104 but starting from 2-

bromoisocryptolepine 70(175 mg, 0.56 mmol) and N-bromosuccinimide (106 mg, 

0.59 mmol) in DMF (7 mL). The reaction mixture was heated for 20 hours and the 

product was purified by silica flash column chromatography eluting with a mixture 

of dichloromethane, ethanol and aqueous ammonia (100:0:1 increasing to 100:2:1) to 

give 2,8-dibromoisocryptolepine 106 as a yellow crystalline solid (155 mg, 71%).  

Mp: 324-326 ºC.  
1H NMR (400 MHz, d6-DMSO) δ: 4.29 (3H, s, CH3), 7.55 (1H, dd, J = 8.8, 2.2 

Hz, H-9), 7.74 (1H, d, J = 8.8 Hz, H-10), 8.00 (1H, dd, J = 8.8, 2.2 Hz, H-3), 8.05 

(1H, d, J = 9.2 Hz, H-4), 8.33 (H, d, J = 2.0 Hz, H-7 ), 8.83 (1H, d, J = 2.0 Hz, H-1), 

9.44 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 42.4 (NCH3), 112.2 (C-8), 115.6 (C-6a), 

118.2 (C-2), 120.3 (C-4 and C-10), 122.2 (C-7), 122.4 (C-11b), 125.6 (C-1), 127.4 

(C-6b), 128.0 (C-9), 131.9 (C-3), 134.3 (C-4a), 139.6 (C-6), 151.8 (C-11a), 152.9 (C-

10a).  

MS (EI): 215 (18), 309 (21), 311 (20), 388 (52, [M]+), 390 (100), 391 (19), 392 

(50).  

HRMS (EI): 387.9189 (C16H10N2Br2 [M]+ requires 387.9211).  

IR (KBr) νmax: 800, 1223, 1335, 1372, 1436, 1480, 1640, 3360. 
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8-Bromo-2-chloroisocryptolepine 107 
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The above compound was prepared as for compound 104 but starting from 2-

chloroisocryptolepine 71 (116 mg, 0.44 mmol) and N-bromosuccinimide (86.6 mg, 

0.49 mmol) in DMF (5 mL). The reaction mixture was heated for 2 hours and the 

product was purified by silica flash column chromatography eluting with a mixture 

of dichloromethane, ethanol and aqueous ammonia (100:0:1 increasing to 100:4:1) to 

give 8-bromo-2-chloroisocryptolepine 107 as a yellow crystalline solid (118 mg, 

77%).  

Mp: 265-266 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 4.22 (3H, s, NCH3), 7.54 (1H, dd, J = 8.4, 

2.1 Hz, H-9), 7.73 (1H, d, J = 8.4 Hz, H-10), 7.85 (1H, dd, J = 9.6, 2.7 Hz, H-3), 

8.08 (1H, d, J = 9.6 Hz, H-4), 8.30 (H, d, J = 2.4 Hz, H-7), 8.66 (1H, d, J = 2.4 Hz, 

H-1), 9.36 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 42.4 (NCH3), 112.1 (C-8), 115.5 (C-6a), 

120.0 (C-4), 120.2 (C-10), 122.0 (C-11b) 122.1 (C-7), 122.4 (C-1), 127.4 (C-6b), 

127.9 (C-9), 129.1 (C-3), 129.9 (C-2), 133.9 (C-4a), 139.3 (C-6), 151.8 (C-11a), 

153.0 (C-10a).  

MS (EI): 188 (17), 215 (21), 310 (22), 312 (22), 344 (72, [M]+), 346 (100), 347 

(19), 348 (25).  

HRMS (EI): 343.9727 (C16H10N2ClBr [M]+ requires 343.9716).  

IR (KBr) νmax: 805, 1224, 1337, 1374, 1447, 1482, 1641, 3070, 3356. 
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8-Bromo-9-methylisocryptolepine 108  
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The above compound was prepared as for compound 104 but starting from 9-

methylisocryptolepine 97 (160 mg, 0.65 mmol) and N-bromosuccinimide (137 mg, 

0.77 mmol) in DMF (7 mL). The reaction mixture was heated for 20 hours and the 

product was purified by silica flash column chromatography eluting with a mixture 

of dichloromethane, ethanol and aqueous ammonia (100:0:1 increasing to 100:2:1) to 

give 8-bromo-9-methylisocryptolepine 108 as a yellow crystalline solid (168 mg, 

80%).  

