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Abstract

There has been a recent focus on investigating the properties of semi-conductors at

the nanoscale as it is well known that the band-gap of semi-conducting materials

is altered due to quantum confinement effects. The potential to fine-tune a

material’s properties based solely on particle size has raised significant interest

both in experimental and computational studies. Zinc sulfide is one of the most

studied metal sulfide semi-conductor minerals, due to its potential technological

applications.

Computational studies of the structural and thermodynamic properties of zinc

sulfide nanoparticles and bulk structures have been performed throughout this

work. A variety of computational methods have been employed, including

molecular dynamics, lattice dynamics, first principles calculations, and free

energy techniques, such as metadynamics and free energy perturbation. The

thermodynamic stability of zinc sulfide nanoparticles as a function of size and

shape has been studied. Investigation of the phase space of these systems required

the use of enhanced sampling methods. The metadynamics method was specifically

utilised to explore as many structures as possible in combination with extensive

simulations. The use of first principles methods for these exploratory simulations

was found to be prohibitively expensive, and so force field methods were primarily

utilised. Throughout this investigation several force fields were used to compare

and contrast their accuracy, while first principles calculations were performed,

where possible, to assist in the interpretation and validation of the results.

In the present study, two different collective variables, the trace of the inertia tensor

and the Steinhardt bond order parameters, have been implemented and their

performance in metadynamics compared. The trace of the inertia tensor was found

to be useful for exploring clusters of small sizes, while the Q4 Steinhardt parameter,

which describes the crystalline order of a solid, is more applicable to larger

clusters. Both of these metadynamics studies resulted in clusters displaying zeolite

structural motifs, including the zeolite framework ‘BCT’. This led us to investigate

more thoroughly the stability of different zinc sulfide zeolite analogues, thereby

highlighting the strengths and weaknesses of all the force fields employed. Many

force fields are found to be unable to accurately represent the order of stability

for bulk polymorphs. First principles calculations also highlighted that the BCT

phase is less stable than either of the bulk polymorphs of zinc sulfide, in contrast
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to the order of stability obtained by force fields lacking a torsional term, both from

literature and the rigid ion model developed during the current study. The larger

nanoparticles cleaved from wurtzite exhibited internal strain upon relaxation. A

new hypothetical zeolite framework was constructed from the distorted core of

these clusters, and was found to possess structural similarities with the ‘APC’

framework. The APC framework is composed of double crankshaft-chains with

‘ABCABC. . . ’ stacking, while the hypothetical framework identified is formed by

the same composite building unit with ‘ABAB. . . ’ type stacking. For all the force

fields used the new hypothetical framework was lower in energy than the APC

framework, but higher in energy than sphalerite, wurtzite or the BCT phase.

Free energy differences between small ZnS clusters in vacuum were calculated

using the path variable technique, and also using static methods within the

quasi-harmonic approximation. Similar values were obtained using both of these

methods, validating the path collective variables used with metadynamics as an

effective means of obtaining free energy differences for clusters in vacuum.

In addition to clusters in vacuum, a number of studies of ZnS clusters in water

were also performed. Both force field and first principles studies were employed to

validate the ZnS-water interactions used for the binding energies of water to small

clusters. As a further validation, the free energies of solvation of Zn2+ and S2−

in aqueous solution were calculated. The free energy of solvation for the sulfide

anion was found to be close to the experimental value, while the parameters for

Zn2+-water were found to require substantial modification as the solvation free

energy was in error by 500 kJ/mol. While newly derived ZnS-water parameters

may prove to be superior for describing ZnS clusters in bulk water, a repetition

of the binding energy calculations for individual water molecules bound to ZnS

clusters gave energies 2-3 times greater than those obtained via first principles

methods and using the five other force fields investigated. These results highlight

the issues present when attempting to transfer a model fitted in a certain way to a

different application. In particular, the many-body and polarisation effects present

when modelling water need to be considered when parameterising ZnS-water

interactions.
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Chapter 1

Introduction

1.1 Nanoscience and Nanotechnology

Nanotechnology is an inter-disciplinary field encompassing physics, chemistry and

engineering, and concerns the science and applications of systems which have

at least one dimension measured in the range of 1-100 nm[1]. Materials with

dimensions at the nano-scale have shown surprising characteristics, very different

to those of bulk structures[2, 3]. Discoveries at this scale have led to the realisation

that by understanding materials at the atomistic level, we may be able to tailor

materials with specific physical properties[4].

There are have been a number of significant drivers for research in the field of

nanotechnology. One of these is that the goal of device science is continued

miniaturisation[5]. As there has been an increased demand for smaller, portable

technologies, computational devices, such as microchips, have been engineered to

be smaller and smaller. This trend was first described in 1965 by Moore [6], who

observed that the number of transistors on silicon-based integrated circuits was

doubling approximately every year. He later revised this in 1975[7] to doubling

every two years, however it is now commonly quoted that the rate of increase

doubles every 18 months. The microelectronics industry has managed to maintain

this level of increased miniaturisation in devices, with the feature size of transisitors

being driven from the micron scale down to approximately 30 nm[8]. However it

faces major technical challenges if the feature sizes are to be miniaturised much

further. As the dimensions of the semiconductor materials used in these devices

gets down to the nanoscale the electronic and optical properties deviate from those

1
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of the bulk material due to a phenomenon known as quantum confinement[9]. A

thorough understanding of these size-dependent electronic properties in materials

is necessary to continue to develop successful technological devices at a small scale.

Following on from this trend for miniaturisation and continued integration of

nanomaterials into everyday technology, various discoveries of novel clusters at the

nanoscale have been made in the past 50 years. As a result there has been growing

concern of how engineered nanoparticles interact with our environment and

ourselves[10]. If there is a significant difference in the behaviour of nanoparticles

of a material in comparison to the bulk of the same material, then there is the

question of how its behaviour in the environment has changed. The size range of

nanoparticles is an additional cause of concern as they are at the same size range

as many biomolecules and there is the possibility of absorption into biological

systems[10]. There may be toxicological effects and other environmental hazards

that need to be understood before a nano-scaled material can be considered

safe to mass produce and use commercially[11]. Unfortunately, as nanoparticles

of different materials will behave very differently to one another, it is almost

impossible to provide a generalised summary of the hazards associated with all

nanoparticles[12], and individual studies are necessary for different systems.

This introductory chapter will provide a broad overview of nanostructured

materials, and nanoscale systems will be the focus of this thesis. However, before

we can really compare and contrast the properties of nanoscale materials, it is

necessary to first provide a brief introduction to the physics of the solid state in a

context of bulk materials.
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1.2 Electronic structure and band theory

In this section we will introduce the basics of electronic structure and band theory

in bulk materials and summarise how these theories are significantly altered in the

context of much smaller systems.

The electronic structure of a molecule can be represented as a linear combination

of the atomic orbitals of its constituent atoms. In molecular orbital theory some

of the electrons are “delocalised” and contribute to the intermolecular bonding

where there are overlapping atomic orbitals [13]. In the extreme case, where we

have an extended three-dimensional array of atoms in a solid, atomic orbitals

throughout this array will take part in delocalised bonding throughout the solid.

This is depicted in Figure 1.1, where we can consider the molecular orbitals in

a system of increasing size. With only one atom, there is a given set of atomic

orbitals of certain energies. Bringing a second atom into the picture will produce

overlapping atomic orbitals, and so bonding and anti-bonding molecular orbitals

will be formed. This will continue for all N atoms in a solid, until there will be N

molecular orbitals contained with a band of finite width, bounded by the highest

and lowest energy orbitals formed. For a system of very large N the high density of

molecular orbitals separated by very small energy differences results in essentially

a continuous energy “band”. If there is a difference in the energy between the

bonding and anti-bonding orbitals, and the two bands don’t overlap, there exists

what is known as a band gap.

The existence and size of the band gap will determine the electrical properties of

the solid[15]. A schematic of the valence and conduction bands, and their electron

Figure 1.1: Schematic showing the broadening of molecular orbitals into
energy bands with an increasing linear chain of atoms. For a system of large N
the high density of molecular orbitals results in essentially a continuous energy

“band”. Image adapted from Kelsall et al. [14].
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Figure 1.2: Schematic of the electron occupancy of allowed energy bands in
insulators, semi-conductors and conductors. The degree of shading indicates
the electron occupancy in each band. Image adapted from Poole Jr and Owens

[3].

occupancy, for different types of materials is shown in Figure 1.2. Electrons

can have energy values which exist within any of the bands, but cannot have

energies corresponding to the values of the gaps between the bands[3]. The low

energy bands, corresponding to the inner atomic levels are narrow and filled with

electrons. The outer electrons are known as the valence electrons and are involved

in bonding the crystal together; they occupy what is known as the valence band.

When the valence band is full, and the band gap is on the order of kBT, thermal

energy will be enough to excite valence electrons and promote them across the

band gap into the conduction band. The electrons will be mobile and the solid is

able to conduct electricity. Materials such as this, with a small band gap that can

be overcome by thermal energy, are known as semiconductors. In cases where the

valence band is full, but the band gap is too large to allow electrons to be promoted

from the valence to the conduction band, the material will not conduct electricity

and is referred to as an insulator. If there is no band gap, and the valence

and conduction bands overlap, the material is simply a metal (or conductor), as

electrons are able to pass freely between the valence and conduction bands, and

conduct electricity[15].

A semiconductor material can be ‘doped’ with small amounts of impurities which

enhance the electrical conductance of the material[3]. The dopants can be acceptor

atoms, which obtain electrons from the valence band, and leave behind positive

charges called holes which also carry current. These types of semiconductors

are known as p-type semiconductors, with positive-charge or “hole” conductivity.
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Alternatively the dopants can be donor atoms, which give electrons to the

conduction band, and these semiconductors are n-type semiconductors, with

negative-charge or “electron” conductivity.

The combination of the excited electron and the hole it leaves behind in the valence

band are known collectively as an exciton. There is a material-specific distance

that exists between the excited electron and the hole in the valence band, and

this is referred to as the exciton Bohr radius. In the context of bulk materials the

exciton radius is very small in comparison to the dimensions of the bulk crystal,

and for the most part the paths of excitons will be unimpeded by the size of the

system.

The picture is very different when we consider a particle with dimensions at the

same order of magnitude as the exciton radius. An exciton in a system at the

nanoscale will not have the same freedom of movement as it had in the bulk -

its movement will be restrained by the physical dimensions of the crystal. This

phenomenon is known as the quantum size effect, or quantum confinement. In

terms of the electronic structure, the almost continuous set of N energy levels in

each band, for the bulk system of large N atoms, is replaced by far fewer discrete

energy levels, and the energy difference between the two bands is increased[3, 16].

This electronic density of states falls somewhere between the atom and bulk. The

significance of this change in band gap is depicted in Figure 1.3. In the case of a

metal, the bulk material is clearly a conductor, but as the size of this system is

reduced to small clusters of atoms, the energy range of the band widths decrease,

Figure 1.3: Schematic showing the size dependence of the band gap. Here
a metallic material has been used as an example; in the bulk phase it is a
conductor, but in smaller clusters of the material the energy bands will separate
and a band gap will exist, making the clusters semi-conducting, and if the band
gap is big enough - an insulating material. Image adapted from Ganteför [16].



6 Chapter 1. Introduction

and result in the formation of a band gap - significantly altering its electronic

structure.

Specific studies where deviations from behaviour of “macrocrystals” have been

observed in small scale systems will be discussed in later sections. First it is

necessary to introduce another fundamental area of solid state physics which shows

size-dependent behaviour, the theories of crystal structure, and geometry.

1.3 Crystal structure, polymorphism and

geometry

The structure and morphology of a material can vary dramatically with a change

in system size [17]. We will first introduce some of the fundamentals of the crystal

structure and geometry found in bulk systems, before contrasting this with how

these underlying theories are changed in the context of much smaller systems.

Bulk materials commonly exist as crystalline structures, with their atoms arranged

in a regular manner[3]. Crystalline structures can be constructed by infinite

repetition of identical structural units in space[15]. In simple crystalline solids

the structural unit will be a single atom, such as in a solid metal like gold or

silver. Other materials may have structural units of many atoms or molecules[15].

The structure of all crystals can be described in terms of a lattice, with structural

units (an atom, or group of atoms) placed at the lattice points. The distinct

lattice types for crystals are known as Bravais lattices. In two dimensions there

are five distinct lattice types and these are shown in Figure 1.4, with their unit

cell indicated. The unit cell is a set of points that can be replicated within the

plane to generate the lattice. In the two dimensional Bravais lattices there are two

Figure 1.4: Illustration of the five Bravais lattices possible in two dimensions,
the unit cells for each lattice are included in the diagram as lines.
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lattice constants a and b for the modulus of the vectors, and θ, the angle between

a and b.

In three dimensions there are six lattice constants, comprised of three side lengths

a, b and c and three angles α (between b and c), β (between a and c) and γ

(between a and b)[15]. In three dimensions there are 14 distinct lattice types;

three exist with a cubic unit cell, and are shown in Figure 1.5.

Figure 1.5: Illustration of the three cubic Bravais lattices possible in three
dimensions.

In crystallography a notation known as Miller indices is used to define specific

crystal planes. The Miller index of a plane is represented by three integers enclosed

in parentheses, (hkl)[15]. The values of h, k and l are determined by finding

the intercepts on the axes of the crystal cell (which can be either primitive or

non-primitive) and taking the reciprocals of these. The values of the reciprocals

are converted to integer values having the same ratio as the reciprocals. The Miller

indices of common crystal planes of a cubic crystal are given in Figure 1.6.

Figure 1.6: Illustration of the common cubic crystal planes and their Miller
indices.

An important concept in solid state physics related to the Bravais lattices and

Miller indices is the idea of reciprocal space, or k-space. For any three-dimensional

lattice with primitive axis vectors a1, a2 and a3 the axis vectors b1, b2, b3 of

reciprocal space can be constructed[15, 18]:

b1 = 2π
a2 × a3

a1 · a2 × a3

; b2 = 2π
a3 × a1

a1 · a2 × a3

; b3 = 2π
a1 × a2

a1 · a2 × a3

(1.1)
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The Brillouin zone is a unique volume within reciprocal space[15]. The planes

which define the boundaries of the Brillouin zone are perpendicular bisectors of

the reciprocal lattice vectors drawn from the origin. The first Brillouin zone is

the smallest volume that can be defined by these planes[15]. An example of a

first Brillouin zone is given in Figure 1.7, where the first Brillouin zone for the

face-centred cubic lattice is illustrated; the axes in this figure indicate the Brillouin

zone is a volume in reciprocal space, or k-space, and points within reciprocal space

are referred to as k-points. These zones are crucial to analysing and understanding

the electronic energy-band structure of crystals. Later in this work we will consider

some electronic structure calculations, and these require some understanding of the

Brillouin zones and reciprocal space.

Figure 1.7: Illustration of the first Brillouin zone for an fcc lattice.

Crystal structures of many materials can be depicted in terms of close packing

spheres, as illustrated in Figure 1.8. Close packing of equal-sized spheres in one

plane produces a layer of spheres with hexagonal symmetry[19] (the first layer is

indicated as layer A in Figure 1.8). A subsequent layer of spheres can be nested

on top of the first layer; this layer becomes layer B. When adding a third layer

of spheres to this sequence there is a choice to stack this layer directly over the

atoms in the first layer, layer A, or to create a new layer C. The first option

gives layers with a sequence of A-B-A-B. . . , and this form of packing is known as

hexagonal close-packing (hcp). The second option has three distinct layers, and

has a sequence of A-B-C-A-B-C. . . , and this packing is known as face centred

cubic (fcc) or cubic close-packed (ccp).

Materials can usually exist in a number of structural forms, depending on the

environmental conditions. When this is the case, the material exhibits what
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Figure 1.8: Illustration of close packing of spheres giving maximum density.
Both structures are formed by alternate stacking of layers of spheres. On the
left there is the hexagonal close-packed (hcp) structure, with alternating layers
in the form (A-B-A-B. . . ). Shown on the right is the face centred cubic (fcc)

packing, where layers alternate in the sequence (A-B-C-A-B-C. . . ).

is known as polymorphism, and each structural form is a polymorph of that

material. Polymorphism can be exhibited in the simplest case for an element,

and in this special case the terms allotropism and allotropes are often used. D.K.

Chernov, a Russian scientist, was the first to document polymorphism in steel in

1868[20], and his work is an interesting example of early structural studies in bulk

materials. Chernov was studying the heat treatment of steel, with the main goal

of trying to discover why steel production could yield materials of very different

quality - from extremely durable, to very defective, poor quality steel. Chernov

methodically investigated the effects of the composition (primarily iron with small

percentages of carbon), temperature and forging conditions on the structure and

mechanical properties of steel. His investigation led him to discover critical points

that correspond to the temperatures at which structural transformations occur in

steel[20]. Ultimately Chernov was investigating polymorphism (or allotropism) of

iron, which has been studied and confirmed in greater detail more recently[21–23].

Since his discoveries, he has been lauded as the “father of metallurgy”, as his

insights into how heat treatment influences the structure of the steel changed

the fundamentals of metallurgy from a black-art to a science[24]. Iron has seven

polymorphs, but the most commonly studied are austenite (γ-iron) and ferrite

(α-iron). Chernov observed and documented transformations between these two

polymorphs, with α-iron existing as a body centered cubic (bcc) crystal structure

which transforms to the face centred cubic (fcc) structure of γ-iron when it is

heated to 910◦C.
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Another example of a metal showing polymorphism in the context of close-packed

structures is lead. In 1969 Takahashi et al. [25] showed that lead can transform

from fcc packing to hcp packing under a pressure of 14 GPa. At pressures of

about 100 GPa the hcp packed form of lead undergoes a transformation to body

centred-cubic, bcc, which is no longer a close-packed structure[26]. These studies

into the transformation to the bcc form were confirmed in the same year by

Vanderborgh et al. [27]. More recently a pressure-temperature phase diagram

of lead was produced by Kuznetsov et al. [28] to try to explore the fcc-hcp phase

transition region in more detail.

If we take these examples of crystal structures for bulk materials and consider them

in a context of finite nano-scale clusters, our observations will change. Clusters are

finite objects, with a very high surface/volume ratio; this means they generally

will have a large surface energy contribution, which will effect both the cluster

properties and morphology[17]. Due to the large surface energy, many small

clusters do not maintain the crystalline form found in their bulk counterparts.

An example of this are metal clusters, such as gold or silver. Ordinarily, bulk

gold takes on the close-packed face-centred cubic structure. Nanoclusters of gold

instead have their atoms arranged in the densest way possible for these finite

structures with large surface energy contributions. As a result, the lowest energy

conformation for small cluster sizes gives an icosahedral morphology; an example

of this crystal structure and packing is shown in Figure 1.9. This packing was

first suggested in 1962 by Mackay[29] and has been repeatedly confirmed and

investigated in experiments and simulations[30, 31].

Nanoparticles and some specific examples of materials, along with their size

dependent properties, will be covered in following sections. First, we will look

Figure 1.9: Example of icosahedral clusters commonly found in metal
nanoclusters, for example gold and silver. Image reproduced from Baletto and

Ferrando [17].
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at a brief history of the discovery of carbon nanostructures, as it is an elegant

example of a major, and fortuitous, discovery in nanoscience.

1.4 Carbon as an example of a nanomaterial

The discovery of carbon nanostructures initially drew the attention of the scientific

community to nanoclusters, but the discoveries arrived via an indirect route. The

interest in small particles of carbon originated from studies done throughout the

1970s into interstellar dust, the small particles of matter scattered between stars

and galaxies[32]. As light passes through this interstellar dust it is absorbed or

scattered by interstellar particles, reducing the light’s intensity. Astrophysicists

refer to this phenomenon as optical extinction, and it can be studied by measuring

the intensity of light coming from stars[3]. Absorption spectra from stars are

recorded in an attempt to understand the composition of interstellar dust. The

ultraviolet portion of many of these extinction curves revealed a remarkable

broad absorption hump around a wavelength of λ=220 nm[32]. This feature

was considered remarkable as its position was almost constant in all ultraviolet

spectra obtained[33–36], appearing to be a ubiquitous feature in interstellar dust.

At the time of these observations the most accepted explanation for the hump at

approximately 220 nm was particles of graphitic carbon. However, this theory was

considered flawed by many, as the position and shape of the peaks in any extinction

curve are usually very sensitive to the size and shapes of the particles producing

them[37]. For the peak to remain almost unchanged from varied sources implied

the dust grains managed to have nearly identical shape and size distributions,

despite existing under very different conditions[37]. With such a conundrum,

groups began to take an interest in proving this source of optical extinction.

Rohlfing et al. [38] were one of the first groups who tried to investigate carbon

clusters of graphite dust in the laboratory to follow up these claims. They

used laser vaporation of a graphite substrate with subsequent time-of-flight mass

spectral analysis to try to observe the size distribution of graphite clusters. Their

analysis showed distinct cluster size distributions, with both even and odd atom

clusters of Cn appearing where 1 6 n 6 30, but only even atom clusters of C2n

appeared for 20 6 n 6 90. A time-of-flight mass spectrum of Cn for 1 6 n 6 100

can be seen in Figure 1.10. They suggested that the reason for the preference for

even numbered clusters was because they are comprised of carbyne (−C ≡ C−)n.
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They rejected other possibilities based on graphitic 6-membered rings, stating

these clusters would have an equal preference for even or odd atom clusters.

Figure 1.10: Time-of-flight mass spectrum taken from laser vaporisation of
graphite substrate[38]. The spectrum is a combination of two spectra taken
at differing voltages; the first optimised the detection of smaller clusters (C+

n

where 1 ≤ n ≤ 30), and the second optimised for detection of larger clusters
(C+

2n where 20 ≤ n ≤ 50). Image reproduced from Rohlfing et al. [38].

Kroto et al. [39] were particularly interested in the C60 peak in the time-of-flight

mass spectrum obtained by Rohlfing et al. [38]. This spectrum is shown in

Figure 1.10, where the C60 peak can be seen as the dominant peak for the larger

clusters. Kroto et al. [39] managed to repeat these results, and found that by

changing the experimental conditions they could increase the dominance of this

peak, and managed to obtain a C60 peak which represented 50% of the total

cluster abundance. Kroto’s group speculated on what shape of molecule was

giving this added stability and suggested a soccer-ball shaped molecule consisting

of hexagons and pentagons, they also suggested that this could be a widely found

isomer considering its high stability in harsh conditions. Their proposed structure

is depicted in Figure 1.11.

Haddon et al. [40] performed some theoretical investigations into the electronic

structure and bonding in the proposed structure of C60. They found that all the

σ bonds in the proposed molecule are fully satisfied by neighbouring atoms, and

with very little strain on the bond angles. In comparison, a graphite particle of

the same scale would have a significant number of unsatisfied valences, making it

an unlikely alternative[40]. They also speculated that the high symmetry of C60
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Figure 1.11: Structure of buckminsterfullerene, C60. This geodesic dome
structure of C60 was proposed by Kroto et al. [39] in 1985. Three members of
the group, H.W. Kroto, R.E. Smalley and R.F. Curl Jr., were awarded a Nobel

Prize in Chemistry in 1996 for their discovery.

would result in very simple Raman and IR spectra, with only four fundamental

modes for the IR spectrum. Krätschmer et al. [41] produced carbon dust via

vaporisation of graphite at high pressures to do their own studies on the structure

of C60. They performed ultraviolet and infrared absorption spectrometry on their

carbon dust sample to see if they could reproduce the absorption peak at λ=220

nm found in the absorption spectra of interstellar dust. They not only managed

to reproduce the expected UV absorption band at λ=220 nm, but also the four

infrared vibrational modes that were previously suggested by Haddon et al. [40].

Krätschmer et al. [42] continued this work in the same year, and managed to refine

their methods of producing C60 molecules, so that they could be concentrated into

a solid form, enabling them to perform X-ray diffraction studies. Their X-ray

diffraction data combined with IR spectral data confirmed the C60 molecules have

the spherical structure proposed by Kroto et al. [39].

The original hypothesis of Kroto et al. [39] eventually led to the award of a Nobel

Prize in Chemistry in 1996. A new field of carbon chemistry was opened up by

their discovery, and “fullerenes” have become accepted as the third allotrope of

carbon, next to the allotropes graphite and diamond.

Interestingly, Osawa [43] had proposed the football shaped structure in 1970, more

than a decade earlier, in a chemistry journal in Japan. He was involved with studies

on “superaromatic” structures such as corranulene - which he noted forms one

portion of the ‘football’ structure of C60 which he also hypothesised. Published

only in Japanese, and with little follow-up interest at the time, this work went

essentially unnoticed. A retrospective of his work was published more recently[44].
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The second lauded discovery in carbon nanostructures was that of carbon

nanotubes. Synthesis of carbon nanotubes occurred a few years after the reporting

of buckminsterfullerene and other closed-cage fullerenes, being first synthesised

and reported in 1991[45]. Carbon nanotubes are composed of sheets of graphite

‘rolled up’ into a cylinder as shown in Figure 1.12. They can occur as either

single-walled nanotubes or multi-walled nanotubes - where the multi-walled

nanotubes are composed of concentric single-walled carbon nanotubes[46]. The

properties of individual nanotubes depend on their dimensions (diameter and

length) and also in which direction along the graphite sheet the tubes are rolled.

The structure of nanotubes can be described in terms of the chirality or helicity of

the graphene tube, illustrated in Figure 1.13. The electronic properties of carbon

nanotubes are significantly altered by this helicity.

The chirality of the carbon nanotube has a significant effect on the material

properties. In particular, tube chirality is known to have a strong impact on

the electronic properties of carbon nanotubes. Metallic and semiconducting

behaviours have been observed in carbon nanotubes, depending on the chirality[46,

47].

The properties of carbon nanotubes have caused a lot of interest in the materials

sector - due to an elastic modulus almost equal to that of diamond, and strengths

10-100 times greater than that of steel along the axis of the tube, while being

a much lighter material[46]. Iijima et al. [49] studied the flexibility of carbon

nanotubes using high resolution electron microscopy and molecular dynamics

simulations. They found the nanotubes, while strong along the axis of the tube,

Figure 1.12: Schematic showing how a sheet (or sheets) of graphene can form
single and multi-walled carbon nanotubes.
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Figure 1.13: Schematic of a 2D graphene sheet with lattice vectors a1 and a2,
and the chiral (“wrapping”) vector Ch, where Ch = na1 +ma2. The extreme
cases are indicated in grey, where (n, 0) gives a zig-zag arrangement, and (n, n)
gives the armchair arrangement. Images adapted from Odom et al. [48] and

Thostenson et al. [46].

are easily deformed. Their studies did show a surprising amount of structural

flexibility though, with the nanotubes able to reversibly recover from bends of up

to 110◦.

The discovery of carbon nanostructures had a significant impact on the scientific

world. The idea that nanoscience could be our means of making novel materials

through rational design was not fully embraced until building blocks, such

as carbon nanostructures, became widely available to a range of scientific

disciplines[4]. For this reason it is relevant to discuss the history of the discovery

of carbon nanostructures, before we introduce other examples of studies into

nanoparticles in the following section.

1.5 Nanoparticles

Nanoparticles are often defined as a collection of atoms or molecules, with at least

one dimension in the size range of 1-100 nm[3]. However, a general definition based

purely on size doesn’t distinguish between large molecules, such as biomolecules

that can exist at nanoscale dimensions, and nanoparticles. Additionally, the size

range of what can be considered a nanoparticle will vary for different compounds.

This was exemplified in Section 1.2, where we introduced that the electronic

properties of nanoparticles are distinct from the bulk when the dimensions of

the nanoparticle are on the order of the exciton radius. Since this radius will vary
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depending on the material we cannot give an absolute definition of a “nanoparticle”

based on a strict size range, as it won’t necessarily include all materials. It is more

accurate to define the size range of nanoparticles for a given material as any

size below which any of its properties deviate significantly from that of the bulk

material[11].

As the size of the system is significantly reduced from a bulk “macrocrystal” the

electronic structure appears more like that found in discrete molecules than in an

infinite solid[1, 50, 51]

In the mid-1980’s Brus [50, 52] studied the electronic properties of small clusters

of semiconducting materials at Bell Laboratories. Using cadmium sulfide (CdS)

as an example, in which the 1s exciton has a radius of approximately 60 Å,

Brus [50] suggested that if crystallites were reaching this size limit, the exciton

interactions with the surface would dominate its dynamics. In this case he

calculated that size effects would produce a very different energy scheme in

comparison to a much larger (bulk-like) crystal. Brus [51, 53] continued these

studies in the following years. As experimental techniques developed in the 1980’s

that enabled size-controlled production of colloidal particles of 15-50 Å, these

theoretical calculations could be confirmed. Later studies into nanocrystals of

CdS have shown the band gap can be tuned between 2.5 and 4 eV depending on

the size of the particles[2, 54].

One visible result of this size dependent band gap is that the colour of the material

can change with the size of the particle, as illustrated in Figure 1.14. The colour

of a material is determined by the absorption of light at specific wavelengths.

Absorption occurs when photons from incident light induce electrons to make

transitions between low energy occupied levels to higher energy unoccupied

levels[3]. Murray et al. [55] synthesised CdSe nanoparticles of various sizes, ranging

between 12 to 115 Å. They showed the effects of quantum confinement, with the

particles of different sizes clearly absorbing different wavelengths of light.

As well as changes in properties such as band gap, the phase stability of a solid can

vary widely depending on the size of the particle. This has been observed in many

materials including zirconium dioxide[56–58], titanium dioxide[59, 60], alumina[61]

and carbon[62]. Titanium dioxide for example, exhibits size-dependent phase

transitions between three different polymorphs, anatase, brookite and rutile[63].

At the macroscopic scale, rutile is more stable than anatase or brookite, while at
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the nanoscale anatase is the more stable polymorph. Previous studies performed

by Zhang and Banfield [60] have shown that at particle diameters less than 14 nm

anatase is the preferred polymorph, not rutile[60]. The role of the brookite

polymorph was not clearly understood; i.e. whether anatase converted to brookite

or vice versa. Calorimetric data for the transformation enthalpies of these three

phases suggested that the order of stability was rutile > brookite > anatase, while

other groups found brookite to be more stable[64, 65]. Zhang and Banfield [63]

later examined the impact of size on the phase stability and transformation via

X-ray diffraction analysis of titania samples consisting of nanocrystalline anatase

and brookite. They found brookite to be stable at the nanoscale, but as an

intermediate phase between anatase and rutile. Titanium dioxide phase transitions

at the nanoscale have proven to be an interesting example in the literature.

Individual groups were each studying different sizes of TiO2 nanoparticles and

apparently contradictory results were obtained. In reality it was the size-dependent

nature of the problem providing the discrepancies.

Size-dependent phase transitions have been studied in detail also for CdSe

semiconductor nanocrystals. Nanoparticles of CdSe with a radius between 10 Å

and 30 Å are particularly interesting as they are almost perfectly crystalline,

maintaining the wurtzite structure of the bulk. Tolbert and Alivisatos [66]

have looked at pressure induced phase transformations from wurtzite to rock-salt

packing in nanocrystals of CdSe and compared these results to those for the

bulk structure. They found the thermodynamics and kinetics of these transitions

were vastly altered within the finite systems relative to the bulk. In the bulk,

a phase transition can be induced at approximately 3 GPa. However, for the

Figure 1.14: The emission wavelength of CdSe quantum dots can be tuned
on the basis of particle size as shown in this image. Vials of different sizes of
CdSe quantum dots under UV light show emission of different wavelengths of

light. Image reproduced from Alivisatos [4].
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nanocrystals the structure was much more stable and 9 GPa was required to

induce the same phase transition from wurtzite to rock-salt. At an even smaller

size scale, CdSe has also been shown to have very stable nanoparticles at sizes

(CdSe)33 and (CdSe)34 [67]. Using time-of-flight mass spectrometry, Kasuya et al.

[67] discovered highly stable particles for n=13, 33 and 34, for not only (CdSe)n

but also (CdS)n, (ZnSe)n and (ZnS)n. At this size range the surface energy is

so large that the nanoparticles are predicted to not have a wurtzite or rock-salt

structure, but structures composed of 4- and 6- member rings. Kasuya et al. [67]

performed some simulations in order to determine the lowest energy configuration

for the most stable CdSe clusters they found from the mass spectra; examples

of the resulting structures are shown below in Figure 1.15. The structures are

significantly different to the bulk structure one would expect for CdSe.

Figure 1.15: The most stable (CdSe)13 and (CdSe)34 clusters as calculated by
Kasuya et al. [67] using first principles calculations. Images reproduced from

Kasuya et al. [67].

Zaziski et al. [68] continued the studies of Tolbert and Alivisatos [66] on

phase changes in CdSe. They investigated the possibility of reversible phase

transformation in nanorods. Zaziski et al. [68] thought this would be an

interesting study, as nanoparticles less than 5 nm in diameter undergo reversible

phase transformations, but extended solids form distinct domains of different

phases. They hoped that nanorods may show some attributes of both of these

transformations, with an aspect ratio of 1:10. They found that the volume

change that occurs when a phase transition is imposed caused the nanorods to

fracture into subdomains small enough to undergo the phase change without

further cracking[68].

The fact that these similar structures and properties are exhibited by a variety

of materials is no surprise. The materials studied by Tolbert and Alivisatos

[66], Zaziski et al. [68] and Kasuya et al. [67] are all grouped into a category
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of compounds known as the chalcogenides, and will be discussed in more detail in

the next section before focusing on one member of this family, namely zinc sulfide.

1.6 Chalcogenides

Chalcogens are the chemical elements in group 16 of the periodic table. The

lightest element in the chalcogen family is oxygen (O), with the following elements

being sulfur (S), selenium (Se), tellurium (Te), polonium (Po) and the synthetic

element ununhexium (Uuh). Compounds comprised of heavier chalcogens are

grouped together and referred to as chalcogenides, which usually refers to the

more commonly found compounds - sulfides, selenides or tellenides. The reason

for this collective grouping away from oxides is that chalcogens have moderate

electronegativity in comparison to oxygen. The Pauling electronegativity of

oxygen is 3.44 while S is 2.58, Se 2.55 and Te 2.1[69]. This difference in

electronegativity results in chalcogenides having very different crystal structures

to oxides, and led to them being grouped separately based on their structural

differences.

Many chalcogenides have close-packed anions. This arrangement gives the largest

distance between anion pairs, but the densest packing of atoms, like those seen

in metals. Cubic close packing (ccp), hexagonal close packing (hcp) and body

centred close packing are often seen.

In our studies we will be focusing on zinc sulfide in particular. Before introducing

the structure, properties and previous studies of zinc sulfide, some background on

sulfide minerals will be given.

1.6.1 Sulfides

Many sulfide minerals have been the focus of scientific investigation for two major

reasons, the first being that ores containing these minerals are often the source of

valuable metals, and the second being that many sulfide minerals have properties

that make them useful for potential applications in the electronics industry[70].

We will now look at these two applications of sulfide minerals in more detail.
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Metal sulfides are one of the most important groups of ore minerals as supply

of most of the worlds non-ferrous metals comes from these ores. Interest in

sulfide chemistry originally arose from the need to separate valuable metals from

raw sulfide ores[71]. The industrial processing of sulfides requires the removal

of a large amount of unwanted ore material to obtain concentrated valuable

metals. Because of this the specific surface chemistry and reactivity of sulfide

ores became a focus for research projects in this field. Sulfide surfaces have

also been implicated as catalysts for reactions to assemble the first complex

molecules required for life to exist on our planet[72]. Active hydrothermal systems

were found in deep oceans, which initially encouraged these ideas and research

into the interactions between microbes and sulfide minerals[73]. Environmental

concerns arise from the mining of sulfide ores, where the waste products have

the potential to damage or destroy surrounding habitats[71, 74]. Sulfides can

react with natural water sources, acidifying them and possibly dissolving ores

which contain toxic elements[74]. Synthesised analogs of sulfide minerals are also

of interest to the materials industry because of their electrical, magnetic and

optical properties. Particular interest has grown in sulfide nanoparticles as the

size-tunable properties for these semiconductor systems may offer opportunities

to develop new technologies[75].

Metal sulfide minerals occur as crystalline structures with a tetrahedral or

octahedral coordination of the cation, depending on the metal in the mineral[19].

In some cases the crystalline structure may be slightly distorted from the regular

tetrahedral and octahedral coordination. Sulfide structures are often described in

terms of the close packed structures introduced in Section 1.3, where the sulfide

anions take on one of the close-packed structures, and the metal ions are located

at some or all of the octahedral or tetrahedral interstitial points between the

anions[19]. Sulfide ions prefer asymmetric surroundings and are highly polarisable,

giving sulfide minerals very different structures to other minerals, such as metal

oxides, where the oxide ion is less polarisable[19]. Some of the more commonly

found metal sulfides exhibit polymorphism. For example, FeS2 occurs as both

pyrite and marcasite, and ZnS occurs as sphalerite and wurtzite[19]. Polymorphs

can differ drastically, where the nearest-neighbour coordinations will be different

between the two structures, or subtly, where the difference occurs at distant

neighbouring ions.

All sulfide minerals of the non-transition elements are diamagnetic insulators
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or semiconductors[76]. Sulfides of the transition metals have more complicated

electronic structures due to the presence of d -orbital electrons. In these minerals

there may be overlap between the bands, or none at all, offering many more

possibilities for these materials. They could be p- or n-type semiconductors,

diamagnetic or even exhibit temperature-dependent paramagnetism[76]. This

vast range of possiblities means the electrical and magnetic properties of sulfide

minerals cannot be generalised and need to be studied individually. One

generalisation that can be made is that the sulfides, with the wide range of possible

electronic and magnetic properties, have great promise for use in technological

applications. This technological value of sulfide minerals becomes even more

apparent when we consider the previous discussions, that nanoparticles have

properties that are strongly dependent on the composition, size and shape of the

particle.

1.7 Zinc sulfide

The material focused on throughout this thesis is zinc sulfide. The following section

will provide the background regarding some of the previous studies of zinc sulfide.

The properties of bulk zinc sulfide will be introduced first, followed by summaries

of more recent studies into the structure and properties of nanoparticles of zinc

sulfide.

1.7.1 Structure and polymorphism

Zinc sulfide occurs as two main polymorphs, sphalerite, also known as zinc blende,

(β-ZnS) and wurtzite (α-ZnS), shown in Figure 1.16. These two forms are actually

polytypes, which is a form of polymorphism where the structure forms in layers

that can have different stacking sequences[19]. Both of these polytypes of ZnS

are comprised of close-packed layers of corner-sharing ZnS4 tetrahedra, but as

implied by the term polytype, they differ in the stacking of the layers. Sphalerite

takes the cubic close-packed form, with layers alternating in an (A-B-C-A-B-C...)

sequence, and wurtzite is a hexagonal close-packed structure where the layers

alternate in an (A-B-A-B...) sequence[69], as already illustrated in Figure 1.8 in

Section 1.3. Zinc sulfide does occur as many more polytypes than these strictly

defined wurtzite and sphalerite layering sequences[77]. These layers can actually
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Figure 1.16: Wurtzite (top images) and sphalerite (bottom images) crystal
structures. The ball and stick models show sulfur atoms as yellow and zinc
atoms as grey. Polyhedral representation is shown for sulfur atoms only, the

A-B-A-B and A-B-C stacking patterns can be seen.

form in any combination of stacking along the c-direction of a hexagonal unit

cell. Structures with periodicities on the order of hundreds of Angstroms have

been reported[77, 78]. At atmospheric pressure and room temperature the bulk

sphalerite phase is slightly more stable than the wurtzite phase, with a free energy

difference quoted in thermodynamic tables as ∼10 kJ mol−1[79], while more recent

studies estimate a difference of 2 kJ mol−1[80]. Wurtzite is generally accepted as

the stable form at high temperatures[81], though both wurtzite and sphalerite can

be found to coexist in naturally occurring mineral ores[19].

Scott and Barnes [82] were interested in studying how these supposed polymorphs

could coexist under the same environmental conditions, when the purported

temperature for wurtzite to be stable was 1020 ◦C[81] and discrepencies in reported

phase-transtion temperatures were present in the literature. They investigated

what effect the stoichiometry of ZnS had on the phase equilibria by generating
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single crystals of sphalerite and wurtzite at various pH levels and temperatures.

They found that the discrepancies in the literature were not anomalies, but

indicated the phase changes were highly dependent on the kinetics of the reaction,

which were not explicitly considered in previous literature reports. Their studies

into the kinetics of the phase transitions explain how wurtzite can also be found

as a stable, naturally occurring mineral when it is traditionally considered the

“high-temperature” phase. The kinetic dependancies they found showed there

is an equilibria between wurtzite and sphalerite, where wurtzite is intrinsically

sulfur-deficient relative to sphalerite at a given temperature[82]:

wurtzite sphalerite

ZnS1−x +
1

2

(
x− 1 +

1

1− y

)
S2 �

(
1

1− y

)
Zn1−yS

(1.2)

Strict polymorphs have the same stoichiometry. However, sphalerite and wurtzite

have slight differences in their zinc/sulfur ratios, with sphalerite having a slightly

higher S:Zn ratio than wurtzite. These stoichiometric variations, and deviation

from strict polymorphism means that the two polytypes sphalerite and wurtzite

can coexist stably over a range of temperatures and pressures[19]. The work done

by Scott and Barnes [82] notes that the stoichiometry of ZnS may vary over a

range of 0.9% sulfur; a value that seems small but is vital to the stability of the

zinc sulfide phases.

1.7.2 Previous studies of bulk zinc sulfide

There have been many previous studies performed into the bulk and surface

properties of ZnS. Here we present some of these, with an emphasis on those

using theoretical methods as these will be the most relevant to our own studies.

As discussed in the previous section, the number of polytypes of ZnS is almost

limitless as layers of ZnS can stack in different formations, yielding not only the

A-B-A-B and A-B-C-A-B-C stacked hexagonal and cubic polytypes, but any mixed

combination of these. Engel and Needs [77] performed first principles calculations

on polytypes of bulk ZnS, with an interest in determining if there were any common

structural features between the lowest energy polytypes of ZnS. Similar studies
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had been performed for SiC, which exhibits polymorphism in the same fashion as

ZnS, which led them to try to apply these same techniques to zinc sulfide. They

examined five different polytypes, two of which were sphalerite and wurtzite, and

the remaining three were polytypes with mixed sphalerite and wurtzite layers.

The significant finding from these energy calculations is that the energy differences

between these polytypes were very small in comparison to the spread of energies

of polytypes in other materials, as shown in Figure 1.17.

Figure 1.17: Energy differences per unit of ZnS, Si or SiC of different polytypes
optimised using first principles calculations. The spread of the energy differences
between polytypes of ZnS is much lower than that for SiC, a material which
exhibits polytypism in a similar fashion to ZnS. 〈∞〉 is sphalerite, and 〈1〉

wurtzite. Image reproduced from Engel and Needs [77].

Engel and Needs [83] performed further studies on ZnS, with the aim to improve

the calculated properties of cubic zinc sulfide using first principles methods. They

found that if the Zn 3d electrons are included the pseudopotential (i.e. they are

considered core electrons) the nonlinear core exchange-correlation correction of

Louie et al. [84] needs to be applied to obtain reasonable results. A number of

other groups have also successfully used first principles and ab initio methods to

accurately predict the structural and elastic properties of ZnS[85–87].

Classical methods have also been used to model bulk zinc sulfide. Wright and

Jackson [88] developed a set of interatomic potentials for modelling ZnS. Their

potentials accurately predicted the physical properties of sphalerite and wurtzite,
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and they used these to simulate defects. These potentials were later used again

by Wright et al. [89] to investigate the surface energies and stabilities of ZnS

sphalerite. Their studies showed that the {110} surface was the most stable.

However, a higher ratio of S (implying Zn vacancies) resulted in the {111} surface

being favoured. Benkabou et al. [90] also developed a forcefield for simulating

the II-VI semiconductor compounds CdS, CdSe, ZnS and ZnSe. Their potential

parameters were fitted on experimental data and their calculations were successful

in accurately modelling the experimental values known for lattice constants, bulk

moduli and cohesive energy.

Wang and Duke [91] developed tight-binding models to calculate atomic and

electronic structure of ZnS cleavage surfaces. Their calculations showed similar

reconstructions for all three three cleavage surfaces investigated - the (110)

surface of sphalerite and the (101̄0) and (112̄0) surface of wurtzite. For each

of these surfaces they found the sulfur atoms relaxed outwards, as illustrated

in Figure 1.18. Continuing on from these studies, Duke and Wang [92]

Figure 1.18: Relaxed surfaces for zinc-blende (110) (left) and wurtzite
(112̄0)(right). Image reproduced from Wang and Duke [91].

investigated the mechanism of surface reconstruction on the cleavage faces of other

wurtzite-structure materials. Their studies used tight-binding models to calculate

the energies and energy minimisation techniques to optimise the structures of

cleavage surfaces (101̄0) and (112̄0). They studied not only ZnS but also ZnSe,

ZnO, CdS and CdSe. They found that each surface relaxed in a way analogous

to sphalerite (zinc-blende) (110) surface, where surface layer anions relax outward

(from the surface) and cations relax inward. These studies were complemented by
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a review of atomic and electronic structure of tetrahedrally coordinated compound

semiconductor interfaces, published in the same year by Duke [93].

Hamad et al. [94] investigated the crystal structure and morphology of ZnS using

a forcefield they developed. Their study includes not only the non-polar surfaces

studied by Engel and Needs [77] but also the polar surfaces, enabling the crystal

morphology to be predicted. The crystal morphologies for sphalerite and wurtzite

are shown in Figure 1.19.

Figure 1.19: Calculated crystal morphology of sphalerite (left) where only the
[110] surface is found, and wurzite (right) forming a hexagonal rod morphology.

Image reproduced from Hamad et al. [94].

More recently Wright and Gale [95] developed a set of interatomic potentials for

zinc sulfide and cadmium sulfide. The reason they looked at both of these materials

is that they both have two stable polymorphs, wurtzite and sphalerite, and they

are both materials with semiconducting properties. However, the sphalerite form

is the more stable polymorph of zinc sulfide, and the less stable polymorph of

cadmium sulfide. At the time their paper was published there had been a number

of classical atomistic studies done on the zinc sulfide system, however none had

managed to accurately describe the preference for sphalerite over wurtzite. The

focus of their study was not only to develop a forcefield which accurately describes

the interactions between zinc and sulfur, but that is able to model the slight energy

difference between the two stable polymorphs sphalerite and wurtzite.
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1.7.3 Previous studies at the nanoscale

The kinetics of the formation of zinc sulfide nanoparticles have been studied

experimentally[96]. Zhang et al. [96] focussed on investigating how the

experimental conditions of synthesising ZnS nanoparticles would affect the size

and phase constitution of the nanoparticles. They successfully synthesised

nanoparticles of ZnS with mixed stacking sequences - both cubic and hexagonal

stacking. They found the stacking in nanoparticulate zinc sulfide to be primarily

controlled by the kinetics of precipitation[96]. The mixed stacking in their

nanoparticles implied that the probabilities of forming wurtzite layers and

sphalerite layers under their experimental conditions were approximately the same.

They also found if the conditions were set for a rapid precipitation that sphalerite

was the favoured structure. The mixed-phase nanoparticles they developed had

different optical properties to single phase sphalerite or wurtzite nanoparticles,

suggesting that control of defects in nanoparticles could lead to new technological

applications.

More recently the same group conducted similar studies, looking at the effect of

NaOH concentration on the morphology of zinc sulfide nanoparticles[97]. Some

of their results are shown in Figure 1.20. The studies showed marked differences

in morphology depending on the concentration of NaOH, with structures varying

from microspheres, flower-like structures and nanosheets[97].

Figure 1.20: The dependence of the morphology of ZnS on concentration of
NaOH was observed by Ren et al. [97]. Image reproduced from Ren et al. [97].

Comprehensive studies of ZnS nanoparticles involving thermodynamic analysis,

molecular dynamics and experiment found that smaller wurtzite nanoparticles

are more thermodynamically stable than sphalerite[98]; a reversal in the trend
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observed for the bulk. Zhang et al. [98] were interested in doing a thorough

study of the phase stability of zinc sulfide nanoparticles primarily due to

inconsistent reports in the literature. A number of studies[99, 100] in the past had

predicted the surface energy of wurtzite was higher than that for sphalerite, while

more recently, with the increased interest in nanoparticles, groups have found

conflicting results where nanoparticles of ZnS preferred the wurtzite form over

sphalerite[101, 102]. Molecular dynamics simulations of zinc sulfide surfaces in

vacuum performed by Zhang et al. [98] predicted that the average surface energies

for sphalerite and wurtzite are 0.86 and 0.57 Jm−2, respectively. This implies that

sphalerite nanoparticles are less stable due to a higher surface energy, supporting

the experimental evidence that wurtzite is the preferred phase at this scale.

Gilbert et al. [103] performed extended X-ray absorption work which showed that

nanoparticles could not be considered as small pieces of bulk material. They found

considerable internal strain in the nanoparticles due to the competing relaxations

from the irregular surfaces of the particles.

Compressibility and bulk moduli of materials are also size-dependent[104]. Gilbert

et al. [104] studied the compressibility of a range of sizes of nanoparticles and found

that nanoparticles smaller than 6 nm in diameter showed up to a 40% reduction

in bulk modulus.

Qadri et al. [102, 105] have performed studies on pressure and temperature-induced

phase transitions in zinc sulfide. Their first study[105] looked at the size

dependence of temperature-induced phase transitions. In the bulk, sphalerite

undergoes a phase transition to wurtzite at 1020 ◦C. Qadri et al. [105] observed

zinc sulfide nanoparticles transform to wurtzite at temperatures as low as

400 ◦C. They concluded that the equilibrium transition temperature for the

sphalerite-to-wurtzite transition in ZnS nanoparticles was vastly reduced from the

value for bulk ZnS. Studies on the influence of particle size on pressure-induced

phase transformation were also interesting. As pressure was applied to ZnS

nanoparticles of approximately 25 nm size they transformed very quickly to the

sphalerite phase, and finally onto a rock salt structure[102]. As the pressure was

reduced the particles did not return to the original wurtzite phase, but back to

the intermediate sphalerite phase.

More recently Zhang et al. [98] have done further studies into the thermodynamic

stabilities of zinc sulfide nanoparticles in vacuum and in water. They found an

even greater difference in the temperature required to induce a phase transition
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(in comparison to bulk studies), with 7 nm nanoparticles of zinc sulfide in the

sphalerite phase requiring only 25 ◦C to induce a phase change. Simulations

were also performed on even smaller nanoparticles of 3 nm and the activation

energy required to go from sphalerite to wurtzite structures was approximately

5 kJmol−1, which they took to imply a different mechanism of phase change

when zinc sulfide particles are at the nano-scale. These studies showed that

at the nanoscale the wurtzite structure is more thermodynamically stable than

sphalerite. The group did some experimental studies on phase transitions in zinc

sulfide nanoparticles where they heated 3 nm ZnS nanoparticles in vacuum over

the range 350-750 ◦C and successfully induced a phase change from sphalerite to

wurtzite. However, the same experiment performed in moist air gave no clear

conversion from sphalerite to wurtzite - showing that chemisorbed water may play

a role in stabilising nanocrystalline sphalerite[98].

Zhang et al. [106] also performed further studies on the effect of water absorption

on the phase of zinc sulfide nanoparticles. Their group did experimental studies

and simulations on different sized nanoparticles, from 2-5 nm and with different

initial structures (either wurtzite or sphalerite). Nanoparticles were shown to

be stabilised by adsorbed water molecules, with increased order throughout the

particle up to the surface. Reversible structural transformations were observed

when the particles had adsorbed methanol on the surface, and when this methanol

was evaporated off. The particle size and the nature of the surrounding

environment of nanoparticles can clearly have a marked effect on what structure

and reactivity nanoparticles will have[106]. This highlights the importance of

studying the stability of nanoparticles in ’natural’ environments if nanoparticles

are to become more commonplace in future technologies and devices.

Continuing studies performed by Zhang et al. [107] investigated the differences

in binding energy between water molecules and varying sizes of ZnS particles -

from nanoscale, to aggregated nanoparticles, to the bulk. They used temperature

programmed desorption (TPD) and also MD studies. They found that the binding

energy is higher on nanoparticles than on bulk crystals. This was explained in

relation to the curvature of the nanoparticles surface, where the water molecules

will not be arranged as close together as they would be on the bulk surface,

resulting in an increased binding energy between the water molecules and the

nanoparticle. Additionally, more water molecules can be absorbed on highly

curved surfaces of smaller nanoparticles than on nanoparticle aggregates or bulk
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Figure 1.21: Aggregation of 3 nm zinc sulfide nanoparticles obtained from
MD studies of Zhang and Banfield [108]. Image reproduced from Zhang and

Banfield [108].

crystals, as the surface area is much greater in the isolated nanoparticle systems.

The group concluded that these two factors could prove to be important when

assessing the impact of nanoparticles in the environment.

After completing their studies into the phase stability of nanoparticles in

vacuum and in water, Zhang and Banfield [108] began studying the effect

of aggregation of zinc sulfide nanoparticles on the phase transformation.

Reversible aggregation-disaggregation had previously been studied in 3 nm ZnS

nanoparticles[109]. The study showed that the transformation from sphalerite to

wurtzite as the nanoparticles aggregated occurred by surface nucleation. The

group’s previous studies[98] on 3 nm ZnS sphalerite nanoparticles in vacuum

suggested the same surface nucleation mechanism for transforming into wurtzite.

Due to the growing concerns about the use of nanoparticles in industry

and products, many groups are focussing their studies on the interaction of

nanoparticles with solvents, particularly water - to try to get an indication of how

the nanoparticles may transform if they are released into the environment[12].

Additionally, the presence of zinc and sulfur in biological systems and their

mineral forms in geological systems had led to the study of nucleation of these

structures in water being of interest. Hamad et al. [110] used forcefield methods

to perform simulations of zinc sulfide nucleation in solution. Multiple simulations

were performed with different concentrations of Zn2+ and S2− species in water, to
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simulate and investigate nucleation processes of zinc sulfide. Zinc sulfide clusters

of varied stoichiometry were found to form, but always in two or three coordinated

states, with the smaller clusters being square or hexagonal planar structures.

