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Abstract 

 

Lead is a frequent potentially toxic pollutant of the urban environment. Its risk 

assessment in the airborne particulate matter requires data both on its speciation and 

potential sources. In this paper we present results on detailed mineralogical (XRD and 

TEM) and geochemical (selective chemical extractions and lead isotope ratio analyses) 

study of total suspended particulate (TSP) matter samples from Budapest, Hungary to 

fulfil this requirements. 

 Total lead concentrations showed significant enrichment in the studied TSP 

samples as compared to its geochemical background value. It could be associated to 

several host phases. The potentially mobile fraction of lead, which could be also 

harmful to human, can be as high as 16% of the total lead. This is represented by Pb 

sorbed on the surface of clay minerals and in form of carbonates (and sulphates). 

Contrarily, between 20 and 30% of total lead of TSP materials is hosted by magnetite, a 

highly resistant mineral. However, its fast oxidation during combustion processes to 

hematite and/or weathering in the acidifying urban environment to ferrihydrite may 

result in the enhanced mobilization of lead. 

 Lead isotope composition of the TSP samples suggests the mixing of several 

sources for this metal with slight variation among the sampling sites. Despite the 

phasing out of leaded gasoline, its contribution to the Pb content of the TSP was 

observed. Our data also supported that the presence of lead of gasoline origin decreases 

in the airborne TSP in the last decade in Budapest. Another important source for lead is 

found to be the coal combustion due to domestic and industrial heating. Lead isotope 
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ratio data suggest additional source(s) for this metal at least in certain localities, but 

further investigations are necessary to specify them. 

 

Introduction 

 

Studies on sources, compositions, and distribution of airborne particulate matter 

components are necessary for their risk assessment to atmospheric quality, ecology and 

human health. This is especially true for the urban environment, where population and 

traffic density are relatively high, and harmful effect of airborne particulate matter is 

expected to be significantly increased (Vardoulakis et al. 2003). 

Lead is one of the potentially toxic metals showing significantly high enrichment 

in the urban particulate matter (Braun et al., 2007). The most important source of this 

metal was the traffic until the phase out of leaded gasoline, which resulted in decrease 

of lead concentration in urban aerosol as it was shown also in Budapest (Salma et al., 

2000). However, vehicles still exhaust Pb-containing phases to the environment (Zajzon 

et al., 2013) as this metal can be found in lubricating oil and grease, and it is also the 

common component of bearings, tires and break linings. Lead may also originate from 

domestic and industrial combustion for heating purposes and it is the common 

component of construction materials and the built environment, too (Sutherland, 2000). 

Therefore, lead is widely distributed in the surface urban environment due to the long 

history of its emission from anthropogenic sources. Analysis of the composition of 

airborne particulate matter indicates that a portion is composed of soil that has been 

resuspended and it has the capability of entraining significant volumes of Pb into the air 

of urban areas (Laidlaw and Filippelli, 2008). 
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Owing to the fact that lead may be originated from several sources in the urban 

environment, its speciation in the different environmental matrices shows large 

variation. Although lead is often associated to magnetic particles in urban environment 

(Gautam et al., 2005), several studies showed that significant proportion of this metal 

can be dissolved by weak acids (Duong and Lee, 2009). Sequential chemical extraction 

of lead from urban dust samples showed that besides the residual phases oxidizable, 

reducible and easily extractable fractions may also contain high amounts of lead 

(Banerjee, 2003). These findings correspond to the observations of Barrett et al. (2010) 

who found that Pb occurs primarily in the form of Pb-sorbed goethite, as well as lead 

chloride, carbonate, oxide and phosphate in the urban dusts. 

Knowing only the total concentrations and chemical forms of Pb is not sufficient 

for a precise evaluation of contamination sources. As each source of Pb can have 

distinct or sometimes overlapping isotope ratio ranges, lead isotope studies may provide 

a convenient approach for studying and tracing sources of Pb pollution in different 

environmental matrices (Komárek et al., 2008). 

The risk assessment of lead in the airborne particulate matter requires data both 

on speciation and potential sources of this metal. Correspondingly, our goals were (1) to 

identify the host phases of lead in total suspended particulate matter by detailed 

mineralogical analyses and selective chemical extractions, and (2) to provide data on the 

potential sources of pseudo total (aqua regia soluble) lead by isotope ratio analyses. 

