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ABSTRACT 

 

When working or exercising for prolonged periods in hot and humid environmental 

conditions, high sweat rates can lead to dehydration and electrolyte imbalance. It is 

well established that these progressive conditions will impair work and exercise 

performance in both athletes and manual workers. Consequences of inadequate fluid 

and electrolyte replacement in both cases can range from uncomfortable heat cramps, 

to more serious cases of heat illness, which in extreme cases can be fatal.  

Fluid loss accompanying work or exercise in the heat has received extensive focus in 

the literature over the last 20 years, however, the sodium losses associated with large 

sweat losses have received far less attention. Due to the well-established link 

between high salt intake and hypertension, the World Health Organisation 

recommends that on a global scale individuals consume less than 5g salt per day. 

While these recommendations may be appropriate for the general population, the 

athlete or manual worker has substantially greater sodium losses and therefore is 

hypothesised to require a higher sodium intake. One of the principle aims of this 

thesis is to document sweat sodium losses and provide appropriate guidelines for 

fluid and sodium replacement in both manual workers and endurance athletes. 

Chronic hyponatremia is a condition previously reported to occur in military 

personnel where over several weeks sodium intake is inadequate to replace large 

sweat losses. To date no previous study has investigated the incidence of chronic 

hyponatremia in a group of manual workers. Maintaining adequate fluid and 

electrolyte balance is essential to this population who are often working for 

prolonged periods in hot and humid environments. To investigate the incidence of 

chronic hyponatremia in this population, plasma sodium levels were assessed at the 

end of both the summer and winter months. Despite the similar dietary sodium intake 

across the year, the incidence of chronic hyponatremia at the end of the summer 

period was significantly greater than at the end of the winter period. This was 

postulated to be due to the higher sweat losses as a result of the more harsh 



   
 

        

environmental conditions during the summer months. Dietary sodium intake was 

found to be inadequate to replace the estimated sodium losses due to the high 

proportion of rice and legumes consumed with very low sodium content. Increasing 

the sodium content of fluid and food provided to workers is warranted and may 

reduce the incidence of work related illness and accidents in this population.  

In the athlete population there has been a great deal of focus in the literature on the 

need to adequately replace fluid losses that occur as a result of heavy sweating. Far 

less attention has been on the need to replace the sweat sodium losses accompanying 

this, with few studies documenting sodium losses in an endurance athlete population. 

There is large inter-individual variation in both sweat rate and sweat sodium loss in 

athletes with both factors being influenced by exercise intensity and duration, 

environmental conditions, physical fitness, size and number of individual sweat 

glands as well as the acclimatisation state of an athlete. It is therefore difficult to 

establish general recommendations for sodium intake in this population. In some 

athletes sodium losses can be replaced by normal dietary intake, whereas in other 

cases increased dietary intake is essential to replace large sweat sodium losses. In 

order to accurately determine sweat electrolyte losses, comprehensive laboratory 

based assessment is required, however this is often not practical. Chapter 4 and 5 of 

this thesis determined the effect of exercise intensity, seasonal heat acclimatisation 

and physical training status on fluid and electrolyte losses in a group of endurance 

athletes. The results from both of these studies predicts that endurance athletes with 

high sweat rates are at risk of both sodium and potassium deficiency, which may 

impair performance, if dietary intake is not sufficient to replace losses. Simple 

measures such as pre and post exercise weighing may be a useful tool in determining 

individual fluid and sodium intake requirements when comprehensive laboratory 

assessment is not practical.  

Based on the findings from these three studies, fluid and electrolyte replacement 

recommendations have been made for both manual workers and athletes working and 

exercising in thermally stressful environments.  

 

Key words: Hydration, sodium, potassium, sweat, exercise, hyponatremia, heat 

acclimatisation  
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CHAPTER 1: Introduction and 
literature review 

____________________________________________________________________ 

1.1 General Introduction 

Fluid and electrolyte disturbances, prompted by high sweat losses, can occur when a 

person is exposed to hot and humid environmental conditions for prolonged periods 

(>6h). In the endurance athlete this will have detrimental effects on performance, while 

also placing them at an increased risk of developing numerous forms of heat illness 

including heat cramps, and the more serious case of heat exhaustion. Heat exhaustion 

cases may develop headache, dizziness, fatigue, nausea, vomiting, and shortness of 

breath or syncope. In the manual labourer this can lead to impaired cognitive ability, 

dehydration and fatigue and in more serious cases lead to heat stroke. As a consequence 

of heat illness, productivity is significantly compromised and the risk of work related 

accidents increased. This research will seek to further explore fluid and electrolyte losses 

in these two ‘at risk’ populations in order to provide appropriate recommendations for 

replacement. 