Larger three dimensional clusters were eventually formed in the high concentration

simulations, and these clusters also maintained the three-coordinated clusters,

formed by hexagons and squares. Hamad et al. [94] have performed studies looking

at surface structures and the overall morphology of ZnS using both first principles

techniques and forcefield methods. In this study they derived forcefield parameters

for simulating zinc sulfide, which they used in later studies of small nanoparticles

of ZnS in vacuum to investigate cluster formation[111–113]. Clusters of the form

(ZnS)n were investigated, where n = 10 − 47, 50, 60, 70, 80; some of these are

depicted in Figure 1.22. These studies showed that at these very small cluster

sizes the tetrahedral formation of ZnS was no longer observed - neither wurtzite

or sphalerite appeared as a dominant motif. Instead three-coordinated ZnS was

found, with clusters forming open ‘bubble’ clusters.

One of the more exploratory methods for finding new phases of nanoparticles

was used by Roberts and Johnston [114], where they used a genetic algorithm to

evolve structures and determine a global minimum structure for (MgO)n clusters

for n=10-35. This technique was used by Burnin and BelBruno [115], Burnin et al.

[116] to similarly find the global minimum structure for (ZnS)n clusters for n=1-16.

Figure 1.22: Examples of the bubble-like formations zinc sulfide can possess
at the lower limits of the nanoscale. Image reproduced from Spanó et al. [111].

Our studies will focus on methods which have an investigative nature similar to

that of the genetic algorithm methods, where there does not exist an a priori bias

to any particular structure. These will be discussed in later chapters, but first

some background information on general theoretical and computational chemistry

will be given.
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Computational Methods

2.1 Introduction

Theoretical chemistry is a field of chemistry that uses mathematical methods and

the fundamental laws of physics to study physical and chemical processes[117].

Prior to the invention of computers, the size and complexity of the systems that

could be studied in a theoretical manner were very limited due to the overwhelming

quantity of mathematical operations required. With the introduction of computers

many theoretical chemistry problems could be solved or investigated within a

reasonable time-span and with increasing accuracy. Continuing technological

advances in computational performance has led to the birth of computational

chemistry, a field which encompasses many computational methods for simulating

and analysing the behaviour of molecular systems[118]. One of the difficult starting

points in computational chemistry is deciding which methods and level of theory

are appropriate for a given problem[117].

This chapter will first introduce two distinctly different theoretical approaches to

obtain the energy of a system - electronic structure and force field methods.

2.2 Electronic structure methods

The theoretical basis for electronic structure methods is the branch of science

known as quantum mechanics. Due to the fact that electrons possess properties

33
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of particles and waves they cannot be described by classical physics, so alternate

theories are required[117]. Quantum mechanics explicitly represents the electrons

in a calculation, enabling the derivation of properties that rely on the electronic

distribution and also to investigate chemical reactions[118]. These methods are

primarily concerned with the solution of the Schrödinger equation[118–120]. The

time-independent form is described by:

H Ψ(~x1, ~x2, . . . , ~xN , ~R1, ~R2, . . . , ~RM) = EΨ(~x1, ~x2, . . . , ~xN , ~R1, ~R2, . . . , ~RM) (2.1)

Here H is the Hamiltonian operator for a molecular system of M nuclei and N

electrons. H is a differential operator which represents the total energy of the

system[119], and using the system of atomic units is defined by;

H = −1
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where A and B run over the M nuclei and i and j refer to the N electrons in the

system, MA is the mass of nucleus A, ZA and ZB are the nuclear charges of nuclei

A and B respectively, rij is the distance between electrons i and j, RAB is the

distance between nuclei A and B and, finally, riA is the distance between electron

i and nuclei A. The first two terms represent the kinetic energy of the electrons

and the nuclei, respectively. ∇2
q is the Laplacian operator, which can be defined

as a sum of differential operators in Cartesian coordinates;

∇2
q =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.3)

The remaining three terms of the Hamiltonian are potential energy terms,

representing the attractive interactions between nuclei and electrons, and repulsive

potentials resulting from electron-electron and nucleus-nucleus interactions.

Ψ(~x1, ~x2, . . . , ~xN , ~R1, ~R2, . . . , ~RM) in (2.1) is the wave function of the system,

which depends on the spatial and spin coordinates of the electrons, collectively

represented by ~xi, and the spatial coordinates of the nuclei, ~Ri. Finally, E is the

energy of the system described by the wavefunction Ψ.

The Schrödinger equation can only be solved exactly for a few problems. No exact

solution can be found for systems that involve three or more interacting particles.

Instead, to successfully use quantum mechanics to investigate larger problems,
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we seek approximations to the true solutions of the Schrödinger equation[118].

Methods that generate solutions without reference to experimental data are known

as ab initio methods, from the latin “from the beginning”.

2.2.1 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation[121] enables the electronic and nuclear

motions to be separated[118, 119]. The mass of a nucleus is much greater

than the mass of an electron in a system, and as a result the nuclei have

much smaller velocities than the electrons. When considering electronic structure

methods we assume that within the timescale it takes for electrons to relax to

the ground state, the slower nuclei will not have changed position, and can

be considered stationary[118, 119]. This assumption also implicitly applies to

force-field methods, which do not explicitly represent electrons within a system.

With this assumption the kinetic energy of the nuclei in Equation (2.1) can be

treated classically[120], leaving us with the electronic Hamiltonion:

Helec = −1
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Mathematically, the Born-Oppenheimer approximation is the assumption that the

nuclear and electronic wave functions are separable;

Ψtotal = ΨelectronsΨnuclei (2.5)

therefore;

HelecΨtotal = EelecΨtotal (2.6)

and;

Etotal = Eelec + Enuc (2.7)

With this assumption, we can fix the nuclei at a set of positions, R, and solve for

the electronic wavefunction. If this is done over a range of R values a potential

energy surface with respect to the movement of the nuclei can be obtained.

Throughout this section on electronic structure methods we will refer to Helec as

H for simplicity.
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2.2.2 Antisymmetry Requirement

Electrons are fermions, and as such they must obey Pauli’s exclusion principle,

whereby two electrons of the same spin may not occupy the same state. In the

context of electronic wave functions, mathematically this means that Ψ must be

antisymmetric when two electrons are interchanged[120], a requirement described

by Equation (2.8):

Ψ(~x1, ~x2, . . . , ~xi, ~xj, . . . , ~xN) = −Ψ(~x1, ~x2, . . . , ~xj, ~xi, . . . , ~xN) (2.8)

2.2.3 Variational Principle

As mentioned in the first section of this chapter, the Schrödinger equation cannot

be solved analytically for more than three interacting particles. It is, however,

possible to systematically refine an approximate solution to the wave function,

leading us closer to the ground state energy of the system, E0. This is as a result

of the variational principle, which states that the energy of an approximate wave

function is always greater than, or equal to, the true ground state energy[119];

〈Ψtrial|H |Ψtrial〉 = Etrial ≥ E0 = 〈Ψ0|H |Ψ0〉 (2.9)

where the equality holds only if Ψtrial is identical to Ψ0. This gives us a measure

of the quality of a wave function[120] - the lower the energy obtained, the closer

our approximate wave function is to the exact wave function, Ψ0.

This can be expressed as:

E0 = min
Ψ→N

E[Ψ] = min
Ψ→N
〈Ψ|Helec|Ψ〉 (2.10)

Where Ψ → N represents that Ψ is an allowed N-electron wave function.

Performing this search across all possible functions is too cumbersome for most

systems, so a subset of eligible functions is usually chosen to perform the

minimisation described in Equation (2.10)[119]. The resulting energy from this

minimisation will be the best approximation from the chosen subset. This principle

is the basis for the quantum mechanical methods we will discuss in the following

sections.
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2.2.4 The Hartree-Fock Approximation

The Hartree-Fock (HF) method approximates the N-electron wave function as

a determinant of N one-electron wave functions χi(~xi), known as a Slater

determinant[122], ΦSD:

Ψ0 ≈ ΦSD =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

χ1(~x1) χ2(~x1) . . . χN(~x1)

χ1(~x2) χ2(~x2) . . . χN(~x2)
...

...
...

χ1(~xN) χ2(~xN) . . . χN(~xN)

∣∣∣∣∣∣∣∣∣∣∣
(2.11)

The Slater determinant is often written in short-hand, showing only the diagonal

elements:

ΦSD =
1√
N !

det {χ1(~x1), χ2(~x2), . . . , χN(~xN)} (2.12)

The Slater determinant satisfies the antisymmetry requirement introduced in

Section 2.2.2, as the determinant will change sign when an exchange of two rows

or two columns is made. The one-electron functions χi(~xi) are known as spin

orbitals. They are written as a product of a spatial orbital ψi(~r) and one of

two spin functions, α(s) or β(s), which correspond to spin up and spin down,

respectively:

χ(~x) = ψ(~r)σ(s); σ = α, β (2.13)

The only flexibility in the Slater determinant is the choice of spin orbitals. As

a result of this, E0 can be minimised with respect to the choice of spin orbital,

giving us the Hartree-Fock equations:

f̂χi = εiχi; i = 1, 2, . . . , N (2.14)

These N equations are eigenvalue equations, where εi are Lagrange multipliers, and

are the eigenvalues of operator f̂ . The Fock operator f̂ is a one electron operator

defined by[119]:

f̂ = −1

2
∇2
i −

M∑
A

ZA
riA

+ VHF (i) (2.15)

The first two terms are the kinetic energy and the potential energy resulting from

electron-nucleus attraction. VHF (i) is the Hartree-Fock potential which attempts
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to describe the average electron-electron repulsion felt by the ith electron due to

the remaining N-1 electrons.

The Fock operators depend on the spin orbitals, as these are required to describe

the Hartree-Fock potential VHF (i). This means the solution to the eigenvalue

depends on itself and as a result an iterative process is required to minimise EHF .

This iterative technique is known as the self-consistent field (SCF) procedure[119].

Generally, an initial ‘guess’ of the starting orbitals is used to start the iterative

procedure, and the HF equations are solved. The new set of orbitals obtained are

used in the following iteration and so on until the output orbitals from sequential

solutions are within a predefined threshold.

The Hartree-Fock approximation will always over-estimate the energy with respect

to the exact ground state energy E0. The difference between these two values is

known as the correlation energy:

EC = E0 − EHF (2.16)

EC is always negative, and is a measure of the error introduced by the Hartree-Fock

approximation. The over-estimation in energy calculated by the Hartree-Fock

method is caused by the electrostatic repulsions being calculated in an average

manner. This generally allows electrons to move too close to each other and

causes the electron-electron repulsion term to be too large. As the energy is always

over-estimated, the HF approximation clearly obeys the variational principle we

introduced in the previous section.

As the electron-electron interactions are only treated in an average way, a single

Slater determinant is not an exact wavefunction of N interacting electrons. The

Slater determinant is an eigenfunction of a Hamiltonian operator, which is itself a

sum of Fock operators given in Equation (2.15):

HHFΦSD = E0
HFΦSD =

N∑
i

f̂iΦSD (2.17)

An important property of the system described by Equation (2.17) is that it

describes a system of N electrons which do not explicitly interact with each other

but experience an average potential VHF - making the Slater determinant an exact
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wave function of N non-interacting particles[119]. This feature which will be

discussed again in the next section regarding Density Functional Theory.

2.2.5 Density Functional Theory

Hohenberg and Kohn [123] provided the first theories upon which density

functional theory (DFT) was developed. Their work showed that the N-electron

wave functions can be replaced by a simpler quantity - the electron density. The

electron density is explicitly defined later in this chapter as the function ρ(~r)

in Equation (2.22), however it is worth mentioning here that it is a measure of

the probability of an electron occupying a small region of space around point ~r.

Throughout this chapter we will often omit the ~r for simplicity and generally refer

to the electron density as ρ or the ground state electron density as ρ0.

As a result of the work of Hohenberg and Kohn [123], it is possible to represent

the ground state energy as a functional of the ground state electron density[119]:

E0[ρ0] = T [ρ0] + Eee[ρ0] + ENe[ρ0] (2.18)

A functional is a “function of a function”, in this case ρ0 (the ground state electron

density) is the function of the functional E0. The final term of Equation (2.18),

the potential energy attributed to the nuclei-electron attraction can be considered

‘system dependent’, while in theory the first two terms are universal. The

system independent parts can be grouped into a new quantity known as the

Hohenberg-Kohn functional FHK [ρ];

FHK [ρ] = T [ρ] + Eee[ρ] (2.19)

where T [ρ] is the kinetic energy, and Eee[ρ] the electron-electron interactions.

Eee[ρ] is given by Equation (2.20);

Eee[ρ] =
1

2

∫ ∫
ρ(~r1)ρ(~r2)

r12

d~r1d~r2 + Encl[ρ] = J [ρ] + Encl[ρ] (2.20)

where J [ρ] represents the well-known classical Coulomb part, and Encl[ρ]

groups together a variety of non-classical contributions to the electron-electron

interactions, including self-interaction, exchange and correlation. The result is that
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for FHK there are two major unknowns - T [ρ] and Encl[ρ], and density functional

theory methods are devoted to calculating estimates of these components.

The variational principle also applies to the ground state energy functional - the

FHK [ρ] which delivers the ground state of the system will give the lowest energy

only if the input density is the true ground state density ρ0:

E0 ≤ E[ρ̃] = T [ρ̃] + ENe[ρ̃] + Eee[ρ̃] (2.21)

Thus any trial density ρ̃(~r) given to Equation (2.21) will provide an E value which

is an upper bound of the true ground state energy E0. There is an important

condition which must be met for this statement to hold true; that the given density

must be related to a valid antisymmetric wave function. Densities which satisfy

this condition are known as N-representable[119].

In reality, many N-electron wave functions can yield the same density, however

the correct ground state wave function will be the one which gives the lowest

energy[119]. In the context of HK the wave function Ψ associated with a given

density is not accessible. In addition to the fact that many wave functions could

yield the same density, there is the additional problem of sign. The density is

related to the square of a real wave function Ψ[119];

ρ(~r) = N

∫
. . .

∫
|Ψ(~x1, ~x2, . . . , ~xN)|2dx1d~x2 . . . d~xN (2.22)

so there are always at least two possible wave functions that could correspond to

a given density; +Ψ or −Ψ, and there is no way to know which is the true wave

function for a given ρ.

The theories devised by Hohenberg and Kohn [123] laid the foundation for DFT.

However, it did not provide a practical means for constructing the functional that

will yield the ground state energy, or an estimate to this energy. Their theorems

provide a proof that a direct relationship exists between the ground state density

ρ0(~r) and the ground state energy E0. Kohn and Sham [124] continued to build

on this foundation and suggested a means for estimating FHK - the ‘universal’

portion of the ground state energy.

Kohn and Sham [124] used aspects of the Hartree-Fock scheme discussed in the

previous section. We showed the Slater determinant can be considered an exact

wave function of a system of N non-interacting electrons moving in the potential
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VHF [119]. The kinetic energy for such a system is given by[119]:

THF = −1

2

N∑
i

〈χi|∇2|χi〉 (2.23)

The spin orbitals χi in Equation (2.23) are chosen such that the resulting EHF is

at a minimum achievable value:

EHF = min
ΦSD→N

〈ΦSD|T̂ + V̂Ne + V̂ee|ΦSD〉 (2.24)

The methods introduced by Kohn and Sham [124] aim to exploit these equations

derived from the Hartree-Fock approximation, which relate to a non-interacting

system of fermions, in order to calculate the major part of the kinetic energy for

an interacting system of fermions.

It is possible to construct a non-interacting reference system with a Hamiltonian

given by:

ĤS = −1

2

N∑
i

∇2
i +

N∑
i

VS(~ri) (2.25)

This equation does not include any electron-electron interactions - so it

describes a non-interacting system of electrons. The ground state wave

function in Kohn-Sham theory is again represented by a Slater determinant, ΘS,

comprised of N one-electron Kohn-Sham wave functions, ϕN , similarly defined

as Equation (2.11). Additionally the spin orbitals, ϕi, are determined in a way

analogous to Equation (2.14):

f̂KSϕi = εiϕi (2.26)

where the one-electron Kohn-Sham operator is defined by:

f̂KS = −1

2
∇2 + Vs(~r) (2.27)

The connection between the non-interacting system defined by these Kohn-Sham

operators is to choose an effective potential, Vs, in such a way that the resulting

density equals the ground state density of the target system of interacting

electrons:

ρs(~r) =
N∑
i

∑
s

|ϕi(~r, s)|2 = ρ0(~r) (2.28)
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The method of Kohn and Sham [124] aims to compute exactly as much of the

kinetic energy as is possible, and approximate the remainder. They used the

equation below to determine the exact kinetic energy of the non-interacting

reference system; with the requirement that the density of this non-interacting

system is the same as our real interacting system of fermions:

Ts = −1

2

N∑
i

〈ϕi|∇2|ϕ〉 (2.29)

However, the kinetic energy of the non-interacting system is not equal to that of

the interacting system, (i.e. TS 6= T )[119]. Kohn and Sham [124] accounted for

this difference by introducing a new term, EXC , to the functional F [ρ];

F [ρ(~r)] = TS[ρ(~r)] + J [ρ(~r)] + EXC [ρ(~r)] (2.30)

where EXC , the exchange-correlation energy, is defined by:

EXC [ρ] = (T [ρ]− TS[ρ]) + (Eee − J [ρ]) = TC [ρ] + Encl[ρ] (2.31)

The exchange-correlation functional groups together all of the unknown quantities.

It contains the correction for non-classical effects of self interaction, exchange and

correlation, and also the remaining portion of the kinetic energy. The energy

expression for our real interacting system of electrons is given by:

E[ρ(~r)] = TS[ρ] + J [ρ] + EXC [ρ] + ENe[ρ] (2.32)

The term for which the form is unknown is the exchange-correlation energy.

If we apply the variational principle we will find that the orbitals need to fulfil the

following equation: (
−1

2
∇2 + Veff (~r)

)
ϕi = εiϕi (2.33)

Comparing this to Equations (2.26) and (2.27), which apply to a non-interacting

reference system it is clear that Veff = VS:

VS(~r) ≡ Veff (~r) =

∫
ρ(~r2)

r12

d~r2 + VXC(~r1)−
M∑
A

ZA
r1A

(2.34)

The Kohn-Sham one-electron equations need to be solved iteratively via the same
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self-consistent field method introduced for the Hartree-Fock approximation in

the previous section. Here the process begins by determining the potential VS

approximately, which is used to determine the one-electron Kohn-Sham operators

f̂KS. The one-electron operators allow us to determine the spin orbitals ϕi and

we can use these to calculate the electron density ρs(~r), and finally the energy

from Equation (2.32). As VS depends on the density, the process can be repeated

iteratively until convergence of the energy is achieved.

Other than two fundamental approximations, that of Born-Oppenheimer and

the assumption we are dealing with time-independent wave functions, the only

approximation in the Kohn-Sham formalism we have described is due to the fact

that the form of VXC and EXC are unknown. As a consequence of this, the quality

of any density functional calculation depends strongly on the chosen form of the

exchange-correlation functional.

2.2.5.1 Exchange Correlation Functionals

The starting point for many exchange-correlation functionals is the model system

known as a uniform electron gas[119]. The reason for this is that a uniform

electron gas is one of the few systems for which the exchange and correlation energy

functionals are known to a very high accuracy. Though this model system is a

relatively poor representation of the density in most atomic or molecular systems,

it is a convenient place to at least begin approximating an exchange-correlation

functional. A form of exchange-correlation functional based on the density of a

uniform electron gas is known as the local density approximation (LDA), which is

written as;

ELDA
XC [ρ] =

∫
ρ(~r)εXC(ρ(~r))d~r (2.35)

where εXC(ρ(~r)) is the exchange-correlation energy per particle of a uniform

electron gas of density ρ(~r), and is weighted with the probability ρ(~r) that there

is an electron at this position in space[119]. εXC can be broken down into its

constituent parts:

εXC(ρ(~r)) = εX(ρ(~r)) + εC(ρ(~r)) (2.36)

The exchange part, εX , was derived in the 1920’s by Bloch and Dirac[119]:

εX(ρ(~r)) = −3

4

3

√
3ρ(~r)

π
(2.37)
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However, an explicit form for εC , the correlation part of εXC is not known.

Quantum Monte Carlo simulations have been performed by Ceperley and Alder

[125], which have led to highly accurate estimations of this value for a uniform

electron gas. Most of the popular functionals that have been implemented for

εC interpolate the results of the Monte Carlo simulations of Ceperley and Alder

[125]. Two of the most widely used of these are produced by Vosko et al.

[126] and Perdew and Wang [127], commonly abbreviated as VWN and PW92,

respectively. One disadvantage to the LDA exchange-correlation functional is

that while it is generally quite accurate for solid-state calculations of structure,

it significantly overestimates binding energies, making it inapplicable to many

problems in chemistry[119].

Another set of exchange-correlation functionals was defined in the early eighties

which attempted to overcome the inaccuracies of LDA; these are known as

generalized gradient approximations (GGA). These functionals are based around

the idea of using not only the density ρ(~r), but to supplement the density with

information concerning the gradient of the charge density, ∇ρ(~r). This in effect

takes into account the inhomogeneous nature of most atomic and molecular

systems, something which is neglected by using the uniform electron gas model.

The GGA functionals are of the general form:

EGGA
XC [ρα, ρβ,∇ρα,∇ρβ] =

∫
f(ρα,, ρβ,∇ρα,∇ρβ)d~r (2.38)

EGGA
XC can be split into its exchange and correlation portions:

EGGA
XC = EGGA

X + EGGA
C (2.39)

Generally approximations are determined for each of the separate terms, and the

exchange portion for GGA is given by the following equation:

EGGA
X = ELDA

X −
∑
σ

∫
F (sσ)ρ4/3

σ (~r)d~r (2.40)

The argument sρ is known as a reduced density gradient for a given spin σ:

sσ(~r) =
|∇ρσ(~r)|
ρ

4/3
σ (~r)

(2.41)
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sρ is a ‘local inhomogeneity’ parameter. The functional F in Equation (2.40)

can take many forms, and there have been a number suggested in the literature

to date, for example a functional known simply as B or B88 by Becke [128] and

another version developed later known as B96[129]. Many other GGA functionals

exist, either as correlation functionals, EGGA
C , such as LYP by Lee et al. [130],

and functionals which include both exchange and correlation, such as the PBE

functional of Perdew et al. [131].

Hybrid functionals also exist, where the exchange-correlation functional is defined

as a combination of ‘exact’ exchange and density functional exchange-correlation

functionals. The method was initially introduced by Becke [132], and in the

same year he introduced a functional known as B3[133]. Stephens et al. [134]

performed some modifications to the original B3 functional and the resulting

B3LYP functional is one of the most popular hybrid functionals currently in use.

2.2.6 Basis Sets

One final and significant aspect of the implementation of DFT or HF is the

choice of basis set. A basis set is a set of functions which, in their simplest

form, represent atomic orbitals. These functions can be combined together to

create molecular orbitals - a method known as the linear combination of atomic

orbitals (LCAO)[119]. When the LCAO method was first developed the set of

basis functions {ηµ} resembled the known atomic orbitals of the hydrogen atom.

However, the basis functions in use today do not necessarily resemble atomic

functions anymore. A purely numerical approach to solving the KS equations is

possible for simple cases, but is too demanding for most applications. For DFT to

become a routine technique a simplified approach for expanding the KS molecular

orbitals was required. Roothaan [135] developed a LCAO approach for achieving

the expansion of molecular orbitals, a method we will describe here as it is the

scheme most commonly applied in DFT programs.

In the LCAO approach of Roothaan [135] a set of L basis functions {ηµ} are used

to linearly expand the orbitals:

ϕi =
L∑
µ=1

cµiηµ (2.42)
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For a complete set of basis functions every spin orbital ϕi would be exactly

expressed by Equation (2.42). In reality the implementation of the basis functions

must be finite and therefore incomplete, so it is important to choose the set of basis

functions such that the linear combination given by (2.42) provides a satisfactory

approximation to the Kohn-Sham orbitals.

Substituting this definition of ϕ into the Kohn-Sham Equation (2.26) we obtain:

f̂KS
L∑
µ=1

cviηv(~ri) = ϕi

L∑
µ=1

cµiηµ (2.43)

Multiplying the equation on the left with a basis function ηµ we get L equations;

L∑
v=1

cvi

∫
ηµ(~r1)f̂KS(~r1)ηv(~r1)d~r1 = εi

L∑
v=1

cvi

∫
ηµ(~r1)ηv(~r1)d~r1 (2.44)

where 1 ≤ i ≤ L. The integrals on each side of Equation (2.44) ultimately

define two matrices. The integrals on the left hand side define the elements of the

Kohn-Sham matrix, FKS, while the integrals on the right define the elements of

the overlap matrix, S. Both of these matrices are symmetric and LxL dimensional.

The remaining terms from Equation (2.44) can also be described as matrices, where

the expansion vectors are given by:

C =


c11 c12 . . . c1L

c21 c22 . . . c2L

...
...

...

cL1 cL2 . . . cLL

 (2.45)

and ε is a diagonal matrix of the orbital energies:

ε =


ε1 0 . . . 0

0 ε2 . . . 0
...

...
...

0 0 . . . εL

 (2.46)

Finally we have an equation for the LCAO expansion that can be defined solely

by these matrices:

FKSC = SCε (2.47)
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This compact equation derived by Roothaan [135] significantly reduced the

complexity of LCAO expansion in the context of HF theory. A non-linear

optimisation problem comprised of integro-differential equations has been reduced

to an optimisation problem based on standard linear algebra - a solution easy to

implement in a computational sense.

In wave function based methods, such as Hartree-Fock, the basis set {ηµ} is often

comprised of Gaussian-orbitals (GTOs) of the form:

ηGaussian = Nxlymzn exp(−αr2) (2.48)

where N is a normalisation factor, α determines how compact (large values of α)

or diffuse (small values of α) the resulting function is. The values l,m and n are

used to classify the orbital as s-, p−, d− (or higher) functions, where L = l+m+n

and for s-functions L=0, p-functions L = 1 and so on. x, y and z are cartesian

coordinates and r2 is defined as x2 + y2 + z2.

GTO basis functions are quite popular as efficient algorithms exist for analytically

calculating the associated integrals. Slater-type orbitals (STO) are a more intuitive

choice for basis functions, as they mimic the exact eigenfunctions, or atomic

oribtals, of the hydrogen atom:

ηSlater = Nrn−1 exp(−ζr)Ylm(Θ, φ) (2.49)

Generally, at least three times as many GTO functions are required as STO

functions to achieve the same level of accuracy[119]. However, no analytical

technique currently exists for evaluating all the multi-centre integrals when using

STO functions. As a result, the GTO method is often much more computationally

efficient, even when many more GTO functions are required than if STO functions

were used.

Often GTO basis sets are used in a form known as contracted GTO basis sets

where several GTO Gaussian functions are combined in a fixed linear combination

to obtain a contracted Gaussian function (CGF):

ηCGFπ =
A∑
a

daτη
Gaussian
a (2.50)
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The contraction coefficient, daτ , can be chosen in such a way that the CGF

closely resembles a single STO function, while still taking advantage of the quick

computation of the GTOs. The simplest expansion of molecular orbitals uses

only one basis function for each atomic orbital and is known as a minimal basis

set. An example of this is known as the STO-3G basis set, where three Gaussian

functions are combined into one CGF. Results from basis sets such as this are

not often used now that larger basis sets can be computationally afforded[119].

An extra level of sophistication was achieved when “double-zeta” basis sets were

introduced. The name double-zeta comes from the use of the greek letter “zeta”

(ζ) in the exponent of the STO, and the use of two zeta functions for each orbital

- hence double-zeta. Analogously, minimal basis sets can be called single-zeta,

and basis sets with three or four zeta functions for each orbital are known as

triple- or quadruple-zeta, respectively. Commonly only the valence shell electrons

are treated with double (or more) functions, and the inner core electrons remain

modelled with single functions (minimal sets). When this scheme is implemented

it is known as a “split-valence” basis set. Examples of these include 3-21G, 6-31G

and 6-311G developed by John Pople and coworkers[136, 137].

In many applications polarisation functions are applied, adding yet another level

of sophistication to the technique. A basis set augmented by polarisation functions

includes functions of higher angular momentum than the highest occupied orbital

in a given system - for example having p-functions for modelling hydrogen.

Incorporating these functions allows orbitals to distort from their original atomic

symmetry, and adapt to their surrounding environment. Polarised double-zeta,

triple-zeta or split-valence basis sets are commonly employed in DFT, as they

offer an acceptable balance between accuracy and computational efficiency.

2.2.7 SIESTA methodology

The SIESTA methodology[138] is one approach to DFT which aims to achieve

computational linear scaling with respect to the size of the system being modelled,

making it feasible to perform DFT calculations on larger systems. The SIESTA

methodology attempts this through ‘locality’, whereby the orbitals are defined to

tend to zero at a defined radius. With this implementation many of the interactions

between atoms are naturally ‘cut-off’ at a defined distance. In this way, the number
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of interactions per atom is constant even if the size of the system is increased; as

a result the cost of the calculations performed in this way will scale O(N).

SIESTA makes use of pseudopotentials to model the core electrons of the system.

In theory, all electrons should be included in a calculation, however the core

electrons of an atom can be considered relatively unperturbed regardless of the

chemical changes and bonding that occurs between atoms. A pseudopotential can

be used to model the effective potential due to the nucleus and core electrons up

to a given radius of an atom, such that only the valence electrons are explicitly

included in the calculation. Within the core radius a smoothed potential is

used with the constraint that it must match the true potential at the boundary.

Pseudopotentials are often used as an easy way to reduce the computational

expense of a DFT calculation with a limited impact on the accuracy of the

calculation. A separate program is combined with the SIESTA package known

as ‘atom’ which can generate desired pseudopotentials according to a number of

schemes, with the Troullier-Martins[139] scheme being one of the most popular.

Basis sets within SIESTA are ‘physically motivated’, in that they take a form

similar to the traditional atomic orbitals. The default basis set is comprised

of Pseudo Atomic Orbitals (PAO), where atomic basis orbitals are calculated

as a product of a numerical radial function and a spherical harmonic. For

computational convenience the numerical radial function is tabulated on a

logarithmic radial grid, rather than using an approximate analytical form. The

implementation of PAOs in SIESTA supports multiple-zeta basis sets, with a

double-zeta polarised (DZP) recommended as the minimum level of sophistication.

An additional approximation is introduced in the implementation of PAOs in

SIESTA, where the tails of the PAOs are modified to go smoothly to zero at a given

radius. This is known as radial confinement, and the choice of radius allows the

user to opt for higher precision, when using large radii, or greater computational

efficiency, when using smaller radii.

The electron density is also represented on a uniform Cartesian grid. This

improves computational efficiency, but it does introduce some numerical errors

when calculations are performed using the electron density. While the numerical

integration performed at the grid points is correct, errors arise because integration

performed between adjacent grid points is only an estimate, and the precision of

these calculations will thus depend on the fineness of the grid used; this value is
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defined with a mesh cut-off, typically of magnitude 80 to 400 Ry depending on

the basis set in use[140].

The SIESTA methodology uses some additional techniques for improving the

efficiency of calculations performed on periodic systems. A method devised by

Monkhorst and Pack [141] is used in SIESTA for selecting a uniform grid of

K-points to be used for integration across the Brillouin zone. The user is able

to define a K-grid cut-off, a distance value which in essence allows similar systems

to achieve comparable convergence due to the formalism of Moreno and Soler [142].

2.2.8 Periodicity

For any simulation of periodic (bulk) systems it is necessary to employ periodic

boundary conditions (PBC). The simulation cell, often a form with right-angles

(cubic, orthorhombic or tetragonal), is replicated in all directions to form an

infinite lattice.

Figure 2.1: Illustration of periodic boundary conditions. The movement of a
particle is shown, moving to and from the simulation cell (shown in black) and

the surrounding replica images.

If a molecule leaves the cell during the simulation, it is replaced by an image

particle that enters from the opposite side of the box[143]. An example of periodic

boundary conditions applied to a simple system is shown in Figure 2.1. The motion
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of a particle is shown moving from one edge of the simulation cell, shown in black,

through the other side of the box. This process is implemented to minimise surface

effects, which would otherwise occur at the boundaries of the cell. Any ‘box’ or cell

shape can be used as long as it can be translated in all three dimensions forming

a continuous supercell.

Generally, PBC can be used in two or three dimensions depending on the system

being studied (i.e. a surface vs. an infinite crystal lattice). However, in the

context of SIESTA, all systems are required to have three-dimensional PBC, even

if the system is finite in one or more dimensions, such as for a molecule or a

surface[140]. This is a consequence of the use of Fast Fourier Transform libraries in

the implementation of SIESTA. In cases where there is no real need for periodicity,

such as molecules, the simulation cell size needs to be chosen such that there is

no overlap between the basis functions of images, otherwise the molecule will be

interacting with its neighbouring images.

Now that we have briefly covered the background of first principles calculations,

we will introduce force field methods that will be extensively used throughout this

work.

2.3 Molecular Mechanics

Many problems that we would like to consider in computational chemistry are

just too large to be considered routinely using quantum mechanics. Force field

methods (also known as molecular mechanics, or abbreviated to MM) do not

consider the movements of electrons. Instead the energy of a system is calculated

as a function of the nuclear positions[118], as explained earlier with respect to the

Born-Oppenheimer approximation in Equation (2.2.1). In force field methods the

molecules are modelled in a simplified way, using a “ball and spring” representation

of atoms and bonds. The bond, or spring, which connects two atoms, can stretch or

compress depending on the inter- or intra-molecular forces acting on those atoms.

Each atom is represented as a single particle, and can be considered simply as a

‘ball’.

The different interactions, or potentials, used to model a system are collectively

referred to as a force field. Each component describes the potential energy of a
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Figure 2.2: Representation of the non-bonded and bonded interactions
contributing to a molecular mechanics force field. Image adapted from Leach

[118].
.

specific interaction, and summed together the total force field potential energy can

be obtained;

UFF = Ustr + Ubend + Utorsional + Uvdw + Uelectrostatic + Uoop + Ucross (2.51)

where Ustr represents the energy required for stretching the bond between two

atoms, Ubend represents the energy required for bending between three atoms, Utors

the energy required for rotation about the middle bond in a 4-atom sequence, and

Uoop the energy required to distort the geometry of a central atom out-of-plane from

its neighbours. Uvdw represents the interactions between non-bonded atoms, while

Uelectrostatic represents the electrostatic interactions and Ucross represents coupling

between the first three bonded terms[117].

Generally, ab initio quantum mechanical information or experimental observations

are used to parameterise the behaviour of atoms and bonds in a given force

field[144]. Each of the terms in the potential force-field are discussed in more

detail in the following sections on intra- and intermolecular interactions.
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2.3.1 Intramolecular interactions (Short-range

interactions)

2.3.1.1 Bond stretching

Bond stretching can be described in different ways: here we will discuss two

commonly used potentials, the harmonic form and the Morse potential, both

illustrated in Figure 2.3.

Figure 2.3: Three commonly used forms for the potential energy U(r) with
respect to the interatomic distance r; the harmonic form (dashed line), Morse

potential (bold line) and cubic form (dotted line).

The simplest bond stretching potential is modelled using the harmonic form, which

was used in some of the first formulations of molecular mechanics[145, 146]. The

harmonic form is also known as Hooke’s law, which effectively models the bond

between two atoms as a “spring”. The energy varies with the square of the

displacement from a reference bond length, r0:

U(r) =
k

2
(r − r0)2 (2.52)

The variable k is a force constant, or spring constant, which denotes how stiff the

“spring” is that connects atoms i and j. The reference bond length r0 is the bond

length adopted when all the other terms in the force field are zero.
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Another functional form is the Morse potential[147], given in equation (2.53);

U(r) = De

[
(1− e−a(r−r0))2 − 1

]
(2.53)

where r is the distance between atoms i and j, r0 is the equilibrium bond distance,

De is the depth of the well and a specifies the curvature about the minimum of the

potential form. The Morse potential is not very efficient to compute due to the

presence of an exponential term. Since bonds in a MM calculation will not usually

deviate very far from equilibrium values, a simpler potential form, such as Hooke’s

law, can often be used. Hooke’s law gives a good approximation to the shape of

the potential energy curve at the bottom of the well, but is less accurate away

from equilibrium. Higher terms can be included to get a model which behaves

similarly to the Morse potential for small displacements, for example:

U(r) =
k

2
(r − r0)2[1 + k′(r − r0) + k′′(r − r0)2 + k′′′(r − r0)3...] (2.54)

Problems are also evident with the cubic form given in Equation (2.54). When the

bond length is very far from equilibrium the potential energy will pass through a

maximum before dropping away, as illustrated in Figure 2.3. Due to this, a cubic

form can only be used when the structure is inside the potential well and close to

equilibrium geometry.

2.3.1.2 Angle bending

Angle bends are also commonly described using Hooke’s law (i.e. a harmonic

potential), to model how flexible an angle is between three atoms i, j and k:

U(θjik) =
kB
2

(θjik − θ0)2 (2.55)

Similar to the definition for bond stretching, this form is a measure of the deviation

of the angle θjik from a reference angle θ0, where kB is a force constant which

indicates how stiff the spring is across the angle between three atoms.
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2.3.1.3 Torsional terms

The torsional energy of a system is much softer than the angle-bending and

bond-stretching terms, which in contrast require a large amount of energy to

significantly deform the system. Torsional potentials are used to emulate the

preference for certain conformational isomers, where rotation about the torsional

bond results in distinct minima and maxima, usually at staggered and eclipsed

conformations. A simple example of this is butane (CH3CH2CH2CH3), where

rotation about the central carbon-carbon bond results in four distinct stationary

points and two conformational isomers lying at energy minima, as illustrated

in Figure 2.4. The ‘staggered’ conformations are those for which the torsional

angle is 60◦ or 180◦. The substituents at either end group are at a maximum

distance from each other and as a result these conformations are usually energy

minima. There are two staggered conformations for butane, the “gauche” and

“anti” form, with the “anti” being the lowest energy minima at 180◦. The ‘eclipsed’

conformations have a torsional angle of 0◦, resulting in the substituents of the end

groups essentially overlapping each other. This state is highly unfavoured due to

steric hinderance, so these eclipsed conformations are usually energy maxima[148].

The torsional energy must also be periodic in the angle ω; it will at least be

periodic about 360◦ and depending on the system the periodicity may be more

frequent. The periodicity is typically represented by a cosine series expansion;

U(ω) =
N∑
n=0

Vn
2

[1 + cos (nω − γ)] (2.56)

where Vn indicates the height of the barrier of rotation about the j-k bond, n is

the periodicity and γ is the phase angle.

2.3.2 Intermolecular interactions (Long-range

interactions)

Long-range interactions play an important role in crystalline structures.

Non-bonded terms in MM force fields are usually broken down into two groups

- electrostatic interactions and van der Waals terms. Electrostatic interactions
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Figure 2.4: The potential energy surface of butane, plotted with respect to
the torsional angle. Newman projections of four conformational isomers are
shown, where “Me” represents a methyl group, and hydrogens are not shown

for simplicity. Image adapted from Morrison and Boyd [148]

can be computed using a variety of different methods, described in the following

section.

2.3.2.1 Direct summation

The charge distribution throughout a molecule can be represented as an

arrangement of fractional point charges designed to reproduce the molecule’s

electrostatic properties. The electrostatic interaction between two molecules (or

different parts of the same molecule) can be calculated via Coulomb’s law, given

in equation (2.57);

U(r) =

NA∑
i=1

NB∑
j=1

qiqj
4πε0r

(2.57)

where NA and NB represent the number of point charges in the two molecules A

and B, qi and qj are the magnitudes of point charges i and j, r is the distance

between point charges of atoms i and j, and ε0 is a physical constant known as

the permittivity of free space.
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One of the major problems with actually trying to implement long-range

interactions such as these is the extent of their range. This Coulombic

charge-charge interaction is particularly problematic because of its slow decay,

proportional to r−1 . Various methods have been developed to provide an adequate

treatment of long-range forces, some of which will be introduced here, with the

Ewald summation for periodic systems being covered in the next section.

The simplest means of eliminating the long-distance problem of the Coulombic

sum is to implement a cut-off radius, rcut:

U(rij) =
qiqj
4πε0

{
1

rij
− 1

rcut

}
(2.58)

One of the major problems with this method is that it is conditionally convergent,

and if the charge of the sphere bounded by rcut has a net charge the Coulomb

energy calculated will be incorrect.

The cell multipole method was devised by Ding et al. [149] in an attempt to

calculate the Coulombic forces without the same problems of convergence. The

simulation cell is broken into smaller regions, and a multipole is calculated for

each region. Wolf et al. [150] also introduced a method for efficiently summing

the Coulombic interactions in periodic systems in real space by imposing charge

neutrality in the cut-off sphere. However, we will focus on the most widely

employed method, known as the Ewald summation.

2.3.2.2 Ewald summation

The Ewald sum[143, 151] is a method devised to efficiently sum the interaction

between all ions and their periodic images[118, 143]. A particle interacts with all

other particles in the simulation box, and with all of their images in an infinite

array of periodic cells. The charge-charge contribution to the potential energy from

all pairs of charges in the simulation box can be written according to Coulomb’s

law;

U =
1

2

∑′

|n|=0

N∑
i=1

N∑
j=1

qiqj
4πε0|rij + n|

(2.59)

where n is the set of lattice points. The prime (′) on the first summation indicates

that if i=j and |n|=0 the term is not included in the summation - which ultimately

means that the particle is interacting with other ions and its periodic images, but
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not itself. The main problem with this summation, as mentioned previously, is

that it converges very slowly, if at all. The Ewald sum attempts to convert this

summation into two quickly converging series. The first trick with the Ewald

summation is to place a Gaussian charge distribution of opposite sign at the

position of each of the fractional charges, effectively neutralising the charge[118]:

ρi(r) =
qiα

3

π3/2
exp(−α2r2) (2.60)

The real space sum becomes a sum of the interactions between the charges plus

the neutralising distributions. This dual summation is given by;

Ureal =
1

2

N∑
i=1

N∑
j=1

∑′

|n|=0

qiqj
4πε0

erfc(α|rij + n|)
|rij + n|

(2.61)

where erfc is the complementary error function, which is given by[118]:

erfc(x) =
2√
π

∫ ∞
x

e−t
2
dt (2.62)

The crux of this summation is that it converges very rapidly, and beyond a

finite cut-off distance its contribution can be considered negligible. A second

contribution must be computed to subtract the first neutralising distribution, and

is given by equation (2.63):

Urecip =
1

2

∑
k 6=0

N∑
i=1

N∑
j=1

1

V

q1qj
4πε0

4π

k2
exp

(
− k2

4α2

)
exp(ik · r) (2.63)

This summation is done in reciprocal space, with k being a reciprocal vector

k = 2πn/L2 and is rapidly convergent as it involves smooth Gaussian functions

only[118]. The number of terms included increases with the width of the Gaussians

given in Equation (2.60). A balance needs to be found between the real- and

reciprocal-space summations, as the real-space summations converge rapidly for

large values of α and the reciprocal-space summations at small values of α. The

choice of α can therefore significantly alter the speed of convergence of the Ewald

summation.
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2.3.2.3 Polarisability

For ionic materials the polarisability of ions is not represented by fixed partial

charges. One of the simplest methods for modelling the polarisability of atoms is

to use point ion dipole polarisability, an idea first introduced by Silberstein [152,

153, 154]. Applequist et al. [155] used point ion dipole polarisability to determine

atom polarisation in polyatomic molecules. This was initially formulated as a

‘monopole-dipole’ interaction. However, Applequist [156] expanded on the original

formulation to include contributions due to multipoles of any order, such as

quadrupoles. In this method the induced dipole moment of an atom is defined

by;

µ = αEf (2.64)

where α is the ‘polarisability tensor’ of a given atom, and Ef the electric field

acting on that atom. The energy of this polarisation interaction is given by:

Upolarisation = −1

2
αE2

f (2.65)

This method has been used in the past for treatment of polarisability of π-bonded

molecules[157], and for ionic crystals[158].

An alternative method of representing polarisability was developed by Dick and

Overhauser [159]. They devised what is known as the shell model to try to mimic

the effects of ion polarisability. In this model the ion is represented by a core

linked to a massless shell by a harmonic spring, as depicted in Figure 2.5.

Figure 2.5: Schematic of the core-shell concept used to model the polarisability
of an atom. The massless (or almost massless, in the case of the adiabatic
model) shell is anchored to the core via a harmonic spring, possessing the spring

constant k.
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Both the core and the shell have a charge associated with them. When an electric

field is applied to the molecule, each shell maintains its charge but moves with

respect to its associated core[118]. The isolated ion polarisability of each species

is given by;
Y 2

k
(2.66)

where k is the spring constant of the harmonic spring and Y is the charge on the

shell. This model is often referred to as the static shell model, or relaxed shell

model. Conventionally the short-range forces act on the shell and the Coulombic

potential is applied to both the shell and the core[160, 161]. The short-range forces

effectively ‘damp’ the polarisability, making it environment-dependent and offering

a more realistic representation of polarisability. In dense ionic crystal lattices the

polarisability of the ion will be quite low, represented by a stiff spring constant,

while in finite systems the environment will have less of a ‘damping’ effect and the

polarisability of the ions will increase.

Mitchell and Fincham [162] developed a modified version of the shell model known

as the dynamic shell method, or finite mass shell method, in which both the shell

and the core have a mass. The method is implemented such that a small fraction

of the mass of the core is attributed to the shell, and the vibrations of the spring

connecting the core and the shell are defined by;

v =
1

2π

[
k

x(1− x)m

]1/2

(2.67)

where M is the mass of the ion, k the spring constant, and x is a variable which

enables the user to tune the vibrational frequency.

Representing the polarisability of an atom using the shell model does have

additional computational costs. In the case of the static shell model, where the

shells are massless, the shells must be relaxed at each time step to allow them to

‘follow’ the core. In the case of the finite mass shell method the shells are not

relaxed at each step, instead they are a dynamic ‘particle’ in their own right. This

method has the additional cost of calculating the movement of the shells, which

unfortunately demands a much smaller time step due to the smaller mass of the

shells (and the resulting increased vibrational frequency).
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2.3.2.4 van der Waals forces

Electrostatic interactions are not the only long-range (non-bonded) interactions in

a system, as there are also van der Waals interactions. At intermediate distances

there is a slight interaction between electron clouds due to spontaneous coupled

dipoles, and these interactions provide some attractive force between relatively

distant molecules or parts of molecules; these interactions are known as van der

Waals forces. A popular potential form that is used to model the van der Waals

forces between two atoms is the Lennard-Jones (LJ) potential[163, 164], given by

Equation (2.68).

ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]

(2.68)

The LJ potential has two parameters, σ for the collision diameter and ε for the

well depth, as indicated in Figure 2.6. Short-range interactions are included in

the LJ potential as a repulsive contribution, which are due to the Pauli exclusion

principle rather than van der Waals forces. This repulsive contribution is due to

the twelfth power term, while the attractive component is given by the sixth power

term. The repulsive part is rapidly calculated as it’s the square of the sixth power

term, but this is generally too steep for systems other than rare gases[118]. The

LJ potential given in Equation (2.68) is also referred to as a 12-6 LJ potential

due to the values of the exponents. However, other values can be used depending

on the system being modelled. The LJ potential is also commonly described by

another equivalent form:

ULJ(r) =
A

r12
− B

r6
(2.69)

Alternative potentials like the Buckingham potential[165] can be used, which try

to give a more realistic interaction:

U(r) = ε

[
6

α− 6
exp

[
−α
(
r

rm
− 1

)]
− α

α− 6

(rm
r

)6
]

(2.70)

or more commonly described by the equivalent expression:

U(r) = A exp

[
−r
ρ

]
− C

r6
(2.71)

One possible disadvantage to the Buckingham potential is that it can give

artificially strong attraction at very close distances if the variable C is non-zero,

as shown in Figure 2.6. Care has to be taken with the atom positions when using
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Figure 2.6: Illustration of the functional forms of Lennard-Jones (dashed
line) and Buckingham (solid line) potentials. The energy for the Buckingham

potential tends to −∞ when the interatomic distance goes to zero.

the Buckingham potential, if atoms become too close they will ‘fuse together’ and

the energy will tend to −∞.

2.3.3 Cut-off radii

The non-bonded interactions theoretically should be calculated between every

atom pair in the system. However, this problem leads to a cost that scales

as O(N2). Additionally, non-bonded interactions, such as the van der Waals

forces, decay rapidly with distance due to the r−6 term; and there is little value

in calculating the interactions beyond this region of decay[118]. This means a

cut-off radius can be implemented, giving a distance at which the long range

interactions should be truncated and reducing the computational complexity of

these calculations.

In practice, the computational advantage of a cut-off distance is enhanced by

introducing a neighbour list. A neighbour list contains a separate record for

each atom, and each record shows which atoms are within the defined cut-off

radius of that atom (i.e. its neighbours)[166]. This list is updated at regular

intervals throughout the simulation, but is overall more computationally efficient

than computing the distances between atoms at each step to determine which

atoms should be included in the calculation of a non-bonded contribution.
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2.3.4 Periodic boundary conditions

We have already introduced periodic boundary conditions (PBC) in Section 2.2.8

in our discussion of electronic structure methods. The same principles of PBC

apply to force field methods.

Having introduced the foundations to computational chemistry, we will explore

methods for exploration of potential and free energy surfaces in the next chapter.





Chapter 3

Exploring energy landscapes

3.1 Introduction

In the previous chapter we introduced two methods for determining the energy of a

given system, namely using quantum or molecular mechanics. Now we will consider

methods which allow us to explore the energy surface of a system, beginning

with so-called static methods. Many of the static methods we will cover are

often referred to as optimisation algorithms, as they can be implemented solely

to drive the system down to a local minimum. We will also introduce some basic

classical statistical mechanics, which gives the grounding for molecular dynamics,

and this will form the second half of the chapter - ‘dynamic’ methods for exploring

the potential energy surface, and methods for calculating free energy differences

between two states.

3.2 Static methods

As some or all of the nuclei move the energy of the system will change[118]. We

gave a simple example of this in Section 2.3.1.3, where we described how rotation

around the torsional angle in butane resulted in four stationary points on the

energy surface, and two conformational isomers lying at energy minima. This is

an example where the energy is considered to be a function of a single coordinate,

the torsional angle, and a 2-dimensional plot of energy vs. torsional angle can be

drawn, as we showed in Figure 2.4. As more coordinates are involved, this graph

65
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would become a complicated multi-dimensional surface rather than 2-dimensional.

Movement to different areas on this multi-dimensional surface results in changes

in the system energy; this surface is generally known as the “potential energy

surface”[118]. Even for small systems the potential energy surface is a complicated,

multi-dimensional function of the coordinates.

Stationary points are regions on the energy surface where the first derivative of

the energy with respect to the coordinates is zero. These points are of particular

interest as these indicate either stable structures, where the stationary point is a

minimum, or transition states, where the stationary point is a saddle point between

two valleys[118].

There will generally be many minima on the energy surface, but the one with the

lowest energy is known as the global energy minimum[118]. Minimisation methods

often use derivatives from a certain point on the surface to determine where to

move in the next step. The direction of the first derivative (the gradient) of the

energy shows in which general direction the minimum lies, and the magnitude of

the gradient gives the steepness of the local slope[118]. The system can be moved

to a lower energy configuration by moving each atom in response to the force

acting on it, which will be the negative of the gradient.

Other static methods aim to calculate the minimum energy path (MEP) between

reactants and products moving on the potential energy surface, i.e., at 0 Kelvin.

These methods can be considered static methods, as the algorithms used to explore

the energy surface do not require the evolution of the system with molecular

dynamics. One of the challenges of these methods is to find a saddle-point on a

multidimensional surface[167]. However, once it has been located the information

on the curvature of the surface around the saddle point and in the minima can

be utilised with Transition State Theory methods [168, 169] which will then give

access to the rate constants. The MEP can then also be used to define the “reaction

coordinate”, some one dimensional coordinate that describes the progression of the

reaction[170].

For a complete overview of the techniques developed to accurately locate saddle

points we refer the reader to the review paper by Olsen et al. [171] and a chapter

by Henkelman et al. [167]. Here we briefly describe some of the most commonly

used approaches.
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3.2.1 The Taylor series

Let us begin our discussion of optimisation with a Taylor series expansion of the

PES, as the majority of optimisation algorithms are based on varied levels of

truncation of the Taylor series. Any smooth and continuous function can be

represented by a Taylor series, an infinite sum of terms determined from the

derivatives at a single point, x[118, 172]:

f(x+ δx) ≈ f(x) +
δx

1!
f ′(x) +

δx2

2!
f ′′(x) + · · ·+ δxn

n!
f (n)(x) (3.1)

This can also be represented succinctly using Sigma notation:

∞∑
n=0

δxn

n!
f (n)(x) (3.2)

Truncating the Taylor series gives approximations to the function f(x+ δx), and

increasing the number of terms in the Taylor series increases the accuracy of this

approximation. Additionally, the approximation is valid as δx tends towards zero.

3.2.2 Local Optimisation

3.2.2.1 Steepest Descents

The steepest descent method[173, 174] is one of the simplest optimisation methods

available. The method can be considered to use a first order truncation of

the Taylor series - as only the first derivatives are used. The system moves in

steps which are proportional to the negative of the gradient, −gk. This can be

compared to walking straight downhill with varied step sizes. The direction can

be represented by a 3N -dimensional unit vector, sk[118, 172]:

sk = −gk/|gk| (3.3)

This gives the direction in which the system should move, then the magnitude of

the step size can be determined using a line-search method or arbitrary step sizes.

The line search is an iterative procedure which finds three points along a line such

that the middle point is of lower energy than the outer points. The algorithm

continues in this way, reducing the distance between the three points until the
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minimum is found along the given vector. An alternative method is the arbitrary

step size, such that;

xk+1 = xk + λksk (3.4)

where λk is the step size, and x are the coordinates of the system. If the first

iteration leads to a decrease in energy, the step size is increased. This repeats

until there is an increase in energy and the step size is reduced and increased in

this way until a minimum energy value is found within a specified threshold. One

disadvantage of the steepest descent method is that if the energy well is very steep,

many small steps will be performed to try to find the minimum. Additionally, as

the method approaches the minimum the step size may decrease and the search

will slow down[118].