 

Materials and methods 
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Total suspended particulate (TSP) matter samples were collected from the air 

filters placed in the respiration channels used for the air supply of methane-heated 

turbines in four thermal power stations in Budapest (Figure 1). The 60×60 cm large 

textile filters are in use until their transmission is high enough, generally for a few 

months or even up to a year. Such a filter may transmit more than one million m
3
 of air 

monthly. They are generally placed at 5-15 m height so the contribution of local soil to 

TSP material is minimal. As compared to other urban environments, however, 

contribution of soot and carbonaceous particles may be overrepresented with this 

sampling method due to the by-products of methane combustion in the thermal power 

stations. Altogether the 9 samples were collected from the following filters from four 

sampling sites with the application times and periods in the parentheses. Four filters 

from the Kelenföld station: KF1 (used for 3 months in the summer of 2010), KF2 (used 

for 3 months in the summer of 2010), KF3 (used for 6 months between June and 

December of 2010), KF4 (used for 6 months between June and December of 2010); two 

filters from the Kőbánya station: KB1 (used for 13 months between July of 2009 and 

August of 2010), KB2 (used for 6 months between April and October of 2010); 2 filters 

from the Újpest station: UP1 (used for 11 months between January and December of 

2010), UP2 (used for 6 months March and August of 2010); and 1 filter from the Csepel 

station (used for 15 months between April of 2010 and July of 2011). As the filters were 

in use in different date and time periods with varying overlap, the samples can not be 

used for comparison of spatial or temporal changes of TSP characteristics in Budapest. 

However, they supposed to give a good outline on the general characteristics of TSP for 

Budapest. Samples were removed from the filters mechanically. Large plant and animal 
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debris were removed by passing the TSP through a 2 mm sieve. Before the chemical 

analyses, samples were powdered in agate mortar to get particle size smaller than 10m. 

Loss on ignition (at 450°C and 1050°C) was studied by a MOM derivatograph 

(Institute for Geological and Geochemical Research). The bulk samples were 

characterized for their mineralogical composition by a Philips PW 1710 X-Ray 

diffractometer (XRD) (Institute for Geological and Geochemical Research). Phase 

composition of the bulk soil was estimated on random-powdered samples by semi-

quantitative phase analysis after the method of Bárdossy et al. (1980). High resolution 

transmission electron microscopy (HR-TEM) and selected area electron diffraction 

(SAED) analyses were carried out to characterize the mineralogical and chemical 

composition of individual mineral particles in the samples with special emphasis on 

those containing lead. The samples were suspended in ethanol, and then they were 

dropped onto a holey carbon coated Cu grid for the analyses. The measurements were 

performed on a Philips CM 20 TEM with a LaB6 filament, equipped with a Noran 

energy dispersive spectrometer (EDS) (Institute of Technical Physics and Materials 

Science). For the chemical analyses a 20 nm spot size and counting times of 100 s were 

used. The relative standard deviations of the EDS analyses are below 2.5%, 10% and 

50% for element concentrations >10 wt%, 1-10 wt%, and <1 wt%, respectively. We 

pretended to analyse only one discrete particle in each case, which could be confirmed 

from the corresponding diffraction pattern. 

The chemical composition of the bulk samples was analysed by a Philips 

PW2404 X-Ray fluorescence spectrometer (Pannon University, Veszprém, Hungary). 

The powdered samples were homogenized with 20 wt% of boric acid as binding 

material under ethanol and they were pressed in aluminium rings at 10 t/cm
2
. The 
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standard deviations of the analyses were generally below 5% and 10% for major 

elements and lead, respectively. Selective chemical extractions were also carried out to 

study the mobilization conditions of lead on parallel samples in each case with standard 

deviations generally below 10%. Water soluble amounts of lead were determined from 

2.5 g samples and 25 mL of distilled water at 21°C with continuous agitation. The 

solution was filtered and analysed by a Perkin-Elmer Elan 9000 ICP-MS instrument 

(AcmeLabs, Vancouver, Canada) for its Pb content. Aqua regia digestion was carried 

out on 0.5 g sample with 12 mL aqua regia in heating block of hot water bath at 95°C 

for 1 hour. Before evaporation the cooled sample was made up to 10mL with dilute 

hydrochloric acid. Concentrations of lead isotopes (
204

Pb, 
206

Pb, 
207

Pb and 
208

Pb) in the 

solutions were analysed by a Perkin-Elmer Elan 9000 ICP-MS instrument. The quality 

of the Pb isotopic analyses has been checked by the study of two standard reference 

materials (SRM). Analysed and expected concentrations for the NIST-981-1Y SRM are 

