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SUMMARY 

 

ANN technology exploded into the world of process modelling and control in the late 

1980’s. The technology shows great promise and is seen as a technology that could 

provide models for most systems without the need to understand the fundamental 

behaviour or relationships among the process variables. Today, ANN applications 

have been applied successfully in a number of areas of process modelling and 

control, with the best-established applications being in the area of inferential 

measurements or soft sensors. 

 

Unfortunately, ‘the free lunch did not have much meat’. Overtime, people focused 

more on the true capabilities and power of ANN, the ability to model nonlinear 

relationships in data without having to define the form of the nonlinearity. However, 

there is often a tendency to merely plug in the data, turn the ANN training software 

on, and blindly accept the results. This is probably inevitable since, to date, there are 

no textbooks or scientific journal papers providing an integrated and systematic 

approach for ANN model development addressing pre-modelling, training and post-

modelling stages. Therefore, addressing issues in those three phases of ANN model 

development is essential to support and to improve further applications of ANN 

technology in the area of process modelling and control.  

 

The model development issues in pre-modelling and training phases were addressed 

by reviewing current practice and existing techniques. For each issue, a novel 

method was proposed to improve the performance of ANN models. The new 

approaches were tested in a variety of benchmarking studies using artificial samples 

and coal property datasets from power station boilers. 

 

The research work in the post-modelling stage analysis which emphasises on taking 

the lid off black box model, proposes a novel technique to extract knowledge from 

the models and simultaneously obtain better understanding of the process. Post-

modelling phase issues were addressed thoroughly including construction of 

prediction limit, sensitivity analysis and development of mathematical representation 

of the trained ANN model.  
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Confidence intervals of the ANN models were analysed to construct the prediction 

boundary of the model. This analysis provides useful information related to 

interpolation and extrapolation of the model. It also highlighted how good the ANN 

models can be used for extrapolation purposes.  

 

An effort based on sensitivity analysis of hidden layers is also proposed to 

understand the behaviours of the ANN models. Using this technique, knowledge and 

information are retrieved from the developed models. A comparative study of the 

proposed techniques and the current practice was also presented. 

 

The last topic addressed in this thesis is knowledge extraction of ANN models using 

mathematical analysis of the hidden layers.  The proposed analysis is applied in order 

to open the black box of the ANN models and is implemented to simulated and real 

historical plant data so that useful information from those data and better 

understanding of the process are obtained. 

 

All in all, efforts have been made in this thesis to minimise the use of abstract 

mathematical language and in some cases, simplify the language so that ANN 

modelling theory can be understood by a wider range of audience, especially the new 

practitioners in ANN based modelling and control. It is hoped that the insight 

provided in the dissertation will provide an integrated approach to pre-modelling, 

training and post-modelling stages of ANN models. This ‘new guideline’ of ANN 

model development is unique and beneficial, providing a systematic framework for 

the preparation, design, evaluation and implementation of ANN models in process 

modelling and control in particular and prediction / forecasting tool in general. 

 

Keywords: artificial neural networks, pre-modelling, modelling, post-modelling, 

opening the black box, an integrated approach. 
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Chapter 1 

INTRODUCTION 
 

 

 

1.1 Artificial Neural Networks based soft sensors and models of chemical 

processes 

 

Empirical modelling is a method for the development of models based on process / 

experimental data. Since physical modelling is not always obtainable and very time 

consuming, empirical modelling is a more popular method for gaining insights into 

the overall (input-output) process behaviour. The developed models are usually used 

for prediction of future process values using historical data or estimation of 

unmeasured variables using easily measurable variables. 

 

Most chemical and industrial processes exhibit nonlinear behaviour, therefore, 

empirical nonlinear models are required instead of the linear ones. In this regard, 

ANN as an empirical nonlinear modelling technique has been used extensively in 

recent years to model a wide range of physical and chemical phenomena. ANN is 

very attractive whenever it is necessary to model complex or less understood 

processes with large input and output datasets, as well as to replace models that are 

too complicated to solve in real time [1, 2]. 