3.2.2.2 Conjugate Gradient Methods

The conjugate gradient (CG) method[175] makes some improvements to the

steepest descent method by considering the history of the gradients previously

visited to move more efficiently towards the minimum. As with the steepest

descent method, only the first order derivatives are considered. The CG method

steps in the direction vk from a point xk. vk is calculated from the gradient at

the point, gk, and the previous direction vector, vk−1, via Equation (3.5)[172];

vk = −gk + γkvk−1 (3.5)

where γk is a scalar constant:

γk =
gk · gk

gk−1 · gk−1

(3.6)

The first step of the CG method is a steepest descent-like move, using only the

gradient at the current point to determine in which direction to step. This is

necessary as Equation (3.5) requires the direction from the previous step, vk−1,

to perform the next iteration, and clearly there is no previous step information

available when the method is first initiated.

Both the line search and arbitrary step methods can be used in CG. One advantage

to the CG method is that it does not give the same oscillatory behaviour in narrow

valleys as the steepest descents method[118].
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3.2.2.3 Newton-Raphson based methods

The Newton-Raphson method is a second-derivative method for optimisation[117,

176, 177]. A quadratic approximation to the Taylor expansion around a point x

is made:

f(x+ δx) ≈ f(x) + f ′(x)δx+
1

2
f ′′(x)δx2 (3.7)

A requirement is imposed such that the gradient of this equation is required to be

a stationary point, ∂f(x+ δx)/∂x = 0, yielding:

f ′(x+ δx) ≈ f ′(x) + f ′′(x)δx (3.8)

≈ 0 if at a stationary point (3.9)

Equation (3.9) can be rearranged to estimate the next step, δx, to move closer to

the minimum:

δx = − f
′(x)

f ′′(x)
(3.10)

If the PES is perfectly quadratic then the Newton-Raphson method will step

directly into the minimum in one step. Generally this is not the case, so the

Newton-Raphson formula is used iteratively to step across the potential energy

surface towards stationary points.

One disadvantage of this method is the requirement to calculate the inverse of the

Hessian matrix (f ′′(x)−1, or H−1) at each step, making the process ideal for small

systems of approximately a few hundred atoms or less[118].

3.2.2.4 Quasi-Newtonian methods

A number of optimisation methods exist which are based on variants of the

Newton-Raphson method and will be discussed in the following sections. However,

we would like to note that there is another subset of methods known as

quasi-Newtonian methods which attempt to avoid the drawback of calculating the

inverse Hessian matrix, H−1. This is achieved by starting with an approximation

to the inverse Hessian matrix and gradually updating this approximation based

only on first derivative information, the gradient vectors[172]. In this way an

estimation of H−1 can be iteratively constructed.
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At each iteration new positions xk+1 are obtained according to[118];

xk+1 = xk −Bkgk (3.11)

where xk are the current coordinates and Bk is the current approximation to

the inverse Hessian matrix; again gk is the gradient at the current point. Once

the new position is obtained, the approximate Hessian can be updated. The

formulae used to update the Hessian matrix, to Bk+1, is the key difference

between distinct quasi-Newtonian methods. However, they all generally use

only the current and previous coordinates and gradients. Two well-known

quasi-Newton methods are the Davidon-Fletcher-Powell (DFP)[178–181] and

Broyden-Fletcher-Goldfarb-Shanno (BFGS)[182–186] methods. We direct the

reader to Press et al. [176] for a detailed description of their implementation.

3.2.3 Transition state location

3.2.3.1 Synchronous transit

The synchronous-transit method was introduced by Halgren and Lipscomb [187]

in 1977 and involves the interpolation of coordinates between a starting (reactant)

and finishing (product) state. The maximum point along this interpolated line is

determined, and this essentially comprises the linear synchronous transit (LST)

portion of the method proposed by Halgren and Lipscomb [187]. Once this point

is determined a quadratic synchronous transit (QST) pathway is defined, whereby

a maximum is determined by moving laterally up the valley from this point to find

the ‘true’ ridge maximum or transition state.

3.2.3.2 Dewar, Healy and Stewart

Dewar et al. [188] also introduced a method of finding transition states which

involves two images of the system. Again the end points, reactants and products,

are connected by a reaction coordinate. Each state is iteratively moved towards

each other until they are within a predetermined distance, and can be considered

on the saddle point between the original states[188]. This is achieved by first

calculating the energy of the two states[167]. The state with the lowest energy is

displaced slightly towards the other state, generally 5% of the way as suggested in
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the original paper[188]. Once this displacement is made, the structure is allowed

to relax, but the new distance between the two states is constrained to remain

the same. This repeats, with the distance between the two states decreasing and

the lower energy state being displaced and then relaxed, until the two states have

walked close enough to each other to be within some threshold value and can be

considered to be at the saddle point. A method similar to this is known as the

ridge method and was introduced later by Ionova and Carter [189]. Again, two

states are allowed to step towards each other in an attempt to locate the saddle

point.

3.2.3.3 Rational Functional Optimisation (RFO)

Banerjee et al. [190] introduced an algorithm in 1985 that systematically locates

stationary points, starting from an arbitrary point on the potential energy surface.

As with the Newton-Raphson technique, this method uses the second derivatives to

determine information about the curvature of the nearby surface[190]. However in

RFO the Hessian matrix is diagonalised, and the character of the resulting Hessian

eigenvalues is used to determine where the system lies - a maximum, minimum or

saddle point. This allows the system to optimise to any general stationary point

of specified order by following any given mode of the Hessian[190].

The RFO method is quite a powerful tool for exploring an energy surface. However,

in our work we only use the RFO technique as an optimisation method. For

optimisation, RFO is most effective relatively close to the minimum, and for this

reason it is generally used after CG or SD has been used to get to the approximate

region.

3.2.3.4 Nudged elastic band

The nudged elastic band (NEB) method was introduced by Jónsson et al. [191] as a

method for determining the lowest energy path between two stable configurations.

In the nudged elastic band (NEB) method a string of replicas of the system is

created. Each replica ‘image’ is generally initially constructed from a direct linear

interpolation between the reactant and product configurations. The string of all

of the images is represented by [R0,R1,R2, . . . ,RN ], the end points are fixed and

assumed to be the initial and final states, R0 = R and RN = P, while the other
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images are allowed to move on the energy surface. This construction imitates an

elastic band comprised of N − 1 beads and N springs with spring constant k:

S(R1, . . . ,RN) =
N−1∑
i=1

E(Ri) +
N∑
i=1

k

2
(Ri −Ri−1)2 (3.12)

Each replica is then optimised, relaxing each image towards the minimum energy

path (MEP)[191]. The method implemented by the original authors uses a velocity

Verlet type algorithm, where the velocities and coordinates of the atoms in each

image are updated based on the force evaluated at the current coordinates. If the

velocities are brought to zero at each step the overall result is a steepest descent

minimisation. In this way, the chain of configurations which initially lay in a linear

fashion between the reactants and products is able to relax across the potential

energy surface into the minimum energy path, with the only constraint being that

the initial and final states are fixed points.

There are a few problems with the above method; first the images tend to slide

down towards the end points, leaving the saddle point region (the region of interest)

poorly explored, particularly if the spring constant, k, is too small (i.e., the springs

are too soft). The method can also tend to ‘cut corners’, as the replicas are pulled

off the MEP by spring forces in regions where the MEP is curved. This is likely

to occur if k is too large (i.e., the springs are too rigid). Both of these problems

can be resolved with an additional force projection, known as ‘nudging’, and this

is where the method gains its name[167]. The nudging is achieved by applying

the parallel component of the spring forces and the perpendicular component of

the true forces at each image. Refinements to the original NEB method have been

developed, in particular the climbing image NEB[192], and improvements in the

calculation of the tangent for applying the spring forces to each image[193].

The static methods discussed in this section, and other methods outside the

scope of this work, are often collectively referred to as lattice dynamics. We

refer the reader to other references such as Gale [194] and Parker et al. [195]

for a more detailed summary of these methods. This concludes our discussion

of static methods available for exploring energy surfaces. What follows in the

next section is a brief background to classical statistical mechanics, which leads us

into molecular dynamics simulations and dynamic methods for exploring potential

energy surfaces.
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3.3 Classical Statistical Mechanics

Statistical mechanics forms the foundation for the computational methods that will

be used throughout this thesis. In this section we will cover some basic statistical

mechanics theory which will provide the background to the free energy methods

that will be covered in more detail in the remainder of this chapter. Statistical

mechanics is a field which encompasses probability theories that can be applied

to large systems of moving particles. This approach enables macroscopic or bulk

properties to be explained from microscopic behaviour.

When talking about a classical system this usually refers to a system having a

large number of molecules, N , and occupying a large volume, V . The system is

regarded as isolated, such that the energy is a constant of the motion[196]. This

system can be uniquely defined by 3N canonical coordinates, q1, ....,qN and 3N

canonical momenta p1, ...,pN .

The 6N -dimensional space {q1, ...,qN ; p1, ....,pN} spanned by the position and

momenta is usually referred to as the phase space of the system[196]. The

collection of points in the phase space that satisfy the macroscopic constraints

(eg. the system volume) form what is known as the ensemble[197]. Statistical

mechanics provides the tools to connect every thermodynamic observable to the

ensemble average of a suitable microscopic quantity. The simplest ensemble is

that of a system in isolation, where no energy is transferred to and from the

surroundings. This ensemble is called the microcanonical ensemble or NV E, where

every accessible point of the the phase space must fulfil the constraint that the

number of particles, N , volume, V , and energy E remain constant.

The above is formally different from what can be obtained from a MD simulation,

which corresponds to a time average of the microscopic quantities. However, a

theoretical justification for considering the two approaches equivalent is given by

the ergodicity principle[197]. If we consider a system in isolation, the ergodicity

principle can be stated in the following way: an infinitely long trajectory will

visit every point of the phase space with equal probability. This can be expressed

mathematically as follows;

< C > =

∫
dNp dNq C δ(E(p,q)− E0)∫

dNp dNq δ(E(p,q)− E0)
= lim

t→∞

1

t

∫ t

0

dτ C(τ) (3.13)
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where C is any thermodynamic macroscopic observable and the δ function in

the statistical mechanics definition ensures that only iso-energetic states are

visited. The denominator is the normalisation constant which corresponds to

the total number of accessible states[197]. Obviously it not feasible to generate

an infinitely long trajectory and, apart from the force field accuracy, the length

of the simulations is therefore the main source of inaccuracy. Additionally, if the

potential energy surface has large energy barriers (i.e., not an NVE ensemble),

the ergodicity principle is unlikely to hold as there will be regions of phase space

inaccessible on a reasonable timeframe.

Although the microcanonical ensemble is mathematically the easiest to treat, the

constant energy constraint means it is irrelevant to compare NVE simulations

to experiments. Other ensembles need to be considered, like the canonical

(NV T ) or isothermal-isobaric (NPT ) ensembles. Changing the ensemble has no

consequences on the way we calculate the thermodynamic quantities as averages

on the generated trajectories, provided that we integrate the equations of motion

with an algorithm suitable to correctly enforce the macroscopic constraints. For

example, in the canonical ensemble states with different energies are now accessible

and the probability that every state is visited depends on its energy and is

proportional to the Boltzmann factor, exp(−βE), where β is 1
kBT

. Hence, the

statistical mechanics definition of a macroscopic observable becomes;

< C > =

∫
dNp dNq C exp(−βE(p,q))∫

dNp dNq exp(−βE(p,q))
(3.14)

where the normalisation constant is now the 6N dimensional integral of the

Boltzmann factor. This is an extremely important quantity and is usually referred

to as the partition function[197];

Q(N, V, T ) =

∫
dNp dNq exp(−βE(p,q)). (3.15)

The importance of the partition function lies in the fact that if we were able to

compute the partition function analytically we would have knowledge of all the

possible states of our system. The partition function could then be used to compute

usually inaccessible properties. In particular, the partition function would allow

us to calculate the free energy of the system;

A = −kBT lnQ(N, V, T ) (3.16)
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where A is the Helmholtz free energy. Analogously the Gibbs free energy, G, can

be obtained as the logarithm of the NPT partition function:

G = −kBT lnQ(N,P, T ) (3.17)

Since this is an almost impossible task for any system of real interest, different

techniques have been developed over the last few decades to enhance the sampling

of the phase space and calculate free energy differences;

∆A = Ab − Aa = −kBT ln
Qb(N, V, T )

Qa(N, V, T )
, (3.18)

which are more easily accessible than absolute free energies. Later in this chapter

we will give an overview of these advanced techniques, focussing on those which

we used in the present work. First, we’ll introduce two conventional methods for

exploring phase space, and obtaining averages relevant to statistical mechanics.

3.4 Monte Carlo Simulations

The Monte Carlo method provides one of the simplest approaches to statistical

mechanics. Although this method is not used in the present work, it is worth

mentioning its existence and its differences to molecular dynamics (the method we

predominantly use in our work). The partition function given in Equation (3.15),

and the observable in Equation (3.14), both require the total energy of the system

as a parameter. This total energy is a function of coordinates, q, and momenta, p

and can also be represented as a Hamiltonian comprised of two components, the

kinetic and potential energies[118, 197]:

H (pN ,qN) =
N∑
i=1

|pi|2

2m
+ V (qN) (3.19)

The potential energy portion of the Hamiltonian must be calculated

numerically[198]. There are two drawbacks to using conventional numerical

methods, such as Simpson’s rule, to evaluate this integral. The first drawback

is that the number of evaluations required for a 3N -dimensional integral is

astronomically large. The second drawback is that for most systems - assuming

we could perform all of the evaluations - the majority of configurations generated
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would have a Boltzmann factor that is incredibly small (i.e., the configuration

is highly unfavourable)[198]. The conclusion that can be drawn is that better

techniques are necessary for calculating thermal averages, and Monte Carlo is one

of these.

One potential technique for solving the numerical integration problem and

calculating thermodynamic averages could be to explore the phase space in a

random fashion[118]. The simplest example of this is an estimation of π by

generating a set of random points across a square region. If a circle is drawn

bounded by the square, as shown in Figure 3.1, the ratio of the random points

within the circle over the points in the square will be an estimate of
πr2

4r2
, ultimately

yielding an estimate of π/4.

Figure 3.1: Points randomly sampled over a square region can be used to offer
an estimate of π by taking the ratio of points from the area of the circle within

the square over the total points. Image adapted from Leach [118].

Unfortunately, attempting to use this same logic to estimate the partition function

is much less effective. Again, this is primarily due to the fact that a large number

of configurations will have very small Boltzmann factors.

A method was devised by Metropolis et al. [199] to avoid this situation, whereby

the simulation favours the generation of configurations with large contributions

to the Boltzmann factor. This method is known as importance sampling, or the

Metropolis approach to Monte Carlo. The method involves first generating a

random configuration at each iteration. This is achieved by making a random

change to the current configuration. Usually only the coordinates of one of

the particles in the system is changed up to a maximum displacement value,

δrmax. If this new configuration is lower in energy than the previous one, the

new configuration becomes the starting point for the next iteration. If the new
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configuration is higher in energy than the old one, its probability of acceptance is

given according to the following criterion[118, 198];

rand(0, 1) ≤ exp(−∆V (rN)/kBT ) (3.20)

where rand(0,1) is a random number generated between 0 and 1, and ∆V is

the energy increase for the step. Following this scheme, states that are lower

in energy will always be accepted, and according to the Metropolis criterion of

Equation (3.20), the higher energy states will occasionally be accepted and become

the new starting configuration for the next iteration. In this way the accepted

configurations are biased towards those which have a significant contribution to the

integral of the partition function[118]. The magnitude of δrmax used to generate

each random configuration will directly affect the percentage of accepted trial

moves. Generally this is chosen so that about 50% of the iterations are accepted.

If this value is too small then moves will be accepted at a high rate but the phase

space will not be efficiently explored. Alternatively if the value is too large then a

lot of time will be wasted generating trial moves which are almost always rejected

as they are more likely to be unfavourable configurations.

The Monte Carlo method is a time independent method, and in some cases this

may not be the desired approach for investigating a system. For example, if

we are interested in the transport or diffusion properties of a system, these are

time-dependent properties and the chosen method of simulation needs to explore

the system in a time dependent way. For these problems there are time-dependent

methods, such as molecular dynamics. This is the method we predominantly use

in our studies and will be discussed in the next section.

3.5 Molecular Dynamics

In molecular dynamics (MD) methods, configurations are generated sequentially

by calculating the movement of each atom using classical mechanics. Each

successive frame is obtained by solving the differential equations of Newton’s

second law, F = ma :
d2xi
dt2

=
Fxi

mi

(3.21)
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Equation (3.21) describes the motion of a particle of mass mi along one coordinate

(xi) with Fxi
representing the force acting on the particle[118].

One of the main justifications for the MD method is that the statistical ensemble

averages we have discussed in Section 3.3 are the equivalent of time averages

obtained from a trajectory of a system (i.e., the ergodic hypothesis holds).

Early molecular dynamics simulations performed by Alder and Wainwright [200]

used hard-sphere potentials to describe the interactions between particles where

the atoms would move at constant velocities in straight lines between perfectly

elastic collisions. Since these early developments, the intermolecular interactions

have evolved to become more realistic atomic models. The forces felt by each

particle are not due to simple elastic collisions, instead there is a more complex

relationship between the forces felt by each particle and the surrounding particles

with which they interact. This is due to the use of continuous potentials, where

the movement of all the particles are coupled together, creating a many-body

problem[118, 143, 198]. This problem cannot be solved analytically and requires

the use of finite difference methods to integrate the equations of motion.

3.5.1 Integration of the equations of motion

In finite difference techniques the integration is broken down into small steps, each

separated by a fixed time, δt. The forces on each particle at time t are calculated as

a sum of the interactions with the rest of the particles in the system. The forces

enable us to calculate the acceleration of the particles. Using this information

we can then find the positions and velocities at time t + δt. Once the particles

are in their new positions the process is repeated to determine the positions and

velocities at the next time step[118, 143, 198].

There are many ways to integrate the equations of motion using finite difference

methods. All of these assume that the positions, velocities and accelerations can
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be approximated as Taylor series expansions at time t;

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 +

1

6
b(t)δt3 +

1

24
c(t)δt4 + ... (3.22)

v(t+ δt) = v(t) + a(t)δt+
1

2
b(t)δt2 +

1

6
c(t)δt3 + ... (3.23)

a(t+ δt) = a(t) + b(t)δt+
1

2
c(t)δt2 + ... (3.24)

b(t+ δt) = b(t) + c(t)δt+ ... (3.25)

where r is the position, v is the velocities (the first derivative of the position with

respect to time), a is the acceleration (the second derivative of the position with

respect to time), and b and c are the third and fourth derivatives respectively.

The Verlet algorithm[201] is one of the most commonly used integration methods

in MD simulations. The Verlet algorithm calculates the positions at time t + δt

by using the positions, r, and accelerations, a, at time t, and the positions from

the previous step, t− δt[118]:

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 + ... (3.26)

r(t− δt) = r(t)− v(t)δt+
1

2
a(t)δt2 − ... (3.27)

Adding the two equations (3.26) and (3.27) gives:

r(t+ δt) = 2r(t)− r(t− δt) + δt2a(t) + ϑ(δt4) (3.28)

The velocities are not explicitly represented in the Verlet algorithm but they can

be calculated knowing the positions at consecutive time steps and δt:

v(t) =
r(t+ δt)− r(t− δt)

2δt
+ ϑ(δt2) (3.29)

One disadvantage of this method is that the velocities are not available until the

next step has been computed. Another disadvantage of the Verlet method is

that, as seen in equation (3.28), there is an error given by ϑ(δt4), while equation

(3.29) has an error proportional to ϑ(δt2). As these will be computed at a finite

timestep, truncation errors may occur resulting in a loss of precision in the overall

propogation[118].

The velocity Verlet method[202] manages to give positions, velocities and

accelerations at the same time t. The velocity Verlet method is implemented
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as a three-stage procedure given by equations (3.30)-(3.32)

v(t+
1

2
δt) = v(t) +

1

2
a(t)δt (3.30)

r(t+ δt) = r(t) + v(t)δt+
1

2
a(t)δt2 = r(t) + v(t+

1

2
δt)δt (3.31)

v(t+ δt) = v(t) +
1

2
δt[a(t) + a(t+ δt)] (3.32)

Another variation of the Verlet method is known as the leap-frog algorithm[203]

which follows:

r(t+ δt) = r(t) + δtv(t+
1

2
δt) (3.33)

v(t+
1

2
δt) = v(t− 1

2
δt) + δta(t) (3.34)

The leap-frog algorithm first calculates the velocities at time t + δt using the

velocities at the previous ‘half time step’, t − 1
2
δt, and the accelerations at time

t. The positions at t + δt can be calculated from the current positions and the

velocity calculated for time t+ 1
2
δt. The velocities at time t can then be calculated

using:

v(t) =
1

2
[v(t+

1

2
δt) + v(t− 1

2
δt)] (3.35)

In this way, the velocities and positions ‘leap-frog’ over each other. One advantage

to this method over the original Verlet method is that the velocities are explicitly

known; however the fact that the positions and velocities are not synchronised

due to the ‘leap-frogging’ means that the kinetic energy contribution to the total

energy will never be determined for the same frame for which the positions are

known[118].

Another subset of integration algorithms exist known as predictor-corrector

integration methods[204]. In these methods there is a prediction step, whereby

the positions, velocities and accelerations of the particles at the next time

step, t + δt, are predicted using the Taylor series expansions introduced in

Equations (3.22)-(3.25). The forces at the new positions are evaluated to give the

accelerations, a(t + δt). A comparison of these accelerations and those predicted

from the Taylor series expansion, ap(t+ δt), is made, giving ∆a(t+ δt):

∆a(t+ δt) = ap(t+ δt)− a(t+ δt) (3.36)
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This difference is used in the correction step of the algorithm, where the predicted

values are corrected according to;

rc(t+ δt) = rp(t+ δt) + c0∆a(t+ δt) (3.37)

vc(t+ δt) = vp(t+ δt) + c1∆a(t+ δt) (3.38)

ac(t+ δt)/2 = ap(t+ δt)/2 + c2∆a(t+ δt) (3.39)

bc(t+ δt)/6 = bp(t+ δt)/6 + c3∆a(t+ δt) (3.40)

where the superscripts c and p indicate ‘corrected’ and ‘predicted’ respectively.

The coefficients are chosen depending upon the order of the Taylor series

expansion[204]. The Gear algorithm allows the user to use as many terms in

the Taylor series expansion as desired, so the integration calculations have the

potential to be more accurate than in the algorithms already introduced. One

obvious disadvantage to this method is that each time step requires two costly

force evaluations, and for this reason the more efficient algorithms such as velocity

Verlet are more commonly utilised[118].

3.5.2 Conserved quantity

The choice of the size of the time step is not a trivial one. If the time step is

too small the trajectory will only cover a fraction of phase space. If the time

step is too large instabilities could appear in the trajectory, for example where

a collision should have occurred perhaps atoms are left overlapping one another

in the calculation of the next frame, or the particles may have passed each other

entirely. The time step needs to be smaller than the fastest vibration desired to

be modelled in the simulation so that these unwanted side effects are unlikely to

occur, and therefore is related to the mass of the lightest particle in the system.

3.6 Constant temperature MD

The molecular dynamics equations described in Section 3.5 provide averages that

correspond very closely to the microcanonical ensemble, NVE, where the number of

molecules (N), volume (V) and energy (E) remain constant. Since experiments are

usually performed at a constant temperature or constant pressure, it is generally
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more useful to implement molecular dynamics in a non-microcanonical ensemble,

such as NVT or NPT. To do this in molecular dynamics we need to adapt the

equations we use so that they have a thermostat or barostat applied.

The temperature of the system is a time average of the kinetic energy:

〈K 〉NV T =
3

2
NkBT (3.41)

The simplest implementation of a thermostat is to scale the velocities at each

time-step to the desired temperature, as introduced by Woodcock [205]. If the

temperature at time t is T (t) and the velocities are scaled by a factor λ the

temperature change is given by:

∆T =
1

2

N∑
i=1

2

3

mi(λvi)
2

NkB
− 1

2

N∑
i=1

2

3

miv
2
i

NkB
= (λ2 − 1)T (t) (3.42)

λ =
√
Tnew/T (t) (3.43)

The temperature in the simulation is maintained by scaling the velocities

by λ at each time-step. A simple velocity-scaling algorithm such as this

aims to maintain the kinetic energy,
∑
p2/2m, constant throughout the

simulation. However, this does not reproduce a canonical phase-space distribution

of states. Other more complicated algorithms strive to produce canonical

ensembles so that the temperature fluctuates with a distribution proportional to

exp(−
∑
p2/2mkBT )[143].

3.6.1 Berendsen thermostat

Another velocity-scaling thermostat was developed by Berendsen[206] in which the

temperature is maintained at a given value by coupling the system to an external

heat bath that is fixed at the desired temperature. The bath is a source of thermal

energy which supplies or removes heat from the system as needed. Velocites are

scaled at each step such that the rate of change of temperature is given by equation

(3.44).
dT (t)

dt
=

1

τ
(Tbath − T (t)) (3.44)
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τ is the coupling parameter which determines how tightly the heat bath and the

system are coupled together. A large value of τ gives weak coupling, and small

values of τ provides strong coupling with the heat bath. The scaling factor for the

velocities is given by equation (3.45)

λ =

[
1 +

δt

τ

(
Tbath
T (t)

)]1/2

(3.45)

This type of velocity scaling method can artificially prolong the temperature

differences between different components of the system, such as the solute and

solvent. Due to this, rigorous canonical averages are not obtained from these

simulations either[143]. Other methods, like stochastic collision or extended

system methods, are able to provide rigorous canonical ensembles if implemented

properly[143].

3.6.2 Andersen thermostat

The Andersen thermostat[207] is a stochastic collision method of maintaining the

temperature of a system. Particles are randomly chosen at intervals and velocites

reassigned by random selection from the Maxwell-Boltzmann distribution[198].

This is equivalent to the system being coupled with a heat bath that randomly

emits ‘thermal particles’ which collide with the atoms in the system[198]. The

strength of the coupling to the heat bath is given by v, which represents the

frequency of stochastic collisions. If successive collisions are uncorrelated the

distribution of time intervals between successive stochastic collisions is a Poisson

distribution given by equation (3.46);

P (t) = v · e−vt (3.46)

where P (t)∆t is the probability that an interval between collisions is between time

t and t+ ∆t.

3.6.3 Nosé-Hoover thermostat

In extended system methods, the heat bath is considered an integral part of the

system[198]. The heat bath is represented by an additional degree of freedom [208]
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included by using an extended-Lagrangian method. The heat bath is an additional

coordinate, s, in a Lagrangian N-body system:

LNose =
N∑
i=1

mi

2
s2ṙ2

i − U(rN) +
Q

2
ṡ2 − L

β
ln s (3.47)

The variable Q is an effective mass associated with the additional coordinate s.

The momenta obtained from the variables ri and s can be obtained from the

Lagrangian, where:

pi =
∂L

∂ṙi
= mis

2ṙi (3.48)

ps =
∂L

∂ṡ
= Qṡ (3.49)

HNose =
N∑
i=1

p2
i

2mis2
+ U(rN) +

p2
s

2Q
+ L

ln s

β
(3.50)

The equations of motion for the virtual variables, p, r and t can be derived from

the Nosé Hamiltonian given in equation (3.50):

dri
dt

=
∂HNose

∂pi
= pi/(mis

2) (3.51)

dpi
dt

= −∂HNose

∂ri
=

∂U(rN)

∂ri
(3.52)

ds

dt
=

∂HNose

∂ps
= ps/Q (3.53)

dps
dt

= −∂HNose

∂s
=

(∑
i

p2
i /(mis

2)− L

β

)
/s (3.54)
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Hoover simplified Nosé’s equations further by introducing a thermodynamic

friction coefficient ξ = s′p′s/Q, giving the equations of motion:

ṙi = pi/mi (3.55)

ṗi = −∂U(rN)

∂ri
− ξpi (3.56)

ξ̇ =

(∑
i

p2
i /mi −

L

β

)
/Q (3.57)

ṡ/s =
d ln s

dt
= ξ (3.58)

HNose =
N∑
i=1

p2
i

2mi

+ U(rN) +
ξ2Q

2
+ L

ln s

β
(3.59)

3.7 Barostats for constant presssure (NPT)

In addition to wanting to specify the temperature of a MD simulation, it may also

be desired to specify a constant pressure for the system. A macroscopic system

achieves constant pressure by altering its volume. Thus for isobaric simulations,

the volume of the simulation cell is allowed to adjust to maintain the pressure at

a constant value (or to fluctuate around a desired value). The amount of volume

fluctuation is related to the isothermal compressibility κ given in equation (3.60):

κ = − 1

V

(
∂V

∂P

)
T

(3.60)

Many of the methods for maintaining the pressure in a simulation are equivalent

to those used for temperature control. As in the previous section, the simplest

barostat is to scale the volume, but again this does not provide us with rigorous

ensemble averages[118, 143].

3.7.1 Berendsen barostat

Instead the system can be coupled to a “pressure bath”, having parallels to the

thermostats which use a “heat bath”. In these methods the rate of change of
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pressure is given by[143];

dP (t)

dt
=

1

τp
(Pbath − P (t)) (3.61)

where τp is the coupling constant, Pbath is the pressure of the “bath”, and P (t) is

the pressure at time t. The volume of the simulation box is scaled by a factor λ,

given by equation (3.62).

λ = 1− κδt
τp

(P − Pbath) (3.62)

This scaling is equivalent to scaling the coordinates by a factor of λ1/3, so the new

positions are given by equation (3.63):

r
′

i = λ1/3ri (3.63)

3.7.2 Andersen barostat

The Andersen barostat is an extended system method of pressure-coupling. As

with the extended system thermostat, an extra degree of freedom is added to the

Hamiltonian[118, 143]. The kinetic energy related to the extra degree of freedom

is given by 1
2
Q(dV/dt)2, with Q being the ‘mass’ of this pressure variable[118].

3.8 Rare events

Rare events are infrequent processes that occur due to spontaneous fluctuations

in a system[209]. The processes themselves usually proceed very quickly, on

timescales that are orders of magnitudes smaller than the time between each

event occurring. For example, the timescale between nucleation events will be

much greater than the time of the nucleation itself[210].

Classical computational methods, such as molecular dynamics, can be used to

explore the phase space of a system, helping us to understand the properties of

materials. However, a typical molecular dynamics simulation usually explores

only a limited region of phase space, due to the large time required for the

system to overcome high energy barriers that separate different configurations.
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MD simulations usually require a timestep of the order of femtoseconds and

can generally only be feasibly performed for a simulation time of the order of

hundreds of nanoseconds. With the relatively short simulation time accessible

to classical MD, these simulations are unlikely to ‘uncover’ rare events that

would spontaneously occur within much longer timeframes. An illustration of

this concept is shown in Figure 3.2. In this system, the energy barriers between

minima are significantly greater than kBT , and the probability of the system

crossing the saddle point is very small compared to that of being in the deep

minimum. If we wish the system to explore a rare event we need to ‘help’

the simulation to find these inaccessible regions of the free energy surface using

specialised techniques[198, 209].

Figure 3.2: Example potential energy surface. If the system starts in the local
minima Emin, an unbiased MD simulation is unlikely to explore configurations
outside of this energy well, as the thermal energy will not be sufficient to get

into the surrounding local minima.

Among the many techniques that have been developed to enhance the exploration

of the phase space and to calculate reactions rates and/or extract free energy

profiles we provide a brief overview of Umbrella Sampling[211, 212], Parallel

Tempering[213], Steered MD[214], Blue Moon Ensemble[215], Transition Path

Sampling[216] and the Forward Flux method[217], which should give the reader a

taste of the variety of ways similar problems can be tackled. In the following

chapter we will spend more time going into the details of another method,

metadynamics[218] (MetaD), which we believe combines the advantages of some

of these techniques and alleviates some of their limitations. Metadynamics has
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been successfully applied to a wide variety of problems, ranging from protein

folding to crystal structure prediction through basic chemical reactions and

geochemistry[219–225] and is the major tool used in our studies.

3.9 Free Energy methods

One of the limitations of the previously described static methods in Section 3.2

is that they are designed to work at 0 K, where entropic effects are negligible.

This may be a reasonable approximation for many systems, like crystals, but is

inappropriate for biological systems, or when a liquid phase is involved. Therefore

a whole new category of methods has been developed to deal with entropy and

sampling issues. In general, free energy techniques do not calculate absolute

free energies but only differences in free energy. Classical statistical mechanics

equations were briefly introduced in Section 3.3, and we covered the idea that

entropic properties cannot be directly determined from standard methods alone.

We will consider looking at the equations and definitions of free energy within the

same context, and computational methods available to calculate differences in free

energy.

In the previous chapter we introduced the fundamental formula for the Helmholtz

free energy, A, for the canonical ensemble in terms of the Hamiltonian, H (p,q)

[118, 226], where we found A is given by;

A(N, V, T ) = −kBT lnQ

= kBT ln

(∫∫
dpNdqNexp

(
−H (pN ,qN)

kBT

)
ρ(pN ,qN)

) (3.64)

where V is the volume of the system, T the absolute temperature and kB

Boltzmann’s constant. The definition of a system’s absolute free energy is riddled

with computational difficulties; for example, the value of the free energy is

dependent on a 6N -dimensional integral carried out over phase space. This is

compounded by the fact that the logarithm is a monotonically increasing function,

and the integrand is always positive. As a result, as more regions of phase space

are included in the integration, the free energy will become progressively lower.

In practice, the absolute free energy can only be calculated for a small number of

model systems - for which the total accessible phase space can be calculated[226].
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Instead free energy differences between closely related states can be calculated

using a variety of methods which can be grouped into three categories:

• Methods calculating free energy difference between two thermodynamic

conditions, e.g., different pressures

• Methods calculating free energy difference between systems described by

different Hamiltonians, e.g., solvation free energy of an ion

• Methods calculating free energy difference between two separate regions of

the phase space, e.g., umbrella sampling

First, we will briefly touch on Free Energy Perturbation, a method which fits in

the second category; we will then dedicate the rest of the chapter to describing

free energy methods from the final category, as they are the most relevant to this

work.

3.9.1 Free Energy Perturbation

Zwanzig [227] introduced a means of calculating the free energy difference between

two systems described by two different Hamiltonians, Ha(p
N ,qN) and Hb(p

N ,qN)

with a protocol called free energy perturbation (FEP). This technique is commonly

used to perform “alchemical” transformations, where one species is transformed

into another and the free energy difference associated with the transformation is

calculated. Solvation free energies of ions or molecules can be calculated using

FEP.

The method is based on the well known statistical mechanics relation:

∆Aa→b = −kBT ln
Qb

Qa

. (3.65)

First of all we can simplify this equation by noting that the kinetic term of the

partition function is constant in the two Hamiltonians and it cancels out:

∆Aa→b = −kBT ln

∫
dNq exp(−βUb(q))∫
dNq exp(−βUa(q))

= −kBT ln
Zb
Za
. (3.66)

This leaves us with the ratio of the configurational partition functions, Za and

Zb. This expression can be manipulated by multiplying the numerator by the
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expression exp(βUa(q)) exp(−βUa(q))[228]:

∆Aa→b = −kBT ln

∫
dNq exp(−βUb(q)) exp(βUa(q)) exp(−βUa(q))∫

dNq exp(−βUa(q))
(3.67)

= −kBT ln

∫
dNq exp(−β∆U(q)) exp(−βUa(q))∫

dNq exp(−βUa(q))
(3.68)

(3.69)

This effectively multiplies the numerator by 1 while enabling the variable ∆U(q)

to to be ‘introduced’ into the equation. Remembering Equation 3.14, the

above rearrangement corresponds to the thermodynamic average of exp(−β∆U)

calculated along a MD trajectory generated by the Hamiltonian Ha:

∆Aa→b = −kBT ln〈e−β∆U 〉a (3.70)

or analogously:

∆Ab→a = −kBT ln〈eβ∆U 〉b (3.71)

where ∆U = Ub − Ua. Although the derivation is quite straightforward and does

not include any approximations, it is of limited practical use in the case when

large perturbations are applied because of the poor sampling of phase space. To

alleviate this problem a procedure called staging is used. In this procedure a

number of intermediate states are introduced between the two states of interest

and the system is progressively perturbed from one to the next, until the final

state is reached[228]. This procedure ensures that every perturbation is small and

therefore that the sampling will be accurate and the overall free energy difference

can be obtained as the sum of all the intermediate contributions. Without losing

generality we can write the potential energy as a linear combination of Ua and Ub:

Uλi
= λiUb + (1− λi)Ua (3.72)

where λi is called the perturbation parameter and λi = 0 corresponds to state a

and λi = 1 to state b. The FEP equation can then be rewritten as:

∆Aa→b =
N−1∑
i=0

∆Aλi→λi+1
=

N−1∑
i=0

−kBT ln〈e−β∆Uλi,λi+1 〉λi
. (3.73)
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where λi identifies the intermediate stages of the perturbation. The optimal

number of intermediate states depends on the problem; generally the greater the

difference between the starting and final state the more intermediate states are

necessary[228]. λi can be seen as a perturbation parameter which allows for going

from state a to state b. For example, when determining the solvation free energy

of an ion, λ can simply be a scaling factor that perturbs to zero the interactions

between the ion and the solvent.

As a final remark, this technique is quite similar to the thermodynamic integration

method, although some fundamental differences appear in the formalism. In

particular, in thermodynamic integration the derivative of the Hamiltonian with

respect to the perturbation parameter has to be calculated and then integrated

along the whole path[197]:

∆A =

∫ b

a

dλ

〈
∂H

∂λ

〉
λ

(3.74)

3.9.2 Reaction coordinates and collective variables

The free energy is a complicated function of 6N vectorial variables. Fortunately,

most of the time we are only interested in calculating the free energy difference

between two regions of phase space. Examples of this are the free energy difference

between two conformations of a protein or the free energy profile of a chemical

reaction. To achieve this goal it is useful to define a collective variable (CV)

onto which we want to project the free energy hyper-surface. This CV is usually

user-defined and in principle it can be any function of the 3N atomic coordinates.

It is important to note here that the user-defined CV is formally different from

the true reaction coordinate, which corresponds to the minimum free energy path

(MFP) and is usually unknown. In some simple cases the CV can be chosen very

intuitively and can provide a good approximation to the true reaction coordinate.

In general this is not possible, and a combination of several CVs will be necessary

to describe the system of interest.

In this context, the free energy projected on a given reaction coordinate is usually

referred to as the potential of mean force (PMF) and mathematically can be

expressed as[229, 230];

A(ξ) =

∫
dNp dNq δ(ξ′ − ξ) exp(−βH ) = −kBT lnP (ξ) (3.75)
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where P (ξ) is the probability distribution along the reaction coordinate, ξ. In

principle, P (ξ) can be calculated directly in a long MD run, provided the system

will explore every relevant portion of the phase space for long enough to obtain a

converged distribution. However, as we have already discussed, this is often not

possible and several techniques have been developed to enhance the sampling and

calculate directly P (ξ) or A(ξ). A brief overview of few of these techniques is given

below.

3.9.3 Parallel tempering

One of the easiest ways to escape from deep local minima and to boost

the exploration of the free energy landscape is to increase the temperature

in the simulation. Although this is a pretty simple workaround, it has the

obvious drawback that the free energy landscape at higher temperatures may be

significantly different from the one we are interested in. In order to alleviate this

problem, Hansmann [213] suggested a method called parallel tempering which

consists of simultaneously running a number of simulations and periodically

swapping the configurations between them. Each of these simulations is usually

called a replica and is run at a different temperature. In this technique, the higher

temperature replicas have a better chance to explore a wider portion of the phase

space and the swapping procedure, performed using the Metropolis criterion [199],

ensures that each low energy configuration found by the high temperature replicas

“travels” down to a low temperature replica. The end result is that the sampling

capabilities of the low temperature replica have been enhanced. It has been

demonstrated that the sampling of the phase space in the low temperature replica

is consistent with the canonical ensemble, hence no artefacts are introduced by

swapping the configurations. Therefore, the replica at the lowest temperature

during the “short” time achievable in a MD simulation has performed a better and

more homogeneous exploration of the phase space and the PMF along any CV of

interest can be obtained from the direct calculation of the probability distribution.

However, a disadvantage of this method is that the configuration swaps break the

trajectory into short fragments and therefore any information on the dynamics of

the system is lost.
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The method can be applied both to MC or MD methods, and can also be combined

with other enhanced sampling methods on top of these, as will be evident in the

following chapter.

3.9.4 Hyperdynamics

Another possible way to enhance the sampling of the phase space is to disfavour

the low energy configurations. This can be done by increasing their energy, which

has the net effect of reducing the barriers between minima, and therefore helps

avoid scenarios where the system remains trapped in local minima. This idea

was exploited by Voter [231] who developed a method for accelerating infrequent

events in MD simulations known as hyperdynamics.

A positive biasing potential is applied to the system only in the region surrounding

the energy minima leaving the transition states untouched. This is achieved by

calculating the Hessian matrix and constructing a function of its eigenvalues and

eigenvectors. This function is such that it is zero if one of the eigenvalues is

negative and its largest value at the minimum. This is illustrated in Figure 3.3

where the solid line indicates the potential of the system, and the dashed line the

potential when corrected by the bias. The calculation of the bias, ∆Vb, requires

Figure 3.3: Example of a potential energy surface, V (solid line) and the same
potential surface with a bias applied, V + ∆Vb (dashed line). The saddle points
of the energy well are unaffected by the bias ∆Vb. Image adapted from Voter

[231].
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the expensive calculation of the second derivatives of the potential to construct the

Hessian matrix. Although this is feasible for small systems it becomes prohibitive

if the system has more than few thousand atoms. Voter later expanded this

method [232], by suggesting that the bias potential can be approximated from the

fluctuations of the system in the space of a suitable reaction coordinate, making

it a less computationally expensive technique to use. A complete review of this

and other related techniques can be found in Voter et al. [233].

3.9.5 Steered MD

If we are interested in calculating the free energy profile along a given single CV

which displays a high energy barrier, a possible approach involves mechanically

steering the system along the CV by applying a restraint force. The system can

be dragged from the initial state, a, to the final state, b, and work done in this

process can be calculated[197]. There exists in thermodynamics an inequality

known as the work-free-energy inequality which states that the work done to induce

a transformation is always greater or equal to the free energy difference between

the two states;

〈Wa→b〉 ≥ ∆A (3.76)

where 〈Wa→b〉 is the average over an ensemble of measurements of the work along

the same path. In Equation 3.76 the equality holds when the work is done

reversibly. Therefore, this inequality allows us to set an upper bound to the

free energy of the transformation but not to get its precise value. A major step

forward was done by Jarzynski [214] who proved that;

〈e−βWa→b〉 = e−βAa→b . (3.77)

which takes the name of the Jarzynski equality. Its demonstration is not trivial

and out of the scope of this overview so we limit ourselves to comment on its

importance. Equation 3.77 implies that the calculated free energy difference is

independent of the path between A and B, and the rate at which the dragging along

this path is done. Ultimately this enables equilibrium information to be obtained

from an ensemble of non-equilibrium simulations. However, despite its importance,

the Jarzynski equality is of limited use because it requires the knowledge of the

initial and final states, and also a reasonable guess at the reaction coordinate to be
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used in the steering process. In particular, if the reaction coordinate is not known

the use of more than one CV to describe the process of interest is impractical.

3.9.6 Umbrella sampling

The Umbrella Sampling (US) method was introduced by Torrie and Valleau [211,

212] and it is based on a general statistical mechanics concept called re-weighting

which allows for extracting the thermodynamic average of a quantity in a system

described by a given Hamiltonian, even if we perform a simulation with a different

Hamiltonian. To demonstrate this concept we follow a procedure similar to the

one used for the FEP technique. Let’s assume that the system we are interested

in is described by the Hamiltonian, H0, but we need to run a simulation using a

different Hamiltonian, H1, to solve the equations of motion which is related to H0

by the following relation;

H1 = H0 + w (3.78)

where w is a positive function of the atomic coordinates that is usually called a

bias potential. As described previously in Equation (3.14), the thermodynamic

value of a given quantity C in the ensemble described by H0 is:

〈C〉0 =

∫
dx C exp(−βH0)∫
dx exp(−βH0)

=

∫
dx C exp(−βH0) exp(+βH1) exp(−βH1)∫
dx exp(−βH0) exp(+βH1) exp(−βH1)

(3.79)

Substituting H0 +w for H1, as described in Equation (3.78), our equation reduces

to;

=

∫
dx C exp(+βw) exp(−βH1)∫
dx exp(+βw) exp(−βH1)

(3.80)

which can be rearranged to give:

=

∫
dx C exp(−βH1) exp(+βw)∫
dx exp(−βH1) exp(+βw)

(3.81)
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Referring to Equation (3.14), we find this finally simplifies to:

〈C〉0 =
〈C exp(+βw)〉1
〈exp(+βw)〉1

(3.82)

Throughout all these manipulations in Equations (3.79)-(3.82) the 0 or 1 indicate

which Hamiltonian is used to perform the calculation. Torrie and Valleau [211, 212]

extended this concept to the case where the bias potential is applied to constrain

a system on a given reaction coordinate, ξ, and the quantity of interest is the

probability distribution projected on the reaction coordinate P (ξ). In this case it

is easy to prove that;

P0(ξ) = e[+βw(ξ)+η]P1(ξ) (3.83)

where η is an arbitrary constant. Hence, once we know the un-biased probability

distribution we can extract the PMF by using Equation 3.75:

φ(ξ) = −kBT lnP1 − w(ξ)− η (3.84)

The potential of this method becomes immediately evident if we think of

performing a series of biased simulations with the constraint potential in different

positions, so that the whole portion of interest of ξi is accurately explored. One

problem that remains is that of the alignment of the separate portions of PMFs

that are calculated in this fashion. One possible approach is to tune the ηi values

in such a way that the sequence of φi(ξ) for a smooth continuous function or

alternatively a self consistent algorithm can be used to automatise this process.

This is known as the weighted histogram analysis method (WHAM)[234] and has

several advantages, including the possibility to accurately estimate the error.

The US technique is useful and powerful when we have only one reaction coordinate

but it becomes extremely expensive when 2 CVs are used and impractical for 3 or

more CVs. The method also requires the definition of a suitable CV and of the

initial and destination points (from a to b along a reaction coordinate), while it

has limited use for a “blind” exploration of the free energy landscape.

3.9.7 Blue moon ensemble

A method known as the blue moon ensemble method was introduced in 1989 by

Carter et al. [215] and improved and re-introduced in 1998 by Sprik and Ciccotti



Chapter 3. Exploring energy landscapes 97

[235]. This method aims to calculate the PMF along a selected CV and it is

based on the Thermodynamic Integration scheme[235] that we briefly introduced

in Equation (3.74), where the perturbation parameter is substituted with a point

on a selected CV, ξ.

A(ξ) =

∫ ξ2

ξ1

dξ
′
〈
∂H

∂ξ′

〉
ξ
′

(3.85)

Here the thermodynamic average is calculated at fixed ξ. This is achieved by

performing constrained MD simulations at different values of ξ and averaging the

constraint force, ∂H
/
∂ξ

′
, which is necessary to apply to keep ξ constant[197].

A detailed description of the algorithms required for the implementation of this

method have been outlined by Komeiji [236] and here we limit ourselves to give

a general overview on its advantages and disadvantages. Like the US method,

an advantage of the blue-moon ensemble method is that higher levels of accuracy

can easily be achieved by increasing the sampling at each location of ξ. This

is particularly important in the high energy regions that would be very rarely

visited[229]. However, the method does have some disadvantages. A problem

inherent to its constrained dynamics is that there may exist several pathways

between states a and b, or the choice of the CV is not appropriate. As a result,

the calculated PMF may be extremely accurate on the chosen path, but not

representative of the true reaction mechanism[229]. Another limitation to the use

of this method is the complexity of the machinery that has to be implemented to

constrain the system to a given value of ξ, which is usually done with an iterative

procedure that may become too computationally expensive for a complex CV.

3.9.8 Transition path sampling

Transition path sampling (TPS) is a method introduced by Dellago et al. [237, 238,

239]. Unlike the previous methods, TPS gives direct access to the transition rates

while the free energy can be obtained by a non-trivial procedure in combination

with the Umbrella Sampling technique.

TPS is based on a generalisation of the standard Monte Carlo simulation

method[216]. The standard form of Monte Carlo is based on the importance

sampling of the configuration space whilst the TPS aims to perform an importance

sampling of the space of the reactive trajectories of a specified time length[197].

Dellago et al. [237, 238, 239] generalised the standard statistical mechanics
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equations and applied them to calculate the probability distribution of the reactive

paths and their properties. The starting point of this method is a reactive

trajectory, generated by any means, and then further trajectories are generated

by the “shooting” algorithm which ensures that the reactive trajectory space is

properly sampled. In simple terms, the shooting algorithm consists of changing

the momentum of one atom in a random position of the old trajectory and then

evolving the atom’s coordinates backward and forward in time for the predefined

length and then accept or reject the trajectory according to whether it is reactive

or not. These algorithms provide an efficient means of ‘harvesting’ trajectories

with the correct probability distribution P (ξ) in what is usually referred to as the

transition path ensemble.

The transition path sampling method is useful when the user knows the start

and end states, and is curious to find what the intermediate transition states may

be. However the transition path ensemble constrains the distributions to include

only pathways that start at state a and end with state b within a given time

length. This means the distribution of configurations along the pathways deviates

from the equilibrium distributions, and the probability distribution P (ξ) cannot

be calculated from the trajectories of a transition path simulation. As a result,

free energy profiles cannot be obtained directly but a further Umbrella Sampling

calculation in the transition path space has to be performed, which makes this

technique less useful for calculating the free energy.

3.9.9 Forward flux

Another technique that is predominantly used for the calculation of transition

rates, while the free energy profile can be obtained as a “byproduct” of the

simulation, is the forward flux (FF) method which was introduced by Allen et al.

[217]. This technique requires the definition of the initial and final states and

of a number of non-intersecting interfaces between them. This can be effectively

done by the use of one (or more) CVs, although if the simulation is carried out

correctly the final result does not depend on the specific CV(s) used. In simple

terms, this technique consists of starting a large number of simulations from an

ensemble of points at each interface (the first one being the product state) and

stopping them either when the successive interface is reached or when the product

state is reached.
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The rate constant for the whole process can then be expressed as the products of

the transition probabilities from one interface to the successive one:

ka→b = CP (λN , λ0) = C
N−1∏
i=0

P (λi+1, λi) (3.86)

where P (λi + 1, λi) is the probability the the interface λi+1 is reached from the

interface λi and it can be readily calculated as the ratio between the number of

simulations that reach the interface λi+1 over the total number of those initiated

at the interface λi. In Equation 3.86 the normalisation constant C is the ratio

between the flux of trajectories that cross the first interface and the fraction of

reactive trajectories generated.

There are several important technical aspects for the correct implementation of

this method, but a detailed treatment of them is beyond the scope of this review

since the forward flux method is not used in our work.

3.10 Conclusion

Here we have introduced a wide range of free energy methods for exploring energy

surfaces. However, many of these methods require the knowledge of the end state

of the system in advance. In our studies we wish to investigate the possible

structures of nanoparticles of zinc sulfide, and the free energy differences between

these structures, without an a priori bias. In other words, we don’t know in

advance which structures we would like to locate so we need a method which has

the capability to explore possible configurations without being directed towards

any one configuration. The method most suited for our problem is metadynamics,

which will be covered in detail in the following chapter.
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Metadynamics

4.1 Introduction

In the previous chapter we discussed a variety of methods available for enhancing

the exploration of potential energy surfaces, and for calculating the free energy

differences between different states of a system. In this chapter we will continue

this discussion, but provide the background of one particular method known as

metadynamics (MetaD)[218], which we will use in this study.

The metadynamics method involves the evolution of a collective coordinate,

generally some system descriptor, and a continual biasing of the forces with

a history-dependent Gaussian term. The history-dependent Gaussian terms

accumulate as the simulation progresses and discourage the system from revisiting

the same region on the free energy surface (FES)[218]. Metadynamics is a

particularly useful method for exploring the FES of a system without an a priori

bias, that is, the end-state isn’t already known, and neither is the path to travel

to the new states.

Laio and Parrinello [218] combined ideas of dimensional reduction[240] of the FES

with concepts from adaptive bias potential methods such as the local-elevation

method of Huber et al. [241]. The method Laio and Parrinello [218] devised allows

the system to explore and escape wells on the free energy surface, and also allows

determination of the FES, and free energy differences between areas on the FES.

The basis of the metadynamics method is the identification of a collective variable

(CV), s, and the addition of a time dependent bias potential, acting on s, to the

101
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Hamiltonian. The time dependent potential takes the form of a sum of Gaussians

added to H 0, such that the new Hamiltonian of the system is expressed by

Equation (4.1);

H ′(p,q, t) = H 0(p,q) +
∑
t′≤t

We
−|s− s

t′|2

2δσ2 (4.1)

where W is the height of the Gaussians and δσ the width. This equation applies

when only one reaction coordinate is used, but the metadynamics method can

be applied to any number of CVs and when this is the case multi-dimensional

Gaussians are required. Examples of appropriate collective variables will be given

in the following sections. The usefulness of the method is derived from how

the history dependent Gaussian terms accumulate, and encourage the system

to explore different regions of phase space[218]. As the simulation progresses,

Gaussian terms accumulate and ‘fill’ the current well in the free energy surface,

eventually pushing the system into other wells. Ultimately this method allows the

system to explore other regions of phase space that may ordinarily be inaccessible

with an unbiased MD simulation due to the timescale problem.

Figure 4.1: Example of evolution of a system through phase space using
metadynamics. Successive iterations are indicated by thin lines across the
energy surface, labelled by the iteration number. Image reproduced from Laio

and Parrinello [218].

This whole process is succinctly illustrated by Figure 4.1. In this image the system

starts in the middle minimum; the evolution of the system (and filling of the energy

wells) is indicated by the thin lines on the graph, labelled with the number of added

Gaussians. After 20 Gaussians have been added the system is still in the middle



Chapter 4. Metadynamics 103

minimum, but it is essentially filled, while successive iterations push the system

into the left hand minimum. The process continues to fill the left region of the

surface until 160 Gaussians have been added and eventually pushes the system to

the right hand minimum.