0.29 and 0.29 mg/kg for 
204

Pb, 4.91 and 4.83 mg/kg for 
206

Pb, 4.45 and 4.42 mg/kg for 

207
Pb, and 10.68 and 10.47 mg/kg for 

208
Pb, respectively. Analysed and expected 

concentrations for the NIST-983-1Y SRM are <0.01 and 0.007 mg/kg for 
204

Pb, 18.72 

and 18.43 mg/kg for 
206

Pb, 1.38 and 1.31 mg/kg for 
207

Pb, and 0.32 and 0.25 mg/kg for 

208
Pb, respectively. 

Two more chemical extractions were also carried out to study the potential 

toxicity of lead for human. They are supposed to simulate the neutral lung (Niu et al., 

2010) and the acidic stomach environment (Mercier et al., 2002), respectively. In the 

first one, 25 mL 0.01M ammonium-acetate was added to 2 g of samples and reacted for 

2 hours at 37°C with occasional agitation. In the second one, 25 mL dilute acetic acid (6 

mL glacial acetic acid in 8 L distilled water) was added to 2 g of samples and the pH of 
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the suspension was adjusted to pH 2 with addition of 12M hydrochloric acid. The 

extraction was carried out for 6 hours at 37°C with occasional agitation. In both cases, 

the solution was separated by centrifugation at 3500 rpm for 20 minutes. The 

concentration of lead in the solutions was analysed using a Perkin Elmer AAnalyst 300 

AAS instrument (Institute for Geological and Geochemical Research). 

 

Results 

 

Samples characterization 

 

The major element composition of the samples is shown in Table 1. As 

compared to the geochemical background values for Hungary (Ódor et al., 1997), the 

samples show significant enrichment in S, Na and K. The high amount of sulphur may 

originate from construction materials (gypsum) or from the reaction between sulphuric 

acid and sulphate-forming cations (e.g. K or Ca) in the urban air (Panigrahy et al., 

2003), and it may also reflect the presence of organic material (plant and animal 

remains) in the samples. Sodium enrichment can be due to the extended use of halite as 

de-icing agent. The presence of both gypsum and halite was also proved by the 

mineralogical analyses: gypsum (around 5 wt%) was identified in each sample whereas 

halite only in the KF1 sample (nearly 10 wt%) by X-ray diffraction (XRD) analyses 

(Figure 2). 

The relatively high loss on ignition (LOI) values (between 21 and 37 wt%) show 

the presence of large amount of volatile components in the samples (Table 1). The LOI 

values between 105 and 450°C provides a rough estimate for the organic matter content 
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of geological materials (Craft et al., 1991). These values for the studied samples suggest 

that their organic matter content is expected to be between 14 and 25 wt%. This 

corresponds to the results of XRD analyses, with which large amount of amorphous 

phases were identified. They can be due to the expected presence of organic material 

and soot. Transmission electron microscopic (TEM-EDS) analyses showed that soot 

aggregates consisting of nano-sized (few tens of nm) soot particles are common phases 

in the studied TSP samples (see Figure 3a). Soot is a common anthropogenic 

component of urban airborne particulate matter as a result of different combustion 

(vehicle, heating, industrial etc.) processes (Grobéty et al., 2010). 

The bulk mineralogical composition of the samples is dominated by the presence 

of minerals characteristic of the geological environment of the sampling sites (Figure 2). 

The samples consist mostly of 15-20 wt% quartz, 5-20 wt% carbonates, 5-10 wt% clay 

minerals and 5-10 wt% (plagioclase) feldspar. Carbonate phases are represented by 

nearly similar amount of calcite and dolomite with probable Fe and Mn substitution in 

the latter. Among the clay minerals illite dominates, but chlorite and smectite also 

appear. Such phases are characteristic natural components of urban dust representing 

primarily the fraction depositing fast (Farkas and Weiszburg 2006; Grobéty et al., 

2010). 

Dominant typically anthropogenic phases in the samples were found to be the 

iron oxides. Our XRD analyses showed the presence of large amounts of magnetite (5-

10 wt%) at most of the sampling sites except in the UP samples (Figure 2). This phase 

was also shown by our TEM-EDS analyses (Figure 3b), together with ferrihydrite and 

hematite (Figure 3c), but the frequency of the latter two phase was much lower than that 

of magnetite. They can be the oxidation/weathering products of magnetite. The 
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oxidation may proceed already in the anthropogenic combustion process, as suggested 

by the results of Zajzon et al. (2013) who found the close association of magnetite and 

hematite in vehicle exhaust samples. Besides gypsum and halite mentioned earlier, 

further metal oxides and carbonates were found sparingly by TEM-EDS (one single 

franklinite, a smithsonite and a ZnO particle were found in the UP1 sample). 