In many countries around the world, workers in the building and construction industry 

perform long periods of work in thermally stressful environments.  Working in hot and 

humid conditions places an individual at risk of developing potentially severe heat 

illness due to substantial loss of fluid and electrolytes in sweat. While several studies 

have investigated the incidence of dehydration in susceptible populations (Bates, Miller, 

and Joubert 2010b; Bates, Gazey, and Cena 1996), there has been little focus on the need 

to replace the sodium losses that accompany fluid losses in sweat. In populations such as 

the Middle East, where the staple diet consists of rice and legumes, sodium consumption 

is potentially inadequate to replace sweat losses, placing a worker at risk of chronic 

hyponatremia. The consequences of chronic sodium depletion include fatigue, muscular 

weakness, nausea and vomiting, muscle cramps and in extremely severe cases may lead 

to circulatory failure (Hubbard, Szlyk, and Armstrong 1990). Study one (Chapter 2) of 

this thesis will be the first to document the incidence of hyponatraemia in a population of 

workers exposed to harsh environmental conditions while consuming a low sodium 
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starch based diet. As there are over 10 000 workers employed at the workplace studied, 

providing recommendations for fluid and electrolyte replacement has the potential to 

significantly impact on productivity, as well as the health of the workers, with wider 

implications throughout the region.  

In athletes, the need to replace water lost through sweat during exercise in the heat is 

well documented (Rehrer 2001; Coyle 2004); and is important for both physiological 

function and exercise performance. The sodium loss that accompanies water loss through 

sweat however, has received much less attention in the literature, leading to a lack of 

specific sodium replacement guidelines, with many athletes failing to adequately replace 

sodium losses (Valentine 2007; Montain, Sawka, and Wenger 2001). Currently the 

World Health Organisation (WHO) recommends that on a global scale salt intake should 

be less than 5g/day (less than 2g/day sodium) (World Health Organisation 2007). These 

recommendations may be appropriate for the general population; however, for athletes 

with large sweat losses, these guidelines are potentially inadequate. In athletes, the 

consequences of inadequate salt intake are incomplete rehydration, an increase in 

exertional heat cramps and all forms of heat illness and potentially increase in the risk of 

exercise associated hyponatremia.  

Currently the sodium requirements of athletes are estimated based on the sweat rate of 

the athlete, which is calculated based on weight loss over an exercise session. The 

accuracy of this method is questionable due to the lack of information concerning the 

relationship between sweat rate and sweat sodium concentration in athletes. Study two of 

this thesis aims to document the relationship between sweat rate and sodium 

concentration at different exercise intensity levels. This information will aid in providing 

specific sodium replacement guidelines for athletes training and competing in different 

events.  

Physical training and heat acclimatisation are factors which are known to result in 

adaptation to both the cardiovascular and thermoregulatory systems. At the level of the 

sweat gland this results in changes to an individual’s sweat rate and sweat sodium 

concentration. A number of questions still remain as to the effect of heat acclimatisation 

on the thermo-regulatory adaptations that occur at the level of the sweat gland, 

particularly in well-trained athletes. No previous study has investigated the effect of 

seasonal acclimatisation on sweat sodium or potassium loss in a group of endurance-
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trained athletes and this was therefore one of the aims of the third study (Chapter 5) 

presented in this thesis. A further objective of study three (Chapter 5) was to investigate 

the effect of physical fitness on fluid and electrolyte losses in order to be able to provide 

more specific guidelines for replacement.  
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This PhD thesis has the following objectives. 

In Manual workers: 

1. To investigate the risk of chronic hyponatremia in manual workers in the Middle East by 

comparing plasma sodium values in the summer and winter months (Chapter 2). 

2. To analyse the sodium intake of workers to establish if the sodium intake of workers is 

adequate to maintain electrolyte balance (Chapter 2). 

In endurance trained athletes: 

3. To establish whether there is a relationship between sweat rate and sweat sodium 

concentration in athletes during exercise of varying intensity (Chapter 4).  

4. To determine the effects of seasonal heat acclimatisation (summer vs winter) on sweat 

sodium and potassium concentration and to estimate potential electrolyte losses (Chapter 

5).  

5. To determine the effects of physical fitness on sweat rates and sweat electrolyte loss 

during cycling exercise in the heat (Chapter 5). 