When metadynamics is performed for sufficiently large amounts of time (t→∞),

the negative of the sum of Gaussian terms provides an estimation of the free energy

surface of the system:

lim
t→∞

−
∑
t′≤t

We
−|s− s

t′ |2

2δσ2 → A(s) (4.2)

A study of how accurately the sum of the Gaussians reproduces the free energy

surface has been performed by Laio et al. [242]. They found the error at time t of

a MetaD simulation is given by;

ε̄ = C(d)

√
Sδσ

DτG

W

β
(4.3)

where C(d) is an empirical constant that depends on the number of CVs (d), S is

the size of the explored free energy basin, D is the diffusion coefficient, τG is the

time interval between adding Gaussians, and finally W and δσ are the height and

width of the Gaussian terms. The simulations are particularly influenced by the

Gaussian parameters W and δσ. If the Gaussian bias is quite large, the system

will rapidly find new regions of the potential energy surface, but the ‘resolution’ of

the free energy surface will be low. Alternatively, small Gaussian parameters can

be used. In this instance the system may take a long time to fill one well on the

FES and travel to the next well, but the accumulated Gaussians will be a more

accurate representation of the true FES.

4.2 Enhanced metadynamics methods

Since the introduction of the metadynamics method a variety of modifications have

been proposed that attempt to improve on different drawbacks of the original

method. We will briefly introduce some of these additions before providing an

overview of some of the problems MetaD has been applied to.
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4.2.1 Well-tempered metadynamics

One of the potential problems of the metadynamics method is that it is difficult to

know when a metadynamics run can be terminated[243]. Generally the calculated

free energy difference between two states does not converge to a stationary value,

but fluctuates around the real value as we continue to add Gaussians into the

bias potential. A possible workaround is to perform a series of MetaD runs

with decreasing Gaussian heights. One obvious disadvantage to this is that the

user must decide when to stop a simulation and restart with smaller Gaussians.

Barducci et al. [243] introduced an extension to the metadynamics method known

as ‘well-tempered metadynamics’, which alleviates the problem of convergence by

introducing Gaussians with a variable height. In this method, the heights of the

Gaussians change throughout the simulation, according to;

W = ωe[V (s,t)/∆T ]τG (4.4)

where ∆T is an adjustable parameter and ω is the initial rate of depositing

Gaussians. In this way the height of the Gaussians, W , are determined by the

bias that has already accumulated throughout the simulation. In areas that have

already been well-traversed the Gaussian height will be smaller, and conversely,

areas which have not been explored will initially have large Gaussian terms. One

difference between the well-tempered MetaD scheme and the original method is

that the FES is not directly mapped out by the inverse sum of the added bias,

instead it is defined by:

lim
t→∞

V (s, t)→ − ∆T

∆T + T
A(s) (4.5)

Eventually as more regions of the potential energy surface have been traversed the

Gaussian height decreases towards zero[244].

4.2.2 Replica exchange metadynamics

Another development of MetaD was devised by Bussi et al. [221] who combined

the replica exchange method of parallel tempering[213], introduced in the previous

chapter, and the metadynamics method. The method, known as replica exchange

MetaD, involves multiple metadynamics simulations, or ‘replicas’, to be run in
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parallel at different temperatures. Each replica uses the same set of collective

variables, however a separate bias potential is accrued for each of them. An

attempt to swap the coordinates from adjacent temperatures is performed at a

predetermined frequency and accepted according to the Metropolis criterion of

the Monte Carlo method, where the energy terms include the MetaD bias. If the

move is accepted the coordinates, q, are swapped and the momenta, p, are scaled

to accommodate the temperature of the replica. They found that this combination

of methods resulted in a more efficient exploration of phase space in comparison

to either method used alone.

4.2.3 Bias-exchange MetaD

Piana and Laio [245] investigated the use of the replica exchange metadynamics

method of Bussi et al. [221] with a slight modification. They used the same idea

of combining replica exchange and metadynamics, however instead of the replicas

being run at different temperatures, the time dependent potentials in each replica

are acting on different collective variables[245]. As with replica exchange MetaD,

Monte Carlo swaps are attempted according to the Metropolis criterion. If the

move is accepted the bias potential is exchanged. Each replica has a small number

of CVs, often only one, and consequently each replica has only a limited portion

of phase space to explore. The main advantage of using the bias-exchange MetaD

method is that it enables the exploration of a complicated multi-dimensional FES

by performing a set of low-dimensional MetaD runs.

Unfortunately a multi-dimensional FES cannot be directly reconstructed from

the separate bias generated by each replica. Instead, a ‘neutral’ replica, which

has no bias applied, needs to be included. The neutral replica run will sample

approximately the canonical ensemble and the FES can be calculated directly

from the partition function, as described in the previous chapter.

4.2.4 Reconnaissance metadynamics

A new algorithm has been recently developed by Tribello et al. [246] known as

Reconnaissance Metadynamics. The authors of this method realised that the

lack of knowledge of a ‘good’ collective variable for use in a MetaD simulation

is a significant limitation in setting up meaningful calculations. While using
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multiple collective variables in an attempt to model the true reaction coordinate

is feasible with MetaD, the cost of the simulation increases exponentially with

the dimensionality[246]. The reconnaissance metadynamics method attempts

to overcome this by allowing the bias to ‘learn’ as the simulation progresses,

significantly enhancing the exploration of phase space.

The method uses a clustering algorithm combined with principal component

analysis to efficiently explore phase space. The cluster analysis algorithms[247,

248] are used at regular intervals to analyse the trajectory and obtain statistics

related to the basins explored on the free energy surface. The statistics are used to

determine the ideal shape a Gaussian should have to exactly fill the basin near the

minimum. The advantage of this is to avoid the situation where a large ill-fitting

Gaussian may be placed in the middle of a basin, creating ‘spurious low energy

features’ - basically creating two ‘new’ minima on either side of the Gaussian which

again need to be filled. The Gaussians which are placed are multi-dimensional,

as the method has been developed for use with many CVs. A further speed-up is

obtained by placing multi-dimensional Gaussians with increasing size, rather than

placing a large quantity of small Gaussians.

In contrast to the normal metadynamics method the bias potential generated

during a reconnaissance MetaD run does not reproduce the free energy profile, so

other methods, such as umbrella sampling, need to be implemented if the FES is

required. The greatest advantage of reconnaissance MetaD is its ability to use a

theoretically unlimited number of CVs without the same increase in computational

cost found in the normal MetaD method. In the authors words, the method “gives

one a feel for the lie of the land”, allowing the separate basins on the free energy

surface to be quickly located.

4.3 Previous studies using MetaD

To study rare events with MD, the reaction coordinates of a given process need

to be described by one or more collective variables. The collective variables

are some quantifiable property of the system or its components, such as the

average coordination number, or the distance between two atoms. In this section

we will attempt to summarise some of the work that has been done using the
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metadynamics method. We have attempted to categorise the previous studies

into different groups based on the application:

• Predicting crystal structures

• Investigating reaction mechanisms

• Biological molecules

These studies all require specific collective variables to bias the metadynamics

simulations in order to explore the regions of phase space relevant to the process

being investigated. The choice of collective variable isn’t a trivial one, and if a

poor choice is made, or the problem is a multi-dimensional one, the simulations

may result in a poorly converged free energy surface or even a completely wrong

profile[221].

4.3.1 Predicting crystal structures

Crystal structure prediction is an ongoing challenge[249], and metadynamics is

one of the many methods that has been applied to try to tackle this problem.

In particular, there is a method based on the concepts of the Parrinello-Rahman

method[250], in which the volume and the shape of the MD cell are variable over

time. If the pressure of a system is increased under this regime it is possible to

force a crystal structure to undergo phase transitions, and the Parrinello-Rahman

method allows the cell parameters to transform and accommodate new crystal

structures. One drawback to this method is that there is often a significant energy

barrier to be overcome to transform from one crystal structure to another, even

with a dynamic cell. This is a fundamental limitation of MD, and to achieve the

desired phase transition using the Parrinello-Rahman method over-pressurisation

of the system is usually required. Unfortunately under these conditions it is

likely intermediate phases of interest may be missed[225]. Martoňák et al. [225]

thought to try to enhance the exploration of solid phases using the cell variables

as the collective variables in metadynamics. They used the simulation cell vector

matrix, h, a matrix comprised of the MD supercell edges, (~a,~b,~c), as the collective

variables.
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Figure 4.2: Phase transitions seen for silicon during a metadynamics
simulation[225], transforming from diamond structure at (a), to a new crystal
structure at (d), and finally to the formation of simple hexagonal (SH) at (h).

Image reproduced from Martoňák et al. [225].

At ambient pressure the stable form of Si is the diamond structure while at higher

pressures it may be found in the metastable β-tin form or a stable simple hexagonal

(SH) phase. Figure 4.2 shows frames taken along the MetaD trajectory which

shows the transition from diamond to SH.

An estimation of the transition pressure for the diamond to SH transformation

with the common tangent procedure for the model potential used gives a value of

15.5 GPa. However, attempts to simulate this transformation by pressurising the

system using the Parrinello-Rahman method results in the transition occurring

at 44 GPa. This over-estimation of the transition pressure is related to the high

free energy barrier that has to be overcome during the short time accessible by

MD (eg. in the order of ns). Martoňák et al. [225] showed that MetaD was able

to reproduce the transition at 16 GPa. Although in principle the metadynamics

technique is able to push the system out of the free energy cell of the diamond

structure to find any other allowed polymorphs, the authors chose to perform

their simulations just above the estimated transition pressure so that the driving

force was towards the desired polymorph, ie. SH. Examples where exploration of

polymorphs were performed without considering pressure effects can be found in

Raiteri et al. [251] and Zykova-Timan et al. [252].
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Martonák et al. [253] later used the same method in 2006 to perform

phase transitions on silica, SiO2. In this study they were particularly

interested in understanding the step-wise pressure-induced transformation from

fourfold-coordinated Si in α-quartz into sixfold-coordinated stishovite at high

pressure. Varying the starting super-cell parameters and the metadynamics

parameters their simulations explored a number of different phases. The phase

transitions explored included α-quartz to quartz II, followed by a transition to

stishovite. They also reported an anatase structure, which had previously not

been reported for silica. The potential they were using to model the silicate was

known as the BKS[254] potential, and has been extensively used in the literature

to study silicate structures. Two years prior to the study done by Martonák et al.

[253] the BKS potential had been used to produce a phase diagram for known

silica structures[255], proposing the BKS potential as the most accurate potential

to use when modelling silica. The phase diagram did not include anatase, and

in fact the study done by Martonák et al. [253] indicates the BKS potential

has some artefacts, such as yielding anatase as the most stable phase under

certain conditions. Metadynamics proved itself to be not only useful for exploring

previously undetected phases for a system, but also for testing the potential model

being used. Martoňák et al. [256] continued these studies and reported a more

detailed discussion of their results a year later. In this study they simulated

the transition from 4- to 6- coordinated silica in an effort to understand the

transformation pathways used to form high-pressure silicates.

Figure 4.3: Schematic showing the intermediate polytypes found in the
transformation of (Mg,Fe)SiO3 from perovskite to post-perovskite. The most
likely slip planes to achieve the next polytype are indicated with an arrow.

Image reproduced from Oganov et al. [257]

Oganov et al. [257] investigated phase transitions in (Mg,Fe)SiO3, believed to be

the main mineral phase of the Earth’s lower mantle. They were interested in how

(Mg,Fe)SiO3 transformed from perovskite to post-perovskite at the lower mantle

pressure. Using the collective variables introduced by Martoňák et al. [225] they
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used metadynamics to observe phase transitions in this material. They found a

number of intermediate polytypes, where planes of atoms in the perovskite phase

were sliding and forming stacking faults, before arriving at the post-perovskite

phase. A schematic of this transformation is shown in Figure 4.3.

Their simulations suggested that the easiest plastic deformation of the material

occurred in the [110] slip plane instead of the expected [010] plane. With this study

the authors could provide an explanation of the anisotropy in the propagation

velocity of the seismic waves through the lower mantle.

One problem that is inherent to this method is that the phases being explored

must have commensurate unit cells. The smaller the supercell is, the greater this

constraint will be on the phases being explored.

4.3.2 Investigating reaction mechanisms

Stirling et al. [220] used metadynamics combined with the Car-Parrinello MD

(CPMD) method[258] to investigate the transformation between azulene and

napthalene, as depicted in Figure 4.4. The Car-Parrinello MD method enables

first principles MD to be performed, which means chemical reactions involving

bonds breaking and forming can be simulated. The transformation of azulene

to napthalene is of particular interest as it involves the rearrangement of a

non-benzenoid aromatic structure to a benzenoid aromatic structure. In this

particular study Stirling et al. [220] used coordination numbers as collective

variables for C-C and C-H bonds to investigate the transformation between the

two molecules.

Figure 4.4: Transformation of azulene to napthalene. Image reproduced from
Stirling et al. [220]

There are two known mechanisms for the transition from azulene to napthlene,

and the path explored by the MetaD simulations could be restrained by specifying

a maximum distance allowed between certain atoms, which forces the system to

explore the transition states expected. Once the system attained the transition
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Figure 4.5: Two different reaction mechanisms Stirling et al. [220] investigated
in their study of the azulene-to-napthalene transformation. Image reproduced

from Stirling et al. [220]

state for a certain pathway the restraints were released and the system allowed

to continue exploring other structures - at which point the system moves to the

desired product, napthalene.

Given the short time-scale currently achievable by first principles MD an accurate

free energy profile is not attainable; this study was primarily a proof of concept

that MetaD can be successfully coupled to first principles simulations.

Metadynamics was also used by Blumberger et al. [224] for the investigation

of the hydrolysis of formamide in alkaline aqueous solutions. The nucleophilic

attack of an amide bond by hydroxide is barrierless and highly exothermic in

the gas phase, while in alkaline aqueous solution the formation of the tetrahedral

intermediate is the rate-determining step and results in a free energy of activation

of about 21 kJ mol−1[224]. This barrier for the reaction has been referred to as

“solvent induced”, and assumed to be due to the large free energy of solvation

of the hydroxide ion, which needs to be partly overcome for the transition-state

to form. The reaction they investigated is depicted in Figure 4.6, where it is not

yet fully understood what mechanism is undergone for the hydroxide ion to form

a tetrahedral intermediate with the carbonyl bond of formamide. As with the

reaction studied by Stirling et al. [220], this reaction has two proposed mechanisms

that are able to fulfil the experimental observations. Both mechanisms are shown

in Figure 4.7. The reaction labelled A) shows the direct nucleophilic attack of

the OH− onto the carbonyl bond. The reaction mechanism labelled B) is the

alternative mechanism, where the nucleophile is a water molecule coordinated
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Figure 4.6: Hydrolysis of formamide in alkaline aqueous solution. The first
reaction is the formation of the tetrahedral intermediate, and is the rate-limiting
step, while the second reaction is the dissociation of the tetrahedral intermediate

into the products. Image reproduced from Blumberger et al. [224].

Figure 4.7: Two mechanisms for the hydrolysis of formamide in alkaline
aqueous solution. Reaction A) shows direct nucleophilic attack and Reaction B)
shows the general-base mechanism. C) and D) show the labelling of atoms and
bonds for umbrella sampling and metadynamics respectively. Image reproduced

from Blumberger et al. [224].

to hydroxide. The oxygen atom of water attacks the carbonyl bond while

simultaneously donating a proton to hydroxide, which is acting as a general-base.

CPMD was used combined with metadynamics to investigate the general-base

mechanism. They used the distance, ro, between the carbon atom of formamide

and the oxygen atom of the water molecule, O(w), that separates hydroxide and

formamide as their first CV. The second CV is the distance between the hydrogen

atom of the water, H(w), and the hydroxide rH = r2− r1- a value which indicates

the progress of hydrogen transfer. Blumberger et al. [224] also studied the direct

nucleophilic reaction mechanism using Umbrella Sampling (US) of the C-O(h)

distance, rO(h)
. Both their simulations predicted a transition state at rO(h)

=1.9 Å
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between the starting states and final tetrahedral intermediate, however they found

that the hydrogen transfer from a water molecule to hydroxide, shown in the

mechanism Reaction B, is completed well before the observed intermediate is

formed. This suggests that the electrophilic character of the formamide is too

weak to react with a water molecule coordinated to sodium hydroxide, and instead

direct nucleophilic attack by the oxygen in sodium hydroxide is the more likely

pathway[224].

Again, the use of a first-principles MD method meant that an accurate estimation

of the free energy barriers was not achievable within the short simulation time.

In the next section we will introduce the most recent application where

metadynamics has been used, namely the exploration of the complex potential

surfaces of biological molecules.

4.3.3 Biological molecules

One of the other interesting problems that metadynamics has been applied to

is that of conformational search in biological molecules. The problem of protein

folding is a challenge that remains unsolved for the field of molecular biology[221].

The long time-scale it takes for a protein to achieve its folded state in solution, of

the order of milliseconds or more, is one of the reasons it has been difficult, if not

impossible, to study these systems without using enhanced sampling methods[259].

There are examples where the folding and unfolding of parts of proteins, or small

fast-folding proteins have been explored using only MD. One example of this is the

work done by Duan and Kollman [259] where they explored the folding pathway

of the villin headpiece subdomain, in explicit water. Another study by Pande

and Rokhsar [260] investigated the folding and unfolding pathways of a β-hairpin

fragment of a protein. Both of these studies provide some insight into the folding

(and unfolding) pathway, but they are high-temperature simulations (to start the

system in an unfolded state). The authors of these papers admit it is possible a

low-temperature folding pathway may be entirely unexplored by their simulations,

and it is one severe limitation on their technique. Enhanced sampling methods

enable the complex potential energy surface of a biological molecule to be explored

in a shorter simulation time, and without the limitation of performing simulations

at high temperature.
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Figure 4.8: The two peptides explored in the metadynamics study by Babin
et al. [223]. Ace-(Gly)2-Pro-(Gly)3-Nme shown in the β-hairpin formation (left)

and trialanine (right).

Babin et al. [223] used both metadynamics and umbrella sampling to explore

the free energy surface of two small peptides. The first of these was

Ace-(Gly)2-Pro-(Gly)3-Nme, which folds into a β-hairpin configuration, and the

second small peptide was trialanine; both are shown in Figure 4.8. Their first

study for Ace-(Gly)2-Pro-(Gly)3-Nme used the radius of gyration of the heavy

atoms as the collective variable;

Rgyr =

√√√√∑
i

(
ri −

1

Nb

∑
j

rj

)2

(4.6)

where the summations run over the Nb heavy atoms of the backbone. For the

investigation of trialanine they did two studies, one in explicit solvent and the

other in implicit solvent. The collective variables they used for this study were

the pair of dihedral angles (φ, ψ), also indicated in Figure 4.8. Their studies

showed metadynamics was a useful tool for exploring the free energy landscapes

of both the peptides investigated with the collective variables they chose. The

authors were particularly concerned with the free energy error in the metadynamics

method, and they showed that umbrella sampling could be successfully used to

correct the results obtained from their metadynamics simulations. They compared

their corrected free energy surfaces with those obtained from replica-exchange

metadynamics and showed there was a very good agreement between the two[223].

Bussi et al. [221] used a combination of parallel tempering[213] and metadynamics

to calculate the free-energy landscape of the folding β-hairpin in explicit water.

They used two collective variables to explore the folded and unfolded states of their

protein. The first CV they used was the radius of gyration for the heavy atoms

of the backbone, as already given for the study of Babin et al. [223] in Equation
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(4.6). The second CV they used was the number of hydrogen bonds along the

backbone, which could help distinguish between a molten globule ‘structure’ and

the folded structure as this information is related to the secondary structure of

the protein. This number is evaluated by[221]:

NH =
∑
i∈O

∑
j∈H

1−
(

(ri − rj)

d0

)6

1−
(

(ri − rj)

d0

)12 (4.7)

Equation (4.7) corresponds to the coordination number of the oxygens to the

hydrogens. The coordination number is represented by a continuous function, as

illustrated in Figure 4.9. It should be noted that using a coordination number

to assess whether a hydrogen bond exists is a simplification. Generally there

would also be the angle (O-H-O) used in conjunction with the distance to assess

whether a hydrogen bond is present[118]. The value d0 defines the ‘cut-off’ region

of the function, where hydrogen bonds are either included or excluded. The only

discontinuity is when ri − rj = d0, which is an easily accounted for singularity.
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Figure 4.9: Example of the tapering function used for the calculation of
hydrogen bonds. For the study done by Bussi et al. [221], they used a value of
d0=2.5 Å for the cut-off radius for a hydrogen-bond. Using Equation (4.7), the
value d0 should be at the midpoint of the tapered region, as shown on this plot.
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The exponent values of 6 and 12 in Equation (4.7) define how steep the tapering

region will be around d0.

Bussi et al. [221] showed that combining parallel tempering with metadynamics

was effective in further enhancing the exploration of phase space, as shown in

Figure 4.10. The system jumps to the second energy basin much quicker than with

the simulation performed with only metadynamics. The simulations performed

by Bussi et al. [221] show that combining the two methods can enhance the

exploration of phase space for biological molecules.

Figure 4.10: Comparison of the exploration of a two-basin energy profile using
metadynamics (left) and using metadynamics combined with parallel tempering
(right). The thin lines show subsequent images of the metadynamics filling.

Image reproduced from Bussi et al. [221].

A study done by Piana and Laio [245] followed on from this work of Bussi et al.

[221]. We have already introduced their method, bias-exchange metadynamics,

where exchanges are allowed to occur between replica simulations where each

replica evolves at the same temperature but along different CVs. The

simulations they performed to test the efficacy of bias exchange MetaD were

atomistic simulations in explicit solvent of the folding of a tryptophan cage

‘miniprotein’[245]. Five CVs were used for this study, the number of Cγ contacts,

number of Cα contacts, number of backbone H-bonds, α dihedral fraction, Φα,

and the dihedral correlation, Φcorr. In general the carbon atom attached to the

carboxyl group of an amino acid is known as the alpha carbon, denoted Cα, the

next carbon in the chain the beta carbon or Cβ and the third carbon in the chain

the gamma carbon or Cγ and so on.
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The number of contacts are calculated using a continuous tapering function of the

same form used by Bussi et al. [221]:

N =
N−1∑
i=0

N∑
j=i+1

1−
(

(ri − rj)

d0

)8

1−
(

(ri − rj)

d0

)10 (4.8)

where ri and rj are the coordinates for atoms i and j being considered in the

calculation, and the values of d0 were different depending on the CV being

considered. The number of contacts refers to the number of a specified atom

considered to be ‘in contact’, or within a specified cut-off distance from each other.

In this case the specified cut-offs were d0 = 5.0, 6.5 and 2.0 Å for Cγ contacts, Cα

contacts and hydrogen bonds respectively.

The helicity of the backbone, Φα is given by;

Φα =
N∑
i=1

1

2
[1 + cos(ϕi − ϕ0)] (4.9)

where ϕi is the backbone dihedral angle of residue i, and ϕ0 = −45◦.

The dihedral correlation is given by;

Φcorr =
N∑
i=2

√
[1 + cos2(ϕi − ϕi−1)] (4.10)

The variables chosen for the folding of the protein were based on whether

they would describe a possible free energy barrier. For example, the number

of hydrogen bonds CV describes the free energy barriers associated with the

formation or disruption of hydrogen bonds. Similarly, the helicity and dihedral

correlation variables, Φα and Φcorr, describe the free energy barriers associated

with conformational changes in the backbone of the structure. The number of

Cγ contacts CV describes barriers associated with the formation or disruption

of hydrophobic clusters, and the number of Cα contacts CV describes barriers

associated with the transition between compact and extended structures. Piana

and Laio [245] showed their method to be very effective in folding the protein

within a few nanoseconds of simulation, and also exploring the free energy surface

within a few tens of nanoseconds.
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After the success of the bias exchange MetaD method, Piana [261] used the same

method to study structural transitions in DNA. The process of interest was ‘DNA

melting’, or helix-coil transitions, where the DNA double helix dissociates to form

two single strands of DNA. They used the CVs introduced in their previous study

with the Trp-cage folding to investigate these structural changes in three short

sequences of DNA.

4.4 Collective variables for finite systems

Aspects of all of the above works have links to our own studies performed using

metadynamics. The focus of the present work has been application of different

collective variables in systems where they haven’t been used before, predominantly

focusing on the phase transitions seen in nanoscale materials. In these finite

systems there are no periodic boundary conditions providing a continuous repeated

cell throughout space. For this reason, the Parrinello-Rahman-like method of

Martoňák et al. [225] mentioned in Section 4.3.1 isn’t applicable as there are no

cell parameters.

Here we will introduce two of the collective variables we have focused on. First

we have the inertia tensor, and secondly a set of values known as the Steinhardt

parameters.

4.4.1 Inertia tensor

In this study the first objective is to explore the use of the inertia tensor of a

system as the collective variable for metadynamics to drive the system to new

structures. This collective variable will yield trajectories in which the shape of

the system (a nanoparticle) changes as the moment of inertia tensor of the system

evolves. Before we discuss the results of these studies, we need to introduce what

the inertia tensor is, and how this value is derived for a given system.

In the context of classical mechanics of rigid bodies, there is a physical property

known as inertia. The inertia is a measure of a systems resistance to change in

motion and is directly related to the mass of the object[262]. This property applies

for linear motion, but if a body is free to rotate about any axes it also possesses
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a resistance to rotational motion. This rotational resistance is described by the

moment of inertia, and it is related not just to the mass, but how the mass of the

system is distributed with respect to a given axis. The scalar moment of inertia

for a point with mass m is given by;

I = mr2 (4.11)

where r is the distance from the axis of rotation. The moment of inertia is an

additive quantity, so if a system is comprised of N points of masses mi and

distances ri to the rotation axis, the total moment of inertia is given by the sum

of the moments of inertia for each point:

I =
N∑
i=1

mir
2
i (4.12)

For an object, different axes of rotation will have different moments of inertia

about those axes. Only if the system is symmetrical will different axes of rotation

have the same moments of inertia. For this reason it is convenient to summarise

all of the moments of inertia along each axis by a quantity known as the moment

of inertia tensor[263], defined as;

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 (4.13)
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where each component of the moment of inertia tensor is given by;

I11 = Ixx =
N∑
i=1

mi(y
2
i + z2

i ) (4.14)

I22 = Iyy =
N∑
i=1

mi(x
2
i + z2

i ) (4.15)

I33 = Izz =
N∑
i=1

mi(x
2
i + y2

i ) (4.16)

I12 = Ixy = −
N∑
i=1

mixiyi (4.17)

I13 = Ixz = −
N∑
i=1

mixizi (4.18)

I23 = Iyz = −
N∑
i=1

miyizi (4.19)

and I12 = I21, I13 = I31 and I23 = I32, as I is a symmetric tensor. The distance of

each particle i from the centre of mass of the system is given by ri, with components

xi, yi and zi. In this study we have used the trace of the inertia tensor, which is

given by the sum of the diagonal matrix elements of the moment of inertia tensor,

I:

Tr(I) = I11 + I22 + I33 (4.20)

The trace of inertia tensor is rotationally invariant. This means if the system is

rotated, the value for that state will not change. This is an important property

for any CV when studying an aperiodic system; it should give a unique value for a

system state, regardless of its orientation. In this case, the trace of inertia tensor

has a small value when particles are arranged in a compact, spherical distribution

and its value increases as the system becomes elongated. When the system is

comprised of particles all with the same mass the trace of the inertia tensor is

related to the gyration radius, as defined in Equation (4.21):

Rg =

√
1

2
· Tr(I)∑N

i mi

=

√∑N
i mi · |ri − rCoM |2∑N

i mi

(4.21)

where ri is the position of particle i and rCoM is the position of the centre of

mass of the system. The centre of mass of the system, rCoM , is an average of the
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positions of the particles in system, ri, weighted by the masses of the particles, m:

rCoM =

N∑
i=1

miri

N∑
i=1

mi

(4.22)

The gyration radius has been used with other CVs for investigating protein

conformations[221, 261]. However, the masses of the atoms are not included in

the calculation of the gyration radius. Additionally, a CV like the gyration radius

has not been used for studying phases of ionic systems as is done in this study.

Using the diagonal components of the inertia tensor explicitly, we find we can

represent the trace of inertia in a simplified form, given by Equation (4.25):

Tr(I) = I11 + I22 + I33 (4.23)

=
N∑
i=1

mi · (y2
i + z2

i ) +
N∑
i=1

m · (x2
i + z2

i ) +
N∑
i=1

m · (x2
i + y2

i ) (4.24)

= 2 ·
∑
i

mi · |ri − rCoM |2 (4.25)

The derivative for this CV, s, that we will need for the implementation of this CV

in MetaD is given by:

∂s

∂ri
= 2 ·

∑
i

2 ·mi · |ri − rCoM | (4.26)

4.4.2 Steinhardt parameters

The second collective variable used in the present study is a parameter which

estimates the level of crystallinity or orientational order in a system. This

parameter was introduced in 1981 by Steinhardt et al. [264, 265]. The development

of a measurement for local and extended bond orientational order was inspired by

studies done decades earlier into the dense packing of hard-sphere systems[266].

The packing of identical spheres has been a problem for centuries. Johannes Kepler

first proposed a solution to the problem in 1611; he speculated the most efficient

packing of identical spheres would be to arrange the spheres in layers, with each

sphere nesting in the hollow of three spheres beneath it[267, 268]. This problem
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Figure 4.11: A depiction of different types of packing possible with a 13-atom
particle cluster. The fcc and hcp clusters can be repeated in all three directions,
while the icosahedron has 5-fold symmetry which makes repetition in this way

impossible. Image reproduced from Steinhardt et al. [265].

has been named the Kepler Conjecture. Spheres which are packed in this way -

close-packed - have an average density given by:

π

3
√

2
' 0.74048 (4.27)

In the context of close packed spheres the density is the proportion of the volume

of the container (in the case of a crystal, this will be the unit cell) that is taken

up by the spheres. Kepler’s conjecture states that the density given by Equation

(4.27) is the highest possible density for a crystalline lattice of identical spheres.

This conjecture has remained unproven until recently. In 1992 Hales [269] outlined

a solution to the Kepler conjecture, and recently attempted to solve this using a

method of proof by exhaustion[268], where all possible individual solutions to the

problem are solved. The results of Hales’ proof by exhaustion have been accepted

as “99% certain”, and he is currently continuing these studies using computational

methods to formalise his proof[270].

When we consider the packing density of hard spheres in a small cluster, there

are “non-crystalline” ways in which we can pack the spheres. Three ways of

packing a small system of 13 hard-spheres are shown in Figure 4.11. There are

two “crystallographic” clusters which represent nuclei of fcc and hcp crystals, and

a third structure which is an icosahedral structure with 5-fold symmetry which

is not a crystallographic arrangement. The fcc and hcp structures have already

been introduced in Chapter 1. The packing of clusters in this way was discussed

decades ago by Frank [266] and Mackay [29]. In 1952 Frank [266] observed that an

icosahedral arrangement of Lennard-Jones particles was lower in energy than fcc or

hcp crystallographic clusters. He suggested that the supercooling of simple liquid
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metals was made possible by the existence of these icosahedral clusters. Mackay

[29] looked at non-crystallographic icosahedral structures, such as the 13-atom

particle cluster, but also looked at larger clusters obeying the same rules. In these

studies, Mackay [29] was particularly interested in the density of the icosahedral

structure, as a comparison with crystallographic close-packed structures. He found

that the highest density icosahedral structure was the smallest, with 13 atoms,

with a density of approximately 0.726. Mackay [29] suggested that the trend of

decreasing density with the increased number of atoms would lead the icosahedral

structures to be unfavourable for larger clusters. An example of a larger icosahedral

cluster of 147 particles is given in Figure 4.12.

Figure 4.12: Example ‘Mackay cluster’ of 147 hard spheres with icosahedral
packing. Image reproduced from Mackay [29].

Inspired by these studies, Steinhardt et al. [265] aimed to develop a set of

parameters that could be used to measure the local and extended orientational

symmetry of computer-generated models of liquids and gases. The idea of using

spherical harmonics to determine bond-order orientations for cubic symmetry was

introduced around the same time by Nelson and Toner [271], and Steinhardt et al.

[264] continued this idea, using it first for the investigation of icosahedral order in

a liquid.

Analysis using a Steinhardt parameter[264, 265], Ql, begins by first defining which

atoms are the neighbours of a particle. Each vector, rij, that joins a particle, i,

to its neighbour, j, is called a bond, and a set of numbers, Y m
l (θ(rij), φ(rij)) are

associated to each bond as depicted in Figure 4.13.

Here Y m
l (θ(rij), φ(rij)) are spherical harmonics, while θ(rij) and φ(rij) are the

polar and azimuthal angles of vector rij with respect to an arbitrary reference
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Figure 4.13: Spherical harmonics Y m
l are calculated for each vector rij ,

connecting atom i to its neighbouring atoms j to determine the orientational
order around atom i.

frame. The average of these values gives an idea of the local order around a

particle, given by Equation 4.28:

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Y m
l (θ(rij), φ(rij)) (4.28)

A rotationally invariant form of the local order parameter, ql, is defined by

Equation 4.29:

ql(i) =

(
4π

2l + 1

l∑
m=−l

|qlm|2
)1/2

(4.29)

Averaging qlm(i) over all the N atoms in the system a global rotationally invariant

order parameter, Ql, can be obtained:

Ql =

(
4π

2l + 1

l∑
m=−l

|Q̄lm|2
)1/2

(4.30)

where:

Q̄lm =

N∑
i=1

Nb(i) qlm(i)

N∑
i=1

Nb(i)

(4.31)

The global order parameter is the Steinhardt parameter we have chosen to focus

on, as it is a rotationally invariant quantity that indicates the overall crystalline

order of the system. The Ql quantity adopts unique values for a given crystal
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structure. Non-zero averages occur for l = 4, 6, 8 in samples of cubic symmetry

and l = 6, 8 for icosahedral systems. For this reason global Q4 and Q6 values

are more commonly utilised for analysis; some of the Q4 and Q6 values for simple

cluster geometries are summarised in Table 4.1. Due to the geometry of the

Steinhardt parameters, they are a very effective tool for analysing the crystallinity

of a system.

Table 4.1: Steinhardt parameters for some simple crystal structures[272].

Steinhardt parameters

Geometry Q4 Q6

Icosahedral 0 0.66332
fcc 0.19094 0.57452
hcp 0.09722 0.48476
bcc 0.03637 0.51069
sc 0.76376 0.35355
liquid 0 0

To implement the Steinhardt parameter, Ql, as a collective variable in

metadynamics we need to be able to compute the derivatives, to calculate the

forces applied to the atoms in the system due to the CV The overall derivatives

we require are given by Equation 4.32:

∂Ql

∂xi
=

1

2

(
4π

2l + 1

l∑
m=−l

|Q̄lm|2
)− 1

2

·


∂

l∑
m=−l

|Q̄lm|2

∂xi

 (4.32)

Expanding the final term in the derivative down into its constituents we have:
∂

l∑
m=−l

|Q̄lm|2

∂xi

 =
l∑

m=−l

∂|Q̄lm|2

∂xi
=

l∑
m=−l

∂| 1
Nb

∑
Qlm(rij)|2

∂xi
(4.33)

Before we give a literature review of previous studies that have used Steinhardt

parameters, we will cover some more of the mathematics behind this method.
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4.4.2.1 Spherical Harmonics

In order to implement the Steinhardt parameters as CVs for metadynamics, we

need to be able to first calculate the spherical harmonics and their derivatives.

A spherical harmonic, Y m
l (θ, φ), is a complex function with two real arguments θ

and φ[273]. The values of θ and φ run in the ranges: 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π

and the two parameters l and m take values l = 0, 1, 2, . . . and m = l, l − 1, l −
2, . . . ,−l + 2,−l. As a result, any given l value has (2l + 1) functions associated

with it, corresponding to the possible m values.

Listed in this section are the derivatives of the Pm
l (cos θ) function, which form part

of the calculations we need for metadynamics. Note that where sin θ is present in

the spherical harmonics it has been substituted with the equivalent (1 − cos2 θ)
1
2

for the ease of differentiating Pm
l (cos θ) with respect to cos θ. First of all, the

spherical harmonics are defined as:

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
· Pm

l (cos θ) · eimφ (4.34)

There are three identities required for calculation of the associated Legendre

polynomials[274] Pm
l (x), where in the case of spherical harmonics x = cosθ.

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pm
l (4.35)

and

Pm
l (x) = (−1)m(1− x2)m/2

dm

dxm
(Pl(x)) (4.36)

and finally:

Pl(x) =
1

2ll!

dl

dxl
([x2 − 1]l) (4.37)

The real portion of the spherical harmonics can be visualised, and we have provided

images of these for l=4 in Figure 4.14. What can quickly be ascertained from these

images is the orientational nature of these mathematical forms. It is this quality

that provides the Steinhardt parameters a means of indicating the orientational

order around a given point.
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Figure 4.14: Visualisation of the real component of the spherical harmonics
with l=4. From left to right we have m=0, ±1, ±2, ±3, ±4. The positive

spherical harmonics are shown in red, and the negative in blue.

The spherical harmonics satisfy identity (4.38) which enables us to calculate the

spherical harmonics with negative m values from the positive m values. For this

reason, only the equations for m = 0...+ l are given.

Y −ml (θ, φ) = (−1)−m · Y m
l (θ, φ) (4.38)

4.4.2.2 Equations for calculating Q6

The spherical harmonics for l = 6 are given by the following equations:

Y 0
6 (θ, φ) =

1

32

√
13

π
· (231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5) (4.39)

Y 1
6 (θ, φ) = − 1

16

√
273

2π
· eiφ · sin θ · (33 cos5 θ − 30 cos3 θ + 5 cos θ) (4.40)

Y 2
6 (θ, φ) =

1

64

√
1365

π
· e2iφ · sin2 θ · (33 cos4 θ − 18 cos2 θ + 1) (4.41)

Y 3
6 (θ, φ) = − 1

32

√
1365

π
· e3iφ · sin3 θ · (11 cos3 θ − 3 cos θ) (4.42)

Y 4
6 (θ, φ) =

3

32

√
91

2π
· e4iφ · sin4 θ · (11 cos2 θ − 1) (4.43)

Y 5
6 (θ, φ) = − 3

32

√
1001

π
· e5iφ · sin5 θ cos θ (4.44)

Y 6
6 (θ, φ) =

1

64

√
3003

π
· e6iφ · sin6 θ (4.45)
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From these equations of the spherical harmonics for l = 6 we have Pm
6 (cos θ), from

which we can calculate
dPm

6 (cos θ)

d cos θ
:

P 0
6 (cos θ) = (231 cos6 θ − 315 cos4 θ + 105 cos2 θ − 5) (4.46)

dP 0
6 (cos θ)

d cos θ
= 1386 cos5 θ − 1260 cos3 θ + 210 cos θ (4.47)

P 1
6 (cos θ) = (1− cos2 θ)

1
2 · (33 cos5 θ − 30 cos3 θ + 5 cos θ) (4.48)

dP 1
6 (cos θ)

d cos θ
= −(1− cos2 θ)−

1
2 · (33 cos6 θ − 30 cos4 θ + 5 cos2 θ)

+ (1− cos2 θ)
1
2 · (165 cos4 θ − 90 cos2 θ + 5)

(4.49)

P 2
6 (cos θ) = (1− cos2 θ) · (33cos4θ − 18 cos2 θ + 1) (4.50)

dP 2
6 (cos θ)

d cos θ
= −198 · cos5 θ + 204 · cos3 θ − 38 · cos θ (4.51)

P 3
6 (cos θ) = (1− cos2 θ)3/2 · (11 cos3 θ − 3 cos θ) (4.52)

dP 3
6 (cos θ)

d cos θ
= −3 · (1− cos2 θ)

1
2 · (11 cos3 θ − 3 cos θ) · cos θ

+ (33 cos2 θ − 3) · (1− cos2 θ)
3
2

(4.53)

P 4
6 (cos θ) = (1− cos2 θ)2 · (11 cos2 θ − 1) (4.54)

dP 4
6 (cos θ)

d cos θ
= −4 · (1− cos2 θ) · (11 cos2 θ − 1) · cos θ

+ 22 cos θ · (1− cos2 θ)2

(4.55)

P 5
6 (cos θ) = (1− cos2 θ)

5
2 · cos θ (4.56)

dP 5
6 (cos θ)

d cos θ
= 5 · (1− cos2 θ)

3
2 · cos θ + (1− cos2 θ)

5
2 (4.57)

P 6
6 (cos θ) = (1− cos2 θ)3 (4.58)

dP 6
6 (cos θ)

d cos θ
= −6 · (1− cos2 θ)2 · cos θ (4.59)
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4.4.2.3 Equations for calculating Q4

The spherical harmonics for l = 4 are given by the following equations:

Y 0
4 (θ, φ) =

3

16

√
1

π
· (35 cos4 θ − 30 cos2 θ + 3) (4.60)

Y 1
4 (θ, φ) = −3

8

√
5

π
· eiφ · sin θ · (7 cos3 θ − 3 cos θ) (4.61)

Y 2
4 (θ, φ) =

3

8

√
5

2π
· e2iφ · sin2 θ · (7 cos2 θ − 1) (4.62)

Y 3
4 (θ, φ) = −3

8

√
35

π
· e3iφ · sin3 θ · cos θ (4.63)

Y 4
4 (θ, φ) =

3

16

√
35

2π
e4iφ · sin4 θ (4.64)

Listed below are the derivatives of the Pm
l (cos θ) function. Again, like those in

the previous section, sin θ has been substituted with the equivalent (1 − cos2 θ)
1
2

for the ease of differentiating w.r.t cos θ.

Pm
l (cos θ), and

dPm
l (cos θ)

d cos θ
for l = 4 are given by the following equations:

P 0
4 (cos θ) = 35 cos4 θ − 30 cos2 θ + 3 (4.65)

dP 0
4 (cos θ)

d cos θ
= 140 cos3 θ − 60 cos θ (4.66)

P 1
4 (cos θ) = (1− cos2 θ)

1
2 (7 cos3 θ − 3 cos θ) (4.67)

dP 1
4 (cos θ)

d cos θ
= −(1− cos2 θ)−

1
2 · cos θ · (7 cos3 θ − 3 cos θ)

+ (1− cos2 θ)
1
2 · (21 cos2 θ − 3)

(4.68)

P 2
4 (cos θ) = (1− cos2 θ) · (7 cos2 θ − 1) (4.69)

dP 2
4 (cos θ)

d cos θ
= −28 cos3 θ + 16 cos θ (4.70)

P 3
4 (cos θ) = (1− cos2 θ)3/2 · cos θ (4.71)

dP 3
4 (cos θ)

d cos θ
= −3(1− cos2 θ)

1
2 · cos2 θ + (1− cos2 θ)

3
2 (4.72)
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P 4
4 (cos θ) = (1− cos2 θ)2 (4.73)

dP 4
4 (cos θ)

d cos θ
= −4 cos θ + 4 cos3 θ (4.74)

4.4.2.4 Previous studies using the Steinhardt parameter

Mountain and Brown [275] were one of the first groups to attempt to use the

Steinhardt parameters as a means of analysing an MD trajectory. Their study

focused on the homogeneous nucleation of a Lennard-Jones liquid, and they

used the Q6 values to track nucleation events in systems modelled with different

potential parameters. The calculated Q6 values successfully indicated when the

system moved from being disordered (a Q6 value below 0.2) to increasingly

crystalline (a Q6 value of approximately 0.4-0.6).

Nosé and Yonezawa [276] followed on from the work of Mountain and Brown

[275] and used the Steinhardt parameters to analyse the level of crystallinity in a

Lennard-Jones system simulated at different temperatures using MD. They took

an 864 atom Lennard-Jones particle starting in the fcc structure, known to be

stable below 84 K. They performed simulations starting at 40 K and increased

the temperature incrementally by 10 K to 70 K, and then with 5 K increments

to 105 K. Simulations were also performed for the reverse scenario, starting from

a liquid structure and decreasing the temperature incrementally. The Steinhardt

parameters were used as a post-analysis of the simulation trajectories. Nosé and

Yonezawa [276] focussed primarily on the Q6 Steinhardt parameter, where they

use a Q6 value of approximately 0.4 as a general indicator of crystallinity. They

found that the softer the interaction between particles, the easier for nucleation

or growth to occur.

van Duijneveldt and Frenkel [272] used the umbrella sampling method of Torrie

and Valleau [211] to perform biased Monte Carlo simulations of nucleation events,

allowing them to estimate the free energy barrier for nucleation. As with the

studies mentioned above, van Duijneveldt and Frenkel [272] also chose to use the Q6

Steinhardt parameter as a representation of the crystalline order in their system.

However, in this case the Q6 parameter was used as the order parameter for biasing

the system, and thus for estimating the free energy difference between phases; in

previous studies the Q6 values were calculated solely to analyse the evolution of

crystallinity along a trajectory. van Duijneveldt and Frenkel [272] noted that the
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Q6 values are all of the same order of magnitude for the crystalline structures

of interest; this makes it a less effective means of distinguishing between crystal

structures, but useful as a generic measure of crystallinity in a system. The Q4

value is then the more useful parameter to distinguish between different crystalline

structures. Lynden-Bell et al. [277] continued in the same vein as van Duijneveldt

and Frenkel [272], but starting using the Steinhardt parameters to study the free

energy of nucleation events in ductile metals.

ten Wolde et al. [278] used the same regime of van Duijneveldt and Frenkel [272].

However, they were particularly interested in the structure of the precritical,

critical and postcritical nuclei - not only the nucleation rate and barrier. They

continued to use the Q6 parameter as the order parameter for the umbrella

sampling bias, while they also used the Q4 parameter and combinations of local

order parameters as means to analyse their trajectories. Their simulations showed

precritical nuclei were predominantly bcc phase. However, as these grew their

internal order, they became increasingly dominated by the fcc phase while leaving

a bcc shell.

Radhakrishnan and Trout [279] also implemented the same scheme of umbrella

sampling combined with Monte Carlo used by van Duijneveldt and Frenkel [272].

Radhakrishnan and Trout [279] used the Q4 Steinhardt parameter and tetrahedral

order parameter, ζ, as order parameters to bias the system towards nucleation

events to investigate the nucleation of ice in liquid water. Complementing

these studies were metadynamics simulations performed by Donadio et al. [219].

These simulations used the Q6 Steinhardt parameter and the number of five and

six-membered rings as collective variables to investigate the melting of ice.

Studies following the same theme of Radhakrishnan and Trout [279] were

performed by Quigley and Rodger [280], where they used MetaD simulations using

the Steinhardt parameter to study the nucleation and growth of ice. Quigley and

Rodger [281] have also used the Q4 Steinhardt parameters for exploring the free

energy of nanoparticles of calcium carbonate as a function of crystallinity. Very

recently Quigley and Rodger [282] have published an overview of using MetaD

with multiple collective variables to simulate crystallisation events. The review

touches on the works previously mentioned, where the Steinhardt parameter has

been used in umbrella sampling Monte Carlo simulations to bias the exploration

with respect to different crystalline states.
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Our own studies using the Steinhardt parameters combined with MetaD will be

discussed later, in Chapter 6. First, we will present our results for the studies

using the inertia tensor as a collective variable in the following chapter.



Chapter 5

Exploring the structures of zinc

sulfide clusters using the trace of

the inertia tensor as a collective

variable

5.1 Introduction

Zinc sulfide is a member of the chalcogenide family of materials and exists as

two main polymorphs, sphalerite and wurtzite. Recapping from our introductory

chapter, sphalerite has a cubic close-packed form with A-B-C-A-B-C stacking

sequence, and wurtzite has hexagonal close packing with A-B-A-B stacking. In

bulk, sphalerite is the preferred polymorph by approximately 2 kJ mol−1[80].

However, as the size regime is reduced this preference is found to reverse[98]. This

has been explained based on the of the surface energy of the two polymorphs;

sphalerite is estimated to have a surface energy of 0.86 Jm−2, while for wurtzite

the estimated value is lower, 0.57 Jm−2[98]. Experiments have shown that

nanoparticles of ZnS (approximately 3.4 nm diameter) suffer from internal strain,

most likely due to the surfaces attempting to relax, the effects of which are

exaggerated at this scale where there is a high surface to volume ratio[103]. At even

smaller sizes, such as clusters of hundreds of atoms in size or less, ZnS is expected

to take on shapes that do not resemble the bulk at all, but instead form open or

disordered clusters comprised of 4- and 6-membered rings[67, 111, 115, 283].

133
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As introduced in Chapter 1, other groups have investigated the shapes of small

clusters of ZnS using computational techniques. For example, genetic algorithms

have been used to evolve clusters of ZnS to different structures[115, 116], while

others have performed simulated annealing to locate low energy structures[111–

113]. These previous studies have determined many low energy configurations for

small clusters, most of which favour 3-coordinated atoms over the 4-coordinated

atoms found in bulk zinc sulfide. This 3-coordinated environment results in open

cage-like or ‘bubble’ clusters as depicted in Chapter 1. The objective of this work

is to examine whether the metadynamics method will offer an efficient means of

exploring configurations of zinc sulfide nanoparticles, without an a priori bias

towards any particular shape. The lack of a priori bias is not a feature unique to

metadynamics, it is a common feature of other global optimisation techniques

previously discussed such as genetic (or evolutionary) algorithms[114, 284] or

basin hoppingWales and Scheraga [285]. However, it will be the first time the

metadynamics method has been applied to the zinc sulfide system. The results of

previous studies will be a useful comparison to test the efficacy of our approach,

as many different configurations have already been identified.

As explained in the previous chapter, we have chosen to use two collective

variables that are suitable for exploring the configurations of finite systems such

as nanoparticles. The first of these is the trace of the inertia tensor, and is the

focus of this chapter. At the time of introducing this collective variable as part

of our studies, the gyration radius, a closely related variable, was being used by

different groups to assist in the study of protein folding[221]. However, the masses

of the atoms are usually omitted in the calculation of the gyration radius, while

they are retained in the calculation of the trace of the inertia tensor. Additionally,

a CV like the gyration radius has not been used for studying transformations in

nanoparticles of ionic systems as is done in this study. One of our aims is to

examine whether the trace of the inertia tensor can be used to explore the phase

space of small particles of zinc sulfide.

In the context of classical mechanics of rigid bodies, there is a physical property

known as inertia. The inertia is a measure of a system’s resistance to change in

motion and is directly related to the mass of the object[262]. This property applies

for linear motion, but if a body is free to rotate around an axis it also possesses

a resistance to rotational motion. This rotational resistance is described by the

moment of inertia, and it is related not just to the mass, but how the mass of the
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system is distributed with respect to that axis. The scalar moment of inertia for

a point with mass m is given by;

I = mr2 (5.1)

where r is the distance from the axis of rotation. An illustrative example of the

moment of inertia at work is that of an ice-skater. When the ice-skater crouches

down on one leg and extends the other outwards a sizeable change in the rotational

speed is evident, which is related to the sudden change in the mass distribution

around the rotation axis - and therefore of the moment of inertia of the ice-skater.

The moment of inertia is an additive quality, so if a system can be decomposed

into N subsystems, each of mass mi and distance ri from the axis of rotation, the

total moment of inertia is given by the sum of the moments of inertia for each

point:

I =
N∑
i=1

mir
2
i . (5.2)

If the axis of rotation is not specified, the moment of inertia can be generalised in

the form of a symmetric (3× 3) tensor:

I =


I11 I12 I13

I21 I22 I23

I31 I32 I33

 (5.3)

This definition allows for obtaining the inertia tensor around any axis by

matrix-vector multiplication. The calculation of the components of the inertia

tensor have already been provided in the previous chapter, so here we recall only

the concepts that are important for the present discussion. Firstly, since the

nanoparticles are unconstrained and free to rotate around every axis, a quantity

that depends on the definition of a specific frame of reference (i.e. defining

a specific rotation axis) is clearly inappropriate. We have to consider only

combinations of the elements of the inertia tensor that are rotationally invariant.

The simplest choice we can make is to look at the trace of the inertia tensor;

Tr(I) = I11 + I22 + I33 (5.4)
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which does not depend on the nanoparticle’s orientation in space. For an atomistic

system, this quantity is closely related to the radius of gyration:

Rg =

√
1

2
· Tr(I)∑N

i mi

=

√∑N
i mi · |ri − rCoM |2∑N

i mi

(5.5)

The trace of the inertia tensor (and the radius of gyration) gives an indication

of the distribution of mass in the system, and as such it has lower values when

particles are arranged in a compact spherical distribution and its value increases

as the system becomes elongated. The trace of the inertia tensor is an interesting

collective variable to use to explore the configurational space of nanoparticles, as

there are well known examples of the size-dependence of phases in nanoparticles.

A recent example is the work of Johansson et al. [286], where InAs nanowires show

diameter-dependent phase transitions from wurtzite to zinc-blende structures.

Using the trace of the inertia tensor as a collective variable with metadynamics,

we should be able to explore the free energy landscape of ZnS nanoparticles and

to calculate the relative stability of the various structures.

5.2 Methods

To use the metadynamics method we need a method of calculating and

representing the potential energy surface. We have already provided an

introduction to two approaches to evaluating the energy of a system in Chapter 2,

using quantum mechanics or, alternatively, using force field methods. As we wish

to use the metadynamics method to investigate a (hopefully) large portion of phase

space of ZnS clusters we are choosing the more efficient, though potentially less

accurate, approach. This requires the choice of a suitable force field to model the

Zn-S interactions. The force fields we have employed to model ZnS were obtained

from the literature[95] and have been summarised in Table 5.1. The form of

the Buckingham and torsional potential forms have already been introduced in

Chapter 2. The three-body potential in the force field of Wright and Gale [95] is

of a harmonic form which exponentially decays, to avoid discontinuity as atoms

move between coordination shells. The form is given by;

U =
1

2
kb(θijk − θ0)2 exp

(
−rij
ρ1

)
exp

(
−rik
ρ2

)
(5.6)



Chapter 5. Exploring ZnS clusters using the trace of the inertia tensor 137

Species Charge (e)

Zn core +2.00
S core +1.03061
S shell -3.03061

Buckingham potential A (eV) ρ(Å) C(eV Å6) Cut-off (Å)

Zn core - S shell 672.288 0.39089 0.0 12.00
S shell - S shell 1200.0 0.14900 0.0 12.00

Three-body potential k(eV/rad2) θ(◦) ρ1/ρ2(Å) Cut-off (Å)

S shell - Zn core - S shell 9.42834x106 109.47 0.3 6.0

Table 5.1: Interatomic potentials used for the MetaD simulations of ZnS using
the trace of inertia tensor as a CV. These potentials were obtained from Wright

and Gale [95]

where kb is the force constant, θ0 the equilibrium three-body angle between the

bonds i-j and j-k, while ρ1 and ρ2 influence the coupling between angle- and

bond-stretching terms[95]. In the context of ZnS all angles relevant to this

three-body potential will have the same end-member atom types, so for this

material ρ1 and ρ2 are constrained to possess the same value.

