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ABSTRACT 
 

The science education literature was examined in order to identify the methodologies 

that various authors considered to characterise inquiry teaching.  On the basis of this 

examination, a new classroom environment instrument, the Is This an Inquiring 

Classroom or ITIC was developed.  The final version of the ITIC contained forty 

items in five different scales, Freedom in Practical Work, Communication, 

Interpretation of Data, Science Stories and Uncertainty in Science. 

The Actual and Preferred Forms of the ITIC were administered to 2,207 Grade 7-12 

students and 65 teachers from 15 different schools.  The results of this investigation 

showed that both students and teachers would prefer there to be higher levels of 

inquiry behaviours in Tasmanian science classrooms, with teachers indicating a 

preference for significantly higher levels than students.  The perceptions of different 

sub-groups within the student population were also analysed. 

An examination of the Tasmanian curriculum documents showed that they supported 

the use of inquiry teaching methodologies, as defined by the ITIC scales. 

From the above investigations it was concluded that it would be desirable for there to 

be higher levels of inquiry methodologies in Tasmanian science classes, and that the 

production of the ITIC provides a means of monitoring and measuring any change. 
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CHAPTER 1 - RESEARCH BACKGROUND/DEVELOPMENT 

1.1 THESIS OVERVIEW 

1.1.1 Introduction 

In the world of science education, the concept of inquiry as a teaching pedagogy is 

one which has continued to recur in the literature, weathering peaks and troughs in 

popularity, but never completely disappearing.  As Ronald Anderson (n.d.) from the 

University of Chicago, wrote, 

Inquiry is a word with a long-standing place of honor in science education 

circles . . . It is the favored word for describing the essence of good 

science teaching . . . (Anderson, n.d., ¶ 1). 

Specific details of what the literature reveals about inquiry in science teaching will 

be considered in Chapters 2 and 3 of this thesis.  However, at this juncture it seems 

fair to comment that the heyday of inquiry in science teaching is generally regarded 

as having been during the 1960s and 1970s.  In this era inquiry was widely 

advocated in courses such as BSCS (Biological Sciences Curriculum Study) 

Biology, Harvard Project Physics, PSSC (Physical Science Study Curriculum) 

Physics and CHEMstudy Chemistry.  What is interesting is that many of the ideas 

from these courses seem to have lingered after the term inquiry ceased to be a 

catchcry of science education.  This appears to indicate that there is something about 

inquiry teaching that is important to the study of science - perhaps it captures 

something of the essence of science? 

This latter precept would seem to be supported by the fact that the concept of inquiry 

as a desirable science teaching pedagogy has undergone something of a renaissance 

in recent years.  This is particularly evident in the literature that has come from the 

USA since that country's development and adoption of the National Science 

Education Standards (National Research Council, 1996) and the Benchmarks for 

Science Literacy (American Association for the Advancement of Science, 1993)  

More locally, in the Tasmanian context in Australia, there has also been a 

reemphasis on the use of inquiry teaching pedagogies with the implementation of the 

new curriculum documents Essential Learnings Framework 1 and Essential 
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Learnings Framework 2 (Tasmania, Department of Education, 2002, 2003) in all 

government and many non-government schools.  These documents have an emphasis 

on inquiry which is not confined to the Science curriculum area. 

A question which arises, however, is as to whether teachers have ever really come to 

grips with the use of inquiry teaching strategies on a large scale.  If several editorials 

in relatively recent science teacher journals are anything to judge by, then they have 

not.  In an editorial piece in The Science Teacher Gerking (2003) recounted her 

experiences at recent NSTA (National Science Teachers Association) conventions in 

the USA where she found that in session after session secondary teachers expressed 

an interest in becoming inquiry based educators, but also said that they did not have 

a clear understanding of inquiry.  In a guest editorial for The American Biology 

Teacher Leonard and Chandler (2003), elaborated on their starting premise that most 

popular middle and high school biology curricula contain precious few opportunities 

to inquire, and went on to detail why they saw this as a potential problem for 

students.  In a similar vein, Bybee (2000) expressed the opinion that science teaching 

was not then, and never had been, in any significant way, centred in inquiry, 

regardless of whether inquiry was seen as content or technique.  He went on to state 

that although science educators continue to chant the inquiry mantra, science 

classrooms have not been transformed by the incantations. 

How can the extent to which individual teachers use inquiry strategies in their own 

classrooms be measured?  This research study set out to provide a means of at least 

partially answering this question, and also considered, perhaps more importantly, 

whether, given the prevailing educational theories and science curricula, the use of 

such techniques is appropriate in today's classrooms.  Special reference is made to 

the Tasmanian context in Australia.   

The overall aim of this study was to more fully inform science teachers about inquiry 

as a teaching pedagogy, and about teacher and student attitudes toward inquiry, thus 

enabling teachers to decide if inquiry is a teaching strategy they should employ to 

improve the learning outcomes of their students.  Whilst the study is directed 

primarily at the Science curriculum area, conclusions from it may, in fact, be more 

far reaching. 
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1.1.2 A Note on the Terms Inquiry and Enquiry 

Given the variation that occurs in the literature, and also the argument that is 

sometimes engendered when the terms are under discussion, a comment on the use 

of the terms inquiry and enquiry is warranted - so as not to antagonise any readers 

who believe that they are encountering the terms being used incorrectly or 

inconsistently!  To those of us who have held the view that one is a noun and the 

other a verb, it comes as something of a revelation to learn that the two are in fact 

merely interchangeable.  Consulting a dictionary (eg Chambers English Dictionary, 

Landau & Ramson, 1988), under ‘enquire’ seems to generally bring about a 

redirection to ‘inquire’.  Partridge (1973) in his book Usage and Abusage, explained 

that en- was originally a French prefix corresponding to the Latin in-.  He was of the 

opinion that inquire and inquiry were etymologically preferable.  As ‘inquiry’ seems 

to be the term most prevalent in the literature, it is the one which will be adopted 

from here on, although, it should be noted that several significant authors, such as 

Schwab, have used the term ‘enquiry’, and so when reference is made to their work 

this form may be used.  It is hoped that readers will forgive any lapses which occur - 

it was not felt necessary to adopt the style of Duschl (1986), who asterisks every 

usage of the ‘enquiry’ form.   

In relation to Schwab's favoured usage of the enquiry form, Westbury and Wilkof 

(1978) noted that when asked about this Schwab gave as his reason for adopting it 

the fact that in the years centring on 1958 some educational psychologists used the 

term inquiry to describe the strategies that children used in solving problems.  He 

wished to ensure that he would not be mistaken for one of these psychologists and 

therefore took to spelling inquiry with an e.  Some editors were accepting of this, 

others not. 
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1.2 FACTORS INFLUENCING THE RESEARCHER'S PERSPECTIVE 

1.2.1 Experiences as a Student 

My own interest in inquiry as a science teaching pedagogy began as a Grade 11/12 

student in the mid 1970s when I first encountered the idea of open book 

examinations, whilst studying BSCS Biology and CHEMstudy Chemistry courses at 

a Tasmanian matriculation college (as the schools that are now known in this state of 

Australia as senior secondary colleges were then termed).  To a student who had 

come through a traditional high school science teaching program with tests that 

primarily required the memorisation of large amounts of facts there was something 

very attractive about the idea of exams where students were free to use textbooks in 

answering the set questions.   

This matriculation experience contrasted sharply with that encountered during the 

various university courses undertaken as part of a Bachelor of Science degree.  To 

students who had experienced open book examinations and related teaching 

practices, and were headed toward a career in education (Science and Mathematics 

teaching in particular) there seemed to be something a little outmoded and inefficient 

in having to memorise pages of facts in order to meet the requirements of a course.  

All the information that students were being asked to reproduce in an exam situation 

was readily available in books, so what was the point of it being in their heads as 

well?  Wouldn't it be more efficient for students to spend their time learning how to 

source and apply information rather than just committing copious amounts of it to 

memory - often only to stay there for the duration of the relevant examination or 

shortly thereafter?  It also seemed that achieving high examination results was more 

an indication of short term memory skills rather than any deep understanding of the 

underlying concepts and subject matter.  As a student it was difficult to understand 

why the university did not adopt the more ‘enlightened’ educational approach that 

the matriculation colleges had toward at least some science subjects.  In retrospect, 

with the wisdom of years and personal experience of the personnel, budgetary and 

other difficulties involved in implementing any change process, the position of 

universities is much easier to understand.   
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However, ongoing doubts linger even today.  Given the ready access to information 

provided by the Internet and other electronic communications in the twenty first 

century, shouldn't teachers be providing students with the skills that allow them to 

acquire, critique and interpret information and data, rather than only asking them to 

demonstrate their knowledge by answering recall type questions? 

 

1.2.2 Experiences as a Grade 11/12 Biology and Mathematics Teacher 

Returning to the matriculation college environment in the mid 1980s, as a Biology 

and Mathematics teacher, I found that open book examinations and an inquiry 

approach (at least in name) were still the hallmarks of Biology teaching.  As a 

teacher, there was a marked contrast in preparing students for pretertiary (accepted 

by universities for matriculation purposes) Mathematics and Biology HSC (Higher 

School Certificate) examinations as set by the then Schools Board of Tasmania.  The 

Biology examinations required students to have an understanding of underlying 

themes and concepts.  It was necessary for them to be able to interpret a question, 

and identify the relevant concepts, before they could begin to answer it.  

Mathematics examinations of that era, on the other hand, included a number of 

theory questions, allowing students to simply memorise a standard answer and then 

rewrite it under examination conditions (provided of course that their short term 

memory was good enough).   

Within colleges a friendly rivalry frequently existed between the Biology teachers 

and their Chemistry/Physics counterparts, with the Chemistry/Physics group 

maintaining that Biology was an easy subject and that their own subjects contained 

the true science.  However, conversations with students did not indicate that even 

more able students saw this as being the case.  Students found the Biology 

examinations to be at least as challenging as those in the physical sciences area.  It 

would probably be true to say that the subject matter of Biology was more readily 

accessible to a larger student cohort (in terms of academic ability), than was the 

subject matter of Chemistry or Physics but students of lesser academic ability 

frequently could not deal with the nature of questions asked in Biology 

examinations, as these questions frequently emphasised interpretation rather than 
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factual recall of information.  While being able to take textbooks into examinations 

provided students with a metaphorical crutch, the instruction given to them by 

teachers was that if they were to be successful in their examination endeavours they 

should rarely have to open their books in order to answer examination questions.  

(Around this time Chemistry also had open book examinations, but the type of 

questions contained in these examinations did not reflect the same interpretative 

approach that was required in Biology examinations). 

 

1.2.3 Biology - Open or Closed Book Exams? 

A downside that emerged to the open book nature of the Biology syllabus 

examinations was that some teachers felt that the syllabus did not spell out precisely 

enough what it was that they had to teach students.  Biology syllabuses with an 

inquiry type intent have existed in various iterations in the Tasmanian situation, but 

during the early 1990s syllabus documents began to no longer specify a particular 

textbook, but rather gave individual schools/teachers the freedom to choose for 

themselves the text that they felt most suited the needs of them and their students.  It 

was particularly around this juncture that some teachers seemed to become a little 

uncomfortable with the requirements of preparing students for the open book 

Biology examinations.   

The movement of more new teachers into what had tended to be a fairly stable 

teaching cohort, and the increasing importance of examination scores as university 

entrance became more competitive, may also have been important factors 

contributing to this feeling amongst some teachers.  While the exact influence of 

each of these potential factors is unlikely to ever be known, the end effect was that 

the Grade 11/12 Biology syllabus which at one stage had been the most open and 

flexible of the Grade 11/12 science syllabuses (with the stated intent of allowing 

schools to adopt a teaching focus that most suited their students - whether it be 

marine, human, general or other) became the syllabus which seemed to most rigidly 

define what students should and should not be taught.  Despite this, the basic nature 

of the Biology examination did not really change - up to the current day the intent 
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remains that students be required to have a deep understanding and be able to apply 

their knowledge. 

As a proponent of open book examinations and related teaching methodologies, it 

was interesting - and at times indeed rather frustrating - for me to participate in 

numerous Biology subject meetings and workshops where some teachers proposed 

that Biology examinations revert to a closed book format. The main argument in 

favour of this was that it would then be possible to ask more recall type questions, 

and teachers would therefore have more idea as to exactly what the examination 

might contain, and could hence better prepare students for it.   

In hindsight, the underlying problems may have originated with some Biology 

examination questions that could be said to have not been written and critiqued 

adequately - allowing the setting examiner to stray too far from the intent of the 

syllabus and requiring an unreasonable level of theoretical knowledge.  

Alternatively, it may have been a reflection on the changing economical climate in 

Australia which meant that more and more students were completing Grades 11 and 

12, which had not been, and indeed still are not, compulsory years of education in 

Tasmania (although requiring students to remain at school until age 17 is to be 

implemented for students entering Grade 7 in 2004).  Previously, many of these 

students would have entered the job market rather than attending a college.  Their 

attendance at colleges frequently meant that students who were less academically 

inclined than had previously been the norm were attempting pretertiary courses.  In 

the end, however, open book examinations prevailed - although whether this was 

because more teachers saw them as being desirable, or because their proponents 

were more vocal is perhaps a vexed question - and such examinations are still in use 

in current Grade 11/12 Biology courses. 

Similar arguments occurred in physical sciences subject meetings of that era, 

although these debates seemed to lack the passion of the Biology discussions. 
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1.2.4 Refinement of the Research Questions 

The various meetings where the pros and cons of open and closed book examinations 

were argued led to me developing a deeper interest in this area.  Were open book 

exams really a better approach?  Given the level of collegial opposition that existed it 

was not possible to unequivocally hold the opinion that they were.   

How could this be tested through research?  The question certainly did not lend itself 

to the traditional scientifically controlled experiment, as there were far too many 

variables that were difficult to control.  In analysing my own motivation more I 

concluded that my real interest lay in whether or not an inquiry approach (whatever 

this may actually be) was being used in classrooms, and in whether or not teachers 

and students valued such an approach.  The significant consideration then became 

not so much whether or not particular subjects had open book exams, but rather 

whether they adopted the type of pedagogies that such examinations should 

encourage - namely inquiry ones.   

Hence the current research project was born. 

 

 

1.3 RESEARCH OBJECTIVES 

The research outlined here aimed to examine the relevant literature, and from this to: 

1. formulate a description of what is meant by inquiry-based teaching and 

learning, particularly considering the methodologies that would be obvious to 

observers and participants in an inquiry orientated classroom 

2. use the description from Objective 1 to develop an instrument to measure the 

extent to which teachers and students both perceived and preferred that an 

inquiry-based approach is (or should) be used 

3. determine the validity and reliability of this instrument as a measure of 

science classroom environment 
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4. use the instrument that was developed to assess the extent to which inquiry 

methodologies were being used in Tasmanian high school and senior 

secondary college science classes - as perceived by both students and 

teachers 

5. compare the extent to which inquiry methodologies were currently being 

used with the extent to which both students and teachers would prefer that 

they be used in Tasmanian high schools and senior secondary college science 

classes 

6. analyse Tasmanian high school and senior secondary college curriculum 

documents in order to ascertain the extent to which they indicated/dictated 

the use of an inquiry-based approach in presenting science courses.  

Specifically, two sets of documents were examined, as detailed below. 

7. use the results from the instrument that was developed to make a judgement 

as to whether or not the inquiry teaching and learning that was occurring in 

Tasmanian high school and college science classrooms was in line, firstly, 

with the stated intent of the appropriate contemporary syllabus documents, 

and, secondly, with the beliefs of teachers and the preferences of their 

students. 

Hence, this research investigated the appropriateness of using what have been termed 

inquiry-based teaching strategies in order to achieve the stated aims of contemporary 

Tasmanian science syllabus documents.  The research findings can be used to make 

recommendations to science teachers, and to teacher training institutions, about the 

extent to which they should employ, and instruct about, such teaching strategies in 

meeting the aims of their courses - with a view to maximizing student learning 

outcomes. 

In the case of Research Objective 6, two sets of documents were examined: 

• The Grade 9-12 science TCE syllabuses accredited by the Tasmanian 

Secondary Assessment Board, TASSAB, (or from 2004 by the Tasmanian 

Qualifications Authority, TQA) for high school and college pretertiary 

science classes.  For Grades 9 and 10 the syllabus designated as Science was 
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examined, whilst for Grades 11/12 the pretertiary syllabuses designated as 

Biology, Chemistry, Physical Sciences, and Physics were examined in the 

first instance. 

• The Essential Learnings Framework documents (Tasmania, Department of 

Education, 2002, 2003) that from 2005 form the basis for curriculum 

development and teaching for all year groups in Tasmanian government 

schools up until the end of Grade 10. 

The ongoing references to inquiry teaching in the literature, combined with personal 

experiences, made inquiry in science teaching a topic worthy of this investigation - 

perhaps, inquiry was a trend which was ahead of its time, or perhaps it should be 

regarded as a strategy that has outlived its time. 

 

 

1.4 SIGNIFICANCE OF THIS RESEARCH 

In completing this research, a new instrument has been developed which takes into 

account current trends in learning environment research.  The Is This an Inquiring 

Classroom? questionnaire (ITIC) presented has been refined and validated and will 

now be available to other teachers and researchers to investigate issues such as the 

following: 

• To what extent are inquiry methods being used in classrooms in a particular 

school, state, country or syllabus?  (This could be assessed from teacher and 

student actual forms of the questionnaire.) 

• Do students prefer inquiry-based learning or more traditional forms?  

(Using student preferred form of questionnaire.  This is not to say that 

student preference should necessarily determine the manner in which they 

are taught - some students may prefer traditional methods because they find 

it easier to get high marks under such a system.) 
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• To what extent do teachers think that they should be using inquiry methods?  

(Using teacher preferred form of questionnaire.) 

• How do the beliefs and perceptions of students and teachers match with the 

stated intent of their syllabus documents?  (The scales included in the 

questionnaire could be used in analysing curriculum documents.) 

• What is the impact on inquiry teaching of curriculum innovations which 

may occur?  (Give questionnaires before and after the innovations.) 

• What modifications do teachers need to make in order to achieve their 

desired classroom environment - with respect to inquiry teaching?  (Look at 

which scales teachers or their students rank their classroom environment 

low on.) 

The above represent important research questions, particularly if teachers and/or 

schools have tended to disregard inquiry as a teaching strategy appropriate to today’s 

classrooms.   

 

 

1.5 SCIENCE EDUCATION IN TASMANIA - SOME 

BACKGROUND 

1.5.1 Grades 7-12 Education in Tasmania 

Historically, secondary education in Tasmania has been separated to what is termed 

high school, meaning Grades 7 to 10, and what is termed college, meaning Grades 

11 and 12.  There are currently eight senior secondary colleges in the state, and these 

operate independently of any high schools, with separate buildings and their own 

teaching staff.  In some rural areas high schools have Grade 11/12 tops, but it would 

generally be true to state that more able students, particularly those with university 

aspirations, are more likely to move away from home so as to attend one of the city 

based colleges rather than to continue to attend their local high school whilst 

completing Grades 11 and 12. 
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At Grade 11/12 level students choose between pretertiary and non-pretertiary 

subjects.  Whilst all pretertiary courses are of a standard that is accepted for 

university entrance, there is huge variation in the non-pretertiary courses offered, 

with colleges being free to develop and offer courses that are certificated by the 

college.  The colleges were originally set up as matriculation colleges with the 

primary function of providing a pathway to university.  As employment has become 

more difficult in Australia attendance at senior secondary colleges has increased, so 

that a commonly quoted statistic is that only 30% of college students study 

pretertiary subjects (although the source of this statistic remains elusive).   

 

1.5.2 Grade 7-10 Science Education in Tasmania 

In the majority of Tasmanian secondary schools, science has traditionally been 

compulsory for all students in Grades 7 to 10, with students also having had the 

option of studying a subject known as Science Extended in either Grade 9 or 10.  

However, over the last decade this situation has tended to change with a number of 

high schools making science optional in Grades 9 and 10.  Whilst there is a feeling in 

some quarters that this is, at least in part, a response geared to dealing with a 

shortage of science teachers there is no actual evidence to support this contention.  It 

is nonetheless an interesting contention, particularly in light of a report by Strauss 

(2004) that the Californian Curriculum Commission recommended new criteria for 

K-8 textbooks that allowed for a maximum of 20 to 25 percent of hands-on material 

- in an attempt to balance the need for a comprehensive science curriculum with the 

limited science background of many K-8 teachers.  Although the commission's 

recommendation was subsequently vetoed, it seems significant that it was ever made. 

Students enter Grade 7 with widely varying experiences as to the quantity and nature 

of science education which they have encountered during their primary school 

education.  To some extent, they leave Grade 10 with similar wide variations in the 

science content knowledge they have encountered, but hopefully with a similar 

grounding in the processes of science.   

Grades 7 and 8 syllabuses have always been school based and it has been entirely up 

to individual schools what they teach in these courses.  Grades 9 and 10 syllabuses 
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have traditionally been written, accredited and certificated under the auspices of 

TASSAB (see Tasmanian Secondary Assessment Board 1998a, 1998b).  It should be 

noted that this situation changed from 2005, with neither TASSAB nor the 

organisation that replaced it, the Tasmanian Qualifications Authority (TQA) now 

having any input into Grade 9 and 10 syllabuses.  All government school syllabuses, 

from entry level up to the end of Grade 10 are now determined by schools around the 

Essential Learnings Framework curriculum documents. 

 

1.5.3 Grade 11/12 Science Education in Tasmania 

From high school, students can opt to study science subjects at Grade 11 and 12 

level.  At this level, science tends to be taught as separate disciplines, rather than as a 

general course, particularly in the case of students who are studying at a pretertiary 

level.  The science subjects offered at pretertiary level have been Biology, 

Chemistry, Environmental Science, Physical Sciences and Physics.  From 2004 a 

new pretertiary subject, titled Science of Natural Resources also become available to 

Grade 11/12 students.  Tasmanian students have the option of studying pretertiary 

subjects in Grade 11 or Grade 12 or both.  Except for Chemistry and Physics, which 

have Physical Science as a prerequisite, students who have achieved appropriate top 

level results in Grade 10 are free to attempt pretertiary science subjects in Grade 11 - 

although, for reasons that probably relate largely to retention of students into Grade 

12, restrictions do apply as to how many Grade 11 results will be used in calculating 

a student’s tertiary entrance (TE) score. 

In the current research Grade 7 to 10 Science and pretertiary Biology, Chemistry, 

Physical Science and Physics classes were surveyed.  Non-pretertiary college 

courses were not considered as they did not provide as obvious an incremental 

pathway in terms of content and processes.  
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1.5.4 Accreditation of Science Syllabuses in Tasmania 

For Grades 9-12, Science syllabuses, together with those for all other subjects, were 

traditionally written, accredited and certified by a body known as TASSAB 

(Tasmanian Secondary Assessment Board), formerly the Schools Board of 

Tasmania.  A new body, the TQA, or Tasmanian Qualifications Authority came into 

existence on 1st January 2004 (Tasmanian Qualifications Authority, 2004a), and took 

over this role from TASSAB.   

From 2005, neither TASSAB, nor its replacement body the TQA, will accredit or 

certificate Grade 9 and 10 subjects.  Whilst this does not impact directly on the 

current research the processes leading up to, and repercussions of this decision, have 

impacted on all curriculum areas, including science, in Tasmanian government 

schools.  This is particularly the case as coincident with, and probably acting as a 

catalyst for, the above change has been the development of a new guiding curriculum 

intended to cover the years from birth to the end of compulsory schooling (Currently 

age 16 or completion of Grade 10, but to become age 17).  This new curriculum is 

known as the Essential Learnings Framework and will be considered more in later 

sections of this thesis.  The introduction of the Essential Learnings Framework and 

associated documentation, occurred at around the same time as the Is this an 

Inquiring Classroom? Questionnaire (ITIC) had been developed and approval gained 

for research involving it to be conducted in Tasmanian schools.   

As the Essential Learnings Framework documents are the new guiding curriculum 

documents up to Grade 10 across all curriculum areas, it became important that this 

study consider these documents, in addition to the traditional science syllabus ones. 

 

1.5.5 A Brief Historical Perspective of Science Courses in Tasmania 

For many years, Tasmanian science syllabuses gave teachers few instructions with 

regard to assessment - so long as teachers were able to come up with a final 

numerical assessment, which was then converted to an award of credit, higher pass, 

pass, lower pass or fail, and so long as schools did not seem to have an abnormal 

number of any one of these awards at a particular level of study, the requirement for 

  14 



assessing students had been met.  Grade 11/12 pretertiary subjects had a formal 

examination to provide the external component of their assessment, but teachers 

were given little guidance as to what should constitute the internal component.  They 

were simply asked to provide a single numerical value as their assessment.  At this 

stage Grade 7-10 course were referred to as School Certificate and Grade 11/12 

courses as Higher School Certificate (HSC). 

During these years there was, in reality, an emphasis on knowledge-based 

assessment, in at least the majority of science syllabuses offered.  At Grades 11 and 

12, in particular, there was a feeling that whilst teachers were expected to provide an 

internal assessment which could and should incorporate numerous skills, (such as 

carrying out and writing up practical work, or researching a topic of current scientific 

interest) they were criticised if there was not a correlation between this internal 

assessment and their students’ performance on the external, often knowledge based, 

exam.  To some extent, fear of this criticism may have been more perceived than 

real, and a result of correlation coefficients provided on computerised result sheets, 

but nonetheless it existed.   

The advent, in 1992, of the Tasmanian Certificate of Education (TCE) courses which 

are currently used in Grades 11 and 12, and which were used in Grades 9 and 10 up 

to the end of 2004, saw a much greater emphasis on process rather than content.  

(According to Tasmanian Qualifications Authority (2004b) the philosophy of the 

TCE aimed to promote students power to learn, and ultimately to learn 

independently of instruction and guidance.)  This emphasis was carried through into 

the assessment of these courses, with criterion based assessment being adopted, and 

the criteria to be assessed being specified in each syllabus document.   

Whilst some teachers were extremely critical of the Grades 9 and 10 TCE science 

syllabuses on the basis that they incorporated only one knowledge criterion (out of a 

total of 8 criteria in the syllabuses most recently used for these grades), there was at 

least general agreement that these TCE syllabuses were successful in making explicit 

many of those things which teachers had always professed to incorporate as part of 

good science teaching.  Despite the criteria being specified, the nature of both the 

Grade 9 and 10 Science syllabuses allowed for huge variation in what was taught and 

how material was presented to students. 
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The Grade 11/12 science syllabuses incorporated a greater number of knowledge - as 

opposed to process - criteria than did the Grade 9-10 syllabuses, and thus attracted 

less criticism in this regard. 

 

 

1.6 THESIS STRUCTURE 

This thesis consists of the following components: 

Chapter 1 -  contains background information on how the current research project 

was developed, along with a brief perspective on science education in 

Tasmania. 

Chapter 2 -  documents the history of inquiry in science curriculum development, 

including the work of Henry Armstrong in the late 19th Century, that 

of John Dewey in the early part of the 20th Century, the reform 

movements of the 1960s, the work of Joseph Schwab, Project 2061 

and the development of the National Science Education Standards in 

the USA. 

Chapter 3 -  investigates the nature of inquiry teaching, including what is inquiry, 

why do proponents consider inquiry to be a desirable strategy, what 

might inhibit the use of inquiry and the relationship between inquiry 

teaching and constructivism. 

Chapter 4 -  looks at the stages in the development of the preliminary 

questionnaire including choice of scales, item writing and critiquing, 

ethical considerations and validation of the questionnaire. 

Chapter 5 -  documents the development of the final version of the student Is this 

an inquiring classroom? (ITIC) questionnaire, following analysis of 

the preliminary data.  It includes the considerations and methodology 

used in developing and administering the final student version. 
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Chapter 6 -  gives details of the data obtained from the ITIC student questionnaire, 

and the interpretation of this data. 

Chapter 7 -  documents the development of the teacher version of the Is this an 

inquiring classroom? questionnaire, and includes the interpretation of 

the teacher questionnaire results. 

Chapter 8 -  is an analysis of the Tasmanian science curriculum documents in use 

at the time that the ITIC was administered, carried out in order to 

determine how the concept of inquiry teaching sits within them. 

Chapter 9 -  is an analysis of the new Tasmanian Grade 11/12 science syllabus 

documents, that came into effect following the administration of the 

ITIC. 

Chapter 10 -  is an analysis of the new Tasmanian Essential Learnings syllabus 

documents, that came into effect following the administration of the 

ITIC. 

Chapter 11 - Overall discussion of, and concluding comments for, the ITIC research 

study.   

Following Chapter 11 are the References and Appendices.  These include the 

preliminary and final versions of the Is this an inquiring classroom? questionnaire 

(ITIC).  For the final version of the questionnaire both student and teacher versions 

are included. 

 

 



CHAPTER 2 - HISTORICAL BACKGROUND TO INQUIRY 

PEDAGOGY IN SCIENCE CURRICULUM 

DEVELOPMENT 

 

CHAPTER OVERVIEW 

This chapter considers the ideas and influence of the major proponents of inquiry 

teaching in science.  Although the true origin of inquiry teaching, or even the origin 

of the term heuristic, must be regarded as being lost in the mists of time the authors 

who have championed the teaching of science as inquiry can be more easily 

identified, as can the various educational reports and concerns that have impacted on 

the use of inquiry pedagogies in science classrooms.   

The chapter commences by considering the work of Henry Armstrong in the United 

Kingdom and John Dewey in the USA, before moving on to look at the various 

science curriculum reforms of the 1960s, including the influence of Joseph Schwab.  

Whilst the 1960s are often regarded as having been the heyday of inquiry teaching in 

science, a search of the literature reveals that inquiry teaching continued to have its 

proponents through the 1970s and 1980s despite there being debate over its 

effectiveness.  The late 1980s and 1990s saw a renewed call for curriculum reform, 

with the publication of the Project 2061 reports Science for all Americans and 

Benchmarks for Scientific Literacy, followed by the release of the National Science 

Education Standards documents in the USA in 1996.  These latter documents 

promote an inquiry approach to science teaching and have had considerable 

influence, so that by the early 2000s the term inquiry was extremely common in the 

titles of many articles published in relation to science teaching. 
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2.1 THE LATE 19TH AND EARLY 20TH CENTURIES - HENRY E. 

ARMSTRONG ADVOCATES HEURISTIC TEACHING METHODS 

IN THE UNITED KINGDOM 

Inquiry teaching is a construct which continues to recur in the literature relating to 

science curriculum development and reform.  Although many educators seem to 

accept that the emphasis on teaching science as inquiry had its origins in the late 

1950s and early 1960s, a little research reveals that inquiry as a science teaching 

pedagogy can be traced back much earlier than this.   

It is difficult to assign the origins of inquiry pedagogy to any one author, rather the 

ideas that it represents seem to have grown and recurred over time.  Solomon (1994) 

considered that the first attack on traditional didactic approaches to science teaching, 

which can be regarded as the antithesis of inquiry pedagogies, was made by H. E. 

Armstrong at the turn of the century (19th to 20th centuries), with Armstrong's 

development of heuristic methods of teaching.  Hence, Solomon appears to credit 

Armstrong with the development of heuristic science teaching methodologies. 

However, Armstrong himself, writing in the preface to a collection of his works 

(Armstrong, 1903), stated that he was responsible neither for developing the ideas 

behind heuristic teaching principles, nor for the introduction of the word heuristic.  

He considered that the heuristic method is as old as the hills and that it is the method 

of nature.  Brock (1973) gave examples to support this contention, noting such 

advocates as Locke and Rousseau, Erasmus Darwin (writing in Female Education), 

Thomas Day (writing in Sandford and Merton) and Richard Lovell Edgeworth 

(writing in Practical Education).  Although the origins of the term heurism may be 

somewhat obscure, it is undoubtedly the pedagogy under which Armstrong's 

methods, along with all those that have come to be termed inquiry methods, can be 

categorised.   

Armstrong stated that he first came across the term heuristic in a paper given by 

Professor Meiklejohn at the International Conference on Education, which was held 

in conjunction with the Health Exhibition at South Kensington in 1884.  Whilst 

Armstrong did not provide any further details of Professor Meiklejohn, Brock 

(1973), writing in the introduction to his collection of Armstrong's works, noted that 
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Professor John Miller Dow Meiklejohn held the Chair of the Theory, History and 

Practice of Education at St Andrew's University in Scotland, that he was one of the 

most prolific of Victorian school textbook writers and that he gave a paper titled 

Professorships and Lectureships on Education at the South Kensington conference.  

Brock considered that Armstrong found this paper eminently suggestive as it 

reinforced his own conclusions about pupil-centred learning.  Armstrong stated that 

Meiklejohn contended that the permanent and universal condition of all method in 

education is that it be heuristic.  He quoted Meiklejohn as saying that the heuristic 

method was the only method to be applied in the pure sciences and the best method 

of teaching of the applied sciences.  Therefore, Meiklejohn - and potentially others - 

had promoted inquiry type science teaching pedagogies around the time of, if not 

before, Armstrong. 

A point of Meiklejohns that Armstrong considered worth citing was that Edmund 

Burke was probably the greatest constructive thinker that ever lived.  The British 

statesman Burke (1729-1797) offered a view of education that would seem to be 

very much in agreement with Armstrong's ideas.   

A definition may be very exact, and yet go but a very little way towards 

informing us of the nature of the thing defined; but let the virtue of a 

definition be what it will, in the order of things, it seems rather to follow 

than to precede our inquiry, of which it ought to be considered as the 

result. It must be acknowledged, that the methods of disquisition and 

teaching may be sometimes different, and on very good reason 

undoubtedly; but, for my part, I am convinced that the method of 

teaching which approaches most nearly to the method of investigation is 

incomparably the best; since, not content with serving up a few barren 

and lifeless truths, it leads to the stock on which they grew; it tends to 

set the reader himself in the track of invention, and to direct him into 

those paths in which the author has made his own discoveries, if he 

should be so happy as to have made any that are valuable.  [Burke, 1756, 

¶ 3].   

Reading through Armstrong's works it soon becomes evident that this quote from 

Burke could equally have been written by Armstrong as an introduction to his own 
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methodologies, for it contains the essence of Armstrong's heuristic methods of 

teaching - letting the student take the position of the investigator in acquiring new 

knowledge.  Burke's writings are further evidence that inquiry teaching 

methodologies predate Armstrong - although they may have previously lacked the 

practical trials and detail that Armstrong provided, and may not have related to 

science teaching to the extent that Armstrong's work did. 

Brock (1973) offered some further insights into the origins of the term heuristic, 

noting that Meiklejohn used it in an 1860 lecture as if it were familiar to his 

audience, that the term heuristical was used in an 1848 teachers' manual, that 

Armstrong said that the term had still not reached the dictionary in 1898 and that it 

was Armstrong's Special Report, The heuristic method of teaching or the art of 

making children discover things for themselves, for the Board of Education in 1898 

that gave the term wide currency.  Brock noted that by the time of Meiklejohn's 

death in 1902 heurism was recognised as the war-cry of those who believed all 

teaching should be by means of carefully directed inquiry.  Given this information, it 

seems reasonable to conclude that it was Armstrong who was the main proponent of 

heurism in science teaching and who brought it to the forefront in Britain during his 

lifetime (1848 - 1937).  This view is supported by Armstrong (1924) describing 

himself as its (heurism's) most militant modern exponent.   

In the aforementioned report, The heuristic method of teaching or the art of making 

children discover things for themselves, Armstrong (1898) offered the opinion that 

the value of mere knowledge is immensely over-rated, and voiced support for 

heuristic methods of teaching - methods that involve placing students, as far as 

possible, in the attitude of the discoverer , and which involve their finding out 

instead of merely being told about things.  The term heurism is currently included in 

dictionaries, with the 1988 edition of the Chambers English Dictionary (Landau & 

Ramson, 1988) defining it as the method in education by which the pupil is set to 

find out things for himself and the 2002 edition of  The Compact Oxford English 

Dictionary (Soanes, 2002) defining heuristic as enabling a person to discover or 

learn something for themselves. 

Solomon (1994) equated Armstrong with Baden-Powell, commenting that whilst the 

latter was trying to stimulate initiative and self-reliance in the young by his invention 
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of Scouting, Armstrong was trying to instil the same spirit into the conduct of school 

experiments.  Solomon quoted the following from Armstrong, suggesting that it 

sounds as fresh today as on the day it was written: 

Let it be realised that an experiment is something altogether different from 

a demonstration or verification, just as a trial is very different from an 

execution . . .  The one involves prolonged mental activity, the other mere 

mechanical obedience.  In schools generally the work done is scarcely 

ever proper experimental work but merely work involving practical 

demonstrations or verifications - executions not trials.  Much nonsense is 

talked by trainers of teachers and by not a few teachers who ought to know 

better about the impossibility of children doing ‘original work’; it is 

forgotten that every conscious act done in ignorance of its consequences 

but with a distinct object of ascertaining what will happen is an act 

involving original enquiry. (Solomon, 1994, p. 9, who cited from Van 

Praagh, 1973). 

A detailed account of Armstrong's career in both chemistry and science education 

and the influences on the development of his educational thinking, including the 

extent to which his ideas were adopted, was given by Brock (1973) in his 

introduction to a collection of Armstrong's works.  Interestingly, Van Praagh (1973) 

edited a collection of Armstrong's works in the same year, and in the introduction to 

this volume gave a much briefer account of Armstrong's career than did Brock, but 

went on to link Armstrong's views on science education to current (circa 1973) 

thinking in science education. 

As the influence of Armstrong appears to have been a, or perhaps the, major one in 

the development of heuristic, and subsequently inquiry, science teaching methods, 

particularly in Britain, it is worth considering the development of Armstrong's ideas 

in some detail.   

According to the account given by Brock (1973), Henry Edward Armstrong studied 

at the Royal College of Chemistry in Oxford St.  Given the opportunity to attend 

some classes given by the biologist T. H. Huxley, Armstrong offered the criticism 

that one learned Huxley's opinions about an issue, but not how to form opinions of 
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your own.  This would suggest that from a relatively early age Armstrong was not 

tolerant of traditional methods of science teaching.  The writings of Armstrong 

(1898) supported this contention stating that as a student he had every desire to learn, 

but that didactic teaching seemed always to produce a sense of irritation, and that 

practical work was intensely interesting but only too often done on obedience to 

orders without the underlying philosophical motive being clear. 

From the Royal College of Chemistry Armstrong moved on to work with the chemist 

Edward Frankland, in his private laboratory, and then on to work with Herman 

Kolbe (who first synthesised salicylic acid - the basis of aspirin) in Germany.  Brock 

considered that it was Frankland and Kolbe who made Armstrong a critical and 

passionate believer in self-education through laboratory research - long before the 

terms inquiry or discovery teaching had been coined in science education.  Brock 

added that Armstrong himself said that his interest in the practice of scientific 

method was originally sparked by the writings of Richard Chenevix Tench, a poet, 

Professor of Divinity and Archbishop of Dublin who demonstrated a thorough 

questioning of evidence in his work.  Armstrong was reportedly also greatly 

impressed by the stringent examination and cross-examination that he experienced 

during a patent appeal court case.  He felt that this represented the acme of scientific 

treatment, and realised how far short of it scientists generally fell in their ordinary 

treatment of problems.  Brock summarised Armstrong's feelings as: 

• scientific training taught him to examine evidence and to ask questions about 

causes 

• Tench caused him to worry about meaning 

• the patent action made him alive to the need of a searching cross-examination 

and judicial consideration of every fact for and against a proposition. 

Armstrong used the term scientific method for the methodical logical use of 

information, and this term has become incorporated into the language of science 

education.  Brock reported that in an 1867 report commissioned by the British 

Association for the Advancement of Science a committee composed of the Harrow 

teacher Farrar, the physicist Tyndall, the biologist Huxley and the clergyman Wilson 

distinguished scientific information from scientific training.  Brock considered that 
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this distinction was the antecedent of Armstrong's distinction between scientific facts 

and scientific method.  As such this report could be suggested to have been 

influential in the development of inquiry methodologies, even though that may not 

have been the intent of its authors.  

At the end of 1870 Armstrong was appointed to the London Institute.  His previous 

teaching experience had been with medical students who had to be prepared for 

examinations.  At the London Institute Armstrong was no longer tied by 

examinations and began to devise different methods of teaching, encouraging 

students to tackle problems experimentally in the institution laboratory.  In 1879 

Armstrong was appointed to the Applied Chemistry lectureship at the newly 

established City and Guilds of London Institute, where he planned what Brock 

describes as a new kind of chemistry course, illustrated by experiments.  Moving on 

to work at the again newly formed Central Institution of the City and Guilds of 

London Institute Armstrong found that the chemistry students who were taught by 

his heuristic methods had a high failure rate when sitting London University 

examinations - due to the nature of the exams and his emphasis on practical, as 

opposed to bookwork.  However, in terms of research output and honours gained by 

his former students, his department had more prestige than any other chemistry 

department in London.  The dilemma produced by this situation represents an 

ongoing one in the use of inquiry methods in science teaching when preparing 

students who must sit a final examination that may not necessarily be designed to 

test those skills that an inquiry course most strongly develops.  Good examples of 

this in the Australian context have been many of the Grade11/12 exams that students 

must complete in order to obtain a tertiary entrance score and thus entrance to a 

university course.  In Armstrong's case the end result was, perhaps not surprisingly, 

that his chemistry department was abolished when the Central Institution merged to 

form the Imperial College of Science and Technology in 1907.  This scenario 

perhaps explains why many science teachers have argued against the use of inquiry 

methods in courses where students must be prepared for externally set examinations. 

Armstrong produced many works relating to his thoughts on teaching science.  He 

considered (Armstrong, 1903) that the germ of all his subsequent work could be 

found in his maiden essay, On the teaching of natural science as a part of the 
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ordinary school course and on the method of teaching chemistry in the introductory 

course in science classes, schools and colleges (Armstrong, 1884), and that the 

gradual development of the method - which came to be known as the heuristical 

method - could be seen by comparing this essay with his later ones.  The 1884 essay 

was delivered to the International Conference on Education in London, and in it 

Armstrong indicated that he saw observing and reasoning from observation and 

experiment as being the principles that should underlie the development of science 

courses.  He considered that in reality using these methods is only building on the 

fact that children are always putting questions, and that they have the desire to know 

the why and wherefore of everything they see.  He commented that it is a lamentable 

result of the present school system that the natural spirit of inquiry is stunted instead 

of its growth being carefully developed and properly directed. 

Brock reported that whilst conference participants seemed pleased by Armstrong's 

ideas they felt that the current (circa 1884) system of payment by results made 

Armstrong's methods unworkable.  However, apparently Armstrong himself never 

saw examinations as a great barrier to the wider adoption of his heuristic methods - 

he simply believed that the examination system should be changed to accommodate 

his ideas (eg Armstrong, 1898). 

In his works, variously presented as lectures, writings and reports, Armstrong (1903) 

advocated the introduction of Science for everyday life for all students into schools, 

specifically advocating the teaching of scientific method.  It seems to have been a 

consequence of these ideas that laboratory work became common in British schools - 

with Brock noting that until the 1960s most school laboratories resembled their 

ancestral forms at schools that Armstrong had had a close involvement with.  

Armstrong further advocated that teachers generally should have mastered the 

experimental method and be able to assume the attitude of the investigator.  He 

wrote in the preface to his 1903 collected works that the teacher who acts merely as 

the mouthpiece of others is only fit to train parrots  and that man is by nature a 

reasoning being and needs to be treated as such, adding that in schools this fact has 

been honoured more in the breach than in the observance.  Armstrong also expressed 

concern that no organised effort had been made to put youth in possession of the new 

knowledge of scientists such as Black, Cavendish, Dalton, Darwin, Faraday, 
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Lavoisier, Liebig and many others who in modern (sic) times had made the world of 

today what it is.   

Both Solomon (1994) and Brock (1973) reported that in 1896 the Oxford and 

Cambridge Examination Board gave approval to a school science syllabus which had 

largely been designed by Armstrong, and which he published an account of under the 

title Heuristic Method of Teaching or the Art of Making Children Discover Things 

for Themselves.  In this 1898 special report to the Board of Education Armstrong 

asserted that the recent progress which had been made in education was 

unquestionably due to the introduction of heuristic methods and exercises (of which 

he had been one of the chief advocates).  He went on to explain that heuristic 

methods are those that place students, as far as possible, in the attitude of the 

discoverer - methods which involve their finding out instead of merely being told 

about things.  He continued on to say that the value of mere knowledge is immensely 

over-rated and its possession over-praised and over-rewarded.  He praised the British 

Association Scheme for recommending a heuristic form of science course which was 

based on his methods, noting that in 1897 it was in use in over 40 of the London 

Board schools. 

Judging from the available accounts (Armstrong, Brock, Van Praagh, Solomon), 

Armstrong was a passionate believer in his heuristic teaching methods.  He was 

interested in science education at all levels, working with elementary through 

university level courses and students, and running courses for science teachers 

(Brock reported that nearly 200 teachers attended the first two Saturday morning 

sessions that Armstrong held at the Central Institution).  He prepared detailed 

science syllabuses (eg Armstrong 1889, 1890) to demonstrate how his ideas could be 

put into practice, and himself worked with classes.  Whilst he was influential in 

having heuristic methods, in particular experimental work, adopted in British 

schools, he was not without his detractors.  This may have been due to his reported 

proneness toward a sharp tongue and a critical attitude as much as to genuine 

disagreement with his ideas.  Brock reported that Armstrong's invective made him 

many enemies, and even a cursory reading of Armstrong's writings (eg Armstrong, 

1903) provides an insight as to why he may have been seen in this light. 
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Brock noted that the trade depressions of the 1880s demonstrated to many scientists 

that an industrial war could only be won if British industry and education altered 

radically.  Armstrong's opinion on this (Armstrong, 1896, 1901) was that it was a 

lack of research in industry that held British industry back, and that this lack of 

research was a reflection on school science teaching, which in Armstrong's opinion 

placed too little emphasis on training students in the scientific method. 

Brock also noted that a letter from the Association of Public School Science Masters 

(APSSM) appeared in The Times on 2 February 1916, blaming the state of the war 

on the neglect of science in British education, and resulting in the formation of The 

Neglect of Science Committee.  The pamphlet Science for All which originated from 

this and subsequent committees was evidently somewhat opposed to heurism as a 

science teaching methodology.  There was apparently a belief that heurism needed to 

be tempered with a more informative approach, and also that the preference for 

experiments by the class - to encourage the spirit of inquiry - to demonstration 

experiments led to a great waste of time, limiting the scope of science courses.  

Brock noted that some of the comments relating to heurism made in the compilation 

of reports that were presented in this era (1919) were in fact a caricature or 

misinterpretation of Armstrong's intentions - but that the reports had influence.  

Armstrong's ideals were also at times misinterpreted in schools - reportedly being 

often debased to a heavy emphasis on physical measurement and the physical 

sciences. 

Brock stated that it must be admitted that by the time of Armstrong's death in 1937 

the heuristic method, as originally conceived, had vanished, killed by the 

examination system and the collective criticisms of the new psychology, the general 

science movement and brilliant opposed writers, together with another war closing 

the 1930s.  With the associated need for fresh stringent economies, some teachers 

again questioned the British emphasis on laboratory teaching.  However, Brock went 

on to note that by the end of the 19th Century Armstrong had reshaped British 

science teaching, and that science teaching in Great Britain had been coloured by 

Armstrong's viewpoints since the 1890s.  Brock also pointed out that Armstrong was 

bound to attract criticism as he attacked every conceivable area of science education.   
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Solomon's writings supported Brock's description of Armstrong's influence, voicing 

the opinion that by 1925 Armstrong’s method began to fall from favour, but that his 

initiative never quite lost its appeal, and that when the educational system was ripe 

for another revolution it was ideas very similar to his which rose to the challenge.   

Brock commented that it is difficult to judge how far Armstrong is responsible for 

the modern (circa 1973) use of discovery methods, as undoubtedly American 

systems that owed nothing to Armstrong were influential on curricula such as 

Nuffield.  He also said that it is salutary to see how much of what Armstrong 

preached was being said in the early 1970s in the different but still pioneering 

language of experience learning, child-centred learning, integrated subjects, 

curriculum development and discovery methods.  Kuslan and Stone (1968) 

commented that much of what Armstrong asserted was fully supported by modern 

(sic) theory in science education, and that whilst Armstrong made no impression in 

the USA, and hardly more than a disturbance in England, the fresh note  that he 

struck in the education of children had survived. 

Armstrong's comment (1924) was that he had lived to see the attempt to develop the 

experimental method in schools a practical failure. 

Regardless of whether either Armstrong or other authors saw his attempts to 

introduce heuristic teaching methodologies as a failure, Armstrong must be regarded 

as a very strong influence in introducing educators, particularly science ones, to 

inquiry teaching methodologies.  Armstrong may have been particularly influential 

to those educators who knew of his work because of the hands-on approach that he 

seems to have adopted, actually working with groups of students in schools. 

 

 

2.2 JOHN DEWEY ADVOCATES REFLECTIVE THINKING IN THE 

USA 

Although Armstrong's work seems to have had little impact in the USA, at least at 

the time that he was active, very similar sentiments to his were being expressed in 
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the USA by John Dewey.  John Dewey has been described as being, in his own 

lifetime, America's best known and most influential philosopher (Skilbeck, 1970).  

In writing about Dewey, Skilbeck commented that Dewey's prolix method of writing 

made it difficult at times to be clear whether Dewey was expounding and criticising 

a position or developing his own ideas on a subject.  This tendency meant that 

Dewey's writings were not always readily accessible to a general audience, but this 

notwithstanding, Skilbeck commented that Dewey's thinking was to affect 

generations of teachers and educational theorists, not only in America but throughout 

the world.   

The core of Dewey's thinking on education is expressed in a 1909 address to the 

American Association for the Advancement of Science (Dewey, 1910a).  Here he 

stated the position that everyone with an interest in the sciences having an 

appropriate place in education must feel a certain amount of disappointment at the 

results attained to date.  He singled out an influential reason for this as being that 

science had been taught too much as an accumulation of ready-made material with 

which students were to be made familiar and not enough as a method of thinking and 

an attitude of mind.  This becomes a theme throughout Dewey's writings and seems 

very similar to the thoughts and sentiments being expressed by Armstrong in the 

United Kingdom around the same era.   

Dewey identified a possible reason for the prevailing method of science teaching as 

being the number of sciences that existed and the indefinite bulk of material in each.  

He cited the case of the discussions of college faculties over the last 25 years 

concerning entrance requirements in science, with alternative calls for a little of a 

great many sciences and a good deal (comparatively) of one biological and one exact 

science.  Dewey pointed out what he saw as the absurdity of what schools attempt to 

do in science education by drawing a comparison with languages.  He said imagine a 

curriculum where each of the three terms of the year was devoted to a language.  In 

the first year Latin, Greek and Sanskrit were covered, in the next year, French, 

German and Italian and the last year was given to review with Hebrew and Spanish 

as optional studies.  Unfortunately, Dewey's analogy has something of a ring of truth 

even for today's school science courses.   
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In his address Dewey went on to reveal that his preferred position was one where 

science is presented as an effective method of inquiry into any subject matter.  He 

said that if there is any knowledge which is of most worth it must surely be the 

knowledge of the ways in which something comes to be entitled to be called 

knowledge, rather than opinion, guess work or dogma.  He said that such knowledge 

is a mode of intelligent practice, a habitual disposition of mind, and that only by 

taking a hand in the making of knowledge, the transferring of guess and opinion into 

belief authorised by inquiry does one ever get a knowledge of the method of 

knowing.  Dewey considered that it was because science had not provided such 

opportunities to students that it had not accomplished in education what was 

predicted for it.  He also considered that only by pressing the courtesy of language 

beyond what is decent could we term the acquisition of information which is ready 

made, without active experimenting and testing, science.  He identified a particularly 

pressing problem as being turning laboratory technique to intellectual account.  His 

meaning here was that students should be required to do more than just follow recipe 

book type laboratory procedures, where they simply learnt to use scientific 

equipment.   

In a continuation of this theme Dewey (1945 republication of 1916 article) saw 

science as knowledge at its best, but considered that something was lost if it was not 

taught so students acquired a sense of what gives it its superiority.  Dewey was of the 

opinion that elementary science education is critical, with there being a need for 

teachers at this level to give students a first hand acquaintance with a fair area of 

natural facts to arouse their interest in the discovery of causes, dynamic processes 

and operating forces - as opposed to merely making observations and recordings.   

Like Armstrong, Dewey saw scientific education as being valuable for all students, 

not just those who were going to work in the field of science (Dewey, 1910a, 1945).  

He considered that the great majority of those who leave school should have some 

idea of the kind of evidence required to substantiate given types of belief, and that 

they should have a lively interest in the ways in which knowledge is improved and a 

marked distaste for all conclusions reached in disharmony with the methods of 

scientific inquiry.  Dewey felt that the real measure of effective science education 

was to be found in the extent to which the public at large adopted and was guided by 
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the methods of scientific thinking in all things - not by the number of scientists 

produced, nor by the increasing mastery of nature. 

Expounding on these views, Dewey (1916) stated that because the mass of pupils 

were never going to become scientific specialists it was much more important that 

they got some insights into what scientific method meant than that they should copy 

at long range and second hand the results that scientific men had reached.  He added 

that the few who do go on to become scientific experts will also have had a better 

preparation than if they had been swamped with a large mass of purely technical and 

symbolically stated data.  He considered that those who do become successful men 

of science are those who manage to avoid the pitfalls of a traditional scholastic 

introduction into it - an indication of the lack of faith that Dewey placed in 

contemporary science education. 

Dewey went even further than claiming that science education for all was desirable, 

stating that he believed that the future of our civilisation depended upon the 

widening spread and deepening hold of the scientific habit of mind.  He said that 

scientific method represented the only method of thinking that had proved fruitful in 

any subject.  Skilbeck (1970) noted that Dewey's faith in scientific method as a 

universal cure to social malaise remained unshaken through two world wars, the 

careers of fascism and communism, economic depression and the cold war.  Dewey 

saw the cycle of scientific method as a standard to which all forms of thinking 

should strive to reach, with all beliefs being held provisionally, subject to further 

inquiry. 

The influence of Dewey can be gauged by the comment of Rudolph (2003) that 

nearly all the recommendations of the science education establishment made during 

the first half of the twentieth century bear the mark of Dewey's thought in one form 

or another.  It can also be gauged as Rudolph pointed out by the wholesale adoption 

of his book How We Think by the teacher training institutes in the USA as a guide 

for teaching the scientific method.  This volume was published in 1910 and again as 

an extensively revised edition in 1933. 

In How We Think Dewey (1910b), who had experience as a teacher, described a 

process of inquiry he termed reflective thinking in which students began with a 
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perplexing situation, formulated a tentative interpretation or hypothesis, tested the 

hypothesis to arrive at a solution and acted upon (or tested) the solution.  In How We 

Think Dewey identified the phases of reflective thought as: 

• suggestion 

• intellectualisation - problem identification 

• hypothesis 

• reasoning 

• testing. 

These were the processes that he saw as basic to scientific thought and which should 

become part of every student's education.  Dewey made it clear that instruction in 

scientific thinking rather than science per se should be the primary aim of the science 

teacher, with reflective thinking forming the basis of an inquiry pedagogy.  Dewey 

saw reflective thinking as being an appropriate reform not just for science education, 

but for education in general.  He started from the premise that some principle that 

makes for simplification of what goes on in schools was needed and gave as his tenet 

the conviction that the needed steadying and centralising factor was to be found in 

adopting as the end of endeavour that attitude of mind, that habit of thought which 

we call scientific.  He said that his book represented the conviction that the naïve and 

unspoiled attitude of childhood, marked by ardent curiosity, fertile imagination and 

love of experimental inquiry was very near to the attitude of the scientific mind.  In 

this regard, Dewey's thoughts mirror those of Armstrong who saw children as always 

putting questions and having the desire to know the why and wherefore of 

everything. 

Dewey defined and promoted reflective thinking as an  

active, persistent and careful consideration of any belief or supposed form 

of knowledge in the light of the grounds that support it and the further 

conclusions to which it tends (Dewey, 1933, p. 9)  
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and contended that application of this principle would lead to individual happiness 

and the reduction of social waste.  Dewey considered that to be genuinely thoughtful 

humans must maintain a state of doubt, not accepting an idea until justifying reasons 

have been found.   

An ongoing theme in Dewey's work is that the aim of schools often seems to be the 

amassing of knowledge, covering ground and making students a cyclopedia of 

useless information.  Whilst acknowledging that thinking cannot go on in a vacuum, 

with suggestions and inferences only occurring to a mind that possesses factual 

information Dewey remained convinced that too much knowledge accumulation was 

happening in schools, with students frequently being immersed in mere details, their 

minds loaded with disconnected piecemeal statements of facts and laws.  He 

considered that only deduction or reasoning brought out and emphasised consecutive 

relationships and that only when relationships were held in view did learning become 

more than a miscellaneous scrap bag.  

Dewey wrote that thinking is inquiry - investigation, turning over, probing or delving 

so as to find something new or to see what is already known in a different light, that 

in short it is questioning. 

Despite the acknowledged influence of Dewey the inquiry teaching methods that he 

advocated do not seem to have become widespread in the USA in his era.  

Comments made by Dewey in the introduction to a republication of one of his 1916 

articles (Dewey, 1945) support this interpretation of history.  In this introduction 

Dewey wrote that the course of events over the last thirty years have reinforced what 

is basic to the article, the two main points being firstly that science should be seen as 

the primary method of intelligence, and secondly that education in scientific thinking 

is important for all students.  These thoughts indicate that by 1945 science education 

had not changed to accommodate Dewey's way of thinking. 
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2.3 INQUIRY IN OFFICIAL REPORTS 1918 - 1947 

Some examples provided by Driver (1983) indicate that methods very similar to 

those of both Armstrong and Dewey, and which may be regarded as representing an 

inquiry approach, continued to be mentioned in official reports well into the 1900s.  

Driver was of the opinion that for as long as science had had a place in the school 

curriculum there had been a tension between the acquisition of knowledge and the 

use of pupils’ own inquiries in the pursuit of further knowledge.  She considered that 

over the last 100 years documents on the role of science in general education had 

reflected this tension.  In this regard, the experiences of Armstrong in the United 

Kingdom and Dewey in the USA were no exception. 

Driver quoted the following passage about science from the Report of the Committee 

on the Position of Natural Science in the Educational System of Great Britain, titled 

Natural Science in Education, which was published in 1918: 

It can arouse and satisfy the element of wonder in our natures.  As an 

intellectual exercise it disciplines our powers of mind.  Its utility and 

applicability are obvious.  It quickens and cultivates directly the faculty of 

observation.  It teaches the learner to reason from facts which come under 

his own notice.  By it, the power of rapid and accurate generalisation is 

strengthened, without it, there is a real danger of the mental habit of 

method and arrangement never being acquired. (Driver, 1983, p. 74) 

Driver then quoted from a 1936 report by the Science Masters' Association, The 

Teaching of General Science, which listed three main contributions that science 

made to general education.  These were: 

1. utilitarian or vocational: it helps the pupil in their everyday life, or may 

be necessary in their future occupations 

2. disciplinarian: it teaches them to think; it sharpens their minds 

3. cultural: its inclusion is desirable because it forms an essential part of 

our social heritage (Driver, 1983, p. 74). 
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Hence, the idea that science helps to develop important skills as well as providing 

knowledge continued to be recognised.  The development of process skills such as 

the thinking ones referred to above call for the use of inquiry methodologies, so 

inquiry can be regarded as being an ongoing theme up to this time. 

Similar concerns about the state of science teaching were evident in American 

publications of this era.  Hurd (1969) noted three significant ones: 

1. In 1938 The Progressive Education Association published a document  

Science in General Education describing a program emphasising the inquiry 

and social aspects of science. 

2. In 1945 a Harvard University Committee reporting in General Education in a 

Free Society recommended the teaching of high school science using broad 

integrative elements and scientific modes of inquiry set within cultural, 

historical and philosophical contexts. 

3. In a series of 1947 reports on the effectiveness of science instruction the 

President's Scientific Research Board deplored the conditions where students 

were taught science as a world of natural laws, or orderly cause and effect 

not a world of chance or arbitrary action.  This committee noted the lack of 

student interest in the physical sciences and suggested that much more use 

could be made of the history of science, its adventures and dramatic action, to 

appeal to young people's interests and arouse their imagination. 

 

 

2.4 INTO THE 1960S - THE IMPACT OF THE SPUTNIK LAUNCHES 

Although the preceding discussion shows that the importance of the thinking skills 

developed by science have long been acknowledged, it seems to have been the 

Soviet launch of Sputnik on October 4 1957 which provided the impetus to bring 

about major changes to the way in which science was taught in American schools, 

and the further development - and subsequent naming - of inquiry methods.   

  35 



The NASA website, (Sputnik and the dawn of the space age, n.d.), states that as a 

technical achievement, Sputnik caught the American public off-guard, and that the 

public feared that the Soviets' ability to launch satellites also translated into the 

capability to launch ballistic missiles that could carry nuclear weapons from Europe 

to the USA.  It goes on to say that the Soviets struck again, when on November 3, 

Sputnik II was launched, carrying a much heavier payload, including a dog named 

Laika.  The Sputnik launches led directly to the creation of the National Aeronautics 

and Space Administration (NASA), and also, indirectly, had far reaching effects on 

science education. 

Collette (1973) said that Americans were embarrassed because of the progress the 

Russians made in their space program. Nagalski (1980) described them as being 

stung by what was perceived as the growing Russian edge in space and technology, 

whilst Solomon (1994) considered that there was not so much an educational 

revolution as a public convulsion at the state of science teaching - sparked off by the 

colossal affront to U.S. national pride of the Soviet launching.  School and college 

science teaching was singled out as the public scapegoat for this humiliation, 

making, to use Solomon's phrase, 'the time ripe for another revolution' and being the 

push behind the next round of major changes in how science was taught. 

Consequent to the outcry over the Sputnik launches, both the National Science 

Foundation and the National Academy of Science began curriculum reform projects 

in America.  Shymansky, Kyle, and Alport (1983) noted that the curriculum reform 

movement had a gradual beginning with the formal organisation of the Physical 

Science Study Committee late in 1956, as a result of a 1954 recommendation of the 

Division of Physical Science of the National Academy of Science encouraging 

professional physicists to work with high school, and college instructors to develop 

new courses.  Although this indicates that work on new curricular had started prior to 

the launch of Sputnik it seems to have been that launch that added momentum to this 

curriculum development - to the extent that Collette (1973) commented that some of 

the most innovative, and spectacular changes ever to occur in American public 

school education took place in the area of science around this time.   

Collette (1973) reported that many new approaches were produced by national 

curriculum groups up to 1965, with all these approaches attempting to lead students 
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through a series of experiments which encouraged the creative process, and to bring 

them to a point where they conceptualised the scientific knowledge they obtained.  

Although they may not have been either recognised or acknowledged as such at the 

time these courses were advocating Armstrong's ideas, and inquiry teaching. 

What has been described as a prophetic lecture by Joseph Schwab in 1961 is said to 

have heralded the movement for inquiry methods in science education, although 

Lucas (1971) also listed Suchman as ‘one of the two major proponents of inquiry 

teaching’, and Shulman and Tamir (1973) noted that, discovery and inquiry were 

significant ideas in the book The Process of Education written by Jerome Bruner 

(1962) as a result of the National Academy of Sciences conference at Woods Hole.  

The most likely scenario would seem to be that all authors had an influence on a 

renewed call for inquiry science teaching methodologies and hence on the term 

inquiry becoming entrenched in the science education literature. 

As the Woods Hole conference occurred first chronologically its influence on 

inquiry teaching in science education will be considered first. 

 

 

2.5 THE WOODS HOLE CONFERENCE 

The Woods Hole Conference was held at Woods Hole on Cape Cod in September 

1959.  Over 10 days this conference brought together 35 scientists, scholars and 

educators to discuss how education might be improved in USA primary and 

secondary schools - examining the fundamental processes involved in imparting to 

young students a sense of the substance and method of science.  Jerome Bruner was 

the Chairman of the Woods Hole Conference, and as such attempted to synthesise a 

report of what were, in his opinion, the major themes, principal conjectures and most 

striking tentative conclusions of the conference.  He prepared the report The Process 

of Education (Bruner, 1962) in consultation with the other conference participants. 

Bruner (1962) reported that at this time a number of major efforts in curriculum 

design had already been launched by leading physicists, mathematicians, biologists 
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and chemists.  He cited the Physical Science Study Committee, PSSC, and 

Biological Sciences Curriculum Study, BSCS, as two examples, and added that 

similar projects were in prospect in other fields of scientific endeavour.   

Bruner further added that various learned societies were searching for and finding 

ways of establishing contact between leading scholars and educators and that 

educators and psychologists were examining anew the nature of teaching methods 

and curricular and were becoming increasingly ready to examine fresh approaches.  

This made the time ripe for an overall appraisal of the situation - resulting in the 

Woods Hole Conference, which Bruner described as unique in bringing together 

scientists, psychologists, professional educators and historians (included with a view 

to comparing the issues involved in science teaching to those in a more humanistic 

field).   

In the introduction to his volume Bruner commented that what was emerging as a 

trademark of his generation was a widespread renewal of concern for the quality and 

intellectual aims of education, with a considerable portion of the population having 

become interested in the question What shall we teach and to what end?  He noted 

that this trend is accentuated by what  

is almost certain to be a long-range crisis in national security, a crisis 

whose resolution will depend upon a well-educated citizenry (Bruner, 

1962, p.1).   

Bruner's interpretation of the situation mirrors the comments cited previously re the 

soviet launches.  He went on to say that if all students were helped to the full 

utilisation of their intellectual powers we would have a better chance of surviving as 

a democracy - thought processes that again have the flavour of Dewey and 

Armstrong about them. 

Bruner identified four major themes from the conference.  The first of these was the 

role of structure in learning and how it may be made more central in teaching.  The 

premise here was that students have a limited exposure to the materials they are to 

learn, so how can this exposure be made to count in their thinking for the rest of their 

lives?  The dominant view was that the answer to this question lay in giving students 

an understanding of the fundamental structure of subjects - rather than simply the 
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mastery of facts and techniques.  Non-specific transfer (or the transfer of principles 

and attitudes) is said to be at the heart of the educational process, consisting of 

initially learning not a skill but a general idea - which can then be used as a basis for 

recognising subsequent problems as special cases of the idea originally mastered.  It 

was argued at Woods Hole that it might be wise to assess what attitudes or heuristic 

devices are most pervasive and useful, and to then make an effort to teach children a 

rudimentary version of these that could be further refined as they progressed through 

school.  Bruner commented that too little is known about how to teach fundamental 

structure effectively or how to provide learning conditions that foster it.  Much 

discussion at the conference centred around this question reportedly had to do with 

ways and means of achieving such teaching, and of the kinds of research needed to 

help in preparing curricular with emphasis on structure.   

The second theme of the conference identified by Bruner related to readiness for 

learning.  The proposition here was that the foundations of any subject may be taught 

to anybody at any age in some form; that the basic ideas that lie at the heart of all 

science (and mathematics) are as simple as they are powerful.  To be in command of 

these basic ideas, to use them effectively, requires a continual deepening of one's 

understanding of them that comes from learning to use them in progressively more 

complex forms.  Bruner stated that it is only when such ideas are put in formalised 

terms as equations or elaborated verbal concepts that they are out of reach of the 

young child. 

Bruner also noted a central conviction, that intellectual activity anywhere is the 

same, whether at the frontier of knowledge or in the third grade.  What a scientist 

does at his desk or in his laboratory, what a literary critic does in reading a poem, are 

of the same order as what anybody else does when engaged in like activities - if they 

are to achieve understanding.  The difference is in degree, not in kind - the 

schoolboy learning physics is a physicist and it is easiest for him to learn physics 

behaving like a physicist than doing something else.  (The something else came to be 

called 'middle language' at Woods Hole - classroom discussions and textbooks that 

talk about the conclusions in a field of intellectual inquiry rather than centring upon 

the inquiry itself). 
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The third theme of the Woods Hole conference related to intuitive thinking.  

Participants saw this as something to be valued and noted that it was an objective of 

many of the most highly regarded teachers in mathematics and science, but were 

unclear how it could be specifically taught.  One suggestion was that teachers might 

be able to model it by guessing at answers to questions asked by their class and then 

subjecting these guesses to critical analysis.  It was thought that maybe it is better for 

students to guess at an answer rather than be struck dumb - as very often in science 

and in life we are forced to act on the basis of incomplete knowledge. 

The fourth conference theme had fewer implications for inquiry teaching, relating to 

motives for learning.  In summary motives for learning must be based as much as 

possible upon the arousal of interest in what there is to be learned.  The quest 

identified was to devise materials that challenged the superior student whilst not 

destroying the confidence of others. 

Given the above themes, it is easy to see why The Process of Education is regarded 

as having discovery and inquiry as significant ideas.  However, as these themes arose 

out of group discussions, it seems that no particular individual was credited with 

their inception.  Further, no single individual from the group seems to have emerged 

as continuing to foster these ideas and so help entrench them as part of the psyche of 

science educators. 

 

 

2.6 JOSEPH SCHWAB CHAMPIONS INQUIRY TEACHING 

Given the lack of follow up by members of the Woods Hole conference, it seems to 

have fallen to Joseph Schwab to be the champion of inquiry teaching in science 

education.  Although, Westbury and Wilkof (1978) considered that much of 

Schwab's writing had been uncertain in its impact, as the character of his thought and 

the medium of publication that he used (largely essays written from the viewpoint of 

an engaged intellectual) made it difficult for many readers to comprehend the totality 

of his concerns, Schwab's influence can still be regarded as the single most 

influential one in introducing the concept of inquiry teaching to science educators.  
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Westbury and Wilkof described Schwab's essays as invitations to enquiry - perhaps 

something that Schwab would have seen as fitting.  They also commented that 

during the late 1950s, as Schwab sought to work with teachers and faculty of schools 

of education, and as he was at his most productive intellectually and receiving 

widespread recognition as a theoretician, his writing was seen as puzzling and 

enigmatic (probably particularly to those who had never known the general 

education movement) and more often than not was misunderstood.  It is interesting 

that two profound believers in the value of inquiry pedagogies, Schwab and Dewey 

both wrote in a style that was rather inaccessible to teachers at large. 

Reid (1999) agreed with Westbury and Wilkof's assessment of Schwab's writings, 

commenting that in spite of his prominence in the literature of curriculum Schwab's 

ideas were hard to categorise and could, therefore, be hard to understand.  Reid 

described Schwab as a writer of 'practical' papers which practitioners often found 

incomprehensible.  An interesting comment that Reid made was that Schwab was 

notable for his promotion of conversation over content, and that Schwab identified 

this as a marker of his quarrel with the mainstream of thinking on curriculum.   

Westbury and Wilkof (1978) noted that Joseph J. Schwab worked in the University 

of Chicago for nearly fifty years, entering the university at age fifteen, graduating in 

1930 with a baccalaureate in English literature and physics, completing a doctorate 

in genetics, in 1938 becoming an instructor and examiner in biology and retiring 

from the university in 1974 as Professor of Education and William Rainey Harper 

Professor of Natural Sciences.  During 1937 he accepted a fellowship in science 

education at Teachers College, Colombia University.  Thus, Schwab worked in the 

University of Chicago's undergraduate program during a time of curriculum reform 

there and was greatly influenced by the collegiality, forms of thought and practices 

of that period.  He favoured the idea of a general education that was informed by the 

disciplines or ways of knowing, introduced discussion teaching methods into the 

undergraduate program, believed in the tractability of science for general education 

and was passionately concerned with the relationships between science, values and 

education.  As part of the reform of the undergraduate course at the University of 

Chicago a one year integrative capstone for the whole course, titled Observation, 

Integration and Interpretation (OII) was introduced in order to explore the various 
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fields of knowledge studied previously.  Westbury and Wilkof believed that this was 

an important influence on his later intellectual development.   

Westbury and Wilkof (1978) considered that Schwab's thoughts on science were 

significantly influenced by Dewey's philosophical work, but where Schwab parted 

company with Dewey, according to Rudolph (2003) was in the degree to which he 

believed that methods of inquiry could operate independently of disciplinary content.  

Dewey claimed that the methods of science were ultimately applicable across any 

domain, whilst Schwab argued that the methods of science were discipline specific. 

At the time of his aforementioned 1961 lecture Joseph Schwab was a professor of 

natural sciences and education at the University of Chicago.  Although it may have 

been the 1961 lecture that brought inquiry teaching methodologies to the public (or 

at least educators') eye, Schwab had written about his ideas before this.  In 1958, 

whilst Harper Professor of Natural Sciences and also Professor in the Department of 

Education at the University of Chicago Schwab authored an article titled The 

teaching of science as inquiry.  The editorial paragraph, which introduced the author 

of each article, described him as a pioneer in new educational methods in the 

teaching of science at the general level to college students.   

Schwab (1958) stated that the formal reason for a change in the present methods of 

teaching science lay in the fact that science itself had changed.  In particular, he 

considered that three properties of emerging scientific knowledge distinguished it 

from nineteenth century science, and listed these as: 

• the special reference of science knowledge 

• its revisionary nature 

• its plural character.   

Schwab described nineteenth century science as being supposed to seek and find 

inalterable truths and that the education appropriate to such a view was clearly 

mastery of the facts so discovered.  Hence, in the nineteenth century a clear, 

unequivocal, coherent organisation and presentation of the known - in other words a 

rhetoric of conclusions - was the most appropriate method of teaching science.  No 
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need was seen for evidence, interpretation, doubt or debate and students were to 

learn and remember the material that they were given.  Schwab stated that a 

dogmatic education embodied in authoritative lecture and textbook, inflexible 

laboratory instructions, and exercises presenting no problems of choice and 

application was the education appropriate to the nineteenth century view of science 

(although authors of the era, such as Armstrong would surely have disagreed with 

him on this point).  He went on to add that it was shockingly clear that this was also 

the science education purveyed by most American schools today (referring to the 

time of his writing).   

He added that four reasons were given for this situation: 

• that the time allotted to education would permit a view of inquiry only at the 

expense of coverage 

• that students would merely be confused by discussion of doubts and 

alternatives 

• urgencies, such as a shortage of engineers, are appealed to as a reason to 

follow the traditional course 

• that a class of journeymen engineers and pedestrian teachers maintained and 

regulated by a scientific elite is a necessary economic measure. 

Schwab, however, did not accept any of these reasons as being sound ones, and went 

on to explain what he saw as being a better science curriculum.   

Schwab explained that the teaching of science as inquiry had two senses, firstly that 

science is presented as inquiry, and secondly, that students undertake inquiries as a 

means of learning material.  He said that the traditional classroom and laboratory can 

be converted by means such as: 

• Laboratory sessions become occasions for partial or miniature inquiries and 

are much more permissive and open, with problems being posed to which 

students do not know the 'right' solution. 
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• Situations may be set in which students find and formulate a problem as well 

as planning and carrying out procedures to investigate it. 

• Students are called upon to exercise judgement and choice concerning the 

parameters to be chosen for study and the interpretation of the data obtained. 

• Students are called upon to dissect the records of a scientific inquiry in order 

to distinguish its constituent concepts, assumption, data etc and thus come to 

understand their roles.  Schwab described four different ways in which actual 

scientific research and discoveries could be presented as inquiry. 

In an article first published in October 1960, but reprinted as Schwab (2000), he 

summarised his thoughts on the problems then facing science teachers.  He 

considered that the problems stemmed from two roots, firstly, a national need of high 

and urgent priority, and, secondly, a change in the character of science itself - from a 

literal-minded empiricism to a complex in which conceptual invention plays a vast 

role.  The implication of this for science education, according to Schwab, was that 

expertise - authoritative possession of a body of knowledge about a subject matter - 

was no longer enough to qualify men as the best teachers of science.  He continued 

on to add that time hallowed instruments of instruction, such as the lecture, the 

textbook and the test, would be inadequate or even inappropriate for much science 

teaching.  Schwab considered that a dual clientele for science education existed 

within schools, those who were potential consumers of scientific knowledge and 

those who were possible makers of that knowledge.  He concluded by saying that 

whilst the first impulse may be to view enquiry as something for very few, for the 

top five or ten percent of students, he did not believe that this should be the case.  

Again, Schwab's ideas echo those that had been espoused by Armstrong and Dewey. 

Schwab expanded on these thoughts on science education in the lecture titled The 

Teaching of Science as Enquiry, which he delivered as the 1961 Inglis Lecture 

(Schwab, 1966).  In this lecture, Schwab stated that after years of indifference or 

disdain for educational problems large numbers of scientists had come out of their 

laboratories and become involved, either directly or indirectly, in curriculum matters.  

The Woods Hole Conference is evidence that Schwab was correct in this regard.  

Schwab summarised this situation as having been brought about by the need to 
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maintain and support a mode of scientific enquiry which had never before been so 

urgently required, so visible to the naked, public eye, and understood so little by so 

few.  Schwab went on to state that this need could be filled simply by teaching 

science as science, and that what was required was that in the very near future a 

significant section of the public become cognizant of science as a product of fluid 

enquiry.   

The three publications mentioned above seem to have been the foundations for 

presenting Schwab’s ideas to the science education community. 

Westbury and Wilkof considered that during the early 1960s, when the concerns of 

American schoolmen centred on the content of high school science, Schwab was 

seen as a spokesman for the importance of discipline-based teaching of science in the 

schools, with several of his writings becoming basic texts for the structuralists in the 

schools and colleges of education.  They said that Schwab's primary commitment 

was always with science as a habit of enquiry, and that he was particularly interested 

in the description and analysis of why a particular science chooses at a particular 

time to emphasise one conception or verification over another. 

It would seem that by 1974 Schwab felt that some progress had been made in this 

area, as he commented (Schwab, 1974) that the teaching of science was no longer 

merely the imparting of a special body of knowledge, but now included the effort to 

impart competencies and attitudes: competencies to inquire in one way or another; 

attitudes and values concerning evidence and argument, certainty and uncertainty.  

He added that this shift imparts to the teaching of science much that is common to 

the teaching of literature and of the social studies – and that at the same time these 

areas have become much more scientific.  He also added that the effectiveness of any 

means of teaching any body of knowledge was in part a function of what was 

happening to those students in other areas/parts of the curriculum (including the 

expectations, habits and attitudes generated in other curriculum areas).   