 

Lead in the samples 

 

Total concentration and the amount of lead mobilized by the different chemical 

extractions are shown in Table 2. The total lead concentrations of the samples are higher 

by 1-2 magnitude than the geochemical background concentration of lead in Hungary 

(21 mg/kg; Ódor et al., 1997). Samples from the KF site are characterized by the highest 

lead concentrations (between 1953 and 5942 mg/kg), while other samples contain by a 

magnitude lower amounts of this metal (between 368 and 942 mg/kg). Total lead 

concentrations do not show linear correlation with any major chemical component of 

the TSP material. Between 14 and 28% of total lead is insoluble in hot aqua regia, 

except in sample KF1, where only 38% of total lead could be extracted from the sample 

such a way (Figure 4). This difference is also shown by the fact that the total and aqua 

regia soluble lead shows perfect linear correlation (r = 1.00; p <0.05) in most of the 

samples except in sample KF1 (if this latter sample is also included in the regression 

analysis the r value changes to 0.89). The weak acid extraction at pH 2 (stomach test) 

resulted in the mobilization of 1-16% of total lead content of the samples (Figure 4). 

The ratio of lead extracted by weak acid show large variation among the samples, its 

highest values are reached in two samples from Kelenföld (KF3 and KF4). In these 
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samples the weak acid extractable amount of lead is more than 600 mg/kg showing that 

even such a high Pb quantity is easily mobilized in urban or in stomach environment 

(Table 2). Several studies (e.g. Tokalioglu and Kartal, 2006; Sutherland et al., 2012) 

found that weak acid extractable lead show large variation among urban particulate 

matter samples (from a few % up to 20-30%). The metals extractability show significant 

increase with decreasing particles size (Sutherland et al., 2012) therefore the 

comparison of samples of different origin or those collected different methods is not 

possible. The extraction (by 0.01M ammonium-acetate at pH 7) used for simulating the 

lung environment resulted in lead concentrations below the detection limit for each 

sample (Table 2). Our data show that very similar extraction efficiency could be reached 

with this reagent to distilled water for lead. The data from latter extraction provides 

information that there is a very small ratio of total lead (between 0.1 and 1% 

corresponding to concentrations between 0.1 and 5.4 mg/kg) in the samples which is 

water soluble (Figure 4). Although the water soluble lead in the airborne particulate 

matter may show high variation, its ratio rarely exceeds 10% of the total lead (e.g. 

Fernandez Espinosa et al., 2002; Feng et al., 2009). 

According to the TEM-EDS analyses, the spherular or xenomorphic magnetite 

particles may be the most important Pb bearing phases in the samples (Figure 3b). They 

sometimes contain 2-3 wt% of Pb (and also similar amount of Zn and occasionally less 

Mn). This is also observed by several authors (e.g. Gautam et al., 2005) who found 

significant linear relationship between magnetic susceptibility (primarily due to 

magnetite) and Pb content of urban particulate matter. The magnetite particles often 

form aggregates and are closely associated with soot and/or clay minerals. In samples 

with high magnetite content (primarily the KF samples), metal-free magnetite spherules 
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up to a few m sizes also appeared. Clay minerals (primarily smectites) may also 

contain small amount of Pb (up to a few wt%) (Figure 3a). The Pb is probably sorbed 

on the surface of clay minerals in the soil of which re-suspension may contribute to the 

airborne particulate matter. This is a well-documented phenomenon in urban 

environment (Laidlaw and Filipelli, 2008). A single aggregate consisting of magnetite 

and calcite was also found by TEM analyses in which the latter contained significant 

amount of Pb (4.88 wt%) suggesting the presence of Pb in carbonates. Among other 

lead phases, PbCO3 was found as a common component of urban airborne particulate 

matter by others. Its presence can be due to the contribution of fly ashes from fossil fuel 

combustion, waste incineration (Wichmann et al., 2000) or industrial (smelter) dust 

(Spear et al., 1998) to the urban airborne material. 

 

Lead isotope composition of the samples 

 

The isotopic composition of lead shows very similar distribution in the samples. 