For bulk ZnS the force field of Wright and Gale [95] gives the sphalerite structure as

the most favourable, as is also observed in experiments. We note, however, that the

correct description of the subtle energy difference between these two polymorphs

(∼2 kJ/mol[80]) is difficult to capture in both force field and quantum mechanical

studies. The chosen force field of Wright and Gale [95] achieves this correct order

of stability by employing a four-body torsional term between alternating atoms,

Zn-S-Zn-S. However, in the case of our nanoparticles we have opted to neglect

this torsional term. The potential parameters obtained for modelling ZnS were

not originally designed for molecular dynamics studies, rather they were designed

for use in lattice dynamics. The energy contribution supplied by the torsional

term does not behave cleanly and continuously as the connectivity between atoms

is altered. As a result this torsional energy term is not valid when applied to

molecular dynamics simulations, where the connectivity between Zn and S atoms

is dynamic.

In the second part of this study, we explored the behaviour of ZnS nanoparticles

in water. Here we used the same parameters for the Zn-S interactions given in
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Table 5.1 while the interactions of ZnS with water were taken from the work of

Hamad et al. [110]. These potentials are given in Table 5.2.

Buckingham potential A (eV) ρ (Å) C(eV Å6) Cut-off (Å)

S - Ow 123571 0.25 0.0 12.00
Zn - Ow 125 0.4 0.1 12.00

Lennard-Jones A (eV Å12) C (eV Å6) Cut-off (Å)

S - Hw 3.5 0 12.00

Table 5.2: The ZnS-water interactions used for our simulations of ZnS
nanoparticles in water. These potentials were obtained from the work of Hamad

et al. [110].

Species Charge (e)

Ow -0.820
Hw +0.410

Species Bond length (Å) kbond (eV/Å2)

Ow - Hw 0.96 23.44

Species θ (◦) kangle (eV/rad2)

Hw-Ow-Hw 104.5 2.17

Lennard-Jones potential A (eV Å12) C (eV Å6) Cut-off (Å)

Ow - Ow 27291.75 27.12 12.00
Hw - Hw 4x10−13 0.0 12.00

Table 5.3: The potential parameters of the CVFF water model of Lau et al.
[287].

For consistency, we have employed the same water model as that used in the

studies performed by Hamad et al. [113]. This is a flexible water model known

as the consistent valence force field (CVFF) water model and its parameters are

reported in Table 5.3

The electrostatic and van der Waals interactions were calculated with a direct

sum for the nanoparticles in vacuum while for the simulations in water the Ewald

summation scheme was used for the electrostatic interactions.

Our starting configurations were generated by cleaving small clusters from bulk

wurtzite using GDIS[288]. All the simulations were performed using a timestep

of 1 fs and run for as much as 120 ns simulation time. Small clusters of (ZnS)n

were examined, where n = 3 − 24. These cluster sizes were chosen since they
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encompass those used in previous studies[111–113, 116] where compact, well

ordered, low energy structures were found for similar sized clusters of zinc sulfide

using different methods. These starting structures were optimised before being

brought to equilibrium, for 10 ps, at 300 K using a Berendsen thermostat.

Metadynamics simulations were then performed in duplicate with

different Gaussian parameters; both simulations had a Gaussian width of

0.1·masscluster amu Å
2
, while one ran with a Gaussian height of 0.2 eV and the

other with 0.1 eV, where masscluster is the total mass of the cluster in atomic

mass units (amu). Structures were then taken at regular intervals from each of

the simulation trajectories and optimised using Newton-Raphson methods, with

the program GULP[160], to determine if the located structure was stable or not.

Only structures with real phonon frequencies were considered stable and included

in our tabulations of cluster configurations.

5.2.1 First principles calculations

Optimisation of the low-energy structures found during the above simulations was

also performed using first principles methods, with the program SIESTA[138], to

evaluate whether the same order of stabilities is seen in both the force field and first

principles calculations. This was particularly of interest for the structures found

to be most stable for each size to see if there are any discrepancies between the

two methods, and to compare these to previous theoretical studies. Additionally,

we could compare the relative stabilities of structures using both these methods to

the experimental data, such as the work of Kasuya et al. [67], which found clusters

such as (ZnS)13 to be most stable through time-of-flight mass spectrometry.

Throughout the present work the Generalized Gradient Approximation of Perdew

et al. [289], known as the PBEsol exchange and correlation functional, has been

used. This is an improvement on their well known GGA functional PBE[131],

where the functional has been optimised for use in solid-state systems. PBEsol

has recently been used in a comprehensive study of the two polymorphs of FeS2,

pyrite and marcasite[290]. This study showed that some GGA functionals, such as

PBEsol, produce a contraction of the lattice parameters, resulting in the correct

prediction of the order of stability of the two polymorphs. As we are interested

in investigating the stabilities of the clusters relative to the solid-state, and for a

material where there are two polymorphs separated by a small energy difference, it
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was important to use a functional which has greater potential to accurately model

the relative stabilities of polymorphs.

The first principles SIESTA[138] methodology expands the Kohn-Sham wave

functions using a linear combination of atomic orbitals (LCAO). The nuclei

and core electrons of atoms are represented through the use of norm-conserving

pseudopotentials of the form developed by Troullier-Martins[139], while the

valence electrons are treated explicitly. The valence electronic configurations for

generating the pseudopotentials were Zn (3s23p63d10) and S (3s23p4). The basis

sets for sulfur required triple-ζ quality 3s and 3p orbitals and double-ζ quality 3d

orbitals, while for zinc double-ζ quality was necessary for the 4s, 4p, and 3d, and

single-ζ for the 3s and 3p semi-core orbitals. A full description of the basis sets

used in this study is given in Appendix B. The shape of the basis set was improved

following the method introduced by Junquera et al. [291], where the pseudoatomic

orbitals (PAO) of the isolated atoms are enclosed within a soft-confined spherical

potential, removing any discontinuity of the basis function first derivative at the

cut-off radius. A split-norm value of 0.15 was used along with 0.02 Ry for the

energy shift of radial confinement. An auxiliary real-space Cartesian grid with a

cut-off of 400 Ry was used for calculating quantities based on electron density.

5.2.2 Path variables

As will become clear in the following sections, while the trace of the inertia tensor

was successful in exploring phase space it turned out to be unsuitable to determine

the free energy differences between the various structures found. Hence, we

have investigated other collective variables to attempt calculations of free energy

differences. Although nanoparticles are small and relatively simple systems, there

is no unique CV which is able to differentiate between all the possible shapes

and connectivities that are accessible. However, since we have generated long

metadynamics trajectories that explored wide portions of the phase space, we can

easily extract from them short segments that display the transition between almost

any given pair of structures. These short fragments are obviously not enough to

extract the free energy profile of the transitions, but they can be used to define a

set of CVs that describe the progression of the system along the transition path.

In the path variable approach, the Cartesian coordinates of the subset of atoms

that are thought to be the most important for the transition are arranged into
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a multidimensional array, R(t), and a sequence of snapshots of their positions is

taken in order to form a path that connects the starting point, RA = R(0), to the

final one, RB = R(1).

The above is the approach of Branduardi et al. [292], who introduced two CVs

that utilise the array R(t). The first CV corresponds to the “position” along the

path;

s(R) = lim
λ→∞

∫ 1

0
te−λ(R−R(t))2dt∫ 1

0
e−λ(R−R(t))2dt

(5.7)

while the second CV corresponds to the “distance” orthogonal to the path;

z(R) = lim
λ→∞
−1

λ

∫ 1

0

e−λ(R−R(t))2dt (5.8)

s and z are generally referred to as the “path collective variables”. In our studies

the frequency at which the trajectory had been saved during the metadynamics

simulations was not enough to generate a path with sufficient resolution of the

transition state region. Therefore, in order to obtain a sufficient number of

equally spaced points along the path, we performed an interpolation between the

available frames using Cutmull-Rom Cartesian splines[293]. The exact definition

of the frames composing the path is not critical to the success of the free energy

calculations, provided that the true transition path lies close to one used in the

MetaD simulation.

To calculate the free energy difference between two small nanoparticles in vacuum

the above method is not necessary, as the same result can be achieved quickly

using lattice dynamics, as implemented in GULP[160]. It is possible to calculate

the Helmholtz free energy within lattice dynamics using the vibrational partition

function. The quasi-harmonic approximation is employed, which assumes that the

atoms are vibrating purely harmonically. Under this assumption, the vibrational

frequencies can be calculated from the (assumed) harmonic vibrations, and a single

point calculation of the free energy is performed on each optimised cluster[160].

Kantorovich [294] introduced analytical derivatives of the free energy, which have

also been implemented in a program known as SHELL[295] and in GULP[160].

The variety of methods available and their implementation is beyond the scope of

this work, however they are outlined in more detail by Gale and Rohl [160].

The comparison of the values obtained from these two methods (MetaD with

the path variables vs. free energy calculation in lattice dynamics) will be an
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important proof of concept. Free energy calculations can be performed in different

conditions using the path method, which may not be feasible within lattice

dynamics. For example, when the presence of solvent plays an important role

the path method can be used. However, the free energy calculations performed

within the quasi-harmonic approximation for ordered structures are valid only in

cases where there is a single dominant local minimum - such as finite nanoparticles

or bulk structures.

5.3 Results and Discussion

We initially performed metadynamics simulations using the trace of the inertia

tensor as the CV on (ZnS)n nanoparticles of different sizes (n = 3−24) in vacuum

and subsequently used the path CV to extract the free energy differences. The

complete set of structures and their energies are reported in Appendix A while here

we report only the lowest energy structure for each size and a complete description

of the (ZnS)12 nanoparticle, and associated structures, as a representative example.

5.3.1 Structures

The minimum energy structures obtained for each of the cluster sizes from our

MetaD simulations are summarised in Table 5.4. The lowest energy structure

obtained from the MetaD simulations of the cluster sizes we have analysed is that

of (ZnS)21. The energies shown in Table 5.4 are given first as potential energy

per formula unit, and secondly as the relative potential energy per formula unit

with respect to this lowest energy cluster. A point of interest is that the minimum

energy nanoparticle for almost every size has a cage-like structure, and they share

the same 4- and 6-membered motifs (with alternating Zn and S atoms). Creating

a network of 4- and 6-membered rings appears to be a way reduce the energy of

the cluster when in this size range.

First principles calculations of the minimum energy clusters were also performed

using SIESTA, and a remarkably similar trend in relative potential energy vs.

cluster size was found. The potential energy per formula unit was determined

with respect to sphalerite, for the minimum energy structures obtained from both

methods, and plotted against the cluster size, as shown in Figure 5.1. This figure
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Structure (ZnS)3 (ZnS)4 (ZnS)5 (ZnS)6

U/ZnS -3030.9 -3066.6 -3081.5 -3114.5
∆U/ZnS 140.2 104.5 89.6 56.6

(ZnS)7 (ZnS)8 (ZnS)9 (ZnS)10

U/ZnS -3118.9 -3135.4 -3142.9 -3143.8
∆U/ZnS 52.2 35.7 28.2 27.3

(ZnS)11 (ZnS)12 (ZnS)13 (ZnS)14

U/ZnS -3150.6 -3157.8 -3156.3 -3159.8
∆U/ZnS 20.5 13.3 14.8 11.3

(ZnS)15 (ZnS)16 (ZnS)17 (ZnS)18

U/ZnS -3163.1 -3163.0 -3164.7 -3160.0
∆U/ZnS 8.0 8.1 6.4 11.1

(ZnS)21 (ZnS)22 (ZnS)24

U/ZnS -3171.1 -3170.5 -3166.5
∆U/ZnS 0.0 0.6 4.6 -

Table 5.4: Summary of compact clusters of zinc sulfide and potential energies,
as obtained from forcefield methods. The potential energy per formula unit
(U/ZnS) is shown in kJ mol−1. Relative potential energies per formula unit
(∆U/ZnS) with respect to the lowest energy structure in this set of sizes,

(ZnS)21, are also shown in kJ mol−1.
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Figure 5.1: Plot of potential energy per ZnS formula unit relative to sphalerite
(∆U/ZnS) vs. cluster size, for clusters (ZnS)n, where n=3. . . 24. The data

obtained from both force field methods and DFT are shown.

also indicates that the smaller cluster sizes are generally higher in energy; as the

size of the clusters increases the energy per formula unit decreases, but beyond

n = 10 the range in variation in energy is much smaller, and must eventually

reach a value of 0 (a potential energy equivalent to sphalerite) at larger sizes. The

structures contain predominantly 3-fold coordinated atoms, in contrast to the bulk

counterparts where the Zn and S atoms are all 4-fold coordinated. We also find

that the larger structures can accommodate a greater number of 6-membered rings,

which have a geometry close to that found in bulk wurtzite and sphalerite, despite

the lower coordination of the atoms. 4-membered rings, which are necessary to

close the cage, have a much smaller Zn-S-Zn (and S-Zn-S) angle making them

higher in energy than a 6-membered ring. We have investigated the correlation

between the energy and the presence of 4- and 6- membered rings, and their

connectivity. Figure 5.2 shows where the energy per formula unit vs. the number

of 4- and 6-membered rings, and also vs. the number of 4- and 6- membered rings

fused together and the number of 4-membered rings fused together. In general the

number of 4-membered rings stays constant, with an average of six 4-membered

rings present. There appears to be a relationship between the energy and the

number of 6-membered rings present, as when there are more 6-membered rings
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the U/ZnS decreases. However, the slope of this trend is significantly decreased

beyond ten 6-membered rings. The most indicative plots are the lower two plots

in Figure 5.2, where the energy per ZnS formula unit is shown with respect to the

number of 4-membered rings fused together (sharing a bond), and the number of

4- and 6-membered rings sharing a bond. Excluding the high-energy outliers for

the plot of U/ZnS for the 4-membered rings, ((ZnS)3 and (ZnS)5), we find that as

the number of 4-membered rings sharing a bond is increased, so does the energy.

Conversely, as the number of 4- and 6-membered rings sharing a bond is increased,

the energy decreases. These values are inherently related, as a decreasing number

of 4-membered rings present generally implies a greater presence of 6-membered

rings.

An analogous argument to those above can be used to explain the presence

of 8-membered rings in some high energy structures (see Appendix A). The
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Figure 5.2: Plots of U/ZnS vs. number of 4-membered rings present (top left),
number of 6-membered rings present (top right), number of 4- and 6-membered
rings fused together (bottom left) and number of 4-membered rings fused
together (bottom right). The lines are a line of best fit to the data, with any

outliers not included in the fit circled.
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8-membered rings can easily be rearranged into a combination of 4- and

6-membered rings that have a lower energy. This is highlighted by the fact

that we found very few structures with 8-membered rings, and the ones which do

have 8-membered rings are generally very high in energy in comparison to other

structures for the same cluster. The (ZnS)18 and (ZnS)24 clusters are clear outliers

in Figure 5.1, with higher relative energies than their respective neighbours. Both

these clusters are the only minimum-energy clusters in Table 5.4 which have an

8-membered ring present. Based on the clear preference for 4- and 6- membered

rings within this size range, it is likely that we have not sufficiently explored the

configuration space to locate lower energy structures for these two cluster sizes.

There are other examples of high energy structures with 8-membered rings in

Appendix A. One example is a structure with two 8-membered rings connected

via eight 4-membered rings, found as the highest energy structure for the (ZnS)12

cluster. The smallest clusters are also an indication of the ring-preference, for

example, the (ZnS)4 cluster, whose lowest energy structure is composed of a fused

4- and 6-membered ring, rather than an 8-membered ring.

In the introductory chapter we presented a literature review of studies performed

on zinc sulfide nanoparticles, both experimental and theoretical. A study

performed by Kasuya et al. [67] using time-of-flight mass spectrometry showed

that the (ZnS)13 nanoparticle was unusually more stable than surrounding sizes,

and the same was observed for (ZnS)33 and (ZnS)34, two sizes not considered in

our current study. Similar results were seen for other materials, CdS and CdSe, in

the same work[67]. Our force field and DFT calculations do not indicate the same

result for the n = 13 cluster. In fact it is slightly higher in energy than the two

neighbouring cluster sizes. We should note however that the experimental data

obtained from time-of-flight mass spectrometry refers to charged clusters, while

our calculations are for neutral clusters. It is possible the relative stabilities of the

clusters may be different for charged clusters versus neutral clusters.

Though there is a clear linear relationship between the number of 4-membered

rings fused to 6-membered rings, the relationship is less obvious with the other

structural parameters we have obtained for each structure. Using multiple linear

regression we can obtain a linear combination of these structural terms to estimate

the potential energy per ZnS of a given cluster. A general form for a linear fit of



Chapter 5. Exploring ZnS clusters using the trace of the inertia tensor 147

independent variables x1, x2, . . . , xn is given by:

y = m1x1 +m2x2 + · · ·+mnxn + c (5.9)

In our case each term of the equation will be a contribution to the estimated total

energy, Etotal:

Etotal ≈ E4−ring + E6−ring + E8−ring + E4−4fused+

E4−6fused + E6−6fused + E4−8fused + E6−8fused + c
(5.10)

The terms E4−ring, E6−ring and E8−ring refer to the energy contribution due to the

presence of 4-, 6- and 8-membered rings respectively. The values used to fit these

three terms will be the number of each of these rings present in our clusters. The

final three terms E4−4fused, E4−6fused and E4−8fused are the energy contributions

due to adjacent ring types sharing a bond or edge, for example a 4- membered ring

fused to a 6- membered ring would contribute to the E4−6fused term. The values

used to fit these terms will be the number of these fused ring pairs present in each

cluster. The final value, c, is a constant.

The dataset used for the multiple linear regression are given in Table 5.5, where the

known values are the energies and the unknowns the count of 4-, 6-, 8- membered

rings and their shared bonds. The data given in Table 5.5 are not only for

the lowest energy minima for each cluster size, but also for additional compact

conformations (listed in Appendix A). This was necessary to obtain a better fit

to our data, particularly with respect to clusters with 8-membered rings. Had we

only used the minimum energy clusters there would only be two entries in the

table, (ZnS)18 and (ZnS)24, with any values to assist in fitting the 8-membered

ring parameters.

Fitting our data to Equation (5.10), where each energy term equates to a

constant, m, multiplied by an independent variable, e.g., n4−ring, we obtain an

approximation to Etotal in units of kJ/mol;

Etotal ≈ −61.61 · n4−ring + 64.20 · n6−ring + 59.678 · n8−ring + 32.45 · n4−4fused

+2.11 · n4−6fused − 21.90 · n6−6fused + 7.32 · n4−8fused − 18.40 · n6−8fused − 3095

(5.11)
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Table 5.5: Table of potential energies (kJ mol−1/ZnS) and structural
parameters for (ZnS)n, n = 3, . . . , 24. Here 4-ring, 6-ring and 8-ring are the
number of 4-, 6- and 8- membered rings, respectively, and 4-4, 4-6, 6-6, 4-8 and
6-8 fused refer to joins (shared edges) between 4-, 6- and 8- membered rings.

n U/Zns 4-ring 6-ring 8-ring
4-4
fused

4-6
fused

6-6
fused

4-8
fused

6-8
fused

3 -3030.85 0 1 0 0 0 0 0 0
4 -3066.58 6 0 0 12 0 0 0 0
4 -3035.38 0 0 1 0 0 0 0 0
5 -3081.53 4 2 0 5 6 3 0 0
6 -3114.47 6 2 0 6 12 0 0 0
7 -3118.92 6 3 0 6 12 3 0 0
7 -3115.35 4 4 0 3 10 7 0 0
8 -3135.36 6 4 0 4 16 4 0 0
8 -3116.05 2 6 0 0 8 14 0 0
9 -3142.86 6 5 0 3 18 6 0 0
9 -3133.41 4 6 0 2 12 12 0 0
10 -3143.76 6 6 0 4 16 10 0 0
10 -3132.46 4 7 0 2 12 15 0 0
10 -3126.07 5 5 1 3 9 7 6 6
11 -3150.65 6 7 0 2 20 11 0 0
11 -3142.01 4 8 0 2 12 18 0 0
12 -3157.80 6 8 0 0 24 12 0 0
12 -3150.09 6 8 0 2 20 14 0 0
12 -3146.94 7 6 1 4 16 8 4 4
12 -3151.76 6 8 0 4 16 16 0 0
12 -3134.66 8 4 2 4 16 0 8 8
13 -3156.33 6 9 0 2 20 17 0 0
13 -3148.53 5 8 1 0 18 12 2 6
14 -3159.75 6 10 0 1 22 19 0 0
14 -3151.14 4 11 0 1 14 26 0 0
15 -3163.13 6 11 0 0 24 21 0 0
15 -3156.99 7 9 1 3 20 14 2 6
15 -3154.74 4 12 0 2 12 30 0 0
16 -3163.03 6 12 0 0 24 24 0 0
16 -3162.48 6 12 0 2 20 26 0 0
17 -3164.69 6 13 0 1 22 28 0 0
17 -3157.58 7 11 1 3 20 20 2 6
18 -3160.02 7 12 1 2 21 23 3 5
18 -3159.77 5 13 1 1 18 26 0 8
21 -3171.12 6 17 0 0 24 39 0 0
22 -3170.49 6 18 0 0 24 42 0 0
24 -3166.46 7 18 1 1 24 39 2 6

This fit yields an R2 value of 0.95, and the energy values obtained from

Equation (5.11) are plotted along with the energy values obtained from lattice
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dynamics, both shown in Figure 5.3. One possible limitation to this fit is the

quantity of data used to fit the parameters. However, we will test the ability of

this fit to estimate the energy of new clusters in one of the following sections.

A plot of the differences between the estimated data (from Equation (5.11)) and

the values obtained from optimisation is given in Figure 5.4. We can see that in

general the estimated energy is within 15 kJ/mol per formula unit of the actual

value obtained from optimisation.

We should point out that the data we have given in Table 5.5 all relate to the

total number of edges, faces and vertices each cluster is composed of. The sum of

the number of 4-, 6- and 8- membered rings will give the number of faces, while

the sum of the ‘fused rings’ terms ultimately gives the number of edges. These

parameters have been combined in the past to form Euler’s characteristic, which

has a specialised form for any convex polyhedron[296];

V + F = E + 2 (5.12)

where V is the number of vertices, F the number of faces and E the number of
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Equation (5.11).

edges. This theorem holds for any convex polyhedron, that is, we do not count

dangling bonds, or rings which can be considered ‘internal’ to the cluster (i.e.,

contained within an outer surface). The structures we have chosen to fit our

energies all obey Euler’s characteristic. Previous studies into the structures of

small ZnS clusters have often referred to this theorem in relation to the low energy

clusters obtained. Spanó et al. [111] provide two formulae they suggest can be used

to predict the number of 4- and 6-membered rings present in a minimum energy

cluster:

N6−ring = n− 4−N8−ring (5.13)

N4−ring = 6 +N8−ring (5.14)

This prediction indeed holds true for the majority of the minimum energy clusters

we have obtained from n = 3 − 24. There are four outliers, n = 3, 5, 18, 24.

As we already described, (ZnS)18 and (ZnS)24 are the only minimum energy

clusters we found which have 8-membered rings present, and there are likely to

be bubble clusters for these sizes formed of only 4- and 6-membered rings which
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our simulations have not found. The smallest cluster n=3 can be explained as

it is not a polyhedron, but a lone 6-membered ring. The n=5 cluster can be

explained to be an outlier due to the small number of 4-membered rings. According

to Equation 5.14 of Spanó et al. [111], each low energy cluster should have six

4-membered rings, and more if there are 8-membered rings present. In the case of

our low energy n = 5 cluster there are only four 4-membered rings present. This

relationship of Euler’s theorem to small ZnS clusters is also discussed in the work

of Burnin et al. [116], a work we will consider in more detail in the next section.

5.3.1.1 Comparison with previous studies

As we mentioned in the introduction, many of the cluster sizes we have chosen

to investigate have already been identified in the literature. This means we can

compare our structures to those in the literature to compare the efficacy of our

method with those of other groups.

One study is particularly relevant and that is the work of Burnin et al. [116], as

they have investigated small clusters of (ZnS)n, where n = 1 − 16. Their work

used search and genetic algorithms to locate unique cluster topologies; the clusters

were then optimised using DFT. The majority of the lowest energy clusters in this

size range correspond our lowest energy minimum clusters. The only structures

which do not correspond to theirs are the clusters for n = 4, 5, 10. In their study

the clusters of size n = 1 − 5 do not form any ‘bubble clusters’. Instead they

form only one and two dimensional structures, such as a simple bond (n = 1)

or rings for n=2-5, where a 4-, 6-, 8- and 10-membered ring are found for these

sizes. In contrast, our our lowest energy cluster for n = 4 produced a ‘cube’

shape of six 4-membered rings, while the n = 5 cluster is closely related to the

n = 4 structure, though with two 2-coordinated atoms protruding from the ‘cube’

forming a 6-membered ring. These two clusters are shown in the work of Matxain

et al. [283] as local minima, and the n=4 ‘cube’ also appears as a local minimum in

the work of Burnin et al. [116], while the 8- and 10- membered rings are considered

the global minima for these cluster sizes according to the DFT calculations of

both of these studies. With our current force field parameters we were unable

to optimise these same 8- and 10-membered ring clusters; all attempts to create

and optimise these two ring clusters resulted in optimisation down to the two low

energy clusters already described and given in Table 5.4.
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While we were unable to optimise these larger ring structures using force field

methods, we did successfully optimise these clusters using DFT. The difference in

these values are given below in Table 5.6.

Table 5.6: The relative potential energies obtained for the lowest energy
clusters found for n = 4, 5, and also the 8- and 10-membered ring clusters
cited in other works[116, 283] as the global energy minima at these sizes. The
values are given in kJ/mol, as obtained from DFT calculations, and are relative

to the energy obtained for bulk ZnS as the sphalerite polymorph.

Structure ∆U/ZnS (DFT)

n=4

152.32

129.16

n=5

87.67

130.10

We find that the 8-membered ring structure is in fact lower in energy than the

‘cube’ form we found in our MetaD simulations. However, the 10-membered ring

structure is less stable the ‘bubble’ like form.

The (ZnS)10 cluster given in the work of Burnin et al. [116] forms a cluster similar

to the sodalite cage structure, a ‘bubble’ of 4- and 6-membered rings. The low

energy (ZnS)10 cluster in our work is a well ordered cluster consisting of two layers

of two fused 6-membered rings; this has more resemblance to a section of bulk

than a bubble cluster. In this case it is possible we have not explored phase

space sufficiently to find these bubble-like clusters, or alternatively we are seeing

a preference dictated by the force field we are using.

One cluster that is of particular interest is the (ZnS)13 cluster which has appeared

as an ultra-stable nanoparticle in the mass spectra produced in experiments of
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both Kasuya et al. [67] and Burnin et al. [116]. In the case of Kasuya et al.

[67], further extended X-ray absorption fine structure experiments showed the

average coordination of atoms in their clusters to be approximately 3.2, less than

bulk (a coordination of 4) but greater than the coordination of a completely open

cage structure. Based on this data they suggest “core-cage” structures as the

most stable, with a central core atom surrounded by a cage (or cages). Their

suggested ultra-stable cluster for CdSe (and also ZnS) is shown on the left in

Figure 5.5. Burnin et al. [116] also performed laser ablation experiments on zinc

sulfide, using a time-of-flight mass spectrometer to investigate the particles formed,

and discovered the same ultra-stable particles as Kasuya et al. [67]. The global

minimum structure for the neutral (ZnS)13 cluster of Burnin et al. [116] is shown

as the central cluster in Figure 5.5. Our (ZnS)13 cluster, viewed from a different

direction to that shown in Table 5.4, appears very close in topology to that found in

the Burnin et al. [116] study. However, the Zn and S atoms appear at alternating

positions. We manipulated our structure to resemble that of Burnin et al. [116]

and optimised it in the same manner as our previous structures. We found our

(ZnS)13 structure to be of the same energy as that of Burnin et al. [116], within

the accuracy of our optimisation methods. None of our “global minima” for the

cluster sizes explored in our study showed a preference for the “core-cage”-like

structure similar to that of Kasuya et al. [67]. This could be an effect of limited

exploration of phase space, or simply a preference for open-cage structures with

the interionic potentials used.

Figure 5.5: Suggested cluster formations for the ultra-stable (ZnS)13 particle.
Kasuya et al. [67] (left), Burnin et al. [116] (middle) and our studies (right).
Images reproduced from Kasuya et al. [67] and Burnin et al. [116] respectively.
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5.3.1.2 Building clusters from the sodalite cage

It is evident from our simulations that the low energy nanoparticles found during

the metadynamics for n = 22 and n = 24 have little, if any, symmetry. However,

making an analogy with zeolites, we can easily imagine different structures

obtained by fusing together two sodalite cage ZnS nanoparticles and using them

as starting configurations for MetaD simulations, as shown in Figure 5.6.

Figure 5.6: The five possible ways to join and fuse together two sodalite cage
units of ZnS, forming (ZnS)21, (ZnS)22 and three forms of (ZnS)24, shown in

order from top left to bottom right.

There are two regions at which the sodalite cages can easily join - at a 4-membered

or 6-membered ring. A (ZnS)21 structure is formed when two sodalite cages are

fused together at a 6-membered ring and an analogous (ZnS)22 structure exists

with two sodalite cages fused across a 4-membered ring. Three (ZnS)24 structures

can be formed by allowing bonds to connect two sodalite cages, again either at

a 4- or 6-membered ring. The (ZnS)24 structure formed by bridging across the

four membered ring is unique, while it is possible for (ZnS)24 to form two distinct

structures when connection occurs at the 6-membered ring, depending on how

the two sodalite cages are aligned. This is due to the fact that rotating one of

the sodalite cages about the 6-membered ring ‘join’ by 60 degrees results in three

4-membered rings aligned together, or alternatively two 4-membered rings and a

6-membered ring.

MetaD simulations of these structures were performed with Gaussians of height

0.1 eV and width 50 amu Å2, and run for between 12 and 24 ns. A number of new

cage-like structures were obtained, and these are summarised in Table 5.7 along

with the optimised starting structures based on the sodalite cage.
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(ZnS)22 (ZnS)21 (ZnS)24 (ZnS)22

U/ZnS -3159.98 -3163.65 -3163.77 -3164.68
∆U 12.89 9.22 9.10 8.19

(ZnS)24 (ZnS)21 (ZnS)24 (ZnS)21

U/ZnS -3164.88 -3165.17 -3165.22 -3166.60
∆U 7.99 7.70 7.65 6.27

(ZnS)22 (ZnS)22 (ZnS)22 (ZnS)24

U/ZnS -3167.10 -3167.83 -3168.56 -3172.87
∆U 5.77 5.04 4.31 0.00

Table 5.7: Summary of potential energy values for structures composed of
sodalite cages fused or bridged together, along with additional low energy
configurations obtained from MetaD simulations initiated from these fused
structures. Potential energies per formula unit (U/ZnS) are given in kJ mol−1.
Relative potential energies (∆U) with respect to the lowest energy structure in

this set of sizes, (ZnS)24, are also given in kJ mol−1.

The highest energy structures were the two clusters comprised of ‘fused’ sodalite

cages - the (ZnS)21 and (ZnS)22 clusters shown in Figure 5.6. A low energy cage-like

cluster was found from the 48 atom simulations, with a potential energy 1.83

kJ/mol (per formula unit) lower in energy than the (ZnS)21 cluster found to be

the lowest cluster from the original MetaD simulations. The relative potential

energies given in Table 5.7 are shown with respect to the new 48 atom cage-like

cluster, which is the lowest energy structure found in our studies. All the MetaD

simulations for (ZnS)24 resulted in a quick transformation to this minimum energy

structure, or very similar structures which, when taken from the trajectory and

optimised, minimise down to the lowest energy cage-like structure. The MetaD

simulations performed on the remaining sizes did result in a variety of new clusters

that are given in Table 5.7.
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The (ZnS)21 simulations did result in some new structures, but none lower in

energy than the highly symmetric bubble-like (ZnS)21 cluster already obtained in

the previous simulations. For (ZnS)22 we also found quite a few new clusters, one

of which is a highly symmetric long cluster that was found to be the second-lowest

energy cluster in these new structures. Again, the lowest energy (ZnS)22 cluster

was that obtained from the previous set of MetaD simulations.

The above simulations do not prove that we have found the lowest energy structure

for n = 24, but this process has shown conversely that the structures found in our

metadynamics simulation can significantly depend on the starting configuration.

This is particularly the case for these larger clusters, where the size of the phase

space to be explored goes beyond what can be achieved in the simulation time,

even with the assistance of metadynamics. An additional difficulty with these

simulations of the largest clusters is that we often found that geometrically

different clusters can have the same value of the trace of the inertia tensor, again

indicating that this CV is increasingly ineffective for large clusters.

We can use the relevant structural data for these clusters to obtain an estimation

of the energy using the fit we obtained in Equation 5.11. The relevant structural

parameters are given in Table 5.8, along with the approximation to the energy

obtained from the linear fit. The data we have used for the clusters obeys Euler’s

characteristic (i.e., V+F=E+2), which means we have not counted ‘internal’ rings,

which could be included in the case of the fused sodalite cages.

The data in Table 5.8 has been separated into two groups, the “bubble” clusters

obtained from MetaD simulations, and the fused/bridged sodalite cages. The fit

of the energy for the bubble clusters is within 15 kJ/mol per ZnS unit of the

actual value obtained from our optimisations. This is the same order of error we

found in our previous set of estimations. The greatest discrepancies in this new

set of data are with our fit of the fused and bridged sodalite cage structures, for

which the fused/bridged regions are perhaps not accurately represented by the

structural parameters we have given. While we have included the four fused-ring

values present for each 4-coordinated atom present at a joining region, we did

not count any ‘internal’ rings which exist between two connected or fused sodalite

cages. The energy estimation for these clusters are between 45 and 70 kJ/mol per

formula unit less than the values obtained from optimisation.



Chapter 5. Exploring ZnS clusters using the trace of the inertia tensor 157

Table 5.8: Table of structural parameters and estimated energies for the
(ZnS)n, n = 21, . . . , 24, clusters determined from fused sodalite cages, and
subsequent MetaD simulations. Where 4-ring, 6-ring and 8-ring are the number
of 4-, 6- and 8- membered rings respectively and 4-4, 4-6, 6-6, 4-8 and 6-8 fused

refer to joins (shared edges) between 4-, 6- and 8- membered rings.

n U/Zns
Lin. fit
U/ZnS

4-
ring

6-
ring

8-
ring

4-4
fused

4-6
fused

6-6
fused

4-8
fused

6-8
fused

(kJ/mol) (kJ/mol)

“Bubble” clusters

21 -3165.17 -3163.22 7 15 1 3 21 31 1 7
21 -3166.60 -3176.58 7 15 1 2 23 32 1 5
22 -3164.68 -3162.31 4 19 0 0 16 49 0 0
22 -3168.56 -3154.15 6 18 0 4 16 46 0 0
22 -3167.83 -3167.73 7 16 1 2 21 35 3 5
22 -3167.10 -3171.11 7 16 1 2 23 33 1 7
24 -3172.87 -3182.56 6 20 0 0 24 48 0 0

Fused/connected sodalite cages

21 -3163.65 -3229.14 12 14 0 0 48 18 0 0
22 -3159.98 -3213.61 10 16 0 0 40 28 0 0
24 -3163.77 -3225.70 14 16 0 4 48 25 0 0
24 -3164.88 -3209.38 18 14 0 12 48 18 0 0
24 -3165.22 -3209.38 18 14 0 12 48 18 0 0

The main difference between these structures and the others we have investigated

is that we have 4-coordinated atoms present at the bridge or fused region of the

sodalite cages. The fitting we performed in the previous section did not have

any clusters with 4-coordinated atoms present, and in general the number of

n-membered rings or the total number of shared bonds does not inherently indicate

the presence of 4-coordinated atoms which may have a significant contribution to

the energy. To assist in fitting clusters such as these it may be necessary to include

a parameter that reflects at least the number of 4-coordinated atoms, and perform

some testing to determine if the fit is significantly better or worse if the ‘internal’

rings are counted and used in the fitting as well as the ‘surface’ rings.

We have performed a linear fit of the data including a parameter which indicates

simply the number of four-coordinated atoms present. The new linear fit includes

data for all of the clusters (those in the previous section, and all the new 42, 44

and 48 atom clusters discussed here). The new equation for approximating the
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energy, in units of kJ/mol, is given by:

Etotal ≈ − 80.80 · n4−ring + 61.01 · n6−ring + 60.90 · n8−ring + 40.43 · n4−4fused

+ 7.97 · n4−6fused − 21.00 · n6−6fused + 11.63 · n4−8fused

− 18.11 · n6−8fused + 4.46 · nfour−fold − 3094.41

(5.15)

This fit is slightly less accurate than the previous linear regression attempt, with

an R2 value of 0.92, in comparison to the R2 of 0.95 obtained for the first linear

regression. However, the approximate values obtained from the new linear fit for

the fused and connected sodalite cages are much closer to the calculated values.

It is possible we could obtain a better fit with a greater dataset of clusters with

four-coordinated atoms present; in this case we have only five fused/connected

sodalite cages which have four coordinated atoms present and these were included

in our linear regression. A plot of the new approximate energy values is given

in Figure 5.7, along with the values obtained from force field methods and the

approximation obtained from the original linear fit given in Equation (5.11).

Additionally, we have plotted the difference between the force field energies and

the new set of approximated energies, shown in Figure 5.8. Though there are

some outliers in the smaller cluster sizes (where the energy is underestimated

by ∼27 kJ/mol), in general the linear fit results in an approximation within

∼15 kJ/mol of the actual values obtained by force field methods.

5.3.1.3 Zeolite composite building units

The sodalite cage (ZnS)12 structure is a composite building unit (CBU) for zeolite

structures. This will be introduced in more detail in Chapter 7. Not all of the

CBUs listed in the zeolite database[297] can be constructed as ZnS analogues, due

to the presence of odd-numbered rings. However, it is interesting that many of

the CBUs containing even-numbered rings appeared in our simulations of small

clusters. Some of the other symmetrical structures obtained from the MetaD

simulations are also composite building units, not just the sodalite cage. The

structures explored which overlap with the framework of the composite building

units on the International Zeolite Association Structure Commission database[297]

are given below in Table 5.9. All but one of these are the minimum energy structure

found for the given cluster size. The only one which isn’t a low energy structure
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is the ‘ATN’ CBU for (ZnS)12 which has only 4- and 8- membered rings, and is

the highest energy stable structure found for this cluster size.

The presence of these zeolite motifs in the small clusters of ZnS is something we

will return to in Chapter 7.

5.3.2 Efficacy of the trace of the inertia tensor CV

In order to better describe the advantages and disadvantages of this approach

we will report in more detail the studies performed on the (ZnS)12 cluster. We

have chosen to focus on this cluster size as it is not so small that there are very

few cluster formations possible (such as (ZnS)6), and it is also not too large, so

our metadynamics simulations found a variety of unique cluster shapes within a

reasonable simulation time.

In Figure 5.9 we show the time evolution of the trace of the inertia tensor during

a metadynamics run performed with a Gaussian height of 0.2 eV and width
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169 amu Å
2

(one tenth of the total mass of the nanoparticle in amu). The

effect of the metadynamics bias potential is clearly shown by the oscillations

getting wider and wider until the free energy basin is filled and a transition to

a different structure occurs. This plot is significant as it shows the efficacy of

metadynamics as a means to enhance the exploration of phase space, and it also

demonstrates the limits of the trace of the inertia tensor as a CV. The free energy

basin of different clusters, when projected on the trace of inertia tensor, overlap

significantly. This makes the estimation of the free energy differences between the

structures impossible to calculate. For this size we note that the various minima

are somewhat distinct, which makes the trace of inertia tensor useful at least to

distinguish the equilibrium structures. However, this is no longer the case for the

larger clusters where the trace of inertia tensor has less capacity to differentiate

between the (increasingly) large number of configurations.

In order to circumvent the above problem we decided to use the path CV[292] to

determine the free energy differences between the ZnS clusters found by using the

trace of the inertia tensor. To guarantee the convergence of the MetaD calculation
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Table 5.9: Zeolite composite building units (CBU) for which (ZnS)n analogues
were found, in the cluster size range n = 3, . . . , 24. The CBU images have been

reproduced from the IZA-SC database[297].

CBU ZnS analogue CBU ZnS analogue

D6R (ZnS)6 AWW (ZnS)8

CAN (ZnS)9 ATN (ZnS)12

SOD (ZnS)12 LOS (ZnS)15

LIO (ZnS)21

with the path CVs we also applied the well-tempered metadynamics scheme[243].

The bias factor was adjusted for each simulation to ensure that the maximum

allowed biased potential was enough to overcome the transition barrier. Bias

factor values between 5 and 19 were used during the calculations. The simulations

were stopped when the Gaussians’ heights were smaller than 0.0001 eV throughout

the whole free energy landscape of interest.

The results from the above free energy calculations are summarised in Table 5.10,

where the free energy differences obtained using lattice dynamics are also provided

as a comparison. The values calculated using MetaD are very close to those

obtained using minimisation, giving us confidence in the use of this technique for

calculating free energy differences even in different conditions where the static

approach is not feasible.
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Structures
Lattice
Dynamics
∆A/ZnS

MetaD
Path
∆A/ZnS

Lattice
Dynamics
∆U/ZnS

(kJ/mol) (kJ/mol) (kJ/mol)

→ +2.9 +3.6 +3.2

→ +3.9 +4.0 +3.8

→ -10.5 -10.6 -10.9

→ +18.9 +17.2 +19.5

→ -5.1 -4.6 -5.2

→ -6.1 -5.0 -6.0

→ +14.3 +13.6 +14.7

→ +1.5 +1.6 +1.7

Table 5.10: Free energy differences, shown in kJ/mol per ZnS formula unit,
calculated for clusters in vacuum via MetaD using the path variable, and using
free energy calculation within lattice dynamics. ∆U/ZnS is also shown, as

obtained from optimised structures using interatomic potentials.
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Figure 5.9: Evolution of the trace of the inertia tensor over time for the
(ZnS)12 cluster, obtained from a MetaD simulation performed using the trace
of the inertia tensor as the CV; Gaussian height 0.2 eV and width 169 amu Å2.

The main advantage of the metadynamics simulation is that the free energy over

the whole path is obtained and therefore information related to the transition

barrier is accessible, which can be harder to achieve from a static calculation. To

illustrate this point we have included the 2D free energy profile obtained from

the path method for the sixth transition illustrated in Table 5.10 (an elongated

structure to the sodalite cage). Figure 5.10 shows a three-dimension plot of the

two path variables z and s and the free energy obtained from the path method.

We have applied the nudged elastic band method[167, 191] on this free energy

profile to show the minimum energy path across this calculated landscape.

A one-dimensional free energy profile of the nudged elastic band progress (plotting

only the s variable and the energy at each bead of the nudged elastic band) is

given in Figure 5.11. Here we can easily see that there is an activation barrier of

approximately 300 kJ/mol, while the free energy difference between the two states

is approximately -60 kJ/mol.

A disadvantage of the MetaD calculations is the time necessary to achieve a

sufficiently converged free energy profile. Using the path method the simulations

took as long as a number of days to complete the calculation to satisfactory

convergence, while the calculation of the free energy from the phonons using
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lattice dynamics requires only a few seconds or minutes. It should be noted that

these calculations using the path variables were performed without implementing

additional sophisticated MetaD techniques like the use of multiple walkers[298],

which could potentially enhance the efficiency of the calculations.

5.3.3 (ZnS)12 in water

After investigating the variety of ZnS clusters in vacuum, it is a natural progression

of the study to see how these same systems behave in water. Due to the increased

computational requirements of the MD simulations of the nanoparticles in water

we chose to focus only on the (ZnS)12 cluster size.

We ran three different simulations of the (ZnS)12 nanoparticle starting from a

sodalite cage structure, a 24 atom piece cut from bulk wurtzite and a sodalite cage

structure with a water molecule trapped inside. The MetaD runs were performed

with Gaussian parameters, height 0.1 eV and width 55 amu Å2. Each simulation
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sodalite cage-like structure for (ZnS)12.

ran for approximately 17 ns. The evolution of these structures during the MetaD

simulations in water was quite different to those in vacuum. In particular, the

system could clearly adopt more structures, forming sheets and strings of ZnS

stabilised by surrounding solvent. Moreover, the free energy barrier between

different structures was often so small that few Gaussians were necessary to

induce the transitions. The size of the Gaussians was reduced enough to allow

the simulations to explore each basin for longer. However transformations from

one structure to another occur readily throughout the simulations even with the

chosen Gaussian size.

The empty sodalite cage structure in water remained intact for the first 650 ps

of the simulation, before it began opening and rearranging into the relatively low

energy structure, number 3 shown in Table 5.11. The sodalite cage with a water

inside remained intact for only 228 ps before the cage opens up, appearing similar

to structure number 3 before transforming into more elongated structures with

2-fold coordinated ions. The structure taken from the bulk takes less than 100 ps

to begin transforming to elongated structures with 2-fold coordinated atoms. The

progression of the trace of the inertia tensor over time for the simulation of the
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‘bulk’ nanoparticle is given in Figure 5.12. The simulation was performed for a

fraction of the time of those performed in vacuum, however it quickly moves from

one basin to the next. Overall a much greater region of phase space is explored in

comparison to the simulations performed in vacuum.
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Figure 5.12: Plot of the trace of the inertia tensor versus time for the (ZnS)12

cluster (cut from bulk wurtzite) and placed in a 30 Å cubic box of water. The
Gaussian parameters used were height 0.1 eV and width 55 amu Å2.

Following the same procedure as before, we extracted many different structures for

the ZnS nanoparticle from the MetaD trajectory and minimised them in vacuum.

Many of the new structures turned out to be much higher in energy than those

found during the MetaD in vacuum, due most likely to the significant number

of 2-fold coordinated atoms. A select number of these structures are given in

Table 5.11 (a more extensive table is included in Appendix A). The reason for

the appearance of these structures during the MetaD in water is therefore strictly

connected to the strong interaction of ZnS with water, rather than to the stability

of the nanoparticle geometry itself. In order to compare the stability of the various

structures found we decided to perform a 200 ps long NPT run and calculate the

average enthalpy of the system. As all the NPT runs had the same number of water

molecules, the differences in enthalpy were directly related to the nanoparticle

shape and its interaction with water. The relative enthalpy of each structure is

also given in Table 5.11, where it is given relative to the sodalite cage, along with

the relative potential energy in vacuo as a comparison. In contrast to the relative
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potential energy results obtained for the nanoparticles in vacuum, the enthalpy

differences between structures in this case are much smaller, within the range of

a few kBT (kBT=2.4 kJ/mol).

The structures located still possess the 4- and 6-membered ring motifs that are

typical of ZnS, and which we observed in the simulations of ZnS in vacuum.

The dominant difference between the structures obtained in water, and those in

vacuum, is that we find a large number of structures with a ‘tail’ or sheet-like

features protruding from the cluster, where a high percentage of 2-fold coordinated

ions (by Zn or S atoms) is present. This is more likely to occur in water, as the

presence of the solvent can partially compensate for the missing bonds and help

stabilise these structures.

Since the enthalpy differences between the nanoparticles in water are so small,

we do not expect the difference in free energy between the structures to be very

different. Moreover, given the large number of different structures found, the

computational time required to perform all the relative free energy differences with

the path CV would have been impractically long, so we decided to attempt only a

few calculations to extract the free energy differences between the structures found

in vacuum when immersed in water. Unfortunately, all the attempts to calculate

the free energy between two clusters in water were unsuccessful. In all cases the

system preferred to move orthogonal to the path. It is probable that the free

energy barrier between clusters in water is actually very low, comparable to the

thermal energy, so even if we attempt to use the path method we cannot calculate

this very small free energy difference between the two states. This is very different

to the path calculations performed in vacuum, where the energy barrier between

structures ranged between 50-175 kJ/mol (approximately 4-15 kJ/mol per formula

unit). Had the simulations of clusters in water jumped back and forth between

basins sufficiently we could have attempted to calculate the free energy difference

between the structures directly. However, the clusters in water continued to evolve

and take on new shapes throughout each simulation. To achieve sufficient statistics

we would need to run the simulations for a prohibitively long period of time.

There are four compact structures in Table 5.11 which overlap with those found

from the simulations performed in vacuum, and were also used with the path

method discussed in the previous section to approximate the free energy differences

between the structures in vacuum. These are shown again in Table 5.12, the

first three transitions were calculated directly with the path method and GULP,
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Table 5.11: Structures obtained from the MetaD simulations of (ZnS)12 in
water and optimised in vacuo, shown in order of increasing enthalpy. ∆U and
∆H is given with respect to the lowest energy structure in vacuum (the sodalite
cage), where ∆H values are obtained from 200 ps NPT simulations in water,

and ∆U values obtained in vacuo.

1 2 3 4

In vacuum
∆U/ZnS 23.3 13.1 21.4 25.8
In water
∆H/ZnS -7.7 -7.1 -7.1 -7.1

5 6 7 8

In vacuum
∆U/ZnS 41.1 16.5 26.8 30.7
In water
∆H/ZnS -6.4 -5.9 -4.3 -4.3

9 10 11 12

In vacuum
∆U/ZnS 22.2 0.0 6.0 10.9
In water
∆H/ZnS -4.1 0.0 0.2 0.3

13 14 15 16

In vacuum
∆U/ZnS 14.7 9.6 17.4 17.3
In water
∆H/ZnS 0.7 2.0 5.1 7.73
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while the energy values for the final three transitions can be obtained by taking

combinations of the first three ‘reactions’. We have tabulated these free energy

values again to illustrate the small differences in enthalpy between these structures

when solvated.

The relative enthalpy values in both Table A.39 and 5.12 are particularly striking,

as the various low enthalpy structures are all within ambient thermal energy of

each other. In the case of the path examples we can compare the relative enthalpy

(of the simulations in water) to the free energy differences calculated in vacuum,

and can already see the enthalpy values are approximately one order of magnitude

less than the free energy difference. In comparison to the free energy surface of

the ZnS clusters in vacuum, the free energy surface for ZnS solvated is most likely

much flatter.

We can see further evidence for this when we compare the plots of the trace of the

inertia tensor over time for the (ZnS)12 cluster in vacuum and solvated, Figures

A.7 and 5.12 respectively. The plot for (ZnS)12 in vacuum has distinct basins

which are explored for relatively long periods of time (more than 1 ns), while the

plot for the same system in water shows that many more basins are explored,

however the basins are far less distinct and less time is spent in each ‘basin’.

Another way to describe this is that the free energy surface being explored in

the case of solvated ZnS clusters is essentially flat. This explains also why the

metadynamics simulations using the path CVs for the nanoparticles in water were

not successful. The path variables are used to describe the transition, or path,

between two states A and B. In theory only structures along the pre-defined path

should be explored by the metadynamics simulation. However, in the case of our

nanoparticles in water, there are many structures with similar trace of inertia

tensor values in nearby minima, and there is little or no energy barrier between

different states. As the bias is added during the path metadynamics simulation it

is very easy for the system to fall into these nearby and easily accessible minima

to explore configurations which are not relevant to the transition defined by the

path collective variables. With this occurring we found that our metadynamics

simulation using the path CV did not obtain sufficient statistics to obtain free

energy differences between the desired initial and final configurations.
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Table 5.12: Free energy differences calculated for clusters in vacuum via
MetaD using the path variable, and using lattice dynamics. The differences
in enthalpy for the same structural transitions are also given, calculated from

the NPT simulations of ZnS in water.

In vacuum In vacuum In water

Structures
Lattice
Dynamics
∆A/ZnS

MetaD
Path
∆A/ZnS

Average
∆H/ZnS

(kJ/mol) (kJ/mol) (kJ/mol)

→ +3.9 +4.0 +0.4

→ -10.5 -10.6 -0.3

→ -6.1 -5.0 -0.2

→ -14.4 -14.6 -0.7

→ +4.4 +5.6 +0.1

→ +8.3 +9.6 +0.5

5.4 Conclusions

In this chapter we have investigated very small nanoparticles of ZnS using the trace

of inertia tensor as a CV. While this CV was effective for exploring the phase space

of nanoparticles and finding new configurations, it does have significant limitations.

For example, we found that the basins being explored in the free energy surface
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overlap each other, so it is impossible to directly calculate the free energy difference

between two basins without employing other free energy methods or other CVs.

Another limitation of the CV we have used is that for larger sized nanoparticles,

with a great number of degrees of freedom the free energy surface was far more

difficult to explore. The larger particles we looked at had a greater tendency

to break apart rather than significantly exploring the phase space of the more

compact structures. This is in some respects as a result of the overlap between

basins; as the particle size increases there are many possible structures that will

exist that have the same trace of the inertia tensor value - which makes it difficult,

if not impossible, for metadynamics to explore all the structures of interest.

A significant outcome from this first part of our study is the use of the path variable

to determine the free energy difference between structures obtained in vacuum.

The free energy differences calculated were very close to the values obtained

from lattice dynamics, giving us confidence in this approach. Unfortunately

the transitions between structures were so facile in water, that it was difficult

to use the same method to calculate the free energy differences. We found the

structures explored during the path simulation were not only those describing the

transformation from state A to state B, but also additional states which should not

be explored along the path. This may be a significant side effect of the potential

used to model the interactions of ZnS with water, and this will be discussed in

later chapters.

Another interesting aspect of the low energy clusters determined is the overlap

with the composite building units of zeolite frameworks, and again this will be

revisited in later chapters.