In both groups: 

6. To formulate specific fluid and electrolyte guidelines for athletes and manual workers 

performing prolonged periods of work in thermally stressful environments (Chapters 2, 4 

and 5). 
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1.2 Background and Literature Review 

1.2.1 Heat Balance  

Humans are extremely efficient at maintaining thermal homeostasis despite large 

fluctuations in environmental temperatures. Heat balance is maintained by small but 

significant changes in the rate of heat loss from the body primarily through 

adjustments in skin blood flow and sweating rate (Kenny et al. 2010). Metabolic 

processes within the body result in heat production, which must be dissipated to the 

environment in order to avoid excessive rises in core body temperature.  For heat loss 

to occur, excess heat is transported through cutaneous vasodilation from the body 

core to the skin (Kamijo and Nose 2006). Once the metabolic heat has been 

transferred to the skin it is then able to be dissipated to the environment via 

conduction, convection, radiation and most effectively through evaporation (Gisolfi, 

Lamb, and Nadel 1993).  

The rate of convective heat transfer is dependent on the difference in temperature 

between the skin and the surrounding air (Nose et al. 1988). In times when the air 

temperature is greater than body temperature, heat gain will occur as heat will be 

transferred from the air to the skin. Radiative heat loss occurs when the surface of the 

skin is higher in temperature than the surrounding surfaces in the environment. When 

the body is exposed to sources of radiant heat such as the sun or heavy industrial 

machinery, heat may be radiated from the environment to the skin surface (Nadel 

1984). Conductive heat transfer occurs when the body is in contact with an external 

object. Heat passes from the warmer to the cooler object in order to equalise the 

temperatures of the two objects. Most evaporative heat loss takes place through the 

evaporation of sweat from the skin surface, with sweating being the most effective 

means of regulating core temperature (Kenefick 2007). There is also some 

evaporative heat loss from the respiratory lining. The efficiency of this transfer 

process is dependent on both environmental and physiologic function (Nadel 1984). 

The environmental temperature and humidity influence the contribution of 

evaporative and dry heat loss to overall heat loss. In hot and dry conditions, 

evaporation may account for up to 98% of cooling and must occur at a rate that 

enables adequate heat dissipation as well as preventing further heat gain (Gisolfi, 
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Lamb, and Nadel 1993). Physiologically, the efficiency of this process is dependent 

on the responsiveness of the individual sweat glands to neural signals of thermal 

load. In order for the sweating process to be effective, water must be evaporated 

from the skin surface, no heat will be lost if sweat drips or is wiped from the skin 

surface (Gonzalez and Cena 1985). 

1.2.2 Thermoregulation in the Heat  

The heat generated from performing external work such as manual labour or physical 

exercise contributes most significantly to body heat gain. Depending on the type of 

exercise performed, body metabolism increases up to 15 times in order to support 

skeletal muscle contraction. Seventy to ninety percent of this energy is released as 

heat which must be dissipated from the body in order to prevent excessive increases 

in core body temperature or hyperthermia (Sawka 1992; Sawka and Pandolf 1990). 

In sedentary individuals in mild environmental conditions, the heat loss mechanisms 

of the body are able to dissipate body heat effectively, preventing a rise in core body 

temperature (Maughan 2010). As ambient temperature increases it is more 

challenging to maintain body temperature within normal limits, particularly when 

performing physically demanding tasks. With air or environmental temperatures over 

36 degrees, there is insufficient gradient between the skin and the environment 

resulting in the inability to release body heat (Wendt, Van Loon, and Lichtenbelt 

2007). In this case the gradient for heat exchange is reversed and the body may gain 

heat by radiation. Evaporation of sweat then becomes the only means in which to 

dissipate body heat. The sweating mechanism is highly efficient, 1L of sweat can 

remove approximately 580kcal of heat energy (Maughan 2010).  