Mp: 266-267 ºC.  
1H NMR (400 MHz, d6-DMSO) δ: 2.53 (3H, s, CH3), 4.23 (3H, s, NCH3), 7.70 

(1H, t, J = 7.2 Hz, H-2), 7.75 (1H, s, H-10), 7.84 (1H, ddd, J = 8.4, 7.2, 1.4 Hz, H-

3), 8.03 (1H, d, J = 8.8 Hz, H-4), 8.32 (1H, s, H-7), 8.74 (1H, dd, J = 8.0, 1.2 Hz, H-

1), 9.32 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 23.2 (CH3), 42.1 (NCH3), 114.9 (C-8), 115.3 

(C-6a), 117.4 (C-4), 120.1 (C-10), 121.0 (C-11b), 122.5 (C-7), 123.8 (C-1), 125.1 

(C-2), 125.4 (C-6b), 129.2 (C-3), 133.1 (C-9), 135.4 (C-4a), 138.3 (C-6), 153.3 (C-

11a), 154.1 (C-10a).  

MS (EI): 98 (54), 229 (21), 230 (21), 245 (54), 246 (16), 324 (100, [M]+, 79Br), 

326 (94, [M]+, 81Br), 327 (17).  

HRMS (EI): 324.0255 (C17H13N2Br [M]+ requires 324.0262).  

IR (KBr) νmax: 753, 1148, 1226, 1245, 1393, 1453, 1598, 1620, 2921, 3232 
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8-Chloroisocryptolepine 109 
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The above compound was prepared as for compound 104 but starting from 

isocryptolepine 16 (222 mg, 0.96 mmol) and N-chlorosuccinimide (146 mg, 1.09 

mmol) in DMF (5 mL). The reaction mixture was heated for 20 hours and the 

product 8-chloroisocryptolepine 109 was obtained as a yellow crystalline solid (99 

mg, 41%).  

This compound was reported during the course of this project and the NMR and 

MS data acquired was consistent with that published in the literature.93 

Mp: 257-259 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 4.25 (3H, s, CH3), 7.40 (1H, dd, J = 9.0, 2.1 

Hz, H-9), 7.72 (1H, t, J = 7.5 Hz, H-2), 7.77 (1H, d, J = 9.0 Hz, H-10), 7.85 (1H, 

ddd, J = 8.5, 7.0, 1.2 Hz, H-3), 8.05 (1H, d, J = 8.4 Hz, H-4), 8.16 (1H, d, J = 2.4 

Hz, H-7), 8.75 (1H, dd, J = 7.8, 1.2 Hz, H-1), 9.38 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 42.6 (NCH3), 114.8 (C-6a), 117.8 (C-4), 

118.7 (C-10), 119.2 (C-7), 120.2 (C-11b), 123.8 (C-1), 124.3 (C-8), 125.4 (C-2), 

125.9 (C-9), 126.2 (C-6b), 129.9 (C-3), 135.4 (C-4a), 140.0 (C-6), 150.5 (C-11a), 

151.6 (C-10a).  

MS (EI): 266 (100, [M]+, 35Cl), 267 (20), 268 (33, [M]+, 37Cl).  

HRMS (EI): 266.0602 (C16H11N2Cl [M]+ requires 266.0611).  

IR (KBr) νmax: 760, 1118, 1223, 1342, 1444, 1610, 1636, 3027, 3200.  
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8-Iodoisocryptolepine 113 
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To a 1:1 solution of concentrated nitric acid (69%) and glacial acetic acid (10 mL) 

isocryptolepine methiodide 16.HI (215 mg, 0.60 mmol) was added and the reaction 

mixture stirred at room temperature for 24 hours. The reaction was quenched with 

water and basified with aqueous sodium hydroxide solution (10%). The precipitate 

obtained was collected by vacuum filtration (washing with water) and recrystallised 

from methanol to give 8-iodoisocryptolepine 113 as an orange crystalline solid (122 

mg, 57%).  