In the next chapter we will first attempt to address one of the disadvantages of

the trace of the inertia tensor - namely, that it was unsuitable for distinguishing

between larger cluster sizes. We will begin using the Steinhardt parameters as

introduced in Chapter 4.





Chapter 6

Metadynamics simulation of ZnS

phase transitions employing

Steinhardt parameters

6.1 Introduction

In the previous chapter we showed that the trace of the inertia tensor can be used

as a collective variable (CV) to explore the phase space of small nanoparticles, but

was less successful for larger nanoparticles (> 50 atoms). As the size of the system

increases there are more structures possible that can have the same value of the

trace of the inertia tensor. We found for nanoparticles of 100 atoms or more that

the system was more likely to elongate and eventually be pulled apart rather than

exploring dense phases of interest with different internal order. Another limitation

we experienced is that as the system explored new minima in phase space, the free

energy differences between structures were unable to be directly obtained using

our metadynamics (MetaD) data as the minima in the free energy surface overlap

when projected on to the CV. This implies that another CV orthogonal to the one

used would need to be employed to explore the phase space in a way which avoids

this overlap.

The trace of the inertia tensor as a CV helps evolve the shape of the system and in

turn different structures are also explored. However, this CV is not a descriptor for

the internal or crystalline order of the nanoparticles. The purpose of the studies

173
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detailed in this chapter is to investigate a different CV with metadynamics to again

explore the phase space of nanoparticles, specifically those of ZnS, to examine

whether it may be more effective. We introduced the Steinhardt parameters in

Chapter 4. These parameters can be used to determine the local order around

a specific atom, or as global parameters that give an indication of the overall

crystalline order in a solid. As we have previously mentioned, these parameters

have been extensively used to explore the transition from liquid to solid states,

and recently have been used to study nucleation of water to form ice[279, 280, 282,

299]. The Steinhardt parameter has also been used in conjunction with MetaD

before, but at the time of our investigation it had not been used for inducing

phase changes in nanoparticles. Primarily, it had been used to investigate the

freezing of water[280]. Concurrently to our studies, Quigley et al.[281, 300] did

use the Steinhardt parameter to investigate phase changes in calcium carbonate

nanoparticles in water.

The aim of this section of our study is to use the Steinhardt parameter as a

collective variable in metadynamics to explore phases of zinc sulfide. We aim

to first show that this is achievable with periodic zinc sulfide (i.e., bulk), and

subsequently in nanoparticles. We have focused on the Q4 Steinhardt parameter as

the values for different crystal structures are distinct enough to distinguish between

different crystal structures[272]. An alternative, or complementary, parameter

could be the Q6 parameter. However, the Q6 values for different phases of ZnS

are all of the same order of magnitude, and therefore this quantity is more useful

as a measure of overall crystallinity[272]. The following section will cover in more

detail some of the methods used to generate our trajectories.

6.2 Methods

A rigid-ion forcefield was used to model zinc sulfide in the present work, as given

in Table 6.1. This model was fitted in GULP[160] using the cell parameters and

elastic constants, in the same way the ZnS shell model of Wright and Gale [95] was

generated. GULP[160] uses a method of fitting known as “relaxed” fitting where

the structures are optimised throughout the fitting procedure. The method still

uses a sum of squares, as in conventional fitting. However, the displacement of the

structural parameters with respect to the given experimental values is used as a

means of judging the quality of the fit, rather than using the forces. The relaxed
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fitting method is much more computationally expensive than conventional fitting,

and is optimal for use once a reasonable set of potential parameters have already

been generated.

We decided to use a simplified rigid ion model over a shell model so it would be

possible to obtain results from larger nanoparticles in a more timely manner, as a

rigid ion model is less computationally expensive. As was discussed in Chapter 2,

an ion represented by a shell model is comprised of a central core which has an outer

‘shell’ attached by a harmonic spring. The outer shell attempts to represent the

electron cloud and aims to simulate the polarisability of an atom. The additional

computation of the shell’s movement throughout a simulation is computationally

intensive, and for these reasons makes a shell model more expensive to use.

Species Charge (e)

Zn +1.2534
S -1.2534

Lennard-Jones 12-6 A (eV Å12) B (eV Å6)

S - S 1003475.3 0.00
Zn - S 5669.3544 0.00

Table 6.1: Interatomic potentials used for the MetaD simulations of ZnS
using the Steinhardt parameters as collective variables. These parameters were
obtained using GULP[160], fitting with the wurtzite and sphalerite structures

and physical properties, such as the elastic constants[95].

For the simulations of nanoparticles in water, we have used the same CVFF water

of Lau et al. [287], and the ZnS-water interactions of Hamad et al. [110] as in the

previous chapter.

We have already introduced the Steinhardt parameter in Chapter 4, and the

specifics of its implementation. One point we have not yet discussed is the need

for a smooth switching function to replace the use of a sharp cut-off radius when

assessing if one atom is a neighbour of another. The calculation of the Steinhardt

parameter, Ql, requires the definition of which atoms are neighbours of a particle.

As we have already introduced, each vector, rij, that joins a particle i to a

neighbouring particle j is considered a ‘bond’, and a set of values Ylm(θ(rij), φ(rij))

is associated with each bond, via the local Steinhardt parameter, qlm(i), given in
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Equation 6.1.

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(θ(rij), φ(rij)) (6.1)

Here the m subscript indicates a set of 2l+ 1 integer values ranging from −l to + l

and Nb(i) is the number of bonds associated with atom i. As also described in

Chapter 4, a combination of the local order parameters can give a rotationally

invariant global order parameter, given by Equation 6.2;

Ql =

(
4π

2l + 1

l∑
m=−l

|Q̄lm|2
)1/2

(6.2)

where:

Q̄lm =

N∑
i=1

Nb(i) qlm(i)

N∑
i=1

Nb(i)

(6.3)

It is important that we calculate the pair distribution functions of the known bulk

polymorphs to determine at what radius the first shell of neighbours is located.

This first shell of neighbours determines the cut-off required for the definition of

a ‘bonded neighbour’ within the Steinhardt parameter. An appropriate cut-off is

found to be approximately 4.5 Å, as this safely includes all of the atoms within

the first neighbouring shell. However, for the implementation of the Steinhardt

parameter in metadynamics, it is not appropriate to have a discontinuous function

for the definition of neighbours. During the simulation the integration of the forces

associated with each atom should be a continuous function to ensure that the

dynamics are consistent even when atoms are moving across the cut-off region.

This problem has been encountered in previous studies using MetaD[219, 261,

280, 301]. For example, the implementation of the coordination number of an

atom as the collective variable is similarly problematic - where the definition of a

neighbour would ordinarily be considered within a sharp cut-off radius; in MetaD

it must be implemented with a switching function that smoothly transitions from

1 (considered a neighbour) to 0 (not considered a neighbour).

We implemented a switching function of the same form used in previous studies,

and that is outlined in the article of Bonomi et al. [302] which describes the
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PLUMED metadynamics plugin[302]. The switching function and the conditions

under which it is used are given by Equation (6.4). Above a certain threshold

the switching function provides a value within the range of 0 to 1. There is a

singularity when
rij − d0

r0

= 1, and this is accounted for in the cases below, where

the value returned will be
n

m
.

f(rij) =



1 if
rij − d0

r0

6 0

0 if
rij − d0

r0

> threshold

1−
(
rij − d0

r0

)n
1−

(
rij − d0

r0

)m if 0 <
rij − d0

r0

< threshold

n

m
if
rij − d0

r0

= 1

(6.4)

In our case the threshold is defined by:

threshold = 0.0000011/(n−m)

= 0.0000011/(6−12)

= 10

(6.5)

Generally the d0 value is taken as the position of the first peak of the pair

distribution function being studied, and r0 is the maximum width of the peak[302].

The values of n and m define how ‘steep’ the switching function is. The choice of

these parameters will vary dramatically depending on the system being studied,

and there is no definitive answer to which are the best parameters to use with any

given switching function.

Bulk zinc sulfide was used as a test case for our implementation of the Steinhardt

parameter with metadynamics. We expected to observe phase transformations

between the two stable polymorphs of zinc sulfide, sphalerite and wurtzite, and

hoped to investigate new phases. When investigating phase transformations in

bulk phases it is necessary to use a supercell that is commensurate with other

expected phases. In this case we are at least hoping to find transitions occurring

between sphalerite and wurtzite. As we have discussed in the introductory

chapters, sphalerite exists as an A-B-C-A-B-C stacked polymorph and wurtzite

an A-B-A-B stacked polymorph. We expected that to force a transition between



178
Chapter 6. Metadynamics simulation of ZnS phase transitions employing

Steinhardt parameters

the two polymorphs would require shearing of layers of ZnS. The supercell required

would need to have a number of layers divisible by 3 and 2, to enable A-B-C and

A-B stacking. The supercell we have chosen contains 432 atoms, shown in Figure

6.1, and has 6 layers of atoms in the A-B-C-A-B-C formation. Another comment

to make is that the larger the supercell, clearly the more possible polymorphs

or phases that can be explored, including the possibility of intergrowths and

polytypes, or significant changes in the structure, such as alternate polymorphs or

stacking faults.

We have already given the global Steinhardt parameters for a number of simple

crystal structures in Chapter 4. The fcc and hcp values are given again in Table

6.2, as these are the values for the like atoms (Zn-Zn or S-S) of the two stable

polymorphs of zinc sulfide.

Table 6.2: Steinhardt parameters Q4 and Q6 for sphalerite and wurtzite
crystal structures of zinc sulfide, based on like atom neighbours (Zn-Zn and

S-S) which form fcc and hcp layers[272].

Structure Q4 Q6

Sphalerite 0.19094 0.57452
Wurtzite 0.09722 0.48476

6.3 Results and Discussion

There are three distinct sets of results to cover in this section. The first are the

results from the MetaD simulations on bulk ZnS, which were performed to test if

the Q4 Steinhardt parameters can be successfully used with MetaD to push the

system to different polymorphs. This will be followed by a discussion the results of

the same MetaD procedure with the Q4 parameter CV applied to finite systems,

in our case, nanoparticles of ZnS. Finally, the results of MetaD simulations on the

same zinc sulfide nanoparticles when solvated by water will be presented.

6.3.1 Bulk zinc sulfide

A 432 atom sphalerite supercell was created by repetition of the sphalerite unit

cell using GDIS[288]. As described in the previous section, it is important to
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have a multiple of six atomic layers to enable transformation between ABAB and

ABCABC stacking of the two ZnS polymorphs by ‘shearing’ of the atomic layers.

The resulting structure was optimised at 0 K, followed by a 100 ps NPT MD run

at 300 K and 1 atm, with a 0.1 fs timestep, to determine relaxed cell parameters

of the system at this temperature. This was followed by a 500 ps NVT MD run

at 300 K with a 1 fs time step to further equilibrate the system before performing

any biased MD. The final equilibrated structure from the NVT simulation was

taken and used as the starting structure of the MetaD simulations. The starting

structure for the sphalerite run is shown in Figure 6.1.

Down z-axis Across x/y plane Down x-axis

Figure 6.1: 432 atom sphalerite starting structure shown from three directions.

The pair distribution functions for sphalerite were calculated for the Zn-Zn and

S-S pairs as shown in Figure 6.2. We also calculated the pair distribution functions

for the Zn-Zn and S-S pairs for wurtzite, which are shown in Figure 6.3.

The switching function we have chosen for the bulk structures is shown on the pair

distribution plots given in Figures 6.2 and 6.3. The switching function parameters

are d0=3.9 Å, r0=0.25 Å and n=6 and m=12.

f(rij) =


1−

(
rij − 3.9

0.25

)6

1−
(
rij − 3.9

0.25

)12

 (6.6)

Once an appropriate cut-off had been chosen, the calculation of the Q4 and Q6

values could be tested for these structures, to demonstrate that the correct values

are obtained. The results of the global Q4 and Q6 values are given in Table 6.3. The

0 K optimised structure of sphalerite gives exactly the literature Q4 and Q6 values

for an fcc structure, while the wurtzite values are slightly off from the literature

values for an hcp structure. This implies that the wurtzite structure with the

forcefield we are using is slightly distorted away from a perfect hcp lattice. This
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Figure 6.2: Pair distribution functions for sphalerite, g(r) for both Zn-Zn and
S-S are shown. The switching function used for the neighbour cut-off is defined

as f(rij) and is indicated in the figure.
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Figure 6.3: Pair distribution functions for wurtzite, g(r) for both Zn-Zn and
S-S are shown. The switching function used for the neighbour cut-off is defined

as f(rij) and is indicated in the figure.
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is not surprising as sphalerite has a cubic structure which makes it isotropic; the

only degree of freedom is one unit cell parameter, so regardless of whether the

forcefield makes the unit cell smaller or larger than experiment, the deviation will

be the same in all directions. The Steinhardt parameters are directional ; they do

not rely on the distance between particles, only the orientation. In the case of

wurtzite, the unit cell has two parameters a and c. If the ratio of these deviates

from a perfect hcp lattice the Steinhardt parameters will be altered. Though the

Q4 values deviate slightly from the literature value, the deviation is small, being

of the order of 1%. A comparison of these values with the 300 K equilibrated

structure show this deviation is less than that due to thermal vibrations in the

structure, and we can be confident our values are representative of the given crystal

structure.

Table 6.3: Comparison of global Q4 and Q6 for sphalerite (fcc) and wurtzite
(hcp). Q4 and Q6 values were obtained from like-atoms for the structures
obtained after 0 K optimisation and 300 K relaxation runs using the rigid-ion

model.

Sphalerite Q4 Q6

Literature fcc[272] 0.19094 0.57452

0 K optimised 0.19094 0.57452
Average over 300 K equilibration 0.18919 0.56456

Wurtzite Q4 Q6

Literature hcp[272] 0.09722 0.48476

0 K optimised 0.09802 0.48494
Average over 300 K equilibration 0.09698 0.47643

Two MetaD simulations were performed on the 432 atom ZnS supercell. One

simulation was performed with the Q4 parameter bias applied only on the Zn-Zn

pairs, and another simulation with the bias applied on both the Zn-Zn and S-S

pairs. First, we will look at the simulation performed with a bias only applied to

the Zn-Zn pairs. The Gaussian parameters for our MetaD runs for this structure

all had height W=1.0 eV and width σ=0.01. The plot of the Q4 values throughout

the simulation are given in Figure 6.4. The simulation was run for over 21 ns and

explored a wide variety of structures. To analyse the structures explored during

this long trajectory, frames were taken at 250 ps intervals and optimised, first

using DL POLY[303] and then refined further using GULP[160]. The optimised

structures of interest are given in Table 6.4, along with their Q4 value and relative
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Figure 6.4: Plot of Q4 vs. time for the zinc atoms in a 432 atom supercell of
ZnS, initially as sphalerite, simulated using the Q4 Steinhardt parameter as a
CV with MetaD. The Gaussian parameters used were W=1.0 eV and σ=0.01.

The MetaD bias was applied only to the Zn-Zn pairs.

energy (∆U) with respect to sphalerite (kJ/mol per formula unit). The structures

were optimised in GULP with constant volume (NVT) and constant pressure

(NPT) conditions, to investigate to what extent the fixed volume of the cell may

affect the energies of explored phases. The simulation quickly evolved from the

starting sphalerite structures to defective wurtzite phases, or structures with mixed

phases, while returning to sphalerite again at 7.25 ns, as shown in Table 6.4.

In general the ∆U obtained at constant volume is significantly higher than that

obtained when the cell is allowed to relax, and this is particularly significant in the

case of sphalerite. At 7.25 ns sphalerite is explored again, however the orientation

of the crystal within the same cell volume and shape has changed with respect

to the starting configuration. As a result, an optimisation at constant volume is

significantly higher in energy than the constant pressure calculation. The Q4 values

of the structures explored generally fluctuate around the Q4 value for wurtzite

(approximately 0.0971), supporting the identification of these as partially wurtzite

phases. The views in Table 6.4 shown down the z-axis indicate ‘incomplete’

shearing of the layers across each other - allowing the formation of defective regions

of one phase, or for two phases to exist in the same structure.

The second MetaD simulation performed on the sphalerite supercell used a Q4 bias
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Table 6.4: Structures found from Zn-Zn biased Q4 MetaD simulation of
432 atom sphalerite. The relative energies (∆U) are quoted with respect to

sphalerite in kJ/mol per formula unit.

Time Structure ∆U ∆U Q4

(ns) (Down z-axis) (Across x/y plane) (Down x-axis) NVT NPT

4.00 15.7 6.0 0.0788

4.75 16.7 6.4 0.0793

5.25 13.3 3.3 0.0992

5.50 17.4 10.9 0.0909

7.25 21.8 0.0
0.1909
Spha

13.00 24.3 29.4 0.1766

18.00 20.1 5.5 0.0847
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Figure 6.5: Plot of Q4 vs. time for the zinc atoms in a 432 atom supercell of
ZnS, initially as sphalerite, simulated using the Q4 Steinhardt parameter as a
CV with MetaD. The Gaussian parameters used were W=1.0 eV and σ=0.01.

The MetaD bias was applied both to the Zn-Zn and S-S pairs.

on both the Zn-Zn and S-S pairs. The same Gaussian parameters of W=1.0 eV

and σ=0.01 were used for both of the collective variables. The plot of the Q4

values throughout the simulation are given in Figure 6.5. The simulation was

performed using NVT conditions. Structures obtained from this simulation are

given in Table 6.5.

The simulation has proceeded very differently to the MetaD simulation performed

with a Q4 bias applied on only the Zn-Zn pairs. Rather than exploring very mixed

and defective phases, the simulation performed with a bias on both Zn-Zn and

S-S pairs shows very clean transformations resulting from complete shearing of

ZnS layers. The relative energies of the explored structures are all also lower

in energy than sphalerite, while in the simulation performed with a Q4 bias

only on Zn-Zn pairs all the structures had positive ∆U values with respect

to sphalerite. Additionally, the simulation quickly found these distinct phases,

with a phase transformation from sphalerite to wurtzite after only 250 ps of

simulation. This simulation has also explored another interesting phase formed at

875 ps which has 4- and 8-membered rings along one crystallographic direction.

The remaining phases given in Table 6.5 show sections of the crystal comprised

of the same 4- and 8-membered ring motifs, though regions of wurtzite and
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Table 6.5: Structures found from the Zn-Zn and S-S biased Q4 MetaD
simulation of 432 atom sphalerite. The relative energies (∆U) are quoted with

respect to sphalerite in kJ/mol per formula unit.

Time Structure ∆U ∆U Q4

(ps) (Down z-axis) (Across x/y plane) (Down x-axis) NVT NPT

0 0 0
0.1909
Spha

250 -3.0 -3.3
0.0894
Wurtz

875 -1.6 -2.6
0.0811
BCT

1625 -1.2 -1.0 0.0708

1875 -0.7 -1.2 0.0801

sphalerite are still apparent. The implementation of the Q4 parameter as a CV

in metadynamics appears to be very successful for exploring new phases in a bulk

system. However, before discussing simulations performed on nanoparticles we

should first investigate the phase we found in our bulk simulations with the 4- and

8-membered ring motif.

6.3.1.1 BCT Phase

A phase distinct from either sphalerite or wurtzite was observed at 825 ps in the

MetaD simulation performed on bulk ZnS with a bias on both Zn-Zn and S-S

pairs, and is shown in Figure 6.6.
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Down z-axis Across x/y plane Down x-axis

Figure 6.6: Structure obtained at 825 ps in MetaD simulation performed with
a Q4 bias on Zn-Zn and S-S pairs. The structure was optimised in GULP using
the same rigid ion model and is the body-centered tetragonal (BCT) structure.

After reviewing the literature[304–310] we determined that this phase is known

as body-centred tetragonal (BCT) and exists as a zeolite framework of the same

name[311]. This phase has been mentioned in the literature in other theoretical

studies of the phases of zinc sulfide, in particular in the work of Hamad and

Catlow [304]. They observed the BCT phase in ZnS nanoparticles in the size

range of 1-4 nm optimised using simulated annealing methods[304]; two examples

from their study are shown in Figure 6.7. So far this phase has not been identified

experimentally for ZnS. A literature review into the BCT phase reveals the phase

has also been studied recently as a possible polymorph of ZnO[305–308], and

suggested as a new allotrope of carbon[309] and silicon[310].

Figure 6.7: Nanoparticles of size (ZnS)60 and (ZnS)512 showing regions of
the BCT phase, obtained via simulated annealing by Hamad and Catlow [304].

Image reproduced from Hamad and Catlow [304].

Our method uses the nearest neighbours to determine the crystallinity in the

system, so it is interesting to analyse the structure in terms of nearest neighbours,

and compare this to the literature. To the best of our knowledge the Q4 and



Chapter 6. Metadynamics simulation of ZnS phase transitions employing
Steinhardt parameters 187

Q6 values have not been quoted in the literature for the BCT zeolite framework

phase we have found in our simulations. First, if we consider the pair distribution

function of Zn-Zn and S-S pairs given in Figure 6.8, we can see there are two peaks

indicating the nearest neighbours, below a cut-off of approximately 4.5 Å. This

corresponds to the like atoms in our BCT structure having a coordination number

of 11, and is supported by the tetragonal packing of equal spheres introduced

by Baur [267]. A comparison of our 11 coordinated cluster, and that of Baur

[267] is given in Figure 6.9. One important point to make is that though the

structure has been referred to as the “body-centred tetragonal” phase, here, and in

previous literature already mentioned, this phase corresponds to the BCT zeolite

framework, and is distinct from another form of tetragonal packing known as

body-centred tetragonal, in which there is a coordination number of 10[267, 312].

The distinction between these two forms is also given in Baur [267], in a comparison

of density of packing in terms of the space occupied by the spheres, as given in

Table 6.6.

Table 6.6: Comparison of the coordination number and density of different
packed structures. Table reproduced from Baur [267].

Packing of equal spheres Coordination Number Density (fractional)

Close packing (hcp and fcc) 12 0.7405
Tetragonal packing 11 0.7187

Body-centred tetragonal 10 0.6981

The cut-off we have used for calculating the local q4 and q6 values for each atom

in our BCT ZnS structure gives 11 neighbours. S-S and Zn-Zn clusters of nearest

neighbours are given in Figure 6.10, with some of the angles indicated on both of

the clusters. Though the clusters appear superficially very similar, there are slight

distortions in the angles between the neighbours, which results in a shift in the Q4

and Q6 values obtained for the BCT phase. The Steinhardt values obtained are

given in Table 6.7, and imply that the Zn-Zn neighbours have slightly different

environments to the S-S clusters. This distortion is a result of the forcefield we

are using, and not due to problems with the optimisation of an initially distorted

structure. We tested this with a ‘reference’ BCT structure, taking the zeolite

framework from the International Zeolite Association structure database[297]. The

BCT topology was taken from the zeolite database and transformed into a zinc

sulfide form, where each of the T sites are alternating Zn and S atoms. Optimising

this structure using the same rigid ion forcefield yielded a structure with the same
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Figure 6.8: Pair distribution functions (PDF) for the BCT phase calculated
from a 432 atom periodic ZnS structure obtained from a MetaD run followed
by optimisation. g(r) for both Zn-Zn and S-S are shown. A “reference” PDF
for the BCT framework is also shown, which has been calculated from the BCT

zeolite framework[297].

Figure 6.9: Baur [267] identified a new way of packing equivalent spheres
known as tetragonal packing, in which the coordination number is 11, this
cluster is shown on the left and the image is reproduced from their work [267].
The image on the right is a Zn-Zn nearest neighbour cluster taken from our

optimised BCT phase, and clearly correlates with that of Baur [267].
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distortion of the angles in the tetragonal packed cluster of 11 neighbours. We also

determined the Q4 and Q6 values for this reference (unoptimised) BCT framework

to compare it to the values obtained from our optimised structure. These are also

given in Table 6.7. Despite the differences in the Q4 and Q6 values obtained using

Zn-Zn or S-S pairs in our zinc sulfide BCT structure, the global values are very

close to the ‘reference’ values. These values for the BCT phase are not currently

reported in the literature, so we have compared these to the values obtained from

the BCT topology obtained from the IZA database[297].

Figure 6.10: Clusters of nearest neighbours for Zn-Zn (grey) and S-S (yellow)
pairs in the BCT form of ZnS. Two angles are indicated on the figure, showing
there is some slight variation in the orientation of sulfur neighbours and zinc

neighbours.

Table 6.7: Comparison of global Q4 and Q6 for the BCT phase. Q4

and Q6 values were obtained by calculating neighbours between like atoms
(Zn-Zn and S-S neighbours) for structures optimised using the rigid-ion model.
The reference BCT values were obtained from the BCT topology in the IZA

database[297].

Q4 Q6

Zn-Zn 0.07029 0.43247
S-S 0.12612 0.47020

Global 0.08106 0.44363

Reference BCT framework 0.08250 0.44124

Using bulk zinc sulfide as a test case, we have shown that the Q4 Steinhardt

parameters are very effective collective variables for driving phase transitions using
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the metadynamics method, particularly when biasing both Zn-Zn and S-S pairs.

In the next section we will use the same method discussed here to drive phase

transitions in nanoparticles of zinc sulfide.

6.3.2 Finite particles of ZnS in vacuum

The starting structures for the nanoparticle runs were generated in the same way

as for the previous chapter, where structures of different sizes were cut from bulk

wurtzite using the program GDIS[288]. We chose nanoparticles of 120, 360 and 840

atoms, and these structures were optimised at 0 K followed by a 100 ps NVT MD

run at 300 K with a 0.1 fs timestep. The final structures from these equilibration

runs were used as the starting structures for our biased MetaD runs, and are

shown from two directions in Table 6.8. As described in previous sections the

Steinhardt parameters are relevant for bulk systems, as their values are calculated

using the orientation of neighbouring atoms. For these studies we required larger

nanoparticles, with lower surface to bulk atom ratios, for our CV to be of use. The

motivation for the sizes chosen was to have a range of nanoparticles which bridge

from the sizes of nanoparticles used in the previous chapter, to particles that are

(in relative terms) much larger, with many more internal ‘bulk’ atoms, and of a

comparable size to those used in previous studies[106, 108].

There are already some interesting features in the above nanoparticles before

starting the biased simulations. The 120 atom cluster has already lost much

of the bulk structure, and 4- and 8- membered rings can be seen, particularly at

the edges of the nanoparticle. The 360 atom cluster has maintained the bulk-like

structure, much more so than the smaller 120 atom particle. However, the surface

layers show some 4- and 8- membered rings not seen in the bulk polymorphs.

The two larger clusters we have investigated show internal strain, where the ‘core’

appears to have a different structure. This has also been observed in a theoretical

study performed by Morgan and Madden [313], where they find internal strain

present in relaxed wurtzite nanocrystals. They actually found interfaces in which

4- and 8- membered rings are formed; a cross section of one of their relaxed

nanoparticles which shows these interfaces is given in Figure 6.11. They suggest

that the internal strain compensates for the highly polar {0001} surfaces at either

end of the hexagonal rod[313].
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Table 6.8: Structure of the equilibrated 120, 360 and 840 atom nanoparticles
cut out of bulk wurtzite, optimised at 0 K and then equilibrated at 300 K. With
increasing particle size there is internal strain that can be seen in the side view

images of the relaxed nanoparticles.

Size,
Approx.
Diam.

Viewed across ab plane Viewed down c axis

120 atom,
≈ 1.2 nm

360 atom,
≈ 1.6 nm

840 atom,
≈ 2.5 nm
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Figure 6.11: Image of the midsection of a relaxed wurtzite nanoparticle
obtained by Morgan and Madden [313]. They found that after relaxing their
3724 atom wurtzite nanoparticle two interfaces, constructed of alternating 4-
and 8- membered rings, were formed (these are indicated with an arrow). Image

reproduced from Morgan and Madden [313].

Figure 6.12: Cross-section taken from the 840 atom nanoparticle before any
relaxation (left) and after optimisation at 0 K and 100 ps equilibration at 300 K
(right). The equilibrated structure has clearly changed to form interfaces with

4- and 8- membered rings.

We took images of the cross-sections of our 840 atom relaxed nanoparticle to

compare it to the findings of Morgan and Madden [313]. Relaxation of this

nanoparticle was performed in DL POLY as a 0 K optimisation run; the time

step was small, 0.1 fs, and the structure was optimised after approximately 5.3 ps.

The cross section is given in Figure 6.12 and shows the same cross-section region of

the nanoparticle before and after relaxation. The formation of the core is initiated

by relaxation of the two polar surfaces of the hexagonal nanoparticle ‘rod’. There

is significant flattening of the surface layer of atoms at each end of the nanorod,

and rearrangement of the atoms at the corners and edges of the structure. The

relaxation of the surface layers appears to initiate further rearrangement of the
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nanoparticle, particularly in the core where we see inversion of wurtzite, exactly

as described in the relaxation run of Morgan and Madden [313]. Morgan and

Madden [313] describe the mechanism of the wurtzite nanoparticle relaxation in

terms of the underlying crystal structure inducing a surface reconstruction. In our

case we first observe some surface reconstruction, which in turn induces internal

strain in the nanoparticle. Agrawal et al. [314] performed theoretical studies to

explore the transformation of ZnO nanowires from wurtzite to BCT under strain.

They also found the transformation to BCT was initiated at the surface, before

layers below transformed. Figure 6.13 shows the breaking and forming of bonds

down the c axis of the nanoparticle, producing a wurtzite region with the reverse

orientation of the starting crystal - and where these layers connect is the 4- and

8-membered ring motif of the BCT phase.

Figure 6.13: Closer view of the mechanism of the transformation at the core
of the 840 atom nanoparticle. A sequence of atoms transforming from wurtzite
to 4- and 8- membered rings of the BCT phase are highlighted. The sulfur
anions are shifting up and zinc cations shifting downwards. The result is two
wurtzite sections oriented in opposite directions, forming a BCT-like region

between them.

For the MetaD simulations of the nanoparticles of ZnS we also require an

appropriate switching function to define the neighbour cut-off range for the

Steinhardt parameter. We have calculated the pair distribution function (PDF)

for the 360 atom nanoparticle, shown in Figure 6.14. Overlaid on the PDF we have

shown the switching function used for the bulk simulations, and two new switching

functions we have based on the nanoparticle PDF. The parameters for the first

“nanoparticle switching function” are d0=3.8 Å, r0=0.17 Å, n=6 and m=12. This

function is fitted on the first pair of nearest neighbours in the PDF obtained from

the nanoparticle. The second switching function is based on the bulk parameters.

However the steepness of the switching region has been reduced by decreasing the
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Figure 6.14: Pair distribution function for S-S and Zn-Zn pairs in the relaxed
360 atom ZnS nanoparticle. The switching function used for the bulk structure
is shown for a comparison with the switching functions used for the nanoparticle

systems.

exponents n and m; the parameters for this function are: d0=3.9 Å, r0=0.25 Å,

n=2 and m=6.

6.3.2.1 120 atom ZnS nanoparticle in vacuum

Four MetaD simulations were performed for the 120 atom nanoparticle in vacuum.

Two simulations were performed with Q4 biases applied to only Zn-Zn pairs, and

two others with the Q4 bias applied to both Zn-Zn and S-S pairs. The differences

between these simulations were the switching functions used to determine the

neighbouring atoms in the calculation of the Steinhardt parameter, as explained

in the previous section. All of the simulations performed using the Q4 Steinhardt

parameter as a CV explored new structures of the 120 atom nanoparticle. The 120

atom system was also a small enough system that significantly longer trajectories

could be obtained within a reasonable time frame. In this case we have trajectories

spanning at least 30 ns of simulation time. To perform an effective analysis of the

long trajectories produced, we have taken frames at every 250 ps of the simulation

and optimised these at 0 K using DL POLY[303], followed by an optimisation using

GULP[160]. We have taken the lowest energy structures from these simulations
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and included them in Tables 6.9-6.12. The relative energies (∆U) are given with

respect to sphalerite. In the case of this smaller sized nanoparticle all but one of

the simulations tended to explore bubble-like cages.

The MetaD method using the Q4 Steinhardt parameter has enabled configurations

of similar sizes and shapes to be explored much more efficiently than the method

examined in the previous chapter, i.e. the trace of inertia tensor. The structures

explored for the 120 atom structure are generally ‘cage-like’ or ‘bubble’ clusters,

formed of hexagonal nets, with occasional 4- and 8- membered rings present.

The final simulation performed on the 120 atom nanoparticle used the switching

function based on the bulk PDF, and has a bias on both Zn-Zn and S-S pairs.

This simulation is distinct from the rest, with ‘bubble’ clusters forming as two

layers of hexagonal sheets, reminiscent of planes of graphite. These structures

are an interesting outcome from these simulations, as Freeman et al. [315] have

suggested that graphitic nanofilms are precursors to wurtzite films. In their study

they were looking at ZnO, but the same could occur for ZnS. They found wurtzite

films transform to graphitic films to remove the dipole of the [0001] surfaces.

At this nanoparticle size there appears to be little effect from the different

switching functions, and more variation is seen between the simulations run with

a bias only on the Zn-Zn pairs and the bias on both Zn-Zn and S-S pairs. An

additional point to make is that the configurational space of these 120 atom

nanoparticles is significantly larger than the smaller nanoparticle sizes explored

in the previous chapter. It is possible for many structures to exist with very

similar energies, and this is reflected in the ∆U of the structures explored.

6.3.2.2 360 atom ZnS nanoparticle in vacuum

The structures obtained from the MetaD simulation of a medium sized

nanoparticle, 360 atoms, in our study gave starkly different results to the 120

atom nanoparticle.

For the 360 atom nanoparticle the same set of simulations were performed - MetaD

simulations with the Q4 Steinhardt parameter used to bias either Zn-Zn pairs or

both the Zn-Zn and S-S pairs in the nanoparticle. The Gaussian parameters used

were height W=0.5 eV and width σ=0.01. The simulations performed with a

bias on both Zn-Zn and S-S pairs were significantly different depending on which



196
Chapter 6. Metadynamics simulation of ZnS phase transitions employing

Steinhardt parameters

Table 6.9: Low energy structures obtained from simulation of 120 atom
nanoparticle using Q4 bias on only Zn-Zn pairs. The switching function
parameters were d0=3.8 Å, r0=0.17 Å, n=6 and m=12. The relative energies

(∆U) are quoted with respect to sphalerite in kJ/mol per formula unit.

Time (ns) 1.50 27.00 33.50 56.00

∆U/ZnS
(kJ/mol) 37.0 36.6 37.5 37.2

Table 6.10: Low energy structures obtained from simulation of 120 atom
nanoparticle using Q4 bias on only Zn-Zn pairs. The switching function
parameters were d0=3.9 Å, r0=0.25 Å, n=2 and m=6. The relative energies

(∆U) are quoted with respect to sphalerite in kJ/mol per formula unit.

Time (ns) 5.25 22.25 30.00 32.25

∆U/ZnS
(kJ/mol) 36.7 34.9 36.2 32.4

switching function was used for the selection of neighbouring atoms. Similar

structures were explored in the simulations performed with only a bias on the

Zn-Zn pairs - again the main difference between the simulations seems due to

the switching function used. For this reason we will focus only on the simulations

performed with Zn-Zn and S-S pairs, and discuss the differences with respect to the

switching function. Tabulations of the structures obtained from the simulations

performed with a bias only on the Zn-Zn pairs are listed in Appendix C.

The simulation performed with a switching function based on that used for the bulk

briefly explored the bulk phases before evolving to double-bubble-like clusters, with
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Table 6.11: Low energy structures obtained from simulation of 120 atom
nanoparticle using Q4 bias on both Zn-Zn and S-S pairs. The switching function
parameters were d0=3.8 Å, r0=0.17 Å, n=6 and m=12. The relative energies

(∆U) are quoted with respect to sphalerite in kJ/mol per formula unit.

Time (ns) 3.50 5.50 32.75 37.75

∆U/ZnS
(kJ/mol) 37.3 37.2 35.4 36.4

Table 6.12: Low energy structures obtained from MetaD simulation of 120
atom nanoparticle using Q4 bias on both Zn-Zn and S-S pairs. The switching
function parameters were d0=3.9 Å, r0=0.25 Å, n=2 and m=6. The relative
energies (∆U) are quoted with respect to sphalerite in kJ/mol per formula unit.

Time (ns) 8.75 14.50 36.50 72.25

∆U/ZnS
(kJ/mol) 30.7 32.0 31.5 32.6

a distinct centre and outer layer. A number of the low energy structures obtained

throughout this simulation performed with a bias on the Zn-Zn and S-S pairs are

given in Table 6.13. The double-bubble-like clusters explored in this simulation

were all generally higher in energy than the starting state. These structures are

quite amorphous, and a preference for 3-coordinated atoms is retained. As already

mentioned, a similar evolution of the structure - from well ordered to ‘amorphous’

or bubble-like - was also observed in the simulation performed with a bias only on

the Zn-Zn atoms.

The structures obtained in the second simulation with a bias on both Zn-Zn

and S-S pairs used a switching function based on the PDF of the 840 atom

nanoparticle. The evolution of the structures of the nanoparticle in this simulation
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Table 6.13: Low energy structures obtained from MetaD simulation of 360
atom nanoparticle using Q4 bias on both Zn-Zn and S-S pairs. The switching
function parameters were d0=3.9 Å, r0=0.25 Å, n=2 and m=6. The relative
energies (∆U) are quoted with respect to sphalerite in kJ/mol per formula unit.

Time (ns) 0.75 1.50 2.00

∆U/ZnS
(kJ/mol) 29.4 29.2 29.1

Time (ns) 2.25 3.00 5.75

∆U/ZnS
(kJ/mol) 29.5 30.1 29.1

Time (ns) 7.50 7.75 9.00

∆U/ZnS
(kJ/mol) 29.9 29.8 29.3
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Figure 6.15: Image showing the top-down view of the 360-atom nanoparticle.
The region where the cross-section of the optimised nanoparticle structures has

been taken is indicated in blue.

were more subtle, with disorder appearing at the core and surface of the structures.

This simulation investigated many structures that were lower in energy than the

starting structure, and bubble-like clusters were not explored. Again structures

were taken at 250 ps from the trajectory and optimised in the same manner as the

previous structures. Low energy structures, or those of particular interest, have

been included in Table 6.14. Each structure has been shown from three different

perspectives, and the fourth perspective is a cross-section slice taken across the

middle of the nanoparticle. Figure 6.15 has been provided to show the reader

where the cross-section slice has been taken.

The structures from this simulation were predominantly bulk-like, with a large

proportion of 4-coordinated atoms present. The structures explored were

not bubble or cage-like structures, and the starting structure is more or less

maintained, with more 4- and 8- membered ring formations appearing within

the core of the nanoparticles. The lowest energy structure obtained is the final

structure given in Table 6.14 and has been included with three views in Figure 6.16.

The lowest energy structure has formed 4- and 8- membered rings in the core, while

the lower surface is a cap that is almost entirely detached from the nanoparticle.

The simulations performed with the switching function modelled on the 840 atom

nanoparticle show the system taking on structures with 8-membered ring channels

through the structure. We have already found the core of the nanoparticles

significantly altering to take on 4- and 8- membered ring motifs. As the MetaD

simulation progresses we find the 8- membered ring motif continuing throughout
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Table 6.14: Low energy structures obtained from a MetaD simulation using
the Q4 Steinhardt parameter as a CV bias on both the Zn-Zn and S-S pairs. The
switching function used had parameters d0=3.8 Å, r0=0.17 Å, n=6 and m=12.
The relative energies (∆U) are quoted with respect to sphalerite in kJ/mol per

formula unit.

Time
(ns)

Structure ∆U

7.50 28.3

13.25 28.0

14.75 28.6

16.75 28.0

17.50 27.7

18.00 27.1
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Figure 6.16: Lowest energy structure obtained for the 360 atom zinc sulfide
nanoparticle. Structure obtained from the MetaD simulation using Q4 as the
CV. The bias was applied on both Zn-Zn and S-S pairs, with a switching function

of d0=3.8 Å, r0=0.17 Å, n=6 and m=12.

Figure 6.17: Structure taken at 13500 ps of the MetaD performed with a bias
only on Zn-Zn pairs with switching function parameters d0=3.8 Å, r0=0.17 Å,
n=6 and m=12. The structure obtained here shows the 8-membered ring
channels forming through the entire nanoparticle. ∆U with respect to sphalerite

is approximately 33.4 kJ/mol per formula unit.

the structure to form a nanoporous structure with 8-membered ring channels. This

is shown as a larger image in Figure 6.17.

6.3.3 Finite particles of ZnS in water

Four simulations were performed on a 360 atom nanoparticle in water. The

simulation parameters were as described in the previous section for the 360 atom

nanoparticle in vacuum, where the bias is only applied to the atoms of the

nanoparticle, either the Zn-Zn pairs or both the Zn-Zn and S-S pairs. The same

360 atom nanoparticle obtained from the relaxation runs in vacuum was used to

create the starting configuration for this simulation. A box of 2686 molecules of

water was prepared around the 360 atom ZnS nanoparticle and equilibrated using

a 1 ns run under the NPT ensemble to obtain a cubic supercell with sides 45 Å in

length.
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The simulations of the 360 atom nanoparticle in water behaved similarly to the

equivalent simulations performed in vacuum. The two simulations performed with

a bias applied to both Zn-Zn and S-S pairs behaved most like the simulations in

vacuum with a switching function parameter of the ‘bulk’, d0=3.8 r0=0.17 n=6

m=12. These simulations showed limited transformations of the nanoparticle,

where only the core of the nanoparticle underwent transitions similar to those

shown in Table 6.14. The two simulations performed with the Q4 bias applied to

the Zn-Zn only pairs both investigated the widest variety of structures. In these

cases we found the simulation explored more crystalline phases, with significant

regions acquiring the BCT phase. However, as the simulation progressed, the

system evolved into more amorphous double-bubble clusters. We will focus on

the simulation performed with a Q4 bias on Zn-Zn pairs with switching function

parameters d0=3.8 r0=0.17 n=6 m=12, where the widest variety of structures

were explored.

A transformation from a wurtzite cluster to a predominantly BCT phase cluster

occurs in approximately 1.5 ns and further transition to amorphous phases occurs

by approximately 6 ns of simulation. While we did see transformations to

amorphous phases in our simulations performed in vacuum within similar periods

of simulation time using the same switching function, we did not find the same

range of crystalline and amorphous structures explored in the one simulation. In

vacuum, the simulations which did explore amorphous phases spent very little time

exploring compact and crystalline configurations before significantly deforming

into ‘bubble-clusters’ or totally disordered phases.

We have taken selected frames from the MetaD simulation and performed 20 ps of

NPT runs to obtain an average enthalpy to compare the relative stability of these

structures to those found in the previous chapter. The frames, and the time at

which they occur in the MetaD simulation are given in Table 6.15, along with the

relative enthalpy per formula unit. We detailed similar information for the much

smaller clusters of (ZnS)12 in Chapter 5.

The relative enthalpy differences per formula unit for the more compact, crystalline

clusters are very small and comparable to the level of accuracy we would expect

for these enthalpy calculations. In contrast, the amorphous nanoparticles have

enthalpies approximately an order of magnitude larger than the crystalline clusters.

This contrasts to our observations in the previous chapter for the small clusters

of ZnS in water, where the relative enthalpy of the nanoparticles was lower
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Table 6.15: Structures taken from the MetaD simulation of the 360 atom
wurtzite nanoparticle in water, with Q4 bias only on Zn-Zn pairs and switching
function parameters d0=3.8 Å, r0=0.17 Å, n=6 and m=12. NPT simulations
were performed to obtain the average enthalpy values for each state, and the
enthalpy is given relative to the structure with the lowest enthalpy from the set,
at 2.12 ns. The number of water molecules, coordinated with Zn, in the first

hydration shell (within 3 Å) of the nanoparticle are given as Zn-Ow coord.

Time Structure ∆H/ZnS Zn-Ow Time Structure ∆H/ZnS Zn-Ow

(ns) (kJ/mol) coord. (ns) (kJ/mol) coord.

0.12 0.4 21.1 5.50 0.4 25.1

1.50 0.2 25.2 6.25 9.8 22.1

2.12 0.0 23.8 6.88 11.2 22.4

for the less ordered clusters, and higher for the well ordered, compact clusters.

In the previous chapter the small, disordered clusters with low enthalpy values

tended to have a higher proportion of 2-fold coordinated atoms present, made

energetically favourable by coordination with surrounding water molecules. For

these larger nanoparticles the surface to volume ratio is much smaller, resulting

in far less strained clusters which appear to favour maintaining the crystalline,

predominantly 4-fold coordinated phase. We calculated the average number of

water molecules within 3 Å of a Zn atom and found very similar values for each

cluster, these values are also shown in Table 6.15. There is no appreciable trend

between the average number of water molecules coordinated to Zn and the enthalpy

for these larger nanoparticles of ZnS, which suggests that at this cluster size the

solvation of the surface plays a less significant role than for the smaller clusters as
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expected. Based on these studies it appears that solvated clusters at this size will

prefer to maintain their crystalline form rather than adopting an amorphous state

which will be higher in enthalpy.

As with our previous simulations of zinc sulfide nanoparticles in water (see

Chapter 5), we find the water plays a stabilising role for the nanoparticles. A

wider variety of clusters are explored in the simulations performed in water, even

if they are seen for a relatively short simulation time. We will investigate the

ZnS-water interactions we have used throughout our work in a later chapter.

6.4 Conclusions

We have shown the Q4 Steinhardt parameter can be successfully used as a CV in

metadynamics to explore the phase space of nanoparticles. The method described

in this chapter helped overcome one of the problems found with the inertia tensor,

that is, we were able to explore the phase space of larger nanoparticles. The theme

of zeolite motifs from the previous chapter has continued into the results of these

phase investigations of larger nanoparticles. Using the Steinhardt Q4 parameter as

a collective variable we have been able to push bulk zinc sulfide, and nanoparticles,

to the BCT phase which exists as a zeolite framework.

There are a number of implementation aspects which could significantly affect the

results obtained from this method. These include:

• The parameters of the switching function

• The size of the system

It is important to determine ‘good’ switching function parameters - values

which will sufficiently include the nearest neighbours in the calculation of the

Steinhardt parameter. However, when the system begins to transform during

the metadynamics simulation, it is possible that the nearest neighbours in the

new structures will be beyond the switching function region, giving Steinhardt

parameter values which do not accurately represent the alignment of neighbouring

atoms and rendering the metadynamics ineffective.
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Throughout the simulations we have discussed we have continued the theme of

zeolite motifs in zinc sulfide structures, with the BCT phase occurring in our

larger nanoparticles. Following this trend, we have decided to investigate the

phase stability of zeolite-like zinc sulfide structures in a methodical way in the

next chapter.





Chapter 7

Nanoporous zinc sulfide

7.1 Introduction

Our previous studies and those of others[111–113] have shown that ZnS has a

preference for open cage-like structures, in the case of small clusters, and, at

larger cluster sizes, networks with open channels are found. Both of these features

are reminiscent of motifs found in zeolites, a well-studied group of aluminosilicate

minerals. In this chapter we will continue to explore the possible phases of zinc

sulfide, with a focus on the possibility of forming zeolitic framework analogues.

Though ZnS structures with zeolite motifs have been found in theoretical studies,

they have not yet been found experimentally. Before delving into the methods

and results, we should introduce some background relating to zeolites and how

this large set of frameworks is constructed and defined.

The term zeolite refers to crystalline structures of naturally occurring

aluminosilicate materials[316]. These minerals have complex three-dimensional

networks comprised of corner-linked tetrahedra of [SiO4]4− or [AlO4]5−; an example

of a generic TO4 tetrahedron is shown in Figure 7.1. An International Zeolite

Association (IZA) was formed in 1973 to promote the development of zeolite

science and technology, and four years later a Structure Commission (IZA-SC)

was formed as part of this association. The IZA-SC evaluates zeolite structural

data present in the literature and compiles this data to make it available for the

public from one localised source, known as the Zeolite Structure Database[297].

The IZA-SC has authority from IUPAC to assign framework codes (of three

letters) to unique and confirmed framework topologies[317]. To date there are

207
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197 frameworks listed in the zeolite structure database[297]. The structures of

Figure 7.1: TO4 tetrahedron, where T is the central atom shown in blue and
the oxygen atoms shown in red. This tetrahedral structure is the building block
for traditional zeolite frameworks, where T is usually Si or Al and the tetrahedra

connect by corner-sharing oxygens.

zeolite frameworks are so diverse that secondary building units (SBU) are often

used to assist in describing different frameworks[318]. Zeolites can be depicted as

a simplified framework where each bond shown is actually a T-O-T connection.

When viewed in this way, zeolites have repeating motifs that can be easily

described as n-membered rings or three dimensional units. These motifs are SBUs,

and have been documented by the IZA-SC. The SBUs currently known are shown

in Figure 7.2.

Figure 7.2: Secondary Building Units (SBU) found in current zeolite
frameworks, as documented in the Atlas of Zeolite Frameworks[319]. Each line
represents a T-O-T connection, making each corner of an SBU a tetrahedral

(T) atom. Image reproduced from Baerlocher et al. [319].
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A comparison of the different ways zeolite structures can be represented is shown

in Figure 7.3, where different representations of the sodalite cage are shown. The

first image shows an all atom representation; the middle image shows how the

interconnected TO4 tetrahedra can be connected as polyhedra; the final image is

a ‘framework’ representation, where each line indicates a T-O-T connection. This

final representation is the one we will focus on throughout our later discussions,

as it is this topology that we can ‘convert’ to a hypothetical ZnS form.

Figure 7.3: Different representations of a silicate (SiO4) sodalite cage,
(a) full atom representation, with oxygen shown in red and silicon in blue;
(b) polyhedral representation, SiO4 tetrahedra shown; (c) framework, where

connectivity between the Si atoms is considered.

Zeolite frameworks have open porous structures, with channels and cavities that

can adsorb molecules and contain cations. The quantity of cations incorporated in

a zeolite structure is dependent on the number of [AlO4]5− tetrahedra present in the

framework, as these provide the framework with a residual negative charge that

counter-ions must compensate[316]. Zeolites can be very effective ion-exchange

materials - the cations are not part of the intrinsic framework, and in some cases

can be readily exchanged with other cations in solution[316]. Their regular arrays

of channels with specific apertures means zeolites can be used as molecular sieves

to selectively allow molecules of only certain dimensions to pass through them[316,

320]. This defining feature of zeolites has made them the subject of intense studies

for a number of decades[321]. Hundreds of zeolitic frameworks have been studied

and defined, both naturally occurring and synthetic[319, 321].

As an example, a well-known zeolite structure, ZSM-5, is shown in Figure 7.4 using

two different representations, to give the reader an idea of how the corner-sharing

TO4 tetrahedra connect to form a complex three-dimensional network. The

representation on the left shows all of the bonds between Si and O, and also the
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Figure 7.4: Two representations of the framework for the ZSM-5 zeolite,
viewed along [010]. Full representation with the [SiO4]4− tetrahedra (left) with
oxygen atoms shown in red. Framework structure (right), where the oxygens

are not depicted and each line represents a Si-Si connection.

[SiO4]4− tetrahedra. The representation on the right is the same structure shown

on the left; however, it has been simplified by considering only the connections

between tetrahedral centres to represent the framework, as shown in the sodalite

example in Figure 7.3. These figures also clearly show the porous nature of the

structure, with a channel comprised of 10-tetrahedra present in the middle of the

cell.

Zeolites such as ZSM-5 have long been used for acid catalysis, where bridging

Al-O-Si oxygens are protonated, providing the acid species for catalysis[323].

The product of zeolite catalysis is also size-controlled due to the size-selective

nature of the zeolite pores. An example of this is the catalytic formation of

xylene (dimethylbenzene) from toluene (methylbenzene). The ortho-, meta- and

para-isomers of xylene can be formed and inter-converted via acid catalysis.

However, if the catalysis is performed in ZSM-5 zeolite, the predominant product

Figure 7.5: Depiction of the acid catalysed inter-conversion of the isomers
of xylene within the zeolite pores, and the size-selective nature of the pores
allowing only one isomer, the more linear para-isomer, to pass through. Image

reproduced from Csicsery [322].
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is the para- form, as illustrated in Figure 7.5. The preference for the para-isomer

can be explained by its shape; its linear nature means it can more readily diffuse

through the pores of the zeolite, while the remaining isomers remain trapped until

they also convert to the para- isomer[323].

Another means of simplifying the representation of a zeolite network is to consider

the structure as comprised of ‘composite building units’. These are also listed

on the IZA-SC website, and are more complex building blocks comprised of the

SBUs. The example sodalite cage given in Figure 7.3 shows the formation of a

complex building unit from the SBUs. The sodalite cage motif is common to many

zeolite frameworks, and we have already seen this motif in previous chapters as

it is the lowest energy cluster found for a (ZnS)12 cluster. For example, there are

three different frameworks ‘SOD’, ‘FAU’ and ‘LTA’ which are composed of sodalite

cages connected in different ways. A summary of the composite building blocks

for these three common zeolite frameworks are shown in Table 7.1, along with an

example of the zeolite framework.

Table 7.1: Three well-known zeolite frameworks, SOD, LTA and FAU. All
of these frameworks consist of the sodalite cage interconnected in different
ways. The SOD framework has no additional connecting units, while the LTA
framework has a ‘D4R’, double-four-membered-ring connection, and the FAU
network has a ‘D6R’, double-six-membered-ring connection. Only a portion of
the FAU framework is shown to better illustrate the connectivity of the sodalite
cages. The composite building block images (bottom row) are reproduced from

the IZA-SC website[317].

SOD LTA FAU

The SOD framework has no connecting unit between the sodalite cages; they are

simply fused together via the 4-membered rings of each cage. The LTA framework

connects the sodalite cages via the 4-membered rings of adjacent sodalite cages,
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producing an additional double four-membered ring ‘D4R’ building block. The

FAU framework has the sodalite cages connected via the 6-membered rings of

adjacent sodalite cages, producing an additional double six-membered ring ‘D6R’

building block. These images indicate how diverse the zeolite frameworks can be,

even if the primary building unit is the same and only the means of connection

between units is altered.

The zeolite framework codes (such as SOD, LTA and FAU) and their associated

building units were traditionally only used in the context of alumino-silicate

compounds, to help classify the large number of structures that exist. However,

other materials, such as ionic sulfides and oxides, can also show the same structural

motifs as zeolites, and be classified in the same way[67, 283, 324, 325]. We

have already seen the formation of cage-like clusters in our own results in the

previous chapters, and in our literature review of nanoscale structures[111–113].