Schwab related these ideas to what he saw as the then current problems of inflation, 

unbridled consumption of irreplaceable natural resources and the deterioration of the 

environment, stating the view that the American people and their leaders were 

reluctant and unequipped to make decisions and choices.  He saw too much effort 
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going into giving attention to each part in isolation with a failure to provide adequate 

means of communication and collaboration amongst experts.  He suggested that 

whilst the schools alone could not set this situation right, it could not be rectified 

without the schools, who must begin to teach the young what a seriously formulated 

practical problem looks like and also to give them a beginning idea of what a good 

solution entails.  Whilst Schwab did not mention inquiry teaching as such in this 

discussion it would obviously be the basis of such work in schools.  He proposed 

that the natural sciences, social studies and humanities in every school cut their time 

and coverage of their own subject matter by one third, and that this time be used to 

convey the disciplines of treatment of practical problems.  He gave as an example 

the fact that the energy crisis would not be solved by an engineer who worked 

merely with the matter of solar capture, whilst a political scientist studied the 

political side of the matter and an economist the economics.  In other words, he was 

noting the existence of a synergy between these groups, leading to a refinement of 

his earlier ideas on the teaching of science as inquiry, with the inquiries that students 

undertake now moving beyond the field of science.  He added that teachers would 

not know how to teach this and that there was no recognisable group of men to train 

them, but that we should make a start anyway.  Schwab could have just as easily 

written this about the implementation of the Essential Learnings curriculum in 

Tasmania over the period 2001-2005.  This curriculum will be mentioned more later 

on, but it is interesting to note that the aims and problems are similar. 

As Schwab was particularly influential/active in the area of teaching science as 

inquiry, his ideas will be examined more fully in the next chapter. 

 

 

2.7 AN OVERVIEW OF THE 1960S 

Suchman (1961) cited the work of Bruner in making his own comments on the use of 

discovery methods.  Suchman's work referred to a variety of curricular, not just in 

the field of science.  He considered that discovery was a powerful educational tool 

and stated that around the time of his writing a growing number of educators had 

been motivated to capitalise on the intense motivation and deep insight that seemed 
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to accrue from the discovery approach to concept attainment.  He described the 

results of using independent discovery methods in mathematics and physics, in 

particular, as dramatic.  Suchman summarised the research of Bruner and other 

researchers as saying that concepts are most meaningful when the learner actively 

gathers and processes the data from which these concepts emerge.  He considered 

that this was true because: 

a) The experience of data gathering (exploration, manipulation, experimentation 

etc) was intrinsically rewarding. 

b) Discovery strengthened the child's faith in the regularity of the universe 

which enables them to pursue causal relationships under highly frustrating 

conditions. 

c) Discovery built self-confidence which encourages the child to make creative 

intuitive leaps. 

d) Practice in the use of the logical inductive processes involved in discovery 

strengthened and extended these cognitive skills. 

Suchman wrote that the educational practices of the time made children less 

autonomous and less empirical in their search for understanding as they moved up 

the elementary grades.  It would be reassuring to be able to assert that in the 

education system of the twenty first century this is no longer the case, but 

examination of current practices would still seem to support it!  Suchman stated that 

instead of children devoting their efforts to storing information and recalling it on 

demand they should be developing the cognitive functions needed to seek out and 

organise information in a way that would be most productive of new concepts.  He 

emphasised that the educator should be concerned above all with the child's process 

of thinking - trusting that the growth of knowledge will follow in the wake of 

inquiry.  He went on to describe the Discovery through Inquiry program that he had 

collaboratively designed for elementary schools, and which was designed to let 

children acquire the attitudes, skills and strategies that are fundamental to the 

scientist's approach to research.  He proposed this inquiry training not as a new way 

of teaching science, but as a way of teaching basic cognitive skills, which he 
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suggested are just as important to the intellectual development of the child as reading 

and arithmetic.  Again, the thoughts of Dewey seem to recur. 

Hence, Suchman saw inquiry teaching as being important both within and beyond 

science education. 

Some of the important and well known American curriculum projects which 

appeared during, or grew out of, the 1960s era include BSCS (Biological Sciences 

Curriculum Study), Harvard Project Physics, PSSC(Physical Science Study 

Curriculum) and CHEMstudy.  Joseph Schwab was himself the author of some of 

these texts (eg Schwab, 1963 - Biology Teachers' Handbook).  To give an idea of the 

uptake of these courses, the PSSC course was in 1964-1965 in one form or another 

being taught to approximately half of the high school students in the USA who were 

enrolled in physics courses, and the PSSC subsidised the in-service training of 

approximately eight thousand high school teachers in summer institutes (Kuslan & 

Stone, 1968). 

In England Nuffield Science Projects were making considerable resources available 

for the production of curriculum materials at around this time.  In his comments on 

Armstrong's work, Brock (1973) described Armstrong's heuristic methods together 

with the American project methods as being the indirect antecedents of the Nuffield 

Foundation's science teaching projects of the 1950s.  Solomon (1994) reported that 

the Nuffield Project concluded with the following as the characteristics of the kind of 

science teaching which they wished to promote: 

• a well-grounded understanding of science (or a branch of science), not a 

knowledge of disconnected facts 

• encouragement of children to think freely and courageously about science in 

the way practising scientists do 

• experimental and practical enquiry for children as a means of awakening 

original thought. 

The abovementioned projects, whilst well known, were by no means the only 

curriculum projects of the era.  Shulman and Tamir (1973) described the changes of 
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this time as nothing short of revolutionary, and cited evidence that by 1967 there 

were over 70 curriculum projects in science alone.  The various American projects 

previously listed, together with Nuffield, are often looked on as being flagships for 

inquiry teaching.  A comparison which Solomon (1994) made between the two 

countries, was that in England the role of the teacher was to radiate enthusiasm and 

encouragement, whilst in the USA the teacher was to rally to the national call and 

carry out the behests of educationalists.  Regardless of the difference, both the 

American and English projects became well known and strong support was, and can 

still be, found for their ideals.  For example, Gagné (1963) considered that the idea 

of inquiry was one of the most important and interesting ideas to be given emphasis 

in recent discussions of science education, and that there appeared to be very 

widespread agreement that inquiry was a worthwhile objective.   

It seems that once inquiry based methodologies were given a name they soon 

became popular in science teaching and curriculum design.  For example, Kuslan 

and Stone (1968) produced a volume to introduce pre-service and in-service 

elementary teachers to teaching science by inquiry.  They commented that the new 

currents in science teaching stressed the importance of deriving learning from direct 

experiences with scientific phenomena, an approach that they said was modelled 

after the investigative processes of scientists and which was called the inquiry or 

discovery approach.  They devoted the first chapter of their book to a description of 

what they termed the tactics and strategies of science and proposed a model of 

scientific endeavour in terms of its characteristics and processes.  They 

acknowledged that although they strongly emphasised the value of inquiry 

procedures in science instruction there was no large body of experimental knowledge 

that testified to the effectiveness of inquiry in leading children to a more coherent 

and deeper knowledge of science content, principles and theories.   

Perhaps this lack of formal research was an inhibiting factor in inquiry teaching 

methods being more readily and widely accepted. 

Hurd (1969) opened by referring to the energetic efforts of the past decade to reform 

science teaching at the secondary school level, noting that hundreds of conferences 

had been held, millions of dollars invested and thousands of teachers, educators, 

scientists and laymen called upon to change the traditional science curriculum.  He 
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considered that the American science curriculum had, with few exceptions, remained 

conservative, being more suited to an agrarian rather than a scientific-technological-

industrialised society, and that there was a need to develop science courses more 

suited to understanding the nature of the scientific enterprise and its meaning for 

modern America.   

Hurd commented that the theme of a symposium to celebrate the dedication of a new 

university science building was once The greatest threat to education - knowledge 

and noted that the amount of knowledge held in every field of science was staggering 

and increasing at an accelerated rate.  He said that the amount of knowledge doubled 

by the time children in first grade reached high school and that older science 

concepts, such as the atom and photosynthesis encompassed more meaning each 

year.  He also said that the production of new knowledge in science and its 

applications in technology was changing the entire pattern of vocations and career 

advancement.  He considered that a major problem in career development was that it 

was no longer possible to prepare a person for a lifelong career, as knowledge 

requirements changed and many jobs became obsolete - and that this was a problem 

for not only those with limited education, but those with a Ph.D. in science as they 

could expect the significant knowledge in their field to change two or three times 

during their career.  Hurd wrote that these conditions suggested that an education in 

science must prepare young people to learn on their own and to expect to learn more 

after leaving school and added that this is one reason for the emphasis in education 

today (sic) on learning to learn, inquiry and discovery methods.   

All of these comments are interesting in light of the fact that Hurd's work was 

published in 1969 and very similar philosophies are being espoused in education 

today, some thirty five years later.  Hurd further suggested that means for improving 

traditional science curriculum, as reflected in the new curricula, were: placing a 

greater emphasis on rational thinking as a course outcome; using the discipline as a 

criterion for the selection of instructional materials; organising the curriculum with 

both a concept and an inquiry sequence; and shifting more responsibility for learning 

to the student.  Hurd considered that in science there is more new knowledge than 

old and that this imbalance was not evident in other teaching fields.  Hurd also 

considered that the conditions outlined above meant that if we could not change then 
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we would always be educating youth for a world that no longer exists, and that this 

was why there had been so much criticism of science courses with a fixed body of 

content, rote learning and out of context with the inquiry processes that generated the 

knowledge.  He said that traditional courses had treated the mind of the student as a 

storehouse to be filled with information rather than as an instrument for thinking.  

Hurd continued on to point out that the sciences are particularly suited to an 

education built upon reasoning, problem solving and change and that it is only 

within a framework of evolving concepts, probabilities and investigation that science 

can be learned in an honest fashion.   

Hurd said that the most we knew about the future world was that it would be 

different, complex and changing, that individuals would have responsibilities for 

which they had not had specific training and that they would be expected to act 

creatively in fostering change and innovation.  These comments seem to imply that 

all individuals would benefit from an inquiry type curriculum, regardless of whether 

or not they went into science careers.   

Hurd reported that when the science curriculum reform of the last decade (the 1960s) 

was examined it was found that most of the pressure for change came from scientists 

who questioned whether high school science courses were truly representative of 

science as it was known to scientists.  The comment of one scientist was that high 

school teachers were so busy teaching biology, chemistry and physics that they 

forget to teach the science of their subjects.  Hurd went on to add that being well 

informed about science was not the same as knowing science; that science was an 

intellectual activity that arose from personal experience and took place in the minds 

of men (pre politically correct language).  He considered that science was simply a 

way of using human intelligence to achieve a better understanding of nature and 

nature's laws, but that this was not the spirit in which it was taught in conventional 

science courses, and it was this which disturbed curriculum reformers. 

With respect to commonalities between the new science courses Hurd commented 

that the best correlation was found in the emphasis upon the nature of scientific 

inquiry - that while it was not planned as a curriculum theme it did appear in each of 

the new course projects.  He added that one may speculate that in the long run the 
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inquiry processes may be a more effective theme for integrating science courses than 

concepts from biology, physics, chemistry and the earth sciences.   

As can be seen from the above account of Hurd's ideas, Schwab was by no means 

alone in promoting the teaching of science as inquiry. 

 

 

2.8 THE 1970S 

Shymansky, Kyle, and Alport (1983) noted that by 1970, after a decade and a half of 

curriculum development and implementation the United States had apparently 

established a pre-eminence in science education to match its status in basic scientific 

research, and that the hundreds of millions of dollars spent were generally felt to be a 

good investment.  They added that unfortunately many people now felt that the job 

had been accomplished and that by the mid 1970s nationally funded curriculum 

efforts began to slow down rapidly, despite the efforts of a small group claiming that 

only part of the job had been completed.   

Hurd (1970) stated that the influences of science upon the economy, international 

politics and other fields of inquiry were not obvious to most people.  He described 

the educational rationale underlying the, then, recent curriculum reform projects, as 

being like a scientist, and considered that young people acquired the impression that 

science has no meaning except for the professional sciences.  He suggested that a 

science education should enable people to appreciate the worthiness of the scientific 

enterprise, and to use it to attack contemporary problems.  This, in fact, sounds much 

like what Schwab envisaged - or indeed Armstrong or Dewey - with Brock (1973) 

making the comment that it was salutary to see how much of what Armstrong said 

was being said today (where today is circa 1970).  It indicates that by 1970 the 

original idea of inquiry either had not had time to be implemented, or had to some 

extent lost its way.  At this stage the former would perhaps have tended to have more 

influence, as in reality there would have been insufficient time for students taught 

using the new enquiry methods to complete their schooling.  Shulman and Tamir 

(1973) would seem to agree with this position, writing that although claims had been 
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made as to the failure of the new curriculum reforms, these claims were premature, 

and that judgements would have to be long-term and multidimensional. 

Herron (1971) noted that an objective cited almost without exception in new 

materials was that of bringing students to some understanding of scientific inquiry, 

but that notions concerning the nature of scientific inquiry were both numerous and 

varied.  He went on to say that by scientific inquiry we mean that disciplined form of 

human curiosity which involves scientists in ongoing, self-correcting and revisionary 

processes which results in bodies of currently warranted fact and theory - part of 

which he acknowledged borrowing from Schwab.   

From the comments of the above authors it would seem that by the early 1970s the 

idea of inquiry had been embraced by education, although no standard definition of 

what the term meant seemed to be in use.  This premise is supported by Shulman and 

Tamir (1973) who noted that the notions of discovery and inquiry had been recurring 

themes in science education in the sixties, and that the concept of discovery had been 

replete with ambiguity.  Lucas (1971) noted that in the literature there is a great 

overlap in usage of the terms ‘discovery’ and ‘inquiry’, and that authors tended to 

slip from the use of one term to the other.  Lucas commented that when many 

curriculum projects are competing for government money it is perhaps 

understandable that different terms are coined to describe essentially similar teaching 

techniques, but that this makes it easy for teachers to become lost in a semantic fog.  

This should be taken as a warning that when reading materials which refer to inquiry 

or discovery methods researchers should be wary of simply using their own 

interpretations of these terms. 

In summary, by the 1970s there seemed to be debate over the term inquiry, the term 

discovery had been introduced and the success of inquiry teaching reforms was being 

questioned. 
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2.9 THE 1980S 

The continued importance into the 1980s of the concept of inquiry as an aspect of 

science teaching is illustrated by the six aims which the 1981 policy statement of the 

Association for Science Education, Education through Science listed.  These were 

summarised by Driver (1983) as: 

1. understanding of scientific concepts 

2. the development of cognitive and psycho-motor skills 

3. the ability to undertake inquiries 

4. understanding the nature of the scientific enterprise 

5. understanding the relationship between science and society 

6. the development of a sense of personal worth. 

In addition to the concept of inquiry being important the idea of preparing students 

for life in a different world continued into the 1980s, with Kyle (1980) asserting that 

the students currently being educated would spend half their adult lives in the 21st 

century, a world of unknown dimensions.  He asserted that a major goal of education 

should be to prepare the majority of students - those who would not enter a career 

with a science focus - with a general awareness of and appreciation for science and 

the processes of science.  He commented that the new science curricular (such as 

those mentioned previously) sought to create laboratory experiences that presented 

genuine problems of investigation for students of all levels, with an emphasis on 

increasing students' critical thinking and giving them some understanding of science.   

However, the extent to which change had actually been effected in science 

classrooms was still open to question at this time, as is evidenced by the comments 

of several authors.  Hurd, Bybee, Kahle, and Yager (1980) evaluated the status of 

biology education in the secondary schools of the USA.  They did this using a 

number of studies which had been carried out, in the light of 20 years having elapsed 

since the beginning of what they refer to as the curriculum improvement program.  

They noted that these years had been marked by changes in the disciplines of 
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biology, in science as an enterprise, in the social milieu, in concepts of appropriate 

knowledge and in the conditions of schooling; and go onto state that throughout the 

history of biology education, goals and purposes had been continually reevaluated, 

but that changes were slow - the rate of scientific and social change had been greater 

than the rate at which science programs had been updated and revised.  Although 

these authors' work was published in 1980 it must be presumed that much of what 

they refer to actually took place in the 1970s.  

With regard to the methods employed in biology teaching, Hurd et al. noted that little 

evidence existed that inquiry was being used, and that scant data supported the 

contention that students in biology attained an understanding of scientific inquiry, or 

that they could use the skills of inquiry.  Regardless of this an examination of the 

goals of middle and junior high school life science courses showed that they 

included: 

• acquainting students with scientific methods 

• students acquiring personal scientific attitudes such as curiosity, respect for 

reliable information, thinking critically, acceptance of being wrong, 

appreciation of science and of living things 

• students acquiring skills associated with inquiry development.   

Hurd et al. commented that the goal of acquainting students with scientific methods 

should include information processing skills such as holistic understanding of 

problems, multicausal relationships, systemic thinking, qualitative methods of 

investigation, and methods of future research.  One of the twelve recommendations 

which Hurd et al. made was to emphasise human uniqueness, social problems, an 

enlarged view of scientific methods, ethics decision-making and careers in textbooks 

and curriculum materials.  Overall, what seems to become evident from the 

comments of Hurd et al. is that, at least up to the time of their writing, inquiry 

methods had not been fully adopted by teachers.  Their comments re the lack of 

inquiry being incorporated into biology courses are particularly interesting in the 

light of Schwab's influence, his writing in the area of biology teaching and his 

commitment to inquiry as a teaching methodology.  However, looking at the various 
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goals and recommendations which Hurd et al. mentioned it would seem that there 

was still a perceived need for the methods inherent in inquiry teaching. 

In an article titled Why inquiry must hold its ground Nagalski (1980) commented that 

the inquiry method itself was being called into question, that a push for ‘back-to-

basics’ was emerging, and, in attempting to define what inquiry was, noted that there 

were widely varying definitions.  Nagalski stated that the inquiry approach had 

received high marks from USA educators over the years, as evidenced by the still 

widespread adoption of inquiry-oriented texts and methods, but went on to cite 

evidence that  

today’s science curricula are becoming more textbook dominated, a 

factor ... discouraging to use of inquiry (Nagalsaki, 1980, p. 27).   

Nagalski reiterated what seems to have been stated at least from the time of Dewey, 

that at the present rate of technological change today’s basic knowledge would be 

obsolete tomorrow, and that if students were to survive and adapt in such a swiftly 

changing world they must have the ability to analyse information, to arrive at logical 

conclusions, and to act wisely based on these conclusions.   

These examples highlight that, after nearly twenty years of so-called reform, 

confusion still remained over what the term inquiry meant, and debate as to its merits 

continued to occur. 

This interpretation is supported by Tamir (1983), who wrote that the role of inquiry 

in science education had been one of the most controversial issues in the last twenty 

years, and that it has not by and large received prominence in most classrooms.  He 

was of the opinion that there was now strong empirical evidence for the promotion of 

inquiry in science teaching, and advocated a reform in teacher education programs as 

a means of more successful implementation of inquiry methods.   

The question of how effective inquiry programs had been was examined in a meta-

analysis reported on by Shymansky, Kyle, and Alport (1983).  As part of  a larger 

meta-analysis project initiated at the University of Colorado under the direction of 

Ronald Anderson, Shymansky et al. summarised the results of 105 experimental 

studies carried out over 25 years, involving 45,626 students, dealing with the effects 
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of new science curricula on student achievement.  Their study was initiated as part of 

a broad meta-analysis project.  Shymansky et al. noted that since 1955, and 

particularly in the 1960s and early 1970s, elementary, junior high and secondary 

school science curricula experienced considerable growth and substantial change - 

which they believed could only be described as phenomenal (they stated that within 

15 years of the historic Sputnik launch dozens of such curricula were developed).  

They added that a comprehensive set of goals and objectives was never thoroughly 

articulated for these new curricula, but that they came to be associated with process 

goals where learning how to learn science was stressed.  They stated that after 25 

years and over five billion dollars invested from both public and private funds the 

question How effective were new science curricula in enhancing student 

performance? was still unanswered, and their research attempted to address this 

issue.  For the purpose of their study, new science curricula were defined as those 

courses or curricula projects which: 

• were developed after 1955 (with either public or private funds) 

• emphasised the nature, structure and process of science 

• integrated laboratory activities as an integral part of the class routine 

• emphasised higher cognitive skills and appreciation of science. 

By way of contrast, traditional curricula were defined as those courses or programs 

which: 

• were developed or patterned after a program developed prior to 1955 

• emphasised knowledge of scientific facts, laws, theories and applications 

• used laboratory activities as verification exercises or as secondary 

applications of concepts previously covered in class. 

In categorising courses Shymansky et al. noted that the level of treatment fidelity 

was difficult to establish as new curricula may have been used in traditional ways 

and vice versa.  They considered only studies involving USA samples, as they felt 

that modifications are often made when curricular are adopted for international use.   
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Their results indicated that the new curricula had a positive impact on student 

performance for each of the 18 performance criteria measured, except for student 

self-concept.  They noted that the results for general achievement were especially 

interesting, as much of the criticism re the new science curricula had focussed on the 

apparent decline of general science knowledge among students exposed to the new 

programs, and that the results of their study indicated that students exposed to new 

science curricula achieved 0.43 standard deviations above their traditional 

curriculum counterparts.  Their overall conclusion was that there was a substantial 

body of research literature which collectively pointed to the new science curricula as 

a successful attempt to improve science education. 

Shymansky, Hedges, and Woodworth (1990) conducted a resynthessis of the data 

from the above study, using a refined statistical procedure.  The results of the 

resynthesis generally supported the conclusions drawn in the earlier meta-analysis - 

that the new science curricula of the 60s and 70s were more effective in enhancing 

student performance than traditional textbook-based programs of the time - although 

there were some differences, with fewer significant effects and smaller margins. 

A study by Lott (1983) on another aspect of the University of Colorado project has a 

promising title in The effect of inquiry teaching and advance organizers upon 

student learning outcomes, but in fact seems to contribute little useful information to 

the debate on inquiry techniques.  Lott (1983) looked at the effect of inductive versus 

deductive teaching on student outcomes.  He categorised educational experiences in 

which examples or observations were provided to students prior to formalising 

generalisations as inductive (and presumably equated these to inquiry teaching) and 

those where generalisations were formalised prior to any illustrative examples as 

deductive.  Using the aggregate measure he found essentially no difference between 

the two teaching approaches, but pointed out that 60% of the studies considered used 

a level of inquiry only slightly different from the deductive measure.   

Anderson (1983) wrote an article directed at consolidating the information reported 

in all the University of Colorado meta-analyses.  In this article he commented that 

the meta-analysis project focussed on the research questions receiving the most 

attention in the extant science education literature.  The fact that inquiry was a 

feature of the meta-analyses confirms that it had been receiving considerable 
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attention as a topic.  Anderson commented that inquiry, whilst defined in various 

ways, had been a prevalent theme in the literature of the last twenty five years.  In 

summarising the information from the meta-analyses he considered that in general it 

pointed to a positive vote for inquiry.   

However, Costenson, and Lawson (1986) cited the results of the above meta-

analyses as providing impressive evidence of the superiority of lab-oriented inquiry 

teaching methods - in terms of student attitudes, interest, learning and intellectual 

development - particularly in the biological sciences.  They went on to say that they 

believed that if the modern goals of instruction were to be met, then inquiry must be 

incorporated into the classroom.   

Duschl (1986) noted that recent proposals continued to endorse the inquiry approach, 

despite negative reactions from teachers, and went on to advocate the use of old 

textbooks as a suitable mechanism for inquiry teaching.  If this negative reaction of 

teachers is common, then the comment of Germann (1989) that inquiry is not being 

taught effectively in American schools is hardly surprising.  Germann suggested that 

a more directed approach may provide better results for concrete operational 

students, but did not suggest dropping inquiry methods completely.   

Thus, by the end of the 1980s, inquiry still had its advocates and was being looked at 

from a research point of view.  Some doubt still existed as to whether even those 

courses that purported to do so were really being taught as inquiry.  That the 

seemingly ongoing crisis in science education had not been resolved, at least in the 

American context, is evidenced by the comments of Yager and Penick (1987), who, 

whilst not referring to inquiry methodologies in particular, noted that nearly 

everyone was ready to agree that there was a critical problem in the USA relative to 

science education.  Yager and Penick echoed the belief of earlier authors that science 

education should be for all students, not only those likely to make a career in 

science. 

A major curriculum development project, Project 2061 began in the USA in the latter 

part of the 1980s.  This project and its implications will be considered in some detail, 

but in the interests of continuity several works unrelated to this development will be 

considered first.   

  59 



2.10 THE EARLY 1990S 

Tobin, Kahle, and Fraser (1990) worked in Australia on issues that they identified as 

being of international importance and concern.  Their research suggested that 

teachers were placing more emphasis on knowledge than on higher order skills, with 

higher-order questions being directed only to a few selected students in the class.  

Tobin et al. commented that the evidence suggested that there was something of a 

crisis in science education, with many programs which purported to being inquiry 

based showing little evidence of inquiry, and failing to provide children with the 

intellectual tools for the 21st century.  One cannot help but be struck by a sense of 

déjà vu here - this is a reiteration of what was being said at the time of the Sputnik 

launch.  Thus the idea of science education not adequately preparing students for the 

future continues through to the literature of the 1990s, a fact which is not really 

surprising given the rapid technological change which has characterised these times. 

Perhaps, further evidence of Australian teachers not sufficiently valuing an inquiry 

approach is given by the findings of Rosier and Long (1991) that teachers of year 12 

students gave the application of scientific knowledge and methods a lower rating 

than attitudes and manual skills in the conduct of experiments. 

Although Songer and Linn (1991) did not use the term inquiry teaching, the 

conclusions of their work really seem to be advocating such an approach.  They 

talked about the danger of focussing science instruction too narrowly on facts or 

isolated pieces of scientific knowledge, and stated that unless students have 

sufficient opportunity to understand the knowledge generation process they are 

unlikely to become participants in the process in the future.  They noted that the 

Harvard Project Physics curriculum emphasised a historical perspective, and that 

students responded favourably to this approach, but that it had not received 

widespread acceptance in textbooks. 

Tobin et al. (1990) made the point that from a constuctivist perspective, the major 

curriculum challenge for teachers was to focus on student learning with 

understanding rather than to stress content coverage only.  And so, it seems that a 

new theme - that of constructivism - entered the debate which surrounded the use of 

inquiry methodologies.  This theme will be considered further in a later section. 
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Linn (1992) commented that the science education community was united in calling 

for reform in science instruction, yet divided as to what the reform should be.  This is 

the situation which seems to have prevailed since at least the time of Schwab - 

perhaps it is just the normal state of affairs in science education that everyone wants 

things to be better, but cannot agree on how to achieve this.  Linn also brings the 

ideas of constructivism into play, emphasising that students must construct meaning, 

integrating their own observations of the natural world with additional information.  

Again the idea of the future needs of society arises, with Linn making the comment 

that we do not retain enough students in science courses for the needs of the 21st 

century. 

Shymansky and Kyle (1992) were in agreement with the ideas of Linn, noting that 

science educators had now been searching for the wonder drug for at least 30 years.  

They considered that presently there was widespread international recognition of the 

need to reform science education, in order to prepare citizens for the 21st Century.  

They noted that even if the curriculum reforms of the past had accomplished their 

ends curriculum reform would still have been necessary to address current issues and 

concerns.   

Griffiths and Barman (1993) mentioned that the national statement on science being 

developed by the Australian Education Council explicated the importance of 

students’ understanding of the nature of science, and that it said, for example, that 

students should be helped to understand how knowledge is gained, classified, tested 

and validated.  There seems to be more than a hint of Schwab’s original inquiry 

ideals in here.  As Australian states went on to use this national statement and the 

associated profiles (Curriculum Corporation, 1994a, 1994b), albeit in differing ways 

and to differing extents, perhaps more widespread usage of inquiry methods would 

be expected to have occurred in Australian science classrooms.   
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2.11 PROJECT 2061 - THE SCIENCE FOR ALL AMERICANS AND 

BENCHMARKS PUBLICATIONS 

Project 2061 was a national development in science education in the USA, so named 

because Halleys Comet was visible at the time of its development (1985) and it was 

realised that the students whom the innovations were aimed at would be alive to see 

the return of the comet in 2061.  Project 2061 set out to identify what it was most 

important for the next generation to know and to be able to do in science, 

mathematics and technology, in other words, what would make them scientifically 

literate.   

The final recommendations of Project 2061 were integrated into the publication 

Science for all Americans (American Association for the Advancement of Science, 

1989).  Science for all Americans (SFAA) defines science literacy and lays out some 

principles for effective learning and teaching.  According to the American 

Association for the Advancement of Science (AAAS) Project 2061 website (Science 

for all Americans, n.d.) Science for all Americans serves as the foundation for 

current efforts to reform science education in the USA and abroad.  The AAAS 

website goes on to say that Science for all Americans serves as a basis for 

discussions of the skills and knowledge that students should have.  Whilst the 

website of the authoring body should not be regarded as an unbiased source of such 

information, subsequent developments in science education tend to support these 

claims.   

It is stated in SFAA, that most Americans are not science-literate, and that the present 

science textbooks and methods of instruction often impede progress towards science 

literacy.  SFAA took a broad view of science literacy, specifically including having a 

capacity for scientific ways of thinking in the definition.  Contemporary curricula in 

both science and mathematics were profiled as being overstuffed and 

undernourished, with particular problems identified as including an emphasis on: 

• the learning of answers rather than the exploration of questions  

• memory at the expense of critical thought 

• bits and pieces of information instead of understandings in context 
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• recitation over argument 

• reading in lieu of doing. 

SFAA emphasised that the teaching of science should be consistent with the nature of 

scientific inquiry, stating that whilst scientific inquiry is not easily described, there 

being no fixed set of steps that scientists always follow, there are certain features of 

science that give it a distinctive flavour as a mode of inquiry, and which everyone 

can exercise in thinking scientifically about many matters of interest in everyday life.  

These were listed as: 

• Science demands evidence. 

• Science is a blend of logic and imagination. 

• Science explains and predicts. 

• Scientists try to identify and avoid bias. 

• Science is not authoritarian. 

SFAA went on to state that whilst the document emphasises what students should 

learn, it was recognised that how science is taught is equally important, and that 

teaching should be consistent with the nature of scientific inquiry.  SFAA considered 

that in order to understand science as a way of thinking and doing, and not as just a 

body of knowledge, students should have some experience with the kinds of thought 

and action that are typical of it as a field, stating that teachers should do the 

following: 

• start with questions about nature 

• engage students actively 

• concentrate on the collection and use of evidence 

• provide historical perspectives 

• insist on clear expression 
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• use a team approach 

• not separate knowledge from finding out 

• deemphasise the memorisation of technical vocabulary 

• welcome curiosity 

• reward creativity 

• encourage a spirit of healthy questioning 

• avoid dogmatism 

• promote aesthetic responses. 

Science for All Americans acknowledged that, as the nation discovered after Sputnik, 

enduring educational reform is not easily achieved, but considered that there was 

now a public consensus on the need for reform in science, mathematics and 

technology education.  It considered that most of the educational reports of the 1980s 

that pointed to the need for such improvement had been motivated by two growing 

public concerns, firstly, America's seeming economic decline and secondly, trends in 

USA public education such as low test scores, students' avoidance of science and 

mathematics, a demoralised and weakening teaching staff in many schools, low 

learning expectations relative to other technologically advanced nations and being 

ranked near the bottom in international studies of students' knowledge of science and 

mathematics.   

SFAA considered that there was now a clear national consensus in the USA that all 

elementary and secondary school children needed to become better educated in 

science.  As is outlined above it sees the way forward as being consistent with what 

has been termed inquiry teaching. 

In reading through the Science for All Americans materials it is not possible to avoid 

noting the similarities between it and the ideas of earlier reformers.  It seems that 

what can reasonably be regarded as the major science education initiative of the 

1980s was reiterating and emphasising points that had been made in earlier writings.   

  64 



A subsequent Project 2061 publication Benchmarks for Scientific Literacy, 

(American Association for the Advancement of Science, 1993) was the Project 2061 

statement of what all students should know and be able to do in science, mathematics 

and technology by the end of each of grades 2, 5, 8 and 12.   Whilst Benchmarks, as 

this publication is commonly known, did not advocate any particular teaching 

methods or curriculum design, it did state that when people know how scientists go 

about their work and reach scientific conclusions, and what the limitations of such 

conclusions are, they are more likely to react thoughtfully to scientific claims and 

less likely to reject them out of hand or accept them uncritically.  Benchmarks 

emphasised that students should be encouraged to ask ‘How do we know that is 

true?’, and stated that the history of science has an important place.  It further stated 

that imagination and inventiveness are more important in science than is generally 

realised, and suggested that by the end of high school students should have designed 

and carried out at least one major investigation.   

Hence, many of the ideas of Project 2061 can be linked to those of Schwab and the 

inquiry movement.  Maor and Taylor (1995) supported this contention, expressing 

the opinion that according to Project 2061 the teaching of science should be 

consistent with the spirit and character of scientific inquiry. Lopez and Tuomi (1995) 

considered that a national consensus was evolving around what constituted effective 

science education and that it was reflected in the Science for all Americans and 

Benchmarks documents, together with the National Science Education Standards 

(NRC, 1996).  They said that one of the two common convictions shared by these 

documents was that all students needed to learn scientific skills such as observation 

and analysis (the second was a less is more philosophy).  Lopez and Tuomi called for 

active, hands-on, student-centered inquiry to be at the core of science education and 

considered that both teachers and administrators needed to understand that the 

statement I don't know but maybe we can find out is the starting point for all inquiry. 

However, the new curriculum reform movements represented by the Project 2061 

materials do not appear to have won everyone over.  Dawson (1994) stated that 

currently (and presumably in Australia at least) there seemed to be a tension between 

a back-to-basics movement and a more liberal attitude recommending constructivist 

learning approaches.  Dawson suggested that historically back-to-basics is a common 
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position taken in times of economic adversity, and which advocates learning 

fundamental scientific content and skills in a rather traditional manner, 

Germann (1994) noted that in 1990 there was a further call for U.S. students to be 

first in the world at science and mathematics by the year 2000 - a repetition of events 

of an earlier time  . . .  He said that one of the major goals being advocated in science 

education was to help students construct knowledge concerning scientific 

phenomena and, at the same time, help them to reason, think critically, and to solve 

problems.  A suggested vehicle for this was inquiry-based laboratories.   

Thus, it would seem that in the literature the push for reform based on inquiry has 

changed to a push for reform based on constructivism.  However, the techniques of 

these two strategies appear to be similar and complementary in nature.  Maor and 

Taylor (1995) discussed elements of both these strategies against a background of 

students using a computerised learning environment to develop higher-level thinking 

skills associated with scientific inquiry.  They concluded that a teacher’s 

constructivist-oriented pedagogy enabled the majority of students to develop higher-

level thinking skills such as thinking critically, asking creative questions, and 

undertaking inquiry-oriented problem solving, whilst a transmissionist epistemology 

was likely to subvert the aims of inquiry-based teaching. 

Strage and Bol (1996) wrote about high school biology courses in particular, but it 

seems unlikely that their conclusions cannot be extended to science courses in 

general.  They considered that the past decade had seen unprecedented increases in 

attention paid to science and science education in both the public media and 

academic circles.  This is an interesting statement in light of all the public attention 

science education seems to have received in the 1960s, but nonetheless, this 

comment serves to reinforce the fact that the development of suitable science 

curricula was still seen as having a high profile.   

Strage and Bol also stated that science educators had begun to see their role as 

preparing all students for life in a world of rapid scientific and technological change, 

rather than preparing a small minority of students for highly specialised, often 

exclusive careers, again reiterating an ongoing theme from the literature.  Strage and 

Bol then stated that current reconceptualisations of curricular frameworks reflected 
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the goal of helping students integrate what they learn in the science classroom into 

their daily lives, by placing the curriculum content in more ecologically valid 

contexts, making it more inquiry-based, and urging the adoption of outcomes 

assessment measures which tap students’ ability to engage in guided discovery 

activities rather than their memory for content per se.  They also said that greater 

emphasis was now placed on the need to develop students’ critical thinking and 

problem-solving skills.  From the comments of Strage and Bol, it would seem that 

inquiry methods were still being proposed toward the close of the twentieth century.   

 

2.12 THE NATIONAL SCIENCE EDUCATION STANDARDS 

Of all the writings and authors that have been considered to date, America's National 

Science Education Standards (NSES) have perhaps the greatest potential to actually 

bring about change in how science is taught in that nation's classrooms and possibly 

beyond - the easy availability of the standards and related documents via the Internet 

means that their ideas are readily accessible to virtually any interested party.  As 

inquiry is seen as being a cornerstone of these standards the NSES are important in 

the current discussion. 

The National Research Council released the National Science Education Standards 

in December of 1995 (National Research Council, 1996).  Basically, these standards 

defined the science content that all students in the USA should know and be able to 

do.  In addition they provided guidelines relating to teaching, assessment, 

professional development, programs of study and education systems.  The standards 

represented an attempt to improve science education programs for all students in the 

USA, with the Call to Action at the beginning of the standards spelling out a vision 

for science education intended to make scientific literacy for all a reality in the 21st 

Century.   

The National Science Education Standards had their origins in 1991, when the 

president of the National Science Teachers Association (NSTA) asked the National 

Research Council (NRC) to coordinate efforts to develop national standards for 

science education in the USA.  Between 1991 and 1995 groups that included 

teachers, scientists, administrators and teacher educators produced several drafts of 
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the Standards, which were submitted to extensive review by others in similar roles, 

resulting in the NSES document, which is now regarded as the driving force behind 

improving science education in the USA.   

The Center for Science, Mathematics and Engineering Education, CSMEE, (1997) 

considered that the national consensus that resulted from the process in which the 

NSES were developed gave them a special credibility.  Ellis (2003) elaborated on 

this, noting that the National Research Council, NRC, brought together the reform 

efforts of the American Association for the Advancement of Science (Project 2061) 

and the National Science Teachers Association (NSTA).  He considered that the 

release of A Nation at Risk by the National Commission on Excellence in Education 

in 1983 initiated the process of consensus building between the scientific and 

educational communities and also the public.  Ellis noted that during the past two 

decades more than 300 reports had been published that analysed and commented on 

the need for a revised vision for science education.  He cited examples of the science 

education community being involved in defining science literacy and engaging in 

curriculum development for at least a decade prior to the release of the NSES - 

although as the preceding sections of the current dissertation indicate this is in fact a 

discussion that has been going on for much longer than a decade. 

The standards are based on the premise that science is something that students do, 

not something that is done to them.  They are seen not as prescribing a specific 

curriculum, but as providing criteria that can be used to design a curriculum 

framework.  The standards themselves state that they are premised on a conviction 

that all students deserve and must have the opportunity to become scientifically 

literate, and that they look towards a future in which all Americans will be familiar 

with basic scientific ideas and processes, and so have fuller and more productive 

lives.  The NSES see inquiry as being central to science learning, with students 

engaging in describing objects and events, asking questions, constructing 

explanations, testing those explanations against current scientific knowledge and 

communicating their ideas to others.  They also identify their assumptions, use 

critical and logical thinking and consider alternative explanations, hence actively 

developing their understanding of science by combining scientific knowledge with 

reasoning and thinking skills.  These would seem to be processes that the greatest 

  68 



proponents of inquiry teaching considered so far, Armstrong, Dewey and Schwab, 

would have been in concordance with. 

The definition of science literacy used in the standards would also have been 

applauded by the above authors, being defined as: 

Scientific literacy is the knowledge and understanding of scientific 

concepts and processes required for personal decision making, 

participation in civic and cultural affairs, and economic productivity. 

(National Research Council, 1996, p. 22) 

This is elaborated to explain that people who are scientifically literate can ask, find, 

or determine answers to questions about everyday experiences.  They are able to 

describe, explain, and predict natural phenomena.  The standards also state that 

scientific literacy has different degrees and forms, and that it expands and deepens 

over a lifetime, not just during the years in school. The Standards outline a broad 

base of knowledge and skills for a lifetime of continued development in scientific 

literacy for every citizen, as well as provide a foundation for those aspiring to 

scientific careers.  

Science as Inquiry is one of the eight content standards of the National Science 

Education Standards.  This standard is seen as incorporating the abilities necessary 

to do scientific inquiry and understandings about scientific inquiry.  A further 

content standard, History and Nature of Science, considers science as a human 

endeavour, the nature of science and the nature of scientific knowledge.  Although 

categorised here as content standards, these two standards reflect the flavour of what 

has been termed inquiry teaching.   

The NSES specifically state that inquiry is a step beyond 'science as a process', in 

which students learn skills, such as observation, inference, and experimentation, as 

the NSES include the 'processes of science' and require that students combine 

processes and scientific knowledge as they use scientific reasoning and critical 

thinking to develop their understanding of science. The NSES state that engaging 

students in inquiry helps them to develop: 

• an understanding of scientific concepts  
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• an appreciation of 'how we know' what we know in science  

• an understanding of the nature of science 

• the skills necessary to become independent inquirers about the natural 

world 

• the dispositions to use the skills, abilities, and attitudes associated with 

science.  

In looking at what teachers of science do, the NSES documents stated that they plan 

an inquiry-based science program, with individual teachers being encouraged to 

give less emphasis to fact-based programs and greater emphasis to inquiry-based 

programs that engage students in an in-depth study of fewer topics.  The NSES also 

called for teachers to have the opportunity to learn science through inquiry 

themselves.   

The NSES saw science as being a mind-on as well as hands-on process, with students 

being involved in inquiry-oriented investigations in which they interacted with their 

teachers and peers, establishing connections between their current knowledge and 

scientific knowledge found in many sources, applying science content to new 

questions, engaging in problem solving, planning, decision making and group 

discussions.   

The NSES emphasised that science education needed to gives students three kinds of 

scientific skills and understandings.  Students need to: 

• learn the principles and concepts of science 

• acquire the reasoning and procedural skills of scientists 

• understand the nature of science as a particular form of human endeavour. 

CSMEE (1997) stated that an important way in which the NSES differed from the 

Benchmarks document was that the Standards placed greater emphasis on inquiry, 

including it as important science content as well as a means of teaching and learning.  

Bybee (2000) considered that it was the emphasis on cognitive processes and critical 

thinking that differentiated the NSES from traditional materials.  Lederman and Flick 

(2002) considered that what makes current reform efforts different to those of the 
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past was the stress on students learning about inquiry.  Whilst both Benchmarks and 

the NSES agreed on the importance of students learning about inquiry, one area 

where they differed was in respect to the NSES stressing the view that students 

should do inquiry.   

One reason for the emphasis on inquiry in the National Science Education Standards 

may have been that which has received ongoing citation in the literature, the rate at 

which knowledge is currently accumulating.  This is recognised well beyond the 

confines of science education. For example, Erickson (2001) commented in relation 

to the emphasis that some courses still put on the memorisation of a body of facts, 

that the information base in our world is challenging the best of microchips. 

 

2.13 THE IMPACT OF THE NATIONAL SCIENCE EDUCATION 

STANDARDS, 1996 AND BEYOND 

Following the release of the National Science Education Standards, and presumably 

because of them, the terms inquiry and science began to commonly occur together in 

the science education literature once again.   

For example, Chiapetta (1997) commented that upon entering a science classroom 

one should be able to observe an exciting learning environment in which students 

were wondering why and finding out, asking questions, resolving discrepancies, 

figuring out patterns, representing ideas, discussing information and solving 

problems, and that this vision of science teaching was associated with the term 

inquiry.  Chiapetta went on to revisit the ideas of teaching science by inquiry and 

teaching science as inquiry and suggested strategies and techniques by which this 

could occur.   

The proliferation of articles and books which mentioned inquiry in some way 

following the release of the NSES is evidence that the introduction of the NSES in the 

USA has given inquiry teaching in science yet another new lease of life.  To give an 

idea of this proliferation some titles are listed below: 
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• Criteria of excellence for geological inquiry: the necessity for ambiguity 

(Ault, 1998). 

• What are the relative effects of reasoning ability and prior knowledge on 

biology achievement in expository and inquiry classes? (Johnson & Lawson, 

1998). 

• Content and science inquiry (Hinman, 1998), which considers the need to 

distinguish scientific and general inquiry. 

• Nurturing Inquiry (Pearce, 1999), a book which seeks to show elementary 

teachers how to teach inquiry science in their classrooms. 

• Inquiry investigation (Hand & Keys, 1999), which develops a tool called the 

Science Writing Heuristic to help teachers incorporate more thoughtful 

inquiry into their curricula. 

• Managing the inquiry classroom (Lawson, 2000), describes and suggests 

possible solutions to some of the classroom management problems associated 

with inquiry teaching. 

• The art of asking questions: Using directed inquiry in the classroom 

(Goodman & Berntson, 2000), which suggests using questions as an integral 

component of a science curriculum, thus making inquiry the context rather 

than the method for science teaching. 

• What should the inquiry experience be for the learner? (Windschitl & 

Buttemer, 2000), which describes a model of inquiry learning that ties 

together the processes of seeking, identifying and substantiating knowledge. 

• Salting the oats: Using inquiry to engage learners at risk (Lynch, 2001). 

• Inquiry in kindergarten: Learning literacy through science (Shamlin, 2001), 

which found that engaging in scientific inquiry created a need for literacy. 

• Using inquiry-based science to help gifted students become more self-

directed (Schillereff, 2001). 
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• Tell-tale signs of the inquiry-oriented classroom (Drayton & Falk, 2001), 

which describes the features that characterise student and teacher roles and 

tasks in a classroom that is representative of a culture of inquiry. 

• Standardising the language of inquiry (Misiti, 2001), which considers the 

issue of incorrect use of inquiry leading to confusion and suggesting precise 

definitions. 

• Literacy learning and scientific inquiry: Children respond (Ruggiano 

Schmidt, Gillen, Colabufo Zollo, & Stone, 2002) which examined how six 

students with literacy learning needs responded to inquiry teaching in 

science. 

• Helping English learners increase achievement through inquiry-based science 

instruction (Maia Amaral, Garrison, & Klentschy, 2002). 

• Influence of explicit and reflective versus implicit inquiry-oriented 

instruction on sixth graders' views of nature of science (Khishfe & Abd-El-

Khalick, 2002). 

• Defining inquiry (Martin-Hansen, 2002), which considers the different types 

of inquiry referred to in teaching resources and literature. 

• The inquiry "I": A tool for learning scientific inquiry (Phillips & Germann, 

2002). 

• Rethinking laboratories (Volkmann & Abell, 2003), which offers an inquiry 

analysis tool and adaptation principles to help teachers evaluate and adapt 

traditional cookbook laboratories to be more inquiry oriented. 

If a search is made of the NSTA (National Science Teachers Association) journals, 

which are written specifically for a classroom teacher audience, the number of 

articles which contained inquiry as part of their title or abstract are too numerous to 

list.  Examples include Thacker, Eunsook, Trefz, and Lea (2003), Espinoza (2003), 

Barrow and Krantz (2003), Lunsford (2003),Bodzin and Cates (2003), DiPasquale, 

Mason, and Kolkhorst (2003), Rapp (2003), Bernstein (2003), Goodnough and 

Cahsion (2003), Leonard (2003), Marshall (2003), Harwood (2003), Stiles (2003), 
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Chiapetta and Adams (2004), Ereckson (2004), Deming and Cracolice (2004).  Some 

articles (eg Timmons, 2003) are starting to refer to the NSES standards when stating 

what their ideas are covering. 

Whilst the introduction of the NSES seems to have had a considerable impact on the 

literature and teaching methodologies in the USA, the comments of Driver, Newton, 

and Osborne (2000) seemed to indicate that the same had not been true in the United 

Kingdom.  They commented that the central premise of their study was that science 

education, as currently practised, reflected a basically positivist view of science in 

which the book of nature is read by observation, and experiment, with an emphasis 

on factual recall, and confirmatory experiments.  They contended that it was 

necessary to reconceptualise the practices of science teaching so as to portray 

scientific knowledge as socially constructed, and see discursive practices such as 

argument as requiring greater prominence.   

The book Inquiry, and the National Science Education Standards (National Research 

Council, 2000), and similar guides began to discuss variation in models of classroom 

inquiry that might help science educators have a more expanded understanding of 

classroom inquiry.  The authors presented suggestions of how a particular inquiry 

feature could be implemented in classrooms in different ways, depending on the 

amount of structure, and ownership imposed by the teacher, and the amount of 

ownership assumed by students.  Songer, Lee, and McDonald (2003) considered that 

whilst there is a great deal of work still needed to transform the NRC 

recommendations into activities that promote in-depth inquiry activities among a 

range of students the guide presented a compelling first step dialogue towards the 

kinds of expanded understandings of inquiry science that they advocated.  

In the foreword to Inquiry and the National Science Education Standards (National 

Research Council, 2000), Bruce Alberts, writing as President of the National 

Academy of Sciences, was of the opinion that teaching science through inquiry 

allowed students to conceptualise a question and then seek possible explanations that 

responded to that question.  He also commented that a more familiar style of 

teaching - that where teachers provide their students with sets of science facts and 

with technical words to describe those facts - remained depressingly common today.  

Alberts considered that science classes of this type treated science as if it were 
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preparation for a quiz show or a game of trivial pursuit, and that this led to many 

problems as students did not see themselves as quiz show participants, failed to see 

how this type of knowledge would be useful to them in the future and therefore 

lacked motivation for this kind of learning.  More important still, he said, was the 

fact that this kind of teaching missed the opportunity to give all students the 

problem-solving, thinking and communication skills that they would need to be 

effective workers and citizens in the 21st Century.  He said that the NSES provided 

valuable insights into the ways that teachers might sustain the curiosity of students 

and help them develop the sets of abilities associated with scientific inquiry.  Alberts 

saw the challenge for everyone who wanted to improve education as being to create 

an educational system that exploited the natural curiosity of children, so that they 

maintain their curiosity for learning throughout life.  This leads to something of a 

sense of déjà vu once again, when one considers the comments of Armstrong and 

Dewey. 

Songer, Lee, and McDonald (2003) were of the opinion that few K-12 science 

education programs had proven successful in meeting the high standard set by the 

NSES, with educators needing to explore how new curricular approaches, models of 

enactment and innovative school practices might promote meaningful science 

learning for the range of learners prevalent in today's classrooms.  They considered 

that inquiry was at the heart of what it means to be scientifically literate, but that 

much of the research that had explored classroom based inquiry science drew from 

privileged classroom settings.  They were supported by other researchers, as will be 

outlined more fully in the next chapter. 

In summarising a workshop held to consider what the influence of the NSES had 

been Hollweg and Hill (2003) concluded that a cursory view of the literature 

suggested that the standards had achieved at least part of their aim.  Some of the key 

presenters at the workshop included Horizon Research, Anderson and Ellis. 

Horizon Research (2003) found that among teachers who indicated familiarity with 

the standards, approximately two-thirds at every grade range reported agreeing or 

strongly agreeing with the vision of science education described in the NSES.  

Secondary teachers were more likely than elementary teachers to be familiar with the 

NSES. 
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In looking at how science is being taught across the USA the Horizon team 

concluded that little had actually changed since the introduction of the NSES, 

although there had been a reduction in the number of students reading science 

textbooks during class and a slight reduction in lecture and the use of textbook and 

worksheet problems. Little to no change was found in the use of hands-on or inquiry 

activities. 

Horizon Research concluded that overall science teaching had undergone little 

change since before the NSES.  Although, a majority of teachers reported agreement 

with the vision of science education in the NSES it was not clear if the teachers were 

referring to the content or pedagogy or both.  The Horizon team identified stresses 

due to the amount of content included in the standards - despite the standards 

espousing a less is more philosophy - plus externally mandated test requirements. 

Anderson (2003) pointed out that there was a tendency to think of the NSES as a set 

of rules or guidelines to follow and that if teachers followed those rules, student 

achievement would improve. He noted that things were not so simple, and that 

teachers are unlikely to be able to adhere to the practices advocated in standards 

unless they had increases in funding for school science programs. 

Ellis (2003) cited the results of the National Survey of the Status of Science and 

Mathematics Education as finding that two thirds of the teachers in grades 5-12 and 

46% of the teachers in grades K-4 gave heavy emphasis to science inquiry.  This is 

an impressive statistic if it was really happening.  Perhaps unfortunately, from the 

point of view of an inquiry pedagogy, one of the NSES content standards receiving 

least attention was the history of science one.   

It is interesting to note that as the idea of inquiry recurred once again there was 

divergence of opinion, not so much as to whether or not it is desirable, but as to the 

extent to which inquiry teaching was being put into practice in science courses.  The 

amount of attention which inquiry has and is receiving indicates that there is ample 

justification for continuing to investigate the use of inquiry pedagogies, and that 

consequently the development of an instrument to assess the degree to which inquiry 

methods are used in science classrooms is justified - and would in fact assist in 

settling the dispute over the extent to which inquiry is used. 
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The continuing importance of the notion of inquiry in science education is 

commented on by Llewellyn (2005), who noted that scientific inquiry is one of the 

most talked about topics in science education today, and that whether science 

literacy, standards, instructional techniques or assessment are being discussed the 

phrase scientific inquiry is likely to work its way into the conversation. 

Horizon Research wrote that a major question that remained was what science was 

actually being taught in classrooms, with no comprehensive picture of the science 

content that was actually delivered to students existing. They noted that this lack of 

information on what science was being taught in classrooms, both before the NSES 

and since, made it very difficult to assess the extent of the influence of the NSES on 

teaching practice.  The development of an instrument to assess the extent to which 

inquiry is being used in classrooms would allow the collection of at least baseline 

data. 

 

2.14 CHAPTER SUMMARY 

In ending this historical review, it is worth noting that a major change that had 

occurred by the end of the twentieth century was the ease of communication around 

the world brought about by the ready availability of electronic means of 

communication and the World Wide Web.  Consequent to the development of the 

Internet, documents such as Science for All Americans, Benchmarks and the National 

Science Education Standards became freely available to any interested parties.  

Because of this ease of communication it is unlikely that major developments in 

science education (or any other field) in one part of the world will go unnoticed for 

very long.  This is in contrast to the situation that is likely to have existed at the time 

of Armstrong, Dewey or even Schwab. 

This chapter has examined the literature that exists relating to the use of inquiry 

pedagogies being advocated in science teaching.  The next chapter will further 

examine the literature with a view to defining exactly what inquiry teaching is - or is 

not. 



CHAPTER 3 - THE NATURE OF INQUIRY TEACHING, 

INCLUDING CONTRIBUTING AND 

INHIBITING FACTORS 

 

CHAPTER OVERVIEW 

Whilst the preceding chapter gave some consideration to what has been meant by the 

term inquiry when it has been used in the literature, this chapter will endeavour to 

distil the ideas of the various authors as to what constitutes - or does not constitute - 

an inquiry approach.  This will be done with a view to using their thoughts to 

formulate a questionnaire that can be used to assess the extent to which an inquiry 

approach is being adopted in individual classrooms. 

 

3.1 WHAT IS INQUIRY TEACHING, AND WHY HAS IT BEEN 

CONSIDERED DESIRABLE? 

Joseph Schwab’s 1961 lecture would have to be regarded as a - if not the - key 

document in this regard.  As the lecture was fairly detailed, and Schwab has authored 

a number of works, aimed at biology teachers in particular, one could be excused for 

wondering why there is so much disagreement as to what an inquiry approach should 

look like.  This notwithstanding, it could well seem to a casual surveyor of the 

literature that the only thing there is agreement about is the lack of agreement as to 

what constitutes inquiry. 

Unfortunately, as DuVall (2001a) reminded us, the word inquiry has been used so 

routinely in the world of education that it is in danger of losing its true meaning.  He 

considered that it was easier to pin down what inquiry wasn't rather than what it was, 

adding that it was usually fairly obvious when a classroom was not inquiry-based, 

but that it was not always obvious whether an active classroom was truly inquiry-

based or not.  Lederman and Flick (2002) agreed that confusion about the meaning 

of inquiry and its appearance in the classroom continued to exist among classroom 

teachers and teacher educators, with one source of this confusion stemming from the 
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nature of science instruction that current science teachers and teacher educators 

themselves received. 

Barman (2002) in a guest editorial commented that if you are struggling to define 

what inquiry means you are not alone and, whilst giving his own thoughts, urged 

teachers to spend time discussing what they considered student inquiry to be with 

their colleagues.  Perhaps there is considerable merit in the contention of Bruce 

Alberts (in the foreword to National Research Council, 2000) that inquiry is in part a 

state of mind - that of inquisitiveness - and that it comes naturally to most young 

children who care enough to ask why and how, although adults often dismiss their 

incessant questions as silly and uninteresting.  This view would not be out of line 

with those of two major proponents of inquiry discussed in Chapter 2, Henry 

Armstrong and John Dewey.   

To illustrate his thought, Alberts gave the example of the effect that the father of the 

Nobel Prize winning physicist Richard Feynman had on Feynman's development as a 

scientist.  Feynman recalled a conversation with his father whilst observing a bird: 

See that bird?  It’s a Spencer's warbler'' (I knew that he didn't know the 

real name).  ''You can know the name of that bird in all the languages of 

the world, but when you're finished, you'll know absolutely nothing 

whatever about the bird.  You'll only know about humans in different 

places and what they call the bird.  So let's look at the bird and see what its 

doing - that’s what counts. (National Research Council, 2000, p. xiv) 

As Schwab’s 1961 Inglis lecture seems to be generally regarded as having been 

particularly influential it is worth looking at in some detail when trying to define the 

nature of inquiry in science teaching.  Schwab (1966) considered that it was 

necessary that people understood that science is a mode of investigation which rests 

on conceptual innovation, proceeds through uncertainty and failure, and eventuates 

in knowledge which is contingent, dubitable, and hard to come by.  Schwab added 

that this would require a virtual revolution in the teaching and learning posture 

which had characterised American science education, and continued on to further 

make the point that it was no longer sufficient to teach science as fact - it needed to 

be taught as interpretation of the knowledge which was available at that point in 
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time.  In support of this, Schwab offered the example that physicists of that time put 

the life expectancy of a body of knowledge in small-particle physics at no more than 

four years.  Schwab distinguished between stable enquiry, which he considered to be 

constructing an edifice of scientific knowledge, rather than questioning its plan, and 

fluid enquiry, whose task he considered it to be to study the failure of stable 

enquiries in order to discover what was lacking in the principles that guided them.  

He considered that the background of the problems in science education at that time 

reflected the emergence from obscurity to prominence of the fluid component of 

scientific enquiry, whilst education continued to present science as a nearly 

unmitigated rhetoric of conclusions.   

Schwab listed three reasons for converting school science from the dogmatic to the 

enquiring.  He added that in happier and more peaceful times the individual’s own 

happiness and satisfaction may have been sufficient reason, but that it was now a 

matter concerning our welfare as a polity.  Perhaps the post September 11 2001 

(bombing of the World Trade Centre buildings in New York) environment that now 

exists serves to reinforce this notion for today's world.  The three reasons then listed 

by Schwab are: 

1. the special need for scientists 

2. the need for an informed political leadership 

3. the need for an informed public. 

In the latter part of his lecture, Schwab considered means for bringing about an 

enquiring curriculum.  In summary, he considered that the following features 

contributed to such a science curriculum: 

1. the laboratory - practical work should lead rather than lag theory, and 

include a tangible experience of the difficulties of acquiring data, 

such as unresolved debates, diversity of problems and methods, and 

continuing differences in concept and interpretation 
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2. a doubt component - an honest statement of ignorance, uncertainty 

and dubiety, illustrating the complexity of the problems which 

science dares to solve 

3. an enquiring classroom - with science being shown as enquiry, and 

also ‘teaching as enquiry’, instructing students in how to learn for 

themselves, and using methods which show that there is room for 

alternative interpretation 

4. use of original scientific papers as curriculum materials - at least with 

11th and 12th grade students 

5. use of idiomatic translations - to convey the character of enquiries 

6. use of papers as interludes of depth - to provide a balance between 

depth, and the breadth which many courses appear to strive for 

7. use of narrative of enquiry - using a problem seen and a research plan 

produced by a scientist, and then letting the student adopt the position 

of the scientist 

8. use of invitations to enquiry - individual problems of controllable 

length and difficulty, which make use of what the text has taught. 

Lucas (1971) quoted an account from Schwab of what a classroom where inquiry 

techniques were being used would be like: 

. . . Once alternative possibilities have presented themselves, discussion 

ensues.  The feasibility and validity of different problems are debated.  

Ways and means must be discussed.  Techniques are devised and 

criticised, assumptions are unveiled and identified.  Then there must be 

consensus and a division of responsibilities.  Finally, at the end, when 

research reports are written, circulated and read by different teams, there 

are discrepancies to be checked or accounted for in the interests of further 

consensus. (Lucas, 1971, p. 189) 
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Schwab (1963) stated that science as enquiry was one of the most radical ways in 

which the BSCS texts departed from conventional ones, and that the essence of 

teaching science as enquiry would be to show some of the conclusions of science in 

the framework of the way they arose and were tested, and that this would mean to 

tell the students about the problems posed and the experiments performed, to 

indicate the data thus found, and to follow the interpretation by which these data 

were converted to scientific knowledge, including a treatment of the doubts and 

incompleteness.  In these statements, Schwab provided us with some evidences 

which can be looked for fairly readily in classrooms.  He identified the problems 

with teaching science as a rhetoric of conclusions as relating to the fact that so doing 

fails to show that scientific knowledge is more than a simple report of things 

observed, and fails to show that scientists are capable of error.  A side effect of this 

is that as people find the science they were taught at school no longer holds true they 

doubt their teachers and science itself. 

Having considered the thoughts of Schwab, some ideas from other authors will be 

considered in historical sequence. 

Gagné (1963) saw inquiry as perhaps the most critical kind of activity that the 

scientist engages in. He judged that inquiry was a set of activities characterised by a 

problem-solving approach, and that its objectives were most clearly achieved when a 

student was able to adapt the procedures of scientific inquiry in response to any new 

unsolved problems encountered. 

Bruner (1968) tended to use the term discovery, but was of the opinion that he had 

never seen anybody improve in the art and technique of inquiry by any means other 

than engaging in inquiry, the significance of this presumably being that if people are 

not trained in the art of inquiry they will not make practising scientists.   

In his book Inquiry Techniques for Teaching Science Romey (1968) made mention 

of his own experience of graduate courses which emphasised recall, and then having 

to work on a thesis where he had to discover even the problems themselves.  He 

compared asking a student to learn science from a book or a set of lectures to asking 

a music student to learn notes before having been taught to play the instrument.  

Other contributors to Romey’s book make a number of suggestions about the nature 
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and value of inquiry teaching.  Samples (1968) was of the opinion that what we 

really want is for students to become confident in the use of their own minds, and 

considered that there is too little time not to teach by inquiry.  Samples provided 

examples of inquiry activities, as did Berger (1968), who considered that the activity 

he outlined, using a historical example, gave students valuable and vital insights into 

the process of science as seen in a real problem, including how data could be 

misinterpreted because of insufficient information.  Farre (1968) believed that 

inquiry showed that facts do not speak for themselves, that scientific facts are 

interpretations of the data, and that interpretation of data reflects a certain way of 

looking at the world.  Rutherford (1968) stated that when it came to the teaching of 

science, science teachers, science educators and scientist are all opposed to the rote 

memorisation of mere facts, and stood for the teaching of the scientific method, 

critical thinking, the scientific attitude, the problem-solving approach, the discovery 

method and the inquiry method.  Whilst the literature does not really seem to support 

Rutherford’s claim for all of the groups mentioned, it is still possible to appreciate 

the points he is making about inquiry teaching.  Rutherford added that to separate 

scientific content from scientific inquiry is to make it highly probable that the 

student will understand neither. 

Collette (1973) said that science is necessarily a dynamic changing enterprise, and 

should be presented as such in science teaching, so as to allow young people to 

expect change, have positive attitudes towards change, and to prepare them for the 

future.  He added that hopefully teaching science as inquiry would not only let 

students better understand science, but make it possible for them to acquire certain 

intellectual skills, which would then make it possible for them to organise their 

thinking, recognise and use relevant information, and in general, perform as rational 

and intelligent human beings.  Renner and Stafford (1972) seemed to agree with this 

idea, stating that inquiry is the teaching methodology to encourage intellectual 

development, pointing out that schools cannot provide students with all the 

knowledge which they will need in their lifetimes, and that it is therefore necessary 

to teach them how to learn.  They added that inquiry learning had the potential to do 

this, and that it is best accomplished through exploration, invention and discovery.  

Before we get too carried away with all this though, perhaps we should also heed the 

cautionary note that Renner and Stafford sounded, that for inquiry teaching to be as 
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successful as possible the learner must want to develop an understanding - a 

predisposition which many teachers are not always fortunate enough to find in their 

science course students. 

In a similar vein to the above Sund and Trowbridge (1973) claimed that there was 

evidence that inquiry-oriented teaching methods helped students to make self-

discoveries about their various talents.  They said that the essence of inquiry teaching 

was arranging the learning environment to facilitate student-centred instruction and 

giving sufficient guidance to ensure direction and success in discovering scientific 

concepts and principles.  They considered that an inquiry-oriented teacher seldom 

tells but often questions, and went into considerable detail about both questioning 

and discussion in inquiry teaching.  With regard to laboratory work, Sund and 

Trowbridge considered that open-ended investigations with a minimum of explicit 

instructions should be used. 

Connelly, Wahlstrom, Finegold and Elbaz (1977) advocated a guided discussion 

approach to inquiry teaching, and said that whilst teachers personal styles may be 

very different from one another they may still be consistent with the purpose of 

inquiry discussion.  During these guided discussions teachers do not normally judge 

the correctness of students’ answers, but comment critically on the soundness of 

their arguments. 

Nagalski (1980) highlighted the need for critical thinking in tomorrow’s world, and 

considered that through inquiry students were conditioned to think critically and 

creatively, and to generate their own conclusions based on observations which they 

themselves collected.   

Kyle (1980) noted that the use of inquiry methods in the science classroom had been 

justified in as many different ways as there were meanings and connotations 

associated with the term.  He went on to summarise some of what he termed the 

multifarious connotations associated with inquiry and pointed out that scientific 

inquiry should not be construed as being synonymous with investigative methods of 

science teaching, experimental methods of science teaching, discovery methods of 

science teaching, self-instructional learning techniques or open-ended learning 

techniques - all of which he contended are learning techniques that it had become 
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fashionable for educators to equate with scientific inquiry.  He considered that the 

actual learning process was not scientific inquiry, but a prerequisite to scientific 

inquiry, and that the time had come for science educators to limit the use of the term 

scientific inquiry to that which constituted scientific inquiry from the scientist's point 

of view.  He said that the ability to scientifically inquire was the personal, 

internalised ability of an individual to synthesise knowledge which had been 

obtained through the learning of basic process skills and competencies that enabled a 

person to rationally inquire, and to solve problems by means of unrestrained 

inductive thinking.  As part of his article Kyle cited his own research, stating that it 

was interesting to note the relatively small amount of time that students in college 

science laboratories actually spend experimenting in the laboratory and concluded 

that even at the college level students were performing what he termed cookbookish 

laboratories as opposed to any form of real scientific inquiry.  Kyle defined scientific 

inquiry as a systematic and investigative performance ability which incorporated 

unrestrained inductive thinking capabilities after a person had acquired a broad and 

critical knowledge of the particular subject matter through formal learning processes.  

He went on to comment that it was necessary to distinguish between inquiry in 

general and scientific inquiry, and for high school students to be cognizant of this 

distinction. 

Tamir and Lunetta (1981) used their Task Analysis Inventory to analyse laboratory 

handbooks, using fourteen items to determine the extent to which books fostered an 

inquiry approach.  They noted that the inquiry skills which were fostered in biology 

were different from those of physics or chemistry, and that even within a discipline 

significant differences existed in certain important inquiry skills.  Their task 

inventory included items relating to the planning and design of investigations, 

performance carrying out the investigation, analysis and interpretation of data and 

application of the results obtained.   

An article by Tamir (1983) set out to clarify the notion of inquiry.  He found that the 

image of inquiry that a group of practising teachers held was, by and large, one of a 

systematic step by step process based on observations and experiments which give 

results that are to be interpreted and which lead to conclusions and scientific laws.   
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Tamir (1985) presented a content analysis scheme consisting of 22 items, which 

aimed to allow teachers to identify which components of inquiry were included in 

textbooks.  These items can, therefore, be taken as helping to define what inquiry is. 

The effect of process-oriented science on problem-solving ability was examined by 

Shaw (1983), in light of the call by the back to basics movement to de-emphasise the 

teaching of such skills.  Shaw found that problem-solving skills which students were 

taught were applied to new content areas, and from this concluded that problem-

solving skills may also transfer to other academic areas.  This lends support to those 

who have argued for the use of inquiry techniques on the basis that they develop 

skills which can be applied more generally.   

Yager (1986) listed the features of a science program approaching excellence as a 

model of inquiry as having the following characteristics: 

1. Teachers value inquiry, encourage such an orientation, and possess such 

personal skills. 

2. Classrooms use science objects and events where students focus on 

investigation. 

3. Curricula and units of instruction give attention to science processes, the 

nature of inquiry, and necessary attitudes and values. 

4. Teachers act as role models in debating issues, admitting errors, examining 

values and confronting their own ignorance. 

5. Instruction focuses on exploration rather than coverage. 

Sutton (1989) blamed textbooks for dominating people’s experiences of science, 

leaving them with the image that it was just stores of facts.  Sutton’s opinion seems 

to be in line with that of other supporters of inquiry, that the history of science 

should be shown in more detail, so as to reveal the revolutions in thought which have 

occurred.   

In discussing desired reforms in science education, Shymansky and Kyle (1992) 

stated that if we want citizens who are creative, reflective, critical thinkers and 
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problem solvers, schools must enhance the ability of all students to become active 

learners capable of learning how to learn.  Whilst they did not espouse a philosophy 

of inquiry teaching the qualities being sought sound very like ones which inquiry 

teaching professes to develop. 

Roth and Roychoudhury (1993) found that students developed higher-order process 

skills through nontraditional laboratory experiences that provided students with the 

freedom to perform experiments of personal relevance in authentic contexts.  Sutton 

(1994) considered that expecting students to interpret what was happening in 

practical work was a tall order, given that scientists may have struggled with the 

same phenomenon for centuries, and said that science lessons should be the study of 

what people have said and thought about nature.  McRobbie and English (1993) 

noted that many recent reports had called for the development of higher-order 

thinking skills, and suggested that science as argument may be a useful metaphor to 

work with to significantly improve science education. 

As has been noted in the preceding chapter, inquiry is a cornerstone of the National 

Science Education Standards (NSES).  The term inquiry was used in two different 

ways in the NSES (National Research Council, 2000, Bybee, 2000).  Firstly, it 

referred to the abilities students should develop to be able to design and conduct 

scientific investigations and to the understandings they should gain about scientific 

inquiry.  Secondly, it referred to the teaching and learning strategies that enable 

scientific concepts to be mastered through investigations.  The National Research 

Council stated that the NSES aimed to draw connections between learning science, 

learning to do science and learning about science.   

The chapter of the NSES devoted to principles and definitions gives the following 

definition and explanation of scientific inquiry: 

Scientific inquiry refers to the diverse ways in which scientists study the 

natural world and propose explanations based on the evidence derived 

from their work. Inquiry also refers to the activities of students in which 

they develop knowledge and understanding of scientific ideas, as well as 

an understanding of how scientists study the natural world.  
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Inquiry is a multifaceted activity that involves making observations; 

posing questions; examining books and other sources of information to see 

what is already known; planning investigations; reviewing what is already 

known in light of experimental evidence; using tools to gather, analyze, 

and interpret data; proposing answers, explanations, and predictions; and 

communicating the results. Inquiry requires identification of assumptions, 

use of critical and logical thinking, and consideration of alternative 

explanations.  (National Research Council, 1996) 

The standards document goes on to consider in some detail what inquiry might look 

like in classrooms of each of a range of grade levels, K-4, 5-8 and 9-12.  The Science 

as Inquiry content standard is divided to two parts: 

• Abilities necessary to do scientific inquiry. 

• Understandings about scientific inquiry. 

The range of activities that each of these encompasses and hence what they might 

look like in a classroom situation is summarised by the two tables, Table 3.1 and 

Table 3.2, below, which are reproduced from National Research Council (2000). 

The NSES explain that they aim to go beyond process skills such as observation, 

inference and experimentation, requiring students to mesh such processes with 

scientific knowledge, as they use scientific reasoning and critical thinking to develop 

their understanding of science.  This encourages students to participate in the 

evaluation of scientific knowledge by asking questions such as ''What counts?'', 

''What data do we keep?'', ''What patterns exist in the data?'', ''What explanations 

account for these patterns?'', ''Is one explanation better than another?'' (National 

Research Council, 1996). 

The NSES explain that understandings of scientific inquiry (as opposed to abilities to 

do scientific inquiry) represent how and why scientific knowledge changes in 

response to new evidence, logical analysis and modified explanations debated within 

a community of scientists. 
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Table 3.1 

Content Standard for Science as Inquiry: Fundamental Abilities Necessary to Do 

Scientific Inquiry.  Reproduced from National Research Council (2000).  

Grades K-4 

• Ask a question about objects, organisms, and events in the environment. 

• Plan and conduct a simple investigation. 

• Employ simple equipment and tools to gather data and extend the senses. 

• Use data to construct a reasonable explanation. 

• Communicate investigations and explanations. 

Grades 5–8 

• Identify questions that can be answered through scientific investigations. 

• Design and conduct a scientific investigation. 

• Use appropriate tools and techniques to gather, analyze, and interpret data.

• Develop descriptions, explanations, predictions, and models using 
evidence. 

• Think critically and logically to make the relationships between evidence 
and explanations. 

• Recognize and analyze alternative explanations and predictions. 

• Communicate scientific procedures and explanations. 

• Use mathematics in all aspects of scientific inquiry. 

Grades 9–12 

• Identify questions and concepts that guide scientific investigations. 

• Design and conduct scientific investigations. 

• Use technology and mathematics to improve investigations and 
communications. 

• Formulate and revise scientific explanations and models using logic and 
evidence. 

• Recognize and analyze alternative explanations and models. 

• Communicate and defend a scientific argument. 
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Table 3.2 

Content Standard for Science as Inquiry: Fundamental Understandings about 
Scientific Inquiry.  Reproduced from National Research Council (2000) Inquiry and 
the NSES. 

Grades K-4 

• Scientific investigations involve asking and answering a question and 
comparing the answer with what scientists already know about the world. 

• Scientists use different kinds of investigations depending on the questions 
they are trying to answer. 

• Simple instruments, such as magnifiers, thermometers, and rulers, provide 
more information than scientists obtain using only their senses. 

• Scientists develop explanations using observations (evidence) and what 
they already know about the world (scientific knowledge). 

• Scientists make the results of their investigations public; they describe the 
investigations in ways that enable others to repeat the investigations. 

• Scientists review and ask questions about the results of other scientists' 
work. 

Grades 5–8 

• Different kinds of questions suggest different kinds of scientific 
investigations. 

• Current scientific knowledge and understanding guide scientific 
investigations. 

• Mathematics is important in all aspects of scientific inquiry. 

• Technology used to gather data enhances accuracy and allows scientists to 
analyze and quantify results of investigations. 

• Scientific explanations emphasize evidence, have logically consistent 
arguments, and use scientific principles, models, and theories. 

• Science advances through legitimate skepticism. 

• Scientific investigation sometimes result in new ideas and phenomena for 
study, generate new methods or procedures for an investigation, or 
develop new technologies to improve the collection of data. 

Grades 9–12 

• Scientists usually inquire how physical, living, or designed systems 
function. 

• Scientists conduct investigations for a wide variety of reasons. 
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• Scientists rely on technology to enhance the gathering and manipulation of 
data. 

• Mathematics is essential in scientific inquiry. 

• Scientific explanations must adhere to criteria such as: a proposed 
explanation must be logically consistent; it must abide by the rules of 
evidence; it must be open to questions an possible modification; and it 
must be based on historical and current scientific knowledge. 

• Results of scientific inquiry — new knowledge and methods — emerge 
from different types of investigations and public communication among 
scientists. 

 

According to the NSES (National Research Council, 1996) inquiry teaching and 

learning have five essential features: 

• Learners are engaged by scientifically oriented questions. 

• Learners give priority to evidence, which allows them to develop and 

evaluate explanations that address scientifically oriented questions. 

• Learners formulate explanations from evidence to address 

scientifically oriented questions. 

• Learners evaluate their explanations in light of alternative explanations, 

particularly those reflecting scientific understanding. 

• Learners communicate and justify their proposed explanations. 

With the advent of the NSES, and their detailed descriptions of what inquiry is, 

debate in the literature seems to have shifted from what inquiry might be to a focus 

on what inquiry might look like in classrooms. 

The NSES emphasised that at all stages teachers should guide, focus, challenge and 

encourage student learning.  The standards emphasised that teachers continually 

create opportunities, make strategic use of questioning, encourage oral and written 

discourse and employ a collaborative group structure.  They stated that the 

understandings and abilities described by the standards cannot be achieved by any 

single approach to science teaching, and that teachers should use different strategies 

to develop the knowledge, understandings, and abilities described in the content 
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standards.  They reminded readers that conducting hands-on science activities does 

not guarantee inquiry, nor is reading about science incompatible with inquiry.  

Crawford (2000) studied the class of one high school ecology course with a view to 

being able to list what made up the day to day running of an inquiry based 

classroom.  She considered that although her case study involved one setting, one 

teacher and one school, assertions about this teacher's teaching may enable others to 

sharpen their focus on what it means to teach about scientific inquiry in school 

classrooms.  She listed these assertions as: 

• Inquiry is situated in context. 

• Teachers need to embrace inquiry as a content and a pedagogy. 

• Collaboration between teacher and students enhances inquiry. 

• Teacher and student roles are complex and changing. 

• Greater levels of involvement are required by teachers than in traditional 

teaching. 

Kashmanian Oates (2002) considered inquiry teaching in the college context and 

described how an inquiry-based science curriculum supported the seven principles 

for best practice in undergraduate education, listing these as: 

• encourages student/faculty contact 

• encourages cooperation among students 

• encourages active learning 

• gives prompt feedback 

• emphasises time on task 

• communicates high expectations 

• respects diverse talents and ways of learning. 
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She said that through original research not only are students engaged in the science, 

but many who will not go on to become scientists receive a clearer explanation of 

what science is about.   

Chinn and Malhotra (2002) contrasted the cognitive processes that were needed in 

authentic scientific inquiry with the processes that were needed in simple inquiry 

tasks, listing the cognitive processes involved as: 

• generating research questions 

• designing studies, including selecting variables, planning procedures, 

controlling variables, planning measures 

• making observations 

• explaining results, including transforming observations, finding flaws, 

indirect reasoning, generalisations, types of reasoning 

• developing theories, including level of theory and coordinating results from 

multiple studies 

• studying research reports. 