When the relative humidity is also high, sweating becomes less effective as a cooling 

mechanism (Nadel 1984). Water and electrolytes are continually lost but without the 

associated reduction in body temperature (Maughan 2010). If large fluid deficits are 

incurred without adequate replacement, there will be compromise to both the 

cardiovascular and thermoregulatory systems resulting in a gradual increase in core 

body temperature or hyperthermia. The level of physical work or exercise in these 

conditions will be limited with continued work potentiating the development of mild 

to severe heat illness.    
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The hypothalamus plays an essential role in monitoring and controlling 

thermoregulation (Nadel 1984). Thermosensitive neurons within the hypothalamus 

sense changes in the temperature of blood flowing through the brain centres 

detecting changes in core body temperature (Wendt, Van Loon, and Lichtenbelt 

2007). The hypothalamus is also able to monitor peripheral temperature changes, 

receiving sensory afferent input from thermoreceptors throughout the body. In this 

way the hypothalamus is able to assimilate central and peripheral information. The 

primary effector organs that allow for adjustments in heat flux are vascular smooth 

muscles, the sweat glands and skeletal muscle (Nadel 1984). The smooth muscle 

cells allow for changes in vasomotor tone therefore adjusting blood flow from the 

core to the skin. Activation of eccrine sweat glands allows for fluid to be placed on 

the skin surface for evaporation and consequential heat dissipation.  This process is 

particularly important at the onset of heavy exercise due to the rapid change in 

internal body temperature. As the internal body temperature rises, cutaneous 

vasodilation causes an increase in skin blood flow, while sweating rate also increases 

(Nadel 1984). 

1.2.2.1 Effect of sex on Thermoregulation  

Several studies in the literature have investigated differences in thermoregulatory 

efficiency between males and females (Hazelhurst and Claassen 2006; Kaciuba-

Uscilko and Ryszard 2001; Kenny et al. 2010). Even when matched for age,              

O2max, acclimation and body fat levels, females appear to have lower sweat rates 

than males in both hot dry and hot and wet climates (McLellan 1998; Mehnert, 

Brode, and Griefahn 2002; Havenith et al. 2008). Women are however able to 

maintain their core temperature with similar efficiency to males due to their ability to 

evaporate sweat from the body surface more effectively (Hazelhurst and Claassen 

2006).  This has been postulated to be due to the smaller body surface area to mass 

ratio in males compared to females (Avellini, Kamon, and Krajewski 1980b). As the 

heat generated during exercise is proportional to body mass, females potentially 

generate less heat, and due to their larger surface area to mass ratio, are able to 

dissipate heat more efficiently.  A study by Inoue et al (1998) concluded that during 

passive heat exposure, females rely more on active vasodilation as a method of heat 

dissipation where males rely more on the sweating mechanism.  
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A recent study by Medeira et al (2010) investigated the effects of sex and aerobic 

capacity on sweat gland sensitivity using pilocarpine induced sweating in 44 male 

and female subjects.  The results confirmed the hypothesis that maximal sweating 

rate is higher in subjects with greater aerobic capacity. There was also shown to be 

an additional sex related difference in sweat gland sensitivity to pilocarpine 

independent of O2 max, with males displaying significantly greater sweat losses in 

response to lower doses of pilocarpine. The authors concluded from this work that 

variation exists between male and female sweating capacity and is potentially due to 

variation in gland size, number of receptors and sweat gland output.  

Another recent study by Ichinose-Kuwahara (2010) aimed to assess sex differences 

in the sweat gland response to changes in exercise intensity. A significant difference 

was noted between sexes, with females displaying a much smaller degree of sweat 

rate increase when compared to males at a similar exercise intensity level. In addition 

to this it was noted that in order to reach maximal sweat output, females are required 

to work at a much higher relative intensity or require a higher body temperature than 

male subjects.  

Conflicting results are often reported in the literature in this area of research. This 

may be primarily due to differences in the methodology used to induce sweating, 

with some studies pharmacologically inducing sweating and others using heat and 

exercise. Pharmacologically induced sweating such as through the use of pilocarpine 

will assess the sensitivity of the individual sweat glands and prevent local and neural 

thermoregulatory mechanisms from influencing sweating rate. However, whether the 

pharmacologically induced sweat response is indicative of the physiological response 

is unknown and requires further investigation. Further to this, several studies have 

only examined sweat losses from one region of the body (Havenith et al. 2008; 

Meyer et al. 1992). It is well known that there are significant variations in sweat 

losses across different regions of the body (Bates and Miller 2008). Studies using a 

single sweat site may therefore produce conflicting results to those where whole 

body sweat losses have been compared (Patterson, Galloway, and Nimmo 2000). In 

addition to this there are several other compounding factors such as aerobic capacity 

( O2 max) and surface area to body mass ratio that differ significantly between 

genders and are not controlled for in all investigations (Madeira et al. 2010). 
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1.2.2.2 Effect of Age on Thermoregulation  

There have been a number of investigations looking at the effect of the aging process 

on thermoregulation (Armstrong and Kenney 1993). Results of a study by Dufour 

and Candas (2007) showed a significant decrease in whole body sweat rate with age 

when comparing young (20-30years), middle aged (40-50 years) and older (60+ 

years) individuals. The results also showed the older and middle aged groups to have 

a higher skin and core temperature than the younger subjects. One limitation of this 

study and a number of others is that they have not matched the older and younger 

subjects for body composition (muscle and fat mass) or physical fitness level. 