 

ANN technology exploded into the world of process modelling and control in the 

early 1990’s. The technology shows great promise and is seen as a technology that 

could provide models for most of our systems without the need to understand the 

fundamental behaviour or relationships of the process. Today, ANN applications 

have been applied successfully in a number areas of process modelling and control, 

with the best-established applications being in the area of inferential measurements 

or soft sensors. 

 

Unfortunately, the free lunch did not have much meat. With time, researchers shifted 

their focus more to the true capabilities and power of ANN, the ability to model 

nonlinear relationships in data without having to define the form of the nonlinearity. 

However, researchers soon realised that blindly applying black box modelling 

technique may provide a satisfactory fit for historical data but often leads to poor 
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performance for using online in a closed-loop control application, or on time-variant 

processes. The ANN model is a more black-box approach, making it difficult to 

extract process understanding from the model, and it is only valid in the operating 

region over which the data was modelled.  

 

Regardless of the power of ANN to solve problem effectively, there are also many 

issues associated with a systematic approach of ANN model development. There is 

often a tendency to merely plug in the data, turn the ANN training software on, and 

blindly accept the results. On other hand, several questions as listed below arose 

regarding pre-modelling phases, modelling stages and post-modelling stages. 

 

How do we select representative input variables? 

 

How to deal with outliers/noises, eliminate them or develop robust ANN 

model against them? 

 

How do we build and apply the ANN model in scenarios where some 

measurements are missing and the data is incomplete? 

 

How to handle small size of datasets as building a good ANN model 

requires sufficient historical/experimental data? 

 

Given such available historical/experimental data, how do we divide these 

datasets into training and testing/validation data? 

 

To ensure consistency among different magnitudes of input variables of 

varying scales, which data transformation should be used? 

 

To resume the ANN training, which weight initialisation algorithm should 

be used? 

 

What activation functions should be used for hidden and output layers? 

 

As there are many training algorithms, which one will give faster and better 

result? 

 

What learning criteria should be used? 

 

How many hidden layers should be used? 
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Table 1.1  Issues in ANN based modelling. 

 

Issues on ANN based modelling 

Pre-modelling phase Modelling / Training stage Post-modelling phase 

Data collection and Input 

Variable Selection 

Weight initialisation Prediction limit / 

confidence interval 

Outliers /noise Choice of activation 

function 

Sensitivity analysis 

Incomplete / missing data Choice of training 

algorithm 

Extracting knowledge 

from ANN model 

Small sample dataset Choice of learning criteria  

Data splitting Number of hidden layers  

Data transformation   

 

 

Unfortunately, to date, there are no textbooks or scientific journal papers providing 

an integrated and systematic approach of ANN model development addressing all the 

above questions. Moreover, current ANN technology applications mostly lack post-

modelling phase analysis as listed in Table 1.1. Therefore, addressing issues in the 

three phases of ANN model development is essential to support and to improve 

further applications of ANN technology in the area of process modelling and control. 

 

 

1.2 Motivations for this study 

 

ANN models have been traditionally designed without an integrated and systematic 

approach. Building ANN models sometimes is also facing undesirable conditions 

such as missing measurement/incomplete data and small sample dataset. Although 

the model users are satisfied with their predictive performance, understanding of the 

ANN function in its hidden layer is still poor. Hence the black-box nature results in 

difficulties to extract process knowledge from the data/models. 

 

The first motivation for this research is to provide an integrated and systematic 

approach of ANN model development and propose novel / improved approaches to 

the existing analysis and methods. A second motivation, which drives many ANN 

researchers and users, is to propose techniques to open the black box of the ANN and 

simultaneously to extract process knowledge and understanding from the models.  
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1.3    Objectives and contributions 

 

 

1.3.1   Objectives 

The main objectives of this research are: 

� To propose a systematic post-modelling phase analysis of the ANN models. The 

emphasise, in particular, is on opening the black-box of the ANN model in order 

to extract its process knowledge and to obtain mathematical relationships inside 

the hidden layers.  