Mp: 260-261 ºC.  
1H NMR (600 MHz, d6-DMSO) δ: 4.22 (3H, s, NCH3), 7.62 (1H, d, J = 8.4 Hz, 

H-10), 7.66 (1H, dd, J = 8.4, 1.8 Hz, H-9), 7.70 (1H, br t, J = 7.2 Hz, H-2), 7.82 

(1H, ddd, J = 8.4, 7.2, 1.2 Hz, H-3), 8.01 (1H, d, J = 8.4 Hz, H-4), 8.46 (1H, d, J = 

1.8 Hz, H-7), 8.75 (1H, dd, J = 8.4, 1.5 Hz, H-1), 9.34 (1H, s, H-6).  
13C NMR (100 MHz, d6-DMSO) δ: 42.5 (NCH3), 83.2 (C-8), 115.0 (C-6a), 

117.8 (C-4), 120.7 (C-10), 121.0 (C-11b), 124.0 (C-1), 125.6 (C-2), 128.2 (C-7), 

128.4 (C-6b), 129.6 (C-3), 133.4 (C-9), 135.6 (C-4a), 139.3 (C-6), 152.7 (11a), 153.4 

(C-10a).  

MS (EI): 231 (29), 232 (19), 358 (100, [M]+), 359 (18).  

HRMS (EI): 357.9970 (C16H11N2I [M]+ requires 357.9967).  

IR (KBr) νmax: 749, 803, 1116, 1219, 1385, 1637, 2923, 3400.  
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8-Iodo-9-methylisocryptolepine 114  
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The above compound was prepared as for compound 113 but starting from 9-

methylisocryptolepine methiodide 97.HI (103 mg, 0.27 mmol) and glacial acetic acid 

(6 mL). The reaction mixture was stirred for 96 hours and the product 8-iodo-9-

methylisocryptolepine 114 was obtained as an orange crystalline solid (72 mg, 71%).  

Mp: 244-245 ºC.  
1H NMR (200 MHz, d6-DMSO) δ: 2.54 (3H, s, CH3), 4.25 (3H, s, NCH3), 7.77-

7.87 (3H, m, H-2, H-3 and H-10), 8.07 (1H, d, J = 8.8 Hz, H-4), 8.62 (1H, s, H-7), 

8.77 (1H, br d, J = 6.8 Hz, H-1), 9.36 (1H, s, H-6).  
13C NMR (50 MHz, d6-DMSO) δ: 28.3 (CH3), 42.1 (NCH3), 90.0 (C-8), 114.9 

(C-6a), 117.4 (C-4), 119.5 (C-10), 120.9 (C-11b), 123.8 (C-1), 125.1 (C-2), 126.1 

(C-6b), 129.0 (C-7), 129.2 (C-3), 135.4 (C-4a), 136.2 (C-9), 138.2 (C-6), 153.1 (C-

11a), 155.0 (C-10a).  

MS (EI): 245 (45), 246 (15), 372 (100, [M]+), 373 (20).  

IR (KBr) νmax: 753, 1122, 1227, 1245, 1372, 1389, 1450, 1641, 3228.  

11H-Indolo[3,2-c]isoquinoline 117 
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The above known compound was prepared via two different synthetic methods, 

which were both adaptations of previously reported synthetic procedures, and are 

summarised as follows. 82,94 

Method 1: As for compound 36 (Method 1) but starting from 4-(2-

bromophenylamino)isoquinoline 120 (470 mg, 1.57 mmol), Pd(OAc)2 (35 mg, 10 

mol%), BINAP (101 mg, 10 mol%) and potassium carbonate (4.28 g, 30.94 mmol) in 
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dry DMF (14 mL). The product was purified by silica flash column chromatography 

eluting with a mixture of ethyl acetate and dichloromethane (5:95 increasing to 

100:0) to give 11H-indolo[3,2-c]isoquinoline 117 as a pale yellow solid (199 mg, 

yield 58%). 

Method 2: As for compound 36 (Method 2) but starting from 4-

bromoisoquinoline 118 (400 mg, 1.93 mmol), 2-bromoaniline (404 mg, 2.35 mmol), 

Pd(OAc)2 (46 mg, 10 mol%), BINAP (130 mg, 11 mol%) and potassium carbonate 

(5.35 g, 38.68 mmol) in dry DMF (20 ml). The product was purified by silica flash 

column chromatography eluting with a mixture of ethyl acetate and hexane (1:9 

increasing to 0:10) to give 11H-indolo[3,2-c]isoquinoline 117 as a pale yellow solid 

(238 mg, yield 57%).  