Bybee (2002) wrote of using the term scientific inquiry in three distinct, but 

complementary, ways: as science content that should be understood; as a set of 

cognitive abilities that students should develop; and as teaching methods that science 

teachers could use.  Commenting on the perspectives presented at an international 

symposium that aimed to shed light on issues associated with the enactment of 

inquiry, Duschl noted that the six papers presented revealed the variety of meanings 

associated with the term inquiry.  (Abd-El-Khalick et al., 2004). 

It is interesting to note that there seems to be a surprising degree of consistency in 

the aims of reformers, but lack of agreement over how to achieve the desired ends.  

From the comments of the above authors, it is possible to draw out a number of 

common themes.  These will be used, together with ideas about why inquiry has not 

been used more widely, in the development of an instrument to assess the degree to 

which inquiry is used in classrooms. 
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3.2 FACTORS INHIBITING THE USE OF INQUIRY AS A SCIENCE 

TEACHING PEDAGOGY 

Before taking the above analysis of what inquiry teaching is and what it involves and 

using this to develop a questionnaire, there would seem to be merit in considering 

the factors that have been seen as inhibiting the wider use of inquiry pedagogies.  

These factors may also offer insight into items that should be incorporated into the 

questionnaire.  

It is not really surprising that for as long as inquiry methodologies have had their 

proponents they have also had their protagonists.  As the 1960s are regarded as 

having been the heyday of inquiry (at least pre the development of the National 

Science Education Standards), criticisms from this era seem a good place to start 

considerations.  Kuslan and Stone (1968) considered some of the arguments which 

had been made against inquiry by authors whom they termed knowledgeable 

educators and psychologists.  These counter arguments included that: 

• young children lack the incentive to tackle problems and are unable to narrow 

problems sufficiently for success 

• a rich background in the subject matter is a precondition for discovery 

learning 

• failure at inquiry may dampen students' enthusiasm 

• there has not yet been a conclusive demonstration that discovery transfers 

across the various disciplines. 

Hurd (1969) considered that the subject matter of the new courses for the most part 

lacked humanistic, social and historical perspectives.  This may have been a factor in 

teachers choosing not to adopt/continue using these courses - and hence omitting 

inquiry as a byproduct of not using the new courses rather than through any 

deliberate decision.  Hurd listed other criticisms of the new courses, such as teachers 

not teaching the course in a manner consistent with the stated goals and the courses 

being too long. 
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In their analysis of biology education, Hurd et al. (1980) commented that biology 

was the most frequently offered science, and that it was the only science discipline in 

which significant numbers of teachers chose to use one of the new programs of the 

1960s.  The fact that they also commented that although 50% of teachers had 

attended NSF (National Science Foundation) institutes they did not feel competent to 

teach using inquiry methods, with less than 50% of teachers using inquiry activities 

in their teaching, did not seem to augur well for these methods.  Hurd et al. noted 

that there were probably many reasons why inquiry had not been fully implemented, 

and listed several.  These were: biology teachers were not educated in research 

methodologies, so they were not model inquirers for their students - not 

understanding inquiry either as a scientific process, or as a teaching method; biology 

teachers lectured more than 75% of the time, so there was little time left for inquiry; 

biology teachers felt that only highly motivated, gifted students could benefit from 

inquiry teaching; secondary school curriculum and instruction was determined 

almost entirely by textbooks.   

Costenson and Lawson (1986) interviewed teachers, and came up with a table of ten 

top reasons why inquiry was not used.  This is reproduced below as Table 3.3. 

Costenson and Lawson went on to refute each of these reasons, but their refutations 

do not change the fact that teachers were not using inquiry due to the reasons listed. 

Hofstein and Lunetta (1982, 2003) carried out critical reviews of the research on 

school science laboratories.  In the most recent review they listed four factors that 

continued to inhibit learning in the school science laboratory.  The last of these 

related to the incorporation of inquiry-type activities into school science being 

inhibited by limitations in resources and by lack of sufficient time for teachers to 

become informed and to develop and implement appropriate science curricula.  In 

addition, they listed large classes, inflexible scheduling of laboratory facilities and 

the perceived foci of external exams as issues. 
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Table 3.3  

Ten Reasons Why Inquiry is Not Used by Teachers.  From Costenson and Lawson 
(1980). 

1.  Time and Energy Too much time must be devoted to 
developing good inquiry materials. 

Too much energy must be expended to 
maintain level of enthusiasm through five 
classes each day. 

2.  Too slow We have district curricula and must cover all 
the material. 

The class will not cover all they need to 
know. 

3.  Reading too difficult The students cannot read the inquiry book. 

4.  Risk is too high The administration will not understand what 
is going on and think I am doing a poor job.  I 
am not sure how each unit will turn out. 

 

5.  Tracking There are no formal thinkers left in regular 
biology. 

6.  Student immaturity Students are too immature. 

Students waste too much time and, therefore, 
will not learn enough. 

7.  Teaching habits I’ve been teaching this way for 15 years, and I 
cannot change now. 

8.  Sequential material Inquiry methods lock you into the order of the 
book. 

I cannot skip labs because there is too much 
new material in each. 

9. Discomfort I feel uncomfortable not being in control of 
what is going on in my classroom. 

Students feel too much discomfort. 

10. Too expensive My lab is not equipped for inquiry. 

My district will not buy materials needed to 
maintain an inquiry approach. 
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A more general perusal of the literature seems to reveal five major limitations which 

have been proposed as restricting the use of inquiry teaching methods.  These may 

be summarised as: 

1. inquiry teaching takes longer 

2. inquiry teaching is too confusing, or just does not work for most students 

3. teachers are not sufficiently educated in the use of inquiry methods 

4. there is a dearth of suitable and readily available teaching resources 

5. assessment methods work against an inquiry approach. 

 

3.2.1 Inquiry Teaching Takes Longer 

The contention that that inquiry methods take too long, and prevent the course 

content from being covered was acknowledged by Schwab in his 1961 lecture.  

However, he was of the opinion that it was a serious question as to whether the many 

topics commonly covered in traditional high school science courses were necessary 

or even desirable.  The emergence of this problem even earlier is noted by Solomon 

1994) who writes that Armstong’s inquiry methods were too slow for covering 

Higher School Certificate examinations.  Herron (1971) stated that one thing we 

could be sure of was that enquiring laboratory activities took longer.  Connelly et al. 

(1977) supported this, noting that it may be necessary to sacrifice some content 

coverage in using inquiry methods.  Schneider, Krajcik, Marx and Soloway (2002) 

noted that there were concerns that movement away from teacher-disseminated 

coverage of content would limit the amount of science content to which students 

were exposed and given opportunities to learn, leaving them at a disadvantage in 

large scale achievement tests.  They sought to obtain empirical evidence that linked 

inquiry-based instruction with success on science achievement tests, and studied a 

high school that had restructured its science program to address reform 

recommendations through the use of project based learning.  The study found that 

project based learning students scored favourably on national tests compared to the 

national average and concluded that educators need not fear that students in inquiry-
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based courses will be disadvantaged on large scale achievement tests.  Despite these 

findings an ongoing theme in the literature seems to have been that some 

teachers/schools see inquiry-based instruction as potentially disadvantaging their 

students. 

It is worth noting at this stage that a theme in the implementation of Tasmania's new 

Essential Learnings curriculum is that teachers should teach in less breadth, but in 

more depth.  As the Essential Learnings advocate an inquiry approach across the 

curriculum, this is a means of addressing teacher concerns. 

A problem identified by Horizon Research (2003) related to a number of factors, 

including the time required for inquiry teaching.  The Horizon team considered that a 

problem is that the content standards themselves are too daunting and that it is not 

possible to teach all of the content embedded in the NSES or the Benchmarks in the 

13 years available to the school system, using the pedagogies recommended by the 

NSES. 

 

3.2.2 Inquiry Teaching is too Confusing, or Just Does Not Work for Most 

Students 

The idea that inquiry teaching is too confusing was evident in the work of Gagné 

(1963) when he stated that although it was possible, it was not necessarily desirable 

to extend invitation to inquiry activities to secondary and primary schools.  He 

argued that practicing inquiry too soon and without a suitable background of 

knowledge could have a narrowing and cramping effect on the individual’s 

development of independent thinking.  Driver (1983) considered that I do and I am 

even more confused may be a more appropriate ending than the traditional I do and I 

understand to the slogan commonly used in support of practical work.  Songer and 

Linn (1991) seemed to support this idea with the finding that children rarely 

spontaneously integrate new information.  Germann (1989) found that many teachers 

found conventional inquiry instruction ineffective for most students, and suggested 

the use of a more directed approach for concrete operational students. 

  98 



Kyle (1980) listed as claims that had been made against the new inquiry based 

curricular: that they were best suited to bright students; that they were too abstract 

for the average student; that they had failed to alleviate the declining enrolment in 

science courses; that many of the laboratory exercises could be classified at the 

lowest levels of the discovery hierarchy and that they had given students and many 

secondary teachers a false impression of scientific inquiry.  He said that prior to 

engaging in a successful, productive and useful scientific inquiry a person must 

acquire a broad and critical knowledge of the subject matter, which is acquired 

through the learning of basic competencies.  Kyle stated that these competencies 

would include number computation, spatial and manipulative skills, and the 

capabilities of observing, classifying, measuring, describing, inferring and model 

conceptualisation (he considered that these skills were equally valuable to those 

students who did not become scientists).  This is an interesting list, as it would seem 

unlikely that teachers would try to teach inquiry without developing such skills.  

However, it seems quite possible that criticisms such as these have influenced 

teachers/schools to either not adopt or drop inquiry techniques.   

Kyle went on to add that not all high school students had the desire or the ability to 

synthesise scientific knowledge and to undergo the unrestrained, inductive, 

intellectual responses required of a person in order to inquire scientifically.  Kyle 

considered that many science teachers frustrate students by forcing them to inquire, 

and added that some authors seem to imply that certain methods of instruction and 

learning are most efficient for all students - and that this is not the case.   

 

3.2.3 Teachers are Not Sufficiently Educated in the Use of Inquiry Methods 

The issue of teachers not being trained to teach science as inquiry must be regarded 

as a significant one, particularly in today’s science classrooms, where, more and, 

more there is a tendency for untrained teachers to be given science classes.  This is a 

situation that exists, for example, in a number of Tasmanian high schools that have 

adopted a middle school program. 

Hurd (1969) noted that the reaction of teachers to criticism over the way in which 

they taught high school science was that they were teaching what they were taught in 
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their pre-service training and that in that training very little if any time was devoted 

to learning about science as science.  Add to this Hurd's comment that the 

assignment of teachers outside their subject is widespread, with a sizeable fraction of 

the science teachers in America being science teachers by administrative decision 

rather than by training, and lack of teacher training could well be regarded as a 

significant barrier to inquiry.   

Connelly et al. (1977) acknowledged the importance of teacher knowledge in using 

their discussion methods to teach science as inquiry, stating that the influence of the 

teacher is critical in determining instructional outcomes of these discussions.  Welch, 

Klopfer, Aikenhead and Robinson 1981) reported that many teachers were ill-

prepared, in their own eyes and in the eyes of others to guide students in inquiry 

learning, a finding that Eltinge and Roberts (1993) considered that a number of 

authors supported.  Welch et al. elaborated on their conclusion in noting that there 

appears to be a discrepancy between existing general statements about the 

importance of inquiry and the attention given it in practice.  Although teachers made 

positive statements about the value of inquiry they often felt more responsible for 

teaching facts, things which show up on tests.  Hurd et al. (1980) stated with respect 

to biology teaching, that teachers did not learn how to present biological topics in an 

inquiry-based interdisciplinary way.  In a similar vein to Hurd et al. (1980), Tamir 

(1983) acknowledged that the notion of inquiry caused a great deal of confusion 

among teachers, and in both that article and Tamir (1989) made some suggestions 

about training teachers to teach effectively in the laboratory. 

Lopez and Tuomi (1995) considered that the reason well designed hands-on teaching 

kits didn't work in the reforms of the 1960s and early 1970s was that the kits were in 

most cases simply turned over to teachers and that in general elementary teachers 

have an inadequate science background and so felt uncomfortable with the materials.  

Additionally student inquiry meant a lot of noise and mess and materials didn't work 

as expected or were used up.  While this could be regarded as a particular problem 

for elementary teaching, comments by authors such as Uno (1990) have suggested 

that it extends to college teaching.  Uno reported that in his experiences leading 

workshops at American Institute of Biological Sciences annual meetings few 

attendees had used inquiry.  He identified the reason for this as being because their 
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own undergraduate programs had not offered adequate classes to prepare them to 

teach in this manner. 

Crawford (2000) started from the premise that there is a paucity of research on how 

to design instructional environments to promote students' understandings of 

scientific inquiry.  She considered that orchestrating non-traditional inquiry 

instruction is complex and that many teachers had not embraced the essence of this 

mode of learning.  She added that details of day to day events in the real world of 

classroom life are left to the imagination, and often frustration, of the classroom 

teacher striving to use inquiry-based strategies.  She studied the way that one teacher 

implemented inquiry in his high school ecology course, with a view to making the 

principles available to other teachers.  Crawford found that students' opinions were 

frequently solicited in the class, and that six key characteristics of this ecology 

classroom were: 

1. situating instruction in authentic problems 

2. grappling with data 

3. collaboration of students and teacher 

4. connection with society 

5. teacher modelling behaviours of a scientist 

6. fostering student ownership. 

Crawford considered that the teacher took on the same six roles that have been 

suggested for teachers using constructivist approaches plus some additional ones, 

giving ten roles: 

1. motivator 

2. diagnostician 

3. guide 

4. innovator 
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5. experimenter 

6. researcher 

7. modeller 

8. mentor 

9. collaborator 

10. learner. 

Crawford considered that a teacher's work in an inquiry-based classroom required 

taking on a myriad of roles - and that these roles demanded a high level of expertise.  

The classroom studied also involved students taking on non-traditional roles, some 

usually reserved for the teacher.  In conclusion, Crawford said that her study 

represented a model of collaborative inquiry that required the teacher to take on 

more active and demanding roles than traditionally depicted, including the teacher 

modelling the work of scientists.  These roles were constantly changing and 

demanded more active and complex participation by the teacher.   

If this is the case, then the precept of Lederman and Niess (2000) that science 

teachers, by virtue of the nature of the science courses in their backgrounds, do not 

necessarily possess adequate understandings about inquiry would be a real reason for 

inquiry teaching not to be used.    Lederman and Niess stated: 

We can think of no better way to foster students appreciation for science and 

mathematics than to have them develop understandings about inquiry, 

problem-solving and reasoning.  We can think of no better way to alleviate 

the mystery, confusion and apprehension students often have about 

mathematics and science . . .  (Lederman & Niess, p. 15-16). 

They then went on to state that none of this would occur without a strong initiative of 

professional development related to knowledge of subject matter, process skills and 

pedagogy - indicating that they saw lack of teacher expertise as a major inhibitor to 

inquiry.   
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In addition to having an adequate science background, DuVall (2001b) saw teachers 

as being confronted with the additional challenges of learning how to teach in the 

zone of proximal development, learning how to be quiet and learning how to 

promote meaningful discussions and collaboration. 

Keys and Bryan (2001) strongly advocated the need for more research along the 

lines of that of Crawford, saying that this was necessary in order to elucidate the 

knowledge base that was required for inquiry teaching, so that it could be used to 

inform teacher education programs.  They considered that such studies, on the roles 

and knowledge of teachers in implementing inquiry in the classroom, would have a 

broad impact as they would reflect what may realistically be accomplished on a large 

scale, especially in diverse settings with respect to factors such as student ability and 

motivation, ethnic background, literacy levels, sex and special needs students.  They 

considered that data was needed to show what kinds of inquiry-based science may 

reasonably be carried out in ordinary classrooms, and what kinds of student learning 

outcomes could be reasonably expected.  They commented that only then, when the 

voices of researchers were in resonance with those of teachers, could we begin to 

create harmonised reform-based instruction that is enduring. 

Windschitl (2002) considered that it was unreasonable to assume that individuals 

who had not conducted a single inquiry in which they developed a question of 

interest and designed an investigation to answer that question would spontaneously 

embrace the idea of using open inquiry in their classrooms - or feel capable of 

managing such complex instruction.  Windschitl found that the sole common 

condition across participants who used inquiry regularly in their classrooms was that 

they had previous long term research experience in which they played significant 

roles in authentic investigations.  Whilst acknowledging his small sample size (six 

preservice teachers in a program dedicated to producing graduates who would 

assume leadership roles in their schools as well as be exemplary teachers) Windschitl 

still concluded that teacher education programs should promote some authentic 

science research experiences.  Eick and Reed (2002) seemed to agree with this, 

noting the role of learners' personal histories on their teaching identity development 

and the implications of this for preparing inquiry-based science teachers, and 

concluding that traditional institutions needed to implement more supervised 
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teaching experiences using structured inquiry before students enter teacher 

education. 

Windschitl also pointed out that the deceptively minor differences between 

structured, guided and open inquiry had monumental implications in the classroom 

for what students actually did, pointing out that guided inquiry was far more 

intellectually challenging for learners and pedagogically complex for teachers to 

manage than was structured inquiry.  Independent or open inquiry was still more 

challenging for both learners and teachers. 

Horizon Research (2003), in looking at the influence of the NSES on teachers and 

teaching practice, concluded that the preparedness of teachers for standards-based 

science instruction was a major issue, with areas of concern including inadequate 

content preparedness and inadequate preparation to select and use instructional 

strategies for standards-based science instruction.  As inquiry is a focus of the NSES 

it can reasonably be concluded that inadequate preparation is likely to include this 

area. 

If the somewhat sobering assertion of Sandler (2003) - that nearly one fifth of high 

school science teachers lack even a minor in their main teaching field, and that 56% 

of high school science students taking physical science do so from a teacher teaching 

out of field - is even approximately correct, it is not surprising that teachers do not 

feel qualified to teach science as inquiry.   

Perhaps further evidence is lent to this mode of thinking by the attempt of the 

California Curriculum Commission to limit the amount of hands-on instruction in K-

8 textbooks to a maximum of 20-25% (reported for example in Strauss, 2004).  The 

reasoning given for the proposed change was that the commission was trying to 

balance the need for a comprehensive science curriculum with the limited science 

background of many K-8 teachers.  This move was strongly opposed by a number of 

educators and scientists, and was eventually voted down by the California State 

Board of Education in March 2004.   
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3.2.4 There is a Dearth of Suitable and Readily Available Teaching Resources  

The lack of textbooks and other curriculum materials which really encourage inquiry 

learning is commented on on a number of occasions in the literature.  Hurd et al. 

(1980) found that whilst inquiry was a stated goal of biology programs, few 

laboratory activities (10%) stress independent inquiry.  Tobin and Gallagher (1987), 

in noting an emphasis on content in science classrooms suggested that given the 

extensive use of the text, changing the text could be a means of bringing about 

change.  This cannot be regarded as the sole reason for teachers not using inquiry 

methods though.  As Eltinge and Roberts (1993) pointed out, a textbook may have a 

very high level of inquiry but be used in a manner which enhances rote learning - or 

alternatively as Romey (1968) noted, a highly inquiry oriented course can be run 

using the most traditional of textbooks.  Jiménez Aleixandre (1994) agreed, 

reminding us that research has shown that classroom materials designed to involve 

pupils are not enough if the teacher’s strategy is not appropriate. 

The situation does not appear to have improved significantly by the time Chinn and 

Malhorta (2002) conducted their research, as they noted that textbook curricular, 

which remained important in many schools, were dominated by oversimplified 

inquiry tasks that bore little resemblance to authentic scientific reasoning.  They 

found that most of the research tasks developed by researchers had incorporated 

several additional features of authentic reasoning, but that most still omited several 

key features of authentic science. 

Volkmann and Abell (2003) contended that although inquiry-based science was the 

buzz many curriculum materials are still based on traditional approaches that failed 

to engage students in inquiry. 

Regardless of the use which teachers may make of materials they are supplied with, 

the scarcity of time which most teachers currently have for lesson preparation is also 

likely to be a factor deterring them from adopting strategies which require significant 

preparation time - which many inquiry techniques need, at least when teachers 

initially adopt them.   
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3.2.5 Assessment Methods Work against an Inquiry Approach 

The question of assessment seems to be a never ending one in influencing how and 

what teachers teach.  There are obviously great demands on teachers to adequately 

prepare students for assessment tasks, and if teachers do not perceive inquiry 

techniques as being the best means of doing this they will feel compelled not to use 

them - no matter how much they may believe in the greater value of such techniques.  

There are a number of references to this situation in the literature.  For example, 

Tobin and Gallagher (1987) noted that academic work in high school classes was 

strongly influenced by the local assessment system, whilst Tobin et al. (1990) 

reported that teachers felt constrained by tests and exams. 

Horizon Research (2003) commented that a factor working against inquiry, at least 

in the United States, might be the increasing influence of state and district tests. They 

stated that anecdotal evidence told them that teachers believed in the standards, but 

that on the other hand they were held accountable for state and district tests, which in 

many cases were not standards-based. 

 

3.2.6 Other Considerations 

Several other reasons have been suggested for inquiry methods not being adopted.  

One of these is that student behaviour may not lend itself to a number of the teaching 

strategies suggested for inquiry teaching.  A BBC News item (School science labs 

inadequate, 2004) reported that earlier in 2004 a survey by Save British Science 

found that practical lessons had been cancelled in more than three-quarters of the 67 

schools surveyed, and that in 57% of those cases the reason given was rowdy student 

behaviour.  Dr Simon Campbell the president-elect of The Royal Society of 

Chemistry, was quoted as saying that fewer kids were having practical classes, 

largely because of poor discipline.  In an inquiry approach appropriate laboratory 

work is important, so if less practical work is occurring in schools it is likely that 

inquiry methods are not being fully implemented. 

A further factor working against the use of inquiry methods could be the idea of 

Medawar (1986) that the scientific paper is a fraud, with scientists rarely following 
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the scientific method, but rather developing hypotheses that are imaginative and 

inspirational in nature.  Woolnough (1989) agreed with this idea, commenting on an 

earlier work of Medawar’s which said that science really proceeds by intuition, 

serendipity, and imagination, followed by rigorous attempts at disproof - and that 

science only appears to be inductive because of the convention in which it is 

presented.  

Critics such as Ausubel (1964) take the stance that whilst learning by discovery has 

its proper place amongst the repertoire of accepted techniques available to teachers it 

has been elevated by some of its proponents into a panacea.  Ausubel considered that 

if a student of science is to discover he must first learn, and that students cannot 

learn adequately by pretending to be junior scientists.  However, one would have to 

question if this is not the way that some of the great scientists really learnt science.  

Ausubel also considered that despite their frequent espousal of discovery principles 

the various curriculum reform projects have failed thus far to yield any evidence in 

support of the discovery method - but that these projects were cited in the discovery 

literature under the heading 'research shows'.  Hermann (1969) concurred with this 

view, stating that the results of discovery learning experiments were conflicting and 

often insignificant, and that whilst they tended to favour discovery learning 

compared to other methods many results were suspect due to limitations in 

experimental design and analysis.  Hermann further noted that direct comparison of 

experimental findings is difficult due to differing ideas concerning the nature of 

discovery learning. 

This consideration of issues which work against the teaching of science as inquiry 

may provide further points which can be looked at in developing an instrument to 

determine the extent to which inquiry methods are used in classrooms.  Before 

attempting to design such an instrument, a brief consideration of the interrelationship 

of constructivism and inquiry teaching will be made.  Constructivism is a major 

principle in current educational thinking, so unless its methods are seen as 

compatible with inquiry teaching there would really seem to be little point in 

proceeding with the development of an instrument to look at the extent of inquiry 

teaching. 
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3.3 INQUIRY METHODOLOGIES AND CONSTRUCTIVISM 

A major educational thrust in science and mathematics education in recent times has 

been that of constructivism.  Dana and Davis (1993) reported that scholars from a 

diversity of backgrounds were beginning to use constructivism to make sense of 

educational phenomena, although as Duit and Confrey (1996) acknowledged, 

providing evidence of the success of constructivist principles is somewhat difficult.  

Shymansky and Kyle (1992) noted that Project 2061 agreed that scientific endeavour 

should be presented as a social enterprise, placing emphasis on human thought, 

action, depth of understanding, and the application of science to personal and 

societal issues; that learning strategies ought to be based upon a constructivist 

epistemology; and that reform should ensure the scientific literacy of virtually all 

students. 

An extensive literature exists on constructivism, which will not be considered here.  

It should be sufficient for current purposes to use a view of constructivism such as 

that given by Maor and Taylor (1995), who in summarising the ideas of various 

authors decided that a personal constructivist perspective regards knowledge as 

being constructed by learners who give meaning to new experiences in terms of their 

prior knowledge and past experiences.  This perspective emphasised a cognitively 

active approach to learning in which students construct knowledge which is viable 

for them, and incorporate it within their views of the world.  This is in line with the 

definition of inquiry that is presented in the National Science Education Standards.  

Maor and Taylor went on to note that science educators have realised that personal 

constructivism fails to acknowledge the importance of the social aspects of learning, 

and so a social constructivist perspective has developed.  This social constructivist 

perspective regards learning as a social activity in which learners are engaged in 

constructing meaning through discussions and negotiations among peers and 

teachers.  Through social interactions students become aware of others’ ideas, seek 

reconfirmation of their own ideas, and reinforce or reject their personal construction. 

Germann, Haskins and Auls (1996) also commented on the importance of the 

constructivist epistemology, noting that within this epistemology teachers strive to 

help students make meaningful connections between what they already know from 

their experiences, both in and out of school, and new understandings that are 
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scientifically acceptable.  They added that where appropriate knowledge is not in the 

students’ experience the teacher must provide it, and that where students have 

constructed misconceptions the teacher must provide learning activities that will help 

the students build more appropriate meanings. 

There appear to be a number of similarities between the needs of constructivism and 

the strategies suggested for inquiry teaching, so that the two may be regarded as 

complementing each other.  The following are some particular areas in which the 

intertwining of the two methodologies can be seen. 

• Use of discussion - this is vital from the perspective of social 

constructivism, and is also critical to inquiry teaching in allowing 

students to clarify and refine their beliefs. 

• Concept of knowledge being uncertain - inquiry methods note the 

importance of recognising the existence of alternative perspectives 

and interpretations, whilst constructivism sees the idea of conflict as 

being important in allowing cognitive change. 

• Use of historical perspectives and stories - this is seen as important 

in inquiry as it allows students to see how science progresses, and to 

recognise it as a real enterprise.  It can also be regarded as important 

in constructivism, as the use of such stories provides a starting point 

for students to relate their own experiences and beliefs to. 

• Scientific method skills such as interpreting, generalising and 

problem-solving - are seen as basic to inquiry, as they allow people 

to use the processes of science, even in times of changing 

knowledge.  With regard to constructivism, the development and use 

of these skills must provide individuals with the opportunity to 

further explore their own ideas and beliefs, and also provide them 

with the necessary tools to compare their own beliefs with those of 

others. 

• Use of open - ended investigations - this is integral to the ideas of 

inquiry.  It must also be extremely important in constructivism, as 
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such investigations pave the way for conceptual growth, and also 

can bring about cognitive conflict, thus leading to conceptual 

change. 

Gil-Pérez and Carrascosa-Alis (1994) said that the idea of linking science learning to 

the way of doing science - which many of the above points represent - was a 

characteristic of the discovery method, and that it was currently being reinforced by 

the constructivist paradigm. 

Unfortunately for advocates of either inquiry or constructivist methodologies, 

Gallagher (1993) considered that in the dominant paradigm in science teaching - and 

for that matter most other subjects, at least at the secondary and tertiary levels - 

teaching had been associated with the transmission of knowledge; learning had been 

equated with memorising that information; and assessment of learning had been 

summative, to determine whether students had been successful in acquiring the 

information.  He suggested that this paradigm was in fact deeply ingrained from 

teachers’ own education, and that teachers’ practices change more slowly than their 

vision - although they may accept new teaching ideas, they take some time to 

implement these effectively in their classrooms.  This is the very situation which has 

existed with inquiry teaching methods - their use has been advocated, and even 

supported by teachers, but there has been very limited evidence of their successful 

implementation in classrooms.  Given the time and resources which go into 

developing new methodologies, it is to be hoped that constructivism meets with 

more success than inquiry teaching has - and that 30 years on researchers will not be 

reading debates in the literature as to whether or not it is a desirable strategy (not that 

some divergence of opinion is not a healthy thing). 

Llewellyn (2002) considered that to become an inquiry based teacher it was essential 

to develop the proper philosophical mind-set that accompanied inquiry, and noted 

that for many teachers the principles of constructivism lay the foundation for 

understanding inquiry.  

In a consideration of teaching science through inquiry, Haury (2003) noted that 

inquiry-oriented teaching reflected the constructivist model of learning, so strongly 

held among science educators today.  He said that in its essence inquiry-oriented 
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teaching engages students in investigations to satisfy curiosities, with curiosities 

being satisfied when individuals have constructed mental frameworks that 

adequately explain their experiences.   

The importance of the preceding discussion in this section is that it shows 

similarities between inquiry methods and constructivist thinking.  Therefore, it is not 

necessary to abandon inquiry ideas, because of the general acceptance of 

constructivist ideas in science education, and the development of an instrument to 

assess the extent to which inquiry is used in science classrooms is in keeping with 

constructivist objectives. 

In the guide to the NSES, Inquiry and the National Science Education Standards 

(National Research Council, 2000) a 1999 NRC report titled How People Learn, 

which synthesised research from a variety of fields, including cognition, child 

development and brain functioning was referred to.  This document is reported to 

have demonstrated broad consensus about how learning occurs, listing the following 

broad findings: 

• understanding science is more than knowing facts 

• students build new knowledge and understanding on what they already know 

and believe 

• students formulate new knowledge by modifying and refining their current 

concepts and by adding new concepts to what they already know 

• learning is mediated by the social environment in which students interact 

with others 

• effective learning requires that students take control of their own learning 

• the ability to apply knowledge to novel situations, that is, transfer of learning, 

is affected by the degree to which students learn with understanding. 

The guide considered that these findings connect in important ways with the 

definition of inquiry presented in the NSES, supporting the use of inquiry as a 

methodology. 
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3.4 SCALES FOR AN INQUIRY QUESTIONNAIRE  

An objective of the current research, and the reason for the preceding literature 

review, is to develop an instrument that can be used to assess the extent to which 

teachers employ inquiry methodologies in their classrooms.  On the basis of what the 

authors considered in the preceding sections have said constitutes and inhibits 

inquiry teaching six scales were devised for the questionnaire.  These six scales, 

which will be considered in greater detail in the next chapter, are: 

1. Open-endedness - the extent to which the laboratory activities emphasise an 

open-ended divergent approach to experimentation. 

2. Discussion - the extent to which discussion of ideas occurs in the classroom. 

3. Assessment - the extent to which assessment procedures emphasise process 

skills rather than memorisation of knowledge. 

4. Scientific Method - the extent to which students are provided with the 

opportunity to develop critical thinking skills through the processes of the 

scientific method. 

5. Historical perspectives/use of stories - the extent to which historical 

perspectives and stories are used in the class. 

6. Uncertainty - the extent to which scientific knowledge is presented as being 

tentative and subject to change. 



CHAPTER 4 -  DEVELOPMENT OF THE IS THIS AN 

INQUIRING CLASSROOM? 

QUESTIONNAIRE (ITIC) 

 
CHAPTER OVERVIEW 

This chapter considers the use of questionnaires as measures of classroom 

environment, considering what has been reported and become conventional in the 

literature.  It culminates in the development and analysis of the Preliminary Version 

of the Is This an Inquiring Classroom or ITIC questionnaire. 

 

4.1 QUESTIONNAIRES AS MEASURES OF CLASSROOM 

ENVIRONMENT 

The use of questionnaires as instruments to measure classroom environment - as 

opposed to techniques such as direct observation by an external observer - has been 

extensively covered in the literature by Fraser (Fraser, 1986, 1994).  Fraser (1998) 

reported that in the 30 years since the pioneering use of classroom environment 

assessments (in an evaluation of Harvard Project Physics by Walberg and Anderson, 

1968), learning environment assessments had been used in a rich variety of research 

applications spanning many countries.  He noted that a striking feature of this field 

was the availability of a variety of economical, valid and widely-applicable 

questionnaires that had been developed and used for assessing students’ perceptions 

of classroom environment.  Fraser saw these questionnaires as having the dual 

advantage of, firstly, characterising the setting through the eyes of the participants 

themselves and, secondly, capturing data which an observer could miss or consider 

unimportant.   

Rickards and Fisher (1999) considered that recent reviews (Fraser, 1986, 1994; 

Fraser & Walberg, 1991) showed that science education researchers had led the 

world in the field of classroom environment over the last two decades, and that this 

field had contributed much to understanding and improving science education, 

providing a means, for example, of monitoring, evaluating and improving science 

teaching and curriculum.   
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In light of the wide acceptance that questionnaires have gained as classroom research 

instruments it was considered that a questionnaire was an appropriate tool to develop 

and use in the current research study, firstly, to measure the extent to which inquiry 

teaching occurred in Tasmanian science classrooms and, secondly, to gauge both 

student and teacher preferences in this area. 

The format of the questionnaire developed was based on that of previous learning 

environment questionnaires.  In particular, the nine major such questionnaires 

described by Fraser (1998) were considered.  These are the Learning Environment 

Inventory (LEI) (Fraser, Anderson, & Walberg, 1982), Classroom Environment 

Scale (CES) (Moos & Trickett, 1987), Individualised Classroom Environment 

Questionnaire (ICEQ) (Fraser, 1990), My Class Inventory (MCI) (Fraser, Anderson, 

& Walberg, 1982), College and University Environment Inventory (CUCEI) (Fraser, 

Treagust, & Dennis, 1986), Questionnaire on Teacher Interaction (QTI) (Wubbels, 

Brekelmans, & Hooymayers 1991), Science Laboratory Environment Inventory 

(SLEI) (McRobbie & Fraser, 1993), Constuctivist Learning Environment Survey 

(CLES) (Taylor, Fraser, & Fisher, 1997),and What is Happening in This Class 

(WIHIC) (Fraser, Fisher, & McRobbie, 1996) surveys.   

Whilst a number of authors have reported using existing instruments to carry out 

their learning environment research (for example, Kim, Fisher, & Fraser, 1999, 

Rickards & Fisher, 1999, Henderson, Fisher, & Fraser, 2000), the world of 

classroom environment questionnaires is a dynamic one, with the ongoing 

production and modification of questionnaires by different authors in order to 

develop an instrument that meets their particular needs (for example, Fisher & 

Waldrip, 1997, Waldrip & Fisher, 2000, Fraser, Treagust, & Dennis, 1986).  

Additionally, a number of authors have reported on the modification and validation 

of new forms of existing questionnaires, or on applying them in new situations (for 

example, Taylor, Fraser, & Fisher, 1997, Nair &Fisher, 2000). 

In developing the questionnaire to be used for the current research project, the 

experiences of other workers in the learning environments field were used to help 

make decisions relating to factors such as: the number of scales and items to be 

included; the number of response choices to be included; development of Actual 
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and/or Preferred Forms; the use of class or personal items; and the inclusion of 

negative items. 

Fraser (1986) identified three general steps in the development and validation of 

such a questionnaire - identification of salient dimensions, item writing, and field 

testing and item analysis.  These are the steps which were followed in the 

development of the instrument to be used in this research, which has provisionally 

been titled the Is This an Inquiring Classroom? (ITIC) questionnaire. 

 

 

4.2 SCALES FOR AN INSTRUMENT DESIGNED TO MEASURE 

INQUIRY 

4.2.1 Introduction to the Scales 

Information obtained in the literature review, which was reported in the preceding 

chapters, was used to identify suitable scales and to write suitable items for the 

questionnaire that was developed.  For economy, it was desirable to develop an 

instrument with a relatively small number of reliable scales, each containing a fairly 

small number of items.  On the basis of the literature review it was decided that the 

questionnaire developed should have six scales, and that twelve items would initially 

be developed for each of these six scales.  More items than would be required for the 

final version of the questionnaire were developed, in order to allow for the deletion 

of items which did not perform well during the validation statistical analysis. 

The objective in developing the Is This an Inquiring Classroom? (ITIC) 

questionnaire was to produce an instrument that would measure the extent to which 

teachers actually use inquiry in their classrooms.  On the basis of what the literature 

reported about inquiry teaching the six scales shown in Table 4.1 were developed. 

The order in which these six scales are presented is not intended to relate to their 

importance in any way.  Titles for the scales have been deliberately kept brief, and 

the intent of each of the scales is outlined more fully in the following discussion.  
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Table 4.1 
Descriptive Information for Each Scale of the ITIC Questionnaire. 
 
Scale Scale Description 

Open-endedness Extent to which the laboratory activities emphasise an open-

ended divergent approach to experimentation. 

Discussion Extent to which discussion of ideas occurs in the classroom. 

Assessment Extent to which assessment procedures emphasise process skills 

rather than memorisation of knowledge. 

Scientific Method Extent to which students are provided with the opportunity to 

develop critical thinking skills through the processes of the 

scientific method. 

Historical perspectives 
/use of stories 

Extent to which historical perspectives and stories are used in 

the class. 

Uncertainty Extent to which scientific knowledge is presented as being 

tentative and subject to change. 

 

 

4.2.2 Scale 1: Open-endedness 

The Open-endedness scale assesses the degree of independence which students are 

given in practical / laboratory work.  As such, it partially consists of items taken or 

modified from the SLEI (Science Laboratory Environment Inventory) 

Questionnaire’s Open-Endedness scale described by Fraser, McRobbie, and 

Giddings (1993).  This SLEI scale attempts to measure the extent to which 

laboratory activities emphasise an open-ended, divergent approach to 

experimentation.  Consideration was given to extending this scale to make it more 

like the Investigation scale of the ICEQ (Individualised Classroom Environment 

Questionnaire), which is described, for example, by Fraser (1994), and which takes 

investigations other than practical work into account.  However, it was felt that some 
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items in this ICEQ scale really fitted better into the Scientific Method scale of the 

current instrument.  Items in this scale also broadly reflect the planning and design 

section of the Laboratory Analysis Inventory (LAI) developed by Tamir and Lunetta 

(1978), and presented in a modified form by Tamir (1989).   

An extensive literature exists on the role of school science laboratories, much of 

which was reviewed by Hofstein and Lunetta (2003).  Aspects of this literature are 

relevant to the development of the Open-endedness scale.  Hofstein (2004) noted that 

whilst during the reforms of the 1960s the laboratory became the centre of science 

teaching and learning, the development of the National Science Education Standards 

and related literature emphasised the importance of rethinking the role and practice 

of laboratory work.  To some extent, the Open-endedness scale attempts to pick up 

on what at least part of the role of laboratory work should be.  

Articles by Hofstein, Shore and Kipnis (2004) and Hofstein, Navon, Kipnis and 

Mamlok-Naaman (2005) report on the results of a study in which a number of what 

are termed inquiry-type experiments were developed and implemented in Grade 11 

and 12 Chemistry classes in Israel.  The abilities and skills the experiments measured 

were: 

 conducting an experiment 

 observing and recording instructions 

 asking questions and hypothesising 

 planning an experiment 

 conducting the planned experiment 

 analysing the results, asking further questions, and presenting the results n 

scientific way 

A number of these items are relevant to the Open-endedness scale, whilst the last one 

fits more with the Scientific Method scale.  The above studies concluded that 

chemistry students who were involved in the inquiry activities were able to ask more 

and better questions regarding chemical phenomena and also that they developed the 

ability to also ask questions in non-experimental learning situations, such as reading 

scientific articles.   
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As practical work is an important component of inquiry teaching, it seemed justified 

to include a scale which looked only at this aspect.  Throughout the literature 

discussed in Chapters 2 and 3 there is a theme of inquiry teaching requiring that 

students have to be given the opportunity to investigate their own ideas and 

problems, so a scale that gathered information about the degree to which this 

occurred seemed to be mandatory.   

 

 

4.2.3 Scale 2: Discussion 

A recurring theme in the literature is that of inquiry teaching aiming to give students 

a deeper understanding of scientific concepts, rather than just requiring that they 

memorise facts and concepts.  If students are to develop such understanding most 

effectively they must have the opportunity to discuss their ideas with others.  As 

Roth and Roychoudhury (1993) noted, in trying to convince others students had to 

verbalise and make explicit that which was most often left implicit.  This required 

that students examined their own comprehension in detail, so making them more 

aware of any inadequacies in their own frameworks.  McRobbie and English (1993) 

noted that concern was increasingly being expressed about students’ levels of 

understanding of scientific concepts, and, from both their own work, and from the 

studies of others, concluded that effort needed to be made to develop the appropriate 

skills of argument in children.   

Lowery and Leonard (1978) considered that questions are stimuli to inquiry, and 

noted that this opinion had also been expressed by other authors.  It would seem that 

a discussion is a natural forum for appropriate questions to arise in.  Germann et al. 

(1996) cite Bereiter (1994) as stating that the scientific community engages in a 

progressive discourse to advance scientific knowledge.  This can still be regarded as 

the general model by which scientific knowledge advances - although it has been 

suggested that commercial interests have tended to lead to a situation where the old 

academic adage of publish or perish has to some extent moved to one of publish at 

your peril - and illustrates the importance of discussion in any scientific arena.   
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Additionally, from the social constuctivist viewpoint described by Maor and Taylor 

(1995) discussion is seen as being valuable as it can prompt the learner to ask 

questions such as:  

• Are the solutions of others viable? 

• Are they equally as viable as my solutions? 

• What are the reasons for differences in my explanations and those of others?   

Asking such questions must be regarded as true inquiry. 

The thinking outlined above led to the inclusion of what has been termed the 

Discussion scale in the present questionnaire.   

A number of questionnaires were found to have scales which contributed useful 

items or ideas to the construction of this scale.  One of these was the Learning to 

Communicate scale of the 1994 version of the CLES (Constructivist Learning 

Environment Survey), which was subsequently referred to as the Student Negotiation 

scale by Taylor, Fraser, and Fisher (1997).  Another was the Involvement scale of 

the WIHIC (What is Happening in this Class?) questionnaire described by Fraser, 

Fisher, and McRobbie (1996).  The ICEQ Participation scale also related to 

discussion, as did the CUCEI (College and University Environment Inventory) 

Involvement scale (Fraser, 1994, provided some background information about the 

CUCEI).  In practice, it may have been possible to use any one of these scales in its 

entirety as the discussion scale for the Is This an Inquiring Classroom? 

questionnaire.  However, a mixture of these items was selected, with the choices 

made being based on the perceptions and preferences of the researcher as much as on 

any other factor. 

The number of questionnaires which include discussion scales in one form or another 

points to the importance which is placed on this aspect of classroom environment, 

and the literature previously outlined points to it being of particular relevance in 

inquiry teaching. 
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4.2.4 Scale 3: Assessment 

The Assessment scale measures the extent to which assessment tasks which students 

are set require merely that they recall facts which they have been able to memorise 

by rote.  Such assessment is not in line with inquiry teaching, and is a factor which 

actually works against the use of inquiry methods, as was pointed out, for example, 

by Tobin et al. (1990).  Bol and Strage (1996) cited Linn (1990) as commenting that 

lofty instructional goals which encouraged understanding and critical thinking were 

undermined by test items emphasising recognition of factual details, and continued 

on to cite a number of other studies which indicated that many test items emphasised 

memorisation rather than understanding. 

The ongoing debate about assessment is one that has been referred to extensively in 

preceding sections, for example, in the comments of John Dewey. 

Items within the assessment scale aim to measure factors such as the extent to which 

teachers set test questions which cannot be answered by rote memorisation, or, 

rather, set assessment tasks which involve critical thinking skills. 

 

4.2.5 Scale 4: Scientific Method 

The Scientific Method scale aims to measure the extent to which students develop 

critical thinking skills through processes which are commonly associated with the 

term scientific method, such as hypothesising, interpreting, generalising, predicting 

and problem-solving.  Given the emphasis placed on these skills by numerous of the 

authors who have advocated an inquiry approach, it was considered essential to 

include a scale which attempted to measure the extent to which active development 

of these skills is actually encouraged in the classroom situation - for as Zohar, 

Weinberger, and Tamir (1994) noted, it seems that critical thinking skills do not 

develop unless explicit and deliberate efforts are invested in developing them. 

Despite the call for science classrooms to incorporate activities which develop 

critical thinking skills, and which will thus allow students to function effectively in 
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the future, it seems likely that, as Aubusson (1994) found, many teachers still tend to 

emphasise the teaching of knowledge despite espousing other ideas. 

Aubusson's comments seem to indicate that little has changed since Hurd (1969) 

commented that the emphasis that teachers placed on knowledge was a problem in 

science classrooms.  Hurd pointed out that facts, in and of themselves, do not make a 

science, with a science not simply being an abstraction from empirical data, but 

rather an intellectual creation often suggested by the data.  He said that it was the 

discovery of order among the data that made the science, and that this process 

required a constructive imagination, intuition and an intellectual command of 

relevant concepts.  The scientific method scale of the ITIC will attempt to assess the 

extent to which at least the first two of these parameters occur in science classrooms. 

Existing instruments which provided useful items and ideas for this scale were the 

ICEQ Investigation scale, the What is Happening in this Class? Investigation scale 

and the Laboratory Analysis Inventory’s Analysis and Interpretation items.  The 

analysis and interpretation section of the Laboratory Analysis Inventory presented by 

Tamir (1989) also provided ideas. 

 

4.2.6 Scale 5: Historical Perspectives/ Stories 

The inclusion of the Historical perspectives/stories scale may seem strange to some 

readers, but this scale is important as one of the aims of an inquiry approach is to let 

students see the development of scientific thought.  As it is more innovative than the 

other ITIC scales the Historical perspectives/Stories scale is considered in more 

detail at this juncture. 

The use of stories and historical developments also represents a teaching strategy 

which may succeed in making science and scientists more real to students, and which 

may be of particular importance to girls and some other minority groups.   

Ziman (1981) wrote of the impact a book on microbiologists which he read as a child 

had on him.  He wrote that even though he went into the areas of mathematics and 

physics he had retained an affection for that book, saying that what it told him about 
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the scientific life has not been falsified by his own experience - that science is 

intensely exciting, and that scientists are very much human beings.  If one of the 

aims of inquiry teaching is to instil and maintain a sense of excitement, involvement 

and wonder, then it is desirable that more children are captured by stories such as 

these.   

In his autobiographical book Uncle Tungsten, Oliver Sacks (2001) who went on to 

become a neurologist and author tells of how the history of science and scientists 

fascinated him as a child.  He also quotes the chemist Cannizzarro who addressed a 

gathering of chemists at the first ever international chemical meeting in Karlsruhe in 

1860.  (Cannizzaro's greatest contribution to chemistry was reportedly his revival of 

the work of Avogadro.  His paper Sketch of a Course of Chemical Philosophy, 

presented to the Karlsruhe conference, led to the recognition of the distinction 

between atomic and molecular weights. He suggested that since hydrogen is the 

lightest of all gases, the weight of half a hydrogen molecule should be used as the 

standard to which all other weights were compared. 

http://www.carlton.paschools.pa.sk.ca/chemical/molemass/cannizar.htm, retrieved 

August 18 2004.)  Sacks stated that Cannizzaro felt very passionately that the history 

of chemistry needed to be in the minds of his students, and that in what Sacks 

considerd a beautiful essay (although Sacks omits to provide a reference for it) on 

the teaching of chemistry Cannizzaro concluded: 

It often happens that the mind of a person who is learning a new science, 

has to pass through all the phases which the science itself has exhibited 

in its historical revolution.  (Sacks, 2001, p. 155)   

Sacks considered that this was the situation for him as a child growing up in post-

war England as he repeated the experiments he read about.   

Such anecdotes demonstrate that learning about historical perspectives and the lives 

of scientists can have a great impact on students' thoughts about science and 

scientific thinking from an early age. 

More anecdotally still, whilst working on the development of the Is This an 

Inquiring Classroom? questionnaire the researcher was involved in discussions with 

a group of teachers from varying disciplines about the Wide Range Readers green 
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and blue books which were used by primary school children in Tasmania during the 

1960s, and which all these teachers had been exposed to during their own primary 

school education.  Individual teachers, including the researcher, recalled the stories 

these books had introduced them to about people such as Marie Curie (Schonell and 

Flowerdew, 1961) and events such as Halleys Comet (not to mention Alfred who 

burnt the cakes, and Robert who watched the spider), and which they have 

remembered for more years than they would care to admit to!  As these books have 

been abandoned in favour of literature which is regarded as better meeting the needs 

of today's children, the teachers involved in the discussion wondered where, or if, 

children of today meet such stories - stories which captured the imaginations of a 

previous generation and possibly influenced their future career paths. 

On a similar note to what Sacks reported about the ideas of Cannizzaro, Driver 

(1983) reminded us of the similarity between the ideas of children and the thinking 

of earlier scientific theories.  This suggests that children should be given an historical 

perspective in order to help them see problems associated with their personal 

theories / conceptual model.  Matthews (1990) commented on the need for more 

history and philosophy of science to be included in current science courses, noting 

that there is a bond of sympathy between the beginner and the pioneer.   

Dawson (1994) considered that few upper level Australian high school students 

understood what science was trying to do, or how it proceeded, and that a number of 

students perceived science as not to do with people and not creative.  Such attitudes 

are not in line with inquiry teaching, and including more stories about scientists 

could help to dispel this view.  As Sutton (1994) suggested, science should be the 

study of what people have said and thought about nature, leading to an understanding 

of the system of meaning which people have built up.  Milne (1998) considered that 

there were problems with the ways science stories were often told, but still suggested 

that if we wish to involve students more in thinking about the enterprise that we call 

science we would do well to tell stories that emphasise the human aspects of the 

development of scientific knowledge.   

The above suggests that there seems to be general agreement that stories and a 

historical perspective are important in involving students in science - and such 

involvement is necessary for an inquiry approach to be successful.  Kirkham (1989) 
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perhaps summarises this best in reiterating the comment that the history of science 

reveals the tensions, misunderstandings, ambiguities, and inadequate conceptual 

models which have existed in the scientific community. 

The Learning about Science (or Uncertainty of Science) scale of the CLES provided 

some thoughts for the development of suitable items for the Historical 

Perspectives/Stories scale of the Is This an Inquiring Classroom? questionnaire, 

although some of the CLES items related more to the following Uncertainty scale.  

Items from the content analysis presented by Tamir (1985) were also useful. 

 

4.2.7 Scale 6: Uncertainty 

The final scale to be considered for the Is This an Inquiring Classroom? 

questionnaire is Uncertainty.  Although it may be suggested that this relates to the 

Discussion and Scientific Method scales, it in fact looks at something different.  The 

aim of this scale is to measure the extent to which scientific knowledge is presented 

as being tentative and subject to change.  These are factors which the literature has 

mentioned as being important if students are to develop critical thinking skills and 

thus be prepared to accept future changes in scientific thinking.  It is therefore an 

important concept to introduce when using inquiry methods. 

In discussing curriculum reform Hurd (1969) saw a problem with high school 

science courses as being that the subject was frequently taught as dogma, with the 

imperfections of knowledge seldom being pointed out.  He considered that students 

left courses considering that they now had the answers - or worse still that it must 

have been fun in the good old days when there were still opportunities to make 

discoveries in nature.  He said that students were not aware that there may be several 

acceptable explanations for an observation and that the choice was open to select the 

one most useful or satisfying at the moment - in science good answers are most 

likely those illuminated by a theory but there are no right answers.  Hurd stated that 

the teaching of high school science courses kept the revisionary nature of science 

essentially a secret, with few lessons planned to illustrate science as a dynamically 

changing system of concepts and theories.   
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Some items from the CLES Learning about Science (Uncertainty of Science) scale 

were deemed suitable for use in developing the Uncertainty scale of the Is This an 

Inquiring Classroom? questionnaire.  Some items from the content analysis provided 

by Tamir (1985) were also useful for formulating this scale. 

 

 

4.3 ITEMS CONTAINED IN EACH SCALE 

The items initially developed for each scale are shown in this section.  Further 

development work, as described in the following sections, was needed before this 

questionnaire could be used in classrooms to make assessments of the extent to 

which teachers are utilising methods consistent with inquiry teaching.  

At this stage each scale included more items than would be appropriate for the final 

questionnaire as it was expected that some would be found to be unreliable in the 

validation process. 

As has been mentioned, some of the items included have been taken, or modified, 

from existing instruments, such as the SLEI, ICEQ, CLES, CUCEI and WIHIC 

questionnaires.  The remainder were developed using the literature which has been 

previously discussed as a basis for determining suitable items.  Some useful ideas 

were also gained from the transmission-interpretation scale of Gardner and Taylor 

(1980), which although not intended primarily for science classrooms, looked at 

differences between transmissionist teachers (who would represent a more traditional 

approach) and interpretative teachers (who would be more representative of an 

inquiry approach).  The CES (Classroom Environment Scale) questionnaire, the 

development of which is summarised by Fraser (1994) also had a few items which 

were relevant. 

With respect to inquiry in particular, the work of Tamir (1985, 1989) provided some 

useful insights. 
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4.3.1 Initial Items for Scale 1 - Open-endedness. 

The 12 initial items that were developed for the Open-endedness scale are listed 

below.  Each begins with the same leader, In this class. 

In this class . . . 

1. There is opportunity for us to pursue our own science interests. 

2. We are required to design our own experiments for a given problem. 

3. In laboratory work students collect different data from each other for the 

same problem. 

4. We are allowed to go beyond the regular laboratory exercise and do some 

experimenting. 

5. In our laboratory sessions some students do different experiments to others. 

6. In our laboratory sessions, the teacher decides the best way for us to carry 

out the laboratory experiments. 

7. We decide the best way to proceed during laboratory experiments. 

8. We carry out laboratory investigations to test ideas which we come up with. 

9. We carry out laboratory investigations to answer questions which arise in 

class discussions. 

10.  We carry out investigations to answer questions which puzzle us. 

11.  All students do exactly the same experiments. 

12.  We have to select which equipment to use for practical work. 

 

4.3.2 Initial Items for Scale 2 - Discussion 

The twelve initial items that were developed for the Discussion scale are listed 

below.  Each begins with the same leader, In this class. 

In this class . . . 

1. We discuss the results we have obtained with each other. 

2.  We comment on other students’ opinions.  

3. We talk to other students about our work.  

4. We ask the teacher questions. 

5.  We discuss things which people have different opinions about. 

6.  We talk with other students about how to solve problems. 

7.  Our ideas and opinions are used during classroom discussions. 
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8.  We explain our ideas to each other. 

9.  We pay attention to what other students are saying. 

10. The teacher talks rather than listens. 

11. Most students take part in discussions. 

12. We sit and listen to the teacher without asking or answering questions. 

 

4.3.3 Initial Items for Scale 3 - Assessment 

The twelve initial items that were developed for the Assessment scale are listed 

below.  Each begins with the same leader, In this class. 

In this class . . . 

1. We are allowed to use textbooks or notes when we are doing tests. 

2. We have to memorise a lot of information. 

3. We take a lot of theory notes. 

4. Our tests have questions where we have to interpret data. 

5. Our tests only have questions which we can memorise the answers to. 

6. We have to really understand the work which we have done in order to 

answer the test questions. 

7. Our teacher is more interested in checking that we have the right answer 

than in our thinking and reasoning. 

8. If you want to do well, the most important thing is to memorise 

information for tests. 

9. We do assignments where we have to think things out. 

10. We can find the answers to most of the assignment questions we are set in 

library books. 

11. The teacher will mark different answers to a question as being equally 

correct. 

12. There is usually only one right answer which our teacher will accept to 

questions. 
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4.3.4 Initial Items for Scale 4 - Scientific Method 

The twelve initial items that were developed for the Scientific Method scale are 

listed below.  Each begins with the same leader, In this class. 

In this class . . . 

1. We have to try to  explain the results of our investigations. 

2. We are asked to suggest how we could improve the investigations which 

we have carried out. 

3. We are asked to form our own hypotheses. 

4. We are asked to apply ideas to new situations. 

5. We have to analyse data. 

6. We are asked to suggest further research which could be carried out. 

7. We are asked to criticise the investigations which we have carried out. 

8. We are asked to predict the results of experiments. 

9. We are asked to make generalisations from data. 

10. We draw conclusions from investigations. 

11. We are asked to think about the evidence for statements. 

12. We are asked to explain the meaning of statements, diagrams and graphs. 

 

4.3.5 Initial Items for Scale 5 - Historical Perspectives/ Stories 

The twelve initial items that were developed for the Historical Perspectives/Stories 

scale are listed below.  Each begins with the same leader, In this class. 

In this class . . . 

1. As we study different topic we talk about the history of how these ideas 

have developed. 

2. We learn about the history of science. 

3. We learn about scientists. 

4. The teacher tells us stories about science. 

5. We talk about scientists and researchers who have worked in the area 

which we are studying. 

6. We look at what people who are working as scientists do. 
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7. When we study a topic we are told about the trouble which scientists have 

had working things out. 

8. The names of scientists are mentioned during lessons. 

9. We learn about how people came to make scientific discoveries. 

10. We are told personal information about what scientists were like. 

11. We watch videos about the work and lives of scientists. 

12. We learn that modern science is different from the science of long ago. 

 

4.3.6 Initial Items for Scale 6 - Uncertainty 

The twelve initial items that were developed for the Uncertainty scale are listed 

below.  Each begins with the same leader, In this class. 

In this class . . . 

1. We learn about alternative theories for the same scientific idea. 

2. We learn that scientists do not know how some things work. 

3. Scientific knowledge is presented as being incomplete - there are things 

which are still not understood. 

4. We learn that scientific information can change. 

5. Our teacher expresses their own uncertainty about whether some 

scientific ideas are correct. 

6.  We learn that science has answers for everything. 

7. We learn that once scientists have proven something their ideas will not 

change. 

8. We learn that people can have different theories to explain the same 

thing. 

9. We learn that science cannot provide perfect answers to problems. 

10. We learn that science has changed over time. 

11. We learn that science is influenced by people’s values and opinions. 

12. We learn that science is about inventing theories. 
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4.3.7 Other Considerations in Item Writing 

As mentioned earlier, Fraser (1986) identified the three general steps in the 

development and validation of instruments such as the Is This an Inquiring 

Classroom? questionnaire being developed here as: identification of salient 

dimensions, item writing, and field testing and item analysis.  The development of 

the Is This an Inquiring Classroom? questionnaire, to this point in writing, reflects 

the first two of these steps.  Extensive work was still needed to fulfil the 

requirements of the third step.  The ITIC instrument may be regarded as containing 

what Fraser described as intuitive-rational scales.  In the case of instruments using 

intuitive-rational scales the initial identification and definition of the dimensions are 

based primarily on the investigator’s intuitive understanding of the dimensions to be 

assessed.  This is in contrast to intuitive-theoretical scales, in which nomination to 

scales is based on some formal educational or psychological theory.  Whilst inquiry 

teaching methods could be considered to constitute an educational theory, the basis 

of inquiry teaching was not considered to be formalised and generally agreed on to a 

sufficient extent to be regarded as a formal educational theory. 

A further idea which needs to be considered in the development of items for a 

questionnaire such as this is whether the items should be written in a personal or 

class form.  Aldridge and Fraser (1997) commented on the uses of these two forms, 

noting that other studies have remarked on the inability of existing questionnaires to 

identify subgroups within a class (if a class rather than a personal from is adopted for 

the questionnaire).  Whilst consideration has been given to this idea in developing 

the present Is This an Inquiring Classroom? questionnaire, it was decided that it is 

what is happening in the class as a whole which is most important in determining 

whether inquiry teaching strategies are being used.  For example, a particular student 

may take little part in discussions which occur in the classroom, but could still note 

and report that considerable discussion is occurring.  With regard to determining the 

extent to which inquiry teaching is being implemented it was considered more 

important that the discussion was occurring than that some students do not 

participate - although, obviously, if too many students do not participate this could 

indicate that the strategy is not in fact an effective one.  A possible strategy was to 

develop both class and personal forms, as has been the case with the WIHIC, so that 
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teachers can choose the one most appropriate to their ends.  However, it was decided 

that this may confuse rather than assist teachers and a single version using the class 

form was adopted. 

 

 

4.4 LAYOUT OF THE IS THIS AN INQUIRING CLASSROOM? 

QUESTIONNAIRE 

There are several important considerations to be made when designing the layout for 

an instrument such as the Is This an Inquiring Classroom? questionnaire.  Firstly, its 

format must be readily accessible to teachers and, more importantly, students.  If 

either of these groups have difficulty working out what the questionnaire requires 

them to do the researcher will end up with unreliable results.  Secondly, the format 

of the questionnaire should make it relatively easy for the researcher or their 

assistants to access the information that they need in order to analyse their results 

and draw conclusions. 

Fraser (1986) suggested several methods for facilitating the handscoring of 

questionnaires.  In designing the physical layout of this questionnaire, the strategy of 

underlining items which need to be reverse scored has been adopted.  The suggestion 

of Taylor, Fraser, and Fisher (1997), that all items belonging to a particular scale be 

placed together in order to contextualise items for participants, has also been 

employed.  It seemed useful to adopt the strategy of grouping similar items together, 

firstly, so that people seeing the questionnaire for the first time could get a better 

idea of the nature of the different scales and, secondly, and perhaps more 

importantly, so that individuals answering the items had their thinking focussed on a 

particular aspect of their classroom environment, rather than being asked to consider 

one area, then something completely different, only to have to return to the previous 

one for a future item. 

In line with what seem to be current trends, no particular attempt was made to 

include a certain number of negative items.  The CLES, for example, contains no 

negative items.  However, some such items were deemed appropriate where their 
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wording was not confusing.  Personal experience also informed this decision.  

Experienced teachers of above average academic ability and literacy skills 

sometimes report finding negative questionnaire items confusing, so including them 

in questionnaires which will be used with students of a range of abilities seems to be 

inviting trouble.  After all, the aim of a learning environment questionnaire is to 

determine students’ perceptions of their classroom environment, not to test their 

mastery of the English language.   

A feature of the Is This an Inquiring Classroom? questionnaire which differentiates it 

from many similar questionnaires is that preferred and actual answers have been 

included on the same recording sheet.  Whilst it was thought that this may cause 

slight confusion in the way some items were worded, it was considered that this 

modification might provide more accurate results for comparisons to be made 

between what students and teachers perceived was happening in their classroom and 

what they would prefer.  The reasoning behind this is that the choice of the number 

to mark on a questionnaire is sometimes arbitrary (for example in deciding if a 

particular event occurs often or very often).  When the person comes to the second 

form of the questionnaire they may have forgotten what they chose initially, but if 

they fill both their preferred and actual choices in at the same time they can indicate 

accurately what they see as being the relative difference between the two, and so 

avoid inconsistencies.  This state of affairs is something which the researcher has 

noted from personal experience of completing questionnaires for other researchers.  

Adopting the option of placing the Preferred and Actual Forms of the questionnaire 

on the same sheet has the additional advantage of reducing paperwork. 

In completing the ITIC, students were asked to respond to each item on a five point 

scale which had the extreme alternatives of strongly agree and strongly disagree.  

The numerals 1 through 5 were listed next to each item under the Actual column and 

repeated under the Preferred column.  Students were asked to circle their selection in 

each column, indicating the extent to which they agreed that each item described 

their science classroom.  This occurred on the paper that listed the questionnaire 

items rather than on a separate answer sheet.  It was thought that adopting this 

technique was likely to reduce transcription errors, as the person answering the item 

  132 



would be less likely to circle a response corresponding to an item other than the one 

that they intended.   

The layout of the ITIC can be seen from the copies reproduced in the Appendices of 

this thesis. 

 

 

4.5 CRITIQUE OF THE INITIAL VERSION OF THE 

QUESTIONNAIRE 

4.5.1 The Critiquing Teachers 

In order to get around the phenomenon of what might perhaps be termed researcher 

blindness - the fact that the person developing the instrument may have become so 

familiar with their instrument and what it is aiming to achieve that they become blind 

to what others may see as glaring faults with it - a group of experienced teachers 

were asked to critique the initial version of the ITIC questionnaire prior to its use and 

validation with students.   

A group of five teachers kindly agreed to assist in the critiquing process.  This group 

consisted of two males and three females, all of whom were currently employed in 

the Tasmanian government education sector.  Their science teaching experience 

ranged from seven to over twenty years and all were committed exponents of the 

science subject area.  All but one of the teachers had experience in both high school 

and college situations in Tasmania. 

 

4.5.2 Instructions to Critiquing Teachers 

This group of teachers were all sent a copy of the initial version of the Is This an 

Inquiring Classroom? questionnaire, included here as Appendix 1, together with a 

list of the items that had been written for each scale in the format shown in Section 

4.3, as the latter format allowed them more space to make any changes and 

comments.  The version of the questionnaire supplied to these teachers included the 
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name of the questionnaire, but each of the scales was simply given a number rather 

than a name/title.  Teachers were also supplied with a short statement outlining the 

objectives of the research project, as shown in Appendix 2. 

The critiquing teachers were asked to: 

• Suggest an appropriate name for each of the six scales that had been 

developed.  This was so as to see if these experienced teachers saw each of 

the scales as measuring the factors that the researcher intended them to. 

• Identify any items which they thought that students might find difficult to 

understand, and suggest how these items could be modified so as to be more 

easily understood by students.  This process was designed to ensure that the 

items used on the questionnaire were accessible to students, so that the 

questionnaire would in fact provide an accurate picture of how students 

perceived their classroom environment. 

 

4.5.3 What the Critiquing Teachers Said 

The names that the group of teachers came up with for each of the six scales are 

shown in Table 4.2, which also shows the names that the researcher had designated 

for each of the scales. 

Table 4.2  
Scale Names Designated by Researcher Compared to Scale Names Suggested by 
Critiquing Teachers. 
 

Scale Researcher designated name Teacher suggested name 

1 Open-endedness Experimental/Practical 

Work 

2 Discussion Classroom 
Communication/Discussion

3 Assessment Assessment 

4 Scientific Method Interpretation of Data 

5 Historical Perspectives / Stories Science Stories 

6 Uncertainty  Uncertainty in Science 
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The researcher felt that the scale names suggested by the teachers were in the spirit 

of the names that had previously been designated, and in some cases provided a 

better descriptor.  Consequently, some scale names were modified following the 

teacher input.  The final scale names are listed in Table 4.3 below. 

Table 4.3 

The Six Final Scale Names for the Is This an Inquiring Classroom? Questionnaire. 

Scale number Final scale name 

1 Freedom in Practical Work 

2 Communication 

3 Assessment 

4 Interpretation of Data 

5 Science stories 

6 Uncertainty in Science 

 

With regard to the accessibility of the various questionnaire items to students, the 

critiquing teachers made the following particularly significant comments and 

suggestions: 

• Replace, what they regarded as the Americanised term laboratory work with 

the term practical work, as the latter is the one commonly used in the 

Tasmanian context.  This is an excellent example of the need to have other 

experienced individuals read questionnaire items.  The researcher knew that 

what the teachers pointed out was indeed the case, but had themself become 

familiarised with the term laboratory work as a consequence of extensive 

reading of literature, much of which had originated in the USA. 
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• In a similar vein to the above, replace the term investigations with the term 

experiments, as the critiquing teachers believed this to be the one more 

commonly used in Tasmanian schools. 

• Some items seemed to be saying basically the same thing, but in different 

words, so are both necessary?  Once the researcher explained that some items 

would be removed in the validation process the critiquing teachers saw why 

this apparent duplication occurred. 

• Change the term memorise to remember or learn by heart, as the latter are the 

terms that students use. 

• Item 42 (item 4 of Scale 4) would be hard for students to understand. 

• Item 65 (Item 7 of scale 6) provoked some discussion as it contained the term 

proven.  It was considered that it would be best to remove this term in 

discussing the work of scientists. 

Overall, the critiquing teachers said that they were satisfied that the items that 

appeared in the questionnaire were accessible to the majority of high school students, 

including those in Grade 7.  Their main suggestions were as above, together with 

simplifying the language of the questionnaire as much as possible, so that items had 

less of a scientific voice about them.   

There was a little discussion over terms such as data, interpret, hypothesis, 

generalisation, justify and theories, but the group’s conclusion was that these were 

terms that students should have become familiar with in their science course.  The 

group came up with, and was enthusiastic about, the idea of teachers discussing these 

terms with students immediately prior to giving the questionnaire, and thus 

combining some literacy work with the science lesson.  Although the researcher 

could see the merit of this suggestion they did not feel that this was a practical 

suggestion given the large number of different classes that the questionnaire would 

finally be used with - there was no guarantee that all teachers who agreed to their 

classes participating would also be prepared to conduct the literacy exercise. 
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In line with the other suggestions made by the critiquing teachers, the initial version 

of the survey was modified and the Is This an Inquiring Classroom? Preliminary 

questionnaire was formulated.  This preliminary questionnaire is included as 

Appendix 3.  Again, for continuity in reading, the scale items are listed below. 

 

 

4.6 THE REVISED QUESTIONNAIRE ITEMS FOR THE 

PRELIMINARY QUESTIONNAIRE 

4.6.1 Preliminary Questionnaire Scale 1 - Freedom in Practical Work Items 

In this class . . . 

1. There is opportunity for us to find out about things that interest us in 

Science. 

2. We are asked to design our own experiments. 

3. In practical work students collect different data from each other for the 

same problem. 

4. We are allowed to extend the practical work and do some experimenting. 

5. In our practical sessions some students do different experiments to others. 

6. In our practical sessions, the teacher decides the best way for us to carry 

out the experiments. 

7. We decide the best way to proceed during experiments. 

8. We carry out experiments to test ideas which we come up with. 

9. We carry out experiments to answer questions which arise in class 

discussions. 

10. We carry out experiments to answer questions which puzzle us. 

11. All students do exactly the same experiments. 

12. We have to select which equipment to use for practical work. 
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4.6.2 Preliminary Questionnaire Scale 2 - Communication Items 

In this class . . . 

1. We discuss the results we have obtained with each other. 

2. We comment on other students’ opinions. 

3. We talk to other students about our work. 

4. We ask the teacher questions. 

5. We discuss things which people have different opinions about. 

6. We talk with other students about how to solve problems. 

7. Our ideas and opinions are heard during classroom discussions. 

8. We explain our ideas to each other. 

9. We pay attention to what other students are saying. 

10. The teacher listens to our ideas. 

11. Most students take part in discussions. 

12. We sit and listen to the teacher without asking or answering questions. 

 

4.6.3 Preliminary Questionnaire Scale 3 - Assessment Items 

In this class . . . 

1. We are allowed to use textbooks or notes when we are doing tests. 

2. We have to remember a lot of information. 

3. We take a lot of notes. 

4. Our tests have questions where we have to interpret data. 

5. Our tests only have questions which we can memorise the answers to. 

6. We have to really understand the work which we have done in order to 

answer questions on tests. 
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7. Our teacher is more interested in checking that we have the right answer 

than in our thinking and reasoning. 

8. If you want to do well, the most important thing is to learn off by heart 

for tests. 

9. We do assignments where we have to think things out. 

10. We can find the answers to most of the assignment questions we are set in 

library books. 

11. The teacher will mark different answers to a question as being correct. 

12. There is usually only one right answer for each question. 

 

4.6.4 Preliminary Questionnaire Scale 4 - Interpretation of Data Items 

In this class . . . 

1. We have to try to explain the results of our experiments. 

2. We are asked how we could improve the experiments we have done. 

3. We are asked to form our own hypotheses. 

4. We are asked to apply ideas to new situations. 

5. We have to interpret data. 

6. We are asked to suggest further research which could be carried out. 

7. We are asked to criticise the experiments which we have carried out. 

8. We are asked to predict the results of experiments. 

9. We are asked to make generalisations from data. 

10. We draw conclusions from experiments. 

11. We are asked to justify our conclusions. 

12. We are asked to explain what statements, diagrams and graphs mean. 
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4.6.5 Preliminary Questionnaire Scale 5 - Science Stories Items 

In this class . . . 

1. As we study different topics we talk about the history of how science 

ideas have developed. 

2. We learn about the history of science. 

3. We learn about scientists. 

4. The teacher tells us stories about science. 

5. We talk about people who have worked in the area which we are 

studying. 

6. We look at what people who are working as scientists do. 

7. When we study a topic we are told about the trouble which scientists have 

had working in this area. 

8. The names of scientists are mentioned during lessons. 

9. We learn about how people made scientific discoveries. 

10. We are told personal information about what scientists were like. 

11. We watch videos about the work and lives of scientists. 

12. We learn that modern science is different from the science of long ago. 

 

4.6.6 Preliminary Questionnaire Scale 6 - Uncertainty in Science Items 

In this class . . . 

1. We learn about different theories for the same scientific idea. 

2. We learn that scientists do not know how some things work. 

3. Scientific knowledge is presented as being incomplete - there are things 

which are still not understood. 

4. We learn that scientific information can change. 

5. Our teacher questions some scientific theories. 
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6.  We learn that science has answers for everything. 

7. We learn that once scientists have come up with an idea, this idea will not 

change. 

8. We learn that people can have different theories to explain the same 

thing. 

9. We learn that science cannot provide perfect answers to problems. 

10. We learn that science has changed over time. 

11. We learn that science is influenced by people’s values, opinion and 

beliefs. 

12. We learn that science is about coming up with ideas. 

 

Following these revisions, the Preliminary Questionnaire was ready for the 

validation process.  Before it could be used in Tasmanian government schools it was 

necessary to seek permission from the Department of Education, Tasmania.  Ethical 

considerations in the use of the Is This an Inquiring Classroom? questionnaire are 

outlined in the next section. 

 

 

4.7 ETHICAL CONSIDERATIONS IN USING THE QUESTIONNAIRE 

Ethical considerations which needed to be taken into account during the conduct of 

this research related largely to the information which would be obtained through the 

administration of the questionnaire. 

Whilst the nature of the data was such that it was unlikely to be regarded as 

particularly sensitive, a number of precautions were taken to protect the interests of 

persons who were kind enough to be of assistance. 

Firstly, normal Department of Education, Tasmania procedures were followed to 

gain permission to undertake this research in Tasmanian government schools.  This 
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involved submitting details of the proposed research along with details of the 

numbers of schools and students that would be asked to participate for consideration 

by the relevant departmental committee. 

Once the Department of Education had granted permission for the research to be 

undertaken in Tasmanian government schools, as requested, it was also necessary to 

approach individual school principals to obtain permission for teachers and students 

from their particular school to participate.  Teachers were asked to volunteer to 

involve themselves and their classes.  All school principals approached were 

prepared to grant this permission provided that the teachers concerned did not have 

any issues with their classes being involved.  All teachers or Science Department 

Coordinators approached agreed to their classes being involved in completing the Is 

This an Inquiring Classroom? questionnaire. 

In seeking permissions from teachers they were told that the research would involve 

students completing questionnaires and giving their views on actual and preferred 

classroom environments.  As the information to be collected related to classroom 

environment and the manner in which students preferred material to be presented, 

and questionnaires were anonymous, written permission from parents was not 

required for students to complete the questionnaires.  Schools were offered the 

opportunity to be provided with a brief synopsis of the research that they could 

include in their school newsletter or similar publication if they wished, but none 

elected to take up this option.   

The nature of the questionnaire is such that administering it involved minimal 

imposition on teachers and students in terms of the time involved.   

Precautions were taken in terms of data manipulation and storage.  In terms of 

computer usage, identifying data was only kept on the researcher’s personal 

computer files, and was protected by a password.  No details of participating 

students’ names were collected in the final student questionnaires, whilst teachers 

were given the option of including their name if they wished to.  When analysis was 

carried out on other computer systems, numbers were assigned to participants and 

their schools.  The original data was stored in a secure location by the researcher. 
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In writing the study up, participating schools and teachers will not be mentioned by 

name, so as to protect confidentiality. 

 

 

4.8 ADMINISTERING THE PRELIMINARY QUESTIONNAIRE 

Once a questionnaire has been developed, and the items scrutinised by a group of 

expert practitioners it is necessary to administer the revised questionnaire to a sample 

of students in order to validate the questionnaire as an instrument.   

For example, in developing the SLEI Fraser, McRobbie and Giddings (1993) 

administered the questionnaire to a sample of 3,727 students in 198 classes in 40 

schools in 6 different countries.  Whether or not there is a need to administer a 

questionnaire to an international sample is determined by the final intended audience 

for the questionnaire.  As the Is This an Inquiring Classroom? questionnaire was 

intended for use in Tasmanian classrooms, at least in the first instance, administering 

the initial questionnaire to a sample taken from within Tasmania was deemed to be 

sufficient.   

To this end, the preliminary version of the Is This an Inquiring Classroom? 

questionnaire was administered to 195 students from 8 classes at a Hobart high 

school.  There were two classes of students from each of Grades 7 to 10 inclusive.  

The Grade 7-9 classes were heterogeneous with respect to ability level.  The Grade 

10 ones were broadly streamed, but at the researcher’s request, selected by the 

school so as to cover a range of ability levels. 

This school was selected for the validation of the questionnaire as it was readily 

accessible to the researcher and had a number of teachers who had indicated that 

they were prepared to assist in administering the questionnaire and observing their 

students' responses to it.  The researcher offered to run the questionnaire with all 

classes involved, but several teachers preferred to do so themselves.  An additional 

consideration in selecting this particular school was that it drew largely from a 

middle class area and students attending it tended to have fairly good literacy skills.  
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This meant that students' inability to read questionnaire items should not be too 

significant a factor with this group of students.  This was deemed an important 

characteristic of the group of students to be used in the validation process, as the 

primary aim of this process was to determine if the questionnaire was a good 

instrument in terms of consistency within and between scales. 

Students completing the questionnaire were asked to complete a cover sheet as 

shown in Appendix 3.  This sheet provided the researcher with background 

information such as sex and student’s perception of their ability level.  At this stage 

the class teachers believed that it was preferable to ask students to include their 

names on the questionnaire, so that students took it seriously, and also so that there 

was the possibility of teachers commenting on any particularly discrepant results.  

Students were, however, given the option of merely including their first name. 

As the object of administering the questionnaire to this group of students was to 

determine if the items were appropriate to students of this age group, as well as 

validating the instrument, students were told that they could ask either the researcher 

or their class teacher if they were unclear what any items meant.   

Observations by both the researcher and the other teachers administering the 

questionnaire revealed some useful points.  These included: 

• On average it took students around 20 minutes to complete the questionnaire.  

Interestingly, it often took more able students longer. The teachers involved 

suggested that this was possibly because these students gave greater thought 

to their answers. 

• The term seldom, used as one of the terms on the scale that students were 

given to rate each item, proved unexpectedly problematic to students, a 

number asking what it meant. 