Some groups, such as that of Bromley and Flikkema [326], have dedicated their

research to investigating possible zeolite-like networks in novel materials as well

as traditional silicates. They first investigated likely ground-state clusters for

(SiO2)N , where N = 7 . . . 12[327]. The same group later took the lowest energy

clusters from this work and studied theoretical zeolite frameworks by using

“magic” clusters of (SiO2)8 as the SBU of different frameworks[328]. They also

applied the underlying concept of this work to other materials. Of particular

relevance to our work, Carrasco et al. [325] looked at low density structures

of metal oxides, MgO and ZnO. Previous MgO studies have also found ‘magic

numbers’ for some stable structures via mass spectra[329]. Carrasco et al. [325]

took these stable cluster structures as the building blocks for larger frameworks.

The open-structure polymorphs proposed by Carrasco et al. [325] have yet to

be reported for any other metal oxide material, but have topological links with

silicate-based zeolite structures. For both MgO and ZnO, they used the sodalite

cage as the main SBU, with different interconnecting units. Examples of how they

built different frameworks using the sodalite cage are shown in Figure 7.6. The

framework codes are related to the zeolite frameworks FAU, LTA and SOD, which

we have already introduced.

Woodley et al. [330] have very recently performed similar theoretical studies

where they built microporous frameworks from small ZnO cages. To expand

on the studies performed previously by Carrasco et al. [325], Woodley et al.

[330] considered not only the (ZnO)12 sodalite cage structure as a building block,
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Figure 7.6: (MO)12 nanocage used as a building block for creating nanoporous
zeolitic frameworks of MgO and ZnO in Carrasco et al. [325]. Image reproduced

from Carrasco et al. [325]

but also attempted to build frameworks from other stable structures known for

ZnO. They used clusters of (ZnO)n where n=4, 12, 16, 24, 28, 36, 48 and 64,

shown in Figure 7.7. Their studies were repeated in the same year on a different

material, SiC[331]. In these studies, each of the building blocks were considered

as octahedra, and the larger frameworks constructed by the sharing of corners

between these octahedra.

Figure 7.7: (ZnO)n nanocages used as building blocks for creating nanoporous
zeolitic frameworks of ZnO in studies of Woodley et al. [330]. Image reproduced

from Woodley et al. [330]
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Another recent study is that of Zwijnenburg et al. [332], which predicts for

tetrahedrally coordinated 1:1 binary solids many low density polymorphs, such

as those based on zeolitic frameworks, are likely to exist. They suggest that this

phenomena is probably not confined to the tetrahedral 1:1 binary solids, but may

apply to all simple solids.

Motivated by these previous studies for other MX systems we want to apply the

same approach to zinc sulfide. The aim of the work performed in this chapter is to

investigate the relative stabilities of hypothetical nanoporous materials consisting

of zinc sulfide. This is a logical step from the results in the previous chapters,

where we have seen zeolite motifs appear in our simulations of nanoparticles and

bulk ZnS. How we will perform this systematic study will be presented in the next

section.

7.2 Methods

To compare the stabilities of different zeolitic frameworks of ZnS, it was first

necessary to build the appropriate frameworks. As mentioned in the introduction,

the IZA-SC makes the topologies of zeolite frameworks freely available. We first

went through this database and sourced all of the structures that have only

even-membered rings. This restriction exists for ZnS frameworks, since Zn and

S atoms must strictly alternate (i.e., we cannot have Zn-Zn or S-S connections,

which would occur if the frameworks had odd-numbered rings). There are 91

structures found to be appropriate, and these are given in Table 7.2.

The structures in the IZA-SC database are comprised of generic TO4 units,

where T is usually aluminium or silicon. To generate the frameworks of a ZnS

composition a program was developed to automate the assignment of Zn or S

type to each T atom. First, the framework structures were taken from the IZA-SC

website and the oxygens removed. The remaining ‘T’ atoms provide the zeolite-like

network we need to convert to a ZnS form. The program developed then takes

the generic framework file and loops over the atoms to generate a network where

the ‘T’ sites have been replaced by alternating Zn-S pairs. This is done by first

generating a nearest-neighbour list for each atom, and then starting from the first

atom assigning arbitrarily the atom type Zn and its neighbouring atoms the atom

type S. This assignment is continued iteratively through neighbouring atoms until
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each atom in the network has been assigned the correct atom type, producing

a network of alternating Zn-S atoms. We have grouped the allowed structures

obtained from the IZA-SC database based on the rings present in the structure.

For example SOD, comprised only of interconnected sodalite cages, has only 6- and

4- membered rings, so this is listed under ‘6-4 frameworks’ in Table 7.2. Likewise,

the LTA framework we have also discussed, has 8-, 6- and 4- membered rings, so

this is listed under the heading ‘8-6-4 frameworks’.

Once the zeolite structures had been transformed to an equivalent ZnS structure,

these were then optimised based on a number of different force fields using the

program GULP[160]. The force fields we have used are the rigid-ion model

introduced in the previous chapter, the shell model of Wright and Gale [95], the

same shell model of Wright and Gale [95] without its torsional term, a rigid-ion

version of the Wright and Gale [95] model with the torsional term and finally the

shell model force field of Hamad et al. [94]. The parameters for the aforementioned

force fields are given in Tables 7.3-7.6. The Wright and Gale [95] model has been

referred to as ‘Shells/Tors’ in our plots, as we used this entire force field, including

the torsional term, which enables the correct order of sphalerite and wurtzite

to be modelled. The same model without the torsional term is referred to as

‘Shells/NoTors’ in our plots, and the rigid-ion version of the Wright and Gale [95]

model is referred to as ‘Rigid/Tors’.

The functional form for the non-bonded interactions of the Hamad et al. [94]

model is a mixture of the Buckingham and Lennard-Jones 9-6 potential, given by

Equation (7.1):

Vij = A exp(−rij
ρ

) +Br−9
ij − Cr−6

ij (7.1)

The three-body potential of the Wright and Gale [95] model is given by the form:

U b
ijk =

1

2
kb(θijk − θ0)2 exp

(
−rij
ρ1

)
exp

(
−rjk
ρ2

)
(7.2)

This is a harmonic potential with exponential decay, reducing the chance of a

discontinuity as atoms transfer between coordination shells.

With many studies having referred to the presence of “bubble-clusters” of zinc

sulfide and magic-number clusters that resemble zeolite structures[111–113], it
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Table 7.2: Tabulation of the 91 zeolite frameworks obtained from IZA-SC that
possess only even-numbered rings.

6-4 Frameworks

AFG AST FAR FRA GIU LIO
LOS MAR MSO SOD TOL
UOZ

8-4 Frameworks

ACO EDI MER PHI SIV THO

8-6-4 Frameworks

ABW AEI AEN AFN AFT AFX
AFY ANA APC APD ATN ATT
ATV AWO AWW BCT CHA DFT
EAB ERI GIS GOO JBW KFI
LEV LIT LTA LTN OWE PAU
RHO SAS SAT SAV TSC UEI
ZON

10-6-4 Frameworks

AEL AFO AHT JRY LAU PON

10-8-6-4 Frameworks

CGS CGF WEN

12-6-4 Frameworks

AFI ATO ASV ATS CAN EMT
FAU OSI SAO

12-8-6-4 Frameworks

AFR AFS BPH EZT GME ITW
LTL MOZ OFF SBE SBS SBT
SFO

Larger Frameworks

CZP ETR USI AET VFI
(12-8-4) (18-8-6-4) (12-10-6-4) (14-6-4) (18-6-4)
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Table 7.3: Rigid-ion model for ZnS. These parameters were obtained using
GULP[160], fitting to the wurtzite and sphalerite structures, cell parameters

and physical properties, such as the elastic constants[95].

Species Charge (e)

Zn +1.2534
S -1.2534

Lennard-Jones (12-6) Potential A (eV Å12) B (eV Å6) Cut-off (Å)

S - S 1003475.3 0.00 12.00
Zn - S 5669.3544 0.00 12.00

seems relevant to investigate how the force fields being used perform for these

structures. The rigid-ion model we have used throughout our studies has been

fitted using the same experimental data used to derive the Wright and Gale [95]

shell model.

We have previously described shell model force fields in Chapter 2, where we

introduced the computational methods to be used throughout our studies. To

briefly recap, a ‘shell model’ force field attempts to take into account the

Table 7.4: Wright and Gale [95] model for ZnS. The torsional term enables
this force field to reproduced the experimental observation that sphalerite is the

preferred polytype of ZnS.

Species Charge (e)

Zn core +2.00
S core -1.03061
S shell -3.03061

Buckingham potential A (eV) ρ (Å) C (eV Å6) Cut-off (Å)

Zn core - S shell 672.288 0.39089 0.0 12.00
S shell - S shell 1200.0 0.14900 0.0 12.00

Core-shell potential k (eV/Å2) Cut-off (Å)

S core - S shell 13.302743 0.8

Exponential three-body potential k (eV/rad2) θ0 (◦) ρ1/ρ2 (Å) Cut-off (Å)

S shell - Zn core - S Shell 9.42834 x 106 109.47 0.3 6.0

Torsional Potential k1 (eV) m/n rmin (Å) rmax (Å)

Zn cor - S shel - Zn cor - S shel 0.005 +1/+3 2.5 3.0
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Table 7.5: Rigid-ion version of the Wright and Gale [95] model for ZnS.
The torsional term is retained, and enables this force field to reproduced the

experimental observation that sphalerite is the preferred polytype of ZnS.

Species Charge (e)

Zn core +2.00
S core -2.00

Buckingham potential A (eV) ρ (Å) C (eV Å6) Cut-off (Å)

Zn core - S core 672.288 0.39089 0.0 12.00
S core - S core 1200.0 0.14900 0.0 12.00

Exponential three-body potential k (eV/rad2) θ0 (◦) ρ1/ρ2 (Å) Cut-off (Å)

S core - Zn core - S core 9.42834 x 106 109.47 0.3 6.0

Torsional Potential k1 (eV) m/n rmin (Å) rmax (Å)

Zn core - S core - Zn core - S core 0.005 +1/+3 2.5 3.0

Table 7.6: Hamad et al. [94] model for ZnS. Cut-offs of 15 Å were used for all
the short-range potentials.

Species Charge (e)

Zn core +2.00
S core -1.357
S shell -3.357

General potential A (eV) ρ (Å) B (eV Å9) C (eV Å6)

Zn core - S shell 213.20 0.475 664.35 10.54
S shell - S shell 11413.09 0.153 0.0 129.18

Core-shell potential k (eV/Å2)

S core - S shell 27.690

Exponential Three-body potential k (eV/rad2) θ0 (◦)

S shell - Zn core - S shell 0.778 109.47
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polarisability of one or all of the ions being modelled. This is accomplished by

representing the ion as being comprised of a central core, and a ‘shell’ surrounding

it, attached via a spring, which represents a polarisable cloud of electrons. We

have also already discussed that the shells can be implemented using two different

approaches, either modelling the shells with or without a mass. Both of these

approaches are more computationally intensive than a rigid-ion model, where the

time step can be relatively large. A balance between accuracy and the speed of

computation needs to be found when deciding which approach and force field to

use. One disadvantage of the rigid-ion model is that the representation of the

system may be less accurate by not taking into consideration the polarisability

of the ions, and ultimately this is why we have chosen to explore a number of

different models.

The complete shell model of Wright and Gale [95] includes a torsional potential.

In sphalerite, the torsional angle is in a staggered conformation, while in wurtzite

the less stable eclipsed form is present. The energetic penalty imposed by this

torsional term enables the force field to obtain the correct order of stability for the

bulk polymorphs of zinc sulfide. The final model we have considered is the force

field of Hamad et al. [94]. This force field has been used for many previous studies

of nanoscale zinc sulfide, and includes some of the first theoretical studies showing

“bubble-clusters” and nano-onions of ZnS. Hamad et al. [94] focussed primarily

on the energy of different surfaces for determining their interatomic parameters.

The sulfur anion is much more polarisable than zinc, and as such both the shell

model of Wright and Gale [95] and that of Hamad et al. [94] represent the sulfur

anion using the core-shell representation, while the zinc cations are only modelled

in a rigid manner.

After all of the framework structures had been optimised with each of the force

fields a subset consisting of the low-energy structures was further optimised using

first principles methods with the program SIESTA[138]. Investigating the relative

energies of the structures with both first principles methods and force field methods

enables us to evaluate whether any of the force fields we are using reproduce the

order of stabilities given by first principles methods. This is especially important

as none of the classical force fields were designed with the purpose of modelling

ZnS in these open zeolitic frameworks, and given these are theoretical frameworks

we have no experimental data with which to validate our results.
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Throughout the present work the Generalized Gradient Approximation of Perdew

et al. [289], known as the PBEsol exchange and correlation functional, has been

used. This is an improvement on their well known GGA functional PBE[131],

where the functional has been optimised for use in solid-state systems. PBEsol has

recently been used in a comprehensive study of the two polymorphs of FeS2, pyrite

and marcasite[290]. This study showed that recently developed GGA functionals,

such as PBEsol, produced a contraction of the lattice parameters, resulting in

the correct prediction of the order of stability of the two polymorphs. As we are

investigating a solid-state system, and in particular a material where there are two

polymorphs separated by a small energy difference, it was important for us to use

a functional which has greater potential to accurately model the relative stabilities

of polymorphs.

The first principles SIESTA[138] methodology expands the Kohn-Sham wave

functions using a linear combination of atomic orbitals (LCAO). The nuclei

and core electrons of atoms are represented through the use of norm-conserving

pseudopotentials of the form developed by Troullier-Martins[139], while the

valence electrons are treated explicitly. The valence electronic configurations for

generating the pseudopotentials were Zn (3s23p63d10) and S (3s23p4). The basis

sets for sulfur required triple-ζ quality for the 3s and 3p orbitals and double-ζ

quality 3d orbitals, while for zinc double-ζ quality was necessary for the 4s, 4p,

and 3d, and single-ζ for the 3s and 3p orbitals. A full description of the basis sets

used in this study is given in Appendix B. The shape of the basis set was improved

following the method introduced by Junquera et al. [291], where the pseudoatomic

orbitals (PAO) of the isolated atoms are enclosed within a soft-confined spherical

potential, removing any discontinuity of the basis function first derivative at the

cut-off radius. A split-norm value of 0.15 was used and 0.02 Ry for the energy

shift of radial confinement. An auxiliary real-space Cartesian grid with a cut-off

of 400 Ry was used for calculating quantities based on electron density and the

Brillouin zone was sampled using a mesh with resolution controlled by using a

K-grid cut-off of 12 Å[142].

In the following section we will present our results from the optimisations of the

theoretical nanoporous ZnS frameworks performed using the force field methods

and first principles techniques described above.



Chapter 7. Nanoporous zinc sulfide 221

7.3 Results and Discussion

Before applying the different force fields to optimise the hypothetical ZnS

frameworks, we have first optimised the bulk polymorphs to determine how

well each force field reproduces the experimental data for zinc sulfide. The

results obtained from each force field are tabulated for sphalerite and wurtzite

in Tables 7.7 and 7.8, respectively.

The shell model of Hamad et al. [94] reproduces the physical properties of

sphalerite very accurately, with the cell parameters and elastic constants all very

close to the experimental values. However, its representation of wurtzite is less

successful, with the lattice parameter c being underestimated by approximately

3% of the experimental value. Additionally, the force field of Hamad et al. [94] is

unable to predict the small energy difference between sphalerite and wurtzite, with

a ∆U of approximately 0.073 eV or 7.04 kJ/mol, and favouring wurtzite rather

than sphalerite. As we discussed in our introduction to the properties of bulk

zinc sulfide in Chapter 1, the energy difference between the two polymorphs has

been listed in thermodynamic tables[333] as approximately 13 kJ/mol. However,

more recent experiments have suggested it may be much smaller, of the order of

2 kJ/mol[80] with sphalerite being the more stable polymorph.

Table 7.7: Calculated structure and properties of sphalerite. The results from
five force fields are shown, along with experimental values where available.

Observable Shell/Tors Shell/NoTors Rigid Rigid/Tors Hamad et al. Expt.
[94] [334, 335]

a(Å) 5.4506 5.4506 5.4574 5.4506 5.4117 5.4093
Volume (Å3) 161.93 161.93 162.54 161.93 158.49 158.34
U/ZnS (eV) -33.466 -33.466 -14.374 -33.466 -33.220 -
C11 (GPa) 107.71 107.06 100.71 107.72 105.37 104.62
C12 (GPa) 59.40 59.82 63.00 59.42 67.45 65.34
C44 (GPa) 33.70 32.97 55.59 66.47 42.83 46.13
K (GPa) 75.5 75.6 75.6 75.5 80.1 77.1
ε011 6.49 6.97 2.96 4.35 6.23 8.3
ε∞11 4.76 4.90 1.00 1.00 3.35 5.2
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Table 7.8: Calculated structure and properties of wurtzite. The results from
five force fields are shown, along with experimental values where available.

Observable Shell/Tors Shell/NoTors Rigid Rigid/Tors Hamad et al. Expt.
[94] [334]

a(Å) 3.8922 3.8945 3.8802 3.8863 3.8762 3.8230
c(Å) 6.1973 6.1906 6.2293 6.2151 6.0877 6.2565
Volume (Å3) 81.31 81.31 81.22 81.29 79.21 80.75
U/ZnS (eV) -33.442 -33.533 -14.408 -33.442 -33.293 -
C11 (GPa) 111.04 110.71 126.80 136.48 124.72 124.20
C12 (GPa) 55.69 55.72 56.08 46.16 60.09 60.15
C44 (GPa) 37.76 37.55 35.54 45.48 37.40 28.64
C13 (GPa) 58.00 58.71 45.12 42.07 59.09 45.54
C33 (GPa) 126.01 124.27 135.81 157.36 113.21 140.00
K (GPa) 76.5 76.5 75.8 76.6 79.7 74.0
ε011 6.71 6.80 2.86 4.47 6.06 -
ε033 6.91 7.60 3.20 4.58 6.66 -
ε∞11 4.79 4.82 1.00 1.00 3.32 -
ε∞33 4.91 5.09 1.00 1.00 3.41 -

Table 7.9: Calculated structure and properties of the hypothetical ZnS BCT
phase. The results from five force fields are shown.

Observable Shell/Tors Shell/NoTors Rigid Rigid/Tors Hamad et al. [94]

a(Å) 6.6571 6.6597 6.6132 6.6627 6.5258
c(Å) 3.8675 3.8649 3.8659 3.8622 3.8746
Volume (Å3) 171.3983 171.4174 169.0727 171.4544 165.9947
U/ZnS (eV) -33.280 -33.471 -14.401 -33.28 -33.245
C11 (GPa) 79.06 78.19 93.71 108.00 88.87
C12 (GPa) 70.16 71.44 51.59 55.96 66.26
C44 (GPa) 28.81 28.95 29.81 39.31 32.77
C13 (GPa) 57.80 57.34 52.36 45.14 59.98
C33 (GPa) 125.82 126.55 138.42 147.95 136.49
K (GPa) 72.1 72.1 69.9 72.3 75.3
ε011 6.81 6.92 3.23 4.76 6.26
ε033 5.39 5.29 2.22 3.45 5.11
ε∞11 4.52 4.54 1.00 1.00 3.23
ε∞33 4.31 4.27 1.00 1.00 3.14
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7.3.1 Optimisations of the zeolite frameworks

A total of 91 zeolite structures were optimised using the five different force fields.

Images of the optimised structures for all of these frameworks can be found in

the Appendix D. Only two structures from the set of 91 were unable to be

successfully optimised; these were the PAU and LTN frameworks. While these

structures were successfully optimised with four of the five force fields used, neither

could be successfully optimised using the Shells/Tors model of Wright and Gale

[95]. These two structures have the largest unit cell of any of the frameworks

investigated, with the PAU framework consisting of 672 and the LAU framework

of 768 atoms. Taking any of the optimised structures (obtained from the Rigid,

Rigid/Tors, Hamad et al. or Shells/NoTors) and attempting to optimise these

using the complete shell model of Wright and Gale [95] resulted in distortion of

these large structures, with the resulting final structure possessing a large number

of imaginary vibrational modes and a failure to converge.

While these are the only two outliers in our optimisations, there are some

structures that do clearly deviate from the starting structure/topology after

optimisation. Here we will summarise some of these deviations, while also

investigating any significant trends in the energies obtained from the different force

fields. When comparing a large variety of structures, such as our hypothetical ZnS

frameworks, it is useful to create scatter plots of energy vs. density. These plots

have been used in the past when studying the relationship between the energy and

the density in silicate frameworks[336], where it was found there was a correlation

between the two - the less dense the structure, the less stable. We would expect

a similar trend for our own frameworks, where the less dense structures become

increasingly unstable in comparison to the stable bulk polymorphs.

The scatter plot of energy vs. density for the optimised frameworks is given in

Figure 7.8. All of the framework energies have been calculated with respect

to sphalerite, which experimentally is shown to be the lowest energy bulk

polymorph[80, 334]. The densities have also been normalised to the density for

sphalerite obtained for the different force fields. Here it can be seen that the

rigid-ion model exhibits a somewhat lower spread in the values than the other

models, with the structures all generally having lower relative energies than those

obtained using the shell models. Figure 7.8 includes the FAU, LTA and SOD points

indicated with a circle. Something else that stands out about the rigid-ion model
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is that the FAU, LTA, and SOD structures appear to have their energies of the

same order of magnitude, with only a slight decrease with decreasing density. This

is the reversal of the expected trend, and the trends shown for the other models.

The Rigid/Tors model also has a similar discrepancy, with the FAU structure

appearing lower in energy than the denser LTA framework.

Looking at the optimised geometries we have obtained for these structures, we note

that the FAU framework optimised with both the rigid-ion models has optimised

to a structure which deviates from the FAU topology, while the remaining shell

models maintain the FAU topology after optimisation. Three different views of

the FAU structure are shown in Table 7.10 for a better comparison of how the

optimised structures differ from the starting FAU configuration. With both of the

structures obtained via rigid ion models there is a loss of the connectivity between

the sodalite cages.

Table 7.10: FAU zeolitic framework viewed along [100], [110] and [111] before
and after optimisation with the two rigid-ion models used.

View Before optimisation Rigid Rigid/Tors

viewed
along
[100]

viewed
along
[110]

viewed
along
[111]

It appears that the Hamad et al. [94] model and the Wright and Gale [95] model

(‘Tors’) have similar trends with regard to the scattering of the data points in

Figure 7.8. A particular point of interest with the Wright and Gale [95] model is
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that this force field gives much higher energies for the SOD and BCT frameworks

in comparison to the other models used. The ‘Shells/NoTors’ Wright and Gale

[95] model without the torsional term results in the energies of the SOD and

BCT frameworks appearing similar to the rigid-ion model. The torsional term is

clearly playing a significant role in the determination of energies of these dense

frameworks.

The low energy and high density structures are significant, as these are more likely

to appear as stable polymorphs of ZnS. The low-energy and high density region

of the scatter plot given in Figure 7.8 has been enlarged in Figure 7.9, for better

clarity in this region. The predicted stabilities of sphalerite and wurtzite from the

different force fields are of particular interest. As mentioned in the introduction

to the properties of zinc sulfide, sphalerite is the preferred polymorph for bulk

ZnS. However, three of the force fields predict wurtzite to be the more stable

polymorph, while only the two force fields with the torsional term present, the

shell model of Wright and Gale [95] and our modified rigid version of this model,

predict sphalerite to be more stable.
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Figure 7.9: High-density region of the relative potential energy per formula
unit vs. density plot of zeolitic ZnS frameworks optimised using five different
force fields. Sphalerite is used as the reference point for calculation of the

relative energies, and is indicated on the graph by a dotted line.
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Removing the torsional term from the Wright and Gale [95] model results in

a reversal of this trend, rendering the energy difference between sphalerite and

wurtzite of the same order as that between these phases when modelled by the

force field of Hamad et al. [94]. One of the other important differences between

these models is the placement of the body-centred tetragonal (BCT) phase that

we covered in detail in the previous chapter. The BCT framework also exists as

zeolitic framework. It is interesting that the BCT structure appears to have such

a low energy with three of the force fields, and is only disfavoured by the two

models with a torsional term present, the shell model of Wright and Gale [95]

and the rigid version of this same model. Recent studies have shown the BCT

phase appears in other materials such as ZnO[305, 306, 337], and has even been

suggested as a stable allotrope of carbon[309].

As there are significant discrepancies in the relative energy of the BCT phase using

different force fields we decided to take the structures in the high-density region of

the scatter plot and optimise these using first principles methods. These structures

are all hypothetical so we do not have any experimental data to compare against,

so first principles calculations should offer another perspective on the expected

energy difference between BCT and the stable polymorphs.

Before delving into our discussion about how the BCT phase is modelled by our

own QM calculations, we should first mention the results of the first principles

calculations on the bulk polymorphs of ZnS. The parameters we have used with

SIESTA[138] have managed to reproduce the correct order of stability between

sphalerite and wurtzite. Sphalerite is approximately 0.0041 eV more stable than

wurtzite according to the physical properties given in Table 7.11. This equates to

approximately 0.39 kJ/mol per formula unit more stable, which is slightly less than

the 2 kJ/mol predicted by experiment[80], however the precise value will depend

on the functional used. The cell parameters obtained from DFT also correlate

remarkably well with the those of experiment.

The high-density frameworks are given in Table 7.12, where the density is greater

than 3.5 g/cm3 as modelled by the rigid ion force field. QM calculations using

SIESTA[138] were performed on these structures. It is interesting that all the

frameworks in this table are in the ‘8-6-4’ category. Figure 7.10 shows an energy

vs. density scatter plot for the structures optimised using first principles methods,

along with the values obtained using the rigid ion force field and the shell force

field of Wright and Gale [95] with the torsional term. The potential energies per
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Table 7.11: Calculated structure and energy of sphalerite obtained from first
principles calculations. The experimental values are shown where available.

Structure Observable First principles Expt. [334]

Sphalerite a(Å) 5.4001 5.4093
Volume (Å3) 157.47 158.34
U/ZnS (eV) -6430.0486 -

Wurtzite a(Å) 3.8215 3.8230
c(Å) 6.2569 6.2565
Volume (Å3) 78.83 80.75
U/ZnS (eV) -6430.0446 -

formula unit for the wurtzite and BCT phases relative to sphalerite for each of

the five force fields are also given in Table 7.13. One of the important features of

Figure 7.10 is that the BCT phase is shown to be approximately 10 kJ/mol less

stable than wurtzite or sphalerite according to our first principles calculations; a

feature that was only reproduced by the force fields with a torsional term, these

being the complete shell model of Wright and Gale [95] and the rigid ion version of

this force field (Rigid/Tors). Interestingly the remaining three force fields without

a torsional term, Rigid, Shells/NoTors and that of Hamad et al. [94] all obtain the

same order of stabilities for the dense polymorphs - wurtzite the lowest in energy,

followed by BCT and finally sphalerite.

Table 7.12: High density structures (ρ > 3.5 g/cm3) obtained using the rigid
ion model

8-6-4 Frameworks

ABW AEN ATV AWO BCT JBW LIT

Table 7.13: Potential energies of high-density structures relative to sphalerite
obtained using the five different force fields and first principles calculations. All

values are given in units of kJ/mol per formula unit.

Structure Shell/Tors Shell/NoTors Rigid Rigid/Tors Hamad et al. [94] DFT

Sphalerite 0.00 0.00 0.00 0.00 0.00 0.00
Wurtzite 2.32 -6.41 -3.27 2.34 -7.04 0.39
BCT 17.96 -0.46 -2.61 17.97 -2.40 10.69
Hyp. 33.19 11.17 3.04 27.17 9.11 24.46

The BCT phase has been mentioned in the context of ZnS in one of the previous

works of Hamad and Catlow [304], where they noticed the 4- and 8- ring
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Figure 7.10: Plot of potential energy relative to sphalerite vs. density for
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using first principles methods, the rigid ion model with no torsional term and
the shell model of Wright and Gale [95] with a torsional term present. The
framework codes for all structures are shown. The structure labelled “Hyp.” is

a hypothetical structure we found in previous simulations.

characteristics of the BCT phase in their nanoparticles of ZnS optimised using

simulated annealing methods. They performed optimisations using both classical

and QM methods on both finite clusters and periodic systems. The appearance of

the BCT phase in their simulations of ZnS nanoparticles is somewhat unsurprising

when we consider Figure 7.9, where BCT is the second most stable phase, next

to wurtzite, when using the Hamad et al. [94] force field. What is surprising is

that their study from 2006 states that for the bulk structures the BCT phase

is 69.1 kJ/mol less stable than the sphalerite phase. This value is alarmingly

large for a polymorph of any material[338–340], and it is possible that these DFT

calculations did not fully converge. The work of Hamad and Catlow [304] also

describes the relative energies of sphalerite, wurtzite and the BCT phase using

the same force field. According to their calculations[304] their force field should

yield the BCT phase 1.1 kJ/mol less stable than sphalerite, and 7.16 kJ/mol less

stable than wurtzite; implying wurtzite should be the most stable phase, followed

by sphalerite and finally the BCT the least stable. Our calculations using their
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force field do find wurtzite to be the lowest energy phase, however the BCT phase

is still 2.40 kJ/mol per formula unit lower in energy than sphalerite. It is not clear

why there is a discrepancy between our values obtained using their force field and

the values given in their work. One possible explanation is that there may be some

force field parameters missing from the paper outlining the force field[94].

One main result from these comparisons is that the force fields with a torsional

term present manage to reproduce a similar energy difference between the BCT

phase and the bulk phases as that obtained from our first principles calculations.

However, none of the five different force fields we have used stand out as managing

to reproduce all of the results obtained from our first principles calculations on

the high-density structures selected. As none of these force fields were developed

specifically to model these nanoporous zeolite-type structures this result is perhaps

unsurprising.

7.3.2 A hypothetical zeolite structure

From some of our MetaD simulations performed with a Q4 and Q6 Steinhardt

parameter bias in the previous chapter we found a ‘new’ zeolite structure. This

was found from the 360 atom nanoparticles in vacuum, where the core structure

took on BCT-like phases. We attempted to extract portions of the BCT-like core

and create a bulk structure, which we have labelled ‘Hyp.’ in our energy vs. density

plots. The structure is shown from different crystallographic directions along with

the BCT phase in Table 7.14, and the potential energies obtained relative to

sphalerite are given in Table 7.13. The structure appears to have similarities with

the BCT phase, in that one direction has the same array of 4- and 8- membered

rings, and another direction has an array of hexagons. However, it is clear when

viewing the structure as a three-dimensional object that they are indeed composed

of different composite building units. The BCT phase is composed of connected

‘LAU’ units, while our hypothetical structure is composed of ‘double crankshaft

chain’ (DCC) CBUs, also shown in Figure 7.14.

Of the 91 structures from the IZA structure database[297] containing even number

rings there are 14 frameworks which contain, or solely composed of, the double

crankshaft chain CBU, these are: APC, ATT, AWO, GIS, GME, LTL, MER, OFF,

OWE, PHI, SAO, SIV, UEI, WEN. The structure which most closely resembles

our hypothetical structure is the ‘APC’ framework, and we have included this in
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Table 7.14: Our hypothetical zeolite framework found in simulations in
Chapter 5, along with those of the BCT and APC framework. The CBUs

for these structures are also shown.

View Hypothetical APC BCT

viewed
along
[100]

viewed
along
[010]

viewed
along
[001]

CBU DCC DCC LAU

Table 7.15: Potential energies of our hypothetical structure and the APC
framework relative to sphalerite, obtained using the five different force fields
and first principles calculations. All values are given in units of kJ/mol per

formula unit.

Structure Shell/Tors Shell/NoTors Rigid Rigid/Tors Hamad et al. [94] DFT

Hyp. 33.19 11.17 3.04 27.17 9.11 24.46
APC 33.81 26.16 10.51 48.97 21.18 35.31

Table 7.14. It is difficult to clearly visualise the structural differences between our

hypothetical phase, and the BCT and APC frameworks, so we have attempted

to highlight the building units of the different structures to better illustrate the

differences, shown in Table 7.16. In these figures we have highlighted the double

crankshaft chain CBUs in different colours; equivalent layers are shown in the same

colour. From Table 7.16 we can clearly see our zeolite has a repeating sequence

of two layers, while the APC structure has repeating unit of four layers of these
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CBUs. Additionally, the first two layers of the APC phase has the DCC units

aligned in the same way as our hypothetical phase, while the final two layers have

the DCC units present as mirror images of the top two layers. The BCT phase

is entirely different to either our hypothetical phase or the APC framework, and

is comprised solely of LAU CBUs. We have highlighted only the top four LAU

building blocks for the BCT phase in Table 7.16. The view along [100] and the

off-axis view down [010] of the BCT phase are perhaps the best illustrations, where

any four-membered ring actually indicates a ‘stack’ of LAU CBUs, including the

Table 7.16: Our hypothetical zeolite framework and the APC and BCT
frameworks shown from four different directions. The CBUs for our hypothetical
structure and the APC indicated in the same colour are equivalent layers, while
the LAU units of the BCT are shown in different shades only to clarify individual

units.

View Hypothetical APC BCT

viewed along [100]

viewed along [010]

viewed along [001]

Slightly off-axis
down [100] and
[010] (far right)
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central four-membered ring. The relative potential energies given in Table 7.15

show that all the five force fields find the APC phase to be higher in energy

than our hypothetical phase, in agreement with the values obtained from our first

principles calculations. The Wright and Gale [95] force field gives the lowest energy

difference between the two hypothetical polymorphs, less than 1 kJ/mol, while the

other force fields yield a ∼7-15 kJ/mol difference between the two phases, not far

from the ∼9 kJ/mol found via DFT.

7.4 Conclusions

One of the issues involved with predicting stabilities of a system using

computational methods, whether it be finite or periodic, is first determining a

good force field. Our studies into hypothetical zeolitic ZnS frameworks have

highlighted this, where many of the force fields aren’t capable of predicting the

correct stabilities for the known bulk polymorphs. An additional failure is taking

into account the stabilities of other phases, such as the BCT phase, as predicted

by QM methods. If classical methods are desired to model these nanoporous

structures in the future it seems valuable to develop a new zinc sulfide force field

which is fitted not only to experimental data for the bulk polymorphs wurtzite and

sphalerite, but also considers data relevant to the BCT phase. It is possible the

simulations of nanoparticles of ZnS from previous chapters would have obtained

very different structures had the energy of the BCT phase been considered in the

parameterisation of the force field.

As mentioned in the earlier chapters, we will now investigate the parameters used

to model the ZnS-water interactions.





Chapter 8

Interaction of zinc sulfide with

water

8.1 Introduction

The interactions of ZnS with water are particularly relevant for investigating

‘real-world’ problems, where ZnS is generally not present in vacuum. In Chapter

1 we introduced some of the reasons why we are studying the material zinc sulfide,

such as its technological applications as a semiconducting material[51]. However,

perhaps more significant is the means of obtaining ZnS or other sulfide materials

from the Earth. The processing of sulfide ores is usually performed via leaching

with highly acidic or alkaline solutions, and large quantities of waste materials

are produced. These wastes can break down when exposed to air and water,

generating sulfuric acid and potentially releasing heavy metals from the remaining

ore, which can wash into surface or ground water supplies[70]. This process is

known as acid mine drainage (AMD) which we introduced in Chapter 1, and has

been extensively studied in the literature[341–344]. Sulfide minerals can also be

formed naturally by sulfate reducing bacteria in anoxic environments, and the

biomineralisation of ZnS via biofilms is also of significant interest[345]. It is the

nature of these mineral surfaces, and their reactivity, which in effect controls all

of these processes and therefore there is a significant impetus for understanding

the interfacial interactions between sulfide materials and water. Many studies

have been performed investigating the surface stabilities of zinc sulfide[70, 89, 94],

235
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however there is still not much data available on the binding of water to these

surfaces.

In this chapter we will focus on the investigation of the ZnS-water interactions,

with the aim of validating the force field(s) we have used throughout the works

detailed in the previous chapters. In addition to comparing the results obtained

from the different force fields we have used, we will also employ first principles

calculations as another means of validation.

8.2 Methods

8.2.1 Force field parameters

We will use the same five force fields for modelling ZnS outlined in the previous

chapter, Chapter 7. These are the force fields of Hamad et al. [94], Wright

and Gale [95] (Shells/Tors), Wright and Gale [95] without the torsional term

(Shells/NoTors), a rigid-ion version of the Wright and Gale [95] model (Rigid/Tors)

and finally a rigid-ion model (Rigid) used in our metadynamics simulations

described in Chapters 5 and 6. These models have already been tabulated in

Chapter 7, in Tables 7.3-7.6, and will not be repeated here.

Species Charge (e)

Ow -0.820
Hw +0.410

Species Bond length (Å) kbond (eV/Å2)

Ow - Hw 0.96 23.44

Species θ (◦) kangle (eV/rad2)

Hw-Ow-Hw 104.5 2.17

Lennard-Jones potential A (eV Å12) C (eV Å6) Cut-off (Å)

Ow - Ow 27291.75 27.12 12.00
Hw - Hw 4x10−13 0.0 12.00

Table 8.1: The potential parameters of the CVFF water model of Lau et al.
[287].

For consistency, we have employed the same water model as that used in the

studies performed by Hamad et al. [113]. This is a flexible water model known
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as the consistent valence force field (CVFF) water model and its parameters are

reported in Table 8.1.

We note that the bond-stretching and angle-bending terms in the CVFF force field

have the form:

Ebond = kr(rOH − r0
OH)2 (8.1)

Eangle = kθ(θHOH − θ0
HOH)2 (8.2)

The equivalent forms implemented in GULP[160] or DL POLY 2.0[303] both

use 1
2
k rather than k as the multiplier. When employing the above potential

parameters in GULP or DL POLY 2.0 the k values given in Table 8.1 therefore

need to be doubled.

8.2.2 First principles calculations

As described in the preceding chapters, the first principles SIESTA[138]

methodology expands the Kohn-Sham wave functions using a linear combination

of atomic orbitals (LCAO). The nuclei and core electrons of atoms are represented

through the use of norm-conserving pseudopotentials of the form developed by

Troullier-Martins[139], while the valence electrons are treated explicitly. We have

used the same pseudopotentials and basis sets for the zinc and sulfur as used in the

previous chapters (Chapters 5 and 7), which we will repeat below for completeness.

However, additional pseudopotentials and basis sets were required for modelling

the hydrogen and oxygen atoms of water.

The valence electronic configurations for generating the pseudopotentials were Zn

(3s23p63d10), S (3s23p4), O (2s22p4) and H (1s1). As described previously, the basis

sets for sulfur required triple-ζ quality 3s and 3p orbitals and double-ζ quality 3d

orbitals, while for zinc double-ζ quality was necessary for the 4s, 4p, and 3d, and

single-ζ for the 3s and 3p orbitals. The basis sets for oxygen required triple-ζ

quality 2s and 2p orbitals, and double-ζ 3d orbitals; hydrogen required triple-ζ

quality 1s and double-ζ 2p orbitals. A full description of the basis sets used in

this study is given in Appendix B.

The shape of the basis set was improved following the method introduced by

Junquera et al. [291], where the pseudoatomic orbitals (PAO) of the isolated atoms
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are enclosed within a soft-confined spherical potential, removing any discontinuity

of the basis function first derivative at the cut-off radius. A split-norm value

of 0.15 was used and 0.02 Ry for the energy shift of radial confinement. An

auxiliary real-space Cartesian grid with a cut-off of 400 Ry was used for calculating

quantities based on electron density.

8.2.3 Calculating binding energies

In the next section we will begin to report the binding energies between clusters

of zinc sulfide and water molecules. However, before we delve into these results it

is necessary to briefly outline how binding energies are calculated.

In general the binding energy between two or more molecules is calculated by

taking the difference between the total energy of the complex and the sum of the

energies obtained from the individual non-interacting components[119]. Ordinarily

the energy of the complex is lower than the sum of its individual components, but

it is conventional to describe the binding energy as a positive value (i.e., the

negative of the heat of formation).

In our case our ‘complex’ is a cluster of zinc sulfide and one or more bound water

molecules, which makes the individual non-interacting components to consider the

zinc sulfide cluster and the water molecule(s). This calls for three optimisation

calculations; one of the complex, the individual zinc sulfide cluster and finally of

a water molecule. The binding energy for this system is defined by:

Ubinding = −[Ucomplex − (UZnS cluster + n · UH2O)] (8.3)

where n is the number of water molecules bound to the complex. In our tabulations

we have also divided the binding energy by the number of water molecules, to

obtain a binding energy per water molecule that can be easily compared between

different clusters.

When performing first principles calculations to determine binding energies there

is an added complication as a result of using finite atom-centred basis sets[119].

Computation of the energies for the individual components using first principles

methods will employ only the basis sets relevant to each component, while the

calculation for the whole complex enables ‘sharing’ of the orbitals between the
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individual components as orbitals from all the components are present. Taking

the difference between these values to obtain the binding energy results in a

binding energy that is greater in magnitude than the calculation should yield. This

phenomenon is known as the basis set superposition error (BSSE). Fortunately we

can attempt to correct for this over-estimation of the binding energy. One method

to overcome BSSE is known as the counterpoise method introduced by Boys and

Bernardi [346]. There are however a number of methods available, and these are

compared elsewhere[347] and are beyond the scope of this chapter. We also direct

the reader to van Duijneveldt et al. [348] who have reviewed the applications of

counterpoise theory and other methods to determine the BSSE correction.

Once the potential energy for the complex has been obtained, this relaxed structure

can be used to perform a number of single point calculations, to obtain the BSSE

correction value. The BSSE correction value can be defined by[348]:

UBSSE = UA{AB} − UA + UB{AB} − UB (8.4)

Where UA{AB} and UB{AB} indicate the energy of A and B calculated separately

via single-point calculations, however with the basis sets of both A and B present in

each calculation. The values UA and UB are the values obtained from single-point

calculations for each component separately, with only the basis sets relevant to

each component present. The value of UBSSE calculated in this way should be a

negative value, usually within the range of 0 to -10 kJ/mol, to be added to the

(positive) binding energy calculated via (8.3). In the context of our study the A

and B components are the ZnS cluster and the bound water(s), respectively. In

the next section both the binding energy calculated via Equation (8.3) and the

BSSE corrected binding energy will be tabulated.

8.3 Results and Discussion

8.3.1 Clusters and binding energies

The ability of the different forcefields to describe the ZnS-water interaction has

been investigated, first by looking at the binding energy of a water molecule to the

sodalite cage (ZnS)12 structure, shown in Table 8.2. We have chosen this cluster

as it is consistently the lowest energy cluster for this size using all the force fields.
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Clusters such as this, with a water molecule (or many water molecules) coordinated

to a zinc or sulfur atom, were used by Hamad et al. [110] to parameterise their

ZnS-water interactions.

The binding energies of water to sodalite are also given in Table 8.2. The force

field which obtains a binding energy closest to our first principles calculation is

the “Rigid/Tors” force field - a rigid version of the force field of Wright and Gale

[95], where the binding energy is 52.3 kJ/mol and the DFT calculation yields

58.0 kJ/mol. The Zn-Ow distance is also the closest, 2.22 Å for the Rigid/Tors

model and 2.18 Å for the DFT results.

Table 8.2: Binding energies for water to a ZnS sodalite cage as obtained using
six different force fields and first principles calculations.

Structure
Binding
energy

Ow-Zn
Distance

(kJ/mol) (Å)

Force field

Shells/Tors 40.1 2.36
Shells/NoTors 39.9 2.37
Rigid/Tors 52.3 2.22
Rigid 21.7 2.66
Hamad et al. [94] 39.6 2.37
Rigid/Tors (Mod.) 153.7 1.81

DFT 57.7 2.18
DFT (BSSE corr.) 48.8 2.18

The ZnS-water interactions we have used are those of Hamad et al. [110].

Referring back to their work we can investigate how they developed their potential

parameters. They used the energies obtained via first principles calculations of six

different ZnS clusters coordinated with differing numbers of water molecules to

derive their potentials. These clusters are given in Table 8.3, along with the

binding energy per water molecule obtained via six force fields, our own DFT

calculations and also the values given in the original paper of Hamad et al. [110].

The sixth force field given in Tables 8.2 and 8.3, “Rigid/Tors (Mod.)”, uses the

Rigid/Tors model with a modified version of ZnS-water potential, which we will

discuss in the following section. Here we will first discuss the five force fields we

have already become familiar with from the previous chapters.

We have included the values listed in the original paper of Hamad et al. [110] in

Table 8.3. We can see some discrepancies in our binding energies calculated using
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Table 8.3: Binding energies and the cluster configurations used in the work
of Hamad et al. [110] to derive their ZnS-water potential parameters. Binding
energies from the literature[110] are shown, from interatomic potential (IP) and
first principles (DFT) methods, along with those from the six force fields we
have used and our own DFT calculations, BSSE corrected values are shown in
parentheses. All values are given in units of kJ/mol per bound water molecule.

Cluster IP Force field Dist. DFT DFT Dist.
Ref.[110] Å Ref.[110] (BSSE) Å

60.3

Hamad et al. [110] 62.9 2.15
Shells/Tors 65.3 2.11
Shells/NoTors 65.4 2.11 65.1 63.0 2.11
Rigid/Tors 83.9 2.03 (55.4)
Rigid 30.8 2.46
Rigid/Tors (Mod.) 192.9 1.79

57.9

Hamad et al. [110] 63.9 2.20
Shells/Tors 68.3 2.14
Shells/NoTors 68.1 2.14 48.2 55.3 2.13
Rigid/Tors 76.2 2.12 (48.4)
Rigid 35.4 2.48
Rigid/Tors (Mod.) 96.9 1.80

48.2

Hamad et al. [110] 50.3 2.32
Shells/Tors 43.7 2.34
Shells/NoTors 44.7 2.37 53.1 61.6 2.17
Rigid/Tors 43.7 2.28 (53.1)
Rigid 26.9 2.61
Rigid/Tors (Mod.) 146.9 1.84

57.9

Hamad et al. [110] 61.5 2.23
Shells/Tors 67.4 2.13
Shells/NoTors 67.2 2.13 48.2 51.0 2.17
Rigid/Tors 75.1 2.13 (44.5)
Rigid 34.4 2.49
Rigid/Tors (Mod.) 177.3 1.81

86.8

Hamad et al. [110] 78.9 2.68
Shells/Tors 116.4 2.43
Shells/NoTors 116.4 2.43 106.1 4.1 2.99
Rigid/Tors 101.5 2.59 (1.6)
Rigid 30.8 3.11
Rigid/Tors (Mod.) 106.5 2.51

86.8

Hamad et al. [110] 78.0 2.49
Shells/Tors 83.86 2.43
Shells/NoTors 83.82 2.43 100.8 19.2 2.42
Rigid/Tors 93.71 2.46 (16.9)
Rigid 47.95 2.79
Rigid/Tors (Mod.) 96.87 2.57
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their potential, and those given from the literature. As we described in the previous

chapter, it is possible there are some potential parameters missing from their ZnS

potential given in the literature[94], as we also could not reproduce the relative

potential energies between the bulk polymorphs of ZnS - sphalerite, wurtzite and

BCT. It is likely the discrepancy we find in our binding energies is due to some

differences (or missing parameters) in our implementation of the Hamad et al.

[94] ZnS potential. The difference in binding energy is overestimated by up to

5 kJ/mol per water molecule where binding occurs between zinc and oxygen, and

underestimated by approximately 8 kJ/mol per water molecule where the binding

occurs between sulfur and hydrogen.

Overall the rigid-ion model (Rigid) consistently offers binding energies which

are much lower than those obtained from the other force fields, and the

DFT calculations, with the exception of our DFT calculations where water is

coordinated to sulfur. The shell model of Wright and Gale [95], both with and

without the torsional term (Shells/Tors and Shells/NoTors), is neither significantly

better nor worse than the shell model of Hamad et al. [94]. In some cases

the binding energy is slightly larger or slightly less than the binding energy

obtained via the Hamad et al. [94] model but there does not appear to be a

clear overall trend. However, the binding energies for S-Hw using Shells/Tors,

Shells/NoTors and Rigid/Tors are somewhat closer to the values obtained from

the DFT calculations of Hamad et al. [94].

The values obtained for the final structure in Table 8.3 are the least ‘consistent’,

in the sense that many of the optimisations performed located a minimum which

appears to be slightly different to that depicted in Hamad et al. [110], with the

water molecules finding different orientations to coordinate with the sulfur atoms.

The water molecules tended to rotate such that both the hydrogen atoms of the

water molecules are coordinated with the end-group sulfur atoms of the S-Zn-S

cluster. A similar minimum was obtained from the DFT optimisation, where one

water molecule has rotated and both the hydrogen atoms would be considered

coordinated to a sulfur atom, while the second water molecule remained with one

hydrogen atom coordinated. However, the image for the cluster in Hamad et al.

[110] implies that the water molecules and cluster are all oriented in the same

plane, with only one hydrogen atom of each water molecule coordinating with

the sulfur atoms of the cluster. The starting configurations for the optimisation

calculations were adjusted in an attempt to obtain the minima shown in the paper
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of Hamad et al. [110], with all the molecules oriented in the same plane, with little

success.

The second last cluster in Table 8.3 also yields a very low binding energy with

our DFT calculations. We have repeated this calculation with different starting

configurations, with the water molecule closer to the ZnS cluster, in an attempt

to locate a minimum which obtains a more reasonable binding energy with no

success. In all instances, either the water molecule was too close and the cluster

was found to be completely unstable and the optimisation fails to converge, or

alternatively the same minimum was found with a binding energy of approximately

2 kJ/mol after BSSE correction. The binding energy as obtained from our DFT

calculations for the final cluster in the table also has a very low binding energy

of approximately 17 kJ/mol after BSSE correction. While this may appear more

reasonable than the 2 kJ/mol of the second last cluster, it is still significantly lower

than the binding energies obtained using any of the other force fields, or the DFT

calculation of Hamad et al. [94]. The force fields used and the DFT calculations of

Hamad et al. [94] all find the binding between S-Hw to be greater than the binding

energy between Zn-Ow. Its not clear if our DFT calculations, which show a small

Hw-S interaction, is a discrepancy, or if all the other models are overestimating

the binding energy.

8.3.2 Free Energy Perturbation

A more accurate way of modelling the interactions between a material and water

is firstly to consider its properties when in contact with bulk water, rather than

the coordination of a cluster with only a few water molecules, which essentially

behaves as a cluster in in vacuo rather than a ‘solvated’ cluster. Secondly, one of

the properties of ions in bulk water is the solvation free energy, and this can be used

to enhance the accuracy of a model of a material’s interaction with water[349, 350].

The value of the solvation free energy can be obtained theoretically via a method

we introduced in Chapter 3 known as free energy perturbation (FEP), an idea

that was originally proposed by Zwanzig [227]. He introduced a means of

calculating the free energy difference between two systems described by two

different Hamiltonians, Ha(p
N ,qN) and Hb(p

N ,qN). This technique is commonly

used to perform “alchemical” transformations, where one species is transformed

into another and the free energy difference associated with the transformation
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is calculated. As mentioned in Chapter 3, solvation free energies of ions can

be calculated using FEP, whereby an ion in solvent is iteratively ‘perturbed’ to

disappear, leaving only the solvent. In the context of our work we can investigate

performance of the ZnS-water potential by calculating the free energy of solvation

of the Zn2+ and S2− ions using free energy perturbation (FEP) and compare these

values to those obtained from experiment.

FEP calculations use a procedure known as staging, where a number of

intermediate states are introduced between the two states of interest and the

system is progressively perturbed from one to the next, until the final state

is reached[228]. This procedure ensures that every perturbation is small and

therefore that the sampling will be accurate and the overall free energy difference

can be obtained as the sum of all the intermediate contributions. We can write

the potential energy as a linear combination of Ua and Ub;

Uλi
= (1− λi)Ub + λiUa (8.5)

where λi is called the perturbation parameter and λi = 1 corresponds to state a

and λi = 0 to state b. The FEP equation can then be rewritten as;

∆Aa→b =
N−1∑
i=0

∆Aλi→λi+1
=

N−1∑
i=0

−kBT ln〈e−β∆Uλi,λi+1 〉λi
. (8.6)

where λi identifies the intermediate stages of the perturbation. The optimal

number of intermediate states depends on the problem; generally the greater the

difference between the starting and final state the more intermediate states are

necessary[228]. λi can be seen as a perturbation parameter which allows for going

from state a to state b. In our case λ is simply a scaling factor that perturbs to

zero the interactions between the ion and the solvent.

In practice, to achieve satisfactory convergence it is necessary to treat the

electrostatic and long-range interactions separately, such that[351]:

Usolute−solvent = U elec
λC

(r) + U vdw
λLJ

(r) (8.7)

The electrostatic portion can be treated via:

U elec
λC

(r) =
∑
i

∑
j

λc
qiqj
rij

(8.8)
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However, the long-range interactions, such as Lennard-Jones 12-6 interactions,

have a discontinuity in the force field as r tends to zero, due to the 1/r12 term[351].

To avoid this problem a ‘soft-core’ potential can be implemented, a λ-dependent

variant of the Lennard-Jones potential, which tends to a finite a value at r=0. The

concept of using a soft-core potential to avoid this discontinuity when perturbing

the Lennard-Jones interactions to zero was originally introduced by Beutler et al.

[352], and an example of a soft-core potential is illustrated in Figure 8.1. The use of
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Figure 8.1: Example of a λ-dependent soft-core Lennard-Jones potential. At
λ=0 the potential has the original Lennard-Jones form, going to infinity as r
tends to zero. As λ increases to one, the potential form changes to reach a finite

value at small values of r. Image adapted from Beutler et al. [352].

soft-core potentials to avoid discontinuities in FEP calculations has been recently

discussed in the literature[351, 353, 354]. We have used the parameterisation of

the soft-core Lennard-Jones term as used by Hess and van der Vegt [355];

ULJ soft−core = (1− λLJ)ULJ([αLJσ
6
LJλLJ + r6](1/6)) (8.9)

where the paramater αLJ controls the ‘soft-core’ behaviour of the Lennard-Jones

potential at r values close to zero, and depends on the system being explored[351].