The most frequent isotope of this metal is 
208

Pb (52.08 ± 0.51%), followed by nearly 

similar ratio for 
206

Pb (25.06 ± 0.33%) and 
207

Pb (21.34 ± 0.19%), and the less frequent 

is 
204

Pb (1.43 ± 0.01%). This distribution show slight differences as compared to the 

average natural abundances of lead isotopes (DeLaeter et al., 2003). The ratio of 
204

Pb 

and 
206

Pb is generally higher in the studied samples than expected from their natural 

abundances (1.40 and 24.1%, respectively), whereas that of 
207

Pb is lower (its natural 

abundance is 22.1%). The ratio of 
208

Pb show slight variation among the studied 

samples: the sample UP is the only one showing higher ratio for this Pb isotope 

(53.02%) than its natural abundance, which is 52.4%. Most of the samples show similar 
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(KF1, KF2, KF3) or slightly lower ratios (CS1, KF4, KB1, KB2, UP2). These slight 

differences are due to the mixing of several lead sources (both natural and 

anthropogenic) in the samples. It is important to note that lead isotope analyses were 

carried out after the aqua regia dissolutions of the samples; hence they do not represent 

the magnetite-bound lead despite that it is supposed to be also of anthropogenic origin 

primarily. Moreover, DeVivo et al. (2001) found that the lead isotope ratios of the acid-

leachable fraction of fluvial sediments showed slightly different Pb isotope ratios as 

compared to the residual fraction, which is due to the much stronger anthropogenic 

signal in the mobile fractions. Thus the shift of the lead isotope ratio values towards that 

of anthropogenic sources can be also expected in our case. The lead isotope composition 

of airborne particulate matter generally reflects the mixing of different sources, 

therefore source appointment can be quantified exactly in cases where all potential 

sources of Pb are characterized and have specific ratios (Komárek et al., 2008). Since 

the contribution of re-suspended soil or road dust to the TSP material may be as high as 

74% (Young et al., 2002) significant presence of lead isotope characteristics of past 

emission sources are expected in our case. However, isotope composition of past 

sources can not be specified thus our evaluation is based on comparisons with literature 

data. According to their 
208

Pb/
207

Pb and 
206

Pb/
207

Pb ratios, most of the studied samples 

show that their lead comes from the mixing of two major sources: European leaded fuel 

and the natural lead (Figure 5a). This plot also shows that all the studied samples can be 

found between the field of urban aerosol samples collected in the 1990’s in Budapest, 

Hungary and that of natural lead. However, the CS1 and UP1 samples present slightly 

different Pb isotopic composition from this mixing line suggesting the contribution of 

some more lead sources. These two samples can be characterized very similar 
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206
Pb/

207
Pb ratios but significantly lower (CS1) and higher (UP1) 

208
Pb/

207
Pb ratios than 

the other samples. Sample CS1 can be characterized by the lowest, whereas sample UP1 

by the highest 
208

Pb ratio among the studied samples. When other potential lead sources, 

such as Central European coals and ores are taken into account, the plot of 
208

Pb/
206

Pb 

vs. 
206

Pb/
207

Pb ratios (Figure 5b) shows that the majority of samples can be 

characterized by very similar lead isotope ratios to the Central European lead ores and 

coals, except again the samples CS1 and UP1. If other more Pb ore and coal sources are 

involved in the comparison, the plot of 
208

Pb/
206

Pb vs. 
07

Pb/
206

Pb ratios (Figure 5c) 

suggests the presence of at least three anthropogenic sources for lead: coals, fuels and 

(Italian) lead ores. Sample UP1, one of the former outsider samples, shows the same Pb 

isotope ratios as Sardinian Pb ore do. However, sample CS1 still show slight difference 

in its Pb isotope ratios, e.g. the presence of other Pb source(s). Until now we did not 

found any literature data which could explain these unique Pb isotope characteristics for 

this sample. 

 

Discussion 

  

The most significant lead bearing phase, which was also directly identified, is 

magnetite. Iron impurities are often found in combustibles and can convert to iron 

oxides, such as magnetite or hematite, depending of the burning conditions (Muxworthy 

et al., 2003) but they can be also related to the presence of ferrocene as fuel additive 

(Braun et al., 2006). That is why several studies have revealed large concentrations of 

iron in anthropogenic particulate matter (generally between 5 and 15%) and magnetite 

was identified as the dominant magnetic phase of Fe-rich particles (e.g., Chen et al., 
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2006). As this phase is a well-known mineral which do not dissolve in aqua regia (e.g. 