• The term generalisation caused a few queries with several students in the 

lower grades asking about this. 

• The terms interpret and hypothesis each led to a few queries. 
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• Overall, students seemed to have few problems completing the preliminary 

version of the questionnaire, and in most classes there were not more than 

two or three queries as to what items meant. 

• Two students asked what the actual and preferred scales meant. 

 

 

4.9 PRELIMINARY QUESTIONNAIRE DATA ENTRY 

The data from the preliminary questionnaires was entered into an Excel worksheet by 

the researcher.  One useful hint that the researcher was given was to use the number 

lock facility on the computer so that data could be entered using the number pad on 

the right hand side of the computer, rather than using the number keys at the top of 

the keyboard.  Entering data became quite speedy using one hand, and this technique 

is recommended to others who need to enter large amounts of numerical data 

represented by the digits 1 though 5. 

In entering the data, any items that had not been completed by students were left as 

blanks in the spreadsheet, except for the cases where there was deemed to be an 

excessive number of blanks, so that that particular student’s questionnaire was 

discarded - as will be outlined more fully below. 

A number of questionnaires - 29 out of the total of 195 - were discarded for a variety 

of reasons, where either the researcher or the class teacher judged that they did not 

give an accurate picture of what the student believed.  Reasons for discards were 

categorised as follows: 

1. Students circled either an actual or preferred response on each item, but not 

both.  This was the situation that most concerned the researcher as it 

indicated that the basic layout of the questionnaire (with actual and preferred 

answers on the same version of the questionnaire) was problematic for 

students.  Fortunately, only one questionnaire had to be discarded for this 

reason. 
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2. There were too many missing responses on a student’s questionnaire.  

Although the software used for statistical analysis was able to compensate for 

missing data values, it was felt that where a student had omitted too many 

responses their questionnaire was not giving an accurate picture of their 

classroom environment. 

3. No preferred responses were indicated.  This could also be an indication that 

the layout of the questionnaire, with actual and preferred responses on the 

same sheet, was confusing to students.  

4. The patterning resulting from the student’s responses to the questionnaire 

made it seem unlikely that the student had taken the questionnaire seriously.  

For example, all responses were number 3, or all actual responses were 

number 1 and all preferred responses were number 5.  In one case, it was also 

noted that the responses circle formed a perfect Christmas tree pattern on 

each page!  Whilst all of these patterns were possible, they were judged 

unlikely and therefore discarded. 

5. A combination of too many missing responses and patterning. 

6. Scale 5 and/or Scale 6 - both of which were on the last sheet were missed 

completely.  This is a similar situation to that outlined in point 2 above.  

However, it is listed separately as no questionnaires were found where all 

responses were missing for any of Scales 1 to 4.  This seemed to indicate that 

maybe a fatigue factor was at play here - students were either sick of 

answering the questionnaire, or had lost concentration and missed the last 

page, by the time they reached these scales. 

7. The actual and preferred responses were identical for all items.  Whilst this is 

definitely a possible situation if students are satisfied with their science class, 

it seemed unlikely that there would be no items where students would have 

preferred a different situation to that which actually existed.  It seemed more 

likely that these students had either misunderstood what the questionnaire 

required them to do, or not regarded answering the questionnaire as a serious 

activity. 
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8. The class teacher recommended that a particular student’s questionnaire be 

discarded as the teacher did not believe that the responses were a serious 

attempt at answering the questionnaire.  For example, when a student who the 

teacher knew to have low literacy levels finished in half the time that it took 

other students, the teacher felt that the student had not actually read all items. 

The number of questionnaire from each grade group falling into each of these 

discard categories is shown in Table 4.4. 

Table 4.4 

Number of Preliminary Questionnaires Discarded by Reason for Discard and Grade 

Level. 

Reason for discard Grade 

7 

Grade 

8 

Grade 

9 

Grade 

10 

Total 

Answered either actual or 
preferred 

0 0 0 1 1 

Too many missing responses 3 1 2 1 7 

All preferred responses missing 0 0 0 1 1 

Patterning 0 1 4 1 6 

Combination of patterning & 
missing items 

0 0 0 2 2 

Missed Scale 5 &/or Scale 6 1 4 2 0 7 

Teacher recommendation 0 1 1 0 2 

Identical actual & preferred 
responses throughout 

0 3 0 0 3 

Total 4 10 9 6 29 

 

Overall, 29 questionnaires were discarded, leaving a group of 166 on which the 

statistical analysis outlined in the next section was performed. 

Where two responses were circled for one item the lowest number circled was 

entered into the spreadsheet. 

An advantage of the researcher carrying out their own data entry was found to be 

that it enabled them to see any particular problems and trends which were occurring 

with respect to the way that students responded to items in the questionnaire. 
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4.10 STATISTICAL ANALYSIS OF PRELIMINARY QUESTIONNAIRE 

DATA 

4.10.1 Background 

Once a learning environment questionnaire such as the ITIC has been administered 

to the sample population it has been the custom in previous research studies to carry 

out a factor analysis and then analyse it for the three features listed below. 

• Internal consistency (the extent to which items in the same scale measure the 

same dimensions).  A suitable statistic for examining this is the Cronbach 

Alpha reliability coefficient. 

• Discriminant validity (the extent to which a scale measures a unique 

dimension not covered by the other scales in the instrument).  A suitable 

statistic for examining this is the mean correlation with other scales. 

• The ability of the scales to differentiate between the perceptions of students 

in different classes.  A suitable statistic for examining this is the ANOVA 

eta2 results. 

On the basis of a statistical analysis, items which are causing problems are removed.  

In the case of the SLEI, Fraser, McRobbie, and Giddings (1993) reported removing 

items with low item-remainder correlations (i.e. correlations between a certain item 

and the rest of the scale excluding that item) in order to improve internal 

consistency.  They also reported improving discriminant validity by removing any 

item whose correlation with its assigned scale was lower than its correlation with any 

of the other scales.  Following this procedure Fraser, McRobbie, and Giddings ran a 

series of factor analyses, and in developing a revised questionnaire removed several 

of their original scales completely.  Similar procedures were adopted in the 

examination of the Actual and Preferred Forms of the ITIC Preliminary 

questionnaire presented here.  At this stage analysis was carried out at the individual 

rather than the class level.  This decision was taken due to the relatively low number 

of classes involved in completing the ITIC Preliminary questionnaire.  
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4.10.2 Principal Component Analysis - Actual Form of Questionnaire 

The refinement and validation of the Actual Form of the ITIC Preliminary 

questionnaire involved principal component analyses, the purpose of which was to 

examine the internal structure of the set of 72 items.  The extraction method used to 

generate the factors was principal components analysis with the rotation method 

being Varimax with Kaiser Normalisation.  Since the ITIC instrument was designed 

with six scales, a six factor solution was considered.   

Table 4.5 shows the factor loadings obtained from the analysis of the data for the 

Actual Form of the preliminary questionnaire for the 157 students from 8 classes.  

The percentage variance extracted and eigenvalue associated with each factor are 

also recorded at the bottom of each scale.  In line with what has come to be 

conventionally accepted in the literature, factor loadings of 0.3 and above were 

included in this table.  The principal component analyses depicted in Table 4.5 

offered support for the 72 item Actual Form of the ITIC Preliminary questionnaire 

having six scales, although the Assessment, and to a lesser extent, Freedom, scales 

were still seen as being somewhat problematic at this stage.   

By summing the percentage variance for each of the six scales it could be seen that 

48% of the variance was explained by the six components.  This was a satisfactory 

result at this stage, as all questionnaire items were still included.  Some items were to 

be omitted from the final version of the questionnaire, as extra items were 

deliberately included in order that those which didn't perform well could be deleted. 

The factor loadings indicated that Assessment was the most problematic scale, not 

loading well into just one component. 
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Table 4.5 
Factor Loadings for Actual Form of the ITIC Preliminary Questionnaire. 
Loadings smaller than 0.3 omitted. 

  Component 
 Item no component 

1 
component 

2 
component 

3 
component 

4 
component 

5 
component 

6 
1       
2       
3  0.47     
4       
5      0.3 
6  0.50    0.33 
7  0.46    0.51 
8  0.48  0.36 0.52  
9     0.33  
10  0.47    0.33 
11  0.42    0.48 

Fr
ee

do
m

 

12  0.47    0.49 
13  0.48     
14  0.79     
15  0.78     
16  0.73     
17  0.62     
18  0.71     
19  0.56     
20  0.66     
21     0.40  
22       
23       

C
om

m
un

ic
at

io
n 

24  0.78 0.40    
25   0.57    
26 0.41    0.61  
27      0.68 
28       
29     0.39  
30     0.55  
31       
32  0.44  0.43   
33   0.32    
34     0.40  
35     0.40  

A
ss

es
sm

en
t 

36 0.53      
37    0.61   
38    0.75   
39    0.59   
40    0.61   
41    0.34 0.45  
42    0.71   
43    0.91   
44   0.33 0.65   
45 0.36 0.31  0.57   
46    0.80   
47   0.44 0.48   In

te
rp

re
ta

tio
n 

of
 D

at
a 

48    0.35  0.39 
49 0.69   0.33   
50 0.85      
51 0.84      
52 0.85      
53 0.82  0.33    
54 0.95      
55 0.91  0.46    
56 0.77      
57 0.71      
58 0.90      
59 0.75  0.31    

Sc
ie

nc
e 

St
or

ie
s 

60 0.90  0.54    
61 0.74 0.41 0.4    
62 0.47  0.73    
63     0.37  
64 0.44  0.96    
65     0.60  
66 0.45  0.54    
67   0.82    
68 0.43  0.68    
69   0.82    
70 0.36  0.87    
71   0.95    U

nc
er

ta
in

ty
 in

 S
ci

en
ce

 

72 0.32  0.71 0.49   
%variance 24.91 6.46 4.92 4.74 3.83 3.56 
eigen-value 22.80 5.91 4.50 4.34 3.50 3.26 



4.10.3 Principal Component Analysis - Preferred Form of Questionnaire 

The general methods of refinement and validation that were described in the above 

section for the Actual Form of the ITIC Preliminary questionnaire were also used in 

the analysis of the Preferred Form of the ITIC Preliminary questionnaire. 

Table 4.6 shows the factor loadings obtained from the analysis of the Preferred Form 

of the ITIC Preliminary questionnaire for the 157 students from 8 classes.  The 

principal component analyses depicted in Table 4.6 offered support for the 72 item 

Preferred Form of the ITIC Preliminary questionnaire having six scales, although, as 

was the case with the Actual Form of the questionnaire, the Assessment, and to a 

lesser extent, Freedom, scales were still seen as being somewhat problematic at this 

stage.   

 

4.10.4 Further Refinement of the ITIC Questionnaire 

For both the Actual and Preferred Forms of the ITIC questionnaire the conceptual 

distinctions between the scales were regarded as being justified by the principal 

component analysis and supported by the mean scale correlations referred to below.  

On the basis of this principal component analysis, a number of items were deleted 

from each scale for the Actual Form of the ITIC questionnaire, leaving those shown 

in Table 4.7.  Shading has been used in this table to indicate to which component 

each item was being assumed to principally contribute.   

As it was necessary that the Actual and Preferred Forms of the questionnaire contain 

identical items, the same items were deleted from the Preferred Form of the 

questionnaire.  The effect of this is shown in Table 4.8. 
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Table 4.6 
Factor Loadings for Items in the Preferred Form of the ITIC Preliminary Questionnaire. 
  Component 

Scale Item component 1 component 2 component 3 component 4 component 5 component 6 
1     0.30 -0.41 
2   -0.33   -0.34 
3     0.58  
4   -0.31   -0.32 
5   -0.39  0.43  
6     0.45  
7   0.31    
8   0.48    
9     0.39  
10     0.59  
11     0.67  

Fr
ee

do
m

 

12     0.52  
13     0.44 0.33 
14   0.68    
15   0.75    
16   0.73    
17   0.64    
18   0.66    
19   0.46   0.44 
20   0.36   0.42 
21      0.43 
22      0.52 
23      0.60 

C
om

m
un

ic
at

io
n 

24   0.34 0.32   
25 0.31 0.37     
26  0.31   -0.33  
27  -0.39   0.34  
28  0.38  0.47  0.30 
29     -0.45  
30       
31  -0.45  -0.54   
32  0.47  0.33  0.32 
33     0.34 0.48 
34    -0.33   
35      0.42 

A
ss

es
sm

en
t 

36    -0.35 0.35  
37  0.65    0.34 
38  0.71     
39  0.71     
40  0.57     
41  0.53     
42  0.62     
43 0.31 0.67     
44  0.55     
45 0.39 0.62     
46  0.62     
47  0.60  0.41   In

te
rp

re
ta

tio
n 

of
 D

at
a 

48 0.42 0.45     
49 0.64 0.37     
50 0.70      
51 0.74      
52 0.72      
53 0.76      
54 0.83      
55 0.70      
56 0.72      
57 0.52      
58 0.72 0.32     
59 0.73      

Sc
ie

nc
e 

st
or

ie
s 

60 0.71      
61 0.55      
62 0.39   0.46   
63    -0.44  0.55 
64 0.37  0.42 0.42   
65      0.49 
66 0.31 0.35 0.35 0.36   
67 0.33   0.68   
68 0.34   0.65   
69 0.47      
70 0.31   0.50   
71 0.39   0.55   U

nc
er

ta
in

ty
 in

 S
ci

en
ce

 

72    0.63   
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Table 4.7  
Factor Loadings for Those Items Kept in for Further Statistical Analysis of the Actual Form of the Is 
This an Inquiring Classroom? Preliminary Questionnaire.  Shading indicates to which component 
each scale's items are being taken to primarily contribute. 
 

 Item no component 
1 

component 
2 

component 
3 

component 
4 

component 
5 

component 6 

5  0.33    0.30 
6  0.50    0.33 
7  0.46    0.51 
9     0.33  
10  0.47    0.33 
11  0.42    0.48 

Fr
ee

do
m

 

12  0.47    0.49 
13  0.48     
14  0.79     
15  0.78     
16  0.73     
17  0.62     
18  0.71     
19  0.56     
20  0.66     C

om
m

un
ic

at
io

n 

24  0.78 0.40    
25   0.57    
26 0.41    0.61  
33   0.32    
34     0.40  
35     0.40  A

ss
es

sm
en

t 

36 0.53      
37    0.61   
38    0.75   
39    0.59   
40    0.61   
42    0.71   
43    0.91   
44   0.33 0.65   
45 0.36 0.31  0.57   In

te
rp

re
ta

tio
n 

of
 D

at
a 

46    0.80   
49 0.69   0.33   
50 0.85      
51 0.84      
52 0.85      
53 0.82  0.33    
54 0.95      
56 0.77      
57 0.71      
58 0.90      

Sc
ie

nc
e 

St
or

ie
s 

59 0.75  0.31    
62 0.47  0.73    
64 0.44  0.96    
66 0.45  0.54    
67   0.82    
69   0.82    
70 0.36  0.87    
71   0.95    U
nc

er
ta

in
ty

 in
 

Sc
ie

nc
e 

72 0.32  0.71 0.49   
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Table 4.8 
Factor Loadings for Those Items Kept in for Further Statistical Analysis of the Preferred Form of the 
Is This an Inquiring Classroom? Preliminary Questionnaire.  Shading indicates which component 
each scale's items are being taken to primarily contribute. 

 Item no component 
1 

component 
2 

component 
3 

component 
4 

component 
5 

component 6 

5   `-0.39  0.43  
6     0.45  
7   0.31    
9     0.39  
10     0.59  
11     0.67  

Fr
ee

do
m

 

12     0.52  
13     0.44 0.33 
14   0.68    
15   0.75    
16   0.73    
17   0.64    
18   0.66    
19   0.46   0.44 
20   0.36   0.42 C

om
m

un
ic

at
io

n 

24   0.34 0.32   
25 0.31 0.37     
26  0.31   -0.33  
33     0.34 0.48 
34    -0.33   
35      0.42 A

ss
es

sm
en

t 

36    -0.35 0.35  
37  0.65    0.34 
38  0.71     
39  0.71     
40  0.57     
42  0.62     
43 0.31 0.67     
44  0.55     
45 0.39 0.62     In

te
rp

re
ta

tio
n 

of
 D

at
a 

46  0.62     
49 0.64 0.37     
50 0.70      
51 0.74      
52 0.72      
53 0.76      
54 0.83      
56 0.72      
57 0.52      
58 0.72 0.32     

Sc
ie

nc
e 

St
or

ie
s 

59 0.73      
62 0.39   0.46   
64 0.37  0.42 0.42   
66 0.31 0.35 0.35 0.36   
67 0.33   0.68   
69 0.47      
70 0.31   0.50   
71 0.39   0.55   U

nc
er

ta
in

ty
 in

 
Sc

ie
nc

e 

72    0.63   
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4.10.5 Reliability and Validity of the ITIC 

In keeping with general practice in learning area research, the reliability and validity 

of the ITIC Preliminary quesionnaire was investigated through examining, firstly, 

the internal consistency/reliability as indicated by the Cronbach alpha reliability 

coefficient and, secondly, the discriminant validity as indicated by the mean 

correlation with other scales of each of the ITIC Preliminary scales.  These values 

are shown in Table 4.9, for both the Actual and Preferred Forms of the questionnaire. 

Table 4.9  
Scale Item Mean, Cronbach Alpha Reliability and Discriminant Validity (mean correlation with 
other scales) and eta2 for each scale. 

Scale Version No. 
of 
items 

Alpha 
reliability 

Mean 
correlation 
with other 
scales 

Scale 
mean 

Scale 
SD 

ANOVA 
results 
Eta2 

Freedom Actual 7 0.71 0.39 2.40 0.67 0.13   ** 
 Preferred 7 0.64 0.28 3.60 0.56  
Communication Actual 9 0.83 0.35 3.41 0.73 0.1* 
 Preferred 9 0.85 0.33 3.94 0.66  
Assessment Actual 6 0.50 0.20 2.97 0.61 0.20*** 
 Preferred 6 0.31 0.10 3.10 0.57  
Interpretation of 

Data 

Actual 9 0.87 0.41 3.15 0.81 0.23*** 

 Preferred 9 0.88 0.36 3.14 0.82  
Science Stories Actual 10 0.92 0.45 2.29 0.88 0.50*** 
 Preferred 10 0.92 0.32 2.98 0.92  
Uncertainty in 

Science 

Actual 8 0.90 0.45 3.20 0.96 0.25*** 

 Preferred 8 0.85 0.41 3.52 0.75  

n=157        * p<0.05   ** p<0.01   *** p<0.001  
 

Table 4.9 indicates that for the sample of students that completed the ITIC 

Preliminary questionnaire the alpha coefficients for the Actual Form ranged from 

0.50 to 0.90, using the individual as the unit of analysis, and those for the Preferred 

Form from 0.31 to 0.92.  This suggests that each of the ITIC Preliminary 

questionnaire scales has acceptable reliability/internal consistency.  This can be 
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interpreted as meaning that items which have been grouped together to form a scale 

are measuring the same dimension of the classroom environment.  As would be 

expected from the results of the principal components analysis, the coefficients for 

the Assessment scale are the least satisfactory. 

The mean correlation of a particular scale with the other scales in the questionnaire 

was used as a measure of the discriminant validity of the ITIC Preliminary 

questionnaire.  The mean correlations for the Actual Form ranged from 0.20 to 0.45, 

and for the Preferred Form from 0.10 to 0.41 indicating that the ITIC Preliminary 

questionnaire measured distinct, although somewhat overlapping, aspects of the 

learning environment.  In other words, the different scales are measuring different 

dimensions or aspects of the classroom environment. 

The third feature that was listed as being desirable for a learning environment 

questionnaire was the ability to distinguish between the perceptions of students in 

different classrooms, that is, that students within the same class should perceive their 

learning environment similarly, while mean within-class perceptions should vary 

significantly from class to class.  This effect was examined through analysis using 

one-way ANOVA, with class membership as the main effect and using the 

individual as the unit of analysis.  The results in Table 4.9 indicate that each scale 

differentiated significantly between classrooms.  The eta2 values represent the 

amount of variance in environment scores accounted for by class membership.  For 

the ITIC Preliminary questionnaire these ranged from 0.10 to 0.50.  The levels of 

significance indicated by these eta2 scores show that the Actual Form of the ITIC 

Preliminary questionnaire is effective in distinguishing between classes.  Such 

distinction between classes would not be expected when considering students' 

preferences, so eta2 values are not generally shown for the Preferred Form of 

questionnaires. 

On the basis of the above analysis of both the Actual and Preferred Forms of the 

ITIC Preliminary questionnaire it was considered that the instrument that had been 

developed was a useful one and that with some modification it would be suitable for 

its intended purpose of measuring the extent to which inquiry methods were 

incorporated into science teaching in various classrooms.  The modifications that are 

necessary are considered in the next chapter. 



CHAPTER 5 - THE FINAL STUDENT QUESTIONNAIRE 

CHAPTER OVERVIEW 

This chapter documents the development, use and analysis of the final student 

version of the Is This an Inquiring Classroom? or ITIC questionnaire, Actual and 

Preferred Forms.  Discussion progresses from the development of the final version of 

the ITIC questionnaire through the collection of data from schools to the 

interpretation of the student responses. 

 

5.1 FINAL QUESTIONNAIRE ITEMS 

5.1.1 Formulating the Final Version of the Student Questionnaire 

On the basis of the statistical analysis of the ITIC Preliminary questionnaire data, as 

described in Chapter 4, eight items were selected to be included for each scale of the 

final ITIC questionnaire.  A major consideration in making the selection was the 

factor loading that each item returned from the principal components analysis shown 

in Table 4.5.  Items that loaded more heavily into a scale other than their assigned 

one were discarded.  Where a scale contained more than eight satisfactory items, and 

these items were close together in terms of how they loaded in the factor analysis, 

items that were as diverse as the nature of the scale allowed were chosen.  This took 

into consideration the comments of the critiquing teachers that items that were 

effectively duplicates of others should not be included. 

The results of the statistical analysis revealed that eight items could be chosen 

without modification from those used in the preliminary version of the questionnaire 

for the following four scales: 

• Scale 2 - Communication. 

• Scale 4 - Interpretation of Data. 

• Scale 5 - Science Stories. 

• Scale 6 - Uncertainty in Science.   
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In the case of Scale 1, Freedom in Practical Work, one item was rewritten and the 

others were taken directly from the ITIC Preliminary questionnaire. 

In the case of Scale 3, Assessment, all items were completely rewritten because of 

the low values that this scale returned in the principal components analysis. 

Thus the final version of the ITIC questionnaire was developed.  The final version of 

the ITIC questionnaire is included as Appendix 4.  In considering the layout of this 

final version of the ITIC the following points are worth noting: 

• Items within each scale were named using the first letter of the scale name 

and then a number.  This meant that when carrying out any analysis it was 

immediately obvious which scale an item belonged to - as opposed to the 

preliminary version of the questionnaire, where continuous numbering was 

used across all scales. 

• Although the preliminary version of the questionnaire showed that having 

Actual and Preferred responses on the same sheet seemed to have confused 

some students, the number of questionnaire responses that had to be 

discarded for this reason was not particularly high in relation to the overall 

number of discards (discard numbers are shown in Table 4.4).  It was judged 

that the advantage gained by using this strategy (greater comparability of 

actual and preferred responses), as previously discussed, outweighed the 

potential confusion to some students. 

• As many reverse score items as possible were removed as they can be a 

source of confusion. 

• At the suggestion of a researcher experienced with questionnaires, the rating 

scale was reversed so that it started with almost never (score of 1) and ended 

with almost always (score of 5).  On the preliminary version of the 

questionnaire, the almost always choice was listed first (still with a score of 

5). 

• Alternate items were shaded, making it less likely that students would get 

their answers out of line. 
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• A reasonable font size and spacing was maintained to make the questionnaire 

easily legible for students. 

• The questionnaire was formatted so that no scale ran over two pages.  It was 

hoped that this would emphasise which items belonged together. 

• As with the Preliminary Version of the questionnaire, it was considered 

better if students wrote their responses directly onto the questionnaire sheet 

rather than transcribing them to a separate answer sheet.  It was hoped that 

this strategy would cut out potential transcription errors. 

• No student names were asked for on the questionnaire cover sheet, as these 

were not required for analysis purposes. 

The student questionnaires were professionally printed on an A3 sheet.  This sheet 

could be folded, making it easy for students to work with. 

Consideration was given to rotating the six scales of the questionnaire, in the same 

manner that candidate names are rotated on Australian electoral papers.  This would 

have avoided problems caused by students becoming fatigued by the time that they 

reached the last scales.  However, it was deemed impractical in this case due to the 

minimum number requirements/costs of having the questionnaire printed. 

Both the items from the ITIC Preliminary questionnaire that were omitted from the 

final version and those that were incorporated into it are indicated in the following 

sub-sections. 

 

5.1.2 - Final Version of Scale 1 - Freedom in Practical Work 

Items 1, 2, 3, 4 and 8 from the preliminary version of the questionnaire (as shown in 

Appendix 3) were omitted, leaving the following seven items: 

• We are asked to design our own experiments. 

• We are allowed to extend the practical work and do some experimenting. 
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• We carry out experiments to answer questions that come up in class 

discussions. 

• All students do exactly the same experiments. 

• We carry out experiments to answer questions that interest us. 

• We carry out experiments to test ideas which we come up with. 

• We decide the best way to do things during practical work. 

The following item was rewritten 

• We carry out practical investigations that take more than one lesson. 

 

5.1.3 - Final Version of Scale 2 - Communication 

Items 19, 21, 22 and 23 from the preliminary version of the questionnaire (as shown 

in Appendix 3) were omitted, leaving the following eight items: 

• Most students take part in discussions. 

• We talk to other students about our work. 

• We explain our ideas to each other. 

• We comment on other students’ opinions. 

• We talk with other students about how to solve problems. 

• We discuss the results we have obtained with others. 

• Our ideas and opinions are listened to during classroom discussions. 

• The teacher listens to our ideas. 
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5.1.4 - Final Version of Scale 3 - Assessment 

Due to the low and scattered factor loadings that items from the Assessment scale 

returned in the principal components analysis of the ITIC Preliminary Version, the 

eight items for this scale were rewritten.  The rewrite endeavoured to retain the ideas 

that the items on the ITIC Preliminary questionnaire had attempted to capture.  The 

eight new items were vetted by several experienced researchers, but no trialling of 

the new scale was carried out.  In taking this approach it was recognised that care 

would have to be taken in any subsequent interpretation of results obtained from the 

assessment scale, but it was still deemed worth proceeding with the scale at this 

stage. 

The eight new items were: 

• Our tests mainly have questions that you can memorise the answers to. 

• We are allowed to use our notes or textbooks in tests. 

• There can be more than one correct answer to test or assignment questions. 

• In tests (or assignments) we are given the results of an experiment or 

investigation and asked what these show. 

• It is important to explain your answers carefully. 

• We have to really understand the work to do well on tests. 

• We can copy the answers to assignment questions straight from books or the 

internet. 

• Test or assignment questions ask us what our opinion is and why we think 

this. 
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5.1.5 - Final Version of Scale 4 - Interpretation of Data 

Items 41, 45, 47 and 48 from the preliminary version of the questionnaire (as shown 

in Appendix 3) were omitted, leaving the following eight items: 

• We have to try to explain the results of our experiments. 

• We are asked to make generalisations from data. 

• We are asked what diagrams and graphs mean. 

• We are asked to predict the results of experiments. 

• We use information from our experiments to predict what will happen in a 

different situation. 

• We are asked to justify our conclusions (to say why we think what we do). 

• We are asked how we could improve the experiments we have done. 

• We are asked to form our own hypotheses. 

 

5.1.6 - Final Version of Scale 5 - Science Stories 

Items 55, 57, 59 and 60 from the preliminary version of the questionnaire (as shown 

in Appendix 3) were omitted, leaving the following eight items: 

• We learn about scientists. 

• The names of scientists are mentioned during lessons. 

• We learn about the history of science. 

• The teacher tells us stories about science. 

• As we study different topics we talk about the history of how science ideas 

have developed. 
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• When we study a topic we are told about the trouble which scientists have 

had working in this area. 

• We are told personal information about what scientists were like. 

• We look at what people who are working as scientists do. 

 

5.1.7 - Final Version of Scale 6 - Uncertainty in Science 

Items 61, 63, 65 and 66 from the preliminary version of the questionnaire (as shown 

in Appendix 3) were omitted, leaving the following eight items: 

• We learn that science cannot provide perfect answers to problems. 

• We learn that science has changed over time. 

• We learn that people can have different theories to explain the same thing. 

• We learn that science is influenced by people’s values, opinion and beliefs. 

• We learn that science is about coming up with ideas. 

• Scientific knowledge is presented as being incomplete - there are things that 

are still not understood. 

• We learn that scientific information can change. 

• Our teacher questions some scientific theories. 

 

 

5.2 QUESTIONNAIRE COVER SHEET AND ATTITUDE SCALE 

The ITIC questionnaire cover sheet was designed to collect non-identifying 

information about students.  This consisted of grade level, gender, predicted Grade 

9/10 science result, and attitude to science items. 
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5.2.1 College Science Classes 

In the case of college students, the researcher coded the questionnaires with a subject 

code before students completed them.  Grade 11 and Grade 12 students were not 

differentiated, as many Tasmanian college classes are comprised of a mixture of 

Grade 11 and 12 students.  Questionnaires were coded to indicate if the students 

completing it were in a college Biology, college Physical Science, college Chemistry 

or college Physics class.  The nature of college science enrolments means that in 

general: 

• Biology classes consist of a mixture of Grade 11 and Grade 12 students. 

• Physical Science classes are predominantly Grade 11 students, as Physical 

Science is a lead in subject to Physics and Chemistry.  However, some Grade 

12 students choose it for the first time and some who did not gain a 

satisfactory result in Grade 11 repeat it. 

• Chemistry and Physics classes are virtually all Grade 12 students.  There may 

also be some repeating (Grade 13 students), and in exceptional circumstance 

Grade 11 students may be permitted to enrol in these subjects. 

 

5.2.2 Predicted Grade 9/10 Result 

As the researcher believed that students' academic ability may affect whether they 

favoured an inquiry approach or not, an attempt was made to ascertain the 

approximate academic level of students.  As asking teachers to code individual 

student questionnaires was not felt to be ethical - and would place an unreasonable 

burden on participating teachers - an attempt was made to include an item that would 

let students indicate their ability level on their anonymous questionnaire.  On the 

ITIC Preliminary questionnaire, this was the item How would you rate your 

performance in your science class?, with students being given the option of circling 

from 1 for the bottom group through to 5 for the top group.  The problem that 

became evident with this item was that if students were in the bottom part of a top 

level science class they were likely to circle 1 or 2.  Equally if student were in the 
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top part of a bottom level class they might circle 4 or 5.  Therefore, in reality, the 

results of this item were meaningless.   

On the cover sheet for the final questionnaire students were asked, instead, to predict 

whether they would get a result at the top, middle or bottom level course in Grades 9 

and 10.  Students were familiar with this terminology as TCE (Tasmanian Certificate 

of Education) awards were given at what were commonly referred to as top, middle 

and bottom levels.  It was recognised that Grade 7 and 8 students would not be as 

familiar with this terminology, but the researcher, and teachers consulted, considered 

that most would have heard of it, particularly from older siblings and students.  In 

the case of college students this item was not relevant, as all participating college 

classes were pretertiary ones, and students could therefore be categorised as top level 

Grade 10 with respect to academic ability. 

 

5.2.3 Attitude to Science Scale 

The concept of an Attitude to Science scale was developed whilst scoring the ITIC 

Preliminary questionnaires.  In particular, it was thought that it would be useful in 

those cases where actual and preferred answers were identical.  If the attitude to 

science scale indicated that students were dissatisfied with their science class then it 

could reasonably be assumed that students either had not taken the questionnaire 

seriously, or that they had misunderstood the requirements for filling it in.  

Additionally it was believed that the scale may provide some interesting background 

information.  The Attitude to Science scale was taken from Henderson, Fisher and 

Fraser (2000), who validated it with college Biology classes.  They indicated that 

some of the items are from the TOSRA Test of Science-Related Attitudes (Fraser, 

1981).  This scale was used intact as it had already been validated.  

The ten items included in the Attitude to Science scale were: 

• I look forward to science lessons. 

• Science lessons are fun. 

• I enjoy the activities we do in science. 
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• The things we do in science are among the most interesting things we do at 

school. 

• I want to find out more about the world in which we live. 

• Finding out about new things is important. 

• I enjoy science lessons in this class.  

• I like talking to my friends about what we do in science. 

• We should have more science lessons each week. 

• I feel satisfied after a science lesson. 

 

 

5.3 ADMINISTRATION OF THE STUDENT QUESTIONNAIRE 

5.3.1 Choice of Schools 

In order to get a representative sample of students, nine high schools and eight 

colleges were approached.  All agreed to assist in this research by having classes of 

students complete the ITIC questionnaire.   

As there are only eight government colleges for Grade 11/12 students in Tasmania 

they were all approached, giving a statewide sample.   

In selecting high schools (Grade 7-10 students) it was decided to use ones in the 

south of the state as they were more readily accessible to the researcher.   

Following consultation with a number of science teachers it was decided not to use 

those schools where it was known that literacy levels were lower than average as 

many students at these schools would not have had the literacy levels required to 

decode and answer questionnaire items.  Although this could have been overcome by 

having teachers or the researcher read items to these students, teachers felt that this 

would be a big ask on both them and the students.  As the classroom teachers are in 

the best position to know their students capabilities, their advice was taken in this 

regard.   

   166 



The Tasmanian government education system has, for historical reasons, two single 

sex high schools in the Hobart area.  It was felt that if one of these was used it would 

also be necessary to use the other in order to avoid biasing gender numbers too 

heavily.  Fortunately, both schools agreed to be involved when approached.  The 

remainder of the high schools chosen were coeducational.  Overall the high schools 

selected drew from a wide cross section of the greater Hobart area and beyond, and 

the participating schools included large numbers of students from both housing 

commission (representing a lower socioeconomic demographic) and rural areas in 

their intakes.  In particular, two of the participating schools are classified as district 

high schools (in the Tasmanian context this means that they have a K-12 school 

population) and are situated in more rural areas, despite being only around 30 

minutes drive from central Hobart. 

Overall, it was judged that the seven high schools selected would give a 

representative sample of Tasmanian Grade 7 to Grade 10 students.  As all colleges 

were used the same can be said for Grade 11/12 students.  As previously noted, 

Tasmanian students generally have the opportunity of electing to study subjects in 

either Grade 11 or Grade 12, so these two grade groups cannot realistically be 

separated. 

 

5.3.2 Administration of Questionnaires 

The researcher worked with one contact person at each school/college who 

coordinated the in-school organisation.  As was the case with the Preliminary 

Version of the questionnaire, coordinators felt that it would be preferable if teachers 

gave their own classes the questionnaire rather than the researcher visiting the school 

to do so.  This was also much more time efficient for the researcher, who is most 

grateful for the assistance received from teachers and school coordinators.  The only 

problematic aspect of this was that the researcher cannot be sure exactly what 

information and instructions teachers gave to students completing the questionnaire.  

To provide some conformity in the administration of the questionnaires, teachers and 

school coordinators were provided with instruction/information sheets.  Copies of 

these sheets are included in the Appendices, as listed below: 
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• Appendix 5 - Letter to high school coordinators. 

• Appendix 6 - Letter to college coordinators. 

• Appendix 7 - Instructions to administering high school teachers. 

• Appendix 8 - Instructions to administering college teachers. 

As these documents indicate, each high school was asked to have three classes in 

each of Grades 7 through 10 complete the questionnaire.  In the case of smaller 

schools this was not always feasible.  The colleges vary in size, as do the number of 

classes they run in each of the science subjects being investigated in this study 

(Biology, Chemistry, Physical Science and Physics).  The researcher therefore 

negotiated with the school coordinators as to how many classes of each subject 

grouping they would have complete the questionnaire.  The letter to these schools 

included a reminder as to how many classes had been agreed on.  In the case of both 

high schools and colleges schools were requested not to have only classes taught by 

one teacher complete the questionnaire, so as to give a variety of student classroom 

experiences.  Obviously the size of schools and, in the case of colleges, subject 

expertise of teachers, affected how many different teachers schools had timetabled 

on classes.   

The questionnaire was sent to schools late in Term 2 of 2002 (August/September).  It 

was considered that giving the questionnaire at this stage of the year had allowed 

students adequate time to form an accurate impression of their science classroom 

environment.  Most schools completed it during the last few weeks of term, although 

some chose to keep the questionnaires and have students complete them at the 

beginning of Term 3 (mid September). 
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5.4 QUESTIONNAIRE DATA ENTRY 

Questionnaires were returned from 2208 students in 122 classes in 16 different 

Tasmanian high schools and senior secondary colleges.  Each student in the sample 

responded to the ITIC, which contained 48 items as previously outlined.  These 

items had been construct and content validated by teachers and fellow researchers 

and through statistical analysis.  Questionnaires were discarded for the same reasons 

outlined in section 4.9, with the exception that when actual and preferred items were 

identical, the questionnaire was not discarded if the student's attitude to science scale 

showed that they were satisfied with their science class.  This was virtually never the 

case. 

A breakdown of the student population that completed the ITIC questionnaire is 

shown in Tables 5.1 and 5.2. 

 

Table 5.1 
Breakdown of the Student Population Completing the 1519 High School 
Questionnaires 

Number of: Grade 7 Grade 8 Grade 9 Grade 10 Total 

Classes  23 21 25 15 84 

Female 
students 

207 194 216 97 714 

Male 
students 

241 207 206 138 792 

Sex not 
indicated 

3 4 1 3 11 

Total 
students 

451 405 425 238 1519 

 

The number of questionnaires returned from Grade 10 students is substantially lower 

than from other grades.  A likely explanation for this is that proffered by one large 

high school that did not return any Grade 10 questionnaires.  This was that teachers 
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felt that the latter part of the Grade 10 year was too important to interrupt normal 

lessons to allow students to complete a questionnaire. 

Table 5.2 
Breakdown of the Student Population Completing the 691 College Questionnaires 
from 38 Classes 

Number of:  Physical 
science 

Chemistry Physics Biology Total 

Classes  13 8 9 8 38 

Female 
students 

109 67 39 97 312 

Male 
students 

131 68 87 65 351 

Sex not 
indicated 

9 10 4 5 28 

Total 
students 

249 145 130 167 691 

 

The questionnaires returned from college students were in the approximate numbers 

that were expected.  Working on the premise that most Physical Science students and 

half of Biology students are Grade 11, and that virtually all Chemistry and Physics 

students are Grade 12, these results are likely to represent approximately half Grade 

11 and half Grade 12 students. 

 

 

5.5 OBSERVATIONS DURING DATA ENTRY 

Some class sets of questionnaires that were returned were smaller than expected.  

Speaking with school coordinators revealed that in some cases teachers gave 

questionnaires to their classes when some students were absent for sporting or other 

events.  This was, unfortunately, a situation over which the researcher had no 

control.  In the case of college classes, completing the questionnaire may have been 

an optional activity, with some students choosing not to complete a questionnaire. 
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Comments that some students wrote on their questionnaires indicated that their 

science teacher had changed during the year, and that their response to certain items 

depended on which teacher they had.  This was an unfortunate but again unavoidable 

situation from a research viewpoint. 

The item in which students predicted whether they would achieve a bottom, middle 

or top level award in Grade 9/10 has probably resulted in an overrepresentation of 

the middle group.  This would be due to some lower end of top level students placing 

themselves in the middle level group, along with some upper end of bottom level 

students. 

More discards occurred from students who ranked themselves at bottom level.  This 

is not surprising as these students frequently have lower literacy skills, and so would 

have experienced more difficulty in completing the questionnaire appropriately. 

 

 

5.6 STATISTICAL VALIDATION OF STUDENT ITIC ACTUAL AND 

PREFERRED FORMS 

As with the preliminary version of the ITIC, the data from students completing the 

final version of the ITIC was analysed to check the: 

• a priori factor structure of the ITIC 

• internal consistency of each of the scales 

• discriminant validity 

• ability of the ITIC to differentiate between classrooms. 
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5.6.1 Factor Analysis of the ITIC Student Version 

The first step in the validation of the ITIC was to carry out a series of factor analyses 

in order to examine the internal structure of the set of 48 items.  As the final version 

of the ITIC contained the same number of scales as the preliminary version, the 

principal component analysis performed was as outlined in Chapter 4.  The results of 

this factor analysis, for 2208 students in 122 classes in 16 schools, are shown in 

Tables 5.3 (Actual Form) and 5.4 (Preferred Form).  In line with what has been 

customary in the literature, the only results depicted in Table 5.3 and 5.4 are those 

that are greater than or equal to the conventionally accepted value of 0.30.   

Examination of the factor analyses indicates that there are no problems with the 

Interpretation of Data, Science Stories or Uncertainty in Science scales in either the 

Actual or Preferred Forms. 

Three items in the Actual Form of the Freedom in Practical Work scale (items F6, 

F7, and F8) show some tendency to load into components other than the one to 

which they have been assigned.  However, as these loadings into alternative 

components are less than 0.35 these items can be regarded as satisfactory.  A similar 

situation exists with item F4 in the Preferred Form.  In the Preferred Form item F5 is 

problematic, not showing a loading greater than 0.30 into any component.  As the 

loadings for this item were satisfactory in the Actual Form it has not been excluded, 

but needs careful monitoring in future research studies. 

In the case of the Communication scale in the Preferred Form, item C8 shows some 

tendency to load into another component, but again this tendency is less than 0.35, so 

the item can be regarded as satisfactory.   

The factor loadings for the Assessment scale indicate that, as was the situation with 

the ITIC Preliminary questionnaire, it is not performing in a satisfactory manner in 

either the Actual or Preferred Forms, and is in need of further modification.   

In summary, the factor analyses in Tables 5.3 and 5.4 support a five scale, 40 item 

instrument, which does not endeavour to measure the extent to which science classes 

are assessed using methods that are in line with inquiry methodologies.   
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Table 5.3 
Factor Loadings for the Student Version of the ITIC Questionnaire, Actual Form. 
Loadings smaller than 0.3 omitted 

 Item no component 
1 

component 
2 

component 
3 

component 
4 

component 
5 

component 6 

F1     0.44  
F2     0.59  
F3     0.61  
F4     0.32  
F5     0.46  
F6  0.34   0.51  
F7     0.61 0.32 

Fr
ee

do
m

 in
 

Pr
ac

tic
al

 W
or

k 

F8  0.31   0.41  
C1  0.53     
C2  0.73     
C3  0.75     
C4  0.61     
C5  0.75     
C6  0.68     
C7  0.56     C

om
m

un
ic

at
io

n 

C8  0.41 0.31    
A1      0.68 
A2      - 
A3      0.47 
A4   0.36    
A5  0.36 0.51    
A6  0.30 0.41    
A7      - 

A
ss

es
sm

en
t 

A8      0.52 
I1   0.57    
I2   0.59    
I3   0.61    
I4   0.60    
I5   0.56    
I6   0.66    
I7   0.59    In

te
rp

re
ta

tio
n 

of
 

D
at

a 

I8   0.53    
S1 0.70      
S2 0.74      
S3 0.77      
S4 0.68      
S5 0.71      
S6 0.70      
S7 0.72      Sc

ie
nc

e 
St

or
ie

s 

S8 0.62      
U1    0.59   
U2    0.69   
U3    0.72   
U4    0.68   
U5    0.69   
U6    0.68   
U7    0.71   U

nc
er

ta
in

ty
 in

 
Sc

ie
nc

e 

U8    0.47   
%variance 22.56 6.79 5.57 4.20 3.89 3.01 
eigen-value 10.83 3.26 2.67 2.02 1.87 1.44 
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Table 5.4 
Factor Loadings for the Student Version of the ITIC Questionnaire, Preferred Form. 
Loadings smaller than 0.3 omitted 

 Item 
no 

component 
1 

component 
2 

component 
3 

component 
4 

component 
5 

component 
6 

F1     0.56  
F2     0.63  
F3     0.68  
F4   0.31  0.47  
F5     -  
F6     0.60  
F7     0.70  

Fr
ee

do
m

 in
 

Pr
ac

tic
al

 W
or

k 

F8     0.58  
C1   0.56    
C2   0.70    
C3   0.72    
C4   0.62    
C5   0.72    
C6   0.69    
C7   0.61    C

om
m

un
ic

at
io

n 

C8   0.50    
A1      -0.59 
A2      0.65 
A3      0.56 
A4  0.46     
A5  0.47     
A6  0.43     
A7      -0.70 

A
ss

es
sm

en
t 

A8     0.32  
I1  0.63     
I2  0.62     
I3  0.65     
I4  0.65     
I5  0.62     
I6  0.67     
I7  0.62     In

te
rp

re
ta

tio
n 

of
 

D
at

a 

I8  0.62     
S1 0.74      
S2 0.74      
S3 0.78      
S4 0.70      
S5 0.73      
S6 0.71      
S7 0.73      Sc

ie
nc

e 
St

or
ie

s 

S8 0.64      
U1    0.61   
U2    0.67   
U3    0.68   
U4    0.63   
U5    0.68   
U6    0.67   
U7    0.69   U

nc
er

ta
in

ty
 in

 
Sc

ie
nc

e 

U8    0.50   
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5.6.2 Validation Information for Actual and Preferred Forms of the Student 

ITIC  

The reliability and validation statistics for both the Actual and Preferred Forms of 

the ITIC student version are shown in Table 5.5.  As was reported for the ITIC 

Preliminary version in Chapter 4, the alpha reliability coefficient was used as the 

index of scale internal consistency and the mean correlation of a scale with the 

remaining scales was used as a convenient index of scale discriminant validity. 

Whilst the assessment scale did not perform in a satisfactory manner in the factor 

analyses and will not be reported in subsequent discussion, the results it generated 

are included in Table 5.5 as they may be of interest in future research studies 

attempting to develop a satisfactory Assessment scale.   

In line with previous research, statistics are reported for two units of analysis, firstly, 

the individual student's score and, secondly, the class mean score.  Reliabilities for 

class means are higher than those where the individual student is used as the unit of 

analysis for all scales. 

With regard to scale internal consistency, it can be seen from Table 5.5 that for the 

Actual Form of the ITIC the alpha reliability ranged from 0.71 to 0.88 with the 

individual student as the unit of analysis, and from 0.82 to 0.96 when the class mean 

was used as the unit of analysis.  For the Preferred Form of the ITIC the alpha 

reliability ranged from 0.73 to 0.91 with the individual student as the unit of 

analysis, and from 0.76 to 0.95 when the class mean was used as the unit of analysis.  

This indicates that all five remaining scales (disregarding the Assessment scale) of 

both the Actual and Preferred Forms of the student ITIC have satisfactory internal 

consistency.  This premise is based on the literature where values greater than 0.5 

(DeVellis (1991), Norusis (1993)) or 0.6 (Nunnally, 1978) have been regarded as 

indicating satisfactory internal consistency.  In general terms, this means that items 

within the same scale can be regarded as measuring the same dimension of 

classroom environment.  In the case of the ITIC specifically, items within a 

particular scale can be regarded as measuring the same dimension of inquiry 

methodologies in science classes. 
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Table 5.5 
Internal consistency (Cronbach Alpha Coefficient), Discriminant Validity (Mean Correlation With Other 
Scales) and Ability to Differentiate Between Classrooms (Eta2) for the ITIC Student Actual and Preferred 
Forms.  Results in the shaded portion relate to the Assessment scale, which performed poorly in tbe factor 
analysis. 

Mean correlation with other scales 

Alpha reliability with Assessment 
scale 

without 
Assessment scale Scale Version 

Individ-
ual 

Class 
means 

Individ-
ual 

Class 
means 

Individ-
ual 

Class 
means 

ANOVA 
results 
(eta2) 
Actual 

Freedom in 
practical work 

Actual 0.71 0.82 0.41 0.47 0.41 0.51 0.23*** 

 Preferred 0.73 0.76 0.41 0.14 0.40 0.14 _ 

Communication Actual 0.84 0.93 0.45 0.62 0.44 0.62 0.27*** 

 Preferred 0.86 0.94 0.44 0.55 0.45 0.52 _ 

Assessment Actual 0.36 0.53 0.40 0.53 0.40 _ 0.30*** 

 Preferred 0.71 0.42 0.35 0.47 0.35 _ _ 

Interpretation 
of Data 

Actual 0.81 0.90 0.45 0.67 0.44 0.64 0.22*** 

 Preferred 0.86 0.92 0.47 0.57 0.50 0.55 _ 

Science Stories Actual 0.88 0.96 0.38 0.52 0.39 0.55 0.34*** 

 Preferred 0.91 0.95 0.40 0.43 0.43 0.44 _ 

Uncertainty in 
Science 

Actual 0.86 0.93 0.42 0.62 0.43 0.63 0.16*** 

 Preferred 0.87 0.93 0.45 0.55 0.49 0.55 _ 

 

The mean correlation of a scale with the other four scales was used as a convenient 

index of scale discriminant validity.  For the Actual Form of the ITIC, the mean 

correlation of one scale of the ITIC with the other four scales ranged from 0.39 to 

0.44 when the individual student was used as the unit of analysis, and from 0.51 to 

0.64 when the class mean was used as the unit of analysis.  For the Preferred Form of 

the ITIC, the mean correlations ranged from 0.40 to 0.50 when the individual student 

was used as the unit of analysis, and from 0.14 to 0.55 when the class mean was used 

as the unit of analysis.   
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These values indicate that each scale of the ITIC can be regarded as measuring 

distinct, although somewhat overlapping, aspects of the classroom environment.  In 

the case of the ITIC specifically, it means that the five scales of the instrument are 

measuring different dimensions of inquiry teaching methodologies within science 

classes, but that there is some overlap between these dimensions.  This overlap is 

perhaps not surprising given that all scales have been developed to attempt to 

measure the extent to which inquiry teaching methodologies are being used. 

The ability of the Actual Form of an instrument such as the ITIC to differentiate 

between students in different classrooms has traditionally been regarded as a further 

important characteristic in science classroom research (eg Fraser, 1986) and will be 

examined next.  Students within the same class should perceive their classroom 

environment relatively similarly, while mean within-class perceptions would be 

expected to vary from class to class.  This differentiating ability is not expected in 

the Preferred Form of a questionnaire, as it can be assumed that students within the 

same cohort may have similar preferences despite actually being taught in different 

ways.   

The ability of the ITIC Actual Form to discriminate between the perceptions of 

students in different classes was examined using a one-way analysis of variance 

(ANOVA) with class membership as the main effect.  The results of this are included 

in Table 5.5.  It was found that each scale of the Actual Form of the ITIC 

differentiated significantly (p<0.001) between classes and that the eta2 statistic 

representing the proportion of variance explained by class membership ranged from 

0.16 to 0.34. 

 

5.6.3 Validity of the Attitude Scale 

For the student sample in this study, the ten item Attitude to Science scale was found 

to have an alpha reliability coefficient of 0.90 with the individual student as the unit 

of analysis and 0.96 when class means were used.  This indicates that items within 

the attitude scale can be seen as measuring similar things. 
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5.7 SUMMARY OF THE VALIDATION DATA 

Analysis of the data from the Student version of the ITIC has shown that the ITIC is 

a five scale instrument with acceptable validity and reliability.  It is therefore 

appropriate to further analyse the data that has been collected via it.  As was 

mentioned previously, the Assessment scale results are not reported in the following 

consideration of the student ITIC data, as the results of the principal components 

analysis showed that the Assessment scale items did not load well into just one 

component, indicating that Assessment could not be regarded as a distinct scale. 

As the ITIC questionnaire has been found to have acceptable validity and reliability, 

the information obtained from it can be analysed further, in order to address the 

research questions that were posed in Chapter 1.  The results of this analysis will be 

considered in the next chapter. 

 



CHAPTER 6 - APPLICATION OF THE STUDENT ITIC  

 

6.1 ACTUAL/PREFERRED COMPARISONS FROM THE ITIC 

STUDENT DATA 

 

This chapter reports and considers the results of the various statistical analyses that 

were carried out on the student ITIC data.  This includes speculating on some of the 

reasons behind the results obtained and the implications of the findings. 

 

6.1.1 Actual and Preferred ITIC Scale Means 

As one of the objectives of the current research study was to compare the extent to 

which inquiry methodologies were being used in Tasmanian high school and college 

science classes with the extent to which both students and teachers would prefer that 

such methodologies were used an appropriate strategy in the analysis of results was 

to compare the actual and preferred scale means, initially across all students and then 

for particular sub-groups.  The results of employing this strategy are outlined in the 

following sections. 

The initial step was to calculate scale means and standard deviations for each of the 

ITIC scales.  These results, for the 2,207 students in 122 classes, are shown in Table 

6.1.  As students responded on a five-point scale, ranging from 1 to 5, the values fall 

within these bounds.  The results indicate that for all scales the preferred mean is 

higher than the actual one, although this difference is very marginal in the case of the 

Interpretation of Data scale.  These differences are more easily seen in Figure 6.1, 

which displays the profile of the data from Table 6.1 graphically. 

From these data, it is evident that relative to the actual science class learning 

environments that they are experiencing students would prefer greater levels of the 

behaviours indicated by the Freedom in Practical Work, Communication, Science 

Stories and Uncertainty in Science scales.  In other words, students are expressing a 
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preference for a more inquiry oriented science class - although students are 

themselves unlikely to be aware of the term inquiry as used in relation to a teaching 

pedagogy.  In the case of the Interpretation of Data scale, there is close alignment 

between the actual and preferred means. 

 

Table 6.1 
Means and Standard Deviations for the Preferred and Actual Forms of the ITIC. 
 

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.65 3.37 0.72*** 0.60 0.66 

Communication 3.20 3.73 0.53*** 0.81 0.75 

Interpretation 
of Data 

3.37 3.40 0.03 0.72 0.77 

Science Stories 2.41 2.96 0.55*** 0.84 0.93 

Uncertainty in 
Science 

3.25 3.49 0.24*** 0.82 0.81 

*p<0.05, **p<0.01, ***p<0.001   n=2,207 
 

Figure 6.1.  ITIC scale means.
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In order to determine whether the differences observed in Figure 6.1 and Table 6.1 

were statistically significant, a paired samples t-test was used to examine differences 

in the means of the student responses to the Actual and Preferred Forms of the five 

ITIC scales.  The results of this analysis are included in Table 6.1.  These results 

indicate that there was a statistically significant difference between students' actual 

and preferred science class learning environments on four of the five scales - 

Freedom in Practical Work, Communication, Science Stories and Uncertainty in 

Science.  In all cases student responses indicated that they would prefer to 

experience higher levels of inquiry than they currently were. 

Interpretation of Data was the only ITIC scale for which there was not a significant 

difference between students' actual and preferred science class learning 

environments.  This may have been partially brought about by the fact that it is also 

the scale with the highest mean score in the Actual Form, so students may not have 

seen as much reason to indicate that they would prefer higher levels for the 

Interpretation of Data items.   

A second possible reason for there being no significant difference in the case of the 

Interpretation of Data scale is that students may perceive the behaviours represented 

by the Interpretation of Data items as being more challenging and so do not wish to 

experience more of them in their science classes.  Students are frequently more 

concerned about their capacity to achieve good results than whether the method of 

instruction that is being employed gives optimal learning experiences - at least unless 

the potential benefits of a different instructional approach are explained to them.  

This is particularly the situation with college classes, where students' final 

assessments determine their tertiary entrance score and hence the tertiary courses 

that they will be admitted to.  Hence, even able students may be hesitant to indicate 

that they would like to experience more of items that they find challenging if they 

believe that having more of these activities in their science classes would lead to 

them gaining lower marks.   

A third possibility is that students are simply less enthusiastic about completing the 

types of activities indicated by items in the Interpretation of Data.  Anecdotal 

classroom evidence suggests that this latter possibility is the most likely explanation, 
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with teachers generally noting that students much prefer to actually do practical work 

than to analyse their findings. 

 

6.1.2 Implications of Actual/Preferred Comparison 

Overall, if teachers seek to modify their science classroom environments to make 

them more in line with what the student mean preferred scores for each of the ITIC 

scales indicate, they should endeavour to incorporate more inquiry methodologies, as 

indicated by the ITIC Freedom in Practical Work, Communication, Science Stories 

and Uncertainty in Science scale items, into their science classes.   

The data does not indicate the need for any change in the extent to which teachers 

include items relating to the Interpretation of Data scale.  However, teachers need to 

make a professional judgement as to whether they think that students would benefit 

from participating in more of the types of activities indicated by the items in this 

scale, even though the students have not indicated a preference to do so. 

 

 

6.2 THE IMPACT OF GENDER 

 

6.2.1 Comparison of Male and Female ITIC Responses 

Parker, Rennie and Fraser (1996) noted that of all school subjects, probably the 

greatest inequity between the sexes in enrolments, achievements and attitudes occurs 

for science.  With this in mind, it is important that a study such as the present one 

examine whether any differences exist in the responses of male and female students.  

Such an interrogation of the data may, firstly, enhance understanding of why the 

differences that Parker, Rennie and Fraser refer to exist, and, secondly, suggest ways 

to minimise these differences.  To this end, the student ITIC data were examined for 

differences by gender. 

In order to examine if there was a difference in male and female students' 

perceptions of their actual and preferred classroom environments, with respect to the 

ITIC scales, the t-test described above was repeated, with the data for males and 

females being considered separately.  The results of this analysis are shown in Tables 

6.2 (female students) and 6.3 (male students).   
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Tables 6.2 and 6.3 show similar trends in the data for male and female students, with 

the data for both genders indicating a significant difference between students' actual 

and preferred science class learning environments on all scales except Interpretation 

of Data - the same trend that was seen when the data for males and females were 

considered collectively in Table 6.1.   

 

 

Table 6.2 
Means and Standard Deviations for the Preferred and Actual Forms of the ITIC for 
Female Students. 

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.40 3.18 0.79*** 0.61 0.64 

Communication 3.24 3.78 0.54*** 0.81 0.75 

Interpretation 
of Data 

3.39 3.39 0.00 0.75 0.77 

Science Stories 2.32 2.95 0.63*** 0.84 0.92 

Uncertainty in 
Science 

3.27 3.52 0.25*** 0.83 0.80 

*p<0.05, **p<0.01, ***p<0.001   n=1,026 
 

 

Table 6.3 
Means and Standard Deviations for the Preferred and Actual Forms of the ITIC for 
Male Students. 

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.42 3.40 0.98*** 0.64 0.66 

Communication 3.15 3.70 0.53*** 0.81 0.75 

Interpretation 
of Data 

3.36 3.40 0.04 0.69 0.78 

Science Stories 2.48 2.97 0.49*** 0.84 0.95 

Uncertainty in 
Science 

3.24 3.46 0.23*** 0.80 0.83 

*p<0.05, **p<0.01, ***p<0.001   n=1,142 
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Table 6.4 further examines differences in perception of classroom environment 

according to student gender, by comparing the difference between the mean scores 

for the responses of males and females on each scale of the Actual and Preferred 

Forms of the ITIC. 

 
Table 6.4 
Comparison of Means and Differences for the Preferred and Actual Forms of the 
ITIC for Male and Female Students. 

 
Scales Actual Difference Preferred Difference

 Male Female  Male Female  
 (M) (F) (M-F) (M) (F) (M-F) 

Freedom in 
Practical Work 

2.42 2.40   0.02 3.40 3.18   0.22*** 

Communication 3.15 3.25 -0.10** 3.69 3.78 -0.10** 

Interpretation 
of Data 

3.36 3.39 -0.02 3.40 3.39   0.01 

Science Stories 2.48 2.32  0.16*** 2.97 2.95   0.02 

Uncertainty in 
Science 

3.24 3.27 -0.03 3.47 3.52 -0.05 

*p<0.05, **p<0.01, ***p<0.001   n=2,169 
 

The results contained in Table 6.4 indicate that male and female students perceived 

their actual science class learning environments similarly with respect to Freedom in 

Practical Work, Interpretation of Data and Uncertainty in Science, but that there 

were statistically significant differences in Communication and Science Stories.   

With regard to their preferred science class learning environment, males and females 

were in agreement as to what their preferred learning environment would look like 

with respect to Interpretation of Data, Science Stories and Uncertainty in Science, 

but there were significant differences between males and females in the areas of 

Freedom in Practical Work and Communication.   

 

6.2.2 Possible Reasons for Observed Male/Female Response Differences 

Nair & Fisher (2000) noted that generally studies in the classroom have shown that 

girls and boys differ in their perceptions of their classroom environment, with girls 

generally seeing their classroom environment in a more positive light.  The 
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perceptions of males and females differ significantly for two ITIC scales, with girls 

recording a higher mean score for one of these and a lower mean score for the other.  

Examination of the three scales where there is not a statistically significant 

difference between the mean response of males and females indicates that the 

differences that exist are too low to be worthy of any comment.  A likely reason for 

girls' mean scores not indicating a more positive perception of their classroom 

environment in the case of the ITIC questionnaire items is that it is not really 

possible to say whether the aspects of classroom environment being measured by the 

ITIC represent a more positive classroom environment, only that they indicate higher 

or lower levels of inquiry.  

The statistically significant difference between the perceptions of girls and boys with 

respect to the Science Stories scale is somewhat surprising, as it would seem to 

indicate that teachers somehow provide boys with more learning opportunities in 

regard to Science Stories items.  It would have seemed likely that learning about 

scientists, the history of science and how science ideas developed, and inviting 

scientists into classrooms, would have been more whole class activities, and so 

would have occurred equally with males and females.  However, it is possible that 

these behaviours occur in small group situations, which provide the opportunity for 

teachers to work with single sex groups.  Teachers could then conceivably give more 

Science Stories type information to the all boy groups.   

A different possibility is that girls may report this aspect of their science class 

learning environment inaccurately, perhaps due to disinterest in the way the material 

is presented and subsequent 'turning off' during these Science Story episodes in the 

classroom, or forgetting about them sooner than boys do.  It is possible that either the 

largely male dominated history of science or the manner in which this material is 

presented in science classes holds less interest for girls.  The alternative that boys 

perceive this aspect of their science class environment inaccurately seems less likely, 

as it is more difficult to envisage a scenario where boys imagine that they are 

learning about things when they really are not.  It is interesting to see that there is not 

a significant difference between males and females for the Preferred Form of the 

Science Stories scale, with both boys and girls indicating that they would like 

significantly more Science Stories.  This would seem to suggest that the above 

hypothesis regarding girls switching off is unlikely to be the situation that exists, 
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unless males and females interpret the meaning of the items in the Science Stories 

scale differently.  It is possible that when the girls read the items they assumed that 

learning about scientists meant learning about their personal lives, whilst boys 

assumed that learning about scientists meant learning about their work, and that the 

latter kind of stories were told in science classes, but not the former. 

A further hypothesis is that the data may have been affected by classes where there 

are many more boys than girls (or all boys).  Perhaps teachers of these classes made 

a point of including Science Stories type materials, whilst teachers of mainly or all 

girl classes did not.  This hypothesis will be investigated further in a later section of 

this chapter. 

The statistically significant difference between the scores of males and females for 

the Communication scale, with females perceiving an environment where there is 

more of the behaviours indicated by the Communication scale is not as surprising, as 

in general female students show a more positive approach to both oral and written 

communication.  The perceived difference in the actual classroom environment may 

simply indicate a greater propensity on the part of female students to participate in 

the activities described by the items in this scale.  For example, female students may 

engage in behaviours such as talking to other students about their work (item C2), 

explaining their ideas to others (item C3), talking to other students about how to 

solve problems (item C5) and discussing the results that they have obtained with 

others (item C6) even thought the teacher has not specifically instructed them to do 

so.  If this is the case, then it is student rather than teacher behaviours that are 

influencing the amount of inquiry type communication that is occurring in science 

classrooms.  The responses to the Preferred Form of the questionnaire show that 

females would still prefer a higher level of Communication than males prefer - in 

fact, by exactly the same amount that was the case with the Actual responses - but 

that both males and females would prefer higher levels of the types of 

Communication behaviours that this scale indicates currently exist.  Perhaps males 

are less likely than females to make their own opportunities for these behaviours and 

need them to be explicitly provided by the teacher. 

The statistically significant difference in the responses of males and females on the 

Preferred Form of the Freedom in Practical Work scale is not altogether surprising, 

as it can be regarded as being in line with previous research which has indicated that 
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males prefer competitive and individualised learning, whilst females favour learning 

which involves cooperative models and mutual assistance.  Nair & Fisher (2000) cite 

a number of studies where this situation has been found to exist   

In a science classroom situation the tendency for girls to want more instruction and 

not be as great a risk takers as boys can be seen in the greater propensity of boys to 

try things out and see what happens, whilst girls are keen to go about things the 

'right' way and not make a mistake or damage equipment.  For example, boys are 

more likely to randomly mix chemicals and try moving pieces of electrical 

equipment to different settings - in other words they experiment more.  Whether this 

is because boys have more of an innate tendency to experiment or because girls are 

keener not to do the wrong thing by the teacher are points open to debate and further 

research. 

 

6.2.3 Possible Influence of Single Sex Schools 

As was noted previously, two of the high schools that data were collected from were 

single sex schools.  It is possible that teachers modify their methodologies when they 

are working with single sex classes, and that this may have skewed the results shown 

in Table 6.4, as was suggested in the hypothesis regarding the differences in male 

and female mean responses to the Science Stories scale that was put forward in the 

previous section.  In order to check this possibility, the t-tests used to generate the 

results in Table 6.4 were rerun, omitting the two single sex schools.  The results of 

this new analysis are shown in Table 6.5 
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Table 6.5 
Comparison of Means and Differences for the Preferred and Actual Forms of the 
ITIC for Male and Female Students, Single Sex Schools Omitted. 

 
Scales Actual Difference Preferred Difference

 Male Female  Male Female  
 (M) (F) (M-F) (M) (F) (M-F) 

Freedom in 
Practical Work 

2.45 2.42 0.03 3.37 3.16 0.21*** 

Communication 3.17 3.18 -0.01 3.69 3.71 -0.02 

Interpretation 
of Data 

3.39 3.40 -0.01 3.42 3.39 0.03 

Science Stories 2.54 2.39 0.15*** 2.98 2.94 0.04 

Uncertainty in 
Science 

3.28 3.28 0.00 3.50 3.49 0.01 

*p<0.05, **p<0.01, ***p<0.001   n=1,746 
 

Comparing Tables 6.4 and 6.5 it can be seen that there is still a significant difference 

in how male and female students perceive their classroom environment with respect 

to behaviours relating to the Science Stories scale, with males still reporting 

significantly higher levels of these behaviours than did females.  In fact, removing 

the single sex classes resulted in the Science Stories mean score for both males and 

females increasing, by nearly the same amounts.  Therefore, it does not appear that 

teachers changed the extent to which they provided learning opportunities 

represented by items from the Science Stories scale in response to having a single 

sex class, so this hypothesis should be discarded.  

Table 6.5 also shows that the difference that was observed between males and 

females perceptions of their preferred classroom environments with respect to the 

Communication scale was not significant once the data for the single sex schools 

was omitted.  Comparing the changes in the actual mean values seems to indicate 

that teachers of all girl classes provide more opportunities for the kinds of 

behaviours indicated by the Communication scale - or that students in all girl classes 

themselves make more of these kinds of behaviours occur.  Removal of the data for 

the single sex schools also resulted in there not being a significant difference in the 

preferred mean scores on the Communication scale for male and female students.  As 

the mean preferred score for males did not change when the data for the single sex 

schools was omitted, it seems that girls in a single sex school show a greater 
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preference for the types of behaviours indicated by the Communication scale than do 

girls in a coeducational school.  It is possible that students in an all girls school are 

less inhibited about sharing their ideas than those in mixed classes. 

 

6.2.4 Summary of Male/Female Responses 

Overall, the following points about differences with respect to gender can be made 

from the ITIC results: 

• There are no differences in the way that male and female students perceive 

their classroom environment with respect to Freedom in Practical Work, but 

students want there to be.  Males want higher levels of freedom than females. 

• A difference exists in how males and females perceive their classroom 

environment with respect to Communication, and students want this 

difference maintained.  However, if the influence of single sex schools is 

removed, there is no significant difference in either actual or preferred scores 

on the Communication scale. 

• There are no differences in the way that male and female students perceive 

their classroom environment with respect to Interpretation of Data and 

Uncertainty in Science, and students want this situation maintained. 

• A difference exists in how males and females perceive their classroom 

environment with respect to Science Stories, and students do not want this 

difference to exist. 

 

6.2.5 Implications of Male/Female Responses 

The implications of the analysis of the similarities and differences in male and 

female student ITIC responses for teachers of science classes seeking to modify their 

classes to be more in line with what the ITIC results are that: 

• They need to provide more inquiry opportunities, as defined by the ITIC 

Freedom in Practical Work, Communication, Science Stories and Uncertainty 

in Science items, to students overall. 
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• Whilst they need to provide more opportunities for Freedom in Practical 

Work overall, they need to try to extend these opportunities for males whilst 

not making such extension work mandatory and so disenfranchising girls. 

• They need to ensure that they provide females with as many opportunities for 

participating in Science Stories behaviours as they do males. 

• While they need to provide more opportunities for inquiry Communication 

behaviours overall, they need to provide some extra opportunities in this area 

for females.  However, teachers need to bear in mind that girls in 

coeducational classes may not want additional opportunities in this area. 

Whilst catering for differences in the preferences of males and female students is 

easiest in single sex schools or classes, it is still possible in mixed classes through 

the use of small group work, where it may be possible for the tasks given to all 

female groups to be varied from those given to all male groups. 

 

 

6.3 Variations across Grades/College Subjects 

The effect of grade level, and in the case of college students the particular science 

subject that they were studying, on how students perceived their actual and preferred 

science class learning environments was examined by a series of t-tests, the results of 

which are shown in Tables 6.6 through 6.13 and then through an ANOVA (analysis 

of variance), the results of which are shown in Tables 6.14 and 6.15. 

 

6.3.1 Analysis by High School Grade Level 

Tables 6.6 to 6.9 examine the difference in the Actual and Preferred responses of 

high school students, with each grade level from 7 to 10 being considered 

individually.  This examination was carried out in order to determine if the response 

of any particular grade group differed from the response for the sample student 

population as a whole.   
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Table 6.6  
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Grade 7 Students Preferred and Actual Scores on the Five Scales of 
the ITIC.  

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.35 3.35 1.00*** 0.62 0.70 

Communication 3.18 3.71 0.53*** 0.80 0.79 

Interpretation 
of Data 

3.25 3.34 0.09** 0.69 0.83 

Science Stories 2.19 2.87 0.67*** 0.78 0.97 

Uncertainty in 
Science 

3.14 3.41 0.27*** 0.83 0.87 

*p<0.05, **p<0.01, ***p<0.001   n=450 
 

 

 

Table 6.7 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Grade 8 Students Preferred and Actual Scores on the Five Scales of 
the ITIC. 

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.28 3.40 1.11*** 0.60 0.67 

Communication 3.08 3.69 0.60*** 0.78 0.75 

Interpretation 
of Data 

3.18 3.27 0.10* 0.72 0.74 

Science Stories 2.26 2.82 0.56*** 0.75 0.92 

Uncertainty in 
Science 

3.18 3.40 0.22*** 0.83 0.90 

*p<0.05, **p<0.01, ***p<0.001   n=405 
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Table 6.8 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Grade 9 Students Preferred and Actual Scores on the Five Scales of 
the ITIC.  

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.38 3.36 0.98*** 0.68 0.64 

Communication 2.96 3.57 0.61*** 0.81 0.82 

Interpretation 
of Data 

3.27 3.26 -0.01 0.76 0.81 

Science Stories 2.16 2.84 0.68*** 0.75 0.92 

Uncertainty in 
Science 

3.11 3.41 0.29*** 0.87 0.82 

*p<0.05, **p<0.01, ***p<0.001   n=423 
 

 

Table 6.9 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Grade 10 Students Preferred and Actual Scores on the Five Scales 
of the ITIC. 

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.55 3.38 0.83*** 0.73 0.68 

Communication 2.97 3.59 0.62*** 0.88 0.79 

Interpretation 
of Data 

3.29 3.34 0.05 0.77 0.76 

Science Stories 2.40 3.01 0.61*** 0.88 0.89 

Uncertainty in 
Science 

3.18 3.42 0.24*** 0.85 0.78 

*p<0.05, **p<0.01, ***p<0.001   n=238 
 

Examination of the above t-test results for Grades 7, 8, 9 and 10 students (the high 

school grades in Tasmania) shows that there are statistically significant differences 

in students' actual and preferred environments across all high school grades on the 

Freedom in Practical Work, Communication, Science Stories and Uncertainty in 
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Science scales.  This is the same situation that existed when the data for all students 

was considered in one t-test.  However, an interesting difference that the data in 

Tables 6.6-6.9 shows is that Grade 7 and 8 students indicate that they would like 

there to be significantly more Interpretation of Data work in their science classes.  

The results for the overall sample, and also for Grades 9 and 10 students, do not 

show any significant difference on this scale.   

 

6.3.2 Possible Reasons for Grade Level Differences 

Grade 7 represents the first year of high school in Tasmania, and a possible 

explanation for the above result can be made in terms of the suggestion that teachers 

sometimes make that students in fact regress during their initial time at high school, 

with high school teachers expecting less of the students than their primary school 

teachers did.  This situation may exist because teachers are initially unaware of the 

capabilities of Grade 7 students and have classes of students from diverse primary 

school experiences.  Teachers are often concerned not to push Grade 7 students too 

much and so disenchant them with high school life. 

 

6.3.3 Implications of Grade Level Differences 

The implication for teachers of the above analysis of the results for the different high 

school grades is that teachers should make more learning opportunities relating to the 

Interpretation of Data scale items available to Grades 7 and 8 students.  Although 

students in these grades are still being familiarised with science laboratory 

equipment and techniques, they could still be provided with opportunities to engage 

in the kinds of activities suggested by the items in this ITIC scale. 

 

6.3.4 Analysis by College Subject 

Tables 6.10 through 6.13 contain similar t-test results to those contained in Tables 

6.6 - 6.9, but this time for college classes.  As has been noted previously, Physical 

   193 



Science students would largely be in Grade 11, Biology students would be a mix of 

Grade 11 and Grade 12 students and Physics and Chemistry students would largely 

be in Grade 12. 

Table 6.10 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Physical Sciences Students Preferred and Actual Scores on the Five 
Scales of the ITIC.  

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.47 3.16 0.70*** 0.56 0.58 

Communication 3.49 3.93 0.44*** 0.71 0.64 

Interpretation 
of Data 

3.61 3.56 -0.05 0.63 0.68 

Science Stories 2.76 3.14 0.38*** 0.77 0.86 

Uncertainty in 
Science 

3.46 3.63 0.17*** 0.67 0.66 

*p<0.05, **p<0.01, ***p<0.001   n=249 
 

 

Table 6.11 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Biology Students Preferred and Actual Scores on the Five Scales of 
the ITIC.  

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.32 3.07 0.74*** 0.55 0.65 

Communication 3.37 3.84 0.48*** 0.68 0.59 

Interpretation 
of Data 

3.65 3.58 -0.07 0.67 0.71 

Science Stories 2.25 2.84 0.59*** 0.78 0.95 

Uncertainty in 
Science 

3.39 3.68 0.29*** 0.79 0.73 

*p<0.05, **p<0.01, ***p<0.001   n=167 
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Table 6.12 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Chemistry Students Preferred and Actual Scores on the Five Scales 
of the ITIC.  

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.51 3.05 0.54*** 0.52 0.55 

Communication 3.65 3.96 0.30*** 0.64 0.60 

Interpretation 
of Data 

3.65 3.68 0.03 0.54 0.68 

Science Stories 2.94 3.28 0.34*** 0.80 0.80 

Uncertainty in 
Science 

3.53 3.73 0.20*** 0.69 0.68 

*p<0.05, **p<0.01, ***p<0.001   n=145 
 

 

Table 6.13 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Physics Students Preferred and Actual Scores on the Five Scales of 
the ITIC.  

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.75 3.23 0.47*** 0.47 0.61 

Communication 3.55 3.93 0.38*** 0.72 0.65 

Interpretation 
of Data 

3.79 3.69 -0.10 0.55 0.71 

Science Stories 3.32 3.43 0.10 0.76 0.88 

Uncertainty in 
Science 

3.51 3.69 0.18*** 0.65 0.68 

*p<0.05, **p<0.01, ***p<0.001   n=130 
 

Examination of the results for college classes shows that students in Physical 

Sciences, Biology and Chemistry classes show the same trend as did the overall data 

combined, with there being significant differences between students' actual and 

   195 



preferred classroom environments on the Freedom in Practical Work, 

Communication, Science Stories and Uncertainty in Science scales. 

An interesting variation occurs with the Physics students, where there is no 

significant difference between the actual and preferred classroom environments on 

the Science Stories scale.   

 

6.3.5 Possible Reasons for College Subject Differences 

The cohort of students enrolled in Physics classes is sometimes suggested to be the 

most able group of science students, and they are generally extremely 

mathematically able.  It is possible that this group of students has a preference for 

more theoretical science work and is not as interested in experiencing behaviours 

indicated by the Science Stories scale.  Examination of the make up of the Physics 

cohort that completed the ITIC, as shown in Table 5.2, indicates that the cohort is 

predominantly male (87 male students compared with 39 female ones).  Whilst it is 

interesting to muse that this may have an impact, the previous examination of gender 

differences does not offer any support to this idea.  It may simply be that as Physics 

already has the highest actual mean score on the Science Stories scale students do 

not perceive any need for more of these behaviours to be evident in their science 

classes. 

 

6.3.6 Differences in Perception between Grade Levels 

Tables 6.14 and 6.15 examine whether there are statistically significant differences 

between students' perceptions of their classroom environment according to their 

grade level.  These results were generated by conducting an ANOVA analysis on 

each of the ITIC scales, with grade membership as the main effect.  Table 6.14 

contains the data for the Actual responses and Table 6.15 for the Preferred responses.  

In these two tables the responses for students in the college science classes (Physical 

Sciences, Biology, Chemistry and Physics) have been combined to one group, which 

has been termed college.  As outlined previously, this group consists of a mix of 
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Grade 11 and Grade 12 students.  The college classes were combined as they are a 

mix of two year groups rather than a single year group, and as high school students 

in all the participating schools moved to a college for Grades 11 and 12.  Therefore, 

this method of analysis emphasises any differences that exist between the high 

school and college situations.  The high school grades were kept separate in order to 

determine at what point, if any, in the continuum differences emerged.  