� To highlight integrated approaches of pre-modelling and modelling phases to 

provide guidance for ANN model development. Some issues in these two stages 

are thoroughly addressed using existing techniques and novel methods. 

� To demonstrate how the proposed approaches are able to enhance the 

performance of the black box models. 

 

 

 

1.3.2 Contributions 

This research work in theoretical and sensitivity analysis of hidden layer is a direct 

contribution to ANN theory, design and its applications. Previously most of the work 

in ANN only focused on how to blindly develop ANN models and to implement 

them to predict output variables using given input variables. An integrated approach 

to pre-modelling, modelling and post-modelling staged of ANN models is also 

unique and beneficial, providing a systematic framework of the preparation, design, 

evaluation and implementation of ANN models. This framework will provide an 

integrated guidance for building ANN models. In addition, the post-modelling stage 

analysis which emphasise on taking the lid off black box model, will provide a novel 

technique to extract knowledge from the models and simultaneously to obtain better 

understanding of the process. 

 

This research and development work has also a great significance with regards to its 

application in black box modelling approach and ANN predictive control. Having 

better performance and well understood models will simultaneously benefit the 

applications of black-box models and model predictive control. 
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1.4     Scope of the study 

The overall scope of this study entails developing a framework for understanding 

ANN behaviour and extracting knowledge from ANN models. An integrated model 

development scheme of ANN models is also presented covering existing techniques 

and novel approaches. The FFANN structure is selected for this research as this 

structure has been used almost exclusively in many areas of prediction and 

modelling. Case studies on synthetic problems, coal properties prediction and 

modelling of coal-fired power plant were used to describe how all of the approaches 

work. 

 

1.5     Layout of the thesis 

This thesis is divided into seven chapters. In chapter two a literature review of the 

use of ANN, specifically in coal-power stations, is presented. This review also 

comprehensively covers the research gaps in current status of research on ANN and 

the roadmap for further research need. The background and motivations for this work 

are exclusively outlined in this chapter. 

 

Chapter three deals with the issues in pre-modelling phase of ANN models. It 

provides an integrated scheme of input variable selection and data preparation for 

model development. Observations to the existing techniques and their novel 

approaches are performed and their influences on ANN model performance are 

studied. 

 

Chapter four mainly discusses issues during training stages. This section attempts to 

explore the effects of internal model parameters and structure and also learning 

algorithms on the performance of ANN model. Novel techniques are proposed to 

improve the performance of the existing methods. 

 

 

Chapters five to six presents post-modelling phase of ANN model development. 

Topics in these chapters, to date, are the widest gaps in the ANN research and 

applications, leaving the users and practitioners to only apply ANN without 

confidently knowing the prediction limits of their models and understanding what 

information / knowledge can be extracted from the model / hidden layers of ANN.  
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Chapter five provides theoretical analysis to construct the confidence intervals / 

prediction limits of the developed models. It also highlighted how good the ANN 

models can be used for extrapolation purposes. Chapter six addresses knowledge 

extraction of trained ANN model. Specifically, the focuses are to open the black box 

of the ANN model and to understand the behaviour of the developed model. 

 

 

There are two approaches of knowledge extraction of ANN model discussed and 

proposed in this chapter.  First approach is mainly based on sensitivity analysis of 

hidden layer and the other approach is a proposed technique to retrieve mathematical 

representation of the black box model. Using these two techniques, useful 

information from the data and better understanding of the process can be obtained.  

 

 

In chapter seven, the conclusions from this study and the recommendations and 

future directions for research are presented. Appendices provide supplementary 

materials and information and related programme used in various chapters and 

sections. 