The spectroscopic data acquired was consistent with that published in the 

literature.82,146 

Mp: >300 ºC (lit.,82 >300 ºC).  
1H NMR (400 MHz, d6-DMSO) δ: 7.31 (1H, ddd, J = 7.8, 7.0, 0.8 Hz, H-8), 

7.49 (1H, ddd, J = 8.3, 7.2, 1.2 Hz, H-9), 7.69 (1H, d, J = 8.0 Hz, H-10), 7.71 (1H, 

ddd, J = 8.0, 7.2, 0.8, H-3), 7.91 (1H, ddd, J = 8.2, 7.0, 1.2 Hz, H-2), 8.23 (1H, d, J 

= 8.0 Hz, H-7), 8.28 (1H, d, J = 8.0 Hz, H-4), 8.51 (1H, dd, J = 8.4, 0.8 Hz, H-1), 

9.12 (1H, s, H-5).  
13C NMR (100 MHz, d6-DMSO) δ: 111.9 (C-10), 119.3 (C-7), 119.8 (C-8), 

121.1 (C-1), 122.7 (C-6b), 123.5 (C-11b), 125.5 (C-9), 126.2 (C-3), 126.5 (C-4a), 

127.3 (C-6a), 128.6 (C-4), 130.0 (C-2), 133.5 (C-11a), 138.5 (C-10a), 144.6 (C-5).  

IR (KBr) νmax: 741, 1220, 1320, 1368, 1459, 1525, 1635, 2980, 3000.  

4-(2-Bromophenylamino)isoquinoline 120 
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The above compound was prepared as for compound 37 but starting from 4-

bromoisoquinoline 118 (504 mg, 2.42 mmol), 2-bromoaniline (511 mg, 2.97 mmol), 

Pd2(dba)3 (110 mg, 5 mol%), XANTPHOS (146 mg, 10 mol%) and caesium 
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carbonate (2.36 g, 7.26 mmol) in dry dioxane (10 mL). The product was purified by 

silica flash column chromatography eluting with a mixture of ethyl acetate and 

dichloromethane (5:95 increasing to 100:0) to give 4-(2-bromophenylamino)-

isoquinoline 120 as a reddish brown solid (487 mg, 67%).  

The above compound was reported during the course of this project and the 

NMR data acquired was consistent with that published in the literature.82 

Mp: 94-96 ºC (lit.,82 94-96 ºC).  
1H NMR (400 MHz, CDCl3) δ: 6.51 (1H, br s, NH), 6.81 (1H, ddd, J = 8.2, 7.0, 

1.2 Hz, H-4′), 6.91 (1H, dd, J = 8.2, 1.4 Hz, H-6′), 7.13 (1H, ddd, J = 8.4, 7.2, 1.2 

Hz, H-5′), 7.58 (1H, dd, J = 7.8, 1.4 Hz, H-3′), 7.70 (1H, t, J = 8.0 Hz, H-7), 7.78 

(1H, ddd, J = 8.3, 7.1, 1.2 Hz, H-6), 8.04 (1H, d, J = 8.4. Hz, H-5), 8.06 (1H, d, J = 

7.6 Hz, H-8), 8.41 (1H, br s, H-3), 9.07 (1H, br s, H-1).  
13C NMR (50 MHz, CDCl3) δ: 110.6, 114.7, 120.1, 120.7, 126.8, 127.2, 127.5, 

129.6, 130.0, 132.0, 136.7, 141.7, 148.3.  

IR (KBr) νmax: 736, 753, 782, 1025, 1315, 1410, 1470, 1499, 1560, 2956, 3162.  

2-Chloroquinoline 122 
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The above known compound was prepared via an adaptation of previously reported 

synthetic procedures which is summarised as follows.150,151   

i) To a solution of quinoline 125 (4.62 g, 35.79 mmol) in glacial acetic acid (11 

mL), hydrogen peroxide (30%, 4 mL) was added and the mixture heated at 70 - 

80 °C for 19 hours. The solution was allowed to cool, quenched with iced water, 

rendered alkaline with saturated aqueous sodium carbonate solution and extracted 

with DCM (3 × 200 mL). The combined extracts were washed with aqueous 

hydrochloric acid (1M, 100 mL), dried (MgSO4) and the solvent removed in vacuo. 

The residue obtained was purified by silica flash column chromatography eluting 

with a mixture of ethyl acetate and hexane (1:1 increasing to 1:0) to give quinoline 

N-oxide 126 as pale brown solid (1.70 g, 33%).  