Cohen et al., 2012), we can suppose that the aqua regia insoluble lead in the samples 

can be primarily associated to magnetite. This finding can be also prevalent for the 

sample with relatively low ratio of aqua regia soluble lead (KF1), as it can be 

characterized twice as much magnetite than other samples. The lack of strong linear 

relationship between total iron and aqua regia insoluble lead (r = 0.48; p<0.05) does not 

contradict the close association of lead and magnetite, as iron may be present not only 

in magnetite, but probably also in carbonates, and Pb-free magnetite particles were also 

found. On the contrary, oxidation/weathering products of magnetite, like hematite and 

ferrihydrite are soluble in hot aqua regia (Silva et al., 2007). Our data do not allow 

estimating the contribution of latter phases to the aqua regia soluble lead. However, 

these results call the attention that advanced oxidation of iron in anthropogenic 

combustion processes and/or intensified weathering of magnetite in the urban 

environment facilitate the release of potentially toxic components, like Pb enclosed in 

iron oxides. Aqua regia soluble lead show strong positive linear relationship with total 

Ca and S content of the samples (r = 0.79 for both at p<0.05), whereas a negative one 

with the estimated organic matter content (r = - 0.80; p<0.05). This finding suggests the 

close association of Pb to Ca and S containing phases. Based on this, however, exact 

phases can not be specified as hosts for lead due to the fact the aqua regia is a strong 

and effective solvent for numerous particulate matter components. 

Despite that the weak acid extraction was used to model the acidic pH of 

stomach environment through a very simplified way, it is also useful to study the 

potential acidification of urban environment. X-Ray spectroscopy analyses by Barret et 

al. (2010) showed several lead phases in urban dust, such as surface-sorbed lead, lead-
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chloride, lead-carbonate, lead-oxide and lead-phosphate, which are potentially soluble 

in weak mineral acids in varying degree. These are mostly the same phases controlling 

aqueous-solid partitioning of lead in natural systems. At pH 2 lead is not expected to be 

sorbed at natural mineral surfaces, and carbonate (cerussite), hydroxide, oxide and 

sulphate (anglesite) of lead is readily soluble while its phosphate (pyromorphite) is 

sparingly soluble (Rickard and Nriagu, 1978). Among major TSP components 

carbonates demonstrate complete while clay minerals partial dissolution at this pH 

(Köhler et al., 2003). As our TEM-EDS analyses also showed the association of lead to 

both clay minerals and carbonates the mobilization of lead can be expected from these 

phases by this extraction. The strong positive linear correlation of weak acid soluble 

lead and total Ca (r = 0.83; p < 0.05) and S (r = 0.85; p < 0.05) content of the samples 

suggest that Pb may be hosted also by the form of Ca or even Pb sulphates. However, 

our mineralogical investigations did not support this supposition probably due to their 

relatively low concentration in the samples and/or their instability in the electron beam. 

The Ca and other (e.g. K) sulphate phases detected after all by TEM-EDS did not 

contain detectable amounts of Pb by EDS, but this finding does not exclude its presence 

in sulphates completely as the detection limit of EDS is around 0.1% for given particle. 

Water soluble lead is a relatively low proportion of total lead in the samples but it is 

readily available for any organism. Other studies (e.g. Fernandez Espinosa et al., 2002) 

attributed the water soluble lead to the presence of this metal in form of nitrates and/or 

chlorides in the airborne particulate matter samples. 

Metal-oxide and metal-carbonate particles in the TSP may be primarily 

originated from anthropogenic emissions, whereas clay particles derived rather from the 

re-suspension of roadside dust and urban soils. Magnetite particles are resistant to 
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weathering releasing its toxic components slowly to the environment (Graham et al., 

1989). However, layer silicates and carbonates are much less resistant than magnetite 

(Vogelein et al., 2005) thus besides water soluble lead they may be the potential source 

of mobile Pb in the TSP samples. The occasionally very high amount (up to 631 mg/kg) 

of weak acid extractable lead is supposed to be mobilized in the stomach environment 

resulting in serious risk to the environment and human health potentially. 

Lead isotope analyses were carried out to study the potential sources of lead in 

the total suspended particulate matter samples. The most important source of this metal 

in airborne materials was the traffic until the phase out of leaded gasoline, although 

traffic related activities still emit lead to the environment by several ways. Thus the lead 

isotope ratios of large majority of urban airborne particulate matter samples can be 

placed between that of leaded gasoline and natural lead (Bollhöfer and Rossman, 2001). 

Due to the gradual phasing out of leaded gasoline in several countries, a “cleaning” 

trend could be observed for the last decade, e.g. the lead isotope ratios of recent TSP 

materials has been moved towards that of natural lead. According to Tomašević et al. 