 

To make the thesis clearer and more compact, while chapter two provides an overall 

literature review on current ANN research and applications and their research gaps 

and research need, other chapters also present a comprehensive literature review of 

related issues in each sections. The organisation of the thesis is described in Figure 1-

1. 
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Chapter 2 
RESEARCH BACKGROUND AND LITERATURE REVIEW 

 

 

 

This chapter is unable to be reproduced here due to a journal article (based on it) 

not yet in print.  
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Chapter 3 

 
AN INTEGRATED DATA PREPARATION PROCEDURE 

FOR DEVELOPING ARTIFICIAL NEURAL NETWORK MODEL 

 

 

 

 

This chapter is unable to be reproduced here due to a journal article (based on it) 

not yet in print.  
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CHAPTER 4 

MODELLING STAGES OF ANN BASED MODELS 

 

 

This chapter is unable to be reproduced here due to a journal article (based on it) 

not yet in print.  
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Chapter 5 

Prediction Interval of the ANN Model 

 

 

This chapter is unable to be reproduced here due to a journal article (based on it) 

not yet in print.  
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Chapter 6 

Opening the Black Box of ANN Models 

 

 

This chapter is unable to be reproduced here due to a journal article (based on it) 

not yet in print.  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

 
The aim of this research work was to address pre-modelling, training and post-

modelling phases of the ANN predictive model since to date there is no systematic 

and integrated approach into ANN model design covering all the modelling issues 

above. This chapter summarised the main findings made during this research into 

three main sections, which are pre-modelling stages, training phases and post-

modelling stages. The chapter concludes with recommendations for future work to 

further enhance the ANN modelling especially the post modelling part. 

 

7.1 CONCLUSIONS 

7.1.1 Pre-modelling phases 

Several issues exist before the dataset is trained to develop an ANN process model. 

Being able to select appropriate input variables and examining and treating the data 

are essential to have a good predictive model. The main features of the proposed 

methods and findings in this part are: 

• Proposed a grey superior analysis based approach in order to select optimum 

set of input variables. Using this approach, preliminary knowledge related to 

the degree of importance of each variable is also obtained. Compared with 

popular partial mutual information based technique, this proposed method 

was demonstrated to be superior. 

• Treatment of outliers in the dataset is an important issue. Most ANN users 

tend to have outlier elimination to have ‘a good quality of dataset’. However, 

deleting suspicious outliers can eliminate important information inside the 

datasets. Hence, based on the preliminary work from Liano, in this 

robustification of the network by modifying its error measure was carried out 

to reduce the influences of the outliers into the model performance. 

• Current ANN technology is not able to deal with missing information in its 

training set and testing set. The most popular way to handle missing data is 

zero or mean substitution or deletion procedures. A new hybrid techniques 

BPCA-ANN was proposed to deal with missing input variables in both 
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training and testing sets and it is evident that the proposed approach perform 

very well in this regard. 

• To be able to train the ANN successfully, the number of the training set 

should be as much as possible. However, in many cases, this does not always 

happen. Database of experiments or several operational parameters is small, 

on the other, ANN model is required to be built using this small sample 

dataset. In this work, MTD based ANN and ANN ensemble were applied and 

the results show that using one of this technique could improve the 

performance of the model in the case of only small training set available. 

• The way the dataset was divided into the training and testing sets is believed 

to have a great impact on the predictive capability of the network. However, 

there is no guidance in how these datasets should be splitted. A proposed data 

division method based on  Kennard-Stone algorithm using mahalanobis 

distance criterion  proved to be superior to the standard Kennard Stone and 

SPXY algorithms  

• Data transformation is also a crucial issue during pre-modelling stages of the 

ANN model. To determine, which data scaling technique should be used, 

however, is not an easy task. The finding from this work indicated however, 

that the choice of data transformation technique depends solely on the type of 

activation functions in the hidden and output nodes. Among other 

transformation techniques, the log based transformation is comparably 

recommended for all types of transfer functions 

 