 

Table 6.14 
Scale Means and Statistical Significance of Differences in Mean Scores for Each 
Actual ITIC Scale by Grade Level. 

 Mean Scores F 
Scale G 7 

n=451 
G 8 

n=405 
G 9 

n=423 
G10 

n=238 
College 
n=691 

 

Freedom in 
Practical Work 

2.35 2.28 2.38 2.55 2.50 11.86*** 

Communication  3.18 3.08 2.96 2.97 3.50 44.54*** 
Interpretation 
of Data 

3.25 3.18 3.27 3.29 3.66 44.24*** 

Science Stories 2.19 2.26 2.16 2.40 2.78 58.85*** 
Uncertainty in 
Science 

3.14 3.18 3.11 3.18 3.47 19.22*** 

*p<0.05, **p<0.01, ***p<0.001    
 

 

 
Table 6.15 
Scale Means and Statistical Significance of Differences in Mean Scores for Each 
Preferred ITIC Scale by Grade Level. 

 Mean Scores F 
Scale G 7 

n=451 
G 8 

n=405 
G 9 

n=423 
G10 

n=238 
College 
n=691 

 

Freedom in 
Practical Work 

3.35 3.40 3.36 3.38 3.12 16.72*** 

Communication  3.71 3.69 3.57 3.59 3.92 18.27*** 
Interpretation 
of Data 

3.34 3.27 3.26 3.34 3.62 21.45*** 

Science Stories 2.87 2.82 2.84 3.00 3.15 12.75*** 
Uncertainty in 
Science 

3.40 3.40 3.41 3.42 3.67 13.18*** 

*p<0.05, **p<0.01, ***p<0.001    
 

The results presented in Tables 6.14 and 6.15 indicate that there were statistically 

significant differences in students' mean responses between grades on all ITIC 
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scales.  Post hoc tests were employed to investigate between which particular grades 

these differences occurred. 

In the case of the Freedom in Practical Work scale on the Actual Form of the ITIC, 

the post hoc tests indicated that: 

• The mean responses from college students were significantly higher than 

those for Grades 7, 8 and 9 (p<0.05 for Grade 9 and p<0.001 for Grades 7 

and 8). 

• The mean responses from Grade 10 students were significantly higher than 

those for Grades 7, 8 and 9 (p<0.01 for Grade 9 and p<0.001 for Grades 7 

and 8). 

In the case of the Communication scale on the Actual Form of the ITIC, the post hoc 

tests indicated that: 

• The mean responses from college students were significantly higher than 

those for the four high school grades (p<0.001 in all cases). 

• The mean responses from Grade 7 students were significantly higher than 

those for Grades 9 and 10 (p<0.001 for Grade 9 and p<0.01 for Grade 10). 

In the case of the Interpretation of Data and Uncertainty in Science scales on the 

Actual Form of the ITIC, the post hoc tests indicated that: 

• The mean responses from college students were significantly higher than 

those for the four high school grades (p<0.001 in all cases). 

In the case of the Science Stories scale on the Actual Form of the ITIC, the post hoc 

tests indicated that: 

• The mean responses from college students were significantly higher than 

those for the four high school grades (p<0.001 in all cases). 

• The mean responses from Grade 10 students were significantly higher than 

those for Grades 7 and 9 (p<0.01 for Grade 9 and p<0.05 for Grade 7). 

 

Overall, these results indicate that college students tended to experience greater 

levels of inquiry, as defined by the ITC scales, than did students in any high school 
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grades.  These results are likely to result from a combination of factors, 

predominantly: 

• Teachers perceiving college students as being more experienced than high 

school students, and consequently being prepared to allow them more 

opportunity to participate in inquiry behaviours. 

• The college students were all from pretertiary classes who had elected to 

study science subjects, so there were likely to be higher levels of student 

engagement and fewer behaviour issues in the college classes. 

• The college science syllabuses possibly requiring that college students 

participate in more inquiry science than do the high school documents. 

The post hoc test results also indicated that the only instance where the amount of 

inquiry experienced by high school students was similar to that experienced by 

college students was on the Freedom in Practical Work scale, where Grade 10 

students experienced similar levels of inquiry to college students, which was 

significantly more than that experienced by students in lower grades.  The reasons 

for this are likely to be similar to those suggested in the first dotpoint above.   

Interestingly, the post hoc tests indicated that there were few significant differences 

between the different high school grade levels.  Given that college students 

consistently reported higher levels of inquiry than did high school students, it would 

have seemed reasonable to hypothesise that the amount of inquiry behaviours that 

students experienced would increase as they moved through the high school years.  

A significant difference existed in the case of the Science Stories scale, where Grade 

10 students reported higher levels of inquiry than did Grade 7 or 9 students.  It is 

possible that this difference resulted from teachers being aware that Grade 10 

students are on the verge of making career choices, and so making a point of 

providing them with more information about scientists.  The reason for there not 

being a significant difference between Grade 10 and Grade 8 students is not clear.  It 

may relate to sampling error. 

An interesting result occurred in the case of the Communication scale, where Grade 

7 students reported experiencing higher levels of inquiry behaviours than did either 

Grade 10 or Grade 9 students.  A possible explanation for this difference could be 

that Grade 7 students are generally enthusiastic about science, as it is a subject area 
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that they have often had little experience of, and therefore they are keen to 

participate in discussions.  This enthusiasm may wane as students move to higher 

grade levels. 

The post hoc test results for the Preferred Form of the ITIC showed a similar overall 

trend to those for the Actual Form, with college means tending to be higher than 

those for high school classes.  An exception to this occurred in the case of the 

Freedom in Practical Work scale, where the mean response from college students 

was significantly lower (p<0.001) than those for Grades 7, 8, 9 and 10.  A likely 

reason for this is that college students are concerned about their exam performance 

and want their practical tasks to be more directed.  Interestingly, a finding from 

Hofstein, Ben-Zvi, Samuel & Kempa (1975) was that in certain features chemistry 

students in 12th grade had a less positive attitude toward laboratory work than those 

in 10th or 11th grades.   

In the case of the Communication, Interpretation of Data and Uncertainty in Science 

scales on the Preferred Form of the ITIC, the post hoc tests indicated that: 

• The mean responses from college students were significantly higher than 

those for Grades 7, 8, 9 and 10 (p<0.001 in all cases). 

In the case of the Science Stories scale on the Preferred Form of the ITIC, the post 

hoc tests indicated that: 

• The mean responses from college students were significantly higher than 

those for Grades 7, 8, 9 (p<0.001 in all cases). 

There were no significant differences between the preferences of students from 

different high school grades. 

These results indicated that, in general, as well as actually experiencing higher levels 

of inquiry behaviours, college students preferred there to be higher levels of inquiry.  

Exceptions to this were the Freedom in Practical Work scale, where college students 

indicated a preference for lower levels of inquiry, and the Science Stories scale for 

Grade 10 students, who did not show significantly different preferences to those of 

college students.  These results seem to indicate that college students may recognise 

the importance or usefulness of the skills that inquiry methodologies build.  This is 

perhaps not surprising, given that the college students have chosen to pursue study in 
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a scientific field.  However, the result for Freedom in Practical Work indicates that 

other pressures, possibly exams, seem to be influencing the preference of the college 

cohort. 

 

6.3.7 Differences in Perception between College Subjects 

Tables 6.16 and 6.17 examine whether there are statistically significant differences 

between students' perceptions of their classroom environment according to college 

subject.  These results were generated by conducting an ANOVA analysis on each of 

the ITIC scales, with subject membership being the main effect.  Table 6.16 contains 

the data for the Actual responses and Table 6.17 for the Preferred responses 

Table 6.16 
Scale Means and Statistical Significance of Differences in Mean Scores for Each 
Actual ITIC Scale by College Subject. 

 Mean Scores F 
Scale Physical 

Sciences 
n=249 

Biology 
 

n=167 

Chemistry 
 

n=145 

Physics 
 

n=130 

 

Freedom in 
Practical Work 

2.47 2.32 2.51 2.75 16.43*** 

Communication  3.49 3.37 3.65 3.55 4.60** 
Interpretation 
of Data 

3.61 3.65 3.65 3.79 2.54 

Science Stories 2.76 2.25 2.94 3.32 49.15*** 
Uncertainty in 
Science 

3.46 3.39 3.53 3.51 1.21 

*p<0.05, **p<0.01, ***p<0.001    
 

The data presented in Table 6.16 show that statistically significant differences were 

apparent in students' actual responses across different subjects for three of the five 

ITIC scales, namely Freedom in Practical Work, Communication and Science 

Stories.  Post hoc tests were conducted for these three scales. 

In the case of the Freedom in Practical Work scale on the Actual Form of the ITIC, 

the post hoc tests indicated that: 

• The mean responses from Biology students were significantly lower than 

those for any of the other three subjects (p<0.05 for Physical Sciences, 

p<0.01 for Chemistry and p<0.001 for Physics). 
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• The means responses from Physics students were significantly higher than 

those for both Chemistry (p<0.001) and Physical Sciences (p<0.001). 

Therefore, Physics students reported experiencing more inquiry behaviours, as 

defined by to the Freedom in Practical Work scale, than did students in any other 

subject, and Biology students reported experiencing fewer such behaviours. 

In the case of the Communication scale on the Actual Form of the ITIC, the post hoc 

tests indicated that: 

• The mean responses for Chemistry students were significantly higher than 

those for Biology students (p<0.01). 

In the case of the Science Stories scale on the Actual Form of the ITIC, the post hoc 

tests indicate that; 

• The mean responses from Biology students were significantly lower than 

those for any of the other three subjects (p<0.001). 

• The means responses from Physics students were significantly higher than 

those for both Chemistry (p<0.001) and Physical Sciences (p<0.001). 

Again, Physics students reported experiencing more inquiry behaviours, this time as 

defined by the Science Stories scale, than did students from the other college 

subjects and Biology students reported experiencing fewer. 

Overall, the results of the post hoc tests can be regarded as indicating that Physics is 

the subject where students experience the most inquiry methodologies, as defined by 

the ITIC scales, and Biology is the subject where students experience the least 

inquiry methodologies.  These are interesting results, given that many Tasmanian 

science teachers have generally regarded Physics as a more traditional subject and 

Biology as a more discovery based one.  This perception has largely been brought 

about as Biology has been seen as the subject that has always had an open-book 

exam and where discussion of social issues relating to science has had a more 

obvious place in the curriculum.  The results reported here indicate that these teacher 

perceptions are inconsistent with the reality of current classroom practice, at least 

from the perspective of students. 
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Table 6.17 
Scale Means and Statistical Significance of Differences in Mean Scores for Each 
Preferred ITIC Scale by College Subject. 

 Mean Scores F 
Scale Physical 

Sciences 
n=249 

Biology 
 

n=167 

Chemistry 
 

n=145 

Physics 
 

n=130 

 

Freedom in 
Practical Work 

3.16 3.07 3.05 3.23 2.86* 

Communication  3.93 3.85 3.96 3.92 0.90 
Interpretation 
of Data 

3.56 3.58 3.68 3.62 1.67 

Science Stories 3.14 2.84 3.28 3.43 12.59*** 
Uncertainty in 
Science 

3.63 3.68 3.73 3.69 0.61 

*p<0.05, **p<0.01, ***p<0.001    
 

The data presented in Table 6.17 shows that statistically significant differences were 

apparent in students' preferred responses across different subjects for two of the five 

ITIC scales, namely Freedom in Practical Work and Science Stories.  Post hoc tests 

were conducted for these two scales. 

Although there was a significant difference, at the 0.05 level, between subjects on 

the Freedom in Practical Work scale, the only difference shown by the post hoc tests 

was that the mean response for Physics was greater than the mean response for 

Chemistry, with p=0.075.  This probability is greater than the conventionally 

accepted 0.05 value and so will not be considered as significant here. 

In the case of the Science Stories scale on the Preferred Form of the ITIC, the post 

hoc tests indicate that: 

• The mean responses from Biology students were significantly lower than 

those from Physical Sciences (p<0.01), Chemistry (p<0.001) or Physics 

(p<0.001) students. 

• The mean responses from Physics students were significantly higher than 

those from Physical Sciences students (p<0.05). 

Therefore, the greatest difference in the perception of the different science subject 

students with regard to the amount of inquiry behaviours that they would prefer to 

experience relates to the Science Stories scale. 
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6.3.8 Implications of Perception Differences between College Subjects 

The implications of the examination of the results for the different college subjects 

are that: 

• Biology teachers should be aware that their classrooms are not as inquiry 

oriented as those in other college science subjects, and teachers may want to 

make changes which will increase the use of inquiry methodologies in 

Biology classes. 

• Teachers from different subject areas should consider sharing the inquiry 

strategies that they employ, as different subjects have been shown to have 

different strengths with regard to some ITIC scales.  This situation may in 

fact come about by default, as from 2004 all the college pretertiary science 

syllabuses have had six common criteria.  The existence of common criteria 

makes it more likely that teachers from different subject areas will have a 

conversation about the teaching methodologies that they employ. 

 

 

6.4 VARIATION BY PREDICTED GRADE 10 ACHIEVEMENT LEVEL 

In order to examine the effect of students' ability level on their perception of their 

actual and preferred classroom environments, t-tests as described previously, were 

carried out, with the data for top, middle and bottom level predicted Grade 10 

achievement level groups considered separately.  These results are shown in Tables 

6.18 through 6.20.  Table 6.21 shows a similar analysis for the college students.  All 

college students were studying pretertiary subjects, and as such would have been 

extremely unlikely to have gained a Grade 10 result that was anything but top level. 
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Table 6.18 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Predicted Top Level Grade 10 Students Preferred and Actual 
Scores on the ITIC Scales. 

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.47 3.54 1.07*** 0.69 0.61 

Communication 3.26 3.90 0.64*** 0.78 0.70 

Interpretation 
of Data 

3.49 3.52 0.03 0.69 0.78 

Science Stories 2.27 3.03 0.76*** 0.77 0.90 

Uncertainty in 
Science 

3.37 3.71 0.34*** 0.87 0.79 

*p<0.05, **p<0.01, ***p<0.001  n=422 
 

 

Table 6.19 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Predicted Middle Level Grade 10 Students Preferred and Actual 
Scores on the ITIC Scales.  

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.36 3.32 0.96*** 0.63 0.67 

Communication 3.04 3.59 0.55*** 0.79 0.77 

Interpretation 
of Data 

3.19 3.24 0.05 0.69 0.76 

Science Stories 2.23 2.84 0.61*** 0.78 0.91 

Uncertainty in 
Science 

3.12 3.33 0.22*** 0.80 0.81 

*p<0.05, **p<0.01, ***p<0.001   n=922 
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Table 6.20 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for Predicted Bottom Level Grade 10 Students Preferred and Actual 
Scores on the ITIC Scales.   

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.20 3.21 1.01*** 0.68 0.79 

Communication 2.61 3.22 0.61*** 0.89 0.88 

Interpretation 
of Data 

2.85 2.99 0.13 0.85 0.89 

Science Stories 2.17 2.56 0.40*** 0.85 1.04 

Uncertainty in 
Science 

2.81 3.01 0.20* 0.87 1.00 

*p<0.05, **p<0.01, ***p<0.001   n=125 
 

 

Table 6.21 
Scale Means, Standard Deviations and Statistical Significance of Differences in 
Mean Scores for College Students Preferred and Actual Scores on the ITIC Scales.   

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.50 3.13 0.63*** 0.55 0.60 

Communication 3.51 3.92 0.41*** 0.70 0.62 

Interpretation 
of Data 

3.66 3.62 -0.05 0.61 0.69 

Science Stories 2.78 3.15 0.37*** 0.86 0.89 

Uncertainty in 
Science 

3.47 3.67 0.21*** 0.70 0.68 

*p<0.05, **p<0.01, ***p<0.001   n=691 
 

These results indicate that in the case of students who predicted that they would get a 

top or middle level result at the end of Grade 10 the significant differences between 

their actual and preferred responses were as for the overall group, with all ITIC 

scales except Interpretation of Data showing significant differences at the 0.001 

level.  The data presented in Table 6.21 indicate that this is also the case for the 
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group of college students.  In the case of the group of students who predicted that 

they would get a bottom level Grade 10 result, the pattern is similar, with the 

exception that for the Uncertainty in Science scale the significant difference for this 

group is at the 0.05 level.  This seems to indicate that lower ability students do not 

want to experience as much uncertainty in their classroom environment as do more 

able students. 

The possible relationship between student ability and the extent to which students 

perceived that inquiry teaching methodologies were occurring in their science classes 

was investigated by examining the correlation between ability level (as reflected by 

the predicted Grade 10 achievement level) and each of the ITIC scales.  This analysis 

was only carried out for Grade 7-10 students because, as previously mentioned, all 

college students surveyed can reasonably be assumed to have achieved a top level 

result in Grade 10.   

The association between students' perception of their actual science class learning 

environment and their predicted Grade 10 achievement level was analysed using 

both simple and multiple correlation analyses.  The results of these analyses are 

reported in Table 6.22.  The simple correlation, r, describes the bivariate association 

between predicted Grade 10 achievement and an ITIC scale, whilst the standardised 

regression weight, ß, characterises the association between predicted Grade 10 

achievement level and an ITIC scale when all other ITIC dimensions are controlled, 

thus representing a more conservative test of association. 
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Table 6.22  
Statistical Associations between ITIC scales, Actual Form and Achievement Level in 
Terms of Simple Correlations (r) and Standardised Regression Coefficients (ß). 

 Actual 

Scale r  ß 

Freedom in Practical Work 0.13*** -0.06** 

Communication 0.29*** 0.16*** 

Interpretation of Data 0.32*** 0.21*** 

Science Stories 0.21*** 0.08*** 

Uncertainty in Science 0.24*** 0.04 

Multiple correlation, R 0.37*** 

 

R2 0.13  

*p<0.05, **p<0.01, ***p<0.001,  n=2,162 

 

Examination of the simple correlation coefficients in Table 6.22 indicates that for the 

Actual form of the ITIC there were statistically significant relationships (p<0.001) 

between students' perceptions of their learning environment and their predicted 

Grade 10 achievement level for all scales.  These relationships were all positive, 

indicating that when greater levels of inquiry behaviours, as defined by the ITIC 

scales are reported, predicted Grade 10 achievement levels are higher.  An 

examination of the beta weights indicates that these statistically significant 

associations (p<0.01) were preserved with the more conservative analysis in the case 

of the Communication, Interpretation of Data and Science Stories scales.  There was 

also a statistically significant association with the Freedom in Practical Work scale, 

but this became a negative relationship, indicating that greater levels of the activities 

indicated by the Freedom in Practical Work scale correlated to lower predicted 

Grade 10 achievement levels. 

The multiple correlation, R, data indicate a statistically significant positive 

correlation between students' perceptions of the amount of inquiry that occurred in 

their science classes and predicted Grade 10 achievement levels.  The R2 value 

indicates that 13% of the variance in predicted Grade 10 achievement level can be 

attributed to the amount of inquiry that occurred in science classes. 
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Overall, these data seem to indicate that students who report higher levels of inquiry 

behaviours occurring in their science classes predict that they will achieve a higher 

level result at the end of Grade 10.  Whilst this may indicate that higher levels of 

inquiry behaviours have a positive influence on student achievement, a possibility 

that should be acknowledged at this point is that teachers who perceive that they 

have an able class may provide these students with an increased exposure to inquiry 

methodologies.  Hence, the relationship described may not be a causal one - the 

higher levels of inquiry behaviours may not cause the higher predicted achievement 

levels. 

 

 

6.5 CORRELATIONS BETWEEN STUDENT ATTITUDE AND INQUIRY 

Table 6.23 reports associations between students' perceptions of their science class 

learning environment, as measured by the five ITIC Actual Form scales, and 

students' attitude towards their science class.  As was the case in the examination of 

student achievement levels in the previous section, multiple regression analysis 

involving the set of five ITIC scales was conducted, in addition to a simple 

correlation analysis.  The multiple regression analysis provided a more conservative 

set of associations between each ITIC scale and attitude when all other ITIC scales 

were mutually controlled. 

An examination of the simple correlation (r) figures in Table 6.23 indicate that there 

were statistically significant (p<0.001) positive associations between students' 

perceptions of their science class learning environment and their attitude toward their 

science class for all ITIC scales.  In the case of the Freedom in Practical Work, 

Communication, Science Stories and Uncertainty in Science scale these relationships 

were preserved when the beta weights were calculated.  In the case of the 

Interpretation of Data scale the beta weight was still statistically significant, but at 

the 0.01 level. 
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Table 6.23   
 
Statistical Associations Between ITIC Scales (Actual Form) and Student Attitude in 
Terms of Simple Correlations (r) and Standardised Regression Coefficients (ß).  

Scale r ß 

Freedom in Practical 
Work 

0.34*** 0.19*** 

Communication 0.52*** 0.32*** 

Interpretation of Data 0.38*** 0.08** 

Science Stories 0.37*** 0.11*** 

Uncertainty in Science 0.36*** 0.08*** 

   

Multiple correlation, R 0.58*** 

R2 0.33 

*p<0.05, **p<0.01, ***p<0.001  n=2,207 

 

The multiple correlation, R, data indicate a statistically significant positive 

correlation between students' perceptions of the amount of inquiry that occurred in 

their science classes and their attitude towards their science class.  The R2 value 

indicates that 33% of the variance in student attitude can be attributed to the amount 

of inquiry that occurred in their science classes. 

Therefore, students have more positive attitudes toward their science classes when 

there are higher levels of inquiry, as defined by the ITIC scales, occurring.  An 

examination of the beta weights shows that Communication was by far the strongest 

independent predictor of students' attitudes towards their science class.  This finding 

is similar to one from Hofstein, Shore & Kipnis (2004), that students who were 

involved in inquiry type investigations developed a much more positive attitude 

towards learning chemistry in general, and towards learning chemistry in a 

laboratory setting in particular, as compared to students in a control group who did 

not carry out inquiry type investigations. 

The association between the amount of inquiry that students perceived to be 

occurring and their attitude towards their science class was examined further by 
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repeating the above analyses for each grade level and college subject separately.  The 

results of these analyses are shown in Tables 6.24 and 6.25.   

 

Table 6.24   
Statistical Associations Between ITIC scales (Actual Form) and Student Attitude in Terms of 
Simple Correlations (r) and Standardised Regression Coefficients (ß) for the Grade 7-10 
Data. 
 Grade 7 

n=451 
Grade 8 
n=405 

Grade 9 
n=423 

Grade 10 
n=238 

Scale r ß r ß r ß r ß 

Freedom in 
Practical Work 

0.43*** 0.14** 0.29*** -0.02 0.22*** 0.01 0.39*** 0.19** 

Communication 0.52*** 0.27*** 0.51*** 0.28*** 0.47*** 0.31*** 0.33*** 0.00 

Interpretation 
of Data 

0.52*** 0.26*** 0.50*** 0.15* 0.43*** 0.17** 0.47*** 0.31***

Science Stories 0.38*** 0.06 0.46*** 0.14* 0.35*** 0.12* 0.38*** 0.17* 

Uncertainty in 
Science 

0.43*** 0.01 0.41*** 0.21*** 0.35*** 0.01 0.33*** 0.00 

         

Multiple 
correlation, R 

0.60***  0.62***  0.53***  0.53***  

R2 0.36  0.38  0.28  0.28  

*p<0.05, **p<0.01, ***p<0.001  n=1,516 
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Table 6.25   
Statistical associations between ITIC scales (Actual Form) and student attitude in terms 
of simple correlations (r) and standardised regression coefficients (ß) for the college 
subject data 
 Biology Chemistry Physical 

Sciences 
Physics 

Scale r ß r ß r ß r ß 

Freedom in 
Practical Work 

0.37*** 0.22* 0.18* 0.03 0.19** 0.07 0.12 -0.01 

Communication 0.25*** 0.09 0.37*** 0.20* 0.25*** 0.16* 0.30*** 0.19* 

Interpretation of 
Data 

0.33*** 0.14 0.39*** 0.21* 0.26*** 0.15* 0.32*** 0.10 

Science Stories 0.26*** 0.17* 0.35*** 0.18* 0.18*** 0.09 0.50*** 0.42***

Uncertainty in 
Science 

0.22*** 0.00 0.33*** 0.04 0.15* 0.01 0.39*** 0.04 

         

Multiple 
correlation, R 

0.44***  0.49***  0.33***  0.56***  

R2 0.20  0.24  0.11  0.31  

*p<0.05, **p<0.01, ***p<0.001  n=691 

 

Perhaps the most obvious trend that emerges from these data is the greater 

occurrence of significant correlations in the high school grade data (shown in Table 

6.24) compared with the college subject data (shown in Table 6.25).  The high 

school data shows 33 statistically significant correlations (26 with p<0.001, 3 with 

p<0.01 and 4 with p<0.05) out of a possible 40, whilst the college data shows 28 

statistically significant correlations (17 with p<0.001, 1 with p<0.01 and 10 with 

p<0.05) .  Considering the correlations with a statistical significance of p<0.001, the 

high school data shows 26 cases, whilst the college data shows 17.  This seems to 

indicate that the amount of inquiry that is occurring is a more significant predictor of 

student attitude in the high school context than it is in the college one.  This 

difference may relate to the fact that college students have all chosen to study 

science subjects.  In the high school classes, on the other hand, there are a number of 

students who only study science because it is compulsory within their school.  It may 

be that students who are not predisposed toward the study of science are more 

engaged when inquiry methodologies are employed in their science classrooms. 
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Examination of the beta weights shows that for Grades 7, 8 and 9 Communication is 

the strongest independent predictor of students' attitudes towards their science class, 

whilst for Grade 10 Interpretation of Data is the strongest predictor.  It is interesting 

to note that the Interpretation of Data scale is the strongest predictor in the case of 

Grade 10 students responses indicated that they did not wish to experience more of 

the types of behaviours indicated by this scale, there being no significant difference 

between the actual and preferred response for Grade 10 students.  In the case of the 

college students, the beta weights indicated that Communication and Interpretation 

of Data were the strongest independent predictors of students attitude towards their 

science classes for Chemistry and Physical Sciences students, whilst Freedom in 

Practical Work was the strongest predictor for Biology students and Science Stories 

for Physics students.  Again, it is interesting that Science Stories is the strongest 

predictor for Physics students, as this group of students indicated that they did not 

wish to experience greater amounts of Science Stories behaviours.  Therefore, 

although Physics students do not wish to experience more of these types of 

behaviours it appears to be important that these behaviours are present in their 

classes. 

The multiple correlation, R, data indicate statistically significant positive correlations 

between students' perceptions of the amount of inquiry that occurred in their science 

classes and their attitude towards their science class across all high school grade 

levels and across all college science subjects.  The R2 value indicates the percentage 

of the variance in predicted student attitude that can be attributed to the amount of 

inquiry that occurred in science classes.  In the case of high school grades, this 

percentage varies form 28% to 38%, whilst in the case of the college subjects it 

varies from 11% to 24%. 

The data in Table 6.24 indicate that the amount of inquiry occurring is a stronger 

indicator of student attitude for Grade 7 and 8 students than it is for Grade 9 and 10 

students.  The data in Table 6.25 indicate that the perceived amount of inquiry 

occurring in their science class is a stronger indicator of student attitude toward that 

subject in the case of Physics students than it is for other college subjects.  The 

amount of inquiry that is occurring does not explain as much of the variance in 

student attitude in the case of Physical Sciences students. 
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6.6 CHAPTER SUMMARY  

In summary, the data presented in this chapter suggest that, at least from a student 

perspective, there should be more inquiry methodologies included in both high 

school and college science teaching.  This conclusion is drawn as there were 

statistically significant differences in student Actual and Preferred means on four 

ITIC scales, Freedom in Practical Work, Communication, Science Stories and 

Uncertainty in Science, and these differences held when males and females were 

considered as separate groups, when high school grades were considered as separate 

groups and when students from the different predicted Grade 10 achievement levels 

were considered as separate groups.  The differences also held for college Biology, 

Chemistry and Physical Sciences classes, and in the case of three of the scales for 

college Physics classes. 

The correlation analyses reported in this chapter also support the inclusion of higher 

levels of inquiry methodologies, as defined by the ITIC, in both high school and 

college science classes as all scales showed statistically significant relationships 

between the perceived level of inquiry and predicted Grade 10 achievement levels.  

Similarly, all scales showed statistically significant correlations between the 

perceived inquiry levels and student attitude toward science. 

Hence, increasing the extent to which inquiry methodologies are used in science 

classes at both high school and college levels could be expected to lead to an 

increase in students' attitude toward science and possibly in students' achievement 

levels at the end of Grade 10.  Given the shortage of students currently choosing 

science based course both in Australia and internationally, such changes are 

extremely desirable. 

A further important finding to emerge from the data presented in the current chapter 

is that in the case of the college science subjects the subjects where students perceive 

that there are highest levels of the inquiry behaviours defined by the ITIC are not 

necessarily those that many teachers might first assume.  Biology teachers, in 

particular, might want to re-evaluate their practice as a consequence of these 

findings.  The next chapter will further investigate the use of inquiry methodologies 

in science classes, this time from the perspective of teachers. 



CHAPTER 7 - THE TEACHER VERSION OF THE IS THIS AN 

INQUIRING CLASSROOM? QUESTIONNAIRE 

CHAPTER OVERVIEW 

As one of the objectives of this research study was to investigate whether teachers 

and students had similar perceptions of the extent to which inquiry methodologies 

were employed in their science classes, it was necessary to collect teacher data 

similar to the student data which has been reported in the previous chapters.  This 

chapter reports the methods used for collecting teacher data, along with the results 

obtained. 

7.1 DEVELOPMENT OF THE TEACHER VERSION OF THE 

QUESTIONNAIRE 

The teacher version of the Is This an Inquiring Classroom? (ITIC) questionnaire was 

developed from the student version described in Chapter 5.  The basic changes that 

were made to questionnaire items for use in the teacher version were: 

• replacing personal pronouns such as We and Our, which were directed at 

students to the more impersonal Students 

• changing references from the teacher to I. 

For example, item C8 on the Communication scale, which on the ITIC student 

version is The teacher listens to our ideas became I listen to students' ideas on the 

teacher version. 

The teacher version of the questionnaire is included as Appendix 9.  The changes 

that were made to the questionnaire items in each of the scales can be seen by 

comparing the teacher version with the student version included as Appendix 4. 

A preliminary version of the teacher questionnaire was not given to a sample group 

of teachers.  It was thought that if questionnaire items worked with the student 

population then they were likely to work with the teacher population, as items were 

likely to be less confusing to teachers than to students.  The decision not to have a 

preliminary teacher questionnaire also overcame the potential problem that it would 
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have been difficult to find sufficient willing science teachers to have one group 

complete the preliminary version of the teacher questionnaire and then another group 

complete the final version.  The same teachers could have been asked to complete 

both the preliminary and final versions, but they are unlikely to have been 

enthusiastic about completing the questionnaire twice and, additionally, asking 

teachers to complete a questionnaire similar to one that they had completed 

previously may have had an influence on the answers that they gave. 

Once the items for the six scales of the ITIC had been rewritten for the teacher 

version of the questionnaire they were critiqued by a teacher and an experienced 

researcher, who deemed them appropriate. 

 

 

7.2 TEACHER QUESTIONNAIRE COVER SHEET AND ATTITUDE 

SCALE 

A number of pieces of background teacher information were considered potentially 

relevant, and therefore collected as part of the questionnaire.  Although it was 

thought that not all of this information may prove relevant in the final analysis of the 

teacher questionnaire it was collected as the anonymous nature of the questionnaire 

meant that it would have been impossible to collect this information at a later date.  

The information used in the final analysis of the data was: 

• gender 

• school type (high school or college) 

• grades taught. 

For each of these items, categories were specified in order to make scoring of the 

teacher questionnaires practical.  These categories can be seen on the questionnaire 

cover sheet which is included in Appendix 9. 

It was thought that the attitude of teachers to science and their science classes may 

influence their beliefs about science teaching pedagogies, so the Attitude to Science 
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Scale used on the student version of the questionnaire was modified for use on the 

teacher version of the questionnaire.  Six items were included. These were: 

1. I enjoy teaching my science classes. 

2. I feel satisfied after a science lesson. 

3. The things we do in science are among the most interesting things done at 

school. 

4. I like talking to others about what we do in my science classes. 

5. I like talking to others about science related topics. 

6. I am interested to hear about new science ideas and discoveries. 

Teachers were also asked if they would be willing to be interviewed for this research 

project, and were asked to include their name and contact details if they were.  This 

section was included in case discrepancies in the data collected made further 

investigation, including discussions with teachers, desirable.   

As only a relatively small number of the teacher version of the ITIC questionnaire 

was required, the teacher questionnaires were photocopied rather than professionally 

printed.  Whilst the student questionnaires were printed on white paper, the teacher 

version was printed on green paper in order to avoid confusion between the two 

versions when they were being used in schools. 

Aside from these modifications, the same strategies were adopted in the layout of the 

teacher version of the questionnaire as were outlined for the student version in 

Sections 4.4 and 5.1.1. 

 

 

7.3 ADMINISTRATION OF THE TEACHER QUESTIONNAIRE 

The teacher version of the questionnaire was completed by teachers from the same 

schools as the students who completed the questionnaire.  It was completed on a 
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purely voluntary basis, and it was obvious from the number of returns, together with 

comments from school coordinators, that a number of teachers chose not to complete 

a questionnaire although students from their classes did so.  This was not surprising, 

given the general aversion that many teachers seem to have to completing 

questionnaires. 

 

 

7.4 TEACHER QUESTIONNAIRE DATA ENTRY 

Teacher questionnaires were returned from 65 teachers in 15 different schools.  None 

of the teacher questionnaires had to be discarded due to being completed 

inappropriately. 

Strategies used in entering the data for the teacher questionnaires were the same as 

those previously outlined for the entry of student data. 

A breakdown of the teacher population that returned questionnaires is shown in 

Table 7.1.  Male and female teachers were considered as separate groups, in case 

gender differences similar to those identified for students in Chapter 6 were also 

evident in the teacher population. 

Table 7.1 
Breakdown of the Population of 65 Teachers From 15 Schools That Completed the 
ITIC Questionnaire. 

 High Schools 

(Grade 7-10 ) 

Colleges 

(Grade 11/12) 

Total 

Male teachers 19 23 42 

Female 
teachers 

10 13 23 

Total 29 36 65 
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7.5 ANALYSIS OF ITIC TEACHER DATA 

The analysis procedures and considerations for the analysis of both the Actual and 

Preferred Forms of the ITIC teacher version were the same as those outlined for the 

analysis of the ITIC Preliminary questionnaire in section 4.10 and the ITIC student 

version in section 5.6.  Consequently, the reasons behind each of the statistical 

analyses used are not repeated in this chapter. 

 

7.5.1 Principal Components Analysis - Actual and Preferred Forms of ITIC 

Teacher Version 

The factor loadings obtained for the 65 teachers from 15 schools are shown in Tables 

7.2 (Actual Form) and 7.3 (Preferred Form).  In line with the custom that has been 

adopted by other researchers, factor loadings less than 0.3 are not shown.   

The principal components analysis for the Actual Form of the ITIC teacher 

questionnaire shows that 42 of the 48 items have a factor loading of 0.3 or greater 

with their assigned scale.  Of the six items that have a factor loading of less than 0.3, 

one is from the Freedom in Practical Work scale, one from the Communication 

scale, three from the Assessment scale and one from the Uncertainty in Science 

scale.  Of the 42 items with a loading greater than 0.3, seven have a lower correlation 

with their assigned scale than with one of the other scales.  One of these is from the 

Freedom in Practical Work scale, one from the Communication scale, one from the 

Assessment scale, two from the Interpretation of Data scale and two from the 

Uncertainty in Science scale.  These results are good given the size of the sample, so 

the factor analysis seems to confirm the six scale structure of the Actual Form of the 

ITIC Teacher Version. 

The above indicates that the Actual Form of the ITIC Teacher Version requires 

further examination if it is to be used in future research, so in this thesis the results 

obtained from the teacher version of the questionnaire will be interpreted with 

caution.  However, given the relatively low number of teacher questionnaires 

completed in comparison to the number of student questionnaires, it would be 

strategic to have a larger sample of teachers complete the ITIC before either 
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completely rewriting or excluding items other than those in the Assessment scale.  It 

was not feasible to undertake such research in Tasmania at the time of this study, as 

many members of the science teacher population who were willing to assist in the 

research had already completed the ITIC questionnaire. 

A similar situation to that found for the Actual Form of the ITIC Teacher Version 

exists with the Preferred Form of the ITIC.  The principal components analysis for 

the Preferred Form of the ITIC Teacher Version showed that 40 of the 48 items have 

a factor loading of 0.30 or greater with their assigned scale.  Of the eight items that 

have a factor loading of 0.30 or less with their assigned scale, two are from the 

Freedom in Practical Work scale, two from the Communication scale and four from 

the Assessment scale.  Of the remaining 40 items, three items have a lower 

correlation with their assigned scale than with one of the other scales.  One of these 

is from the Assessment scale, one from Interpretation of Data and one from Science 

Stories.  The remaining items confirm the six scale structure of the Preferred Form of 

the ITIC Teacher Version, although, as with the Actual Form, care must be taken in 

interpreting the data obtained, given the relatively small sample size. 

Closer examination of both the Actual and Preferred Forms of the ITIC Teacher 

Version suggests that the Assessment scale, in particular, is somewhat problematic 

and not performing as desired, and that it should be deleted or rewritten.  This is the 

same situation that was found to exist with the student version of the ITIC, and, as 

was the case for the student data, results from the assessment scale will not be 

reported in later sections of this thesis.  Therefore the ITIC Teacher Version will be 

regarded as a five scale instrument. 
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Table 7.2 
Factor Loadings for the Teacher Version of the ITIC Questionnaire, Actual Form. 
Loadings smaller than 0.3 omitted 

 Item no component 
1 

component 
2 

component 
3 

component 
4 

component 
5 

component 6 

F1     0.45  
F2     0.62  
F3     0.67  
F4     0.53  
F5   0.48  0.37  
F6     0.72  
F7     0.80  

Fr
ee

do
m

 

F8  0.34   - 0.53 
C1  0.66     
C2  0.83     
C3  0.70    0.52 
C4  0.58     
C5  0.77     
C6  0.81     
C7  0.52  0.53   C

om
m

un
ic

at
io

n 

C8  -  0.42   
A1      0.58 
A2  0.30    0.59 
A3     0.35 - 
A4    0.31  0.50 
A5      0.64 
A6  0.34   -0.46 - 
A7   0.55 0.32  0.35 

A
ss

es
sm

en
t 

A8   0.33 0.38  - 
I1    0.66  - 
I2    0.58  0.35 
I3    0.63  0.31 
I4    0.47 0.35 - 
I5   0.35 0.48  - 
I6    0.38  0.40 
I7    0.42  0.48 In

te
rp

re
ta

tio
n 

of
 

D
at

a 

I8 0.32   0.40  - 
S1 0.75      
S2 0.64     0.44 
S3 0.81      
S4 0.70      
S5 0.84      
S6 0.79  0.36    
S7 0.81      Sc

ie
nc

e 
St

or
ie

s 

S8 0.71      
U1   0.65    
U2  0.36 0.72    
U3 0.44  0.68    
U4 0.31  0.71    
U5  0.35 0.56 0.31   
U6  0.58 0.41    
U7  0.57 0.53    U

nc
er

ta
in

ty
 in

 
Sc

ie
nc

e 

U8 0.60  -    
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Table 7.3 
Factor Loadings for the Teacher Version of the ITIC Questionnaire, Preferred Form.   
Loadings smaller than 0.3 omitted 

 Item no component 
1 

component 
2 

component 
3 

component 
4 

component 
5 

component 6 

F1 0.58    -  
F2 0.49    0.33  
F3 0.47    0.55  
F4  0.42   0.65  
F5     - -0.53 
F6 0.35    0.70  
F7 0.35    0.63  

Fr
ee

do
m

 

F8    0.39 0.55 0.36 
C1  0.45  0.45 0.41  
C2  0.35  0.73   
C3    0.75   
C4    0.63   
C5    0.65   
C6 0.31 0.43  0.57   
C7  0.39 0.50 -   C

om
m

un
ic

at
io

n 

C8  0.38 0.34 -   
A1    0.45  0.36 
A2      0.72 
A3 0.38  0.31  0.43 - 
A4     0.63 - 
A5      0.64 
A6      0.45 
A7   0.36   - 

A
ss

es
sm

en
t 

A8    0.36 0.52 -0.54 
I1   0.46 0.41   
I2   0.79    
I3   0.66   0.37 
I4   0.69    
I5  0.50 0.39  0.39  
I6   0.80    
I7   0.78    In

te
rp

re
ta

tio
n 

of
 

da
ta

 

I8  0.41 0.50  0.44  
S1 0.79      
S2 0.69      
S3 0.84      
S4 0.71 0.40     
S5 0.74 0.43     
S6 0.72      
S7 0.74   0.36   Sc

ie
nc

e 
St

or
ie

s 

S8 0.48   0.57   
U1  0.63     
U2  0.80     
U3  0.77     
U4 0.35 0.74     
U5  0.65  0.46   
U6 0.38 0.73     
U7 0.45 0.73     U

nc
er

ta
in

ty
 in

 
Sc

ie
nc

e 

U8  0.50     
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7.5.2 Reliability and validity of the ITIC Teacher Version - Actual and 

Preferred Forms 

Table 7.4 reports validation information for both the Actual and Preferred Forms of 

the ITIC Teacher Version.  The alpha reliability coefficient was used as the index of 

scale internal consistency.   

Table 7.4 
Alpha Reliability Coefficient and Correlation With Other Scales for the Actual and Preferred Forms 
of the ITIC Teacher Questionnaire. 

Scale  Version Alpha 
reliability 

Mean correlation 
with other scales 

with Assessment 
scale 

Mean correlation 
with other scales 

without 
Assessment scale 

Freedom  Actual 0.78 0.27 0.27 

  Preferred 0.83 0.45 0.46 

Communication  Actual 0.87 0.36 0.36 

  Preferred 0.86 0.54 0.56 

Assessment  Actual 0.57 0.36 _ 

  Preferred 0.42 0.37 _ 

Interpretation of 
Data 

 Actual 0.79 0.38 0.35 

  Preferred 0.86 0.48 0.50 

Science Stories  Actual 0.92 0.39 0.40 

  Preferred 0.91 0.43 0.52 

Uncertainty  Actual 0.90 0.43 0.44 

  Preferred 0.93 0.49 0.55 

 

For the Actual Form of the ITIC teacher version the alpha reliability ranged from 

0.57 to 0.92 and for the Preferred Form from 0.42 to 0.93.  If the Assessment scale is 

excluded, the alpha reliability values for the Actual Form range from 0.78 to 0.92 

and for the Preferred Form from 0.83 to 0.93.  These alpha reliability values indicate 

that the scales of the ITIC teacher questionnaire are showing acceptable internal 

consistency. 
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The mean correlation of one scale with the other five scales was taken as an index of 

scale discriminant validity - the extent to which the scale measures a dimension 

different to that measured by any other scale.  For the Actual Form of the ITIC 

teacher questionnaire, excluding the Assessment scale, the mean correlations of one 

scale with the other five ranges from 0.27 to 0.44, and for the Preferred Form from 

0.46 to 0.56.  These values can be regarded as small enough to confirm the 

discriminant validity of both the Actual and Preferred Forms of the ITIC Teacher 

Version, but are large enough to indicate that there is some degree of overlap 

between the scales. 

As mentioned in the discussion of the student ITIC data, the somewhat overlapping 

nature of the scales of the ITIC questionnaire is perhaps not entirely surprising given 

that the ITIC instrument was designed to investigate the extent to which inquiry 

teaching occurs in science classrooms, and the different dimensions that have been 

identified as representing inquiry could be regarded as being interrelated. 

The alpha reliability coefficient for the attitude scale of the ITIC teacher version was 

0.78, indicating that this scale has satisfactory internal consistency. 

 

 

7.6 INTERPRETATION OF THE ITIC TEACHER DATA 

The results from the Assessment scale will not be reported in the following 

discussion, as the factor analysis indicated that Assessment was not a distinct scale.  

In order to allow comparisons to be made between student and teacher data none of 

the items which did not perform in the factor analysis were excluded from further 

analysis of the teacher data.  

 

7.6.1 Actual and Preferred ITIC Scale Means 

Table 7.5 displays the descriptive statistics for the data obtained from the 65 teachers 

completing the ITIC teacher version.  Trends can be seen more easily by studying 
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the graphical presentation in Figure 7.1.  Examining the differences between the 

actual and preferred responses it can be seen that teachers indicated a preference for 

the inclusion of more inquiry methodologies in their science classes across all scales.  

The greatest difference between teachers' actual and preferred classroom 

environments exists for the Freedom in Practical Work and Science Stories scales, 

and the least difference for the Interpretation of Data scale.   

 

Figure 7.1. Scale Means for Teacher Data.
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The significance of the differences between the actual and preferred teacher 

responses was examined using a paired samples t-test.  The results of this analysis 

are shown in Table 7.5.  They indicate that there were significant differences 

between teachers' Actual and Preferred classroom environments for all five ITIC 

scales.  Therefore, teachers would prefer more inquiry methodologies, as defined by 

the five ITIC scales, to be used in their science classes. 
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Table 7.5 
Means and Standard Deviations for the Preferred and Actual Forms of the ITIC 
Across All Teachers. 

Scales Mean Difference Standard deviation 
 Actual Preferred  Actual Preferred 
 (A) (P) (P-A) (A) (P) 

Freedom in 
Practical Work 

2.54 3.42 0.88*** 0.55 0.58 

Communication 3.89 4.47 0.59*** 0.60 0.45 

Interpretation 
of Data 

3.75 4.20 0.45*** 0.47 0.47 

Science Stories 2.86 3.59 0.73*** 0.72 0.63 

Uncertainty in 
Science 

3.69 4.13 0.45*** 0.81 0.64 

*p<0.05, **p<0.01, ***p<0.001   n=65 
 

 

7.6.2 Gender Differences for ITIC Teacher Data 

An independent samples t-test was used to examine differences in the responses of 

male and female teachers.  The results of this analysis are shown in Table 7.6.  These 

results indicate that the perceptions that male and female teachers had of their 

science class environment were significantly different for the Science Stories scale. 

Table 7.6 
Comparison of Means and Differences for the Preferred and Actual Forms of the 
ITIC for Male and Female Teachers. 

 
Scales Actual Difference Preferred Difference

 Male Female  Male Female  
 (M) (F) (M-F) (M) (F) (M-F) 

Freedom in 
Practical Work 

2.59 2.44 0.15 3.36 3.54 -0.18 

Communication 3.89 3.89 0.00 4.45 4.50 -0.05 

Interpretation 
of Data 

3.76 3.73 0.03 4.14 4.32 -0.19 

Science Stories 3.07 2.47 0.61*** 3.63 3.53 0.10 

Uncertainty in 
Science 

3.70 3.66 0.04 4.06 4.26 -0.20 

*p<0.05, **p<0.01, ***p<0.001   n=65 
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Males reported significantly higher levels of activities relating to the Science Stories 

scale occurring in their science classes.  There was no significant difference between 

the responses of males and females on the Preferred version. 

 

7.6.3 Differences Between College and High School Teachers 

In order to investigate whether differences existed in the amount of inquiry that 

teachers perceived as actually existing, or being preferable, between high school and 

college environments a t-test was again used.  The results are shown in Table 7.7.  

The different college subjects were not considered individually as there were not 

enough teachers from each subject area to make this feasible. 

 
Table 7.7 
Comparison of Means and Differences for the Preferred and Actual Forms of the 
ITIC for College and High School Teachers. 

 
Scales Actual Difference Preferred Difference

 College High 
school 

 College High 
school 

 

 C (H) (C-H) C (H) (C-H) 
Freedom in 
Practical Work 

2.52 2.57 -0.05 3.36 3.49 -0.13 

Communication 4.14 3.59 0.56*** 4.52 4.39 0.13 

Interpretation 
of Data 

3.93 3.54 0.39*** 4.29 4.09 0.19 

Science Stories 3.07 2.60 0.46** 3.62 3.56 0.07 

Uncertainty in 
Science 

3.94 3.38 0.56** 4.25 3.98 0.27 

*p<0.05, **p<0.01, ***p<0.001   n=65 
 

The results in Table 7.7 indicate that there are significant differences in the amount 

of inquiry that teachers perceive to be occurring on four of the ITIC scales, 

Communication, Interpretation of Data, Science Stories and Uncertainty in Science.  

In all cases, there are significantly more of these behaviours occurring in the college 

environment.  It is possible that the greater maturity of students, together with the 

fact that college courses only contain top academic level students makes it more 

feasible for college teachers to include more inquiry type activities in their courses.  
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However, it is more difficult to see why this would be the case with the Science 

Stories scale.  Perhaps the fact that college teachers tend to specialise in a particular 

subject area rather than teach a general science course which covers many fields of 

science makes it easier for college teachers to become familiar with stories of 

science and scientists that relate to their area.  It is also likely that visits by scientists, 

or, by students to scientific facilities may be more common at this level.  This is 

likely to occur as this group of students are in the process of making decisions about 

their future careers and tertiary courses, and a number of groups of individuals, 

which may include teachers, scientists, career counsellors and university personnel, 

are keen to give college science students as much insight as possible into potential 

career pathways. 

In the case of the preferred data, there are no significant differences in the amount of 

inquiry that teachers would prefer to be occurring between the college and high 

school environments.  This indicates that high school and college teachers have 

similar beliefs regarding the extent to which inquiry methodologies should be used 

in science classrooms. 

 

7.6.4 Teacher Attitude and Inquiry 

Table 7.8 reports the associations between the five actual ITIC scales and teacher 

attitudes towards their science classes.  The simple correlation, r, describes the 

bivariate association between teacher attitude and an ITIC scale, whilst the 

standardised regression weight, ß, characterises the association between teacher 

attitude and an ITIC scale when all other ITIC dimensions are controlled.   
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Table 7.8   
Statistical Associations Between ITIC Scales (Actual Form) and Teacher Attitude in 
Terms of Simple Correlations (r) and Standardised Regression Coefficients (ß).  

Scale r ß 

Freedom in Practical 
Work 

0.35** 0.22 

Communication 0.43*** 0.21 

Interpretation of Data 0.36** 0.13 

Science Stories 0.35** 0.08 

Uncertainty in Science 0.41*** 0.16 

Multiple correlation, R 0.55*** 

R2 0.31 

*p<0.05, **p<0.01, ***p<0.001   n=65 

 

Examination of the simple correlation coefficients in Table 7.8 indicates that for the 

Actual Form of the Teacher ITIC there are statistically significant relationships 

between the amount of inquiry that teachers perceive is occurring in their science 

classes and teachers' attitudes toward their science classes on all ITIC scales.  The 

positive nature of the data indicate that teachers have a more positive attitude toward 

their class classes where there is more inquiry occurring in those science classes.  A 

possible interpretation of this is that inquiry methodologies involve more teacher 

time to prepare and deliver, and that it is teachers with a more positive attitude who 

are more likely to commit the time needed to prepare and deliver an inquiry 

approach.  However, the statistical significance noted in the simple correlation 

coefficients is not conserved when the beta weights are calculated, so caution must 

be taken in drawing any conclusions.   

The multiple correlation, R, data indicate a statistically significant positive 

correlation between teachers' perceptions of the amount of inquiry that occurred in 

their science classes and teacher attitude toward science.  The R2 value indicates that 

31% of the variance in teacher attitude can be attributed to the amount of inquiry that 

occurred in their science classes. 

 

  229 



7.7 Summary of Teacher Data 

The main points that the analysis of the teacher data reveals are: 

• Teachers would prefer their classrooms to include significantly more inquiry 

methodologies, as defined by the ITIC scales. 

• There is significantly more inquiry relating to the Science Stories scale 

occurring in the classrooms of male teachers. 

• There are no significant differences in the amount of inquiry that male and 

female teachers would prefer to occur in their science classes. 

• There is significantly more inquiry occurring in college science classes than 

in high school ones. 

• There is no significant difference in the amount of inquiry that college and 

high school teachers would prefer to occur in their classrooms. 

• On the basis of simple correlation coefficients, teachers have a significantly 

more positive attitude toward their science classes when there is more inquiry 

occurring in those classes. 

 

 

7.8 Comparison of Teacher and Student ITIC Data 

Once both the student and teacher data had been analysed, the two sets of data were 

examined in order to determine the similarities and differences in the way these two 

groups rated both their actual and preferred classroom environments.  This 

information was considered important, as it is desirable that any decision to bring 

about changes to classroom environments take into consideration the opinions of 

both groups - although there may be sound reasons for giving the opinions of one 

group more weight than those of the other.  Table 7.9 displays the mean score and 

standard deviation for each group for each of the ITIC scales. 
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In order to establish whether the differences that existed were significant, tests were 

run to compare the teacher and student data.  However, the quite disparate sizes of 

the two sample groups mean that the results of this analysis should be interpreted 

with some caution.   

The analysis that was run gave an estimate of the t-value.  Where this estimate is 

either greater than +2.0 or less than -2.0, the differences in the mean values of the 

teacher and student responses is considered to be significant.  The results of this 

analysis are shown in Table 7.9. 

Table 7.9 
Comparison of Mean Scores and Standard Deviations for Teacher and Student ITIC 
Data. 

 Mean Standard deviation t 

 Student Teacher Student Teacher  

Actual data      

Freedom in 
Practical Work 

2.65 2.54 0.60 0.55   0.41 ns 

Communication 3.20 3.89 0.81 0.60 -2.19 * 

Interpretation 
of Data 

3.37 3.75 0.72 0.47 -1.27 ns 

Science Stories 2.41 2.86 0.84 0.73 -1.39 ns 

Uncertainty in 
Science 

3.25 3.69 0.82 0.72 -1.36 ns 

Preferred data      

Freedom in 
Practical Work 

3.37 3.42 0.66 0.58 -0.19 ns 

Communication 3.73 4.47 0.75 0.45 -2.39 * 

Interpretation 
of Data 

3.40 4.20 0.77 0.47 -2.59 * 

Science Stories 2.96 3.59 0.93 0.63 -1.86 ns 

Uncertainty in 
Science 

3.49 4.13 0.81 0.64 -2.01 * 

ns- not significant  * significant difference   teacher n=65, student n=2,207 
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The results in Table 7.9 indicate that with respect to actual classroom environment, 

teacher and student perceptions were similar on all ITIC scales except 

Communication.  Therefore, teachers and students concurred as to the nature of their 

science class learning environment with respect to the amount of inquiry 

methodologies, as defined by the ITIC scales, that was occurring.  In the case of the 

Communication scale teachers perceived that there were significantly higher levels 

of inquiry methodologies occurring than did students.  A possible explanation for 

this is that teachers perceive that more of the classroom discussion that is occurring 

relates to work than is really the case - with students being better placed to assess 

this. 

With regard to the Preferred Form of the ITIC, teachers and students had similar 

preferred classroom environments with respect to behaviours indicated by the 

Freedom in Practical Work and Science Stories scales.  However, the response of the 

two groups indicated that they had significantly different preferences on the 

remaining three scales, Communication, Interpretation of Data and Uncertainty in 

Science.  In all three cases the mean preferred score for the teacher sample group 

was higher than the mean preferred score for the student sample group.  An 

interesting trend that can be perceived in the data sets for the Communication, 

Interpretation of Data and Uncertainty in Science scales is that in all cases the 

student actual mean score is the lowest value, the student preferred mean score is the 

next highest value, with teacher actual mean score being next and teacher preferred 

mean score being the highest value. 

These results indicate that on the three scales where there are significantly different 

preferences between teacher and student preferred classroom environments, teachers 

want there to be more inquiry behaviours than do students, although both groups 

want there to be more inquiry than is currently the case. 

 

 

  232 



  233 

7.9 Chapter Overview 

This chapter has examined the results of the teacher data analysis and gone on to 

compare the teacher data with the student data which had been reported in previous 

chapters.   

The main conclusions from the teacher data have already been summarised in 

Section 7.7, so these will not be reiterated here.  Overall, teachers would prefer that 

their science classes had higher levels of inquiry behaviours, as defined by the ITIC, 

than is currently the case. 

The comparison of the data for the teacher and student groups showed that these two 

groups are largely in agreement as to the extent to which inquiry methodologies, as 

defined by the ITIC, occur in their science classes.  Therefore, the ITIC appears to be 

successful in measuring the amount of inquiry that is actually occurring in science 

classrooms. 

Following on from this investigation of the perceptions and preferences of teachers 

and students, with regard to the degree to which ITIC inquiry methodologies occur in 

their science classes, the next chapter will examine the curriculum documents that 

were in use in these classrooms, in order to determine the extent to which these 

documents suggest the use of the same inquiry methodologies 

 

 



CHAPTER 8 - INQUIRY METHODOLOGIES INDICATED IN 

THE CURRICULUM DOCUMENTS IN USE WHEN 

THE ITIC WAS ADMINISTERED. 

 

CHAPTER OVERVIEW 

This chapter examines the extent to which the curriculum documents which were 

current at the time that students and teachers completed the ITIC either prescribed or 

advocated the use of inquiry teaching methodologies, as defined in the ITIC.  This 

analysis was carried out with a view to comparing the perceptions that students and 

teachers had of both their actual and preferred science classroom environments with 

the intent of the relevant curriculum documents. 

In the discussion of the science syllabus documents the following method will be 

used to highlight where links to ITIC inquiry methodologies exist: 

1. The parts of the syllabus documents that imply the use of ITIC inquiry 

methodologies will be reproduced in the text.  Italics will be used to highlight 

particular connections implied by part of this text. 

2. The ITIC scale/s that the reproduced statements can be taken as referring to 

will be shown in bold in brackets at the end of the italicised section.  The key 

that will be used to represent the different ITIC scales is: 

(F) - Freedom in Practical Work 

(C) - Communication 

(I) - Interpretation of Data 

(S) - Science Stories 

(U) - Uncertainty in Science. 

The inclusion of a reference to an ITIC scale means that the italicised text implies a 

relation to one or more items in that scale.  References to an ITIC scale are included 

where it seems that an experienced science teacher would see and make direct 
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connections.  Naturally, the preferred pedagogies of individual teachers may mean 

that they also incorporate inquiry methodologies in relation to text that is not 

italicised.  The attempt here is to note references which imply that all teachers should 

be employing inquiry methodologies. 

Where it seems that a comment in the syllabus documents strongly indicates the use 

of inquiry methodologies, but where it is possible that the stated condition could be 

met without using inquiry a ? is used to denote this.   

For example, F? is used where there is a strong reference to practical work, but 

where it would be possible to carry this out using purely cookbook type practicals 

and not allowing students the opportunity for any open-ended investigations. 

A further example is C?, which may indicate that the syllabus documents require 

students to develop and explain opinions, but do not specify that this presentation 

should be oral - so the presentation could be written and there may be no oral sharing 

as indicated by the ITIC Communication scale. 

As has been noted previously, up to 2005 Tasmania did not have any statewide 

syllabus documents for any Grades 7 and 8 subjects, including Science.  

Consequently these grades are not include in the following discussion, which looks 

firstly at the Grade 9/10 syllabus documents and then at the college (Grade 11/12) 

syllabus documents. 

 

8.1 INQUIRY METHODOLOGIES IN THE GRADES 9/10 SCIENCE 

SYLLABUS DOCUMENTS 

8.1.1 The Grade 9/10 Syllabus Documents 

The syllabuses termed 9SC125/124/123/106B Science and 10SC425/424/423/406B 

(Tasmanian Secondary Assessment Board, undatedi, undatedj) Science were the 

ones in use for Grades 9 and 10 Science respectively up to the beginning of 2005, 

when a new curriculum, known as the Essential Learnings was introduced into 

Tasmanian schools for all grades up to and including Grade 10.  As such, the 

aforementioned syllabuses are the ones that the Grade 9 and 10 students completing 
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the ITIC questionnaire would have experienced.  The 425 and 125 syllabuses were 

generally termed top level syllabuses, with 424 and 124 being termed middle level 

and 423 and 123 being termed bottom level.  The 406 and 106 syllabuses were 

specifically intended for special needs students (ones with very low academic ability, 

generally as a consequence of an intellectual disability).  Very few students received 

awards at these special needs syllabuses, and it is unlikely that any special needs 

students completed the ITIC (as their teachers are unlikely to have deemed doing so 

to be an appropriate activity for them), so discussion will be limited to the other 

syllabuses. 

Particular reference will be made to the Version 3, Accredited until December 2004, 

syllabus documents for 10 SC425B Science.  These consist of the syllabus document 

itself (Tasmanian Secondary Assessment Board, undatedj) and the Science Standards 

document (Tasmanian Secondary Assessment Board, undatedk).  10SC425B is the 

most demanding of the four Grade 10 syllabuses listed above, but both the lower 

level Grade 10 syllabuses and all the Grade 9 ones really represent only a 

modification of the degree of sophistication which this syllabus requires of students, 

with large portions of the syllabus documents being identical.  Hence, comments 

which are made about 10 SC425 with respect to the use of inquiry methodologies are 

applicable to the lower level syllabuses mentioned above.   

The Science Standards document provides teachers with additional information to 

use when determining whether students should be awarded a rating of A, B or C 

against each of the criteria listed in the syllabus document.  It includes possible 

sources of evidence against each of the criteria.   

In examining the standards document, the requirements that it lists for a student to 

receive a C rating at the top level syllabus will be considered, as this is the minimum 

rating required for students to go on to receive an award of ‘Satisfactory 

Achievement’ at the top level.  Teachers of both Grades 9 and 10 needed to ensure 

that they were providing students with learning experiences which would allow them 

the opportunity to receive at least C ratings at top level. 

The Version 3, Accredited until December 2004 syllabus document is virtually 

identical to an earlier document which is labelled Version 2, Accredited until 

  236 



December 2003.  The main difference between these two documents and an earlier 

one labelled Published for 2001, Accredited until 2003 is that the algorithm for 

determining students' awards and the names of awards was changed.  Similar 

differences exist between the versions of the 9 SC125/124/123/106B syllabuses. 

 

8.1.2 Inquiry Methodologies in the Grade 9/10 Documents 

The Subject description for the Grade 9 and 10 Science subjects states, in part: 

There is an emphasis on open-ended investigations (F) through working 

scientifically, applied through the four conceptual strands of the National 

Statement and Profile.  It further develops science skills and concepts 

applicable to science in daily life.  Techniques and processes are 

developed through investigations (F) and problem solving in the 

immediate environment. 

This description makes the point that it is the processes of science rather than any 

particular content knowledge which is important.  The content section of the syllabus 

statements state that the goals for science education are for students to: 

• develop personal understanding of the physical, biological and 

technological worlds and to devise solutions to problems arising from 

their own needs (I) 

• take a confident part in discussions and decision-making about science 

and science policy (C) 

• prepare for post-school options. 

It goes on to say that these goals are to be achieved through students working 

scientifically, as described in the national statement for Science (Curriculum 

Corporation, 1994a), and that principles and activities for effective learning in 

science are suggested in the statement (pp. 5-8 and pp. 30-35).  Examination of the 

referenced pages in the national statement highlights that there are strong links to the 

Freedom in Practical Work, (F), Interpretation of Data (I), Science Stories (S) and 
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Uncertainty in Science (U) scales of the ITIC.  Links to the Communication scale are 

not shown as strongly, although they seem to be implied (C?). 

The syllabus document states that the content of the syllabuses is based on the 

Working Scientifically strand of the national statement and the curriculum profile 

(Curriculum Corporation, 1994a, 1994b), and that it includes: 

• planning investigations (F) 

• conducting investigations (F?) 

• processing data (I) 

• evaluating findings (I) 

• using science 

• acting responsibly. 

Actual knowledge content is not specified beyond saying that there should be a 

balanced coverage from the various conceptual strands and organisers in the 

National Science Statement, and that the selection of areas of study should give a 

balanced coverage of issues relating to the environment, work and daily life. 

The eight assessment criteria contained in the syllabus document, together with some 

additional relevant information provided by the Science Standards document, are 

listed in Table 8.1, which also shows links to ITIC inquiry methodologies. 
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Table 8.1 
ITIC Links in the Grade 9/10 Syllabus and Standards Documents. 

. 
Criterion Requirements for a 

10SC425 rating of C 
Sources of Evidence from the Standards 

document 
ITIC 
links 

1. use 
equipment, 
make 
observations 
and collect 
data  

 

Safely and effectively 
manipulate a range of 
equipment and 
materials without 
supervision.  

Make qualitative 
observations and 
collect quantitative 
data, selecting 
instruments 
appropriate to the 
task. 

• take enough measurements to gauge 
reliability; 

• make measurements to a degree of accuracy 
appropriate to the equipment and any other 
measurements involved; 

• take care in observations and in using 
equipment to avoid errors (reading a scale from 
the side instead of in front); 

• consult and compare information from a 
number of sources when different views are 
likely or important. 

Student work samples can be found on pages 78 
- 81 in Science- A Curriculum Profile for 
Australian Schools.   

F? 

2. acquire and 
convey 
information  

 

Communicate 
information in a 
variety of ways, 
selecting an 
appropriate format.   

 C? 

3. process data  

 

Rearrange data 
independently into an 
appropriate format. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additional 
Comments: 
Interpreting 
observations, 
identifying patterns, 
forming 
generalisations, 
considering accuracy 
and reliability. 

Is able to distinguish between dependent and 
independent variables. 

Is able to use equations and formula to 
determine unknown quantities where data 
concerning the values of other variables 
involved are given. 

Selects ways to present information that clarifies 
patterns and assists in making generalisations. 

Evident when students, for example: 

• organise data into tables and graphs to reveal 
trends and relationships; 

• use devices such as diagrams, flow charts and 
concept maps to identify patterns and make 
generalisations; 

• write descriptions of patterns in data and ways 
they justify conclusions; 

• summarise and relate information from 
different sources to develop and argument and 
construct generalisations; 

• plan the form and logic of a report or 
presentation to communicate the results 
effectively. 

I 

4. make 
predictions, 
evaluate 

Determine whether 
predictions and 
findings are 

Evident when students, for example: 

• examine and report on how their findings 

I 
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findings and 
draw 
conclusions  

 

reasonable answers 
to the questions asked 

satisfy the investigations original aims; 

• suggest further investigations that would 
further clarify questions asked; 

• justify their conclusions on the basis of their 
data. 

5. plan and 
organise 
investigations  

 

Plan and organise a 
fair investigation to 
solve a problem. 

 

Suggest ways of doing investigations, giving 
consideration to fairness. 

Evident when students, for example: 

• with teacher support, develop alternative 
strategies for doing their investigations; 

• compare the fairness and effectiveness of their 
own plans and those suggested by other 
students; 

• propose and discuss the steps of their 
investigations; 

• suggest focus questions (in groups and 
individually) to assist their planning; 

• list possible sources of information, such as 
people, books and encyclopaedias for their 
investigations. 

F, C 

 

6. understand 
scientific 
ideas 

   

7. understand 
the impact of 
science on 
society  

 

Can demonstrate an 
awareness of the 
complexity of the 
issues generated by 
the impact of 
scientific ideas. 

Can propose and 
compare options 
when making 
decisions. 

 

Proposes and compares options when making 
decisions or taking action. 

Evident when students for example: 

• list alternative means of achieving a particular 
outcome, such as lifting a load; 

• produce alternative solutions to a problem 
(stopping a cat killing birds or iron rusting); 

• speculate on the consequences of different 
choices when conducting an investigation, 
working through a problem, or trying to achieve 
an outcome; 

• compare the different science based 
technologies used to perform the same task in 
different countries. 

S, U 

8. work as a 
member of a 
group. 

 

Fill a number of roles 
in a group and accept 
the ideas of others as 
well as responsibility 
for group decisions. 

 C 
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8.1.3 Overview of Inquiry Methodologies in the Grade 9/10 Science Syllabuses 

The Freedom in Practical Work scale of the ITIC is strongly reflected in the subject 

description and there are links in two of the assessment criteria.  Examination of the 

parts of the national statement on science that the syllabus document refers to show 

strong links to this scale, with the work samples referred to in criterion 1 illustrating 

that the ITIC link should be designated as F rather than F?.  There are definite links 

to items F2, F5 and F8, whilst links to F3, F4, F6 and F7 seem to be implied.   

The Communication scale of the ITIC is reflected in the content section of the 

syllabus document and also in three of the assessment criteria.  The requirements for 

students to work in groups, compare the effectiveness of their plans seem to cover all 

items in the Communication scale. 

The Interpretation of Data scale of the ITIC is reflected in the goals for science 

education list in the 10SC425 syllabus document, and in the summary of the 

Working Scientifically strand from the national statement and curriculum that the 

10Sc425 document provides.  In addition, two of the assessment criteria (Criteria 3 

and 4) strongly reflect this scale, containing numerous links to it.  There are links to 

items I1, I2, I3, I6 and I7.  Links to items I4, I5 and I8 seem to be strongly implied in 

the activities that students are required to do.  I8 is specifically stated in the national 

statement. 

The Science Stories scale of the ITIC is reflected in one of the assessment criteria.  

The relevant pages of the national statement, as referenced in the syllabus document, 

also make connections to it.  Connections to items in this scale tend to be implied 

rather than explicit.  For example, in order to discuss issues such as genetic 

engineering, use of pesticides or in vitro fertilisation (as listed in the national 

statement) students would really need to have heard about the work of scientists 

(items S3, S4, S5, S6).  The national statement also states that students should find 

out about the work of scientists in the community (links to items S1, S2, S8). 

The Uncertainty in Science scale of the ITIC is particularly reflected in one of the 

assessment criteria (criterion 7).  There are links to items U1, U2, U3, U6 and U7.  

Links to U4 and U5 are implied. 
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Overall, there can be seen to be considerable overlap between the ITIC scales, and 

the Grade 9/10 science syllabus documents.  

 

 

8.2 PRESCRIPTION OF INQUIRY METHODOLOGIES IN COLLEGE 

SCIENCE  

Students from four college science subjects were surveyed to collect data for the 

ITIC questionnaire.  Only students from classes studying at the top level or 

pretertiary (accepted for university entry) level courses were considered.  The four 

science subjects were: 

• 12 BY826 C Biology (Tasmanian Secondary Assessment Board, undated a, 

b) 

• 12 CH856 C Chemistry (Tasmanian Secondary Assessment Board, undated 

c, d) 

• 11/12 SC786 C Physical Sciences (Tasmanian Secondary Assessment Board, 

undated e, f) 

• 12 PH866 C Physics (Tasmanian Secondary Assessment Board, undated g, 

h). 

The following sections consider the extent to which the curriculum documents for 

each of these college science subjects, as referenced above, prescribe or advocate the 

use of inquiry methodologies.  Each of the subject syllabus documents is 

accompanied by a set of standards documents.  The standards documents elaborate 

on what is expected of students in order to obtain A, B or C ratings against a 

subject’s criteria.  As the C rating is the minimum acceptable for students to obtain a 

satisfactory result for the subject, in most instances it will be most appropriate to 

consider the standard for this rating.  However, in some instances the requirements 

for A or B ratings show obvious ITIC links, and as teachers would have to make 

opportunities to attain A and B ratings available, it is relevant to consider these. 
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All references in the text to the syllabus or standards documents for the four subjects 

under consideration refer to the above references.  The references are not repeated 

each time as it was felt that the length of the references would tend to detract from 

continuity in reading. 

 

 

8.3 INQUIRY METHODOLOGIES IN THE COLLEGE SYLLABUS 

DESCRIPTIONS 

Each of the syllabus documents contains a section titled ‘Subject Description’.  Part 

of this description is reproduced below for each subject, with links to ITIC inquiry 

methodologies being indicated.  Information from the subject description such as that 

pertaining to who the course is suited to and its level of difficulty is omitted as it is 

not relevant to the current discussions. 

 

8.3.1 Subject Description for College Biology 

The Biology subject description states in part: 

Through an enquiry based approach, this syllabus enables students to 

develop investigative (F), interpretative (I) and manipulative skills 

through the study of biological themes which apply to all levels of 

biological organisation.  These themes may be studied in the contest of 

local biological perspectives, local biological resources or particular 

interest areas. 

 

8.3.2 Subject Description for College Chemistry 

The Chemistry subject description states in part: 

The syllabus provides a balanced treatment of the major topics in 

chemistry, emphasising understanding, the development of language skills 

necessary for the study of chemistry and extensive practical work (F?). 
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8.3.3 Subject Description for College Physical Sciences 

The Physical Sciences subject description states in part: 

It provides opportunities for students to acquire knowledge and 

understanding, develop skills and concepts, appreciate the applications and 

implications of Physics and Chemistry and their personal and social 

relevance. 

It includes study of the nature and characteristics of science as a 

discipline, the principles and methodologies of scientific investigation 

(F?) and considers scientific endeavour in its cultural and historical 

context (S). It focuses on the processes and products of science as a human 

activity, and examines its possibilities and limitations through 

consideration of applications of the physical sciences in society. 

 

8.3.4 Subject Description for College Physics 

The Physics subject description states in part: 

The syllabus provides a wide and detailed coverage of physics topics 

including Mechanics, Fields, Waves, Atomic and Nuclear models. 

 

8.3.5 Overview of College Subject Descriptions 

The subject description for Biology actually states that an enquiry based approach 

should be used.  The Chemistry subject description may or may not allow for any 

behaviours relevant to the ITIC Freedom in Practical Work scale through the 

extensive practical work that is mandated.  Similarly, it is not clear whether the study 

of investigations indicated in the Physical Sciences subject description allows for 

any behaviours relevant to the ITIC Freedom in Practical Work scale.  The Physics 

subject description shows no links to ITIC methodologies. 
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8.4 LEARNING OBJECTIVES OF THE COLLEGE SCIENCE 

SYLLABUSES 

 

Each of the syllabus documents includes a section titled ‘Learning objectives’.  

Again, these are not reproduced in their entirety, rather relevant sections are shown. 

 

8.4.1 Learning Objectives for College Biology 

Five of the six Biology Learning objectives make connections to inquiry 

methodologies: 

• develop problem solving, practical and personal skills which allow them 

to function as individuals in contemporary society (C?, I?, U?) 

• develop an understanding of biological principles and be able to apply 

these in understanding the world they live in (I) 

• be encouraged to ask questions and to develop skills that will help them 

to seek and gain information for themselves (F?) 

• develop considered opinions based on evidence and rationality and to 

develop an open-minded critical approach to scientific and broader 

issues (C, I) 

• develop an understanding of the processes occurring in biological 

systems and be able to apply these to a changing world (I?). 

 

8.4.2 Learning Objectives for College Chemistry 

Of the nine learning objectives that exist for Chemistry, six make connections to 

inquiry methodologies.  These six are reproduced below. 

• develop skills in communication, collecting, analysing and organising 

information, working as an individual and in teams, and using 

technology, techniques and resources (F?, C?, I) 
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• acquire knowledge and understanding of a body of chemical principles 

and theories and acquire the ability to apply these principles to predict 

and explain the properties of substances and the interactions which take 

place between them (I) 

• develop understanding of the role of chemical science in the society in 

which they live, and its importance in placing in proper perspective the 

current conflicts between technological development and conservational 

restraint, and introduce students to some of the economic considerations 

which influence the development of industries and the use of alternative 

materials and processes (U) 

• develop understanding of the notion that chemistry is not just 

materialism, that it is the product of the work and thought of many 

people, and that the history of chemical discovery and thought is closely 

linked with the social history of mankind (S) 

• use the experimental approach to problem solving where applicable; to 

develop recognition of the need to possess evidence before making 

judgements, and to develop the capacity to consider evidence contrary to 

established expectations (F, I) 

• develop awareness that beyond the established facts and laws of 

chemistry there are areas of uncertainty where scientists may differ on 

questions of interpretation, and thereby to emphasise that chemistry is a 

living and still rapidly developing science, and to present the challenge 

of unresolved problems (U). 

 

8.4.3 Learning Objectives for College Physical Sciences 

Of the 14 Physical Sciences learning objectives, ten make connections with inquiry 

methodologies: 

• understand the aims and philosophy of science, through exploration of 

the nature of scientific endeavour, while developing an awareness of its 

limitations (U) 
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• acquire some knowledge of the principles of scientific enquiry, including 

an understanding of the role, nature and purpose of experimentation, 

processes by which we construct models, and the relationship between 

phenomena and these theoretical models (F?) 

• be able to relate to contemporary science as the product of human 

activity which is a legitimate part of our history and culture, by 

developing an understanding of contemporary science as the product of 

progressive development (S)  

• understand the role which science plays in the social and economic 

context, through examination of the relationship of science to 

technology, the responsibilities of science in creating the future, and the 

ethical responsibilities of scientists (S) 

• apply scientific knowledge and principles in problem solving situations, 

with emphasis on real-world applications and through extended and 

open-ended experimental investigations of phenomena and ideas (F, I) 

• analyse issues and be aware of ways in which values, experiences and 

priorities of groups and individuals may affect their attitude to issues (I, 

U, C) 

• develop an awareness of their own values and a willingness to review 

their own attitudes in the light of new knowledge and experiences; (C) 

• develop skills necessary to use instruments apparatus and materials 

correctly and safely in order to make qualitative observations and 

collect quantitative data (F?) 

• develop an ability to analyse and interpret data, and to solve problems 

by using mathematical models (I) 

• become familiar with the language of the physical sciences, and be able 

to communicate scientific information in an appropriate manner (C?). 
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8.4.4 Learning Objectives for College Physics 

Six of the eight Physics learning objectives listed make connections to inquiry 

methodologies. 

• learn to apply qualitatively and quantitatively their knowledge and 

understanding of physical principles to solve problems in everyday 

situations (I) 

• further develop their ability to solve physical problems using 

mathematical techniques (I) 

• develop the appropriate process skills to use the experimental approach 

to problem solving through practical work (F) 

• develop skills to enable the acquisition, communication and 

interpretation of information relating to physical situations using 

established conventions (C?) 

• develop awareness of the notion that established facts and laws of 

Physics are being constantly reevaluated and interpreted and hence 

Physics is a study of predictive models and theories (U) 

• develop understanding of the impact of Physics on society and the 

individual, and its contribution to technological change (S). 

 

8.4.5 Overview of Learning Objectives 

The learning objectives for each of the college subjects are quite lengthy, and make a 

number of links to inquiry methodologies.  The Biology learning objectives do not 

make any specific links with the Science Stories scale. 

 

 

8.5 CONTENT OF COLLEGE SYLLABUS DOCUMENTS 

Although teachers of the college science subjects constantly discuss and clarify the 

exact content to be included via twice annual statewide moderation meetings, it is 

that content stated in the syllabus documents which will be considered here.  In the 
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following sections, only that content which is relevant to the ITIC scales is 

reproduced. 