(2013), however, this “clearing” trend can be affected by the appearance of lead of 

Chinese origin in the European markets. Additionally, the lead isotope ratio of Chinese 

lead ores can be also placed between that of natural lead and European leaded gasoline. 

This phenomenon was also observed in our case, e.g. the studied samples contain much 

higher ratio of natural lead and/or much higher ratio of lead of Chinese origin than the 

airborne particulate matter collected in the 1990’s in Budapest. It is important to note, 

however, that as the contribution of road dust and urban soil to the suspended material 

may be very high (up to 74%; Young et al., 2002), and the urban soils also store the lead 

coming from the past anthropogenic in their surface horizons (Hjortekans et al., 2008), 
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the lead from leaded gasoline must be still present in the recent airborne particulate 

matter. Our data, however, suggest the presence of some more lead sources besides the 

two mentioned above. The majority of the samples, which mostly fit the line between 

the isotopic composition of natural and gasoline lead well, also show significant overlap 

with the Pb isotope characteristics of Central and Eastern European lead ores and coals 

as based on data by Komárek et al. (2008). The former is expected to be the presence of 

past emission sources as lead mining is minimal in this region, whereas the latter 

suggests the contribution of domestic and industrial coal combustion activity to the TSP 

of Budapest. As the Pb isotopic composition of these potential sources is also placed 

between that of leaded gasoline and natural lead, the contribution of these sources can 

not be verified unambiguously. However, the wide use of these raw materials is evident 

and they can not be excluded as potential lead sources. Two samples out of the 9 studied 

generally showed unique lead isotopic composition as compared to the others. One of 

these samples show high similarity to Sardinian (Italy) lead ores (Tarzia et al., 2002), 

but the highest contribution of natural soil materials (as suggested by its highest SiO2 

content) among the studied samples may also result in this unique behaviour. For the 

other outsider sample, we did not found any literature data which could explain its 

unique Pb isotope characteristics. These data suggest the presence of additional 

source(s) for this metal at least in certain localities, but further investigations are 

necessary to specify them. There may be numerous potential pollution sources, such as 

paints, mineral oils etc., for which data are not available but can not be excluded as 

potential sources of lead.  

 

Conclusions 
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 Total suspended particulate (TSP) matter samples from Budapest can be 

characterized by 1-2 order of magnitude higher lead concentrations than expected from 

its geochemical background value for Hungary. 

Lead was found to be associated to several host phases with very different 

stability. Generally, between 20 and 30% of total lead content of the TSP materials is 

hosted by magnetite which may be the result of numerous combustion-linked 

anthropogenic processes. Although it is a highly resistant phase to weathering, its fast 

oxidation during combustion processes to hematite and/or weathering in the acidifying 

urban environment to ferrihydrite may result the more easy mobilization of lead (and its 

other potentially toxic components). Up to 16% of lead was found to be weak acid 

soluble in the TSP materials, primarily representing Pb sorbed on the surface of clay 

minerals and in from of carbonates (and probably sulphates). This is the potentially 

mobile fraction of lead which could be harmful to human, as well. It was shown that the 

water soluble amounts of lead in the TSP samples are negligible. 

 The lead isotope composition of the TSP samples suggests the mixing of several 

potential sources for this metal. These sources showed slight variation among the 

sampling sites. Despite the phasing out of leaded gasoline in Hungary in 1999, its 

contribution to the Pb content of the TSP can be still observed. However, our data show 

much similar isotope ratios to that of natural lead than aerosols collected in the 1990’s 

in Budapest, supporting the observation that the presence of lead of gasoline origin 

decreases in the airborne particulate matter in urban environment gradually. Another 

important source for lead is found to be the coal combustion probably due to domestic 
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and industrial heating. Our data suggest additional source(s) for this metal at least in 

certain localities, but further investigations are necessary to specify them. 
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Figure captions 

 

Figure 1. Sketch map showing the localities of the thermal power plants, namely Csepel 

(CS), Kőbánya (KB), Kelenföld (KF), Újpest (UP). 

 

Figure 2. Characteristic X-Ray diffractograms showing the major components of some 

bulk particulate matter samples (KF1 – Kelenföld, KB2 – Kőbánya, UP2 – Újpest). 

 

Figure 3. Dominant Pb-bearing phases in the particulate matter samples. Transmission 

electron microscopy micrographs, diffraction patterns and EDS spectra of (a) a Zn and 

Pb-bearing smectite particle associated with soot aggregates composed of nano-spheres; 

of (b) a Pb and Zn-bearing magnetite spheres; and of (c) Zn, Pb and Mn-bearing dense 

aggregates of magnetite, hematite (3.7Å) and poorly crystalline ferrihydrite. 