Mp: 63-64ºC (lit.,150 60-62 ºC).  

ii) Phosphorus oxychloride (6.5 mL, 71.01 mmol) was added to compound 126 

(1.70 g, 11.73 mmol) at 0 °C and the mixture refluxed for 20 hours. The reaction 
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mixture was quenched with iced water, rendered alkaline with aqueous sodium 

hydroxide solution (10%) and extracted with DCM (3 × 100 mL). The combined 

extracts were dried (Na2SO4) and the solvent removed in vacuo. The residue obtained 

was purified by silica flash column chromatography eluting with a mixture of 

dichloromethane and hexane (1:1 increasing to 4:1) to give 2-chloroquinoline 122 as 

a yellow solid (333 mg, 17%).  

The spectroscopic data acquired was consistent with that published in the 

literature.151 

Mp: 33-34°C (lit.,151 36-38°C).  
1H NMR (200 MHz, CDCl3) δ: 7.43 (1H, d, J = 8.8 Hz, H-3), 7.61 (1H, ddd, J = 

8.1, 7.0, 1.1 Hz, H-6), 7.79 (1H, ddd, J = 8.4, 7.0, 1.4 Hz, H-7), 7.86 (1H, d, J = 8.0 

Hz, H-5), 8.08 (1H, d, J = 8.4 Hz, H-8), 8.15 (1H, d, J =  8.4 Hz, H-4).  
13C NMR (50 MHz, CDCl3) δ: 121.5, 126.0, 126.1, 126.7, 127.7, 129.7, 138.0, 

147.0, 149.8.  

2-(1-Benzotriazolyl)quinoline 123 
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The above known compound was prepared as for compound 35 but starting from 2-

chloroquinoline 122 (596 mg, 3.64 mmol) and benzotriazole (492 mg, 4.13 mmol). 

The product was recrystallised from methanol to give 2-(1-benzotriazolyl)quinoline 

123 as a pale green crystalline solid (673 mg, 75%).  

The spectroscopic data acquired was consistent with that published in the 

literature.183,184 

Mp: 144-146ºC (lit.,183 148-149 ºC).  
1H NMR (200 MHz, CDCl3) δ: 7.55-7.68 (2H, m, H-6′ and H-6), 7.74 (1H, ddd, 

J = 8.0, 7.0, 1.0 Hz, H-5′), 7.85 (1H, ddd, J = 8.4, 7.0, 1.4 Hz, H-7), 7.95 (1H, d, J = 

8.0 Hz, H-5), 8.19-8.24 (2H, m, H-4′ and H-8), 8.42 (1H, d, J = 9.2 Hz, H-4), 8.55 

(1H, d, J = 9.2 Hz, H-3), 9.02 (1H, d, J = 8.4 Hz, H-7′).  
13C NMR (50 MHz, CDCl3) δ: 112.5, 114.6, 119.0, 124.3, 125.8, 126.2, 126.9, 

127.9, 128.1, 129.7, 130.8, 138.3, 145.7, 146.1, 149.6.  
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The above known compound was prepared as for compound 36 (Method 3) but 

starting from 2-(1-benzotriazolyl)quinoline 123 (441 mg, 1.79 mmol) and 

polyphosphoric acid (15.27 g). The reaction mixture was heated at 150 °C for 2 

hours. The product 6H-indolo[3,2-b]quinoline 124 was obtained as a pale yellow 

solid (130 mg, 33%).  

The spectroscopic data acquired was consistent with that published in the 

literature.85,185 

Mp: >300 ºC (lit.,85 >300 ºC).  
1H NMR (200 MHz, d6-DMSO) δ:7.33 (1H, t, J = 7.8 Hz, H-9), 7.48-7.57 (3H, 

m, H-7, H-8 and H-2), 7.76 (1H, t, J = 7.1 Hz, H-3), 8.02 (1H, d, J = 8.4 Hz, H-4), 

8.15 (1H, d, J = 8.0 Hz, H-1), 8.30 (1H, d, J = 7.6 Hz, H-10), 9.08 (1H, s, H-11), 

11.75 (1H, s, NH).  
13C NMR (100 MHz, CDCl3) δ: 111.0, 117.9, 119.7, 120.3, 121.8, 122.8, 123.7, 

127.0, 127.6, 128.2, 128.7, 141.5, 146.4, 152.9.  