 

8.5.1 Content of College Biology 

The content section of the Biology syllabus document includes the following 

categories: 

• Data collection and treatment 

 collection: by experiments using biological materials and scientific 

apparatus, surveying, the results of other workers (F?) 

 treatment: by graphing, interpolating, extrapolating, and predicting 

using students’ own data or data from primary sources (I). 

• Field trips and excursions 

 To locations where students can experience and work with 

biological systems and materials first hand (F?). 

• Decision making/problem solving exercises 

 These can be generated through practical work, invitations to 

enquiry (eg BSCS), interpretive exercises, newspaper/media articles, 

class debate/ brain-storming activities (I). 

• Scientific investigations 

 Consideration of problems, hypothesis development, experimental 

design, data collection and processing, analysis of results, drawing 

conclusions in the context of the original hypothesis, evaluation of 

process (I, F?). 

• An investigation and presentation of a current issue in Biology 

 Students consider a topical issue that has a biological basis from the 

point of view of the biological processes and principles involved as 
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well as political, economic, social and ethical considerations.  The 

presentation to a group may be a display, folio, video, debate, talk 

etc (C, S, U). 

 

8.5.2 Content of College Chemistry 

The content section of the Chemistry syllabus largely consists of chemical principles 

and ideas.  It does include, under the heading Electronic Structure and the Periodic 

Table: 

• How did chemistry begin? (S). 

 

8.5.3 Content of College Physical sciences 

The content section of the Physical Sciences syllabus is lengthy, and includes the 

following: 

• Prescribed Learning Activities, which includes the instruction that 

during this syllabus all students should undertake tasks in the following 

areas: 

 open-ended problem solving and decision-making activities (I) 

 case studies of scientists and/or scientific ideas (S) 

 interpretation of scientific literature (I) 

 class/group discussion of scientific concepts (C). 

• Practical Work, which states that a minimum of 50 hours of laboratory 

work must have been undertaken.  Every student must submit for 

internal assessment completed practical reports and evidence of data 

collection obtained during practical activities, i.e. practical notebook 

plus final report (F?). 

• The Nature and Aims of Science, including: 

 From what evidence are scientific conclusions derived? 

 What are the limitations of science? (U). 
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• The Methodology of Science 

The study of science should include a component which addresses the 

methods and limitations of the various modes of scientific enquiry. The 

meaning of the term ‘scientific method’ is in itself controversial. More 

important, however, is the realisation that the notions of ‘objective’, 

‘empirical’, ‘inductive’, deductive’, ‘theory’, ‘law’, ’experiment’, ‘proof’, 

should be understood, at least within a context which may assist to make 

their differences understood and useful. 

 What are the criteria for good experiments? (F, I) 

 How can we distinguish good from bad experimental design and 

technique? (I) 

 When is it appropriate to discard a theory rather than modify it? 

(S, U) 

 What constitutes a valid experimental investigation? (F?) 

 What is ‘an experiment’? (I) 

 What is ‘proof’? (I) 

 How do we construct a hypothesis? (I) 

 What do we mean by ‘problem-solving’? (I?, U?) 

 How can we make decisions about treating data? (I) 

 With what methods can we treat data? (I) 

 Is it possible to have two satisfactory explanations for the same 

phenomenon? (U). 

• The Historical and Cultural Context of Science 

 How much does scientific understanding and theory-making 

depend on the culture and beliefs of the times? (S, U) 

 What has happened when cultural beliefs and assumptions have 

conflicted with new scientific theories? (S) 

 To what extent have cultures depended on scientific 

understanding and the associated technologies? (S) 
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 To what degree has the history of science depended on wrong 

interpretations, earlier discoveries, serendipity, ‘genius’? How 

much has it depended on the personality and beliefs of 

individuals? (S, U) 

 How is one theory replaced by another? (U). 

 Science and Our Society 

 What are the social and economic contexts for decision-making 

in matters with a scientific component? (U) 

 To what degree can (or should) we believe the conclusions 

provided by ‘scientists? (I, U) 

 What is the place of science in creating the future? (S?) 

 To what extent should scientists concern themselves with ethical 

considerations? (S?, U) 

 Should science have other aims that depend on our values (e.g. 

political, religious, environmental, social)? (U) 

 How can we deal with disagreements between ‘experts’? (U). 

• Applications of Science 

 To what extent should the direction of scientific research be 

guided by the requirements of technology - who is the servant 

and who should be the master? (C?). 

 

8.5.4 Content of College Physics 

The Physics syllabus document includes in the content section: 

• Prescribed Learning Activities 

In studying courses derived from this syllabus, students should undertake 

tasks in the following areas. 

1. Data collection and treatment by experimentation using appropriate 

equipment and materials (F?). Activities should include observing, 

  252 



measuring, classifying, recording, tabulating, graphing, drawing 

inferences, developing hypotheses and predicting (I). 

2. The compilation of a practical logbook and set of completed practical 

reports (F?). 

3. Class discussions on issues related to the content (C). 

4. A brief theoretical or practical investigation of an area of physics of 

topical interest. Reporting on this could take any appropriate form (F?, 

C?, I). 

5. Problem solving using interpretative exercises based on the content (I). 

• Practical Work 

All students presenting themselves for assessment must complete a course 

of practical work in a laboratory which has been approved after inspection 

by the Schools Board of Tasmania. Minimum time for practical work is 50 

hours (F?). 

 

8.5.5 Overview of the Content Sections 

The Chemistry content section makes few links to ITIC inquiry methodologies.  All 

other syllabus documents make a number of connections between their content and 

the ITIC scales. 

 

 

8.6 CRITERIA FOR THE COLLEGE SCIENCE SYLLABUSES 

The criteria vary between the college science subjects, although there are 

commonalities between some syllabuses.  Each syllabus document is accompanied 

by a set of standards for each criterion.  In the following examination of the subject 

criteria, parts of the standards document are reproduced under the relevant criterion 

where they give further insight into how the criterion relates to ITIC inquiry 

methodologies. 
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Criteria which are marked by a * are ones which are examined on the external exam, 

as well as by internal teacher assessments. 

 

8.6.1 Criteria for Biology 

The Biology criteria each include a list of examples.  Only those relevant to ITIC 

inquiry methodologies are reproduced here.  

1.  Collect information and data from a variety of sources, correctly citing all sources 

when appropriate. 

2.  Present biological information and principles using an appropriate and varied 

means of communication. 

The standards document lists oral presentation as a possible source of evidence, but 

does not prescribe it. 

• Oral presentation of a current biological issue or a syllabus related topic 

(C?). 

3.* Demonstrate understanding and knowledge of biological principles and how they 

apply to the molecular and cellular levels of organisation. 

The standards document includes that students have: 

 The ability to provide limited explanations for unfamiliar situations (I?). 

4.* Demonstrate understanding and knowledge of biological principles and how they 

apply to the organism. 

The standards document includes that students have: 

 The ability to provide limited explanations for unfamiliar situations (I?). 

5.* Demonstrate understanding and knowledge of biological principles and how they 

apply to the interrelationships between organisms and environments. 

The standards document includes that students have: 

 The ability to provide limited explanations for unfamiliar situations (I?). 
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6.  Correctly, constructively, safely and ethically manipulate a variety of biological 

materials and scientific apparatus.   

The standards document lists, as a possible source of evidence, tasks which provide 

opportunities for student planning, coordination and execution, with a C rating 

requiring: 

 plans work, uses correct apparatus and materials to conduct the experiment 

efficiently with some precision to achieve most objectives within given time 

frame (F?). 

7.  Work individually and cooperate with others efficiently to meet the demands of 

the syllabus.  This includes as an example: 

• Contributing to discussions (C) 

The standards document lists, as a possible source of evidence, discussions of current 

issues. 

8.* Develop feasible hypotheses and design controlled experiments to test 

hypotheses. This criterion includes as examples of achievement: 

• can propose a hypothesis appropriate to the situation (I) 

• can design a controlled experiment to test a hypothesis (F?) 

• devises an appropriate method of data collection and recording (F) 

• an understanding of the status and limitation of conclusions (I). 

The standards document for criterion 8 lists proposing hypotheses and designing 

experiments for laboratory work as a possible source of evidence against the 

criterion.  This implies that students may have the opportunity to do more than just 

design experiments on paper, so F rather than F? seems likely. 

9.* Analyse, interpret and evaluate information and data gained (from individual 

investigations and the investigations of others) and to evaluate the methods used 

and conclusions drawn from these investigations.  This criterion includes as 

examples: 

• open ended activities to collect and analyse data (F) 
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• individual research of projects including evaluation of this investigation (F?, 

I) 

• can suggest improvements to their own and other investigations (I) 

• compare own and others investigations and evaluate in teams, methodology 

and validity of conclusions (C). 

The standards document requires that for a C rating a student: 

• Demonstrates ability to extract information from data and to analyse data 

presented in a variety of formats, interpreting relationships between two 

variables.  Demonstrates ability to extrapolate and make limited predictions 

from graphical data.  Conclusions drawn should include generalisations.  

Critically evaluates the design of an experiment. 

This highlights the connection to the Interpretation of Data scale of the ITIC 

questionnaire. 

10.  Demonstrate an understanding of relevant considerations (eg political, ethical, 

social, economic) in current biological debates. 

The standards document requires that for a C rating a student: 

• Demonstrates ability to present a clear summary of the issue based on 

accurate biological knowledge.  Must be able to present a well balanced 

argument which recognises some positive and negative elements.  Can draw 

a logical conclusion. (C?, S, U). 

 

8.6.2 Criteria for Chemistry 

The assessment for 12 CH856 C Chemistry will be based on the degree to which the 

student can: 

1.  Collect, analyse and organise information in a variety of ways when performing 

chemical investigations (F?, I). 

2.  * Communicate ideas and information using appropriate chemical language and 

formats when undertaking chemical investigations (C?). 
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3.  Perform practical chemical investigations when working with others and in teams 

(F?). 

Part of the Criterion 3 checklist in the standards document states that students can: 

• Seek and respect others’ opinions and viewpoints (C). 

4.  Use chemical information to solve problems, develop hypotheses and design 

experiments to test the validity of these hypotheses (I). 

Part of the criterion 4 standard states that in familiar settings a student can: 

• identify, anticipate, and solve problems efficiently, make justifiable 

predictions on the basis of data and design experiments to test these 

predictions (I). 

5.  Demonstrate an ability to use technology, resources and techniques in an orderly, 

efficient and safe manner when performing experimental work in the chemistry 

laboratory. 

The standards for criterion 5 include that for a C rating students can: 

• demonstrate some initiative to select and use suitable resources and 

techniques (F). 

6. Demonstrate a knowledge of the practical applications of chemistry and its 

implications for society (S?). 

The standards document includes that students can: 

• Demonstrate an awareness of the role of chemistry in a range of industries 

and of some of the implications of society (for a C rating) or Demonstrate the 

ability to advance a balanced argument on the role of chemistry in a wide 

range of industrial and technological applications (for an A rating) (C). 

7. * Demonstrate an understanding of the fundamental principles and theories of 

electrochemistry. 

The standards document indicates that to receive either an A or B rating students’ 

demonstration must include: 

• the ability to provide explanations of unfamiliar situations (I). 
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8. * Demonstrate an understanding of the principles and theories of 

thermochemistry, rate of reaction and equilibrium. 

The standards document indicates that to receive either an A or B rating students’ 

demonstration must include: 

• the ability to provide explanations of unfamiliar situations (I). 

9. * Demonstrate an understanding of properties and reactions of inorganic and 

organic matter. 

The standards document indicates that to receive either an A or B rating students’ 

demonstration must include: 

• the ability to provide explanations of unfamiliar situations (I). 

10.  * Apply logical processes to solve quantitative chemical problems. 

The standards document indicates that to receive either an A or B rating students’ 

demonstration must include: 

• the ability to provide explanations of unfamiliar situations (I). 

 

8.6.3 Criteria for Physical Sciences 

The assessment for 11/12 SC786 C Physical Sciences will be based on the degree 

to which the student can: 

1.  Collect information and data from a variety of sources. 

2.  * Convey scientific information and concepts using appropriate and varied 

means of communication (C?). 

3.  Perform practical investigations, individually and as a member of a group (F?). 

The standards document states that for a C rating a student: 

 Analyses results and infers relationships commensurate with data or 

observations. Possible sources of error are listed. Makes conclusions but may 

have some difficulty linking to experimental objectives (I). 

4.  Develop hypotheses and models and design experiments to test their validity (I). 
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5.  Correctly and safely handle a range of apparatus and materials with minimal 

supervision, having proper regard for technique and working in an orderly 

manner. 

Whilst this could be F?, cross-checking with the standards document indicates that 

this criterion focuses more on the use of lab equipment rather than practical design , 

so an ITIC connection has not been assigned to this criterion. 

6.  Understand the nature, history and methodology of science (S) and apply 

scientific understanding to making judgements (I) relating to the role of scientific 

technology in society (S). 

The standards document adds that for a C rating a student: 

 Has a basic understanding of the impact of science on society, and some 

awareness of the issues that arise in this context. Is able to make judgements 

(C) in cases where there are relatively few conflicts of interest or variables in 

the arguments. 

7.  * Demonstrate knowledge and understanding of Physics terminology, 

conventions, quantities and units of measurement, definitions and laws, 

concepts, theories and models. 

8.  * Use techniques of analysis and mathematical manipulation to solve problems 

relating to Physics concepts (I). 

9.  * Demonstrate understanding of current chemical theories explaining the structure 

of matter and apply this knowledge to explain the behaviour of unfamiliar 

substances (I). 

10.  * Understand the changes that occur in various chemical reactions and use this 

knowledge to make qualitative and quantitative predictions of the products of 

reactions and generalise to novel situations (I). 

 

8.6.4 Criteria for Physics 

The assessment for 12 PH866 C Physics will be based on the degree to which the 

student can: 
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1.  Acquire information with minimal assistance in a variety of ways from a variety 

of sources. 

2.* Convey information in a variety of ways using established conventions and 

appropriate language (C?). 

3.  Safely and correctly use a range of equipment and scientific instruments to obtain 

data (F?). 

Whilst this could be F?, cross-checking with the standards document indicates that 

this criterion focuses more on the use of lab equipment rather than practical design , 

so an ITIC connection has not been assigned to this criterion. 

4.  Design experiments to solve problems or test hypotheses (F?). 

5.  Perform practical investigations individually or as a member of a group (F?). 

6.  Analyse data gained from students own practical work (I). 

7. * Formulate generalisations and make realistic predictions based on experimental 

data (I). 

8.  Demonstrate knowledge and understanding of the ways that Physics impacts on 

technology, society and the individual (S). 

A C rating requires: 

 Uses a good working knowledge to evaluate various current scientific issues 

and development. Is aware of the importance of scientific technology in 

society (C?). 

9.  * Demonstrate and apply knowledge understanding of terminology; definitions 

laws; concepts, theories and models; and of measuring instruments of Physics. 

10. * Incorporate techniques of analysis and mathematical manipulation (algebraic, 

trigonometrical, numerical and graphical) to solve complex problems (I). 

 

8.6.5 Overview of the College Subject Criteria 

As was the case with the content sections, there are numerous links between the 

criteria for each of the college science subjects and the ITIC scales. 

 

  260 



8.7 OVERVIEW OF INQUIRY METHODOLOGIES IN COLLEGE 

SCIENCE COURSES 

Table 8.2 summarises the above analysis of the college science syllabus documents.  

It shows the number of times that a connection to the various ITIC scales is indicated 

in the college science syllabus documents that were considered.  The results in Table 

8.2, together with the preceding interrogation of the syllabus documents, indicate 

that there are numerous links between each of the college science subjects and the 

ITIC scales.  Therefore, it is reasonable to expect that the results of both the student 

and teacher versions of the ITIC should show that inquiry methodologies are in use 

in science classrooms.  On the basis of Table 8.2, the greatest amount of inquiry 

would be expected to occur in Physical Sciences, followed by Biology, and then 

Chemistry and Physics, these latter two being approximately equal.   

Table 8.2 
Number of References to Methodologies From the Various ITIC Scales in the 
College Science Syllabus Documents. 

 Biology Chemistry Physical 
Sciences 

Physics 

Freedom in Practical Work 
 

3 2 2 1 

F? 
 

7 4 6 7 

Communication 
 

4 2 4 1 

C? 
 

3 2 3 4 

Interpretation of Data 
 

10 10 15 8 

I? 
 

5 0 1 0 

Science Stories 
 

2 2 16 2 

S? 
 

0 1 2 0 

Uncertainty in Science 
 

2 2 12 1 

U? 
 

1 0 1 0 

Totals  37 25 62 24 
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However, it may be argued that some syllabus documents are more detailed than 

others, allowing more references to inquiry methodologies to occur.  Therefore care 

should be taken in interpreting the results obtained in this analysis.   

The Biology subject description actually stated that an enquiry based approach 

should be used.  Therefore results from Biology classrooms would be expected to 

show high levels of inquiry.  The syllabus writers may have felt that having placed 

this initial rider in the syllabus document it was not necessary to incorporate as many 

further references to inquiry methodologies as would have been the case if this rider 

had not been there. 

Examining the data for the individual ITIC scales shown in Table 8.2 some obvious 

trends can be seen.  The Science Stories and Uncertainty in Science scales are 

represented much more in the Physical Sciences syllabus documents than in those for 

the other subjects.  If the results for I and I? are combined, the Interpretation of Data 

scale is represented more in the Physical Sciences and Biology subject documents 

than in those for Chemistry and Physics.  The differences between the subjects on 

the Freedom in Practical Work and Communication scales are not as pronounced. 

 

8.8 INDICATION OF ITIC INQUIRY METHODOLOGIES IN 

SYLLABUS DOCUMENTS 

All the science syllabus documents examined in this chapter showed marked links to 

the inquiry methodologies defined by the ITIC scales.  In the case of the 

documentation for the four college science subjects, the greatest number of links 

occurred for Physical Sciences, followed by Biology, Chemistry and Physics.  

However, it should be reiterated at this point that care needs to be taken in attaching 

too much significance to the number of references found, as the length of the 

curriculum documentation varies considerably between subjects. 

Chapter 11 will consider whether the intent of these curriculum documents is 

reflected by the extent to which students and teachers perceived that inquiry 

methodologies were actually being used in their science classrooms. 



CHAPTER 9 - ANALYSIS OF 2005 TASMANIAN COLLEGE 

SCIENCE SYLLABUS DOCUMENTS FOR 

INQUIRY METHODOLOGIES 

 

CHAPTER OVERVIEW 

Chapters 9 and 10 adopt a similar approach to Chapter 8, but whereas Chapter 8 

considered the science syllabus documents that were being used in Tasmania at the 

time that the ITIC was administered Chapters 9 and 10 consider the Tasmanian 

syllabus documents in use in 2005, with Chapter 9 examining college science 

syllabus documents and Chapter 10 examining the Essential Learnings curriculum 

documents. 

Examination of these syllabus documents was carried out in order to determine the 

degree to which they either suggest or prescribe the use of the inquiry methodologies 

defined by the ITIC instrument, with the overall aim being to determine the potential 

usefulness of the ITIC in the contemporary Tasmanian context.  The Assessment 

scale from the original ITIC instrument was not included in the examination of the 

syllabus documents, as it had not been shown to have acceptable reliability. 

New college (Grade 11/12) science courses were implemented in Tasmania from 

2004 onwards, replacing the documents considered in Chapter 8.  The current 

chapter examines each of the six new Senior Secondary 5C college science syllabus 

documents.   

Examination of the syllabus documents was carried out by considering some generic 

documentation, the Syllabus Descriptions for each subject and then each of the ITIC 

scales in turn, investigating the connections that each syllabus showed to the scale 

under consideration.  This was slightly different to the approach taken in Chapter 8, 

where each syllabus was considered in turn, with the connections that it made to 

each of the ITIC scales then being investigated.  The new approach was adopted, 

since if only some scales were found to be relevant to the contemporary syllabuses it 

could then be recommended that only this portion of the ITIC should be used in the 

Tasmanian context. 
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9.1 ITIC INQUIRY METHODOLOGIES IN GENERIC COLLEGE 

SCIENCE DOCUMENTATION 

As was noted in the introduction to this chapter, from 2004 six college science 

subjects became available at what is termed Senior Secondary 5C level (level 5 

denotes the highest level, and C denotes that the design time for the course is 150 

hours).  All level 5 syllabuses are externally assessed pretertiary (accepted for 

university entrance) syllabuses.  For each of the college 5C science subjects the 

external assessment currently includes an exam that all students taking the subject 

must complete, and which is marked externally to the school.   

The documentation for each of the college science subjects consists of a Syllabus 

Document, which includes a Criteria Standards section, and a separate Syllabus 

Supplement document which contains advice to assist teachers in delivering the 

syllabus.  The latter document can be modified in response to consensus decisions 

arrived at in annual subject based Moderation meetings, which teachers from all 

schools delivering the syllabus must attend.   

The six Senior Secondary 5C science syllabuses are listed below, with the Syllabus 

Document given as the first reference and the Syllabus Supplement as the second.  

As in the previous chapter, these references are not repeated each time a subject is 

referred to, due to their length and potential to distract from the discussion at hand.  

The subjects are listed in alphabetical order. 

• Biology Senior Secondary 5c (Tasmanian Secondary Assessment Board, 

2003a, 2003g). 

• Chemistry Senior Secondary 5c (Tasmanian Secondary Assessment Board, 

2003b, 2003h). 

• Environmental Science Senior Secondary 5c (Tasmanian Secondary 

Assessment Board, 2003c, 2003i). 

• Physical Sciences Senior Secondary 5c (Tasmanian Secondary Assessment 

Board, 2003d, 2003j). 

  264 



• Physics Senior Secondary 5c (Tasmanian Secondary Assessment Board, 

2003e, 2003k). 

• Science of Natural Resources Senior Secondary 5c (Tasmanian Secondary 

Assessment Board, 2003f, 2003l). 

 

9.1.1 Notation Used in Examination of the College Syllabus Documents 

In the following discussion of the college science syllabus documents, the method of 

showing connections to ITIC scales that was outlined in Chapter 8 will again be 

employed.  That is: 

1. The parts of the syllabus documents that imply the use of ITIC inquiry 

methodologies will be reproduced in the text.  Italics will be used to highlight 

particular connections implied by part of this text. 

2. The ITIC scale/s that the reproduced statements can be taken as referring to 

will be shown in bold in brackets at the end of the italicised section.  The key 

that will be used to represent the different ITIC scales is: 

 (F) - Freedom in Practical Work 

(C) - Communication 

(I) - Interpretation of Data 

(S) - Science Stories 

(U) - Uncertainty in Science. 

Where the connections to ITIC scales seem to be implied, but are not explicit a '?' 

will be used. 
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9.1.2 Examination of Some Generic College Science Documentation 

The Tasmanian Qualifications Authority or TQA is the certifying body for Grade 

11/12 syllabuses in Tasmania.  A document on its website titled The New and 

Revised Science Syllabuses (Tasmanian Qualifications Authority, n.d.) reports that 

the revised TCE science syllabuses that were implemented in 2004 were designed to 

assist students to understand: 

• the nature of science and scientific knowledge (U) 

• scientific concepts, principles, laws and theories 

• the means of developing and using evidence-based conclusions (I) 

• the importance of doubt, scepticism and questioning when applied to 

understanding outcomes (U) 

• how to make scientific connections to a broad range of issues, ideas and 

technologies 

• how to use these connections and questioning skills to solve problems 

and make choices and decisions (C) in the wider contexts of our lives, 

society and the political process 

• the limitations of scientific enquiry (I, U). 

The website continues on to note that the purpose of science education is to develop 

scientific literacy, and that this involves designing syllabuses that help students to: 

• be interested in and understand the world around us 

• develop manipulative skills such as measurement, use of scale and of 

technology, the environment and the use of these sensitively (sic) 

• engage in issues with a scientific focus or issues that use scientific 

findings as support arguments (I, C) 

• be curious, to question appropriately and authoritively, to be sceptical 

and to make informed decisions in wider contexts (I, C, U) 

• act wisely and ethically when making decisions concerning the natural 

and constructed worlds 

• desire life-long learning and seek some understanding of the big 

questions. 
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The information in this introductory document indicates that the college science 

syllabuses should show definite connections to inquiry methodologies as defined by 

the ITIC questionnaire. 

The first section in each of the six college science 5C syllabus documents is titled 

Learning Statement.  It is identical in the six syllabuses, with part of it being taken 

from the research report  The Status and Quality of Teaching and Learning of 

Science in Australian Schools (Goodrum, Hackling & Rennie, 2001).  This learning 

statement is reproduced below so that connections to inquiry methodologies can be 

highlighted.   

Knowledge and understanding of science, scientific literacy and scientific 

methods are necessary for students to develop the skills to resolve 

questions about their natural and constructed world. 

 

The purpose of science education is to develop scientific literacy, which is 

a high priority for all citizens, helping them to be interested in and 

understand the world around them, to engage in discourse about science 

(C), to be sceptical and questioning of claims made by others about 

scientific matters (U, I), to be able to identify questions and draw 

evidence-based conclusions (I), and to make informed decisions (C, I) 

about the environment and their own health and well-being. 

 

Scientifically literate students can therefore describe, explain (C) and 

predict (I) natural phenomena, and can discuss the validity of their 

conclusions (C, I). This enables them to identify and understand the 

scientific and technological aspects underlying national and local issues 

and to form opinions, which are reasoned and informed (C, I, U). It also 

leads to the proper evaluation of the quality of scientific information on 

the basis of source and on the methods used to generate it (I, U). The 

study of science raises awareness of the central role that science and 

technology can play both in encouraging life long learning, and in 

enabling a student to pursue a career path to this end. 
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This generic learning statement indicates that the intent of the college science 

syllabuses is that there should be considerable inclusion of inquiry teaching 

methodologies, as defined by the ITIC Communication, Interpretation of Data and 

Uncertainty in Science scales.  

 

9.1.3 The Common College Science Criteria 

Further important generic components of the college science syllabuses are the six 

common assessment criteria (out of a total of ten criteria per subject).  The six 

common criteria are: 

1.  select and use technologies 

2.  collect and categorise information (F?, I) 

3.  plan, organise and complete activities (F?) 

4.  develop and evaluate experiments (F, I) 

5.  communicate ideas and information (C?) 

6.  demonstrate knowledge and understanding of the impact of science 

on society and the environment. 

Connections between these common criteria and the ITIC scales will be considered 

in more detail in later sections, which will examine the syllabus documents by ITIC 

scale. 

The last portion of each of the college science syllabus documents is termed Criteria 

Standards, and consists of introductory information plus a set of ten tables, one for 

each criterion.  Each of these tables consists of three columns, one column for each 

of the ratings, C, B and A.  The body of the table shows the outcomes, or descriptors, 

which describe what students need to do in order to satisfy the requirements of the 

criterion under consideration.  Thus, there are three versions of each descriptor, one 

for rating C, one for rating B and one for rating A (see Table 9.1 by way of an 

example).  In analysing the standards for connections to the ITIC scales, only the C 

rating descriptor was considered, as the B and A descriptors are always of similar 

intent to the C descriptor, and considering them as well would have artificially 

inflated the number of connections to a particular ITIC scale. 
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In the syllabus documents, bold print is used to indicate precisely where one rating is 

more difficult than the one that precedes it.  Where descriptors are reproduced in the 

current chapter, this convention is maintained. 

 

9.1.4 Connections to the ITIC - What the Generic Documents Show 

The documents considered in Section 9.1 show a number of connections to the 

Communication, Interpretation of Data and Uncertainty in Science scales.  The 

assessment criteria also show connections to the Freedom in Practical Work scale.  

There are no explicit references to the Science Stories scale. 

 

 

9.2 ITIC INQUIRY METHODOLOGIES IN COLLEGE SCIENCE 

SYLLABUS DESCRIPTIONS 

Each of the college science syllabus documents (Tasmanian Secondary Assessment 

Board, 2003a, b, c, d, e, f) contains a section headed Syllabus Description.  Although 

some of these syllabus descriptions are rather lengthy, they are reproduced here so as 

to highlight any connections that they show to ITIC inquiry methodologies.   

 

9.2.1 Biology Senior Secondary 5C Syllabus Description 

The syllabus description for Biology Senior Secondary 5C states: 

Biology in the 21st century is a rapidly growing science, accumulating a 

vast amount of information about the living world. 

In this syllabus students will develop a broad understanding of the 

important basic biological concepts and processes. This fundamental 

background will enable them to critically evaluate information, 

participate in debates and draw conclusions on contentious biological 
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issues (I, C, U). It will also provide a foundation for further studies in the 

Life Sciences. 

Biological concepts are studied at all levels of biological organisation and 

are approached through problem solving (I, U), practical and 

investigative activities (F) which involve students working as individuals 

as well as members of a group. 

 

9.2.2 Chemistry Senior Secondary 5C Syllabus Description 

The syllabus description for Chemistry Senior Secondary 5C states: 

Chemistry is about materials, their uses, their structures and properties and 

how these can be modified by chemical reactions. The study of chemistry 

enables students to enquire about the use that society makes of its 

resources, and of the impact of that use on the planet. Chemistry is a 

central science drawing on the principles of Physics and Mathematics and 

forms the basis for Agriculture, Biology, Chemical Engineering, 

Environmental Science, Forestry, Medicine and Pharmacy. Chemistry is 

used to varying extents in all other scientific disciplines. 

 

9.2.3 Environmental Science Senior Secondary 5C Syllabus Description 

The syllabus description for Environmental Science Senior Secondary 5C states: 

Environmental science explores the tension between human dependence 

on the natural environment for our continued survival and our significant 

impact on its continued functioning. Students study a range of ecosystems 

and explore how human impacts on our environment are affected by our 

values and ethics, our sense of social responsibility, economic and 

political systems (U), use of technology and scientific understanding of the 

natural and constructed world. There is an emphasis on students studying 

local environments, where possible, and on excursions and project work 

(F). The analysis of current environmental issues in a balanced and 
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scientific manner using critical thinking skills is an integral aspect of the 

syllabus (I, U, C). Students are introduced to a range of strategies for 

solving environmental problems leading them to confidently meet issues 

in the future. 

In addition to the Syllabus Description, the Syllabus Outline section of the 

Environmental Science document contains a number of points that imply the use of 

inquiry methodologies, whereas the Syllabus Outline sections for the other subjects 

are largely a list of content knowledge that should be covered.  The relevant parts of 

this Syllabus Outline section will be incorporated under the ITIC scale headings.  

However, the last of these points is noteworthy here: 

• engage students in relevant scientific enquiry and develop enjoyment 

and enthusiasm from learning in science. 

 

9.2.4 Physical Sciences Senior Secondary 5C Syllabus Description 

The syllabus description for Physical Sciences Senior Secondary 5C states: 

Physical Sciences is an integrated syllabus providing students with a 

rigorous introduction to the disciplines of physics and chemistry in the one 

course, whilst keeping all future options open with regard to further study 

in any area of science and technology. 

It builds on the traditions of enquiry that are central to the study of 

science and how an understanding of the world and the universe can be 

explained or predicted by the development of theories and models. These 

theories and models can be tested objectively against gathered evidence 

and need to be constantly re-evaluated and modified in the light of new 

evidence (I, U). 

The Physical Sciences syllabus requires students to work in practical ways 

(F?) to gain knowledge of the theoretical concepts of the course. It 

provides a framework for the understanding of physical and chemical 

phenomena ranging in scale from sub-atomic particles to the universe 

itself. 
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By providing the fundamental scientific background, students will be able 

to participate in discussions concerning contentious current scientific 

issues in an informed way (C, I, U). 

The development of scientific numeracy and literacy are key elements, 

and the basic principles that students encounter are applicable to all other 

scientific disciplines. 

The content and delivery are described through themes. The study of 

physical sciences focuses on the acquisition and further development of 

knowledge and understanding of forces and motion, structures and 

properties of materials, sources and properties of energy, chemical 

reactions and change, and on understanding the impact of science on 

society and the environment. 

Thirty per cent of the course time is spent on practical work, completed 

practical reports and evidence of data collection are required (F?). 

Courses based on this syllabus embrace the range of technological 

developments that have occurred in relation to science for data collection 

and analysis, and for simulation and investigative purposes. 

 

9.2.5 Physics Senior Secondary 5C Syllabus Description 

The syllabus description for Physics Senior Secondary 5C states: 

Physics Senior Secondary 5 further develops and extends the rigorous 

study of physics that students have experienced in Physical Sciences 

Senior Secondary 5. 

It primarily considers matter and energy and their relationship to each 

other. Students will begin to develop an understanding of the composition 

of matter and why it behaves the way it does in different situations ranging 

from the sub-atomic to the solar system. They will learn how energy is 

produced and how it is moved from one site to another and how it can be 

used and controlled. 

Students will learn that science is an evolutionary process and that it 

moves forward by either developing theories and models to explain agreed 
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observable experimental results (U) or, conversely, by devising 

experiments to test predictions and hypotheses (F?, I?). 

 

9.2.6 Science of Natural Resources Senior Secondary 5C Syllabus Description 

The syllabus description for Science of Natural Resources Senior Secondary 5C 

states: 

In this syllabus, students will develop knowledge and understanding of the 

management and research that allows the sustainable use of Tasmanian 

resources. This will be acquired through the study of sustainable resource 

management that integrates three or more (sic) following contexts: 

Agriculture, Marine/Aquaculture, Energy, Forestry and Mining. The 

analysis of resource management in a balanced and scientific manner 

using critical thinking skills is an integral aspect of this syllabus (I, U). 

 

9.2.7 Connections to the ITIC - What the Syllabus Descriptions Show  

There is a large variation in both the length and the nature of the syllabus 

descriptions for the six college science subjects.  This makes it difficult to draw valid 

comparisons between subjects, but overall it can be seen that the syllabus 

descriptions show extensive connections to the Freedom in Practical Work, 

Interpretation of Data and Uncertainty scales.  There is more limited connection to 

the Communication scale and none to the Science Stories scale. 

 

 

9.3 FREEDOM IN PRACTICAL WORK IN THE COLLEGE SENIOR 

SECONDARY 5C SCIENCE COURSES 

This section considers the extent to which each of the college science syllabus 

documents prescribes or suggests an approach that includes methodologies described 

by items from the ITIC Freedom in Practical Work scale.  Where a part of the 

syllabus document relates to both the Freedom in Practical Work and other scales, all 
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connections are shown, and are not then also counted in later sections.  This 

convention is used throughout the rest of this chapter. 

The common criteria are considered first, then each college science syllabus is 

considered in turn.  This convention will be continued in sections 9.4 through 9.7. 

 

9.3.1 Freedom in Practical Work in the College Common Criteria 

The items of the ITIC Freedom in Practical Work scale are comprehensively 

described by the first three descriptors from Criterion 4 - Develop and evaluate 

experiments - which contains a total of five descriptors.  The three descriptors that 

relate to the Freedom in Practical Work scale are reproduced as Table 9.1. 

Criterion 1 - Select and use technologies - of the six common criteria also implies 

that students should have some freedom in the practical work that they carry out, as 

this criterion requires that students develop ideas and designs and that they are able 

to adapt the selection and use of technologies.  In science classes the technologies 

that that are being used would frequently relate to practical work.  Table 9.2 shows 

the three descriptors from Criterion 1 (out of a total of five descriptors that exist for 

this criterion) which relate to Freedom in Practical Work scale items. 

Table 9.1 
The Descriptors From Common Criterion 4 - Develop and Evaluate Experiments 
(Tasmanian Secondary Assessment Board, 2003a-f), Which Relate to the Freedom in 
Practical Work scale. 
Rating C Rating B Rating A 

using an appropriate format, 
develop a relevant testable 
concept; (F) 

using an appropriate format, 
develop a relevant testable 
concept; 
 

using an appropriate format, 
develop a relevant testable 
concept; 
 

design an experiment to test a 
concept using accepted 
elements of experimental 
design to demonstrate 
understanding of how they 
influence outcomes; (F) 

design an experiment to test a 
concept using accepted 
elements of experimental 
design to demonstrate 
understanding of how they 
influence outcomes; 

design an experiment to test a 
concept using accepted 
elements of experimental 
design to demonstrate 
comprehensive understanding 
of how they influence 
outcomes; 

identify constraints including 
relevant safety and ethical 
issues which influence 
methodology and choice of 
equipment in experiments; 
(F) 

explain constraints including 
relevant safety and ethical 
issues which influence 
methodology and choice of 
equipment in experiments; 

explain constraints including 
relevant safety and ethical 
issues and adopt alternative 
methodologies and equipment 
where appropriate; 
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Table 9.2 
The Descriptors from Common Criterion 1 - Select and Use Technologies (Tasmanian 
Secondary Assessment Board, 2003a-f), Which Relate to the Freedom in Practical Work 
Scale. 
Rating C Rating B Rating A 

consider, select and use 
technologies to develop ideas 
and designs carefully, 
responsibly and 
imaginatively; (F) 

consider, select and 
appropriately use, 
technologies to develop ideas 
and designs carefully, 
responsibly and imaginatively; 
 

consider, select and 
competently use technologies 
to develop ideas and designs 
carefully, responsibly and 
imaginatively; 
 

identify changed conditions 
and adapt the selection and 
use of technologies to respond 
constructively to major 
changes; (F) 

identify changed conditions and 
adapt the selection and use of 
technologies to respond 
constructively and creatively to 
major changes; 

identify changed conditions and 
adapt the selection and use of 
technologies to respond 
constructively and fully to 
major changes; 

 

Aspects of Criterion 3 - Plan, organise and complete activities - may also relate to 

the Freedom in Practical Work scale, but are not reproduced here as the links are 

more tenuous. 

 

9.3.2 Freedom in Practical Work in the College Biology Senior Secondary 5C 

Syllabus 

The Syllabus Outline section of the Biology Syllabus (Tasmanian Secondary 

Assessment Board, 2003a) states that: 

Students should develop an understanding of scientific method throughout 

the course. 

A minimum of 30% of the course is to be spent on practical activities 

(F?), which are an integral part of the course and should be used as a 

means of teaching and consolidating the course content. 

 

9.3.3 Freedom in Practical Work in the College Chemistry Senior Secondary 

5C Syllabus 

The Syllabus Outline section of the Chemistry syllabus (Tasmanian Secondary 

Assessment Board, 2003b) states that: 
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Practical activities are an essential part of this course (F?). It is 

recommended that 30% of class time should be spent on practical 

activities. 

Additionally, the syllabus supplement (Tasmanian Secondary Assessment Board, 

2003h) includes a schematic overview diagram which has at its centre Practical 

activities (F?) and Sharing ideas (C). 

 

9.3.4 Freedom in Practical Work in the College Environmental Science Senior 

Secondary 5C Syllabus 

The Syllabus Outline section of the Environmental Science syllabus (Tasmanian 
Secondary Assessment Board, 2003c) states that: 

Practical work forms an important part of this science subject (F?). 

Additionally the syllabus prescribes a case study, with the following description: 

Students will be expected to produce one case study of new knowledge 

they have generated (F) in a selected area. The area of study will be 

selected after consultation with the teacher. 

The case study should be a personal or small group investigation carried 

out over the total equivalent of approximately four weeks of class time. 

 

9.3.5 Freedom in Practical Work in the College Physical Sciences and Physics 

Senior Secondary 5C Syllabus 

No connections not already noted. 

 

9.3.6 Freedom in Practical Work in the College Science of Natural Resources 

Senior Secondary 5C Syllabus 

The expanded syllabus outline in the Science of Natural Resources supplement 

document (Tasmanian Secondary Assessment Board, 2003l) includes a section titled 

What does it mean to work scientifically in researching resources?, which is broken 

down further to include: 
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i.  Formulate a working hypothesis based on observations of events 

(F). 

ii. Formulate a hypothesis which is testable and includes an 

independent and a dependent variable (F). 

iii. Design experiments to investigate a suitable working hypothesis 

(F). 

iv.  Recognise controlled and uncontrolled variables in experimental 

design (F). 

v.  Understand the need to minimize the impact of uncontrolled and 

sometimes unrecognised variables by the use of replicates within 

an experiment, repeating experiments and the need for 

experiments to be repeated by different groups of workers (F). 

vi.  Recognise the sorts of ethical considerations that need to be 

taken into account in designing experiments (F). 

vii.  Be able to evaluate the strengths and weaknesses of an 

experimental design (I). 

viii.  Be able to design further investigations related to an area of 

scientific investigation (F). 

ix.  Be able to state whether the results are consistent or inconsistent 

with the hypothesis being tested and if needs be state a new 

hypothesis which is consistent with the results obtained (I). 

In addition, students must complete a Resource Investigation on a topic of their 

choice, which includes collecting, analysing and presenting data (F, I).  Detailed 

information about this Resource Investigation is included in the Folio Guidelines 

(Tasmanian Qualifications Authority, 2004c).  Whilst this document is too detailed 

to reproduce here, it incorporates all the items that are included on the Freedom in 

Practical Work scale of the ITIC. 

 

9.3.7 Connections to the ITIC Freedom in Practical Work Scale 

The above documentation shows that items from the Freedom in Practical Work 

scale are encompassed by every college science subject, by virtue of the common 

criteria.  The listed descriptors from the common criteria make connections with 
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items F2, F3, F5 and F8.  Although it would seem likely that students might do this 

in relation to questions that they come up with, thus making links to F4, F6 and F7 

this is not specified in the documents. 

A number of the syllabus descriptions also refer to practical work.  Environmental 

Science and Science of Natural Resources make particularly extensive connections 

to this scale, as both subjects require students to carry out their own investigation 

over an extended time period. 

Overall, the ITIC Freedom in Practical Work scale can be considered to be very 

relevant to the college science syllabuses. 

 

 

9.4 COMMUNICATION IN THE COLLEGE SENIOR SECONDARY 5C 

SCIENCE COURSES 

This section considers the extent to which each of the college science syllabus 

documents prescribes or suggests an approach that makes connections to items from 

the ITIC Communication scale. 

 

9.4.1 Communication in the College Common Criteria 

Although Criterion 5 -  Communicate ideas and information - seems at first glance to 

align with the Communication scale, closer examination of Criterion 5 shows that 

the descriptors within it relate to the use of methods and styles of communication, 

rather than to the more discussion style of items that the ITIC Communication scale 

contains. 

One of the four descriptors for Criterion 6 - Demonstrate knowledge and 

understanding of the impact of science on society and the environment - relates to 

the ITIC Communication scale, as shown in Table 9.3. 
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Table 9.3 
The Descriptors from Common Criterion 6 - Demonstrate Knowledge and Understanding of 
the Impact of Science on Society and the Environment (Tasmanian Secondary Assessment 
Board, 2003a-f), Which Relate to the Communication Scale. 
Rating C Rating B Rating A 

demonstrate detailed 
understanding of the 
components of an issue and 
present a balanced discussion; 
(C) 

demonstrate detailed 
understanding of the 
components of an issue and 
present a logical, balanced 
discussion; 

demonstrate detailed 
understanding of the 
components of the issue and 
present a logical, concise and 
balanced discussion; 

 

9.4.2 Communication in the College Biology Senior Secondary 5C Syllabus 

No connections not already noted. 

 

9.4.3 Communication in the College Chemistry Senior Secondary 5C Syllabus 

As noted in section 9.3.3, the syllabus supplement (Tasmanian Secondary 

Assessment Board, 2003h) includes a schematic overview diagram which has at its 

centre Practical activities and Sharing ideas (C). 

 

9.4.4 Communication in the College Environmental Science Senior Secondary 

5C Syllabus 

The Syllabus Outline section of the Environmental Science syllabus document 

(Tasmanian Secondary Assessment Board, 2003c) lists some of the purposes of the 

syllabus as: 

• develop reflective and critical thinkers able to use science to examine 

issues, make socially responsible choices (I, C) and create 

environmentally sustainable and optimistic futures 

• provide opportunities for students to reflect on their personal futures and 

investigate pathways into further learning and employment 

• encourage students to discuss the local and global interdependence of 

issues (C) concerning social equity and environmental values and to 

consider their personal responsibilities in these areas (C). 

These purposes link to a number of items in the Communication scale. 
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9.4.5 Communication in the College Physical Sciences Senior Secondary 5C 

Syllabus 

The Syllabus Supplement document (Tasmanian Secondary Assessment Board, 

2003j) notes in the section titled Introduction to the Physical Sciences, that areas to 

be treated as they arise in the course structure include: 

• Observation, description, recording and communicating (C?). 

This description does not specifically include items from the Communication scale. 

 

9.4.6 Communication in the College Physics Senior Secondary 5C Syllabus 

The syllabus supplement document (Tasmanian Secondary Assessment Board, 

2003k) lists areas to be treated as they arise in the course structure as: 

• Observation, description, recording and communicating (C?). 

This description does not specifically include items from the Communication scale. 

 

9.4.7 Communication in the College Science of Natural Resources Senior 

Secondary 5C Syllabus 

Part of the syllabus outline (Tasmanian Secondary Assessment Board, 2003f) for 

Science of Natural Resources includes a consideration of What issues affect resource 

industries?  This syllabus component includes: 

a) What values lie in using Tasmanian resources? 

b) What external influences affect natural resource use? 

c) What are the ethical issues associated with resource management? 

d) What are some of the issues that raise public debate in: 

i. agriculture 

ii. marine resources/aquaculture 

iii energy 

iv. forestry 

v. mining. 

e) What is the nature of government involvement in sustainable resource 

management? 
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The syllabus supplement (Tasmanian Secondary Assessment Board, 2003l) includes 

as some agricultural examples of issues that raise public debate: 

- Genetically modified organisms 

- Alternatives to conventional agriculture (eg Organic, permaculture, 

biodynamics) 

- “Clean green image” 

- Plantation forestry 

- Pesticide use 

- Salinity 

- Social costs 

- Soil erosion 

- Biodiversity 

- Animal welfare 

- Urban sprawl onto productive land 

- Rural Sociology eg community interactions, services available 

- Change from small family farms to large corporate farming enterprises 

- Forestry plantations encroaching on farms 

- Decline of rural communities 

Later sections of the supplement include similar examples from other resource areas.  

Given the nature of these topics, it is difficult to envisage them being covered 

without discussion and explanation of opinion, as described by the ITIC 

Communication scale (C), or without students being presented with relevant case 

studies (S). 

 

9.4.8 Connections to the ITIC Communication Scale 

The generic syllabus documents and the learning statement make a number of 

connections to the Communication scale.  The syllabus descriptions for Biology, 

Environmental Science and Science of Natural Resources also make connections to 

the Communication scale.  The listed descriptor from common criterion 5 makes 

connections with items C1, C3, C4, C7 and C8.   
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The Environmental Science and Science of Natural Resources documents imply 

substantial additional connections.   

Overall, the ITIC Communication scale can be considered to be very relevant to the 

college science syllabuses. 

 

 

9.5 INTERPRETATION OF DATA IN THE COLLEGE SENIOR 

SECONDARY 5C SCIENCE COURSES 

This section considers the extent to which each of the college science syllabus 

documents prescribe or suggest an approach that makes connections to items from 

the ITIC Interpretation of Data scale. 

 

9.5.1 Interpretation of Data in the College Common Criteria 

As was the case with the Freedom in Practical Work scale, Interpretation of Data is 

represented most effectively by common Criterion 4 - Develop and evaluate 

experiments.  The last two descriptors from Criterion 4, which contains five 

descriptors in total, are shown in Table 9.4. 

 

Table 9.4 
The Descriptors from Common Criterion 4 - Develop and Evaluate Experiments (Tasmanian 
Secondary Assessment Board, 2003a-f), Which Relate to the Interpretation of Data Scale. 
Rating C Rating B Rating A 

provide evidence from 
experiments to support 
conclusions that clearly relate 
to the concept (I) 
 

provide evidence from 
experiments to validate 
conclusions that clearly relate to 
the concept; 
 

provide evidence from 
experiments to validate 
conclusions that clearly and 
rationally relate to the concept; 
 

predict results related to 
observed outcomes and 
evaluate the experiment  (I) 
 

predict results related to 
observed outcomes, evaluate 
the experiment including 
recommendations for 
followup experiments. 
 

predict results related to 
observed outcomes, evaluate 
the experiment including 
recommendations for followup 
experiments. 
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Criterion 6 also covers aspects of this criterion with one of its five descriptors being 

that shown in Table 9.5 

Table 9.5 
The Descriptors from Common Criterion 6 - Demonstrate Knowledge and Understanding of 
the Impact of Science on Society and the Environment (Tasmanian Secondary Assessment 
Board, 2003a-f), Which Relate to the Interpretation of Data Scale. 
Rating C Rating B Rating A 

form reasoned conclusions 
using relevant selected 
evidence  (I) 

form reasoned and logical 
conclusions using relevant 
selected evidence; 

form reasoned and logical 
conclusions using relevant 
selected evidence; 

 

There is also a potential reference to Interpretation of Data from Criterion 1, in the 

scenario where technologies are being used in practical work.  One of the five 

Criterion 1 descriptors is shown in Table 9.6. 

Table 9.6 
The Descriptors from Common Criterion 1 - Select and Use Technologies (Tasmanian 
Secondary Assessment Board, 2003a-f), Which Relate to the Interpretation of Data Scale. 
Rating C Rating B Rating A 

evaluate effectiveness and 
appropriateness of selected 
and adapted technologies in 
specific contexts  (I?) 
 

evaluate effectiveness and 
appropriateness of selected and 
adapted technologies in specific 
contexts; 
 

evaluate effectiveness and 
appropriateness of selected and 
adapted technologies in specific 
contexts; 
 

 

9.5.2 Interpretation of Data in the College Biology Senior Secondary 5C 

Syllabus 

Criterion 7 - Demonstrate knowledge and understanding of the chemical basis of life 

- includes the descriptors listed in Table 9.7 as two out of its five descriptors. 

Table 9.7 
The Descriptors from Biology Criterion 7 - Demonstrate Knowledge and Understanding of 
the Chemical Basis of Life (Tasmanian Secondary Assessment Board, 2003a), Which Relate 
to the Interpretation of Data Scale. 
Rating C Rating B Rating A 

analyse data relating to the 
cellular basis of life, to 
interpret relationships 
between appropriate 
variables  (I) 
 

analyse data relating to the 
cellular basis of life presented 
in a variety of formats to 
interpret relationships between 
appropriate variables; 

analyse data relating to the 
cellular basis of life presented 
in a variety of formats to 
clearly and concisely interpret 
relationships between 
appropriate variables; 

draw appropriate conclusions 
from data relating to the 
chemical basis of life  (I) 

draw appropriate conclusions 
and form generalisations from 
data relating to the chemical 
basis of life. 

draw concise and logical 
conclusions and form 
generalisations from data 
relating to the chemical basis of 
life. 
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The descriptors shown in Table 9.7 are effectively repeated in the remaining three 

Biology specific criteria, as shown in Tables 9.8 to 9.10.  Criterion 8 - Demonstrate 

knowledge and understanding of cells - includes these as two of its five descriptors; 

Criterion 9 - Demonstrate knowledge and understanding of organisms - includes 

them as two out of its six descriptors and Criterion 10 - Demonstrate knowledge and 

understanding of the interaction of organisms in their environment - lists them as two 

out of its seven descriptors: 

 

Table 9.8 
The Descriptors from Biology Criterion 8 - Demonstrate Knowledge and Understanding of 
Cells (Tasmanian Secondary Assessment Board, 2003a), Which Relate to the Interpretation 
of Data Scale. 
Rating C Rating B Rating A 

analyse data relating to cells 
to interpret relationships 
between appropriate 
variables  (I) 
 

analyse data relating to cells 
presented in a variety of 
formats to interpret 
relationships between 
appropriate variables; 

analyse data relating to cells 
presented in a variety of 
formats to clearly and 
concisely interpret relationships 
between appropriate variables; 

draw appropriate conclusions 
from data relating to cells  (I) 
 

draw appropriate conclusions 
and form generalisations from 
data relating to cells. 

draw concise and logical 
conclusions and form 
generalisations from data 
relating to cells. 

 

Table 9.9 

The Descriptors from Biology Criterion 9 - Demonstrate Knowledge and Understanding of 
Organisms (Tasmanian Secondary Assessment Board, 2003a), Which Relate to the 
Interpretation of Data Scale. 

Rating C Rating B Rating A 

analyse data relating to 
organisms to interpret 
relationships between 
appropriate variables  (I) 
 

analyse data relating to 
organisms presented in a 
variety of formats to interpret 
relationships between 
appropriate variables; 

analyse data relating to 
organisms presented in a variety 
of formats to clearly and 
concisely interpret relationships 
between appropriate variables; 

draw appropriate conclusions 
from data relating to 
organisms  (I) 

draw appropriate conclusions 
and form generalisations from 
data relating to organisms. 

draw concise and logical 
conclusions and form 
generalisations from data 
relating to organisms. 
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Table 9.10 

The Descriptors from Biology Criterion 10 - Demonstrate Knowledge and Understanding of 
the Interaction of Organisms in Their Environment (Tasmanian Secondary Assessment 
Board, 2003a), Which Relate to the Interpretation of Data Scale. 
Rating C Rating B Rating A 

analyse data relating to 
interactions of organisms and 
their environment to interpret 
relationships between 
appropriate variables  (I)  

analyse data relating to 
interactions of organisms and 
their environment presented in 
a variety of formats to 
interpret relationships between 
appropriate variables; 

analyse data relating to 
interactions of organisms and 
their environment presented in a 
variety of formats to clearly 
and concisely interpret 
relationships between 
appropriate variables; 

draw appropriate conclusions 
from data relating to 
interactions of organisms and 
their environment  (I) 

draw appropriate conclusions 
and form generalisations from 
data relating to interactions of 
organisms and their 
environment. 

draw concise and logical 
conclusions and form 
generalisations from data 
relating to interactions of 
organisms and their 
environment. 

 

9.5.3 Interpretation of Data in the College Chemistry Senior Secondary 5C 

Syllabus 

To a limited extent, prediction is implied by Criterion 7 - Demonstrate an 

understanding of the fundamental principles and theories of electrochemistry - which 

lists the descriptor in Table 9.11 as one of its four descriptors. 

 

Table 9.11 

The Descriptors from Chemistry Criterion 7 - Demonstrate an Understanding of the 
Fundamental Principles and Theories of Electrochemistry - (Tasmanian Secondary 
Assessment Board, 2003a), Which Relate to the Interpretation of Data Scale. 

Rating C Rating B Rating A 

use the electrochemical series 
to predict the reactions 
between two species under 
standard conditions  (I) 

use the electrochemical series to 
predict the reactions that occur 
when more than two species 
are present under standard 
conditions; 
 

series to predict the reactions 
that occur when more than two 
species are present under 
standard conditions and 
suggest why some variations 
are observed; 

 

Criterion 8 - Demonstrate knowledge and understanding of the principles and 

theories of thermochemistry, kinetics and equilibrium - lists the descriptors shown in 

Table 9.12 as two of its four descriptors  
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Table 9.12 

The Descriptors from Chemistry Criterion 8 - Demonstrate Knowledge and Understanding 
of the Principles and Theories of Thermochemistry, Kinetics and Equilibrium (Tasmanian 
Secondary Assessment Board, 2003a), Which Relate to the Interpretation of Data Scale. 

Rating C Rating B Rating A 

interpret energy diagrams  (I) 
 

interpret energy diagrams and 
explain that the enthalpy of 
reaction is the result of 
making and breaking of 
bonds; 
 

interpret energy diagrams and 
explain that the enthalpy of 
reaction is the result of making 
and breaking of bonds; 
 

predict or explain the 
variation in reaction rates 
using collision theory and the 
concept of catalysis  (I) 
 

predict and explain the variation 
in reaction rates using collision 
theory and the concepts of 
catalysis and the distribution 
of energy; 

predict and explain the variation 
in reaction rates using collision 
theory and the concepts of 
catalysis and the distribution of 
energy; 

 

Criterion 9, Demonstrate knowledge and understanding of the properties and 

reactions of organic and inorganic matter, lists the descriptor shown in Table 9.13 as 

one of its six descriptors: 

 

Table 9.13 

The Descriptors from Chemistry Criterion 9, Demonstrate Knowledge and Understanding of 
the Properties and Reactions of Organic and Inorganic Matter - (Tasmanian Secondary 
Assessment Board, 2003a), Which Relate to the Interpretation of Data Scale. 
Rating C Rating B Rating A 

identify the trends in the 
behaviour of elements  (I) 
 

identify and explain the trends 
in the behaviour of elements; 
 

identify and explain the trends 
in the behaviour of elements; 
 

 

The syllabus supplement includes a schematic overview diagram which has at two of 

its corners: 

• Identify patterns of chemical reactions (I) 

• Predict, and control chemical reactions (I). 

 

9.5.4 Interpretation of Data in the College Environmental Science Senior 

Secondary 5C Syllabus 

The Syllabus Outline section (Tasmanian Secondary Assessment Board, 2003c) lists 

the following points that relate to Interpretation of Data: 
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• develop reflective and critical thinkers able to use science to examine issues, 

make socially responsible choices and create environmentally sustainable and 

optimistic futures (I, U) 

• enable students to consider alternative uses for natural resources and the 

implications of such choices (I, U). 

It also includes the following statement under the sub-heading of ‘Analyse, interpret 

and draw conclusions’. 

Data is to be drawn from various content areas of the course. Students will 

be expected to see the relevance of data within the context of a particular 

environmental issue and to relate the data to the specific environmental 

and scientific concepts studied (I). They will be expected to carry out 

simple manipulations of the data (I), be able to use graphs (I), and be able 

to draw appropriate conclusions (I) from the data such as revealing trends 

and possible cause and effect relationships (I). 

Criterion 10 - Analyse, interpret and draw conclusions - strongly reflects the 

Interpretation of Data scale, listing as its four descriptors the items shown in Table 

9.14. 

Table 9.14 
The Descriptors from Environmental Science Criterion 10 - Analyse, Interpret and Draw 
Conclusions (Tasmanian Secondary Assessment Board, 2003a), Which Relate to the 
Interpretation of Data Scale. 

Rating C Rating B Rating A 

analyse data presented in a 
wide variety of formats  (I) 
 

clearly analyse data presented 
in a wide variety of formats; 
 

clearly and concisely analyse 
data presented in a wide variety 
of formats; 
 

describe relationships 
between variables  (I) 
 

describe relationships between 
multiple variables; 
 

clearly describe complex 
relationships between multiple 
variables; 

draw relevant, detailed, 
logical conclusions from 
analysing both first and 
second hand data  (I) 
 

draw relevant, detailed, logical 
conclusions from analysing 
both first and second hand data; 

draw relevant, concise, detailed 
and logical conclusions from 
analysing both first and second 
hand data; 

draw generalisations by 
analysing data from multiple 
sources  (I) 

draw generalisations by 
analysing data from multiple 
sources. 

draw generalisations by 
analysing data from multiple 
sources and extrapolate. 

 

  287 



9.5.5 Interpretation of Data in the College Physical Sciences Senior Secondary 

5C Syllabus 

Criterion 7 - Demonstrate knowledge and understanding of the principles of force 

and motion - of the Physical Sciences syllabus (Tasmanian Secondary Assessment 

Board, 2003d) lists as one of its four descriptors the ones shown in Table 9.15. 

Table 9.15 

The Descriptors from Physical Sciences Criterion 7 - Demonstrate Knowledge and 
Understanding of the Principles of Force and Motion - (Tasmanian Secondary Assessment 
Board, 2003a), Which Relate to the Interpretation of Data Scale. 

Rating C Rating B Rating A 

interpret linear graphs 
relating to force and motion  
(I) 
 

interpret and generate linear 
graphs relating to force and 
motion; 

interpret and generate linear 
and parabolic graphs, relating 
to force and motion; 

 

Criterion 8 - Demonstrate an understanding of the principles of structures and 

properties of materials - lists as one of its three descriptors, the one shown in Table 

9.16. 

 

Table 9.16 
The Descriptors from Physical Sciences Criterion 8 - Demonstrate an Understanding of the 
Principles of Structures and Properties of Materials (Tasmanian Secondary Assessment 
Board, 2003d), Which Relate to the Interpretation of Data Scale. 

Rating C Rating B Rating A 

identify similarities in the 
main groups of the periodic 
table and use them to identify 
bonding models  (I) 
 

identify similarities in the main 
groups of the periodic table and 
use them to identify bonding 
models; 
 

identify and explain in terms 
of electron configuration 
similarities in the main groups 
of the periodic table and use 
them to identify bonding 
models; 

 

 

9.5.6 Interpretation of Data in the College Physics Senior Secondary 5C 

Syllabus 

Criterion 7 - Demonstrate knowledge and understanding of Newtonian mechanics 

including gravitational fields - lists the descriptor shown in Table 9.17 as one of its 

four.  Criteria 8, 9 and 10 each contain a similar descriptor, as shown in Tables 9.18 
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to 9.20 as one of their four.  It is the reference to demonstrating an understanding of 

graphs that connects these descriptors to the ITIC Interpretation of Data scale. 

 

Table 9.17 
The Descriptors from Physics Criterion 7 Demonstrate Knowledge and Understanding of 
Newtonian Mechanics Including Gravitational Fields - (Tasmanian Secondary Assessment 
Board, 2003e), Which Relate to the Interpretation of Data Scale. 

Rating C Rating B Rating A 

demonstrate understanding of 
graphs relating to Newtonian 
Mechanics  (I) 
 

demonstrate understanding of 
graphs, and generate 
additional data from them, 
relating to Newtonian 
Mechanics; 

demonstrate understanding of 
graphs, generate additional 
data, and make generalisations 
from them relating to 
Newtonian Mechanics; 

 

 

Table 9.18 
The Descriptors from Physics Criterion 8 - Demonstrate Knowledge and Understanding 
of Electricity and Magnetism - (Tasmanian Secondary Assessment Board, 2003e), Which 
Relate to the Interpretation of Data Scale. 

Rating C Rating B Rating A 

demonstrate understanding of 
graphs relating to electricity 
and magnetism  (I) 
 

demonstrate understanding of 
the individual components of 
current electricity and 
magnetism. 
 

demonstrate understanding of 
the complex interrelationships 
between current electricity and 
magnetism. 
 

 

 

Table 9.19 
The Descriptors from Physics Criterion 9 - Demonstrate Knowledge and Understanding 
of the General Principles of Wave Motion (Tasmanian Secondary Assessment Board, 
2003e), Which Relate to the Interpretation of Data Scale. 
Rating C Rating B Rating A 

demonstrate understanding of 
graphs relating to wave 
motion  (I) 
 

demonstrate understanding of 
graphs and generate 
additional data from them 
relating to wave motion; 
 

demonstrate understanding of 
graphs, generate additional 
data, and make generalisations 
from them relating to wave 
motion; 
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Table 9.20 
The Descriptors from Physics Criterion 10 - Demonstrate Knowledge and 
Understanding of the Particle Nature of Light and Atomic and Nuclear Physics - 
(Tasmanian Secondary Assessment Board, 2003e), Which Relate to the Interpretation of 
Data Scale. 

Rating C Rating B Rating A 

demonstrate understanding of 
graphs relating to particle 
nature of light and atomic 
and nuclear physics  (I) 

demonstrate understanding of 
graphs and generate 
additional data from them 
relating to particle nature of 
light and atomic and nuclear 
physics; 

demonstrate understanding of 
graphs, generate additional 
data, and make generalisations 
from them relating to particle 
nature of light and atomic and 
nuclear physics; 

 

9.5.7 Interpretation of Data in the College Science of Natural Resources 

Senior Secondary 5C Syllabus 

Criterion 8 - Analyse, interpret and draw conclusions - lists the descriptors shown in 

Table 9.21 as its four descriptors.  This criterion is identical to Criterion 10 of the 

Environmental Science syllabus. 

 
Table 9.21 
The Descriptors from Science of Natural Resources Criterion 8 - Analyse, Interpret and 
Draw Conclusions (Tasmanian Secondary Assessment Board, 2003a), Which Relate to the 
Interpretation of Data Scale. 

Rating C Rating B Rating A 

analyse data presented in a 
wide variety of formats  (I) 
 

clearly analyse data presented 
in a wide variety of formats; 
 

clearly and concisely analyse 
data presented in a wide variety 
of formats; 

describe relationships 
between variables  (I) 
 

describe relationships between 
multiple variables; 
 

clearly describe complex 
relationships between multiple 
variables; 

draw relevant, detailed, 
logical conclusions from 
analysing both first and 
second hand data  (I) 
 

draw relevant, detailed, logical 
conclusions from analysing 
both first and second hand data; 
 

draw relevant, concise, detailed 
and logical conclusions from 
analysing both first and second 
hand data; 

draw generalisations by 
analysing data from multiple 
sources  (I) 
 

draw generalisations by 
analysing data from multiple 
sources. 
 

draw generalisations by 
analysing data from multiple 
sources and extrapolate. 
 

 

9.5.8 Connections to the ITIC Interpretation of Data Scale 

The generic syllabus documents contain extensive connections to the Interpretation 

of Data scale, as do the Learning statements.  All syllabus descriptions except that 

for Chemistry also show specific links.   
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The common criteria show links to Items I1, I2, I4, I5, I6, I7.  They also seem to 

cover I8 although they do not specifically use the word hypotheses. 

The documents for each of the individual syllabuses also make connections to the 

Interpretation of Data scale.  Overall, it seems to be the ITIC scale that is most 

relevant to the various college science syllabus documents. 

 

 

9.6 SCIENCE STORIES IN THE COLLEGE SENIOR SECONDARY 5C 

SCIENCE COURSES 

This section considers the extent to which each of the college science syllabus 

documents prescribe or suggests an approach that makes connections to items from 

the ITIC Science Stories scale. 

 

9.6.1 Science Stories in the College Common Criteria 

Criterion 6 - Demonstrate knowledge and understanding of the impact of science on 

society and the environment - covers aspects of the Science Stories scale as shown in 

Table 9.22. 

Table 9.22 
The Descriptors from Common Criterion 6 - Demonstrate Knowledge and Understanding of 
the Impact of Science on Society and the Environment - (Tasmanian Secondary Assessment 
Board, 2003a-f), Which Relate to the ITIC Science Stories Scale. 

Rating C Rating B Rating A 
demonstrate understanding of 
the link between scientific 
decision making and 
historical context (S) 
 

demonstrate understanding of 
the complexities of the link 
between scientific decision 
making and historical contexts. 
 

demonstrate understanding of 
the complexities of the link 
between scientific decision 
making and historical contexts 
from a range of perspectives. 
 

 

9.6.2 Science Stories in the College Biology Senior Secondary 5C Syllabus 

The syllabus outline section of the syllabus document (Tasmanian Secondary 

Assessment Board, 2003a) notes that: 
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Case studies can be used to engage students and integrate content from 

different parts of the course (S). 

 

9.6.3 Science Stories in the College Chemistry Senior Secondary 5C Syllabus 

Under the Periodic Table heading the syllabus supplement (Tasmanian Secondary 

Assessment Board, 2003h) lists: 

Early history - Understand Mendeleev’s contribution to the Periodic Table 

based on chemical properties and increasing atomic masses (S?). 

The names of scientists are mentioned in relation to models and laws eg Bohr's 

model of the atom, Hess's Law, Le Chatelier's Principle, but the document does not 

require any detail of their work or lives. 

This document also notes that: 

Chemistry is a dynamic science. Teachers and students are encouraged to 

discuss current research and applications of chemistry (C, S). 

A most useful resource is the Australian Academy of Science website, 

NOVA, http://www.science.org.au/nova 

• Cells with non-aqueous electrolytes 

• Conducting polymers 

• Fuel Cells 

• Hydrogen powered transport 

• Droughts 

Whilst this seems to imply the opportunity to include items from the Science Stories 

scale their use appears to be encouraged rather than mandated. 

 

9.6.4 Science Stories in the College Environmental Science Senior Secondary 

5C Syllabus 

The syllabus documents do not make any reference to this scale that has not already 

been listed.  Given the nature of the syllabus and some of the controversial areas that 

are covered, it is difficult to see how the content of this syllabus would be covered 
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without Science Stories materials - although these may relate to contemporary rather 

than more historical/traditional science examples. 

 

9.6.5 Science Stories in the College Physical Sciences Senior Secondary 5C 

Syllabus 

Although the syllabus documents do not preclude these, and areas such as atomic 

structure and the nuclear option give considerable scope, stories and the history of 

science are not specifically mentioned. 

 

9.6.6 Science Stories in the College Physics Senior Secondary 5C Syllabus 

Numerous references to scientists are made in the context of references to Law's 

such as Ohm's Law, Kirchoff's Law, Millikan's oil drop experiment, De Broglie 

wavelength, but there is no mention in the syllabus of giving more details about 

these scientists or their work. 

 

9.6.7 Science Stories in the College Science of Natural Resources Senior 

Secondary 5C Syllabus 

Criterion 7 - Demonstrate knowledge and understanding of scientific ideas relevant 

to the resource and its development - lists the descriptor shown in Table 9.23 as one 

of its three descriptors: 

Table 9.23 
The Descriptors from Science of Natural Resources Criterion 7 - , Demonstrate Knowledge 
and Understanding of Scientific Ideas Relevant to the Resource and its Development - 
(Tasmanian Secondary Assessment Board, 2003a), Which Relate to the Science Stories 
Scale. 
Rating C Rating B Rating A 

identify relevant scientific 
research and describe in 
detail the impact that it has 
on the development of 
resources (S) 

 

identify relevant scientific 
research and comprehensively 
describe the impact that it has 
on the development of 
resources. 

identify relevant scientific 
research, and comprehensively 
describe and prioritise the 
impact that it has on the 
development of resources. 
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Criterion 10 - Demonstrate knowledge and understanding of the science of resource 

management - lists the descriptors shown in Table 9.24 as three of its four 

descriptors: 

Table 9.24 
The Descriptors from Science of Natural Resources Criterion 10 - Demonstrate Knowledge 
and Understanding of the Science of Resource Management - (Tasmanian Secondary 
Assessment Board, 2003a), Which Relate to the Science Stories Scale. 
Rating C Rating B Rating A 

identify and describe ways in 
which the management of 
resources will be influenced 
by ethical, social, cultural, 
economic and political factors 
(S) 

identify and describe ways in 
which the management of 
resources will be influenced by 
ethical, social, cultural, 
economic and political factors; 

identify and clearly describe 
ways in which the management 
of resources will be influenced 
by ethical, social, cultural, 
economic and political factors; 

describe ways in which 
historical context in science 
may impact on the 
management of resources (S) 

clearly describe ways in which 
historical context in science 
may impact on the management 
of resources; 

comprehensively describe 
ways in which historical context 
in science may impact on the 
management of resources; 

identify, recommend and 
describe scientific research 
needed to benefit future 
management of resources (S) 

identify, recommend and 
describe scientific research 
needed to benefit future 
management of resources. 

identify, recommend and 
justify scientific research 
needed to benefit future 
management of resources. 

 

The following extract from the expanded syllabus outline in the syllabus supplement 

also implies the use of Science Stories to convey historical perspectives. 

a) How has resource use changed through history? (S) 

i. As technology changes so does access and use of resource 

ii. Origins of the use of the resource 

iii. Development of the use of the resource to current uses 

The syllabus supplement specifically mentions the work of research institutions 

and lists a number that are relevant to the Tasmanian context.  Therefore there 

are connections to items S1, possibly S2 and S8 of the Science Stories scale. 

A Research Report, which constitutes part of the folio required for this subject, 

requires that students complete a report on a resource that includes historical 

perspectives (S). 
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9.6.8 Connections to the ITIC Science Stories Scale 

Whilst the generic syllabus documents and the syllabus descriptions show no links 

with the Science Stories scale, the common criteria show links with items S3, S4, S5 

and S6.   

The individual subject syllabus documents make few connections to the Science 

Stories scale, except in the case of Science of Natural Resources.  However, many 

opportunities for including historical stories exist. 

Overall, the Science Stories scale may be said to have limited relevance to the 

college science syllabuses as written.  However, if Science Stories type items are 

seen as valuable, then teachers could be encouraged to include more of them in their 

teaching, and the scale might be used to monitor whether this is occurring. 

 

 

9.7 UNCERTAINTY IN SCIENCE IN THE COLLEGE SENIOR 

SECONDARY 5C SCIENCE COURSES 

This section considers the extent to which each of the college science syllabus 

documents prescribes or suggests an approach that makes connections to items from 

the ITIC Uncertainty in Science scale. 

 

9.7.1 Uncertainty in Science in the College Common Criteria 

Criterion 6 - Demonstrate knowledge and understanding of the impact of science on 

society and the environment - covers aspects of the Uncertainty in Science scale as 

shown in Table 9.25. 

Table 9.25 
The Descriptors from Common Criterion 6 - Demonstrate Knowledge and Understanding of 
the Impact of Science on Society and the Environment (Tasmanian Secondary Assessment 
Board, 2003a-f), Which Relate to the ITIC Uncertainty in Science Scale. 
Rating C Rating B Rating A 

describe tensions between 
ethical, social, cultural, 
economic and political 
influences and comment on 
their impacts on decisions 
(U) 

clearly describe tensions 
between ethical, social, cultural, 
economic and political 
influences and comment on 
their impacts on decisions; 

clearly describe tensions and 
connections between ethical, 
social, cultural, economic and 
political influences and 
comment on their impacts on 
decisions; 
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9.7.2 Uncertainty in Science in the College Biology, Chemistry, Environmental 

Science and Science of Natural Resources Senior Secondary 5C 

Syllabuses 

No additional connections were noted. 

 

9.7.3 Uncertainty in Science in the College Physical Sciences and Physics 

Senior Secondary 5C Syllabus 

The syllabus supplement document lists Uncertainty in measurements as an area to 

be treated as it arises in the course structure.  However, this is not really in keeping 

with the intent of the ITIC scale. 

 

9.7.4 Connections to the ITIC Uncertainty in Science Scale. 

There are extensive connections to this scale in the generic syllabus documents.  All 

syllabus descriptions except that for Chemistry make connections to it and common 

criterion 6 makes connections to items U1 and U4. 

 

 

9.8 RELEVANCE OF THE ITIC TO THE TASMANIAN COLLEGE 

SCIENCE SUBJECTS 

The information presented in this chapter indicates that that there are extensive 

connections between the college science syllabus documents and the ITIC scales.  

The data collected by examining the syllabus documents for the six college science 

subjects is summarised in Table 9.26.  Examination of Table 9.26 shows that 

Interpretation of Data is the ITIC scale that has the greatest relevance to the college 

science syllabus documents, and that for all subjects except Science of Natural 

Resources, Interpretation of Data is the scale that the most connections exist for. 
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Table 9.26 

Number of References to ITIC Inquiry Methodologies in the College Science Syllabus 
Documentation. 

 F F? C C? I I? S S? U U? Total

generic 6 2 9 1 16 1 1 0 8 0 44 

Biology  1 1 1 0 10 0 1 0 2 0 16 

Chemistry  0 2 3 0 6 0 1 1 0 0 13 

Environmental Science  2 1 4 0 13 0 0 0 4 0 24 

Physical Sciences  0 2 1 1 4 0 0 0 2 0 10 

Physics  0 1 0 1 4 1 0 0 1 0 8 

Science of Natural 
Resources 

8 0 1 0 8 0 7 0 1 0 25 

Total 17 9 19 3 61 2 10 1 18 0 140 

 

The number of connections that can be made from the ITIC scales to the college 

science documents indicate that the methodologies that the ITIC measures are valued 

in the college science courses.  The 44 connections that the generic documents show 

emphasise that the Freedom in Practical Work, Communication, Interpretation of 

data and Uncertainty in Science scales are valued across all syllabuses.  Therefore, 

the ITIC would be a relevant and valuable instrument to use with Tasmanians 

college science classes.   

Whilst there are relatively few explicit references to items from the Science Stories 

scale shown in Table 9.26, it is difficult to envisage how teachers would not include 

behaviours relating to items from this scale when presenting items such as scientific 

decision making, historical context, case studies and the applications and impact of 

current research.  Therefore this scale would also seem to be worthy of inclusion in 

any survey of college science classes.  In fact, it may be of particular relevance if this 

is an area that teachers and syllabus writers tend to neglect, as it would allow them to 

specifically monitor whether they are including Science Stories type materials. 

Further examination of the data in Table 9.26 indicates that Environmental Science 

and Science of Natural Resources are the subjects that show the most connections to 

the ITIC.  However, it is necessary to exercise caution in making any comparison 
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between subjects, as there is considerable variation in the amount of detail that is 

included in the various syllabus documents.  A particular syllabus may seem to show 

more ITIC connections, but this may be a factor of the writers for this subject 

including greater detail, rather than an indication of the intent to incorporate greater 

amounts of the behaviours under consideration. 

Overall, the number of ITIC connections that the data collected in this chapter show 

can be taken as indicating that inquiry methodologies, as defined by the ITIC, were 

valued enough for syllabus writers to specifically include either direct or indirect 

reference to them.   

 



CHAPTER 10 - INQUIRY METHODOLOGIES WITHIN THE 

TASMANIAN ESSENTIAL LEARNINGS 

CURRICULUM DOCUMENTS  

This chapter adopts a similar approach to Chapters 8 and 9, but examines a different 

set of curriculum documents, the Tasmanian Essential Learnings Framework, in 

order to determine whether the Essential Learnings either suggest or mandate the use 

of the inquiry methodologies defined by the ITIC.  This examination was completed 

with a view to determining the potential usefulness of the ITIC instrument in the 

current Grade 7-10 context in Tasmania. 

As has been mentioned previously, from 2005 all Tasmanian government schools, 

together with schools from the Catholic Education system and some independent 

schools, adopted the Essential Learnings Framework curriculum documents as the 

basis for developing courses for all students up to the end of Grade 10.  Therefore, in 

considering contemporary Tasmanian science curriculum documents it is necessary 

to examine the Essential Learnings for Grades K-10 students and the TQA college 

science syllabuses for Grades 11 and 12.  This chapter's examination of the Essential 

Learnings completes the examination of contemporary Tasmanian science 

curriculum documents that was commenced in Chapter 9.  As was the case in 

Chapter 9, the ideas behind the Assessment scale included in the original ITIC 

instrument will not be considered here, as this scale did not show acceptable 

reliability. 

 

10.1 INQUIRY METHODOLOGIES IN THE ESSENTIAL LEARNINGS 

FRAMEWORK DOCUMENTS 

The Essential Learnings Framework (Tasmania, Department of Education, 2002, 

2003) consists of five Essential Learnings (ELs), which are subdivided to 18 Key 

Elements.  An overview of the Essential Learnings Framework is shown in Table 

10.1.  All Essential Learnings documents can be downloaded from 

http://www.ltag.education.tas.gov.au/references.htm#assessing (retrieved December 

17, 2005). 
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Table 10.1 
An Overview of Tasmania's Essential Learnings Framework. 