 

Figure 4. Extracted lead ratios (%) in the different chemical extractions used. Lung test 

was carried out with weak ammonium-acetate solution at pH 7, whereas stomach test 

with mixture of weak acetic acid and hydrochloric acid at pH 2. Note that in the lung 

test the extracted amount of lead was below the detection limit (5 mg/kg) for each 

sample thus the corresponding columns show the respective ratio for this value. 

 

Figure 5. Aqua regia soluble laed isotope ratios of the studied total suspended 

particulate matter samples (Csepel - CS, Kőbánya - KB, Kelenföld - KF, Újpest - UP).  

Comparison our data to (a) the lead isotope ratio data for European leaded gasoline and 



27 
 

natural lead (Grobéty et al., 2005), urban aerosol samples from the 1990’s (Bollhöfer 

and Rosman, 2001) and Hungarian soils (Reimann et al., 2012) (The “clearing” trend 

indicated by the gray arrow is given by Tomašević et al. (2013)); to (b) the lead isotope 

ratio data for Central and East European lead ores and Central European coals 

(Komárek et al., 2008); and to (c) the lead isotope ratio data for lead ores of different 

origin and Appalachian coals (Tarzia et al., 2002). 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figue 5. 
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Table 1. Major element concentrations and loss on ignition (LOI) (wt%) in the studied total suspended particulate (TSP) matter samples. 

LOI was determined at 1050°C, while LOIorg concern to ignition loss between 105 and 450°C to estimate the organic matter content of TSP 

samples. *Sum is the total sum of the major element concentrations as oxides and LOI. 

 Na2O MgO Al2O3 SiO2 K2O CaO TiO2 Fe2O3 P2O5 SO4 MnO LOI  Sum* LOIorg 

KF1 9.84 2.37 9.28 25.52 0.96 9.82 0.41 13.50 0.28 7.92 0.23 22.41 102.55 16.79 

KF2 1.44 2.05 7.81 23.38 1.75 15.24 0.50 10.73 0.61 6.67 0.15 27.07 97.40 18.10 

KF3 1.56 1.90 7.59 21.30 1.36 20.89 0.51 10.63 0.38 12.89 0.14 20.84 99.99 14.11 

KF4 1.55 1.87 7.56 21.43 1.38 20.74 0.50 10.51 0.38 13.29 0.14 21.33 100.68 14.24 

KB1 1.76 2.07 8.73 28.21 1.74 10.70 0.53 13.67 0.61 8.64 0.16 25.45 102.28 19.27 

KB2 2.92 2.02 8.23 25.68 1.60 13.48 0.47 12.29 0.67 8.48 0.18 23.37 99.39 16.36 

UP1 2.33 1.92 8.49 28.43 1.56 8.72 0.71 7.79 0.70 4.93 0.13 32.25 97.95 21.41 

UP2 2.29 1.77 8.03 24.56 1.92 8.03 0.67 7.11 1.04 5.70 0.13 37.25 98.49 22.32 

CS1 1.97 1.86 7.21 19.86 2.77 10.55 0.48 7.93 2.50 6.34 0.13 35.53 97.12 25.20 
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Table 2. Total lead concentration and the amount of lead mobilized by different extractions used (mg/kg). Lung test was carried out with 

weak ammonium-acetate solution at pH 7, while stomach test with the mixture of weak acetic acid and hydrochloric acid at pH 2. Pb* = 

lead concentrations were calculated as a sum of the concentrations of each lead isotopes in aqua regia dissolution. 

 Total Aqua regia Stomach 

at pH 2 

Lung  

at pH 7 

Distilled 

water 

Pb Pb* 
204

Pb 
206

Pb 
207

Pb 
208

Pb Pb Pb Pb 

KF1 5942 2231 32 553 477 1169 285 <5 3.3 

KF2 1923 1478 21 369 314 773 154 <5 4.2 

KF3 3878 2874 41 716 610 1506 630 <5 2.6 

KF4 3916 2990 43 754 638 1555 631 <5 2.6 

KB1 547 434 6.2 109 93 225 11 <5 3.7 

KB2 538 463 6.6 117 99 240 18 <5 5.1 

UP1 942 692 10 169 146 367 118 <5 4.9 

UP2 427 331 4.8 85 71 171 43 <5 2.8 

CS1 368 267 3.8 67 58 137 2.8 <5 0.4 

 

 