158 
 

6.3. General Procedures for Optimisation Experiments 

6.3.1. Buchwald-Hartwig and Domino Reactions 

To a degassed solution of a palladium catalyst and ligand in dry dioxane or DMF 

(2.5 mL), the appropriate quinoline (33 or 59; 0.24 mmol), aniline (2-choroaniline or 

2-bromoaniline; 0.30 mmol) and base were added. The flask was flushed with 

nitrogen and the mixture heated at the temperature indicated for 24 hours (unless 

otherwise stated). At specific time intervals 0.1 mL aliquots were removed and 

filtered through celite (washed with dichloromethane; 3 mL). The solvent was 

removed in vacuo and the residue obtained made up to 20 mL with methanol. These 

solutions were filtered and analysed via HPLC (using the HPLC conditions outlined 

in Section 6.1). After a correction factor had been applied to the peak areas the 

percentage conversion was determined for the appropriate product in each reaction 

by dividing the peak area by the sum of reactants and products. The correction factor 

was determined via the difference in absorbance of the compounds from analysis of 

an appropriate standard. One standard contained 4-bromoquinoline 59 (478 μM), 4-

(2-bromophenylamino)quinoline 60 (478 μM) and 11H-indolo[3,2-c]quinoline 36 

(475 μM). The other contained 4-chloroquinoline 33 (611 μM), 4-(2-

chlorophenylamino)quinoline 37 (613 μM) and 11H-indolo[3,2-c]quinoline 36 (594 

μM). 

6.3.2. Intramolecular C-H Arylation Reactions 

To a degassed solution of a palladium catalyst and ligand in dry dioxane or DMF 

(2.5 mL), 4-(2-chlorophenylamino)quinoline 37 or 4-(2-bromophenylamino)quino-

line 60 (0.24 mmol) and base were added. The flask was flushed with nitrogen and 

the mixture heated at the temperature indicated for 24 hours (unless otherwise 

stated). At specific time intervals 0.1 mL aliquots were removed and filtered through 

celite (washed with dichloromethane; 3 mL). The solvent was removed in vacuo and 

the residue made up to 20 mL with methanol. These solutions were filtered and then 

analysed via HPLC (using the HPLC conditions outlined in Section 6.1). The 

percentage conversion was determined for the appropriate product as detailed above 

for the Buchwald-Hartwig and Domino Reactions. 
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6.3.3. Bromination of Isocryptolepine 16 or MIQ 31 

To a solution of isocryptolepine 16 or MIQ 31 (0.13 mmol) in glacial acetic acid (3 

mL), bromine was added. The solution was stirred at the indicated temperature for 24 

hours. At specific time intervals 0.1 mL aliquots were removed and made up to 20 

mL with methanol. These solutions were filtered and then analysed via HPLC (using 

the HPLC conditions outlined in Section 6.1). 

6.3.4. Nitration of Isocryptolepine 16 

To a 1:1 solution of concentrated nitric acid (69% or 90%) and glacial acetic acid (3 

ml), isocryptolepine 16 (0.13 mmol) was added and the mixture stirred at the 

indicated temperature for 24 hours. At specific time intervals 0.1 mL aliquots were 

removed and made up to 20 mL with methanol. These solutions were filtered and 

then analysed via HPLC (using the HPLC conditions outlined in Section 6.1). 
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6.4. General Procedures for Determination of Physicochemical 

Properties  

6.4.1. Purity 

Isocryptolepine derivatives were prepared as hydrochloride salts by dissolving the 

free base in a minimal amount of methanol and the dropwise addition of concentrated 

hydrochloric acid. The volume of solvent was reduced in vacuo and the resultant 

precipitate was collected by filtration and dried under high vacuum. Purity analysis 

was performed via HPLC (using the HPLC conditions outlined in Section 6.1). All 

compounds had purity of greater than 96.5% - refer to Table 6.1 for further details.  