ESSENTIAL 
LEARNINGS 

 

CULMINATING 
OUTCOMES 

We want our students to be: 
 

KEY  ELEMENT 
OUTCOMES 

 

Inquiry 
Understands the process of inquiry and uses appropriate techniques for 
posing questions, defining problems, processing and evaluating data, 
drawing conclusions and flexibly applying findings to further learning and 
to creating new solutions. 

THINKING 
 

Inquiring and reflective 
thinkers 
able to reason, question, make 
decisions and solve complex 
problems. As reflective 
thinkers, they will be 
empathetic and able to make 
ethical decisions about issues, 
events and actions. 
 

Reflective thinking 
Understands that reflective thinking is a deliberate process, affected by 
emotions and motivations, and that it is used to develop and refine ideas 
and beliefs and to explore different and new perceptions. 

Being literate 
Understands, uses and critically evaluates non-verbal, spoken, visual and 
print communication practices of the world in which they live. 
Being numerate 
Understands and has the confidence and disposition to use the 
mathematical concepts and skills required to meet the demands of life. 
Being information literate 
Understands how to effectively access, interpret, transform, create, 
communicate, evaluate and manage information in ethical ways using a 
range of sources. 

COMMUNICATING 
 

Effective communicators 
able to create, communicate 
and convey ideas clearly and 
confidently, using the full range 
of symbolic systems. They will 
interact critically with 
communications created by 
others, interpreting linguistic, 
numerical and graphic 
information with judgement 
and discernment. 
 

Being arts literate 
Understands the purposes and uses of a range of arts forms – visual arts, 
media, dance, music, drama and literature, and how to make and share 
meaning from and through them. Uses with confidence and skill the codes 
and conventions of the art form best suited to their expressive needs. 
Building and maintaining identity and relationships 
Understands the ways in which heredity, culture, community and personal 
choice shape identity and relationships and is able to build and maintain 
resilient, productive relationships. 
Maintaining wellbeing 
Understands the interdependence of the physical, mental, emotional, social 
and spiritual dimensions of wellbeing and knows how to make wise 
choices and contribute positively to the overall wellbeing of self and 
others. 
Being ethical 
Understands that to be ethical requires caring about the consequences of 
actions of self and others and that the quality of ethical judgments is based 
upon reasoning and the application of ethical principles. 

PERSONAL 
FUTURES 
 

Self-directed and ethical 
people 
having a positive vision for 
themselves and their future, 
acting 
with moral autonomy and 
contributing to constructive 
futures for themselves and 
others. 
 

Creating and pursuing goals 
Understands how to create, set and review goals for life and how to work 
with others to achieve own and shared goals. 
Building social capital 
Understands the interdependence of individuals, groups and social 
organisations and participates positively in the building of ‘good and just’ 
communities. 
Valuing diversity 
Understands the interdependence of our world, values its diversity and acts 
for a more inclusive society. 
Acting democratically 
Understands and participates effectively in democratic decision-making 
processes and civic life. 

SOCIAL 
RESPONSIBILITY 
 

Responsible citizens 
prepared to participate actively 
in a democratic community, 
valuing diversity and acting for 
a just and equitable society. 
 

Understanding the past and creating preferred futures 
Understands that investigating the past and reflecting on the present are 
essential to understanding self and others and creating preferred futures. 
Investigating the natural and constructed world 
Understands how to scientifically investigate the natural and constructed 
world, appreciating the tentative nature of knowledge and the value of 
creative, imaginative and speculative thinking. 
Understanding systems 
Understands that the social, natural and constructed world is made up of a 
complex web of relationships or systems. 
Designing and evaluating technological solutions 
Understands how to design, make and critically evaluate products and 
processes in response to human needs and challenges. 

WORLD 
FUTURES 
 

World contributors 
willing to consider the 
consequences of scientific and 
technological innovations, 
make thoughtful decisions 
about their application, and act 
to maintain, protect and 
enhance local and global 
environments. 
 

Creating sustainable futures 
Understands the environmental principles and ethical issues involved in 
creating and working towards sustainable futures. 
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A Key Element Outcome document exists for each of the 18 Key Elements.  These 

Key Element Outcome documents describe five standards at which students can 

achieve, from entering school up to the end of Grade 10.   

Nine of the Key Elements are currently scheduled to be calibrated.  In  this 

calibration process, each standard within a Key Element is divided to three 

progression levels, thus giving a total of 15 different levels that a student can achieve 

at on each of the calibrated Key Elements.  Reporting is being phased in between 

2005 and 2009, but by 2009, schools will be required to report to parents, and to the 

system, the progression level that each student has achieved on each of the calibrated 

outcomes.   

The syllabus documentation for the Essential Learnings consists of two principal 

documents, which are referred to as Essential Learnings Framework 1, or ELF1, 

(Tasmania, Department of Education, 2002) and Essential Learnings Framework 2, 

or ELF2, (Tasmania, Department of Education, 2003).   

ELF1 consists of a statement of values and purposes, a description of the learning 

that is recognised as essential and a set of principles to guide educational practice.  It 

takes each of the five Essential Learnings (ELs) in turn and gives details of the 

territory which that EL covers, before progressing on to consider the nature of the 

Key Elements that sit under that EL.  This gives readers an understanding of the 

knowledge, skills and dispositions that each Key Element aims to develop in 

students.   

ELF2 consists of an introductory document (Introduction to the Outcomes and 

Standards), the 18 Key Element Outcome sheets and a document titled Learners and 

Learning Provision, which sets out to capture, in brief, some of the most pertinent 

advances in the understanding of how learning best occurs and what is known about 

the distinctive features of learners at different stages in their educational experience.  

The 18 Key Element Outcome sheets outline expectations for student achievement at 

Standards 1 through 5.   

In the discussion of connections to the ITIC, the same methodology that was 

employed in the previous two chapters, and which is outlined in Section 9.1.1, will 

be used to highlight connections between the curriculum documents and ITIC scales.  

That is, text which indicates connections to ITIC scales will be italicised and the 
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letter/s representing the corresponding ITIC scale will be shown at the end of the 

relevant text.   

The documents that will be considered in the following discussion are the ELF1 

booklet and the 18 Key Element Outcome sheets contained in ELF2.  As was the 

case when considering syllabus documents in the two previous chapters, the full 

author reference will not always be given when discussing ELF1 and ELF2, as its 

continual inclusion can detract from readability.  Where a particular Key Element or 

its outcome sheet shows no connections to the ITIC a separate section will not be 

included for that Key Element. 

For the standards sections of the Key Element Outcome documents, ITIC 

connections, are only shown at the end of Standard 5.  The intent of the documents is 

that Standard 5 encompasses all the preceding standards as well as what is written 

for Standard 5 itself, so the documentation for the lower standards was taken into 

consideration when drawing these connections.  Coding each standard separately 

may have resulted in an over representation of some ITIC scales. 

In considering the Essential Learnings documents a more general interpretation of 

the ITIC scale items was made, particularly in the case of the Science Stories and 

Uncertainty in Science scales.  For example, item U7, We learn that scientific 

information can change, was regarded more as, We learn that information can 

change.  This approach was taken as the Essential Learnings documents are written 

to encompass all disciplines rather than with just the discipline of Science in mind.  

If this approach had not been employed then Essential Learnings syllabus material 

that reflected the intent of the ITIC scales might have been disregarded due to it not 

including the word science as a qualifier.   

 

10.1.1 General Connections Between the Essential Learnings and the ITIC 

A brochure published for parents (Tasmania, Department of Education, undated) 

notes the following under the heading Why redevelop curriculum?: 

Nationally and internationally, there has been a growing recognition that 

young people are going to need new knowledge, skills and dispositions to 

enable them to deal successfully with a rapidly changing world. Not only 

are we faced with massive economic, political and social change, but also 
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the pace of change itself has increased, so that knowledge learned today is 

likely to be superseded by new findings tomorrow.  Knowing how to learn 

throughout life and being adaptable and confident are essential 

requirements for learners who can participate in and contribute to a 

globally connected world. 

Under the heading What is essential? the brochure goes on to add: 

To be able to learn new things as they arise and to learn throughout life, 

learners need to develop high-level skills in thinking, communicating, 

investigating, deliberating, reflecting and making judgements.   

It is not sufficient to give learners knowledge and skills; education should 

also foster attitudes, beliefs and a preparedness to take action.  Living and 

working in a complex future world, learners will need to be adaptable and 

have the confidence and fundamental skills to take on new learning 

throughout their lives. 

In brief, this statement can be looked on as the justification behind the 

implementation of the new Tasmanian curriculum.  It lends support to the use of 

inquiry methodologies, as defined by the ITIC, across all areas of learning, including 

Science. 

 

 

10.2 CONNECTIONS TO ITIC SCALES WITHIN THE THINKING 

ESSENTIAL LEARNING 

The Thinking EL contains two Key Elements: 

• Inquiry. 

• Reflective Thinking. 

 

10.2.1 Description of Thinking from ELF1 

The description of the Thinking EL contained in ELF1 includes the following: 

Inquiry includes identifying and clarifying issues, and gathering (F), 

organising, interpreting and transforming information (I).  It encompasses 
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the processes of creatively, imaginatively and inquisitively thinking about 

possibilities; analysing, synthesising and evaluating proposed solutions; 

and explaining and justifying decisions (I, C).  The skills of inquiry can be 

used to clarify meaning, draw appropriate comparisons and make 

considered decisions . . .  Imaginative, caring and empathetic thinkers 

listen to others, share ideas, explore areas of disagreement and generate 

constructive solutions to issues (C, I).  Such thinkers bring an altruistic 

and ethical dimension to considering alternatives and making decisions, 

being prepared to address human problems that face us as global citizens . 

. .  It is also necessary to understand, however, that inquiry and reflection 

are usually more effective when undertaken with a group (C) (Tasmania, 

Department of Education, 2002, p. 14). 

 

10.2.2 Description of the Inquiry Key Element from ELF1 

The information that ELF1 contains about the Inquiry Key Element includes: 

Effective learners need the capacity to ask good questions, persevere in a 

line of inquiry (F?), be systematic, set goals, and plan and follow a course 

of action (F). They need the skills to organise timeframes and time usage, 

to conduct their own investigations (F) and to predict and explore possible 

consequences (I) and outcomes.  Through experience with others, learners 

come to understand that undertaking the process of inquiry collaboratively 

(C) is likely to result in more effective learning and the achievement of 

more appropriate solutions.  Learners need to understand the value of 

inquiry in dealing with issues, events and actions, and the importance of 

developing criteria to evaluate quality, relevance, reliability, truth, 

accuracy and effectiveness (I).  These are essential skills for learners in an 

age of consumerism and ready access to vast amounts of information.  In 

addition, learners need to understand how society and culture affect 

information and its sources (S?, U). The ability to communicate what has 

been learnt and thought about (C?), and to do so in a consistent, coherent, 

relevant and persuasive way, is essential in enabling learners to participate 
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fully in schools, communities and workplaces.  (Tasmania, Department of 

Education, 2002, p. 14-15) 

ELF1 goes on to give further information about the Inquiry Key Element under five 

sub-headings.   

Under the Posing problems sub-heading, ELF1 includes: 

Learners need to identify why there is a problem, what the problem is, 

what the present context is (F, S?) and what purpose, interest or need 

makes it desirable to improve the present situation (U?).  Learning is more 

effective, interesting and relevant when learners consciously choose and 

use particular methodologies, devise their own strategies to deal with 

challenges, solve problems (F), and apply their understandings to real-life 

contexts (I) (Tasmania, Department of Education, 2002, p. 15). 

Under the Gathering information sub-heading, ELF1 includes: 

The learner's ability to transform, synthesise and evaluate the data 

obtained (I), and to make judgements about its authenticity and relevance 

(U), is a critical aspect of dealing with information (Tasmania, Department 

of Education, 2002, p. 15). 

Under the Thinking about possibilities sub-heading, ELF1 includes: 

Learners need to seek (F?), analyse and evaluate evidence on the basis of 

careful reasoning (I) when considering possible solutions.  At the same 

time, however, learners need to recognise that being curious, creative and 

imaginative enables them to see new ways of doing things and helps them 

to deal flexibly with changing contexts. Learners who explore alternatives 

(U) and recognise possibilities, who are open to new ideas, and who 

actively problem-seek and set challenges when planning their own 

learning, are able to generate constructive and creative solutions to 

problems and use their learning for a variety of new purposes (Tasmania, 

Department of Education, 2002, p. 15). 

Under the Making decisions sub-heading, ELF1 includes: 

Learners need to consider the results of proposed solutions, and 

understand how to evaluate benefits, uncover underlying assumptions and 
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assess risks and limitations (I, U).  They need to learn how to judge the 

importance of consequences, think about the merits of various options and 

decide which option is best in the light of likely outcomes. They also need 

to understand that investigations and analyses are influenced by personal 

points of view, biases and emotions (I, U) (Tasmania, Department of 

Education, 2002, p. 16). 

Under the Justifying conclusions sub-heading, ELF1 includes: 

Understanding how to reach, explain and justify conclusions in a fair-

minded way (I) helps learners to work cooperatively and collaboratively 

with others (C) in seeking optimum solutions to shared problems.  

Achieving this goal includes: being able to present ideas accurately, 

clearly and persuasively; understanding how to identify and frame 

questions, giving reasons for opinions, distinguishing good reasons from 

bad ones (C, I); and establishing effective criteria to evaluate arguments 

and information (I, U).  It also involves learners developing skills to 

assess the reasonableness of ideas and the accurate use of evidence (I) 

(Tasmania, Department of Education, 2002, p. 16). 

 

10.2.3 Connections to ITIC Scales from the Inquiry Key Element Outcome  

The Key Element Outcome descriptor for Inquiry contained in ELF2 states: 

Understands the process of inquiry and uses appropriate techniques for 

posing questions, defining problems (F?), processing and evaluating data, 

drawing conclusions (I) and flexibly applying findings (U) to further 

learning and to creating new solutions. 

The Performance Guidelines, which form part of the Inquiry Key Element Outcome 

document, state that: students who are inquiring thinkers: 

• Understand that inquiry processes are based on skills, methodologies 

and key concepts from the disciplines. 

• Understand how to pose and define a problem, clarify the issues 

involved and select and monitor the most effective process to use (F). 
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• Understand how to decide information needs, and collect, organise and 

evaluate data (F, I). 

• Understand how to consider new possibilities and create new solutions 

(I). 

• Understand how to evaluate benefits of proposed solutions, uncover 

underlying assumptions and assess risks and limitations (I, U). 

• Understand how to explain and justify conclusions in a fair-minded way 

(I, C). 

Table 10.2 lists the five standards statements from the Inquiry Key Element 

Outcome.  As was mentioned earlier, connections to ITIC methodologies are shown 

only at the end of Standard 5.  Standard 5 is the endpoint that all earlier work 

scaffolds students toward, and the intent of the Key Element Outcome documents is 

that Standard 5 encompasses the descriptors for all previous standards. 

Table 10.2 

The Five Standard Statements for Inquiry From ELF2 (Tasmania, Department of  
Education, 2003) 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
observation and 
inquiry can be 
used to guide 
action and solve 
problems in 
deliberate ways.  
 
 

Understands that 
investigations 
need to be 
conducted 
through logical 
processes for 
collecting 
information, 
drawing 
conclusions and 
arriving at 
solutions. 
 
 

Understands how 
to plan and carry 
out investigations 
relevant to 
questions that 
have been 
identified using 
inquiry strategies 
and processes. 
 

Understands the 
processes of 
issues 
identification, 
data collection, 
selection of 
strategies, 
evaluation of 
findings and 
creation of 
solutions . 
 
 

Understands how 
to design and 
conduct 
investigations 
through 
deliberate 
research, drawing 
on the 
understanding 
processes and 
skills derived 
from disciplines 
and reflecting 
upon the quality 
of conclusions 
and 
methodologies 
used  (F, I, U). 
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10.2.4 Description of the Reflective Thinking Key Element from ELF1 

The information that ELF1 contains about the Reflective Thinking Key Element is 

divided to three sub-headings.   

Under the Thinking about thinking and learning sub-heading, ELF1 states in part: 

Reflective learners compare their thinking with that of others (C), to select 

appropriate mental processes, to relate experience to prior learning and to 

see personal relevance (Tasmania, Department of Education, 2002, p. 17) 

Under the Understanding and caring about different perspectives sub-heading, ELF1 

states in part: 

Appreciating what part emotions, beliefs and cultural perspectives play in 

colouring opinions and judgements assists learners to understand their 

views and those of others. In order to deal successfully with the 

complexities of living and working in the present and future world, 

learners need to accept and value differences based on culture, race, 

gender, (dis)ability and appearance, and need to be willing to explore 

alternative views to assess their validity and usefulness (U). . . . 

Respecting others and their viewpoints, acknowledging different 

perspectives, listening carefully and attentively, being willing to share 

ideas (C), and being prepared to canvass areas of disagreement are 

fundamental to effective working and learning together (Tasmania, 

Department of Education, 2002, p. 17). 

Under the Ethical reasoning sub-heading, ELF1 states in part: 

There will be many encounters for each learner that will require them to 

think ethically about issues, events and actions.  Learners need to be able 

to identify the foundations upon which they and others base judgements 

about what is right and wrong and to analyse and evaluate principles that 

underpin ethical standpoints and values (I, U). They can then argue an 

ethical position with sound logic and reasoning (C).  They need to be able 

to evaluate ethical dilemmas in their lives or in the world, take a stand 

that reflects their personal value systems, and explain and defend their 

position  (U, C) (Tasmania, Department of Education, 2002, p. 18). 
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10.2.5 Connections to ITIC Scales from the Reflective Thinking Key Element 

Outcome  

The Key Element Outcome descriptor for Reflective Thinking contained in ELF2 

states: 

Understands that reflective thinking is a deliberate process, affected by 

emotions and motivations, and that it is used to develop and refine ideas 

and beliefs and to explore different and new perceptions (U). 

The Performance Guidelines for the Reflective Thinking Key Element Outcome 

document state that reflective students understand: 

• That decisions about right and wrong choices are based on an agreed 

set of ethical principles (U). 

• How to think about, describe and improve own thinking and learning. 

• In what ways experiences, emotions, beliefs and cultural perspectives 

affect thinking and create differences between self and others (U). 

• The importance of being open to new possibilities and perceptions 

pertaining to the ideas of self and others. 

• That dialogue is essential in developing fair-minded positions (C). 

Table 10.3 lists the standards from the Reflective Thinking Key Element 

Outcome.   

Table 10.3 

The Five Standard Statements for Reflective Thinking From ELF2 (Tasmania, Department 
of  Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands how 
to use simple 
strategies that 
assist in 
organising 
thoughts, and 
how to modify 
their own actions 
in the light of 
reflection. 
 

Understands that 
they can solve 

problems in ways 
that are particular 
to them or their 
group, and can 

use tools 
provided. 

 

Understands how 
to use particular 
thinking and 
problem-solving 
strategies, 
recognising that 
emotions, 
motivations and 
beliefs of 
themselves and 
others influence 
the process of 
making choices. 

Understands how 
to choose from a 
range of thinking 
strategies and use 
them to solve 
problems, make 
personal and 
group decisions 
and evaluate their 
effectiveness. 
 
 

Understands how 
to deliberately 
select and apply 
thinking 
strategies to the 
consideration of 
alternative 
perceptions and 
value positions, 
and evaluate the 
quality of 
personal choices 
about such issues 
(U, I). 
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10.2.6 ITIC Inquiry Methodologies in the Thinking EL 

The above consideration shows that the Thinking EL contains extensive reference to 

inquiry methodologies as defined by the ITIC.  This is perhaps not surprising given 

that one of the Key Elements of the Thinking EL is termed Inquiry.   

The ITIC scale that the Thinking EL makes the most connections to is Interpretation 

of Data, followed by Uncertainty in Science and then Communication and Freedom 

in Practical Work.  There is very limited connection to the Science Stories scale. 

The connections that the Thinking EL shows to ITIC items are summarised below: 

• Freedom in Practical Work scale - connections to all items except F1 (We 

carry out practical investigations that take more than one lesson), but it is 

difficult to envisage how students would complete research such as that 

referred to without taking more than one lesson, so item F1 seems to be 

implied. 

• Communication - connections to all scale items. 

• Interpretation of Data - connections to all scale items. 

• Science Stories - connections to S3 and S4, possible connections to S5 and 

S6. 

• Interpretation of Data - definite connections to items U1, U3, U4, U5, U6, 

U7, with less connection to U2 and no real connection to U8 (Our teacher 

questions some scientific theories), although the type of behaviour implied by 

U8 would seem to be valuable in developing the skills referred to in the 

Thinking EL. 

Taking into consideration both the number of connections that the Thinking EL 

makes to ITIC methodologies and the number of ITIC items that these connections 

relate to, the above data indicate that the ITIC would be a valuable instrument to use 

to assess the extent to which the intent of the Thinking EL is being met by the 

methodologies used in science classrooms.  As there are few connections to the 

Science Stories scale, researchers may wish to omit this scale when collecting data.  

However, given that behaviours from the Science Stories scale may be useful in 

setting contexts for students, it is recommended that consideration be given to 

including this scale. 
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10.3 CONNECTIONS TO ITIC SCALES WITHIN THE 

COMMUNICATING ESSENTIAL LEARNING 

The Communicating EL contains four Key Elements: 

• Being Literate. 

• Being Numerate. 

• Being Information Literate. 

• Being Arts Literate. 

 

10.3.1 Description of Communicating from ELF1 

The description of the Communicating EL contained in ELF1 includes the following: 

Communicating, in this instance, focuses on how symbol systems are used 

to communicate meaning and influence opinion (U) . . . 

. . . Richer forms of symbol use enable more complex and flexible ways of 

thinking and of relating with others. Language is essential to being able to 

reflect on, accommodate and refine what has been learnt and how it was 

learned (C, I?).   

Symbolic representation is not neutral. It can be constructed in certain 

ways for particular effects (U).  In contemporary education it is vital to 

provide learners with the skills to interpret critically the images and 

messages that are part of their lives (I) (Tasmania, Department of 

Education, 2002, p. 20). 

 

10.3.2 Description of the Being Literate Key Element from ELF1 

The information that ELF1 contains about the Being literate Key Element includes: 

Learners develop the basic skills of listening, speaking (C), reading, 

viewing and writing for a range of purposes . . . Learners need to be able 

to use language to compose creatively and to comprehend critically (I).  

They need to recognise its impact on them and make judgements about 

what is said and shown to them (Department of Education, 2002, p. 20). 
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10.3.3 Connections to ITIC Scales from the Being Literate Key Element 

Outcome 

The Key Element Outcome descriptor for Being Literate contained in ELF2 states: 

Understands, uses and critically evaluates non-verbal, spoken, visual and 

print communication practices of the world in which they live (C, I, U). 

One of the seven Performance Guidelines for the Being Literate Key Element 

Outcome states: 

Apply evaluative criteria to the selection, interpretation, analysis, 

reorganisation and synthesis of information from a variety of sources and 

formats (I, U). 

Table 10.4 lists the standards from the Being Literate Key Element Outcome.   

Table 10.4 

The Five Standard Statements for Being Literate From ELF2 (Tasmania, Department of 
Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands 
some of the ways 
that 
communication 
works and how 
non-verbal, 
spoken, written 
and visual forms 
carry messages. 

Understands how 
to use basic 
structures, 
features and 
strategies to 
communicate in a 
variety of 
contexts for a 
range of 
purposes. 

Understands how 
to select and use 
communications 
for different 
audiences, 
purposes and 
contexts. 

Understands how 
to construct and 
deconstruct 
communications 
designed for 
particular effects. 

Understands the 
sophisticated 
ways in which 
communications 
may be varied 
and combined to 
fulfil a range of 
requirements for 
learning, life and 
work (I, U). 

 

10.3.4 Description of the Being Numerate Key Element from ELF1 

The information that ELF1 contains about the Being Numerate Key Element 

includes: 

Being numerate not only includes numeracy skills and understandings, but 

it also involves the critical and life-related aspects of being able to 

interpret information thoughtfully and accurately when it is represented in 

numerical and graphic form (I). This aspect of numeracy is akin to critical 

literacy – being able to recognise that information can be constructed to 

influence the reader or viewer (U). Developing the critical skills to 
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analyse quantitative and spatial information when it is presented in 

various forms – for example graphs, tables, spreadsheets, charts and 

comparative models  (I) – enables young people to make more informed 

decisions, personally in everyday life, as consumers and as citizens 

(Tasmania, Department of Education, 2002, p. 21). 

 

10.3.5 Connections to ITIC Scales from the Being Numerate Key Element 

Outcome 

The Key Element Outcome descriptor for Being Numerate contained in ELF2 states: 

Understands and has the confidence and disposition to use the 

mathematical concepts and skills required to meet the demands of life (I). 

Table 10.5 lists the standards from the Being Numerate Key Element Outcome.   

Table 10.5 

The Five Standard Statements for Being Numerate From ELF2 (Tasmania, Department of  
Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
mathematical 
language and 
ideas can be used 
to describe 
situations 
encountered 
through play and 
interaction with 
the environment. 

Understands how 
to purposefully 
use and explain 
informal ways of 
thinking and 
acting 
mathematically in 
familiar 
situations. 

Understands how 
to explore, refine 
and communicate 
more effective 
ways of thinking 
and acting 
mathematically in 
familiar 
situations. 

Understands how 
to consistently 
select and justify 
effective 
mathematical 
strategies and 
choose the most 
effective strategy 
for 
communicating 
information and 
solving problems 
in a variety of 
situations. 

Understands how 
and when to use 
mathematical 
ideas effectively 
and critically 
when interpreting 
and 
communicating 
information and 
solving problems 
encountered in 
life (I). 

 

10.3.6 Description of the Being Information Literate Key Element from ELF1 

The information that ELF1 contains about the Being Information Literate Key 

Element includes: 

Information is not neutral (U) and it is essential that learners select 

sources wisely, interact critically with multimedia communications and 

develop insight into their intentions, constructions and effects. Only then 
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will they be able to make decisions about the authenticity and safe use of 

materials (I, U). 

With relatively open access to information on a global scale, especially 

outside school, young people need help to develop discernment, 

judgement and discrimination, so that they challenge assumptions, 

question validity and test ideas and beliefs against their personal and 

community codes of values (I, U) (Tasmania, Department of Education, 

2002, p. 22). 

 

10.3.7 Connections to ITIC Scales from the Being Information Literate Key 

Element Outcome 

The Key Element Outcome descriptor for Being Information Literate contained in 

ELF2 states: 

Understands how to effectively access, interpret, transform, create, 

communicate, evaluate and manage information in ethical ways, using a 

range of sources (I, U). 

Table 10.6 lists the standards statements for Being Information Literate. 

Table 10.6 

The Five Standard Statements for Being Information Literate From ELF2 (Tasmania, 
Department of Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
interesting, 
entertaining and 
useful 
information can 
be obtained and 
generated 
through 
communication 
technologies, and 
begins to explore 
technology in 
appropriate ways. 

Understands that 
there is a range of 
information 
sources and 
technology tools 
for specific 
purposes. Selects 
and responsibly 
uses appropriate 
information and 
technology tools 
to meet learning 
needs. 

Understands why 
information is 
useful and 
valuable and why 
it should be used 
responsibly. 
Locates, 
organises and 
synthesises 
information and 
uses technology 
tools to create a 
product which 
effectively 
communicates 
their 
understanding. 

Understands how 
to use advanced 
search techniques 
and critically 
evaluate 
information 
sources. 
Structures and 
manages personal 
collections of 
information. 
Synthesises 
information and 
creatively uses it 
and technology in 
responsible and 
ethical ways. 

Understands own 
information 
needs. Uses 
technology as a 
tool to solve 
problems. 
Critically, 
collaboratively 
and ethically 
engages in local 
and global 
learning 
communities. 
Applies prior 
understandings to 
effectively use 
new software and 
hardware tools 
(I, C). 

  314 



10.3.8 Description of the Being Arts Literate Key Element from ELF1 

The information that ELF1 contains about the Being Arts Literate Key Element 

includes: 

The arts are important ways of coming to know and understand through 

direct, intimate, intuitive experience. They provide a particular way of 

looking, thinking, describing, recording and analysing (I?). . .  The 

opportunity to communicate through arts forms gives voice to less 

empowered groups in society, thereby conveying minority points of view 

(U?) to wider audiences. Understanding how the arts reflect, challenge and 

sometimes shape the values and beliefs of a society, and how their forms 

vary across times and cultures (S?), helps learners to enjoy and engage 

with them as a life-enhancing part of personal and social experience 

(Tasmania, Department of Education, 2002, p. 23). 

 

10.3.9 Connections to ITIC Scales from the Being Arts Literate Key Element 

Outcome 

The Key Element Outcome descriptor for Being Arts Literate contained in ELF2 

states: 

Understands the purposes and uses of a range of arts forms – visual arts, 

media, dance, music, drama and literature - and how to make and share 

meaning from and through them (I). Uses with confidence and skill the 

codes and conventions of the art form best suited to their expressive needs. 

Two of the four Performance Guidelines for Being Arts Literate state: 

• Understanding that arts works are intentional and that personal meanings 

can be derived from them, shared and moderated with others (U?, C?). 

• Understanding the role of the arts in reflecting, challenging and shaping 

the values and understandings of a society (U?, C?). 
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Table 10.7 lists the standards from the Being Arts Literate Key Element 

Outcome.   

Table 10.7 

The Five Standard Statements for Being Arts Literate From ELF2 (Tasmania, Department 
of Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
there are different 
arts forms 
through which 
enjoyment is 
gained and 
meanings 
expressed and 
derived.   

Understands how 
the basic 
elements of arts 
forms are used to 
communicate 
meanings in 
everyday life. 
 

Understands the 
ways in which 
arts forms 
communicate for 
different 
purposes, 
audiences and 
contexts. 

Understands how 
to construct and 
deconstruct arts 
works designed 
with particular 
intentions. 

Understands the 
sophisticated 
ways in which the 
art form most 
suited to their 
expressive needs 
may be used to 
reflect, challenge 
and shape values 
and 
understanding of 
a society (I, U). 
 

 

10.3.10 Overview of ITIC Inquiry Methodologies in the Communicating 

EL 

The Communicating EL contains a number of connections to the Interpretation of 

Data and Uncertainty (in Science) ITIC scales.  These references largely relate to 

students being critical consumers of knowledge, recognizing that communications 

are created for particular purposes by authors with particular interests.  There are no 

connections to the Freedom in Practical Work scale, one questionable one to the 

Science Stories scale and limited connections to the ITIC Communication scale. 

The connections that the Communicating EL shows to ITIC items are summarised 

below: 

• Freedom in Practical Work - no connections. 

• Communication - connections exist to all scale items, largely resulting from 

the collaborative sharing of ideas required by the Communicating EL. 

• Interpretation of Data - definite connections to I1, I2, I3, I5 and I6; no 

connections to I4 and I7; connections to I8 are implied in the form of creating 

ideas, although the term hypothesis is not used in the Communicating EL. 
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• Science Stories - a potential connection to S5 through Being Arts Literate, 

but no definite connections to any items. 

• Uncertainty in Science - connections to U3 and U4; connections to U2, U5 

and U6 seem to be implied; no connections to U1, U7 or U8. 

Taking into account both the number of connections that the Communicating EL 

shows to ITIC methodologies and the number of ITIC scale items that these 

connections relate to, the above data indicates that the ITIC would be useful in 

determining the extent to which the requirements to interpret information, 

acknowledge uncertainty and share ideas with others were being met in science 

classes.  The Freedom in Practical Work and Science Stories scales would not be 

useful from the viewpoint of the Communicating EL, so if data were only being 

collected about the Communicating EL researchers may wish to omit these scales. 

 

 

10.4 CONNECTIONS TO ITIC SCALES WITHIN THE PERSONAL 

FUTURES ESSENTIAL LEARNING 

The Personal Futures EL contains four Key Elements: 

• Building and Maintaining Identity and Relationships. 

• Maintaining Wellbeing. 

• Being Ethical. 

• Creating and Pursuing Goals. 

 

10.4.1 Description of Personal Futures from ELF1 

The description of the Personal Futures EL contained in ELF1 includes the 

following: 

. . . Operating with autonomy requires a willingness to develop a personal 

ethical position, in order to act on informed conscience (U, C?, I?).  
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. . . Being able to communicate sensitively in a range of contexts, using 

both verbal and non-verbal means, is essential in establishing and 

sustaining all these (C).  

. . . Acting autonomously involves being aware of choices, being able to 

judge what one can or should do, being able to select suitable options, 

persist and take responsibility for the consequences of decisions and 

behaviour (I). Operating with moral autonomy requires an ethical code 

that guides right behaviour towards others and the independence to 

behave with personal integrity in challenging situations (U).  

. . . It includes being able to reflect on experience and to identify and solve 

problems (I) . . . Through recognising and utilising our strengths and 

imagining possibilities (I), we can set, pursue and review achievable goals 

and make perceptive choices about work, leisure and life.  (Tasmania, 

Department of Education, 2002, p. 25). 

 

 

10.4.2 Description of the Building and Maintaining Identity and Relationships 

Key Element from ELF1 

The information that ELF1 contains about the Building and Maintaining Identity and 

Relationships Key Element includes: 

Learners develop understandings about the social and cultural 

construction of identities and evaluate the impact of these constructs on 

their views of themselves and others (U) . . . Learning how to 

communicate flexibly and creatively in personal, recreational and 

vocational contexts is essential (C) in developing and maintaining 

effective relationships (Tasmania, Department of Education, 2002, p. 26). 

 

10.4.3 Connections to ITIC Scales from the Building and Maintaining Identity 

and Relationships Key Element Outcome 

One of the four Performance Guidelines for the Building and Maintaining Identity 

and Relationships Key Element Outcome states: 
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Have the personal qualities, skills and understandings required to 

communicate appropriately and effectively in a range of contexts (C?). 

Table 10.8 lists the standards from the Building and Maintaining Identity and 

Relationships Key Element Outcome.   

Table 10.8 

The Five Standard Statements for the Building and Maintaining Identity and Relationships 
From ELF2 (Tasmania, Department of  Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
they have 
characteristics, 
strengths, talents, 
interests and 
preferences and 
relates to others 
in socially 
functional ways. 
 

Understands 
common and 
unique 
characteristics of 
self and others 
and that 
relationships with 
others are a basic 
human need. 

Understands that 
behaviours, 
attitudes and 
choices affect 
identity and 
relationships. 

Understands that 
identity is 
constructed, and 
evaluates key 
ways in which 
experiences, 
groups, and 
cultures 
contribute to 
identity. 

Understands how 
to build on 
strengths and 
address 
challenges 
through 
individual and 
group action, 
recognising that 
identity is open to 
change (C, U). 

 

10.4.4 Description of the Being Ethical Key Element from ELF1 

The information that ELF1 contains about the Being Ethical Key Element includes: 

To develop moral autonomy, learners debate different points of view (C, 

U) and come to understand the values implicit in the situations being 

studied. They are helped to understand the complexity of ethical decision-

making, to evaluate moral dilemmas in their lives and in the world, and to 

take a stand that reflects their values (C, I) (Tasmania, Department of 

Education, 2002, p. 27). 

 

10.4.5 Connections to ITIC Scales from the Being Ethical Key Element 

Outcome 

The descriptor for the Being Ethical Key Element Outcomes states: 

Understands that to be ethical requires caring about the consequences of 

actions of self and others and that the quality of ethical judgements is 

based upon reasoning (I) and the application of ethical principles. 
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Two of the five Performance Guidelines that ELF2 contains for the Being Ethical 

Key Element Outcome state: 

• Uses ethical values and ethical decision-making frameworks to analyse 

and evaluate the actions of themselves and others (I, U). 

• Articulate their ethical reasons and justify ethical positions held by 

themselves (C) and others. 

Table 10.9 lists the standards statements for Being Ethical. 

Table 10.9 

The Five Standard Statements for Being Ethical From ELF2 (Tasmania, Department of  
Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
self and others 
have needs and 
rights, and can 
describe actions 
in simple ethical 
terms. 
 
 

Understands that 
values can be 
applied to 
describe 
behaviour and 
acts within rules 
and norms. 
 

Understands how 
to use values and 
emerging ethical 
principles when 
choosing to act 
and when 
exploring the 
behaviour of self 
and others. 
 

Understands how 
to use valid 
ethical principles 
to make choices 
in developing a 
personal position. 
Demonstrates 
ethical behaviour 
by caring about 
their actions and 
those of others. 

Understands that 
emotional 
response and 
social contexts 
influence 
evaluation of the 
actions of others 
and the 
modification of 
personal actions 
and beliefs (U?). 
 

 

10.4.6 Description of the Creating and Pursuing Goals Key Element from 

ELF1 

The information that ELF1 contains about the Creating and Pursuing Goals Key 

Element includes: 

They learn how to work cooperatively with others to achieve their own 

and shared goals (C). 

 

10.4.7 Connections to ITIC Scales from the Creating and Pursuing Goals Key 

Element Outcome 

The Key Element Outcome descriptor for Creating and Pursuing Goals contained in 

ELF2 states: 
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Understands how to create, set and review goals for life and how to work 

with others to achieve own and shared goals (C).  

Table 10.10 lists the standards statements for Creating and Pursuing Goals. 

Table 10.10 

The Five Standard Statements for Creating and Pursuing Goals From ELF2 (Tasmania, 
Department of Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands how 
to set and achieve 
a simple goal 
within an 
individual or 
group activity 
and describes 
some of the steps 
involved. 

Understands how 
to implement and 
record the steps 
involved in 
setting and 
achieving 
personal and 
small-group 
goals.   

Understands how 
and why we work 
collaboratively to 
achieve goals. 
Understands the 
strengths and 
weaknesses of 
plans and how 
this affects the 
implementation 
and realisation of 
goals.  

Understands how 
to set personal 
and group goals, 
justifying choices 
in selecting and 
following plans 
and evaluating 
the effectiveness 
of the choices 
they have made. 

Understands how 
to effectively 
prioritise, 
implement and 
adjust plans in 
ways that reflect 
changing world 
views and the 
impact these have 
on self and others  
(F?, C, I). 

 

10.4.8 ITIC Inquiry Methodologies in the Personal Futures EL 

The Personal Futures EL contains limited connections to the ITIC scales.  These 

relate largely to the Communication scale of the ITIC, with some connections to the 

Uncertainty (in Science) and Interpretation of Data scales.   

The Maintaining Wellbeing Key Element did not show any connections to the ITIC, 

so no discussion of it has been included. 

The connections through the Communication scale tend to relate to debating 

different points of view and working with others to determine and achieve their own 

and group goals.  The links to the Uncertainty in Science scale are through 

acknowledging that different points of view exist. 

The connections that the Personal Futures EL shows to ITIC items are summarised 

below: 

• Freedom in Practical Work - connections to F2, if it is read as plans rather 

than experiments; no definite connections to other items. 

• Communication - connections to all scale items through the requirement to 

communicate flexibly and creatively and to debate different points of view. 
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• Interpretation of Data - connections to items I1, I5, I6, I8 and possibly I7; no 

connections to I2, I3, and I4. 

• Science Stories - no connections to any items. 

• Uncertainty in Science - connections to items U3 and U4; connections to 

items U1 and U6 seem to be implied by the fact that differences in opinion 

exist; no connections to items U2, U5, U7 or U8. 

Taking into account both the number of connections that the Personal Futures EL 

shows to ITIC methodologies and the number of ITIC scale items that these 

connections relate to, the above data indicates that the ITIC would be useful in 

determining the extent to which the Personal Futures behaviours relating to 

developing a point of view and sharing ideas with others occurs in science classes.  

The Freedom in Practical Work and Science Stories scales provide little information 

pertaining to the Personal Futures El, so researchers may wish to omit these scales if 

they are only investigating Personal Futures. 

 

 

10.5 CONNECTIONS TO ITIC SCALES WITHIN THE SOCIAL 

RESPONSIBILITY ESSENTIAL LEARNING 

The Social Responsibility EL contains four Key Elements: 

• Building Social Capital. 

• Valuing Diversity. 

• Acting Democratically. 

• Understanding the Past and Creating Preferred Futures. 

 

10.5.1 Description of Social Responsibility from ELF1 

The description of the Social Responsibility EL contained in ELF1 includes the 

following: 

Learning from the past plays a significant part in making wise decisions 

for the present and the future. Understanding the historical and cultural 
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foundations of societies and peoples (U) assists the constructive resolution 

of social conflicts and tensions. Being able to reflect on the range of points 

of view around issues and events and to make personal, ethical 

judgements (I, C, U) is an essential component of social responsibility 

(Tasmania, Department of Education, 2002, p. 30). 

 

10.5.2 Description of the Building Social Capital Key Element from ELF1 

The information that ELF1 contains about the Building Social Capital Key Element 

includes: 

Learners need opportunities to canvass alternative views about issues (U) 

that matter to them in their own communities and to build shared values 

through thoughtful discussion and respectful deliberation (C) (Tasmania, 

Department of Education, 2002, p. 31). 

 

10.5.3 Connections to ITIC Scales from the Building Social Capital Key 

Element Outcome 

The Key Element Outcome descriptor for Building Social Capital contained in ELF2 

states: 

Understands the interdependence of individuals, groups and social 

organisations (I?) and participates positively in the building of ‘good and 

just’ communities. 

Two of the four Performance Guidelines for Building Social Capital are: 

• Act ethically to relate and reconcile diverse views and interests (U). 

• Engage effectively with others (C) in collective action to develop ‘good 

and just’ communities. 

Table 10.11 lists the standards statements for Building Social Capital. 
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Table 10.11 

The Five Standard Statements for Building Social Capital From ELF2 (Tasmania, 
Department of Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands the 
everyday ways in 
which self and 
others are 
connected. 

Understands the 
need for 
constructive 
personal and 
social 
relationships. 
 

Understands the 
processes through 
which individuals 
and groups work 
together to 
achieve a 
personal and 
shared goal. 

Understands the 
social systems 
and networks 
people participate 
in; and can 
evaluate the 
effects of 
personal and 
collaborative 
action . 

Understands the 
interdependence 
of individuals, 
groups and social 
organisations and 
participates 
collaboratively 
with diverse 
others in the 
building of ‘good 
and just’ 
communities (C, 
I, U). 

 

10.5.4 Description of the Valuing Diversity Key Element from ELF1 

The information that ELF1 contains about the Valuing Diversity Key Element 

includes: 

The more we understand the growing interdependence of our world the 

more we need to appreciate the diversity of cultures, races, opinions, 

religions, beliefs, languages and world views  (U) (Tasmania, Department 

of Education, 2002, p. 31). 

 

10.5.5 Connections to ITIC Scales from the Valuing Diversity Key Element 

Outcome 

The Key Element Outcome descriptor for Valuing Diversity contained in ELF2 

states: 

Understands the interdependence of our world, values its diversity and acts 

for a more inclusive society (U). 

Three of the five Performance Guidelines for Valuing Diversity are: 

• Acknowledge and celebrate diversity and difference in self and others 

(U). 

• Have the courage to promote difference (C?) when achieving personal 

and shared goals.  
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• Develop understanding of causes and consequences (I) of 

discrimination and inequities based on difference. 

Table 10.12 lists the standards statements for Valuing Diversity. 

Table 10.12 

The Five Standard Statements for Valuing Diversity From ELF2 (Tasmania, Department of  
Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
self and others 
have unique 
characteristics.  
 
 

Understands that 
individuals have 
differences and 
similarities.  
 
 

Understands that 
whilst difference 
enriches culture, it 
may lead to 
misunderstandings 
which can be 
resolved by 
individual and 
group action. 
 

Understands the 
value of 
diversity, 
recognises 
interdependence 
and sources of 
inequity, and 
takes informed 
action.  
 

Understands 
global 
interdependence; 
values and 
celebrates 
diversity; and 
uses strategies to 
create a more 
inclusive world. 
(I, U) 

 

10.5.6 Description of the Acting Democratically Key Element from ELF1 

The information that ELF1 contains about the Acting Democratically Key Element 

includes: 

The more we understand the growing interdependence of our world the 

more we need to appreciate the diversity of cultures, races, opinions, 

religions, beliefs, languages and world views (U). (Tasmania, Department 

of Education, 2002, p. 31). 

 

10.5.7 Connections to ITIC Scales from the Acting Democratically Key 

Element Outcome 

The Key Element Outcome descriptor for Acting Democratically contained in ELF2 

states: 

Understands and participates effectively in democratic decision-making 

processes (C) and civic life. 

The four Performance Guidelines for Acting Democratically are: 

• Explain and defend their own beliefs (C) about democratic values (e.g. 

fairness, freedom, equality). 
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• Explain and evaluate (I) the operation of formal and informal decision-

making processes, including processes they have designed themselves. 

• Participate as active, informed and responsible citizens to pursue their 

own rights and interests (C?). 

• Participate as ethical and responsible citizens for the ‘public good’, 

including acting to enhance and protect democratic values and 

institutions (C?). 

Table 10.13 lists the standards statements for Acting Democratically. 

Table 10.13 

The Five Standard Statements for Acting Democratically From ELF2 (Tasmania, 
Department of  Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
there are helpful 
rules and ways of 
making 
decisions, and 
behaves in 
acceptable ways. 
 

Understands that 
decision-making 
can be a group 
process and 
participates 
responsibly. 
 
 

Understands how 
to use a range of 
democratic 
processes and 
participates 
responsibly in 
school and 
community 
groups. 
 
 

Understands how 
to apply 
democratic 
processes and 
ideas, and 
participates 
actively and 
responsibly in a 
range of school 
and community 
groups. 
 

Understands how 
to participate 
actively and 
responsibly in a 
range of 
communities and 
acts to embed 
democratic values 
and processes in 
civic life. (C) 
 
 

 

10.5.8 Description of the Understanding the Past and Creating Preferred 

Futures Key Element from ELF1 

The information that ELF1 contains about the Understanding the Past and Creating 

Preferred Futures Key Element includes:  

Changes have often resulted from people moving against perceived 

injustices, with a determination to make life better for all. While some of 

these changes have been intentional and predictable, others have been 

unintended or had unexpected consequences. Understanding why events 

have occurred, and how decisions have been made (S), is a necessary 

foundation for recognising the mistakes of the past and creating preferred 

futures. 
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10.5.9 Connections to ITIC Scales from the Understanding the Past and 

Creating Preferred Futures Key Element Outcome 

The Key Element Outcome descriptor for Understanding the Past and Creating 

Preferred Futures contained in ELF2 states: 

Understands that investigating the past and reflecting on the present (S) are 

essential to understanding self and others and creating preferred futures. 

Table 10.14 lists the standards statements for Understanding the Past and Creating 

Preferred Futures. 

Table 10.14 

The Five Standard Statements for Understanding the Past and Creating Preferred Futures 
From ELF2 (Tasmania, Department of Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
everyday events 
have causes, 
relationships and 
consequences. 

Understands how 
to use evidence to 
reflect on the 
past, to sequence 
events, and to 
make decisions.  

Understands the 
value of evidence 
and uses a range 
of perspectives to 
gain insights into 
the past and 
present, and to 
make predictions 
for the future. 

Understands how 
to evaluate 
evidence, 
viewpoints and 
decisions through 
investigating 
past, present and 
future contexts. 

Understands how 
to make 
predictions and 
take actions for 
preferred futures 
based on 
historical 
investigations, 
recognising the 
influence of 
evidence, 
perspective and 
context. (I, S, 
U) 

 

10.5.10 ITIC Inquiry Methodologies in the Social Responsibility EL 

The Social Responsibility EL shows particular connections to the ITIC 

Communication and Uncertainty (in Science) scales.  There are some links to the 

Interpretation of Data scale and a few to the Science Stories scale.  As was the case 

with the Personal Futures EL, many of the connections arise from the recognition 

that there are diverse points of views and opinions on issues. 

The connections that the Social Responsibility EL shows to ITIC items are 

summarised below: 

• Freedom in Practical Work - no connections to any ITIC items. 
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• Communication - connections exist to all scale items through the 

requirements to build shared values through thoughtful discussion , and to 

participate effectively. 

• Interpretation of Data - connections to items I1, I2, I5, I6 and possibly I8; no 

connections to items I3, I4 or I7. 

• Science Stories - connections to items S3, S4, S5 and S6; no connections to 

items S1, S2, S7 or S8. 

• Uncertainty in Science - connections of items U1, U3, U4 and U6; no 

connections to U2, U5, U7 or U8. 

Taking into account the number of connections that the Social Responsibility EL 

shows to ITIC methodologies, and the number of ITIC items that these connections 

relate to, the above data indicate that the ITIC would be useful in determining the 

extent to which science classes provide opportunities for issues to be presented as 

uncertain, and for students to discuss these issues collaboratively, evaluating 

evidence for different alternatives..  Researchers may wish to omit the Freedom in 

Practical Work scale if only collecting information for the Social Responsibility EL. 

 

 

10.6 CONNECTIONS TO ITIC SCALES WITHIN THE WORLD 

FUTURES ESSENTIAL LEARNING 

The World Futures EL contains four Key Elements: 

• Investigating the Natural and Constructed World. 

• Understanding Systems. 

• Designing and Evaluating Technological Solutions. 

• Creating Sustainable Futures. 
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10.6.1 Description of World Futures From ELF1 

The description of the World Futures EL contained in ELF1 includes the following: 

Investigative approaches seek to identify questions (F), generate new ideas 

and solve problems about real-world issues. Through these investigations 

we come to appreciate the provisional nature of knowledge (U) and to 

acknowledge, with a sense of humility, that there is much we do not 

understand. The history of scientific thought (S) amply demonstrates how 

conceptualisations about the world are properly recast in the light of new 

knowledge, insights, evidences and understandings (Tasmania, 

Department of Education, 2002, p. 35). 

 

10.6.2 Description of the Investigating the Natural and Constructed World Key 

Element from ELF1 

As the Investigating the Natural and Constructed World EL contained in ELF1 

seems particularly relevant to the ITIC, the description from ELF1 is reproduced 

below in its entirety: 

Learners are assisted and challenged to observe, describe and analyse 

their world in a variety of ways (I). Focused observation and attention to 

environments may be informed by artistic, scientific and mathematical 

ways of thinking.   

The essence of a scientific approach lies in the way questions are 

generated and investigations framed, conducted (F) and evaluated (I). 

This includes identifying those questions that may be answered by 

scientific investigation – hypothesising, gathering, presenting (F) and 

analysing data, drawing inferences, interpreting evidence and estimating 

risk and probabilities (I, U).   

Contemporary understandings of science acknowledge the provisional and 

tentative nature of knowing (U) and recognise how the creative, 

imaginative and speculative qualities of scientific thought can take us to 

new conceptualisations about the world and how it works. Accordingly, 

learners are encouraged to apply an inquisitive, creative and imaginative 
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approach to posing, identifying and solving problems and undertaking 

investigations (F, I). They are asked to describe their observations 

accurately and to assess the adequacy, accuracy and worth of data before 

making tentative judgements based on the evidence available (I). By 

learning about the history of human ideas (S) they can appreciate both the 

wealth of knowledge we have access to, and the fact that theories are 

always subject to the challenge of contrary evidence (U). 

Since information is never ‘value-free’ (U), learners are assisted to think 

critically about where, when, how, by whom and for what purposes 

information is being presented (I). They also come to understand how 

their beliefs, assumptions and personal ways of knowing will affect what 

they observe and the judgements they make (U). They are encouraged to 

think ethically about issues and events, to challenge claims and to present 

reasoned arguments for their conclusions (I, C). (Tasmania, Department 

of Education, 2002, p. 36). 

 

10.6.3 Connections to ITIC Scales from the Investigating the Natural and 

Constructed World Key Element Outcome 

The Key Element Outcome descriptor for Investigating the Natural and Constructed 

World contained in ELF2 states: 

Understands how to scientifically investigate the natural and constructed 

world (F), appreciating the tentative nature of knowledge (U) and the 

value of creative, imaginative and speculative thinking. 

The Performance Guidelines for the Investigating the Natural and Constructed World 

Key Element Outcome state that students who are investigating the natural and 

constructed world: 

• Understand that all people bring ways of knowing, beliefs and 

understanding to their investigations (U). 

• Use direct experience and observation, wonder why, ask questions, 

formulate possible hypotheses and suggest possibilities (F, I). 
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• Describe and record observations through various means (artistic, 

scientific, mathematical, technological) (I). 

• Design investigations using appropriate methodology, show awareness 

of ethical considerations, anticipate results and make predictions (F, I). 

• Complete practical tasks, record, analyse, critically question and 

evaluate results, drawing justifiable conclusions (F, I). 

• Reflect on investigation and identify problems which occurred and 

further questions which could be explored (I). 

• Communicate investigations to a wider audience (C), selecting from a 

range of presentation styles including written, oral, online, graphic and 

artistic modes. 

Table 10.15 lists the five standards statements from the Investigating the Natural and 

Constructed World Key Element Outcome.   

Table 10.15 

The Five Standard Statements for Investigating the Natural and Constructed World From 
ELF2 (Tasmania, Department of Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands how 
to use a variety of 
direct 
experiences and 
play to collect 
information 
about the natural 
and constructed 
world. 
 

Understands how 
to use a variety of 
techniques to 
collect 
information and 
resources to 
answer questions. 
 

Understands how 
to pose questions, 
actively 
investigates 
them, and 
evaluates the 
findings against 
the explanations 
and observations 
of others. 
 

Understands 
principles of fair 
testing and 
controlling 
variables. 
Compares their 
findings with 
those of others 
and evaluates 
against current 
scientific 
knowledge. 
Chooses 
appropriate 
questions for a 
variety of 
scientific 
investigations. 
 
 

Understands how 
to select 
appropriate 
methods to 
investigate 
collaboratively – 
formulated, 
testable models, 
taking into 
consideration 
current scientific 
knowledge. 
Critically 
evaluates own 
results, and also 
those of others, 
and modifies 
ideas in the light 
of new 
information (F, 
I, U).  
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10.6.4 Description of the Understanding Systems Key Element from ELF1 

The information that ELF1 contains about the Understanding Systems Key Element 

includes: 

They are introduced to the uncertainty and unpredictability of systems and 

to concepts such as side-effects or the potential for positive and negative 

feedback within and between systems.   

This involves developing a strong sense of place and an understanding of 

the particular and unique character of the local environment.  It includes 

recognition of Indigenous knowledge and experience of, and spiritual 

connection with, a particular environment (U?), and understanding of 

Indigenous management of natural ecosystems 

 

10.6.5 Connections to ITIC Scales from the Understanding Systems Key 

Element Outcome 

The Key Element Outcome descriptor for Understanding Systems contained in ELF2 

states: 

Understands that the social, natural and constructed world is made up of a 

complex web of relationships or systems. 

The seven Performance Guidelines for Understanding Systems are: 

• Recognise interconnections (I) within and between systems.  

• Understand the connections between local and global environments 

(social, natural and constructed) (I). 

• Develop the capacity to operate and modify systems (F?, C?). 

• Examine how systems operate to achieve particular outcomes (I). 

• Explore the forms, functions and performance of systems (F?). 

• Examine the functioning of natural systems (F?) and explore how 

understandings developed may be used in design of constructed systems 

(I?). 

• Investigate whether constructed systems are appropriate, depending on 

the ethical, technical, environmental and cultural consequences of their 

application (U).  
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Table 10.16 lists the standards statements for Understanding Systems 

Table 10.16 

The Five Standard Statements for Understanding Systems From ELF2 (Tasmania, 
Department of  Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands 
simple 
connections in 
systems.  
 

Understands how 
some of the parts 
of social, natural 
and constructed 
systems work 
together. 
 
 

Understands 
causal 
relationships in 
systems, 
including some 
of their effects on 
Tasmanian 
people and their 
environment. 
 

Understands the 
interdependency 
of systems and 
their function 
within local and 
national 
communities.  

 
 

Understands 
principles, 
structures, 
organisation and 
control of 
systems, and their 
impact on local, 
national and 
global 
environments. (I) 

 

10.6.6 Description of the Designing and Evaluating Technological Solutions 

Key Element from ELF1 

The information that ELF1 contains about the Designing and Evaluating 

Technological Solutions Key Element includes: 

Learners are encouraged to develop their capacity for designing and 

making processes and products (F) in response to human needs or 

problems. . . .  Learners may adapt existing models or devise and create 

new designs and solutions that meet identified needs, circumstances and 

opportunities (F). In the process, they apply previously learnt concepts 

and skills to new situations, appraise the applications against value-

based, aesthetic and practical criteria, and make judgements (I) about 

such things as appropriateness, benefits, limitations, risk and impact. 

Scientific and technological applications and processes impact on cultural, 

political, social, environmental and economic systems. Increasingly we are 

being challenged to make hard ethical choices because of innovations (U). 

Learners must develop the capacity to critically evaluate the consequences 

of scientific and technological innovation and make informed and ethical 

decisions about their impact on people and the environment (I, U, C) . . . 

To act responsibly, learners need to identify the information needed to 

make wise decisions, estimate its accuracy, adequacy and bias, and make 
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judgements about alternative courses of action (I) (Tasmania, Department 

of Education, 2002, p. 38). 

 

10.6.7 Connections to ITIC Scales from the Designing and Evaluating 

Technological Solutions Key Element Outcome 

The Key Element Outcome descriptor Designing and Evaluating Technological 

Solutions contained in ELF2 states: 

Understands how to design, make and critically evaluate products and 

processes in response to human needs and challenges (F, I). 

The Performance Guidelines for this Key Element Outcome state that students who 

design and evaluate technological solutions: 

• Devise creative ways of generating and applying ideas (F?). 

• Develop and produce appropriate technological solutions using 

problem-solving systems and strategies (F). 

• Use the arts, mathematics and science in design, production and 

evaluation (F, I). 

• Modify ideas in the face of adversity and consider alternatives, dealing 

with uncertainty in an informed way (U). 

• Evaluate proposed and established technological and scientific solutions 

for their economic, social, environmental, aesthetic and ethical impact 

(I, U). 

Table 10.17 lists the standards statements for Designing and Evaluating 

Technological Solutions. 

 

 

 

 

 

  334 



Table 10.17 

The Five Standard Statements for Designing and Evaluating Technological Solutions From 
ELF2 (Tasmania, Department of Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands that 
everyday 
products have 
particular 
characteristics 
suited to their 
uses. 
 

Understands 
simple 
production 
processes, 
including the 
need for care and 
safety. 
 

Understands how 
to plan and carry 
out the steps of 
production 
processes, 
making safe and 
efficient use of 
resources. 
Explores the 
contribution of 
technology to 
cultures. 
 

Understands the 
characteristics of 
materials and 
relates them to 
the functional and 
aesthetic 
requirements of 
designs for their 
own 
constructions and 
those of others. 
Evaluates 
alternative 
technological 
solutions. 
 

Understands how 
to create and 
prepare design 
and production 
proposals that 
demonstrate 
consideration of 
functional, 
aesthetic, social, 
environmental 
and ethical 
issues, critically 
evaluating the 
consequences of 
their own and 
others’ 
innovations. (F, 
I, U) 
 

 

10.6.8 Description of Creating Sustainable Futures from ELF1 

The information that ELF1 contains about the Creating Sustainable Futures Key 

Element includes: 

Ecological sustainability is an approach to making environmental 

decisions that focuses on a responsible and sustainable world future. It 

involves individuals, communities and nations in making careful choices, 

and it increasingly requires governments to take an international 

perspective (U). Learners are helped to see how ecological sustainability 

can be translated into personal action and how public laws and policies are 

developed within the context of the choices that must be made by citizens 

(Tasmania, Department of Education, 2002, p. 38). 

 

10.6.9 Connections to ITIC Scales from the Creating Sustainable Futures Key 

Element Outcome 

The Key Element Outcome descriptor Creating Sustainable Futures contained in 

ELF2 states: 
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Understands the environmental principles and ethical issues involved in 

creating and working towards sustainable futures (U). 

Table 10.18 lists the standards statements for Creating Sustainable Futures 

Table 10.18 

The Five Standard Statements for Creating Sustainable Futures From ELF2 (Tasmania, 
Department of Education, 2003). 

Standard 1 Standard 2 Standard 3 Standard 4 Standard 5 

Understands 
some of the 
actions needed to 
care and show 
concern for 
people and the 
natural 
environment.  

Understands their 
connections to 
and responsibility 
for the local 
environment. 

Understands the 
uniqueness of 
local ecosystems 
and takes 
responsible 
action to sustain 
them. 

Understands how 
to investigate and 
plan for 
sustainable 
practices to 
reduce 
environmental 
impacts on 
biodiversity. 

Understands the 
consequences of 
human activity on 
local and global 
systems and 
understands how 
to act as a 
responsible 
global citizen. 
(C?, U) 
 

 

10.6.10 ITIC Inquiry Methodologies in the World Futures EL 

The World Futures EL shows extensive links to the Freedom in Practical Work, 

Interpretation of Data and Uncertainty in Science ITIC scales.  There are limited 

connections to the Communication scale and only two from the Science Stories 

scale.  Overall the World Futures Key Elements seem to be indicating many of the 

methodologies that the ITIC is measuring. 

The connections that the World Futures EL shows to ITIC items are summarised 

below: 

• Freedom in Practical Work - connections exist to items F2, F3, F4, F5, F6, F7 

and F8; connection to F1 (We carry out practical investigations that take 

more than one lesson) seem to be implied, as it would be difficult to meet the 

stated outcomes if investigations did not occur over an extended period. 

• Communication - connections exist to items C1, C2, C3, C6, C7 and C8; it 

seems unlikely that C4 and C5 would not be desirable during practical work. 

• Interpretation of Data - there are connections to all scale items. 

• Science Stories - connections exist to all scale items through the reference to 

the history of scientific thought. 
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• Uncertainty in science - connections exist to all scale items except U8 (Our 

teacher questions some scientific theories); item 8 seems to represent a 

behaviour that is in line with the intent of the World Futures EL. 

Taking into account both the number of connections that the World Futures EL 

shows to ITIC methodologies and the number of ITIC scale items that these 

connections relate to, the ITIC would be an extremely valuable tool to use to assess 

the extent to which the behaviours that the World Futures EL indicates are occurring 

in science classes. 

 

 

10.7 OVERVIEW OF ITIC CONNECTIONS TO THE ESSENTIAL 

LEARNINGS 

The preceding discussion has highlighted the connections that exist between 

Tasmania's Essential Learnings curriculum and the ITIC scales.  These connections 

are summarised in Tables 10.19 and 10.20. 

 

Table 10.19 

Number of References to ITIC Inquiry Methodologies in the Essential Learnings 
Documentation. 

 F F? C C? I I? S S? U U? Total

Thinking  8 3 12 1 22 0 0 2 16 1 65 

Communicating  0 0 4 2 15 2 0 1 11 3 38 

Personal Futures  0 1 9 2 8 0 0 0 6 1 27 

Social Responsibility 0 0 7 3 6 1 3 0 11 0 31 

World Futures  14 4 3 2 23 1 2 0 18 1 68 

Total 22 8 35 10 74 4 5 3 62 6 229 

 

The data in Table 10.19 show that the ITIC scales that have the most connections to 

the Essential Learnings curriculum documents are Interpretation of Data and 

Uncertainty in Science.  There are also a number of connections to the 
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Communication and Freedom in Practical Work scales.  There are a very limited 

number of connections to the Science Stories scale. 

If the connections are examined by Essential Learning, Table 10.19 shows that the 

most connections to ITIC methodologies occur from the Thinking and World Futures 

ELs.  There are just over half as many connections from the Communicating EL, 

approximately half as many from the Social Responsibility EL, and under half as 

many from the Personal Futures EL.  Close examination of the five ELs reveals that 

the content of most traditional science courses would sit under the Thinking and 

World Futures ELs, so it is perhaps not surprising that these are the areas that a 

questionnaire designed to measure the extent to which inquiry methodologies are 

employed in science classes makes the mot connections. 

While the data in Table 10.19 may be taken as an indication of the number of 

connections that exist between inquiry methodologies, as described by the ITIC, and 

the five Essential Learnings that constitute the Tasmanian curriculum, it must be 

remembered that whilst a single phrase in a curriculum document may only be 

represented by one number in Table 10.19, that phrase may imply close connections 

to a number of scale items.  The number of ITIC items that connect to each of the 

ELs is summarised in Table 10.20. 

 

Table 10.20 

Number of ITIC Scale Items Connecting to Each Essential Learning (Maximum of 8 
Possible). 

 Freedom in 
Practical 

Work 

Communicat
-ion 

Interpretat-
ion of Data 

Science 
Stories 

Uncertainty 
in Science 

Thinking  7-8 8 8 2-4 6-7 

Communicating  0 8 5-6 1 2-5 

Personal 

Futures  

1 8 4-5 0 2-4 

Social 

Responsibility 

0 8 4-5 4 4 

World Futures  7-8 6-8 8 8 7-8 
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The data in Table 10.20 indicate that virtually all ITIC items connect to the World 

Futures EL and that many ITIC items connect to the Thinking EL.  The data in Table 

10.20 also show that all items from the Communication scale are relevant to all five 

ELs.   

 

Overall, the data collected in this chapter show that inquiry methodologies, as 

defined by the ITIC, are valued by the Essential Learnings curriculum, particularly 

from the perspective of the Thinking and World Futures ELs.  Therefore, the ITIC 

would be a valuable instrument to use when studying the extent to which behaviours 

mandated by these two ELS are occurring in Tasmanian Grade 7-10 science classes, 

or indeed across all classes.   

Additionally, all eight of the Communication scale items are connected to all five 

ELs.  Therefore the Communication scale would provide valuable information across 

the whole ELs curriculum.   

 

 



CHAPTER 11 - DISCUSSION OF THE ITIC RESEARCH 

PROJECT 

CHAPTER OVERVIEW 

The research objectives of the current study, as outlined fully in Section 1.3, have 

been met through the design, administration and analysis of the Is This an Inquiring 

Classroom? or ITIC questionnaire.  The results of the various analyses that were 

conducted have been discussed in earlier chapters, but the overall research findings, 

together with their significance and implications will be considered here. 

The ITIC is a new contribution to the field of classroom environment research 

outlined in Section 4.1, adding to the repertoire of instrument from which researchers 

can select when measuring classroom environments.  As it was designed specifically 

to measure the extent to which inquiry methodologies are used in science classes it is 

relevant to the thinking behind many contemporary science curricula. 

 

11.1 WHAT IS INQUIRY TEACHING? 

Chapter 2 considered the historical development of the term inquiry as used in the 

science education literature, looking at the ideas and influences of its major 

proponents.  Chapter 3 distilled the ideas of various influential authors as to what 

constituted, or indeed did not constitute, inquiry teaching, culminating in the 

identification of six scales which could be used to define inquiry teaching as referred 

to in the science education literature.  A number of items were developed against 

each of these scales to form the Preliminary Version of the ITIC questionnaire, an 

instrument designed to assess the extent to which inquiry teaching methodologies 

were employed in science classes.  Following analysis of the data from the 

Preliminary Version of the ITIC, a number of items were deleted or rewritten to give 

the final Student and Teacher Versions of the ITIC. 

Statistical analysis showed the Student and Teachers ITICs, Actual and Preferred 

Forms, to be valid and reliable instruments with five scales.  The complete 

instrument is presented in Table 11.1 
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Table 11.1 
The 40 Items Comprising the Is This an Inquiring Classroom (ITIC) Questionnaire. 
ITIC Scale 1 - Freedom in Practical Work 
F1 We carry out practical investigations that take more than one lesson. 
F2 We are asked to design our own experiments. 
F3 We are allowed to extend the practical work and do some experimenting. 
F4 We carry out experiments to answer questions that come up in class discussions. 
F5 All students do exactly the same experiments. 
F6 We carry out experiments to answer questions that interest us. 
F7 We carry out experiments to test ideas which we come up with. 
F8 We decide the best way to do things during practical work. 
ITIC Scale 2 - Communication 
C1 Most students take part in discussions. 
C2 We talk to other students about our work. 
C3 We explain our ideas to each other. 
C4 We comment on other students’ opinions. 
C5 We talk with other students about how to solve problems. 
C6 We discuss the results we have obtained with others. 
C7 Our ideas and opinions are listened to during classroom discussions. 
C8 The teacher listens to our ideas. 
ITIC Scale 3 - Interpretation of Data 
I1 We have to try to explain the results of our experiments. 
I2 We are asked to make generalisations from data. 
I3 We are asked what diagrams and graphs mean. 
I4 We are asked to predict the results of experiments. 
I5 We use information from our experiments to predict what will happen in a different 

situation. 
I6 We are asked to justify our conclusions (to say why we think what we do). 
I7 We are asked how we could improve the experiments we have done. 
I8 We are asked to form our own hypotheses. 
ITIC Scale 4 - Science Stories 
S1 We learn about scientists. 
S2 The names of scientists are mentioned during lessons. 
S3 We learn about the history of science. 
S4 The teacher tells us stories about science. 
S5 As we study different topics we talk about the history of how science ideas have 

developed. 
S6 When we study a topic we are told about the trouble which scientists have had 

working in this area. 
S7 We are told personal information about what scientists were like. 
S8 We look at what people who are working as scientists do. 
ITIC Scale 5 - Uncertainty in Science 
U1 We learn that science cannot provide perfect answers to problems. 
U2 We learn that science has changed over time. 
U3 We learn that people can have different theories to explain the same thing. 
U4 We learn that science is influenced by people’s values, opinion and beliefs. 
U5 We learn that science is about coming up with ideas. 
U6 Scientific knowledge is presented as being incomplete - there are things that are still 

not understood. 
U7 We learn that scientific information can change. 
U8 Our teacher questions some scientific theories. 
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The scale titled Assessment was not found to be valid, and is therefore omitted from 

the final version of the ITIC presented here.  On this basis, inquiry teaching in 

science classes is defined as teaching that is characterised by the behaviours 

indicated by the 40 ITIC items shown in Table 11.0.  Item F5 is a reverse score item, 

so the presence of this type of behaviour is indicative of an absence of inquiry 

teaching. 

The development and validation of the ITIC instrument meets Research Objectives 

1-3 of this study, as it: 

• is a description of what constitutes inquiry teaching and learning 

• has been found to be a valid and reliable instrument for measuring the extent 

to which students and teachers both perceive there to be, and would prefer 

there to be, an inquiry-based approach in use in their science classes. 

 

 

11.2 INQUIRY TEACHING IN TASMANIAN SCIENCE CLASSROOMS 

The ITIC was administered to a group of 2,207 Tasmanian students from 122 science 

classes in 16 Tasmanian schools, ranging from Grades 7 through to 12.  It was also 

administered to a group of 65 teachers from 15 different schools.  As reported in 

earlier chapters, respondents rated each questionnaire item on a scale of 1 to 5.   

Over the five ITIC scales the mean actual scores for the students varied from 2.41 to 

3.37 and for teachers from 2.54 to 3.89.  Chapters 6 and 7 presented this information 

in detail.  These values acknowledge that inquiry teaching is occurring in Tasmanian 

science classes.  Statistical comparison of the teacher and student mean scores on 

each of the ITIC Actual Form scales indicated that teachers perceived there to be 

significantly more inquiry occurring than did students on the Communication scale.  

There were no statistically significant differences in the perceptions of the two 

groups on the Freedom in Practical Work, Interpretation of Data, Science Stories and 

Uncertainty in Science scales.  Therefore, the ITIC appears to be useful for 
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measuring the extent to which inquiry methodologies are actually being employed in 

science classes, as it reflects teacher and student perceptions similarly. 

When the mean teacher and student preferred scores were examined, student mean 

preferred scores were seen to range from 2.96 to 3.73 across the five ITIC scales and 

teacher preferred scores from 3.42 to 4.47.  Given that these values were assigned on 

a scale of 1 to 5, they can be regarded as implying that both teachers and students 

favour relatively high levels of inquiry, indicating that inquiry methodologies are 

valued in Tasmanian science classes.  Teachers would prefer there to be more 

inquiry than would students across all scales.  When the means scores for the two 

groups were examined statistically, there were found to be significant differences 

between the preferred scores of the two groups on the Communication, Interpretation 

of Data and Uncertainty in Science scales. In all cases, teachers indicated that they 

would prefer higher levels of inquiry than did students. 

In addition to examining the overall means scores of the teacher and student groups, 

various sub-groups within these main groups were examined.  Consequently, the 

ITIC has provided data about: 

• similarities and differences in the perceptions and preferences of male and 

female students and male and female teachers 

• similarities and differences in perceptions and preferences between students 

in different grade levels 

• similarities and differences in perceptions and preferences between students 

in different college science subjects 

• similarities and differences in perceptions and preferences between high 

school students with different predicted Grade 10 achievement levels 

• similarities and differences in perceptions and preferences between high 

school and college teachers 

• the influence of inquiry methodologies on student and teacher attitude 

towards science. 
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All of these factors have been discussed in more detail in earlier chapters.   

The data summarised here meet Research Objective 4 and 5 of this study, by 

providing an assessment of the extent to which inquiry methodologies are used in 

Tasmanian science classes, and also of the extent to which both teachers and students 

would prefer them to be used. 

 

 

11.3 INQUIRY TEACHING IN THE TASMANIAN SYLLABUS 

DOCUMENTS 

The examination of the Tasmanian science syllabus documents carried out in 

Chapters 8, 9 and 10 showed that the use of inquiry teaching methodologies, as 

defined by the ITIC scales, is implied in virtually all of the syllabus documents 

considered.  Some of the documents examined specifically included the term inquiry, 

but did not define the types of behaviours and strategies that inquiry implied. Other 

documents did not mention the term inquiry, but suggested the inclusion of many of 

the behaviours and strategies indicated by the ITIC scales. The various groups of 

documents examined are considered in the sections below. 

 

11.3.1 College Syllabus Documents in Use When the ITIC Was Administered 

Chapter 8 examined the syllabus documents which were in use at the time that 

teachers and students completed the ITIC.  Each of the college science syllabus 

documents, Biology, Chemistry, Physical Sciences and Physics, contained a number 

of references to inquiry teaching methodologies, as defined by the ITIC.  These are 

summarised in Table 8.2.   

The Physical Sciences documents contained approximately twice as many references 

as did the others.  This may have been because the Physical Sciences syllabus writers 

visualised this syllabus as being more inquiry based than the other syllabuses, or it 

may have been that inquiry represented more of a new approach in this subject, 
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prompting the syllabus writers to specify the types of methodologies that they 

deemed desirable in some detail.   

The Biology syllabus actually specified that an inquiry approach should be used, but 

did not spell out in the syllabus documents what this entailed.  It may have been that 

the syllabus writers for Biology presumed that teachers would be able to interpret the 

types of behaviours that the term inquiry indicated, as the Grade 11/12 Biology 

syllabus has long been regarded as being an inquiry-based or discovery course.  This 

perception probably stems from the use of the BSCS Web of Life texts and support 

materials in Tasmanian Biology classes from around the 1960s.  As acknowledged 

earlier, these texts were rather innovative in the manner in which they presented 

materials to students.  Consequently, their use gave Biology the reputation of being 

an inquiry-based subject.  This perception persisted amongst teachers through a 

number of syllabus revisions and changes, although the data gathered by the ITIC 

suggests that this perception may need to be revisited. 

The ITIC scale that the college syllabus documents made the most connections to 

was Interpretation of Data.  This is perhaps not surprising as this scale could be 

regarded as the one that contains items most commonly associated with science 

courses.  In the case of the Freedom in Practical Work and Communication scales, if 

the number of definite and tentative references to ITIC inquiry behaviours are 

combined, there can be seen to be a number of references to these types of inquiry 

behaviours for each of the college science subjects. 

The ITIC Science Stories scale received relatively few mentions in the syllabus 

documents, except in the case of Physical Sciences, where it received 18, the highest 

number received by any scales in any subject.  A similar situation exists for the 

Uncertainty in Science scale, with there being far more references to these items for 

Physical Sciences.   

In summary, the college science syllabuses documents were found to support the use 

of inquiry teaching methodologies, as defined by the ITIC.  The Physical Sciences 

syllabus document offered the strongest support, but as noted this may be an artefact 

of the amount of explanation provided by this syllabus document rather than a true 
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reflection that the Physical Sciences syllabus was intended to contain more inquiry 

than the other college syllabuses. 

 

11.3.2 Grade 9/10 Syllabus Documents in Use When the ITIC was 

Administered 

References to inquiry methodologies in the Grade 9/10 syllabuses in use at the time 

that the ITIC was administered were discussed in Section 8.1 of this thesis.  It was 

found that the syllabus documents made links to most of the items contained in the 

five ITIC scales.   

These links were least explicit in the case of the Science Stories scale, where most of 

the links were implied rather than explicit, and where it was necessary to refer back 

to the national statement document - referenced in the Grade 9/10 syllabus - to draw 

some of these links. 

The ITIC Freedom in Practical Work, Communication and Interpretation of Data 

scales all showed links with at least two of the 9/10 assessment criteria, as well as 

with other parts of the syllabus documents.  Links to the Uncertainty in Science scale 

were only reflected in one of the assessment criteria. 

Overall, the Grade 9/10 syllabus documents were found to support the use of inquiry 

teaching methodologies, as defined by the ITIC scales, in teaching Grade 9 and 10 

Science in Tasmania. 

 

11.3.3 New Tasmanian College Science Syllabus Documents 

The six college science syllabus documents that came into use from 2004 onwards 

were considered in detail in Chapter 9.  Consideration of the generic components of 

these documents indicated that there were a number of connections to the Freedom 

in Practical work, Communication, Interpretation of Data and Uncertainty in Science 

scales of the ITIC.  The generic documents contained no explicit references to the 

Science Stories scale. 
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In addition to the links to ITIC scales indicated by generic syllabus documents, there 

are links via the six common assessment criteria that exist for the college science 

subjects, and also through subject specific documentation.  The number of 

connections to ITIC inquiry methodologies that existed for each syllabus are 

summarised in Table 9.26. 

The Freedom in Practical Work scale shows links to all the college science syllabus 

documents, through common assessment criteria numbers 1 and 3 in particular.   

The Communication scale shows links to all the college science syllabus documents, 

through common assessment criterion number 6.  Additionally, the Environmental 

Science and Science of Natural Resources documents imply substantial additional 

links. 

The Interpretation of Data scale shows connections to all the college science syllabus 

documents through common assessment criteria 1, 4 and 6, as well as through 

subject specific criteria.  It is the scale which shows the most links to the various 

syllabus documents. 

The Science Stories scale shows links to the college science syllabus documents 

through common assessment criterion 6.  Only the Science of Natural Resources 

syllabus documents make any other real links to this scale, although the potential for 

more use of behaviours from this scale exists. 