The parameter σLJ in Equation (8.9) defines a soft-core interaction radius[353,

355]. In our case we have used an αLJ value of 0.6 and σLJ of 2.8 Å, as

used in the study of Hess and van der Vegt [355]. The potential ULJ is the

‘ordinary’ hard-core potential form used (i.e., the not λ-dependent LJ potential).

In contrast to the variation of the Coulombic interaction given in Equation (8.8),

in Equation (8.9) a λLJ value of 0 indicates a full LJ interaction, while a value of
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1 indicates the interaction has been ‘turned off’. While Equation (8.9) gives one

possible form of a λ-dependent LJ potential, and is the form used in the present

study, other forms can be found in the literature[351, 354]. We used a version of

the DL POLY[303] molecular dynamics program modified to perform these FEP

simulations in the manner we described above. It is worth noting that when

implementing the free energy perturbation method the calculation of long-range

electrostatics interactions are unchanged; they are handled in the same manner as

in our previous MD studies in water - using the Ewald summation.

Experimentally all ions exist with full integer charges, the only reason partial

charges are used in force field models is to better reproduce the nature of the bulk

material. For our investigation of the free energy of solvation it is necessary to use

ions of full integer charge to make a meaningful comparison to experimental values.

Later this essentially limits us to those ZnS potentials with full +2/-2 charges on

the Zn and S ions, respectively, when using the derived ZnS-water interactions to

perform simulations of clusters coordinated with water. This leaves us with the

Rigid/Tors model (the rigid-ion version of the Wright and Gale [95] model), as we

have removed the shells from the model, and the ions possess integer charges. FEP

calculations were performed using the ZnS-water interactions of Hamad et al. [110]

to determine the solvation free energy of S2− and Zn2+ ions. In theory it is possible

to perform FEP calculations using a shell model where the sum of the charges on

the core and shell add to an integer value. However, we have not yet implemented

the capability for perturbation of the shells in our version of DL POLY[303] and

we leave this for future studies.

The starting configurations for our simulations were a 25.4 Å sided box of 520

water molecules, with either the Zn2+ or S2− ion positioned at the centre of the

box. Twenty evenly spaced values of λ were used (1.00,0.95,. . . ,0.05) to remove the

charges on the ions, followed by another twenty values of λ (0.00,0.05,. . . ,0.90,0.95)

to progressively reduce the Lennard-Jones interactions to zero. Raiteri et al. [349]

demonstrated that removing each interaction separately in this way improves the

accuracy of the FEP calculations, where they used the FEP method to investigate

the free energy of solvation of Ca2+ ions. In their work they have successfully

used a δλ = 0.1 spacing, while in our work we have chosen a more conservative

value of δλ = 0.05 spacing to confidently achieve convergence. As was shown in

the same study, evenly spaced λ values are effective for calculating the free energy

perturbation of an ion ‘disappearing’, however the reverse (a particle appearing)



Chapter 8. Interaction of zinc sulfide with water 247

can be problematic if a soft-core potential is not implemented. In these cases

logarithmic spacing of λ values can be used instead. Each simulation (performed

at a specific λ value) was performed for 1 ns, with an initial 200 ps of equilibration.

Table 8.4: Calculated and literature values for the solvation free energy of
Zn2+ and S2−. The FEP calculation was performed using the Rigid/Tors ZnS

potential and the ZnS-water interactions of Hamad et al. [110].

Species Calculated value (kJ/mol) Experiment[356] (kJ/mol)

Zn2+ -1450 ± 1 -1955
S2− -1285 ± 2 -1315

The free energies obtained are given in Table 8.4 along with the values listed

in the literature from experiment[356]. The free energy of solvation of Zn2+ is

significantly higher (less exothermic) than the value found experimentally, with a

difference between the values of approximately 505 kJ/mol, while the difference for

the free energy of solvation of S2− is only 30 kJ/mol. We have devised a new set of

potential parameters for the ZnS-water interactions in an attempt to better model

the free energy of solvation. The parameter that obviously needs major alteration

is the interaction of water with the Zn2+ ion. For this parameter we began with

the interactions for the Mg2+ ion with water, which members of the group have

been investigating for other studies[357]; these are listed in Table 8.5. This was

a convenient starting point as Mg2+ has an experimental solvation free energy of

-1830 kJ/mol[356], not far from the value for Zn2+, -1955 kJ/mol, and both ions

have a double positive charge. The Mg-water interactions already developed use

the Lennard-Jones form given in Equation (8.10).

Table 8.5: Mg-Ow potential parameters[357] used as a starting point for
refitting the Zn-Ow interactions.

Lennard-Jones 12-6 ε (eV) σ (Å)

Mg core - Ow core 0.048385 2.238

ULJ = ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(8.10)

The free energy of solvation for Zn2+ is more exothoermic than Mg2+, and much

more than the free energy of solvation obtained using the parameters of Hamad

et al. [110]. To correct this we need to bring the water molecules closer to the
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zinc ion, which can be achieved by decreasing the value of σ in the Lennard-Jones

12-6 potential in Equation (8.10). The potential parameters we have obtained by

modifying the parameters in Table 8.5 are given in Table 8.6. Using these new

potential parameters to perform the same free energy perturbation simulation of

Zn2+ and S2− in water we obtained new values of the solvation free energies, and

these are listed in Table 8.7. For Zn2+ we obtained a solvation free energy of -1956

± 2 kJ/mol, much closer to the experimentally determined value than the value

obtained using the Hamad et al. [110] parameters (-1450 kJ/mol). The free energy

of solvation for S2− is also improved.

Table 8.6: ZnS-water interactions derived to obtain more accurate values of
the free energy of solvation. These were parameterised using the Rigid/Tors

force field for the ZnS interactions.

Lennard-Jones 12-6 ε (eV) σ (Å)

Zn core - Ow core 0.048385 1.96

Buckingham potential A (eV) ρ (Å) C (eV Å6)

S core - Ow core 123571 0.2465 0.00

Table 8.7: Calculated and literature values for the solvation free energy of
Zn2+ and S2−. The FEP calculation was performed using the Rigid/Tors ZnS

potential and the ZnS-water interactions given in Table 8.6.

Species Calculated value (kJ/mol) Experiment[356] (kJ/mol)

Zn2+ -1956 ± 2 -1955
S2− -1314 ± 2 -1315

The Zn2+ and S2− ions were also run for 2 ns of simulation time with the same

starting configurations to determine the coordination number of water around the

ions, and the pair distribution function (PDF) of water with the ions in bulk water.

These simulations were performed both with the Hamad et al. [110] potential and

our modified potential given in Table 8.6. The PDF and coordination number plots

for the original and modified water interactions are shown in Figure 8.2. We can

see that the changes to the Zn-Ow interaction have resulted in a slightly shorter

Zn-Ow distance, with an average distance for the first coordination shell of water

molecules at 1.90 Å, shortened from approximately 2.05 Å in the original Zn-Ow

interactions of Hamad et al. [110]. This value is slightly lower than that estimated

from experiment, 2.093 Å[358, 359]. The number of water molecules coordinated
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Figure 8.2: Pair distribution function for Zn-Ow as obtained in bulk water
using the original ZnS-water interactions of Hamad et al. [110] (red) and our
modified force field (green). The number of water molecules coordinated to the

ion with respect to distance from the ion is also shown (dashed lines).

around the Zn2+ ion is the same for both force fields, with a value of 6. This is the

coordination number experimentally found[358], and is illustrated in Figure 8.4.

Throughout the 2 ns simulation of the Zn2+ ion in water we did not observe any

of the water molecules from the solvation shell exchanging with waters in the bulk

solvent. This is unsurprising considering the very exothermic value for the free

energy of hydration, and is consistent with experimental observations[360, 361]

where exchanges are expected to occur with a frequency at least on the order of

tens of nanoseconds.

For sulfur we have measured the pair distribution functions for both the S-Ow

and S-Hw distances, and the number of water molecules coordinating with sulfur,

these are all shown in Figure 8.3. The difference between the original force field

and our modified version is minimal, as expected due to the small alterations we

made to the S-Ow interactions. The shift in S-Ow distance is from approximately

3.35 Å to 3.30 Å and approximately 2.40 Å to 2.35 Å for S-Hw. The number of

water molecules coordinated to the S2− ion is 11; the same number is obtained

when using both force fields. The sulfur ion and surrounding 11 water molecules

are shown in Figure 8.4



250 Chapter 8. Interaction of zinc sulfide with water

 0

 5

 10

 15

 20

 0  1  2  3  4  5  6  7  8  9  10
 0

 5

 10

 15

 20
g(

r)

n c
oo

rd
(r

)

r (Å)

Original  g(r) S−OW
        g(r) S−HW

   ncoord(r)
Modified  g(r) S−OW

         g(r) S−HW
   ncoord(r)

Figure 8.3: Pair distribution functions for S-Ow (bold lines) and S-Hw

(dot-dash lines) as obtained in bulk water using the original ZnS-water
interactions of Hamad et al. [110] (red) and our modified force field (green).
The number of water molecules coordinated to the ion with respect to distance

from the ion is also shown (dashed lines).

Figure 8.4: Coordination of water with zinc (left) and sulfur (right) ions. Six
oxygen atoms (Ow) coordinate with zinc while eleven hydrogen atoms of water
coordinate with sulfur. The same coordination was observed using the ‘original’
rigid ion model, and the version modified to obtain the correct free energy of

solvation.
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We have also re-run the calculations of the small clusters coordinated with water

with these new ZnS-water potentials. The values of the binding energies obtained

per water molecule are given in Table 8.3, along with the binding energies obtained

using the five other force fields. We have labelled this newly fitted force field as

‘Rigid/Tors (Mod.)’ to indicate we used the Rigid/Tors model and a modified

ZnS-water interaction. With our modified force field we generally find higher

binding energies for the clusters involving Zn-Ow interactions, while the clusters

involving S-Hw interactions have binding energies of the same order of magnitude

as obtained via the original force field. Neither of these outcomes is surprising as

we made significant changes to the Zn-Ow interactions but few changes to the S-Hw

interactions for the ZnS-water potential. What is surprising is the magnitude of

the binding energy for water coordinated with Zn. The binding energies using our

modified ZnS-water potential are generally 2-3 times the values obtained using the

other force fields and DFT calculations. The Zn-Ow distance is also much smaller,

with an average Zn-Ow distance of 1.81 Å, at least 0.3 Å shorter than the distances

obtained using the other models.

While the significant changes made to the Zn-Ow parameter reproduce the

experimentally determined free energy of solvation, it is possible that the

ZnS-water parameters we have produced are not suitable for estimating the binding

energy of water to small clusters of ZnS. The parameters may be more suitable

for calculations involving bulk water interacting with ZnS.

8.3.3 Water interaction with surface

The binding energy of a water molecule on the (110) surface of sphalerite has

been investigated using the six different forcefields already discussed. A variety

of starting configurations were generated, with a water molecule positioned at

different sites across the surface. In this way we hoped to probe how many distinct

surface binding sites exist for sphalerite, and how these differ between the models.

The (110) surface was chosen because it is a perfect cleavage surface[70] for

sphalerite-type crystal structures and for ZnS it is predicted to be the most stable

surface[89, 94]. Due to its existence as a cleavage surface for many semi-conductor

materials it is also one of the most well-studied surfaces, and there are a variety

of experimental and theoretical studies in the literature to compare against our

results.
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Figure 8.5: Schematic of a surface ‘super cell’ set-up for optimisation. Atoms
in region 1 (shaded) are allowed to relax, while those below in region 2 remain

fixed. Image adapted from Gay and Rohl [362].

Before we can investigate the interaction of water with the (110) surface we first

need to generate the surface and relax it with each of the five force fields. Surface

relaxation calculations are generally performed by allowing a top layer of a given

surface slab to relax (region 1), while the lower layers of the surface are fixed

(region 2), as depicted in Figure 8.5 and described in the work of Gay and Rohl

[362].

Prior to performing our relaxation runs we first needed to determine an adequate

thickness of both region 1 and 2 which allows convergence of the surface energy

(i.e., the surface energy obtained is not affected by either of the regions being too

thin). We first tested the required thickness of region 2, keeping region 1 at a

thickness of one layer. We created 6 different surfaces with region 2 ranging from

1 to 6 layers in thickness. Our results show that the surface energy converges

with a thickness of four layers in region 2. The process was repeated, this time

keeping region 2 at a thickness of four layers, and increasing the thickness of

region 1 from 1 to 6 layers. We found convergence of the surface energy also

with a thickness of four layers. A larger surface was constructed, again with 8

total layers depth (4 layers for region 1 and 4 layers for the fixed region 2), and

with approximate surface of dimensions 20 Å x 20 Å. The actual surface ‘cell’

parameters varied depending on the force field used, as these all relax sphalerite

with slightly different dimensions and configurations. The surfaces were created

with this larger super cell with the aim in mind of investigating the binding energy

of one water molecule on the surface. We required the surface to be large enough
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Figure 8.6: An example of a relaxed (110) sphalerite surface. The main
structural parameter which indicates surface rearrangement, ∆1,⊥, is indicated.
Image reproduced and adapted from Rosso and Vaughan [70], originally adapted

from Duke [93, 363].

such that neighbouring mirror images of the water molecules do not interact with

each other, as we have considered only an individual water molecule interacting

with the surface.

The (110) cleavage surface of sphalerite is a charge neutral surface, and relaxation

generally involves a displacement of the first layer of ions. Specifically the anion,

in this case sulfur, is displaced upwards and the cation, zinc in our case, moves

downwards upon relaxation[70, 364]. The perpendicular shear of the surface, ∆1,⊥,

is one of the main structural parameters which describes the degree of surface

relaxation[70]. This parameter essentially indicates the difference in the vertical

positions of the anions and cations in the top ‘layer’ of the surface, as indicated

in Figure 8.6 for the example of a relaxed (110) sphalerite surface.

The surface energy obtained using the Hamad et al. [94] force field accurately

replicates the value of 0.53 J/m2 as described in their paper[94]. We have given

a complete listing of the surface energies and ∆1,⊥ parameters obtained from the

relaxed surfaces in Table 8.8, along with a tabulation of data obtained from the

literature.

Before considering the calculations performed to investigate the binding of water

to these relaxed (110) surfaces there are some points of interest to discuss from

these results obtained from the relaxed (110) surfaces. A clear point of interest

is the inability of either of the rigid-ion models to replicate the experimentally
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Table 8.8: Surface energies, and structural parameter ∆1,⊥ for the relaxed
(110) sphalerite surface, using five different force fields. Data obtained from the

literature is also tabulated.

Force field Surface energy ∆1,⊥
(J/m2) (Å)

Hamad et al. [94] 0.5304 0.355
Shells/Tors[95] 0.4535 0.517
Shells/NoTors 0.4389 0.531
Rigid/Tors 0.8917 0.002
Rigid 0.4100 0.134

Experimental [365] - 0.59
Wright et al. [89] 0.65 0.28
Steele et al. [364] (DFT) 0.35 0.52
Steele et al. [364] 0.53 0.25
Zhang et al. [98] 0.39 -

determined distortion of the (110) surface upon relaxation. Both of the rigid

ion models have very small values for ∆1,⊥, in comparison to the other three force

fields we have used, where Rigid/Tors has barely any distortion at all, 0.002 Å, and

Rigid a small distortion of 0.134 Å. It seems the surface distortion of ZnS is reliant

on the polarisability of the sulfur anions. Another outcome from these results is

that of the models investigated, the shell model of Wright and Gale [95] manages

to replicate the surface distortion of the same order as the experimental value.

The Wright and Gale [95] model with (Shells/Tors) and without the torsional

term (Shells/NoTors) obtain similar ∆1,⊥ values, 0.517 and 0.531 Å, respectively,

close to the experimental value of 0.59 Å[365] and the value obtained from first

principles calculations of Steele et al. [364].

Once we had obtained these relaxed surfaces for the five force fields we began

investigating the binding energy of one water molecule to the relaxed (110)

sphalerite surface. We generated six different starting configurations, with the

water molecule located at different positions on the (110) surface. In all cases our

optimisations located essentially only one unique minimum. This is illustrated

in Figures 8.7 and 8.8, where the water molecule is located in the same position

across the surface. The optimisations performed using the Rigid/Tors ZnS model

in conjunction with the Hamad et al. [110] ZnS-water potential were the only

calculations which yielded a slightly different minimum, shown in Figure 8.8, where

the water molecule oriented itself parallel to the plane of the ZnS surface. All

the other potential models (including the Rigid/Tors model with our ZnS-water
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potential generated in the previous section) yielded the water in the orientation

shown in Figure 8.7, essentially perpendicular to the (110) surface.

Figure 8.7: Sphalerite (110) surface with one adsorbed water molecule after
relaxation; the same position for water was obtained using all the force fields
except the Rigid/Tors model. Images show views across the (110) plane (left)

and viewed perpendicular to the (110) plane (right).

Figure 8.8: Sphalerite (110) surface with one adsorbed water molecule after
relaxation with the rigid ion model. Images show views cross the (110) plane

(left) and viewed perpendicular to the (110) plane (right).

The binding energies for all the optimised surfaces with one adsorbed water

molecule are given in Table 8.9. The binding energies obtained for a water molecule

to the (110) surface are of the same order of magnitude of those found for the ZnS

clusters of Hamad et al. [110] shown in Table 8.3. Again, the Rigid/Tors model

with the modified ZnS-water interaction yields the greatest outlier in the binding

energies, with a binding energy approximately 2-3 times greater than any of the

other force fields.

8.4 Conclusions

We have performed a variety of calculations to investigate the binding energy of

water with small ZnS clusters and the (110) sphalerite surface. The initial studies
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Table 8.9: Binding energies of one water molecule to an optimised (110)
sphalerite surface, using six different force fields. The first five values listed
in the table used the ZnS-water potential of Hamad et al. [110], while the final
entry used the Rigid/Tors ZnS potential and the modified ZnS-water potential

introduced in the previous section and given in Table 8.6.

Force field Binding energy Zn-Ow Dist.
(kJ/mol) (Å)

Hamad et al. [94] 52.1 2.35
Shells/Tors 49.1 2.37
Shells/NoTors 48.3 2.37
Rigid/Tors 70.7 2.38
Rigid 28.9 2.71
Rigid/Tors (Mod.) 166.5 1.82

of the clusters showed that many of the force fields yielded binding energies of

the same order as those obtained via DFT. In general, the rigid-ion model offered

binding energies that were lower than the other force fields and the first principles

calculations. Significant discrepancies were observed from the DFT calculations

for the clusters with the hydrogen of water bound to sulfur atoms, where very

low binding energies were obtained in comparison to all the force fields and the

results of Hamad et al. [110]. It is possible the binding energies obtained via the

force fields and Hamad et al. [110] are over-estimates of the actual value. This

may be due in part to the use of the CVFF water force field, which was originally

parameterised to model bulk water[287]. The use of this water model to calculate

binding energies of clusters in the gas phase (with very few bound water molecules)

may not be entirely valid, and may explain the significant discrepancies between

some of the binding energies obtained using force field methods and those of the

DFT calculations.

Free energy perturbation simulations were performed to determine how the

ZnS-water interactions of Hamad et al. [110] would reproduce the experimental

solvation free energy of Zn2+ and S2−. We found the solvation free energy of

Zn2+ was approximately 500 kJ/mol less exothermic than the experimental value.

Re-fitting the ZnS-water interactions of Hamad et al. [110] did result in the

experimental free energy of solvation being reproduced. However, repeating the

binding energy calculations for the small ZnS clusters resulted in binding energies

significantly larger than that found with any of the other force fields we studied.

The main outcome from these calculations is that its likely a new ZnS-water

potential is required for investigating the stability of ZnS clusters in bulk water.
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While the binding energies obtained for the individual water molecules to the small

clusters of zinc sulfide may be accurate, they are not necessarily suitable for fitting

the potentials which will dictate the behaviour of zinc sulfide in bulk water. It is

well known that there exist many-body effects in intermolecular forces that cannot

be ignored if an accurate description of a system is desired[366]. In the context of

our studies this means the water-water interactions for multiple water molecules

surrounding a ZnS cluster are likely to be appreciable. Additionally, the water

model we have used does not allow for polarisability of the water molecule; this

is another factor which may significantly hinder accurate representations of the

systems we have studied[367, 368]. Implementation of polarisable force fields for

both the solute and solvent may enable accurate values of binding energies and

the free energy of solvation to be modelled. Based on our results presented in this

chapter the development of a fully polarisable force field for ZnS, optimised to be

employed in bulk water, may be a wise direction for future studies.
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Conclusions

Throughout this work we have employed a variety of computational techniques,

with the initial aim of investigating the size and shape of nanoparticles of zinc

sulfide. We began with a focus on the nano-scale, which led us to investigate bulk

nanoporous zinc sulfide (zeolite analogues), and finally to an evaluation of the

ZnS-water potential used in our study of nanoparticles in water.

One of the objectives of this thesis was to study the application of accelerated

dynamics for exploring the structures of nanoparticles. The trace of the

inertia tensor was the first collective variable we implemented for use with the

metadynamics approach. This collective variable proved useful in exploring the

phase space of small clusters of (ZnS)n (where n = 3, . . . , 24). However, the

efficacy was clearly reduced as the number of degrees of freedom increased, with

limitations in the exploration of phase space as n > 18. Additionally, we found it

was not possible to directly calculate free energy differences from these simulations

as there is significant overlap between the free energy basins of different minima

when projected onto the trace of the inertia tensor. Instead, we required additional

collective variables, such as the path variables, in order to calculate the free

energy differences. The additional metadynamics simulations we performed using

the path variables gave comparable free energy differences for clusters in vacuo

as calculated using lattice dynamics within the quasi-harmonic approximation.

To our knowledge this is the first time the free energy values obtained using

the metadynamics method with the path variables have been validated using

an alternative means of obtaining the free energy. The second set of collective

variables implemented were the Steinhardt bond order parameters, Q4 and Q6.

259
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We focussed on the Q4 Steinhardt parameter as the Q4 values for the fcc and hcp

phases (the two bulk polymorphs of ZnS) were more uniquely identifying than

the Q6 values. Prior to performing the metadynamics simulations using the Q4

collective variable we found interesting deformations through the central ‘core’ of

the larger ZnS wurtzite nanoparticles upon relaxation. The deformed core has

been seen in the literature by other studies using different force fields[313]. This

internal strain is driven by a need to compensate the highly polar {0001} surfaces

at either end of the nanoparticle. The metadynamics simulations performed on

larger clusters (360 and 840 atom nanoparticles of ZnS cleaved from wurtzite)

showed the formation of clusters with 8-membered ring channels, a structure

identified as an analogue of the BCT zeolite framework. Many of the minima

obtained for the different cluster sizes in the trace of the inertia studies were also

shown to be analogues of composite building units of zeolite structures.

The common structural theme of zeolite motifs in both our small ((ZnS)n where

n = 3, . . . , 24) and large (360 and 840 atom) nanoparticles led us to investigate

more generally zinc sulfide zeolite analogues. Our study highlighted the differences

between five different ZnS force fields. We found that many of the force fields

did not accurately model the experimental difference in energy between the two

polymorphs of ZnS, wurtzite and sphalerite. Only the full shell model of Wright

and Gale [95] and the rigid-ion version of this, where both include a torsional

term, correctly modelled sphalerite as the lower energy polymorph. In addition

to this, the BCT phase we observed in our simulations of ZnS nanoparticles is

also modelled with very different results using the five different force fields. As

there is currently no experimental data for a BCT phase of ZnS, we performed

first principles calculations on the low energy polymorphs to offer another means

of comparing the force field results. We found that only those force fields with a

torsional term accurately modelled the BCT phase as higher in energy than either

wurtzite or sphalerite, consistent with the order of stability obtained from our

DFT calculations. The relaxed core of the 840 atom ZnS nanoparticle from our

Steinhardt parameter studies was used to create a ‘hypothetical’ zeolite structure

which has similarities with the ‘APC’ zeolite framework. This hypothetical

framework has double crankshaft chains layered in ‘ABABAB. . . ’ stacking while

APC has ‘ABCABC. . . ’ stacking of the same composite building unit. In all

cases our new hypothetical zeolite structure was higher in energy than the bulk

polymorphs, sphalerite and wurtzite, and the BCT phase.
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Overall, this study highlighted that there may be significant issues using these

force fields to investigate clusters of ZnS, particularly when using them to infer

the stability of one cluster over another when the bulk the stabilities obtained by

a given force field are contrary to experiment and first principles calculations. In

the future it may be desirable to develop new force fields for zinc sulfide that take

into account the energy difference of the BCT phase as obtained via first principles

calculations. The lack of an appropriate force field for investigating ZnS is also

highlighted by our investigation of small clusters. Our calculations did not show an

unusually stable (ZnS)13 cluster, despite the fact that this cluster size appears to

be ultra-stable via laser ablation experiments and mass spectrometry[67, 115]. It is

possible that the phase space was insufficiently explored to find a lower minimum

for the (ZnS)13 cluster, or that the force field we used is not capable of accurately

modelling the energies of these clusters.

The final portion of the present study was an investigation into the ZnS-water

interactions. The ZnS-water clusters used by Hamad et al. [110] to calculate

binding energies and generate their ZnS-water potentials were investigated using

all the ZnS force fields used throughout this work and first principles calculations.

The rigid-ion models were the least capable of reproducing the values obtained via

first principles methods. However, the clusters involving S-Hw bonds were found

to have significantly lower binding energies using our first principles calculations,

much less than those obtained from any of the force fields or the DFT calculations

of Hamad et al. [110]. Free energy perturbation calculations using the Rigid/Tors

model combined with the Hamad et al. [110] ZnS-water potential showed that the

free energy of solvation of Zn2+ ions is approximately 500 kJ/mol less exothermic

than the value obtained experimentally, while the solvation free energy of S2−

was only 30 kJ/mol more exothermic. We generated a new set of ZnS-water

interactions, with the aim of enabling the free energy of solvation to be modelled

more accurately. The re-fitted ZnS-water potentials were also used to calculate

the binding energies of the clusters of Hamad et al. [110] and we found that the

new force field combined with the Rigid/Tors model yielded the largest binding

energies, which are consistently 2-3 times the magnitude of those obtained using

other force fields and DFT methods.

One aspect of our work which we didn’t investigate was the use of both of the CVs

simultaneously (ie. using both the moment of inertia tensor and the Q4 Steinhardt

parameter). The metadynamics method allows the implementation of more than
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one CV, and the use of both our parameters would drive the internal order and

shape of the system simultaneously. This would be an interesting focus for future

studies as size and shape dependent phase transitions in nanoparticles are known

to exist[63, 68, 369].

It is clear from our investigation and comparison of ZnS and ZnS-water interactions

that there is the need for improved force fields. The ZnS force fields could be

improved by including the the data obtained by first principles methods for the

BCT phase in the fitting process. It would be interesting to repeat the evaluation

of the energies for ZnS zeolite analogues, performed in Chapter 7, using a ZnS

force field which is designed for nanoporous ZnS structures or at least included

the BCT phase during parameterisation. Ultimately a new ZnS force field is

required which enables accurate modelling of bulk phases through to finite clusters,

and with improved interactions with water. A reactive force field, such as those

of the ReaxFF methodology[370, 371], would also allow the modelling of water

dissociation at the surface of cluster. This would be particularly relevant for the

sulfur anions which generally form SH− in water[372]. In addition, the use of

variable charges computed “on-the-fly” would capture some of the many-body

effects missing in existing models.

In conclusion, our work has demonstrated that the use of metadynamics has

potential for exploring nanostructures. Not only were many clusters and structures

explored, but the metadynamics simulations performed helped highlight any

deficiencies in the force fields used. Our work has shown that future studies of

zinc sulfide nanoclusters, in vacuum or solvent, will be greatly assisted by the

development of more accurate force fields.
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Metadynamics using the trace of

the inertia tensor

This appendix contains tabulations for all of the unique structures found from the

metadynamics simulations performed, using the trace of the inertia tensor as the

collective variable, on small clusters of (ZnS)n, where n = 3, . . . , 24. The force

field used to optimise all of the structures was the shell model of Wright and

Gale [95] without the torsional term. This is the same force field we used for our

metadynamics simulations of the same clusters. In addition to the structures and

potential energies of the different structures, we have also included the plots of

the trace of the inertia tensor value over time for the metadynamics simulations

from which the structures were obtained.

Table A.1: Structures
obtained from the MetaD
simulations of (ZnS)3,
optimised using lattice

dynamics.
(ZnS)3 structures

1

Table A.2: Potential energy for the
structure obtained for (ZnS)3, shown in

Table A.1.
(ZnS)3 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -9092.6 0.0 -3030.9 0.0

263
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Table A.3: Structures
obtained from the MetaD
simulations of (ZnS)4,
optimised using lattice

dynamics.
(ZnS)4 structures

1 2

Table A.4: Potential energies for the
structures found for (ZnS)4, shown in

Table A.3.
(ZnS)4 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -12266.3 0.0 -3066.6 0.0
2 -12141.6 124.7 -3035.4 31.2

Table A.5:
Structure obtained
from the MetaD
simulations of (ZnS)5,
optimised using

lattice dynamics.

(ZnS)5 structure

1

Table A.6: Potential energy for the
structure found for (ZnS)5, shown in Table

A.5.

(ZnS)5 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -15407.6 0.0 -3081.5 0.0

Table A.7: Structure
obtained from the MetaD
simulations of (ZnS)6,
optimised using lattice

dynamics.

(ZnS)6 structures

1

Table A.8: Potential energy for the
structure obtained for (ZnS)6, shown in

Table A.7.

(ZnS)6 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -18686.8 0.0 -3114.5 0.0
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Figure A.1: Evolution of the trace of the inertia tensor over time for the
(ZnS)6 cluster
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Figure A.2: Evolution of the trace of the inertia tensor over time for the 14
atom ZnS cluster
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Table A.9: Structures
obtained from the MetaD
simulations of (ZnS)7,
optimised using lattice

dynamics.

(ZnS)7 structures

1 2

3

Table A.10: Potential energies for the
structures obtained for (ZnS)7, shown in

Table A.9.

(ZnS)7 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -21832.4 0.0 -3118.9 0.0
2 -21807.4 25.0 -3115.3 3.6
3 -21646.8 185.7 -3092.4 26.5

Table A.11: Structures
obtained from the MetaD
simulations of (ZnS)8,
optimised using lattice

dynamics.

(ZnS)8 structures

1 2

3 4

Table A.12: Potential energies for the
structures obtained for (ZnS)8, shown in

Table A.11.

(ZnS)8 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -25082.9 0.0 -3135.4 0.0
2 -24928.4 154.4 -3116.1 19.3
3 -24820.7 262.1 -3102.6 32.8
4 -24811.6 271.3 -3101.4 33.9
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Figure A.3: Evolution of the trace of the inertia tensor over time for the
(ZnS)8 cluster

Table A.13: Structures
obtained from the
MetaD simulations of
(ZnS)9, optimised using

lattice dynamics.

(ZnS)9 structures

1 2

3

Table A.14: Potential energies for the
structures obtained for (ZnS)9, shown in

Table A.13.

(ZnS)9 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -28285.7 0.0 -3142.9 0.0
2 -28200.7 85.0 -3133.4 9.4
3 -28079.6 206.1 -3120.0 22.9
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Figure A.4: Evolution of the trace of the inertia tensor over time for the
(ZnS)9 cluster

Table A.15: Structures
obtained from the MetaD
simulations of (ZnS)10,
optimised using lattice

dynamics.

(ZnS)10 structures

1 2

3 4

Table A.16: Potential energies for the
structures obtained for (ZnS)10, in Table

A.15

(ZnS)10 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -31437.6 0.0 -3143.8 0.0
2 -31324.6 113.0 -3132.5 11.3
3 -31260.7 176.9 -3126.1 17.7
4 -31245.7 191.9 -3124.6 19.2
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Figure A.5: Evolution of the trace of the inertia tensor over time for the
(ZnS)10 cluster.

Table A.17: Structures
obtained from the MetaD
simulations of (ZnS)11,
optimised using lattice

dynamics.

(ZnS)11 structures

1 2

3 4

Table A.18: Potential energy for the
structure obtained for (ZnS)11, in Table A.17

(ZnS)11 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -34657.1 0.0 -3150.6 0.0
2 -34562.1 95.0 -3142.0 8.6
3 -34525.0 132.1 -3138.6 12.0
4 -34464.9 192.2 -3133.2 17.5
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Figure A.6: Evolution of the trace of the inertia tensor over time for the
(ZnS)11 cluster.

Table A.19: Structures obtained from the MetaD simulations of (ZnS)12,
optimised using lattice dynamics.

(ZnS)12 structures

1 2 3 4

5 6 7 8

9 10
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Table A.20: Potential energy for the structure obtained for (ZnS)12, in Table
A.19

(ZnS)12 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -37893.6 0.0 -3157.8 0.0
2 -37821.2 72.5 -3151.8 6.0
3 -37801.2 92.5 -3150.1 7.7
4 -37763.3 130.4 -3146.9 10.9
5 -37722.0 171.6 -3143.5 14.3
6 -37717.7 175.9 -3143.1 14.7
7 -37717.1 176.5 -3143.1 14.7
8 -37662.5 231.1 -3138.5 19.3
9 -37659.2 234.4 -3138.3 19.5
10 -37615.9 277.7 -3134.7 23.1
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Figure A.7: Evolution of the trace of the inertia tensor over time for the
(ZnS)12 cluster
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Table A.21: Structures
obtained from the MetaD
simulations of (ZnS)13,
optimised using lattice

dynamics.

(ZnS)13 structures

1 2

3 4

Table A.22: Potential energies for the
structures obtained for (ZnS)13, shown in

Table A.21

(ZnS)13 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -41032.3 0.0 -3156.3 0.0
2 -40930.9 101.4 -3148.5 7.8
3 -40922.3 110.0 -3147.9 8.5
4 -40918.6 113.7 -3147.6 8.7
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Figure A.8: Evolution of the trace of the inertia tensor over time for the
(ZnS)13 cluster
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Table A.23: Structures obtained from the MetaD simulations of (ZnS)14,
optimised using lattice dynamics.

(ZnS)14 structures

1 2 3 4

5 6 7 8

Table A.24: Potential energies for the structures obtained for (ZnS)14, shown
in Table A.23.

(ZnS)14 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -44236.5 0.0 -3159.8 0.0
2 -44115.9 120.6 -3151.1 8.6
3 -44113.5 123.1 -3151.0 8.8
4 -44101.8 134.7 -3150.1 9.6
5 -44085.5 151.0 -3149.0 10.8
6 -44032.6 203.9 -3145.2 14.6
7 -44031.8 204.7 -3145.1 14.6
8 -43990.2 246.4 -3142.2 17.6
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Figure A.9: Evolution of the trace of the inertia tensor over time for the
(ZnS)14 cluster
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Figure A.10: Evolution of the trace of the inertia tensor over time for the
(ZnS)15 cluster

Table A.25: Structures obtained from the MetaD simulations of (ZnS)15,
optimised using lattice dynamics.

(ZnS)15 structures

1 2 3 4

5 6 7 8

9 10
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Table A.26: Potential energies for the structures obtained for (ZnS)15, shown
in Table A.25.

(ZnS)15 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -47446.9 0.0 -3163.1 0.0
2 -47354.8 92.2 -3157.0 6.1
3 -47321.1 125.9 -3154.7 8.4
4 -47262.9 184.0 -3150.9 12.3
5 -47222.7 224.3 -3148.2 15.0
6 -47211.7 235.3 -3147.4 15.7
7 -47203.4 243.5 -3146.9 16.2
8 -47169.5 277.4 -3144.6 18.5
9 -47141.8 305.2 -3142.8 20.3
10 -47108.8 338.1 -3140.6 22.5

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  20  40  60  80  100  120

T
ra

ce
 o

f i
ne

rt
ia

 te
ns

or
 (

am
u 

nm
2 )

Time (ns)

Figure A.11: Evolution of the trace of the inertia tensor over time for the
(ZnS)16 cluster
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Table A.27: Structures obtained from the MetaD simulations of (ZnS)16,
optimised using lattice dynamics.

(ZnS)16 structures

1 2 3 4 5

6 7 8 9

Table A.28: Potential energies for the structures obtained for (ZnS)16, shown
in Table A.27

(ZnS)16 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -50608.5 0.0 -3163.0 0.0
2 -50599.7 8.8 -3162.5 0.6
3 -50529.4 79.2 -3158.1 4.9
4 -50507.7 100.9 -3156.7 6.3
5 -50496.4 112.1 -3156.0 7.0
6 -50473.9 134.7 -3154.6 8.4
7 -50467.0 141.5 -3154.2 8.8
8 -50441.6 166.9 -3152.6 10.4
9 -50394.1 214.4 -3149.6 13.4
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Figure A.12: Evolution of the trace of the inertia tensor over time for the
(ZnS)17 cluster

Table A.29: Structures obtained from the MetaD simulations of (ZnS)17,
optimised using lattice dynamics.

(ZnS)17 structures

1 2 3 4 5

6 7 8 9 10



Appendix A. Metadyamics using the trace of the inertia tensor 279

Table A.30: Potential energies for the structures obtained for (ZnS)17, shown
in Table A.29.

(ZnS)17 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -53799.7 0.0 -3164.7 0.0
2 -53678.9 120.8 -3157.6 7.1
3 -53663.5 136.3 -3156.7 8.0
4 -53659.7 140.1 -3156.4 8.2
5 -53640.9 158.8 -3155.3 9.3
6 -53616.6 183.1 -3153.9 10.8
7 -53616.2 183.6 -3153.9 10.8
8 -53609.6 190.1 -3153.5 11.2
9 -53572.1 227.6 -3151.3 13.4
10 -53467.8 331.9 -3145.2 19.5

Table A.31: Structures obtained from the MetaD simulations of (ZnS)18,
optimised using lattice dynamics.

(ZnS)18 structures

1 2 3 4 5

6 7 8 9

Table A.32: Potential energies for the structures obtained for (ZnS)18, shown
in Table A.31.

(ZnS)18 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -56880.3 0.0 -3160.0 0.0
2 -56875.8 4.6 -3159.8 0.3
3 -56857.8 22.6 -3158.8 1.3
4 -56838.9 41.4 -3157.7 2.3
5 -56824.5 55.8 -3156.9 3.1
6 -56777.9 102.4 -3154.3 5.7
7 -56760.8 119.5 -3153.4 6.6
8 -56752.2 128.1 -3152.9 7.1
9 -56749.6 130.8 -3152.8 7.3
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Figure A.13: Evolution of the trace of the inertia tensor over time for the
(ZnS)22 cluster
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Figure A.14: Evolution of the trace of the inertia tensor over time for the
(ZnS)24 cluster.
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Table A.33: Structures obtained from the MetaD simulations of (ZnS)21,
optimised using lattice dynamics.

(ZnS)21 structures

1 2 3 4

5 6 7

Table A.34: Potential energies for the structures obtained for (ZnS)21, shown
in Table A.33.

(ZnS)21 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -66593.5 0 [-3171.1] [0.0]
2 -66578.7 14.7 [-3170.4] [0.7]
3 -66473.7 119.7 [-3165.4] [5.7]
4 -66317.3 276.1 [-3158.0] [13.2]
5 -66310.9 282.6 [-3157.7] [13.5]
6 -66310.7 282.8 [-3157.7] [13.5]
7 -66249.9 343.5 [-3154.8] [16.4]
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Table A.35: Structures obtained from the MetaD simulations of (ZnS)22,
optimised using lattice dynamics.

(ZnS)22 structures

1 2 3 4

5 6 7

Table A.36: Potential energies for the structures obtained for (ZnS)22, shown
in Table A.35.

(ZnS)22 potential energies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/ZnS

1 -69750.8 0.0 -3170.5 0.0
2 -69743.5 7.3 -3170.2 0.3
3 -69742.5 8.3 -3170.1 0.4
4 -69736.2 14.6 -3169.8 0.7
5 -69511.6 239.2 -3159.6 10.9
6 -69504.1 246.7 -3159.3 11.2
7 -69494.8 256.0 -3158.9 11.6

Table A.37: Structures obtained from the MetaD simulations of (ZnS)24,
optimised using lattice dynamics.

(ZnS)24 structures

1 2 3 4 5
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Table A.38: Potential energies for the structures obtained for (ZnS)24, shown
in Table A.37.

(ZnS)24 potential energies (kJ mol−1)

Structure U ∆U ∆U ∆U/ZnS

1 -75994.9285 0 -3166.46 0.0
2 -75970.3810 24.5475 -3165.43 1.0
3 -75896.4475 98.481 -3162.35 4.1
4 -75895.7680 99.1605 -3162.32 4.1
5 -75833.5140 161.414 -3159.73 6.7
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Table A.39: Structures obtained from the MetaD simulations of (ZnS)12 in
water, optimised in vacuo using lattice dynamics.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

26 27 28 29 30

31 32 33 34 35

36 37 38 39 40
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Table A.40: Energies and enthalpies of the structures obtained from the
MetaD simulations of (ZnS)12 in water, shown in Table A.39. The potential
energy values were obtained by minimising the structures in vacuum using
lattice dynamics, and the average enthalpies were obtained from 200 ps NPT
MD simulations. The relative potential energy and enthalpy are given with

respect to the sodalite cage structure (Structure 1).

(ZnS)12 potential energies and enthalpies (kJ mol−1)

Structure U ∆U U/ZnS ∆U/Zns H/ZnS ∆H/ZnS

1 -37893.6 0.0 -3157.8 0.0 -5229.43 0
2 -37821.2 72.5 -3151.8 6.0 -5229.23 0.2
3 -37778.0 115.6 -3148.2 9.6 -5227.41 2.02
4 -37763.3 130.3 -3146.9 10.9 -5229.08 0.35
5 -37736.1 157.5 -3144.7 13.1 -5236.54 -7.11
6 -37717.7 175.9 -3143.1 14.7 -5228.68 0.75
7 -37706.3 187.3 -3142.2 15.6 -5226.69 2.74
8 -37695.4 198.2 -3141.3 16.5 -5235.31 -5.88
9 -37685.9 207.7 -3140.5 17.3 -5221.65 7.78
10 -37685.3 208.3 -3140.4 17.4 -5224.29 5.14
11 -37673.5 220.2 -3139.5 18.3 -5225.48 3.95
12 -37665.3 228.3 -3138.8 19.0 -5223.05 6.38
13 -37651.0 242.6 -3137.6 20.2 -5225.44 3.99
14 -37636.4 257.2 -3136.4 21.4 -5236.47 -7.04
15 -37633.0 260.6 -3136.1 21.7 -5231.66 -2.23
16 -37630.4 263.2 -3135.9 21.9 -5228.57 0.86
17 -37626.6 267.0 -3135.6 22.2 -5225.07 4.36
18 -37627.5 266.1 -3135.6 22.2 -5233.49 -4.06
19 -37626.1 267.5 -3135.5 22.3 -5231.41 -1.98
20 -37624.9 268.7 -3135.4 22.4 -5231.03 -1.6
21 -37615.5 278.2 -3134.6 23.2 -5228.72 0.71
22 -37613.5 280.1 -3134.5 23.3 -5237.19 -7.76
23 -37587.8 305.8 -3132.3 25.5 -5226.11 3.32
24 -37583.5 310.1 -3132.0 25.8 -5236.47 -7.04
25 -37584.3 309.3 -3132.0 25.8 -5230.87 -1.44
26 -37580.2 313.4 -3131.7 26.1 -5231.62 -2.19
27 -37575.3 318.3 -3131.3 26.5 -5226.36 3.07
28 -37572.0 321.6 -3131.0 26.8 -5233.65 -4.22
29 -37569.8 323.9 -3130.8 27.0 -5220.91 8.52
30 -37562.9 330.7 -3130.2 27.6 -5230.97 -1.54
31 -37536.6 357.0 -3128.1 29.8 -5222.7 6.73
32 -37525.2 368.4 -3127.1 30.7 -5233.65 -4.22
33 -37513.3 380.4 -3126.1 31.7 -5221.57 7.86
34 -37506.0 387.6 -3125.5 32.3 -5233.31 -3.88
35 -37504.0 389.6 -3125.3 32.5 -5227.8 1.63
36 -37484.4 409.2 -3123.7 34.1 -5232.1 -2.67
37 -37478.0 415.6 -3123.2 34.6 -5233.31 -3.88
38 -37436.5 457.1 -3119.7 38.1 -5225.85 3.58
39 -37436.5 457.2 -3119.7 38.1 -5226.3 3.13
40 -37399.9 493.7 -3116.7 41.1 -5235.75 -6.32
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SIESTA

Basis set example from .fdf file

PAO.SplitNorm 0.15

PAO.SplitNormH 0.50

PAO.SoftDefault true

PAO.SoftPotential 100.0 Ry

PAO.SoftInnerRadius 0.95

%block PAO.Basis

Zn pbesol 5

n=3 0 1

6.0

1.0

n=3 1 1

6.0

1.0

n=4 0 2

8.0 0.0

1.0 1.0

n=4 1 2

9.0 0.0

1.0 1.0

n=3 2 2
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8.0 0.0

1.0 1.0

S pbesol 3

n=3 0 3

8.0 0.0 0.0

1.0 1.0 1.0

n=3 1 3

8.0 0.0 0.0

1.0 1.0 1.0

n=3 2 2 E 100.0 0.00

6.0 0.0

1.0 1.0

O pbesol 3

n=2 0 3

7.0 0.0 0.0

1.0 1.0 1.0

n=2 1 3

7.0 0.0 0.0

1.0 1.0 1.0

n=3 2 2 E 120.0 0.00

7.0 0.0

1.0 1.0

H pbesol 2

n=1 0 3

7.0 0.0 0.0

1.0 1.0 1.0

n=2 1 2 E 70.0 0.0

3.5 0.0

1.0 1.0

%endblock PAO.Basis
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Metadynamics using Steinhardt

parameter Q4

This appendix contains tabulations of the structures obtained from metadynamics

simulations performed on a 360 atom wurtzite ZnS nanocluster using the Q4

parameter. For the structures given in Tables C.1 and C.2 the bias was applied

to the Zn-Zn pairs only. The results from the simulations performed with the bias

applied to both Zn-Zn and S-S pairs are detailed in Chapter 6, along with the

remainder of the simulations performed using the Q4 Steinhardt parameter.

289
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Table C.1: Low energy structures obtained from MetaD simulation of 360
atom nanoparticle using Q4 bias on the Zn-Zn pairs. The switching function
parameters were d0=3.9 Å, r0=0.25 Å, n=2 and m=6. The relative energies

(∆U) are quoted with respect to sphalerite in kJ/mol per formula unit.

Time (ns) 0.50 1.75 2.00

∆U
(kJ/mol) 28.8 28.6 30.3

Time (ns) 5.50 6.50 8.75

∆U
(kJ/mol) 34.6 34.8 33.4

Time (ns) 14.25 20.00 21.25

∆U
(kJ/mol) 34.9 34.5 32.5
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Table C.2: Low energy structures obtained from a MetaD simulation using
the Q4 Steinhardt parameter as a CV bias on the Zn-Zn pairs. The switching
function used had parameters d0=3.8 Å, r0=0.17 Å, n=6 and m=12. The
relative energies (∆U) are quoted with respect to sphalerite in kJ/mol per

formula unit.

Time
(ns)

Structure ∆U

3.25 27.2

3.50 27.1

4.00 28.2

8.25 27.6

9.25 28.7

13.50 30.5





Appendix D

Hypothetical nanoporous ZnS

This appendix contains tabulations for all of the optimised zeolite frameworks

detailed in Chapter 7. The starting topologies are shown, along with topologies

resulting from optimisation with three force fields, the rigid ion model used in

Chapter 6 (referred to as ‘Rigid’ throughout Chapter 7), and the Wright and Gale

[95] model with a torsional (Shells/Tors), and the same model without a torsional

term (Shells/NoTors).

Table D.1: Zeolite frameworks with 6- and 4-membered rings. Images for the
starting topology and the resulting topologies after minimisation using three

different forcefields (Rigid, Shells/NoTors and Shells/Tors) are shown.

Frame Start Rigid No-Tors Tors

AFG
viewed
normal
to [001]

AST
viewed
along
[100]

Continued on Next Page. . .
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Table D.1: 6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

FAR
viewed
normal
to [001]

FRA
viewed
normal
to [001]

GIU
viewed
along
[100]

LIO
viewed
normal
to [001]

Continued on Next Page. . .
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Table D.1: 6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

LOS
viewed
normal
to [001]

MAR
viewed
normal
to [001]

MSO
viewed
normal
to [001]

SOD
viewed
along
[100]

TOL
viewed
normal
to [001]

Continued on Next Page. . .
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Table D.1: 6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

UOZ
viewed
along
[100]

Table D.2: Zeolite frameworks with 8- and 4-membered rings. Images for the
starting topology and the resulting topologies after minimisation using three

different forcefields (Rigid, Shells/NoTors and Shells/Tors) are shown.

Frame Start Rigid No-Tors Tors

ACO
viewed
along
[100]

EDI
viewed
along
[001]

MER
viewed
along
[100]

PHI
viewed
along
[001]

SIV
viewed
along
[100]

Continued on Next Page. . .
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Table D.2: 8-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

THO
viewed
along
[010]

Table D.3: Zeolite frameworks with 8-, 6- and 4-membered rings. Images for
the starting topology and the resulting topologies after minimisation using three

different forcefields (Rigid, Shells/NoTors and Shells/Tors) are shown.

Frame Start Rigid No-Tors Tors

ABW
viewed
along
[010]

AEI
viewed
along
[001]

AEN
viewed
along
[001]

Continued on Next Page. . .
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Table D.3: 8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

AFN
viewed
along
[010]

AFT
viewed
normal
to [001]

AFX
viewed
normal
to [001]

AFY
proj
down
[001]

ANA
viewed
along
[001]

Continued on Next Page. . .
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Table D.3: 8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

APC
viewed
along
[100]

APD
viewed
along
[100]

ATN
viewed
along
[001]

ATT
viewed
along
[010]

Continued on Next Page. . .
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Table D.3: 8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

ATV
viewed
along
[100]

AWO
viewed
along
[100]

AWW
viewed
along
[100]

BCT
viewed
along
[100]

CHA
viewed
along
[100]

Continued on Next Page. . .
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Table D.3: 8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

DFT
viewed
along
[100]

EAB
viewed
normal
to [001]

ERI
viewed
normal
to [001]

GIS
viewed
along
[100]

Continued on Next Page. . .
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Table D.3: 8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

GOO
viewed
along
[110]

JBW
viewed
along
[100]

KFI
viewed
along
[100]

Continued on Next Page. . .
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Table D.3: 8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

LEV
viewed
normal
to [001]

LIT
viewed
along
[100]

LTA
viewed
along
[100]

OWE
viewed
along
[100]

Continued on Next Page. . .
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Table D.3: 8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

RHO
viewed
along
[100]

SAS
viewed
along
[001]

SAT
viewed
normal
to [001]

SAV
viewed
along
[001]

TSC
viewed
along
along
[001]

UEI
viewed
along
[010]

Continued on Next Page. . .
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Table D.3: 8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

ZON
viewed
along
[010]

Table D.4: Zeolite frameworks with 10-, 6- and 4-membered rings. Images
for the starting topology and the resulting topologies after minimisation using

three different forcefields (Rigid, Shells/NoTors and Shells/Tors) are shown.

Frame Start Rigid No-Tors Tors

AEL
viewed
along
[010]

AFO
viewed
along
[001]

AHT
viewed
along
[001]

Continued on Next Page. . .
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Table D.4: 10-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

JRY
viewed
along
[100]

LAU
viewed
along
[001]

PON
viewed
along
[100]
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Table D.5: Zeolite frameworks with10-, 8- 6- and 4-membered rings. Images
for the starting topology and the resulting topologies after minimisation using

three different forcefields (Rigid, Shells/NoTors and Shells/Tors) are shown.

Frame Start Rigid No-Tors Tors

CGS
viewed
along
[100]

CGF
viewed
along
[001]

WEN
viewed
normal
to [001]
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Table D.6: Zeolite frameworks with 12-, 6- and 4-membered rings. Images
for the starting topology and the resulting topologies after minimisation using

three different forcefields (Rigid, Shells/NoTors and Shells/Tors) are shown.

Frame Start Rigid No-Tors Tors

AFI
viewed
along
[001]

ATO
viewed
along
[001]

ASV
viewed
along
[001]

ATS
viewed
along
[001]

Continued on Next Page. . .
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Table D.6: 12-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

CAN
viewed
along
[001]

EMT
viewed
along
[001]

FAU
viewed
along
[100]

OSI
viewed
along
[001]

SAO
viewed
along
[100]
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Table D.7: Zeolite frameworks with 12-, 8-, 6- and 4-membered rings. Images
for the starting topology and the resulting topologies after minimisation using

three different forcefields (Rigid, Shells/NoTors and Shells/Tors) are shown.

Frame Start Rigid No-Tors Tors

AFR
viewed
along
[010]

AFS
viewed
along
[100]

BPH
viewed
normal
to [001]

EZT
viewed
along
[100]

GME
viewed
normal
to [001]

Continued on Next Page. . .
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Table D.7: 12-8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

ITW
viewed
along
[001]

LTL
viewed
normal
to [001]

MOZ
viewed
normal
to [001]

OFF
viewed
normal
to [001]

Continued on Next Page. . .
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Table D.7: 12-8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

SBE
viewed
normal
to [001]

SBS
viewed
normal
to [001]

SBT
viewed
normal
to [001]

SFO
viewed
normal
to [001]

Continued on Next Page. . .
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Table D.7: 12-8-6-4 Frameworks optimised with different forcefields – Continued

Frame Start Rigid No-Tors Tors

Table D.8: Zeolite frameworks with larger membered rings - 18-, 14-, 12-
membered rings. Images for the starting topology and the resulting topologies
after minimisation using three different forcefields (Rigid, Shells/NoTors and

Shells/Tors) are shown.

Frame Start Rigid No-Tors Tors

CZP
12-8-4
viewed
normal
to [001]

ETR
18-8-6-4
viewed
along
[001]

USI
12-10-6-4
viewed
along
[001]

Continued on Next Page. . .
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Table D.8: Frameworks with larger rings optimised with different forcefields – Cont.

Frame Start Rigid No-Tors Tors

AET
14-6-4
viewed
along
[001]

VFI
18-6-4
viewed
along
[001]
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