6.4.2. Ionisation constant (pKa) 

pKa values were obtained spectrophotometrically according to literature 

methods.75,133,163 Stock solutions of neocryptolepine hydrochloride 19.HCl (0.95 

mM) and MIQ hydrochloride 31.HCl (0.70 mM) were prepared in methanol. Dilute 

solutions were subsequently prepared in a phosphate buffer at pH 5 and 0.1 M 

NaOH; 19.HCl (4.74 μM) and 31.HCl (7.00 μM). The UV spectrum of the pH 5 

buffer (wherein the compound is fully ionised) and NaOH (wherein the compound is 

fully unionised) were recorded and the wavelength where the pH 5 buffer had a λmax 

was chosen for further investigation; 19.HCl (280 nm) and 31.HCl (288 nm). A 

further range of solutions in phosphate and borax buffers were prepared and 

photometrically measured at the previously indicated wavelengths; 19.HCl (pH 7.2 - 

9.5), 31.HCl (pH 8.1 - 10). The pH is related to absorbance by the equation shown in 

Equation 6.1 and the values A(I) and A(U) signify the absorbance of the fully ionised 

and fully unionised solutions respectively.  

pܭ௔ ൌ pH ൅  log ቈ
ሾܣ െ ሺIሻሿܣ
ሾܣሺUሻ െ ሿܣ

቉ 

Equation 6.1: Equation used to estimate pKa
163 

pH was plotted as a function of  log ቂ ሾ஺ି஺ሺIሻሿ

ሾ஺ሺUሻି஺ሿ
ቃ, for each compound, and the point of 

intersection with the y-axis gave the compound pKa values. This experiment was 



161 
 

conducted separately twice for both compounds and the average taken, where the 

error is represented by the standard deviation of the mean. 
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6.5. General Procedures for Biological Assays 

6.5.1. Antimalarial Evaluation  

Parasite Cultures 

The laboratory-adapted Plasmodium falciparum strains 3D7 and W2mef were 

cultured in RPMI 1640 HEPES media (Sigma Aldrich) by Ms Rina Wong 

(Fremantle Unit, School of Medicine and Pharmacology; UWA) according to 

literature methods.157,186,187 Parasite cultures were supplemented with 92.6 mg L-1 L-

glutamine (Sigma Aldrich), 500 μg L-1 gentamicin, 50 mg L-1 L-hypoxanthine 

(Sigma Aldrich) and 10% v/v pooled human plasma. Cultures were incubating at 

37 °C in a low oxygen atmosphere of (3 - 7%).  

Compound Solutions 

Stock solutions of chloroquine diphosphate (Sigma Aldrich) were freshly prepared in 

distilled water (100 mM). Stock solutions of hydrochloride salts were prepared in 

50% v/v or 80% v/v DMSO in distilled water (5 - 15 mM; Table 6.1). On the day of 

testing aliquots were freshly diluted with RPMI (without hypoxanthine) to a working 

standard and added in triplicate to 96-well plates. Further two-fold serial dilutions 

were conducted (final concentrations of chloroquine; 25 - 1600 nM, final 

concentrations of isocryptolepines; 8 - 6000 nM).  

In Vitro Antimalarial Activity 

The [3H]-hypoxanthine growth inhibition assay was used to determine in vitro 

antimalarial activity and was conducted by Ms Rina Wong, with the assistance of the 

candidate, according to literature methods.156,157 To the serial diluted compound-

media solutions, infected erythrocytes (final 0.5% parasitemia and 1.5% hematocrit) 

and [3H]-hypoxanthine (Perkin Elmer; final concentration of 0.5 μCi/well) were 

added. The plates were incubated for 48 hours and then underwent a freeze-thaw 

process before harvesting onto 96-well glass-fibre filtermats using a Havaster 96 

(Tomtec Incorporated). Filtermats were counted on a 1450 Microbeta Plus liquid 

scintillation counter (Wallac). The assay was performed a minimum of three separate 

times on each compound for both strains, chloroquine diphosphate was used as a 

positive control for antiplasmodial activity and drug-free controls (uninfected and 

infected) were included in each test. 



 
 

Table 6.1: Purity, cross-resistance and biological assay data for selected isocryptolepine derivatives 

Compound 

Purity Cross-resistance Antimalarial assay Cytotoxicity assay 

Purity; % 

(Rt; min) a 

Spearman r 

(XY pairs) 
P value 

Stock conc.; mM  

(tested conc. range; µM) 

Stock conc.; mM  

(tested conc. range; µM) 

Isocryptolepine 16 99.9 (5.67) 0.67 (9) 0.059 10 b (6-0.094)  10 b (100-0.001)  

MIQ 31 99.1 (5.20) 0.83 (9) 0.026 10 b (2-0.016)  10 b (100-0.001)  

3-Chloroisocryptolepine 64 98.9 (6.32) 0.73 (9) 0.031 5 c (2-0.031)  5 c (100-0.001)  