The Uncertainty in Science scale shows links to the college science syllabus 

documents through common assessment criterion 6.   

Overall, the ITIC can be seen to be of considerable relevance to the six college 

science syllabuses.  As such it would be a useful instrument for teachers to employ 

to investigate their classroom behaviours.   

 

11.3.4 New Tasmanian K-10 Syllabus Documents - The Essential Learnings 

The Essential Learnings syllabus documents that came into use in Tasmanian 

schools from 2005 onwards were considered in detail in Chapter 10.  This 
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consideration indicated that the Essential Learnings documents show numerous 

connections to the inquiry methodologies defined by the ITIC.  These connections 

were summarised in Table 10.19, and further examined in Table 10.20, which shows 

the number of items from each ITIC scale that make connections to each Essential 

Learning. 

Items from the Interpretation of Data, Uncertainty in Science and Communication 

scales showed connections to all five Essential Learnings.  Items from the Freedom 

in Practical Work scale connected largely to the Thinking and World Futures 

Essential Learnings.  The Science Stories scale showed the least number of 

connections to the Essential Learnings, although the reference that the World Futures 

Essential Learning makes to the history of scientific thought means that all items 

from the Science Stories scale are relevant to this Essential Learning. 

Overall, the ITIC was found to be of considerable relevance to the Essential 

Learnings curriculum, in particular to the World Futures, Thinking and 

Communication Essential Learnings.  Therefore, the ITIC would be a useful 

instrument for teachers to employ to assess the extent to which their classrooms are 

providing the types of inquiry behaviours indicated. 

 

11.3.5 Summary of Tasmanian Curriculum Links 

The examination of the various Tasmanian curriculum documents indicated that the 

inquiry methodologies defined by the ITIC were valued by the syllabus documents 

in use at the time that the ITIC was administered, and also by the current syllabus 

documents for both high school and college students. 

This examination of the syllabus documents meets research objective 6 of this study, 

by providing an analysis of the extent to which Tasmanian syllabus documents either 

indicate or dictate the use of an inquiry-based approach, with the extent to which an 

inquiry approach is indicated being measured by the number of connections that the 

syllabus documents make to each ITIC scale. 
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11.4 CLASSROOM REALITY COMPARED TO SYLLABUS INTENT 

This section will examine whether the extent to which inquiry methodologies, as 

defined by the ITIC, were actually employed in Tasmanian science classrooms at the 

time that the ITIC was administered was in line with the intent of the then 

Tasmanian syllabus documents.   

 

11.4.1 Inquiry in the College Science Subjects 

On the basis of the data contained in Table 8.2, which shows the number of 

connections that were made to items from the ITIC scales by each of the college 

syllabus documents, the Physical Sciences syllabus documents can be seen to 

contain by far the most connections to inquiry methodologies (62), followed by 

Biology (37) and then Chemistry and Physics with approximately equal numbers (25 

and 24).  Table 11.2 considers the number of connections on a scale by scale basis, 

showing which syllabus documents indicated the most inquiry.  Connections that 

were listed as tentative in Table 8.2 are included in Table 11.2.  It should be noted 

that in some instances the difference in the number of connections that different 

subjects show are negligible.  The numbers in brackets indicate the number of 

connections that the syllabus documents for the subject in question made to the ITIC 

scale under consideration. 
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Table 11.2 

Relative Amounts of Inquiry in the College Science Subjects, as Indicated by the 
Syllabus Documents. 

 Freedom in 
Practical 

Work 

Communicati
on 

Interpretation 
of Data 

Science 
Stories 

Uncertainty in 
Science 

Most 
inquiry 

Biology (10) Biology/ 
Physical 

Sciences (7) 

Physical 
Sciences (16) 

Physical 
Sciences (18) 

Physical 
Sciences (13) 

Physics/ 
Physical 

Sciences (8) 

Physics (5) Biology (15) Chemistry (3) Biology/ 
Chemistry (2) 

 

Chemistry (6) Chemistry (4) Chemistry (10) Physics (2) Physics (1) 

Least 
inquiry 

  Physics (8) Biology (1)  

 

The data have been presented in this manner in order to facilitate comparing it with 

the amount of inquiry that students perceived to be actually occurring in their college 

science classes, as described in Chapter 6.  The amount of inquiry perceived by 

students will be taken as an indication of the amount of inquiry that was actually 

occurring in each of the college science subjects.  It is not possible to consider the 

teacher data in a similar way, as there were too few teachers to divide them up 

according to the subject/s that they taught. 

Table 11.3 shows which of the college science subjects students perceived that the 

greatest amount of inquiry behaviours, as defined by the ITIC Freedom in Practical 

Work, Communication and Science Stories scales, were occurring in.  There were no 

statistically significant differences between college science subjects, with respect to 

the levels of inquiry behaviours that students perceived, on the Interpretation of Data 

and Uncertainty in Science scales, so these are not included in Table 11.3.  Table 

11.3 does not indicate which subjects there were significant differences between, but 

this information is given in Chapter 6, in the discussion of Table 6.16.   
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Table 11.3 

Relative Amounts of Inquiry in the College Science Subjects, as Perceived by 
Students. 

 Freedom in 
Practical Work 

Communication Science Stories 

Most inquiry Physics Chemistry Physics 

Chemistry Physics Chemistry  

Physical Sciences Physical Sciences Physical Sciences 

Least inquiry Biology Biology Biology 

 

Table 11.3 shows that although Physical Sciences had by far the most inquiry 

indicated in the syllabus documents, this did not translate into what students 

perceived to actually be occurring in their classrooms, as whilst the Physical 

Sciences syllabus documents showed the most connections to inquiry 

methodologies, Physical Sciences ranked third on each of the three inquiry scales 

where significant differences existed between college science subjects.  Table 11.2 

shows that in the case of the Interpretation of Data scale, the Physical Sciences 

syllabus documents indicated that Physical Sciences would be expected to have a 

similar amount of inquiry to Biology and more than Chemistry or Physics.  The fact 

that analysis of the student data showed that there was no significant difference in 

the amount of inquiry that students perceived to actually be occurring between the 

college science subjects on this scale indicates that the expectations set by the 

syllabus documents were not being met.  The same is true for the Uncertainty in 

Science scale.  Therefore, overall, Physical Sciences classrooms are not showing 

higher levels of inquiry than those of the other college science subjects. 

As noted in Chapter 8, the Biology syllabus documents actually stated that an 

inquiry approach should be used.  However, on the basis of the data in Table 11.3 it 

is the subject where students perceived there to be the least amount of inquiry 

occurring, based on the three scales where there were significant differences between 

the subjects.   
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Hence, what was actually occurring in college science classes at the time that the 

ITIC was administered does not appear to be in line with what the then syllabus 

documents were advocating.  Whilst it is not possible to give an exact measure of 

how much inquiry the syllabus documents indicated, it can be seen that in a relative 

sense the subjects whose documents specified the greatest amount of inquiry did not 

have the greatest amount of inquiry occurring in the classroom.   

A possible explanation for Physics and Chemistry classes actually having the highest 

amount of inquiry, at least as perceived by students, is that Chemistry and Physics 

classes are largely composed of Grade 12 students.  This has two major implications 

which may be of importance here.  The first is that teachers would see these students 

as being more experienced in the laboratory situation and may hence allow them 

more freedom - in both practical work and other areas.  Secondly, teachers are more 

likely to know the students and the students to know each other - remembering that 

the nature of Grade 11/12 college education in Tasmania means that students change 

schools at the end of Grade 10, so that Grade 11 classes are largely composed of 

students who do not know each other.  This is likely to lead to both teachers and 

student being more comfortable with the types of behaviours specified by the 

Communication scale, and so both programming and engaging in more of them. 

A limitation of this data is that it was not the same group of students commenting on 

each subject, although a number of students would have been studying more than 

one college science subject.  A possible further limitation is that variation in the 

length and depth of the syllabus documents for the different college science subjects 

may have impacted on the amount of inquiry that they were judged to show.  

However, as these are the only documents that were available to teachers it was 

considered valid to examine them in the manner outlined. 

As indicated earlier, it was not possible to analyse the teacher data in the same way 

as the student data, as there were not sufficient teacher responses.   
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11.4.2 Inquiry in the High School Science Classes 

The inclusion of inquiry methodologies in the Grade 9/10 science syllabus 

documents was considered in section 8.1.  The analysis conducted in this section 

showed that there were clear connections between the syllabus documentation and 

each of the ITIC scales, with each ITIC scale being relevant to at least one 

assessment criterion.  More specifically, the Communication scale connected to three 

assessment criteria, the Freedom in Practical Work and Interpretation of Data scales 

to two and the Science Stories and Uncertainty in Science scales to one criterion 

each.  This indicates that inquiry methodologies were valued by the Grade 9/10 

syllabus documents.   

The classroom reality of the extent to which inquiry methodologies were 

incorporated into Grade 9/10 science classes can be gauged from student perceptions 

of their actual classroom environment, as shown in Table 6.14 and teacher 

perceptions of their actual classroom environment, as shown in Table 7.7.  In the 

case of the student data, Grade 9/10 students have been separated out from the other 

grades.  However, it was not feasible to separate out teachers of Grade 9/10 classes 

in the same manner, as the overall number of teachers was not high enough.   

Examination of the student data shows that the mean response for the level of inquiry 

that is occurring in science classes ranges from 2.16 for Science Stories in Grade 9 to 

3.29 for Interpretation of Data in Grade 10.  Examination of the teacher data shows 

that mean response for the level of inquiry that is occurring in science classes ranges 

from 2.57 for Freedom in Practical Work to 3.59 for Communication.   

On the basis of this data, it is not possible to make a definitive statement as to 

whether or not the amount of inquiry that is occurring in Grade 9/10 science classes 

is in line with the stated intent of the syllabus documents.  However, it is possible to 

say that the syllabus documents indicate that inquiry should be occurring.   
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11.4.3 Teacher and Student Preferred Environments 

As the ITC questionnaire asked respondents to assess both their actual and preferred 

classroom environments, this data can be used to comment on whether the amount of 

inquiry that is occurring in classrooms is in line with student and teacher preferences.   

Table 7.5 shows that teacher preferred scores were significantly higher than actual 

scores across all ITIC scales.  Table 7.7 shows that there were significant differences 

between the actual classroom environments of college and high school teachers, but 

that there were no significant differences in their preferred environments.  These data 

indicate that teachers did not perceive their classrooms as being as inquiry based as 

they would have preferred them to be.  This seems to have been particularly the case 

for high school teachers, as Table 7.7 shows that there was significantly more 

inquiry occurring in college science classes than in high school ones. 

Table 6.2 shows that there were significant differences between students' actual and 

preferred classroom environments on four of the ITIC scales.  Examining different 

subgroups within the student population showed that these differences were largely 

perpetuated.  This has been considered in greater detail in Chapter 6.  Overall, it can 

be said that science classes at both the high school and college level were not as 

inquiry based as students would have liked them to be. 

 

11.4.4 Summary of Classroom Reality 

The above consideration of whether or not the extent to which inquiry methodologies 

were actually being used in Tasmanian high school and college science classes was 

in line with the appropriate syllabus documentation, the beliefs of teachers and the 

preferences of students meets research objective 7 of the current study. 

In summary, both teachers and students would prefer that there were more inquiry 

behaviours in their science classes.  Both the syllabus documents that were in use at 

the time that the ITIC was administered and the current syllabus documents, which 

were examined in Chapters 9 and 10, support the use of inquiry methodologies.  

Whilst it is difficult to quantify whether or not the amount of inquiry that is 
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occurring is in line with the curriculum documents, it is possible to state that these 

documents support the use of inquiry methodologies, and that both students and 

teachers believe that there should be more inquiry occurring in science classes than 

was the case at the time of this study. 

 

 

11.5 SIGNIFICANCE OF AND RECOMMENDATIONS FROM THE ITIC 

RESEARCH 

The research presented in this thesis indicates that it is desirable to use inquiry 

methodologies, as defined by the ITIC, in Tasmanian science classes.  It would be 

desirable for there to be higher levels of inquiry methodologies in science classes 

than currently exist.  This conclusion is drawn on the basis of the following findings: 

• Students expressed a preference to experience significantly more inquiry 

methodologies, as defined by the ITIC Freedom in Practical Work, 

Communication, Science Stories and Uncertainty in Science scales, in their 

science classes. 

• Teachers expressed a preference for their science classes to experience 

significantly more inquiry methodologies as defined by all five ITIC scales. 

• The correlations between both student attitude and teacher attitude and the 

ITIC scales showed that there was a significant correlation between the 

extent to which inquiry methodologies were used in science classes and both 

student and teacher attitude. 

• The correlations between the ITIC scales and predicted student achievement 

level at Grade 10 showed that there was a significant correlation between the 

extent to which inquiry methodologies were used in science classes and 

predicted student achievement levels at the end of Grade 10. 
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• The science syllabus documents which are currently being used in Tasmania 

show extensive connections to ITIC methodologies, at both high school and 

college level. 

When sub-sets of the student population were examined in further detail, the 

preference for significantly greater levels of inquiry, as defined by the Freedom in 

Practical Work, Communication, Science Stories and Uncertainty in Science scales, 

in their science classes held for males, females, Grade 7, Grade 8, Grade 9, Grade 

10, Physical Sciences, Biology, and Chemistry students.  Physics student preferences 

were similar to the groups mentioned, with the exception that they did not wish to 

experience significantly more Science Stories type activities.  Grade 7 and 8 students 

expressed an additional preference, that there be significantly more inquiry 

methodologies as defined by the Interpretation of Data scale.    Possible reasons for 

these preferences have been discussed in more detail in Chapter 6. 

In light of the identified desirability of increasing the extent to which inquiry 

methodologies are used in science classes, the ITIC can be seen as a potentially 

useful instrument for achieving this aim.  Its usefulness stems from two possible 

uses: 

1. as a checklist for teachers to identify the type of methodologies that they 

should be aiming to implement or extend in their science classes 

2. as a monitoring instrument to assess the extent to which inquiry 

methodologies are being used in science classes. 

As the ITIC was formulated by distilling what the science education literature 

identified as inquiry methodologies, the items of the ITIC can be taken as describing 

inquiry in science classes.  Therefore, by ensuring that they provide students with 

opportunities to experience the types of activities described by the ITIC items, 

teachers can move toward a more inquiry based science class.   

The data that have been collected and presented in this thesis is baseline data that 

could be used as a comparison for future studies.  As the syllabus documents for 

both high school and college science courses in Tasmania changed shortly after the 

ITIC was administered, the data that has been collected will be useful in analysing 
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any impact that the syllabus changes have had on inquiry methodologies.  This is a 

fortuitous situation, as no deliberate attempt has been made by the implementing 

bodies to collect data that any potential change could be measured against.  

Consequently, the ITIC data is likely to be valuable to future researchers.  This is 

likely to be of particular interest, as Tasmania is now using its Essential Learnings 

curriculum up to the end of Grade 10 and various persons are making claims for and 

against the perceived effectiveness of this curriculum. 

If individual schools or teachers did not wish to use the baseline data provided by the 

current study, but to assess the extent to which deliberate change affects the level of 

inquiry in their science classes, they could use the ITIC to collect their own baseline 

data and then readminister the ITIC a specified amount of time later - after there had 

been time for the changes that they implemented to take effect.   

In the case of any future changes to either high school or college syllabuses, the ITIC 

could be administered before and after the changes in order to assess the impact of 

the change on levels of inquiry. 

One reason, which has been alluded to earlier, for teachers, schools or education 

systems to be concerned about the levels of inquiry that are occurring in science 

classes is that fewer students seem to be choosing to enter science related careers.  

As this is becoming a matter of national and international concern, any change which 

increases the likelihood of students being engaged by science is worth considering.  

Given that the analysis of the ITIC data showed that the use of inquiry 

methodologies had a significant positive effect on student attitude, it would seem 

sensible to aim to increase the use of inquiry methodologies in science classes. 

Apart from increasing the overall amount of inquiry methodologies, as defined by 

the ITIC scales, in science classes, the current study also identified a number of other 

desirable changes.  These changes have been discussed in earlier chapters, but in 

brief include: 

• providing male students with more opportunities for freedom in the practical 

work that they undertake, than female students are provided with, as although 

both males and females wanted more freedom in the practical work that they 

undertook, males wanted higher levels  
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• providing female students with more opportunities to engage in 

communication related activities, as, again, although both male and female 

students wanted higher levels of communication, females wanted 

significantly higher levels than males 

• providing Grade 7 and 8 students with increased opportunities to participate 

in Interpretation of Data activities 

• providing female students with similar levels of Science Stories activities to 

male students. 

The analysis of the Essential Learnings curriculum documents undertaken in 

Chapter 10 indicated that all ITIC scales were relevant to this curriculum, but that 

the documents made fewest connections to the Science Stories scale.  The analysis of 

the college science syllabuses undertaken in Chapter 9 showed a similar situation.  

Therefore, it seems that Science Stories related activities are ones that might easily 

be overlooked in developing and delivering materials for science classes.  Hence, if 

teachers consider that exposure to historical perspectives and what scientists do is 

important they may need to make a conscious effort to incorporate such materials 

into their science courses. 

 

 

11.6 RESEARCH LIMITATIONS OF THE ITIC STUDY 

As with any study of this nature the data presented here have limitations, many of 

which were beyond the control of the researcher.  These limitations have largely 

been commented on in earlier sections of this thesis, and include issues relating to 

sample size and to the administration and validation of the questionnaire. 

The size of two of the sample populations, the teacher population and the population 

of Grade 10 students, should be noted as limiting the interpretation of data gathered 

in this study to some extent.  The size of the teacher population (65 teachers) 

completing the questionnaire was relatively small as compared to the student 

population (2,207 students).  Limitations that arise from the relatively small size of 
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the teacher population are, firstly, that the results are less likely to be representative 

of the teaching population as a whole, and, secondly, that the statistical comparisons 

with the student population must be interpreted with caution.  The smaller number of 

Grade 10 students completing the questionnaire, as compared to other high school 

grade levels also means that the data for this grade group may not be as 

representative of the population of Grade 10 students as a whole as would be desired.  

However, the results obtained do not seem to indicate that the data obtained for this 

grade group is anomalous. 

Limitations that relate to the administration of the questionnaire include the 

questionnaire not being administered by the researcher, low student literacy levels 

and item interpretation.  The fact that the questionnaire was administered to classes 

by their science teachers rather than by the researcher meant that the instructions and 

amount of assistance given to different classes may have varied.  However, as the 

intent of the questionnaire was to ascertain students' opinions about their classroom 

environment rather than to test their critical literacy skills it is unlikely that this 

would have had an adverse effect on the results obtained.  The low literacy level of 

some students is a limitation in the administration of the questionnaire, as low 

literacy may have prevented them from interpreting items and giving the response 

that most closely matched their opinion.  A number of questionnaires were discarded 

during data entry, and it is likely that a number of these belonged to students with 

low literacy levels.  A limitation that this places on the data is that the opinions of 

low ability students may be under represented.  

Item interpretation must always be regarded as a potentially limiting factor in a study 

such as this, as if respondents do not interpret items in the way that the researcher 

intended the responses will not give the information that the researcher was seeking.  

Observations during the administration of the preliminary questionnaire did not 

indicate that any particular items appeared to cause a great enough problem with 

interpretation to warrant removing them.  However, before using the ITIC in a 

different cultural context it would be desirable to trial it with at least a small group of 

teachers and students in case there are any items whose meaning does not transfer 

easily.  A particular example may be in the case of Scale 1, Assessment in Practical 

Work.  Whilst the term 'practical work' is the one commonly used in Tasmania, 
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literature from the U.S. indicates that the term 'laboratory work' is more common 

there. 

Perhaps the greatest problem in the development of the ITIC as an instrument to 

measure the extent to which inquiry methodologies are used in science classes was 

that although the type of assessment used was identified as an inquiry characteristic 

in the survey of the science education literature, this study did not successfully 

develop and validate an assessment scale.  

Despite these potential limitations, the ITIC seems to have delivered useful data 

which can be used both as the basis of further research and to assist teachers in 

identifying changes that they may wish to make to their science teaching. 

 

 

11.7 FUTURE RESEARCH DIRECTIONS 

The first and most obvious direction for future research to emerge from this study is 

the need to develop and validate a scale that measures the extent to which assessment 

activities in science classes are inquiry based.  The current study attempted to 

develop such a scale, but it was not found to be a valid and reliable scale in the 

preliminary questionnaire.  Despite the scale undergoing a considerable amount of 

modification it was still not found to be valid and reliable when incorporated as part 

of the final questionnaire.  As the need for an Assessment scale was identified 

through analysis of the available literature, it is highly desirable that a valid 

Assessment scale is developed. 

With respect to the Tasmanian context, this study has shown that the ITIC is relevant 

to the Essential Learnings curriculum that has just been implemented in that state.  

As this new curriculum is based on five Essential Learnings rather than traditional 

subject areas but has a heavy emphasis on inquiry, it would be valuable to modify 

the ITIC for use in Tasmanian classrooms, with both science and non-science 

classes.  This could often be achieved by replacing specific references to science 

classes with more generic qualifiers.   
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The ITIC is a potentially valuable tool for use in science teacher professional 

learning sessions.  Examining the nature of the ITIC items would allow teachers to 

develop a better idea of what is meant by the term inquiry.  Once they had clarified 

their understanding of the requirements of inquiry teaching, teachers could set out to 

deliberately modify aspects of the pedagogies that they use, in order to achieve a 

more inquiry based science class.  They could monitor the success of the changes 

that they made by administering the ITIC to their classes both before and after they 

made changes to their teaching methodologies. 

The time at which the ITIC was administered to Tasmanian science classes was a 

somewhat fortuitous one, as it coincided with a period when new curriculum 

documents were being introduced, both in high schools and colleges.  Consequently, 

the data collected in the current study serves as baseline data against which the 

impact of the new curriculum documents can be measured.  In order to monitor any 

changes that occur with regard to the amount of inquiry teaching that is occurring in 

Tasmanian science classes (or potentially in a wider group of classes), the ITIC 

should be administered to a representative group of Tasmanian science classes at 

intervals following the introduction of the new curriculum.  Every two years would 

seem to be a realistic period of time for the ITIC to be administered.   

In any future large scale administration of the ITIC, consideration should be given to 

improving its format by removing all reverse score items, and adopting a process 

where the scales are rotated, so that every student does not complete the items in the 

same order, in a similar manner to that in which electoral parties are rotated on 

Australian electoral papers.  This would have the benefit of avoiding a fatigue factor 

where respondents are less conscientious about their responses to later items.   

The current research study could be taken further by conducting teacher and student 

interviews which ask individuals from both groups why they prefer an inquiry based 

approach - which the data collected in this study indicate to be the case.  This may 

give unexpected insights into factors that encourage or deter students from pursuing 

their science studies.  In the case of teachers, it would be valuable to ask individuals 

why, given that they have expressed a preference for more inquiry to occur in their 

science classes, they do not attempt to make this a reality themselves.  It is possible 

that there are systemic factors which need to be addressed to allow greater amounts 
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of inquiry teaching to occur.  In addition, interviews may assist in shedding more 

light on some of the findings of the student questionnaire, including: 

• why female students perceived there to be significantly less inquiry learning 

experiences relating to the Science Stories scale than did male students 

• what the factors are that inhibit teachers from using Interpretation of Data 

activities to a greater extent with Grade 7 students, and what strategies 

teachers need to be encouraged to use so that Grade 7 students experience 

more of these 

• why Physics students do not want to experience more Science Stories type 

activities - is it because they feel there is already an adequate amount, or 

because they do not enjoy them 

• whether Biology teachers are aware that, on the basis of student perceptions, 

Biology may now be regarded as being less inquiry based than the other 

college science subjects, and whether they perceive this to be problematic 

• why lower ability students do not want to experience as high a level of 

Uncertainty in Science behaviours, and if strategies can be found to 

overcome this tendency. 

The current study could also be extended by adding a qualitative component.  This 

could involve classroom observation sessions, in which an observer records the 

frequency with which the behaviours listed in the ITIC occur. 

 

11.8 WHY ENCOURAGE THE USE OF THE ITIC? 

It is interesting to note that the review of the literature presented in Chapter 2 of this 

thesis identified the threat of declining U.S. world leadership in the area of science as 

the impetus for the development of numerous inquiry based science education 

resources in the 1960s, and that as the current study concludes the identification of 

school science education as a factor contributing to future economic problems in the 

U.S. has arisen yet again.  This was seen in the release of a February 2005 report 
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issued by the U.S. Business-Higher Education Forum (BHEF), titled A Commitment 

to America's Future: Responding to the Crisis in Mathematics and Science 

Education.   

This report (Business-Higher Education Forum, 2005) maintained that if America 

was to sustain its international competitiveness, its national security, and the quality 

of life for its citizens, then it must move quickly to achieve significant improvements 

in the participation of all students in mathematics and science.  It urged all business, 

education and policy leaders to come together all across the country during the next 

five years, to ensure that current and future generations acquire the core mathematics 

and science skills needed to achieve success in the new century, adding that America 

cannot afford to lose ground in preparing all students in these key areas.   

The report commented that America has failed to comprehend that in the highly 

competitive global economy of the 21st century mathematics and science are no 

longer pursuits for the few, but requirements for all.  Again, this is not new ground - 

as noted in Chapter 2, Schwab, Dewey and Armstrong were of the same opinion.  

The report also commented that other countries have not only noted, but have acted 

on this fact.   

A noteworthy comment from the report is the idea that skill in integrating ideas is 

needed, in addition to (not in place of) discipline-specific expertise, and that the 

current secondary school, and indeed college, curriculum compartmentalises science 

concepts into courses such as Biology A or Algebra II, so working against an 

understanding of the connections within or between the broader fields of science and 

mathematics.  The use of inquiry methodologies seems to be a mechanism that 

would help to promote such connections. 

The BHEF report acknowledged that the national and personal economic security 

crises attributed to American students' inadequate performance and flagging interest 

in mathematics and science have been widely reported for decades, and that during 

the last four years a number of reports have been published that address the urgent 

need to improve mathematics and science education in the United States, and that 

initiatives were undertaken to try to solve the problem - but considered that these 
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have served to provide information about what does not work rather than solving the 

problem.   

Whilst the report did not recommend particular pedagogies, inquiry or otherwise, its 

existence indicates that debate over the most appropriate manner for teaching school 

science continues.  The report did recommend the provision of experiences designed 

to increase student understanding of, and interest in, mathematics and science, and 

stated that these experiences should include laboratory-based investigations; 

extended problem-solving activities that promote understanding of key concepts and 

their application in the real world; the use of technology tools in doing mathematics 

and science; and introduction to mathematics and science related careers.  In 

discussing assessment, the report recommended that in addition to test results, 

performance in portfolios of work on extended tasks and written and oral 

presentation of research should be considered.  Therefore, the BHEF report seems to 

be supporting the use of the type of inquiry methodologies that the ITIC measures.  

Consequently, the ITIC can be viewed as a useful tool for groups interested in 

implementing the type of changes that the BHEF report calls for. 

A still more recent report was prepared for the U.S. Congress in response to the 

questions: 

What are the top ten actions, in priority order, that federal policy makers 

could take to enhance the science and technology enterprise so the United 

States can successfully compete, prosper, and be secure in the global 

community of the 21st Century?  What implementation strategy, with 

several concrete steps, could be used to implement each of those actions?  

(Committee on Science, Engineering, and Public Policy, p. 1). 

It identified as one of its four recommendations, to  

increase America's talent pool by vastly improving K-12 mathematics and 

science education (Committee on Science, Engineering, and Public Policy, 

p. 3). 

The actions identified to make this a reality were to recruit 10,000 new teachers, 

strengthen 250,000 teachers' skills and to enlarge the pipeline, which referred to 
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creating opportunities and incentives for middle and high school students to pursue 

advanced work in science and mathematics.  The report also identified two 

approaches that were already in use and which should be expanded.  These were 

statewide specialty high schools and inquiry-based learning.  In relationship to 

inquiry-based learning, the report recommended that laboratory experience should be 

available to all students and that summer internships and research opportunities 

should be expanded to serve at least 2000 middle school and high school students 

each year.  It also commented that experiences designed to stimulate low-income and 

minority student participation should be particularly encouraged.  This report would 

seem to indicate the inquiry methodologies that the ITIC reports on are seen as 

valuable in the current world climate. 

In the Australian context, inquiry ideas and methodologies are contained in the 

curriculum documents that have been developed in all states and territories.  A 

common theme amongst these documents seems to be that they have been 

formulated in response to the fact that twenty first century workers live in a time of 

rapid technological change, significant changes in society and changed local and 

global economic structures.  Students attending school now will need to be lifelong 

learners, have the ability to problem solve, to occupy different positions and to work 

in teams.  These are qualities that the inquiry teaching methodologies measured by 

the ITIC value seem to promote.   

In the Tasmanian context, where the current study was based, the use of inquiry 

teaching methodologies has been shown to be relevant to the teaching of science and, 

in fact, to the broader curriculum, particularly sitting within the Thinking Essential 

Learning.  Whilst it is beyond the scope of this thesis to consider the curriculum 

documents for the other Australian states in the same manner that the Tasmanian 

ones were considered, it is worth pointing out some key features which seem to 

imply that inquiry methodologies are valued within the various curricula. 

In the Australian Capital Territory (ACT), the new curriculum, to be implemented 

from 2008, is outlined in the document Every Chance to Learn Future Directions in 

ACT Curriculum Renewal (ACT Australian Capital Territory Department of 

Education and Training, 2005).  The curriculum contains 36 Essential Learning 
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Achievements, a number of which show close links to the type of inquiry 

methodologies measured by the ITIC.  These include: 

• the student applies methods of inquiry 

• the student makes considered decisions 

• the student uses problem solving strategies 

• the student recognises patterns and draws out generalisations 

• the student makes plans and carries them out 

• the student applies scientific understandings 

• the student understands change. 

The extended descriptions for each of these Essential Learning Achievements make 

the links clearer. 

Whilst the New South Wales curriculum documents remain more traditional than 

those of the other states and territories of Australia, the curriculum description for 7-

10 Science show that ITIC inquiry methodologies are valued.  Under the heading 

What will students learn? the Science document states: 

Students work individually and in teams in planning and conducting 

investigations. They evaluate issues and problems, identify questions for 

inquiry and draw evidenced-based conclusions from their investigations. 

Through this problem-solving process they develop their critical thinking 

skills and creativity. They are provided with experiences in making 

informed decisions about the environment, the natural and technological 

world and in communicating their understanding and viewpoints.  (New 

South Wales, Board of Studies, 2004, p. 30) 

The Course Requirements section adds that practical experiences which emphasise 

hands-on activities will occupy a substantial amount of time.  Therefore, the ITIC 

must be seen as being relevant to the New South Wales context. 

The Northern Territory Curriculum Framework contains what are termed EsseNTial 

Learnings, which are central to all teaching and learning.  These EsseNTial 
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Learnings are developmentally mapped to achieve culminating outcomes.  The 

outcomes are developed through the content of the learning areas, of which Science 

is one.  Examination of the Working Scientifically strand of the Science learning 

area, in particular, shows marked connections to ITIC methodologies.  The Northern 

Territory Curriculum Framework document gives the following description of this 

strand: 

Working Scientifically is an effective way to generate understanding, test 

ideas and creatively solve problems. This strand has five elements: 

• Planning - learners plan to test ideas about the natural and technological 

world. 

• Investigating - learners collect and record a variety of information 

relevant to their investigation, translate and analyse the information to 

find patterns and draw conclusions to share and extend their 

investigations. 

• Evaluating - learners reflect on their investigations, evaluate the process 

and generate further ideas. 

• Acting Responsibly - learners make decisions and take responsible 

action in their society. 

• Science in Society - learners examine and use the relationship between 

the nature and direction of science and society’s perspectives and values.  

(Northern Territory, Department of Employment, Education and 

Training, n.d., p. 342). 

These elements can be seen to show clear connections to ITIC inquiry 

methodologies. 

Queensland is in the process of developing the Queensland Curriculum, Assessment 

and Reporting Framework for P-10 students (Queensland, Department of Education 

and the Arts, 2005).  Whilst the framework has yet to be developed, a preliminary 

paper notes that the essential learnings will encompass knowledge, skills and 

attributes that are: 

• specific to content areas such as English, maths, and science 

  367 



• required for complex, real-life challenges such as higher-order thinking 

skills, and social and personal competence 

• needed for good communication and ongoing learning such as literacy, 

numeracy, life skills, information and communication technologies, and 

cultural skills. 

Hence, whilst it is not possible to second guess what the framework will contain, it 

seems very likely that ITIC inquiry methodologies will be relevant here.  An expert 

paper (Freebody, 2005) prepared for the Department of Education and the Arts in 

relation to the new curriculum noted that the desirable attributes of Queensland 

school students at the end of Year 10 reflect their commitments to: 

• personal competence, success, security and wellbeing 

• fostering an attitude of active lifelong inquiry, innovativeness and creativity 

• social and cross-cultural inclusion, participation and cohesion. 

The second dot point above seems to reinforce the position that ITIC inquiry 

methodologies will be relevant in the Queensland context. 

The South Australian Curriculum, Standards and Accountability (SACSA) 

Framework describes curriculum Key Ideas and Outcomes upon which education 

from birth to Year 12 is to be built. The Curriculum Scope is organised around 

Learning Areas through which Essential Learnings, Equity Cross-curriculum 

Perspectives and Enterprise and Vocational Education are interwoven.  The Essential 

Learnings describe the values, dispositions, skills and understandings that are 

considered crucial, and to which all learning areas should contribute (South 

Australia, Department of Education and Children's Services, n.d.).  The Essential 

Learnings are: 

• Futures - Learners develop the flexibility to respond to change, recognise 

connections with the past and conceive solutions for preferred futures. 

• Identity - Learners develop a positive sense of self and group, accept 

individual and group responsibilities and respect individual and group 

differences. 

• Interdependence - Learners develop the ability to work in harmony with 

others and for common purposes, within and across cultures. 
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• Thinking - Learners become independent and critical thinkers, with the 

ability to appraise information, make decisions, be innovative and devise 

creative solutions. 

• Communication - Learners develop their abilities to communicate powerfully 

using literacy, numeracy and information and communication technologies. 

Without examining the Science learning area documents in depth, it can be seen that 

these suggest connections to a number of ITIC scales - Communication, 

Interpretation of Data, Science Stories and Uncertainty in Science. 

Victoria will implement its new curriculum framework for P-10 students, the 

Victorian Essential Learning Standards (VELS), in 2006.  These standards are 

developed within three core interrelated strands: 

• Physical, Personal and Social Learning. 

• Discipline-based Learning. 

• Interdisciplinary Learning. 

The Science learning domain of the VELS is divided to two dimensions.  The 

Science at work dimension seems to imply significant connections to the ITIC 

inquiry methodologies, with its description including: 

This dimension focuses on students experiencing and researching how 

people work with and through science. Students learn to be curious and to 

use scientific understanding and processes to find answers to their questions. 

They design and pursue investigations; generate, validate and critique 

evidence; analyse and interpret ideas and link them with existing 

understanding; work and reason with scientific models and communicate 

their findings and ideas to others. They identify and practise the underlying 

values, skills and attributes of science.  

Through their investigations, they gain insight into science as a human 

activity and the relationship between science, technology and society and 

possible futures. They explore how science is used in multiple contexts 
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throughout their lives and its pervasiveness throughout the workplace. 

(Victorian Curriculum and Assessment Authority, 2005, p. 6-7) 

This description suggests close links with ITIC methodologies. 

Phase 2 of Western Australia's Curriculum Improvement Project (CIP2) has seen the 

development of an Outcomes and Standards Framework which is mandated in the 

new Curriculum, Assessment and Monitoring Policy released in 2005 (Western 

Australia, Department of Education and Training, 2005).  Science has five learning 

outcomes relating to working scientifically and four to conceptual understandings.  

The progress map for Science contains Investigating as one of the five process 

outcomes.  The Investigating outcome and all the conceptual outcomes are 

sequenced within eight levels in the Outcomes and Standards framework.  The 

descriptor for the Investigating outcome states:   

Students investigate to answer questions about the natural and technological world, 

using reflection and analysis to prepare a plan: to collect, process and interpret 

data: to communicate conclusions: and to evaluate their plan, procedures and 

findings (Western Australia, Department of Education and Training, 2005 p. 

62). 

This descriptor indicates that the Western Australian curriculum documents are 

supportive of ITIC inquiry methodologies. 

In summary, examination of contemporary Australian curriculum documents and 

reports published in the U.S. indicate that although at the commencement of this 

study some may have argued that inquiry teaching was a passé methodology, events 

have shown it to have stood the test of time and that the ideas and methodologies 

that the term encompasses can be seen in a number of Australian and international 

curriculum documents, albeit not necessarily under the heading of inquiry.  

Therefore, the use of the ITIC should be encouraged, as it measures skills that are 

currently valued in curriculum initiatives that are being both suggested and 

implemented. 
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11.9 THE CURRENT STUDY IN SUMMARY 

The methodologies that characterise inquiry in the science education literature have 

been identified and categorised into six scales, Freedom in Practical Work, 

Communication, Assessment, Interpretation of Data, Science Stories and Uncertainty 

in Science.  Five of these scales have been validated to give a new classroom 

environment instrument, the Is This an Inquiring Classroom? or ITIC questionnaire.  

This instrument can be used to give teachers a measure of how inquiry based their 

science classes are, and also to assist teachers to identify pedagogies that will make 

their classrooms more inquiry oriented. 

Whilst it is likely that tensions between teaching science using an inquiry approach 

and teaching it by more transmissionist methods will continue, fuelled by numerous 

factors, this study has found that current Tasmanian curriculum documentation 

supports the use of the inquiry methodologies measured by the ITIC.  It also found 

that Tasmanian teachers and students from Grades 7 through 12 were supportive of 

the use of inquiry methodologies, with both teachers and students expressing a 

preference for the inclusion of more inquiry in their science classes.  Whilst this 

support for the use of more inquiry methodologies in their science classes tended to 

be consistent, regardless of which grade students were in, whether they were male or 

female or of their predicted achievement level, there were some differences between 

these sub-groups with respect to which categories of inquiry methodologies they 

would like to experience more frequently.   

Given that the decades old propensity to blame at least some of a country's economic 

woes on inadequacies in the science and mathematics education of its citizens seems 

to be continuing into the 21st Century, the use of inquiry methodologies in science 

classes is an area that should be given increased attention.  This is particularly so as 

teachers' responses to the ITIC indicated that they were supportive of the idea of 

there being greater amounts of inquiry methodologies in their science classes.  The 

production of the ITIC provides an appropriate means of measuring inquiry levels, 

and is also an analysis of what inquiry teaching and learning in the area of science 

education involves.  
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Appendix 1 - The initial version of the Is this an inquiring classroom? Questionnaire, as 
given to critiquing teachers.  The copies given to the teachers had the 
actual scale names deleted. 

 

 

Is This an Inquiring Classroom? Questionnaire 

 
When you are answering this questionnaire, use the numbers to indicate these 
frequencies. 

Almost 

Always 

Often Sometimes Seldom Almost 
Never 

5 4 3 2 1 
 

 

   ACTUAL PREFERRED 

 Scale 1 - Open-endedness            

 In this class . . .            

1 We carry out laboratory investigations to test 
ideas which we come up with. 

 5 4 3 2 1 5 4 3 2 1 

2 All students do exactly the same 
experiments. 

 5 4 3 2 1 5 4 3 2 1 

3 There is opportunity for us to pursue our 
own science interests. 

 5 4 3 2 1 5 4 3 2 1 

4 In our laboratory sessions, the teacher 
decides the best way for us to carry out the 
laboratory experiments. 

 5 4 3 2 1 5 4 3 2 1 

5 We are required to design our own 
experiments for a given problem. 

 5 4 3 2 1 5 4 3 2 1 

6 We are allowed to go beyond the regular 
laboratory exercise and do some 
experimenting. 

 5 4 3 2 1 5 4 3 2 1 

7 We carry out laboratory investigations to 
answer questions which arise in class 
discussions. 

 5 4 3 2 1 5 4 3 2 1 

8 In laboratory work students collect different 
data from each other for the same problem. 

 5 4 3 2 1 5 4 3 2 1 
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9 The teacher tells us which equipment to use 
for practical work. 

 5 4 3 2 1 5 4 3 2 1 

10 We carry out investigations to answer 
questions which puzzle us. 

 5 4 3 2 1 5 4 3 2 1 

11 In our laboratory sessions some students do 
different experiments to others. 

 5 4 3 2 1 5 4 3 2 1 

12 We decide the best way to proceed during 
laboratory experiments. 

 5 4 3 2 1 5 4 3 2 1 

             

 Scale 2 - Discussion            
 In this class . . .            

13 Most students take part in discussions.  5 4 3 2 1 5 4 3 2 1 

14 We talk to other students about our work.  5 4 3 2 1 5 4 3 2 1 

15 We explain our ideas to each other.  5 4 3 2 1 5 4 3 2 1 

16 We comment on other students’ opinions.  5 4 3 2 1 5 4 3 2 1 

17 We talk with other students about how to 
solve problems. 

 5 4 3 2 1 5 4 3 2 1 

18 We discuss the results we have obtained 
with each other. 

 5 4 3 2 1 5 4 3 2 1 

19 We discuss things which people have 
different opinions about. 

 5 4 3 2 1 5 4 3 2 1 

20 Our ideas and opinions are used during 
classroom discussions. 

 5 4 3 2 1 5 4 3 2 1 

21 We sit and listen to the teacher without 
asking or answering questions. 

 5 4 3 2 1 5 4 3 2 1 

22 We pay attention to what other students are 
saying. 

 5 4 3 2 1 5 4 3 2 1 

23 We ask the teacher questions.  5 4 3 2 1 5 4 3 2 1 

24 The teacher talks rather than listens.  5 4 3 2 1 5 4 3 2 1 

             

 Scale 3 - Assessment            

 In this class . . .            

25 Our tests have questions where we have to 
interpret data. 

 5 4 3 2 1 5 4 3 2 1 

26 Our tests only have questions which we can 
memorise the answers to. 

 5 4 3 2 1 5 4 3 2 1 
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27 We are allowed to use textbooks or notes 
when we are doing tests. 

 5 4 3 2 1 5 4 3 2 1 

28 We have to really understand the work 
which we have done in order to answer the 
test questions. 

 5 4 3 2 1 5 4 3 2 1 

29 We can find the answers to most of the 
assignment questions we are set in library 
books. 

 5 4 3 2 1 5 4 3 2 1 

30 If you want to do well, the most important 
thing is to memorise information for tests. 

 5 4 3 2 1 5 4 3 2 1 

31 We have to memorise a lot of information.  5 4 3 2 1 5 4 3 2 1 

32 We do assignments where we have to think 
things out. 

 5 4 3 2 1 5 4 3 2 1 

33 The teacher will mark different answers to a 
question as being equally correct. 

 5 4 3 2 1 5 4 3 2 1 

34 There is usually only one right answer 
which our teacher will accept to questions. 

 5 4 3 2 1 5 4 3 2 1 

35 Our teacher is more interested in checking 
that we have the right answer than in our 
thinking and reasoning. 

 5 4 3 2 1 5 4 3 2 1 

36 We take a lot of theory notes.  5 4 3 2 1 5 4 3 2 1 

             

 Scale 4 - Scientific Method            
 In this class . . .            

37 We have to try to  explain the results of our 
investigations. 

 5 4 3 2 1 5 4 3 2 1 

38 We are asked to make generalisations from 
data. 

 5 4 3 2 1 5 4 3 2 1 

39 We are asked to explain the meaning of 
statements, diagrams and graphs. 

 5 4 3 2 1 5 4 3 2 1 

40 We are asked to predict the results of 
experiments. 

 5 4 3 2 1 5 4 3 2 1 

41 We draw conclusions from investigations.  5 4 3 2 1 5 4 3 2 1 

42 We are asked to apply ideas to new 
situations. 

 5 4 3 2 1 5 4 3 2 1 

43 We are asked to think about the evidence for 
statements. 

 5 4 3 2 1 5 4 3 2 1 
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44 We are asked to suggest how we could 
improve the investigations which we have 
carried out. 

 5 4 3 2 1 5 4 3 2 1 

45 We are asked to suggest further research 
which could be carried out. 

 5 4 3 2 1 5 4 3 2 1 

46 We are asked to form our own hypotheses.  5 4 3 2 1 5 4 3 2 1 

47 We have to analyse data.  5 4 3 2 1 5 4 3 2 1 

48 We are asked to criticise the investigations 
which we have carried out. 

 5 4 3 2 1 5 4 3 2 1 

 
 
 Scale 5 - Historical Perspectives / Stories            
 In this class . . .            

49 We learn about scientists.  5 4 3 2 1 5 4 3 2 1 

50 The names of scientists are mentioned 
during lessons. 

 5 4 3 2 1 5 4 3 2 1 

51 We learn about the history of science.  5 4 3 2 1 5 4 3 2 1 

52 The teacher tells us stories about science.  5 4 3 2 1 5 4 3 2 1 

53 As we study different topic we talk about the 
history of how these ideas have developed. 

 5 4 3 2 1 5 4 3 2 1 

54 When we study a topic we are told about the 
trouble which scientists have had working 
things out. 

 5 4 3 2 1 5 4 3 2 1 

55 We learn about how people came to make 
scientific discoveries. 

 5 4 3 2 1 5 4 3 2 1 

56 We are told personal information about what 
scientists were like. 

 5 4 3 2 1 5 4 3 2 1 

57 We watch videos about the work and lives of 
scientists. 

 5 4 3 2 1 5 4 3 2 1 

58 We look at what people who are working as 
scientists do. 

 5 4 3 2 1 5 4 3 2 1 

59 We talk about scientists and researchers who 
have worked in the area which we are 
studying. 

 5 4 3 2 1 5 4 3 2 1 

60 We learn that modern science is different 
from the science of long ago. 

 5 4 3 2 1 5 4 3 2 1 
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 Scale 6 - Uncertainty            
61 We learn that scientists do not know how 

some things work. 
 5 4 3 2 1 5 4 3 2 1 

62 We learn that science cannot provide perfect 
answers to problems. 

 5 4 3 2 1 5 4 3 2 1 

63 We learn that science has answers for 
everything. 

 5 4 3 2 1 5 4 3 2 1 

64 We learn that science has changed over time.  5 4 3 2 1 5 4 3 2 1 

65 We learn that once scientists have proven 
something their ideas will not change. 

 5 4 3 2 1 5 4 3 2 1 

66 We learn about alternative theories for the 
same scientific idea. 

 5 4 3 2 1 5 4 3 2 1 

67 We learn that people can have different 
theories to explain the same thing. 

 5 4 3 2 1 5 4 3 2 1 

68 We learn that science is influenced by 
people’s values and opinions. 

 5 4 3 2 1 5 4 3 2 1 

69 We learn that science is about inventing 
theories. 

 5 4 3 2 1 5 4 3 2 1 

70 Scientific knowledge is presented as being 
incomplete - there are things which are still 
not understood. 

 5 4 3 2 1 5 4 3 2 1 

71 We learn that scientific information can 
change. 

 5 4 3 2 1 5 4 3 2 1 

72 Our teacher expresses their own uncertainty 
about whether some scientific ideas are 
correct. 

 5 4 3 2 1 5 4 3 2 1 

 

 

 
 



Appendix 2 - Statement of Research interest area as supplied to critiquing teachers 

 

 

The concept of inquiry as a teaching methodology appropriate to science classrooms 

seems to be one which continues to recur in the literature since its common usage 

was proposed in the 1960’s.  Although inquiry as a teaching methodology now 

seems to be largely looked on as something which is passe, the question may be 

raised as to whether or not it is in fact a technique which is very much indicated by 

the science syllabus statements and documents which are in use in Australia today. 

Classroom environment questionnaires have come to be regarded as useful 

instruments in the field of learning environment research.  The proposed study aims 

to develop, validate and use a new questionnaire to investigate the extent to which 

inquiry is in fact being used as a teaching methodology in science classrooms - even 

if the term inquiry is not being expressly used.  The study will also investigate the 

opinions of teachers and students as to whether or not inquiry teaching strategies are 

desirable.  This research will focus particularly on the situation in Tasmanian grade 9 

to 12 classrooms. 
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Appendix 3 - Preliminary Questionnaire and student information sheet.  

 
Is this an Inquiring Classroom? Preliminary Questionnaire. 

 
 

Background information. 

 
• Your name:..................................................................................................... 

 
 
Please circle the appropriate information. 
 

• Grade: 7 8 9 10 
 

• Sex: female  male 
 

• How would you rate your performance in your Science class? 
 

1 2 3 4 5 
Bottom group  Middle group  Top group 

 
 
 
Instructions for completing the questionnaire. 
 
 

• Please answer all the items. 
 

• There are no right or wrong answers.  The questionnaire is asking what you 
think about things in your Science class. 

 
• When you are answering this questionnaire, the numbers mean these things: 

5 4 3 2 1 
Almost 

Always 

Often Sometimes seldom Almost 
Never 

 

 

• In the ‘actual’ column, put a circle around how often this thing actually 
happens in your Science class. 

• In the ‘preferred’ column, put a circle around how often you would like this 
thing to occur in your Science class. 

 
 
Thank you for your assistance in completing this questionnaire. 
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Is this an Inquiring Classroom?      Preliminary questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

5 4 3 2 1 

Almost 

Always 

Often Sometimes seldom Almost 
Never 

 
 
 
 

Scale 1 - Freedom in practical work  ACTUAL PREFERRED 

 In this class . . .            

1 In our practical lessons some students do 
different experiments to others. 

 5 4 3 2 1 5 4 3 2 1 

2 The teacher tells us which equipment to use for 
practical work. 

 5 4 3 2 1 5 4 3 2 1 

3 There is opportunity for us to find out about 
things that interest us in Science. 

 5 4 3 2 1 5 4 3 2 1 

4 In our practical lessons, the teacher decides the 
best way for us to carry out the experiments. 

 5 4 3 2 1 5 4 3 2 1 

5 We are asked to design our own experiments.  5 4 3 2 1 5 4 3 2 1 
6 We are allowed to extend the practical work and 

do some experimenting. 
 5 4 3 2 1 5 4 3 2 1 

7 We carry out experiments to answer questions 
that come up in class discussions. 

 5 4 3 2 1 5 4 3 2 1 

8 In practical work students collect different data 
from each other about the same problem. 

 5 4 3 2 1 5 4 3 2 1 

9 All students do exactly the same experiments.  5 4 3 2 1 5 4 3 2 1 
10 We carry out experiments to answer questions 

that interest us. 
 5 4 3 2 1 5 4 3 2 1 

11 We carry out experiments to test ideas which we 
come up with. 

 5 4 3 2 1 5 4 3 2 1 

12 We decide the best way to do things during 
practical work. 

 5 4 3 2 1 5 4 3 2 1 

     

Scale 2 - Communication  Actual Preferred 

 In this class . . .            
13 Most students take part in discussions.  5 4 3 2 1 5 4 3 2 1 
14 We talk to other students about our work.  5 4 3 2 1 5 4 3 2 1 
15 We explain our ideas to each other.  5 4 3 2 1 5 4 3 2 1 
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Is this an Inquiring Classroom?      Preliminary questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

5 4 3 2 1 

Almost 

Always 

Often Sometimes seldom Almost 
Never 

 
 
 
 Communication (cont)  Actual Preferred 

16 We comment on other students’ opinions.  5 4 3 2 1 5 4 3 2 1 
17 We talk with other students about how to solve 

problems. 
 5 4 3 2 1 5 4 3 2 1 

18 We discuss the results we have obtained with 
each other. 

 5 4 3 2 1 5 4 3 2 1 

19 We discuss things which people have different 
opinions about. 

 5 4 3 2 1 5 4 3 2 1 

20 Our ideas and opinions are listened to during 
classroom discussions. 

 5 4 3 2 1 5 4 3 2 1 

21 We sit and listen to the teacher without asking or 
answering questions. 

 5 4 3 2 1 5 4 3 2 1 

22 We pay attention to what other students are 
saying. 

 5 4 3 2 1 5 4 3 2 1 

23 We ask the teacher questions.  5 4 3 2 1 5 4 3 2 1 
24 The teacher listens to our ideas.  5 4 3 2 1 5 4 3 2 1 

     

Scale 3 - Assessment  Actual Preferred 

 In this class . . .            
25 Our tests have questions where we have to 

interpret data. 
 5 4 3 2 1 5 4 3 2 1 

26 Our tests only have questions that we can 
memorise the answers to. 

 5 4 3 2 1 5 4 3 2 1 

27 We are allowed to use textbooks or notes when 
we are doing tests. 

 5 4 3 2 1 5 4 3 2 1 

28 We have to really understand the work that we 
have done in order to answer questions on tests. 

 5 4 3 2 1 5 4 3 2 1 

29 We can find the answers to most of the 
assignment questions we are set in library books. 

 5 4 3 2 1 5 4 3 2 1 

30 If you want to do well, the most important thing 
is to learn off by heart for tests. 

 5 4 3 2 1 5 4 3 2 1 

 Assessment (cont)  Actual Preferred 

 Page 398 PTO 



Is this an Inquiring Classroom?      Preliminary questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

5 4 3 2 1 

Almost 

Always 

Often Sometimes seldom Almost 
Never 

 
 
 
31 We have to remember a lot of information.  5 4 3 2 1 5 4 3 2 1 
32 We do assignments where we have to think 

things out. 
 5 4 3 2 1 5 4 3 2 1 

33 The teacher will mark different answers to a 
question as being equally correct. 

 5 4 3 2 1 5 4 3 2 1 

34 There is usually only one right answer for each 
question. 

 5 4 3 2 1 5 4 3 2 1 

35 Our teacher is more interested in checking that 
we have the right answer than in our thinking 
and reasoning. 

 5 4 3 2 1 5 4 3 2 1 

36 We take a lot of notes.  5 4 3 2 1 5 4 3 2 1 

 
Scale 4 - Interpretation of data  Actual Preferred 

 In this class . . .            
37 We have to try to  explain the results of our 

experiments. 
 5 4 3 2 1 5 4 3 2 1 

38 We are asked to make generalisations from data.  5 4 3 2 1 5 4 3 2 1 
39 We are asked what diagrams and graphs mean.  5 4 3 2 1 5 4 3 2 1 
40 We are asked to predict the results of experiments. 5 4 3 2 1 5 4 3 2 1 
41 We draw conclusions from experiments.  5 4 3 2 1 5 4 3 2 1 
42 We use information from our experiments to 

predict what will happen in a different situation. 
 5 4 3 2 1 5 4 3 2 1 

43 We are asked to justify our conclusions.  5 4 3 2 1 5 4 3 2 1 
44 We are asked how we could improve the 

experiments we have done. 
 5 4 3 2 1 5 4 3 2 1 

45 We are asked to suggest further research that 
could be carried out. 

 5 4 3 2 1 5 4 3 2 1 

46 We are asked to form our own hypotheses.  5 4 3 2 1 5 4 3 2 1 
47 We have to interpret data.  5 4 3 2 1 5 4 3 2 1 
48 We are asked to criticise the experiments that we 

have carried out. 
 5 4 3 2 1 5 4 3 2 1 
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Is this an Inquiring Classroom?      Preliminary questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

5 4 3 2 1 

Almost 

Always 

Often Sometimes seldom Almost 
Never 
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Scale 5 - Science Stories  Actual Preferred 

 In this class . . .            
49 We learn about scientists.  5 4 3 2 1 5 4 3 2 1 
50 The names of scientists are mentioned during 

lessons. 
 5 4 3 2 1 5 4 3 2 1 

51 We learn about the history of science.  5 4 3 2 1 5 4 3 2 1 
52 The teacher tells us stories about science.  5 4 3 2 1 5 4 3 2 1 
53 As we study different topics we talk about the 

history of how science ideas have developed. 
 5 4 3 2 1 5 4 3 2 1 

54 When we study a topic we are told about the 
trouble which scientists have had working in this 
area. 

 5 4 3 2 1 5 4 3 2 1 

55 We learn about how people made scientific 
discoveries. 

 5 4 3 2 1 5 4 3 2 1 

56 We are told personal information about what 
scientists were like. 

 5 4 3 2 1 5 4 3 2 1 

57 We watch videos about the work and lives of 
scientists. 

 5 4 3 2 1 5 4 3 2 1 

58 We look at what people who are working as 
scientists do. 

 5 4 3 2 1 5 4 3 2 1 

59 We talk about people who have worked in the 
area which we are studying. 

 5 4 3 2 1 5 4 3 2 1 

60 We learn that modern science is different from 
the science of long ago. 

 5 4 3 2 1 5 4 3 2 1 

             

 
 
 

Don’t miss the next page – it’s the last one.



Is this an Inquiring Classroom?      Preliminary questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

5 4 3 2 1 

Almost 

Always 

Often Sometimes seldom Almost 
Never 

 
 
 
 
Scale 6 - Uncertainty in science  Actual Preferred 

 In this class . . .            
61 We learn that scientists do not know how some 

things work. 
 5 4 3 2 1 5 4 3 2 1 

62 We learn that science cannot provide perfect 
answers to problems. 

 5 4 3 2 1 5 4 3 2 1 

63 We learn that science has answers for 
everything. 

 5 4 3 2 1 5 4 3 2 1 

64 We learn that science has changed over time.  5 4 3 2 1 5 4 3 2 1 
65 We learn that once scientists have come up with 

an idea this idea will not change. 
 5 4 3 2 1 5 4 3 2 1 

66 We learn about different theories for the same 
scientific idea. 

 5 4 3 2 1 5 4 3 2 1 

67 We learn that people can have different theories 
to explain the same thing. 

 5 4 3 2 1 5 4 3 2 1 

68 We learn that science is influenced by people’s 
values, opinion and beliefs. 

 5 4 3 2 1 5 4 3 2 1 

69 We learn that science is about coming up with 
ideas. 

 5 4 3 2 1 5 4 3 2 1 

70 Scientific knowledge is presented as being 
incomplete - there are things which are still not 
understood. 

 5 4 3 2 1 5 4 3 2 1 

71 We learn that scientific information can change.  5 4 3 2 1 5 4 3 2 1 
72 Our teacher questions some scientific theories.  5 4 3 2 1 5 4 3 2 1 

 

 

 
Thanks again for your help!  
 
 
 

The End! 
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Appendix 4 - The following four pages constitute the final student version of the Is this an 

inquiring classroom? Questionnaire, as used to collect data for this research 

project.  The questionnaire was presented as an A3 sheet folded in half. 

 Nb  Margins were set up differently on the version of the questionnaire that 

students worked with. 
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Is this an Inquiring Classroom? Student Questionnaire. 
 

 
Background information (please circle where needed) 

• Grade: 7 8 9 10 
 
• Sex: female  male 

 

• What level science result do you predict that you will get in grade 9/10? 

 bottom  middle   top 

Instructions for completing the questionnaire. 

• Please answer all the items. 
 
• There are no right or wrong answers.  The questionnaire is asking what you think 

about things in your science class. 
 
• When you are answering this questionnaire, the numbers mean these things: 

1 2 3 4 5 
almost 
never 

seldom sometimes often almost 
always 

 

 Attitude to Science      

1. I look forward to science lessons. 1 2 3 4 5 

2. Science lessons are fun. 1 2 3 4 5 

3. I enjoy the activities we do in science. 1 2 3 4 5 

4. The things we do in science are among the most interesting things we 
do at school. 

1 2 3 4 5 

5. I want to find out more about the world in which we live. 1 2 3 4 5 

6. Finding out about new things is important. 1 2 3 4 5 

7. I enjoy science lessons in this class.  1 2 3 4 5 

8. I like talking to my friends about what we do in science. 1 2 3 4 5 

9. We should have more science lessons each week. 1 2 3 4 5 

10. I feel satisfied after a science lesson. 1 2 3 4 5 

Instructions for the rest of the questionnaire 
• In the ‘actual’ column, put a circle around how often this thing actually happens in 

your Science class. 

• In the ‘preferred’ column, put a circle around how often you would like this thing 
to occur in your Science class. 



Is this an Inquiring Classroom?      Student questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

1 2 3 4 5 

almost 
never 

seldom sometimes often almost 
always 
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Scale 1 - Freedom in practical work  Actual Preferred 

 In this class . . .           

F1 We carry out practical investigations that take more 
than one lesson. 

1 2 3 4 5 1 2 3 4 5

F2 We are asked to design our own experiments. 1 2 3 4 5 1 2 3 4 5

F3 We are allowed to extend the practical work and do 
some experimenting. 

1 2 3 4 5 1 2 3 4 5

F4 We carry out experiments to answer questions that 
come up in class discussions. 

1 2 3 4 5 1 2 3 4 5

F5 All students do exactly the same experiments. 1 2 3 4 5 1 2 3 4 5

F6 We carry out experiments to answer questions that 
interest us. 

1 2 3 4 5 1 2 3 4 5

F7 We carry out experiments to test ideas which we come 
up with. 

1 2 3 4 5 1 2 3 4 5

F8 We decide the best way to do things during practical 
work. 

1 2 3 4 5 1 2 3 4 5

     

Scale 2 - Communication  Actual Preferred 

 In this class . . .           
C1 Most students take part in discussions. 1 2 3 4 5 1 2 3 4 5

C2 We talk to other students about our work. 1 2 3 4 5 1 2 3 4 5

C3 We explain our ideas to each other. 1 2 3 4 5 1 2 3 4 5

C4 We comment on other students’ opinions. 1 2 3 4 5 1 2 3 4 5

C5 We talk with other students about how to solve 
problems. 

1 2 3 4 5 1 2 3 4 5

C6 We discuss the results we have obtained with others. 1 2 3 4 5 1 2 3 4 5

C7 Our ideas and opinions are listened to during classroom 
discussions. 

1 2 3 4 5 1 2 3 4 5

C8 The teacher listens to our ideas. 1 2 3 4 5 1 2 3 4 5

 



Is this an Inquiring Classroom?      Student questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

1 2 3 4 5 

almost 
never 

seldom sometimes often almost 
always 
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Scale 3 - Assessment  Actual
 Preferred 

 In this class . . .           
A1 Our tests mainly have questions that you can memorise 

the answers to. 
1 2 3 4 5 1 2 3 4 5

A2 We are allowed to use our notes or textbooks in tests. 1 2 3 4 5 1 2 3 4 5

A3 There can be more than one correct answer to test or 
assignment questions. 

1 2 3 4 5 1 2 3 4 5

A4 In tests (or assignments) we are given the results of an 
experiment or investigation and asked what these show. 

1 2 3 4 5 1 2 3 4 5

A5 It is important to explain your answers carefully. 1 2 3 4 5 1 2 3 4 5

A6 We have to really understand the work to do well on 
tests. 

1 2 3 4 5 1 2 3 4 5

A7 We can copy the answers to assignment questions 
straight from books or the internet. 

1 2 3 4 5 1 2 3 4 5

A8 Test or assignment questions ask us what our opinion is 
and why we think this. 

1 2 3 4 5 1 2 3 4 5

 
Scale 4 - Interpretation of data  Actual Preferred 

 In this class . . .            
I1 We have to try to explain the results of our 

experiments. 
 1 2 3 4 5 1 2 3 4 5 

I2 We are asked to make generalisations from data.  1 2 3 4 5 1 2 3 4 5 

I3 We are asked what diagrams and graphs mean.  1 2 3 4 5 1 2 3 4 5 

I4 We are asked to predict the results of experiments. 1 2 3 4 5 1 2 3 4 5 

I5 We use information from our experiments to predict 
what will happen in a different situation. 

 1 2 3 4 5 1 2 3 4 5 

I6 We are asked to justify our conclusions (to say why 
we think what we do). 

 1 2 3 4 5 1 2 3 4 5 

I7 We are asked how we could improve the 
experiments we have done. 

 1 2 3 4 5 1 2 3 4 5 

I8 We are asked to form our own hypotheses.  1 2 3 4 5 1 2 3 4 5 



Is this an Inquiring Classroom?      Student questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

1 2 3 4 5 

almost 
never 

seldom sometimes often almost 
always 
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Scale 5 - Science Stories  Actual Preferred 

 In this class . . .           
S1 We learn about scientists. 1 2 3 4 5 1 2 3 4 5 

S2 The names of scientists are mentioned during lessons. 1 2 3 4 5 1 2 3 4 5 

S3 We learn about the history of science. 1 2 3 4 5 1 2 3 4 5 

S4 The teacher tells us stories about science. 1 2 3 4 5 1 2 3 4 5 

S5 As we study different topics we talk about the history 
of how science ideas have developed. 

1 2 3 4 5 1 2 3 4 5 

S6 When we study a topic we are told about the trouble 
which scientists have had working in this area. 

1 2 3 4 5 1 2 3 4 5 

S7 We are told personal information about what scientists 
were like. 

1 2 3 4 5 1 2 3 4 5 

S8 We look at what people who are working as scientists 
do. 

1 2 3 4 5 1 2 3 4 5 

 
Scale 6 - Uncertainty in science  Actual Preferred 

 In this class . . .           

U1 We learn that science cannot provide perfect answers 
to problems. 

1 2 3 4 5 1 2 3 4 5 

U2 We learn that science has changed over time. 1 2 3 4 5 1 2 3 4 5 

U3 We learn that people can have different theories to 
explain the same thing. 

1 2 3 4 5 1 2 3 4 5 

U4 We learn that science is influenced by people’s 
values, opinion and beliefs. 

1 2 3 4 5 1 2 3 4 5 

U5 We learn that science is about coming up with ideas. 1 2 3 4 5 1 2 3 4 5 

U6 Scientific knowledge is presented as being incomplete 
- there are things that are still not understood. 

1 2 3 4 5 1 2 3 4 5 

U7 We learn that scientific information can change. 1 2 3 4 5 1 2 3 4 5 

U8 Our teacher questions some scientific theories. 1 2 3 4 5 1 2 3 4 5 

 
Thanks again for your help!  



Appendix 5 - Letter to high school coordinators of the Is this an inquiring 
classroom? Questionnaire. 

 

 

27/8/02 

 

 

Dear 

 

 

Thank you very much for assisting my research by agreeing to run the ‘Is this an 
inquiring classroom?’ questionnaire in your school. 

 

Just to remind you: 

• Where possible, could you give the questionnaire to 3 classes at each grade 
level.  The questionnaires are in envelopes in class sets of 30. 

• Completed questionnaires can either be mailed back to me, or left at your 
school office for me to collect.  Please let me know when they are ready to 
be collected. 

• I do not need student or teacher names, but need to be able to tell which 
school the questionnaires are from, so there is a number on each envelope.  
Schools will not be named in the write up. 

• I have included a teacher version of the questionnaire, and would appreciate 
it if you would ask all science teachers who are prepared to do so to fill it in. 

 

Please contact me if you have any questions or concerns.  Thanks again! 

 

 

Regards 

Denise Devitt 

TELI 
GPO Box 919 
Hobart 7001 
Ph: 6233 5677 
Fax: 62333 6982 
denise.devitt@education.tas.gov.au 
 

  407 



Appendix 6 - Letter to college coordinators of the Is this an inquiring classroom? 
questionnaire 

 

 
2/9/02 

 

Dear 

 

Thank you very much for assisting my research by agreeing to run the ‘Is this an inquiring 
classroom?’ questionnaire in your school. 

Could you please give the questionnaire to the following pretertiary classes at your school, 
plus science teachers: 

Biology       class/es 

Chemistry       class/es 

Physical Sciences       class/es 

Physics        class/es 

Teachers As many science teachers as possible 

 

Just to remind you: 

• Completed questionnaires can either be mailed back to me, or, if you are in the 
Hobart area, left at your school office for me to collect.  Please let me know when 
they are ready to be collected. 

• I do not need student or teacher names, but need to be able to tell which school the 
questionnaires are from, so there is a number on each envelope.  Schools will not be 
named in the write up. 

 

Please contact me if you have any questions or concerns.  Thanks again! 

 

Regards 

Denise Devitt 

TELI 
GPO Box 919 
Hobart 7001 
Ph: 6233 5677 
Fax: 62333 6982 
denise.devitt@education.tas.gov.au 
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Appendix 7 - Instructions to high school teachers administering the Is this an 
inquiring classroom? Questionnaire. 

 

 

 

Is this an inquiring classroom? Questionnaire 
 

 

Instructions to administering teachers. 
 

 

Please ask students to: 

 

1. complete all details on the information page – names are not required 

2. circle 2 responses to each item, one in the actual column and one in the 
preferred column. 

3. answer all items – don’t miss the back page!. 

 

 

 

If students are unsure of any terms please feel free to clarify them – the intent of the 
questionnaire is to find out what students think, not test their literacy skills.  
Similarly, if students have literacy problems please feel free to read items to them. 

 

 

Many thanks for your assistance. 

 

Denise Devitt 

TELI 
GPO Box 919 
Hobart 7001 
Ph: 6233 5677 
Fax: 62333 6982 
denise.devitt@education.tas.gov.au 
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Appendix 8 - Instructions to college teachers administering the Is this an inquiring 
classroom? questionnaire 

 
Grade 11/12 Classes 

Is this an inquiring classroom? Questionnaire 

 

Instructions to administering teachers. 

Depending on which classes at your school are given this questionnaire, some students may 
be asked to complete it more than once.  This is not a problem from the point of view of the 
questionnaire, as students will be offering responses about a different subject. 

 

Please ask students to: 

 

1. Complete relevant details on the information page 

• names are not required 

• grade is not required for college students as questionnaires will have already 
been coded (CB=college biology, CP=college physics, CC=college 
chemistry, CPS=college physical sciences) 

• the item asking about predicted grade 9/10 result can be omitted. 

• the ‘attitude to science’ scale refers to students’ attitude to the subject in 
which they are completing the questionnaire - physical sciences, biology, 
chemistry or physics.  It was not practical to print questionnaires with 
different cover pages for each subject. 

2. Complete the items on pages 1-3 by circling 2 responses to each item, one in the 
actual column and one in the preferred column. 

3. Answer all items – don’t miss the back page! 

If students are unsure of any terms please feel free to clarify them – the intent of the 
questionnaire is to find out what students think, not test their literacy skills.  Similarly, if 
students have literacy problems please feel free to read items to them. 

 

Many thanks for your assistance. 

 

Denise Devitt 

TELI 
GPO Box 919 
Hobart 7001 
Ph: 6233 5677 
Fax: 62333 6982 
denise.devitt@education.tas.gov.au 
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Appendix 9 - The teacher version of the Is this an inquiring classroom? Questionnaire, as 

used in data collection for the current research.  Changes that have been 

made form the student version of the questionnaire can be seen by 

comparing the teacher version with the final student version of the 

questionnaire, as shown in Appendix 4. 

Nb  Margins and Scale 3  and cover page font size were set up differently 

on the version of the questionnaire that teachers worked with. 
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Is this an Inquiring Classroom? Teacher Questionnaire. 
 

Background information (please circle one or more, as appropriate) 
 

• Sex:   female  male 

• School type:   high district high college 

• Taught in Curriculum Consultation Project School in: 2001  2002 neither 

• No of years teaching experience: less than 5  5-10 over 10 

• Age:   25 or under  26-40 over 40 

• Grades taught: 7 8 9 10 11 12 

  If grades 11/12, please specify subject .......................................................................................  

• Teaching qualifications: B Sc B Ed Dip Ed B Teach M Ed 

Other (please specify) ...................................................................................................................  

 Major degree area:  biological sciences physics chemistry earth sciences 

 environmental sciences  other .....................................   

Instructions for completing the questionnaire. 

• Please answer all the items. 
• When you are answering this questionnaire, the numbers mean these things: 

1 2 3 4 5 

Almost 
never 

seldom Sometimes often almost 
always 

 

 Attitude to Science & Science classes      

1. I enjoy teaching my science classes. 1 2 3 4 5 

2. I feel satisfied after a science lesson. 1 2 3 4 5 

3. The things we do in science are among the most interesting things done at 
school. 

1 2 3 4 5 

4. I like talking to others about what we do in my science classes. 1 2 3 4 5 

5. I like talking to others about science related topics. 1 2 3 4 5 

6. I am interested to hear about new science ideas and discoveries. 1 2 3 4 5 
 
Instructions for the rest of the questionnaire 

• In the ‘actual’ column, put a circle around how often this thing actually happens in your 
Science class. 

• In the ‘preferred’ column, put a circle around how often you would like this thing to occur 
in your Science class. 

IF you would be willing to be interviewed for this study please complete the following: 

Name: ........................................................................................................................................................  

School:............................................................................... Phone: ...........................................................  

Email: ........................................................................................................................................................  

Thank you for your help Denise Devitt 
 GPO Box 919 
 Hobart 7001 
 



Is this an Inquiring Classroom?      Teacher questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

1 2 3 4 5 

almost 
never 

seldom sometimes often almost 
always 
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Scale 1 - Freedom in practical work  Actual Preferred 

 In my Science classes . . .           
F1 Students carry out practical investigations that take 

more than one lesson. 
1 2 3 4 5 1 2 3 4 5

F2 I ask students to design their own experiments. 1 2 3 4 5 1 2 3 4 5

F3 Students are allowed to extend the practical work and 
do some experimenting. 

1 2 3 4 5 1 2 3 4 5

F4 Students carry out experiments to answer questions that 
come up in class discussions. 

1 2 3 4 5 1 2 3 4 5

F5 All students do exactly the same experiments. 1 2 3 4 5 1 2 3 4 5

F6 Students carry out experiments to answer questions that 
interest them. 

1 2 3 4 5 1 2 3 4 5

F7 Students carry out experiments to test ideas which they 
come up with. 

1 2 3 4 5 1 2 3 4 5

F8 Students decide the best way to do things during 
practical work. 

1 2 3 4 5 1 2 3 4 5

     

Scale 2 - Communication  Actual Preferred 

 In my Science classes . . .           
C1 Most students take part in discussions. 1 2 3 4 5 1 2 3 4 5

C2 Students talk to other students about their work. 1 2 3 4 5 1 2 3 4 5

C3 Students explain their ideas to each other. 1 2 3 4 5 1 2 3 4 5

C4 Students comment on other students’ opinions. 1 2 3 4 5 1 2 3 4 5

C5 Students talk with other students about how to solve 
problems. 

1 2 3 4 5 1 2 3 4 5

C6 Students discuss the results they have obtained with 
others. 

1 2 3 4 5 1 2 3 4 5

C7 Students’ ideas and opinions are listened to during 
classroom discussions. 

1 2 3 4 5 1 2 3 4 5

C8 I listen to students' ideas. 1 2 3 4 5 1 2 3 4 5

 



Is this an Inquiring Classroom?      Teacher questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

1 2 3 4 5 

almost 
never 

seldom sometimes often almost 
always 
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 Scale 3 - Assessment  Actual Preferred 

 In my Science classes . . .           

A1 

My tests mainly have questions that students can memorise 
the answers to. 

1 2 3 4 5 1 2 3 4 5

A2 Students are allowed to use notes or textbooks in tests. 1 2 3 4 5 1 2 3 4 5

A3 There can be more than one correct answer to test or 
assignment questions. 

1 2 3 4 5 1 2 3 4 5

A4 In tests (or assignments) I give students the results of an 
experiment or investigation and ask what these show. 

1 2 3 4 5 1 2 3 4 5

A5 It is important that students explain their answers carefully. 1 2 3 4 5 1 2 3 4 5

A6 Students have to really understand the work to do well on 
tests. 

1 2 3 4 5 1 2 3 4 5

A7 

Students can copy the answers to assignment questions 
straight from books or the internet. 

1 2 3 4 5 1 2 3 4 5

A8 Test or assignment questions ask students what their opinion 
is and why they think this. 

1 2 3 4 5 1 2 3 4 5

 
Scale 4 - Interpretation of data  Actual Preferred 

 In my Science classes . . ..           

I1 Students have to try to explain the results of their 
experiments. 

1 2 3 4 5 1 2 3 4 5 

I2 Students are asked to make generalisations from data. 1 2 3 4 5 1 2 3 4 5 

I3 Students are asked what diagrams and graphs mean. 1 2 3 4 5 1 2 3 4 5 

I4 Students are asked to predict the results of experiments. 1 2 3 4 5 1 2 3 4 5 

I5 Students use information from their experiments to 
predict what will happen in a different situation. 

1 2 3 4 5 1 2 3 4 5 

I6 Students are asked to justify their conclusions (to say 
why they think what they do). 

1 2 3 4 5 1 2 3 4 5 

I7 Students are asked how they could improve the 
experiments they have done. 

1 2 3 4 5 1 2 3 4 5 

I8 Students are asked to form their own hypotheses. 1 2 3 4 5 1 2 3 4 5 

 



Is this an Inquiring Classroom?      Teacher questionnaire 
 

When you are answering this questionnaire, the numbers mean these things: 

1 2 3 4 5 

almost 
never 

seldom sometimes often almost 
always 
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Scale 5 - Science Stories  Actual Preferred 

 In my Science classes . . ..           
S1 Students learn about scientists. 1 2 3 4 5 1 2 3 4 5 

S2 The names of scientists are mentioned during lessons. 1 2 3 4 5 1 2 3 4 5 

S3 Students learn about the history of science. 1 2 3 4 5 1 2 3 4 5 

S4 I tell stories about science. 1 2 3 4 5 1 2 3 4 5 

S5 As we study different topics we talk about the history 
of how science ideas have developed. 

1 2 3 4 5 1 2 3 4 5 

S6 When we study a topic students are told about the 
trouble which scientists have had working in this area. 

1 2 3 4 5 1 2 3 4 5 

S7 Students are told personal information about what 
scientists were like. 

1 2 3 4 5 1 2 3 4 5 

S8 We look at what people who are working as scientists 
do. 

1 2 3 4 5 1 2 3 4 5 

 
Scale 6 - Uncertainty in science  Actual Preferred 

 In my Science classes . . ..           

U1 I teach that science cannot provide perfect answers to 
problems. 

1 2 3 4 5 1 2 3 4 5 

U2 I teach that science has changed over time. 1 2 3 4 5 1 2 3 4 5 

U3 I teach that people can have different theories to 
explain the same thing. 

1 2 3 4 5 1 2 3 4 5 

U4 I teach that science is influenced by people’s values, 
opinion and beliefs. 

1 2 3 4 5 1 2 3 4 5 

U5 I teach that science is about coming up with ideas. 1 2 3 4 5 1 2 3 4 5 

U6 Scientific knowledge is presented as being incomplete 
- there are things that are still not understood. 

1 2 3 4 5 1 2 3 4 5 

U7 I teach that scientific information can change. 1 2 3 4 5 1 2 3 4 5 

U8 I question some scientific theories. 1 2 3 4 5 1 2 3 4 5 

 
Thanks again for your help!  
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