7.1.2 Training stages 

• The choice of number of hidden layers and hidden nodes is paramount since 

it will influence not only the complexity of the model but also its predictive 

capability and training time. Many “rules-of-thumb’ have been proposed to 

estimate optimum number hidden nodes. This research however indicated 

that these general guidelines mostly do not perform well to find optimum 

hidden nodes numbers and they can only be used as preliminary prediction of 

lower and upper limit of the trial-error-method. In this work, combination of 

this two approach, trial-error and empirical formula proved to be a quicker 

process rather than tedious trial-error method without any boundary. One 
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hidden layer was also found to be sufficient as function approximator since 

multi hidden layer add complexity and do not show much better results. 

• Weight initialisation will direct the network optimisation into its optimal 

solution. Random number generation is the most widely used weight and bias 

initialisation for ANN training. Among several random number generation 

approaches, technique based on Nguyen Widrow algorithm was found to be 

consistent to achieve convergence and its optimal solution 

• Different configurations of transfer functions are possible to be used during 

ANN training. This research however, indicated that the use of tansig, logsig 

and radbas functions are recommended for hidden nodes since they provide 

sufficient nonlinearity to capture input-output variable relationship. 

• MSE criterion is the most popular objective function for training and 

optimising the network. But since MSE is highly sensitive to the presence of 

the outlier, a bounded function based on logmse error measure was tested and 

the results show that this type of error measure tends to lead the training 

process having better convergence and performances. 

• The last ‘design variable’ which must be selected during training phases is 

training algorithm. Several variants of back propagation algorithms exist and 

evolutionary based algorithms are currently popular. A comparative study of 

the different training algorithms were carried out and the results indicated that 

in terms of generalisation capability, the global optimisation like differential 

evolution is able to enhance the performance of traditional algorithms such as 

trainlm or trainbr. However, these hybrid algorithms have a limitation in 

terms of computational time where it was found to be nearly 12 fold. From 

this study, the use of trainlm is still recommended as it gives a faster 

convergence and comparably good results. 

 

 

7.1.3 Post-modelling phases 

Compared with other two phases, the post-modelling stages, namely prediction 

interval construction and knowledge extraction are rarely to discuss and present. This 

work presents a preliminary study of the post modelling phases of ANN modelling 
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and lays a foundation for further research and applications. From this study, two 

conclusions can be drawn: 

• Constructing prediction interval is necessary to examine how confidence the 

prediction is and how good the model when it is used for extrapolation. 

Since, linear regression based confidence interval does not take into account 

the distribution of the data, a Kernel density estimator based prediction 

interval was proposed. The results show that this technique is able to build a 

prediction interval in various degree of confidence. 

• Research on knowledge extraction of the ANN model should be directed on 

opening the black box and obtaining mathematical representation of the 

overall ANN models. Our preliminary study show that it is possible to 

extract the simple models from the trained ANN model 

 

7.2 RECOMMENDATIONS FOR FUTURE RESEARCH DIRECTIONS 

Further research should be directed into the following areas to enhance the 

applicability of the proposed method: 

• The use of tunable transfer function, that is, adaptive transfer function to 

comply with the dynamic nonlinearity of the input-output data 

• The use of multiple error criteria to ensure that the optimisation process does 

not get stuck into local minima and also to guarantee that the optimum 

network is obtained using more  stringent criterion 

• Application of the proposed method in the last chapter in the grey box 

modelling. The obtained mathematical representation which is simpler and 

easy to understand surely will benefit the grey box application and process 

control in general. 

• Further refinement of the approach to extract both qualitative and quantitative 

information from the trained ANN model. Possibly, more efforts should be 

directed to the analysing behaviour of the interconnected transfer functions 

toward network weights and biases to obtain a global function representing 

these interconnected functions. 
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