9-Methylisocryptolepine 97 98.7 (6.59) 0.71 (6) 0.136 10 b (2-0.031) 10 b (100-0.001)  

8-Bromoisocryptolepine 104 99.5 (6.97) 0.75 (9) 0.026 10 b (2-0.016)  10 b (100-0.001)  

8-Bromo-3-chloroisocryptolepine 105 97.6 (7.54) 0.75 (7) 0.066 5 c (0.5-0.008) 5 c (100-0.001)  

2,8-Dibromoisocryptolepine 106 96.5 (8.15) 0.43 (6) 0.419 5 c (0.5-0.008)  5 c (100-0.001)  

8-Bromo-2-chloroisocryptolepine 107 98.3 (7.99) 0.89 (6) 0.033 5 c (0.5-0.008)  5 c (100-0.001)  

8-Bromo-9-methylisocryptolepine 108 97.5 (8.01) 0.48 (8) 0.243 15 b (2-0.031)  10 b (100-0.001)  

8-Chloroisocryptolepine 109 97.6 (6.50) 0.70 (9) 0.043 10 b (2-0.031)  10 b (100-0.001) 

Chloroquine 2 - - - 100 d (1.6-0.025) 100 d (100-0.1)  

a Rt: retention time. b Stock in 50% DMSO in water. c Stock in 80% DMSO in water. d Stock in water. 
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Data Analysis 

IC50 values were determined by Ms Rina Wong via non-linear regression analysis of 

log-dose response curves (Graphpad Prism 4.0). 

Cross-resistance Analysis 

Chloroquine cross-resistance with isocryptolepines was estimated by Ms Rina Wong 

via the Spearman correlation coefficient160 where the significance level (P) was set at 

0.05 (two-tailed) and results are shown in Table 6.1. 

6.5.2. Cytotoxicity Evaluation  

Cell Cultures 

3T3 cells (mouse embryonic fibroblasts) were cultured and maintained in RPMI 

1640 media (Invitrogen) by Ms Erin Bolitho (Technology Park, School of Pharmacy; 

Curtin University). Cell cultures were supplemented with 2 mM L-alanyl-L-

glutamine (GlutaMAX; Invitrogen), 100 units mL-1 penicillin (Invitrogen), 100 μg 

mL-1 streptomycin (Invitrogen) and 10% v/v fetal calf serum. 24 hours prior to 

testing cells were added to 96-well plates pre-coated with 1% gelatine at 7500 cells 

per well (final well volume 100 µL) and incubated at 37 °C in a 5% CO2 humidified 

atmosphere.  

Compound Solutions 

Stock solutions were prepared as for the antimalarial evaluation. On the day of 

testing aliquots were freshly diluted with RPMI to a working standard and serial 

dilutions subsequently conducted by Ms Erin Bolitho (final concentrations of 

chloroquine; 0.1 - 1000 μM, final concentrations of isocryptolepines; 0.001 - 100 

μM).  

In Vitro Cytotoxicity 

The MTT colorimetric assay was used to determine in vitro cytotoxicity and was 

conducted by Ms Erin Bolitho according to literature procedures.164,165 100 µL of 

each compound-media solution was added in quadruplicate to the 96-well plates. The 

potential DMSO effect was countered by including a vehicle control arm to the 

experiments. Plates were incubated for 48 hours, media was removed from each well 

and 100 µL of 1 mg mL-1 MTT (Sigma) in RPMI was added. Plates were incubated 
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for 60 minutes after which time MTT solution was removed and 100 µL DMSO 

added to each well. The absorbance of each plate solution was measured using an 

automated plate reader (Biorad) at a wavelength of 595 nm. The assay was 

performed a minimum of three separate times for each compound, isocryptolepine 

hydrochloride 16.HCl was used as a positive control for cytotoxicity and drug-free 

controls were included in each test. 

Data Analysis 

IC50 values were determined by Dr Simon Fox via nonlinear regression analysis of 

log-dose response curves, after correction for the DMSO affects (Graphpad Prism 

4.0).
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Appendix 1: Copyright Permission 

Figure 1.1: The life cycle of the Plasmodium parasite 

Reprinted from The Lancet, 393/9403, Moorthy, V. S., Good, M. F. and Hill, A. V. 

S., Malaria vaccine developments, 150-156., Copyright (2010), with permission from 
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