Because of this it is not clear whether the reduction in heat tolerance is due to a 

reduced thermoregulatory capacity or another confounding factor.  

A recent study by Kenny et al (2010) matched older (mean = 45 years) and younger 

(mean = 22 years) men for body composition and physical fitness. The subjects 

performed 90 minutes of recumbent cycling at a steady state of heat production 

(290W). No difference in the rate of heat loss or heat gain between groups was noted, 

leading the authors to conclude that physically fit older men have a similar 

thermoregulatory capacity to younger physically active men.   

1.2.2.3 Effect of Dehydration on Thermoregulation  

Prolonged work or exercise in the heat can result in significant losses of both fluid 

and electrolytes through sweat to enable body cooling. Sweat rates of over 1 L per 

hour are not uncommon when performing prolonged periods of work in the heat 

(Brake and Bates 2003a; Miller and Bates 2007b), while Armstrong et al (1986) has 

reported sweat rates as high as 3.1L per hour in the American marathon record holder 

Alberto Salazar during a heat chamber trial. Without adequate replacement of lost 

fluid volume, progressive dehydration occurs. Sweat is hypotonic to plasma, 

therefore prolonged sweating results in a gradual increase in the osmolality of body 

fluids. This hypertonicity leads to a redistribution of body fluids between the 

intracellular and extracellular spaces to protect plasma volume (Sawka 1992). 

Aerobic exercise can produce a regional change in blood flow distribution (Gisolfi, 

Lamb, and Nadel 1993). Muscular endurance exercise requires an increased level of 
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blood flow to the working muscles and an associated decrease in flow to non-

exercising muscles (splanchnic area and the skin). As dehydration progressively 

occurs, there is competition for blood circulation between active muscles for 

metabolism and the skin for heat dissipation (Gisolfi, Lamb, and Nadel 1993).  The 

associated reduction in skin blood flow, resulting in a reduction in sweat evaporation, 

causes a gradual increase in core body temperature. A study by Montain and Coyle 

(1992b) estimated that during endurance exercise in the heat, there is an increase in 

core body temperature of 0.2 degrees for every 1% of body weight that is lost. This 

core temperature rise, due to dehydration, is greater during exercise in hot and humid 

conditions when compared with more temperate climates (Montain and Coyle 

1992b). 

Along with the decreased ability to thermoregulate, there is an associated increase in 

cardiovascular strain (Johnson and Kellogg 2010). This is characterised by an 

increase in heart rate and decreased stroke volume and cardiac output (Gonzalez-

Alonso et al. 1997; Montain and Coyle 1992b, 1992a). A well cited study by 

Montain and Coyle (1992b) demonstrated that the amount of dehydration induced 

(between 1% and 4% of body weight) was in direct proportion to the increase in 

heart rate and decrease in stroke volume that was observed. Similarly Sanders et al 

(1999) reported an increase in heart rate of approximately 10 beats per minute over a 

90 minute cycling effort when a person was dehydrated compared to being in the 

euhydrated state (Sanders, Noakes, and Dennis 1999).  

Studies have also reported reduced sweating ability when a person is dehydrated, 

therefore resulting in a compromised thermoregulatory capacity (Senay 1968). The 

composition of sweat may also be altered when a person is dehydrated. In a study 

aimed at investigating whether exercise induced hypohydration affects sweat 

composition, 8 males exercised for 2 hours in the heat (38ºC, 60% relative humidity) 

on two separate occasions. Trial one was with no fluid intake (hypohydrated trial) 

and trial two involved consuming a sodium chloride solution (euhydrated trial). 

Sweat sodium concentration was significantly higher in the hypohydrated trial and 

may be due to higher extracellular sodium levels when hypohydrated (Morgan, 

Patterson, and Nimmo 2004).  
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1.2.3 Effect of Dehydration on Exercise Performance in the Heat  

Despite many professional teams now implementing a fluid replacement plan, 

several investigations have reported a high incidence of dehydration in athletes prior 

to regular training practice or competition. A recent study by Hamouti et al (2010) 

reported that 91% of a group of 43 professional team players awoke in a dehydrated 

state. Volpe et al (2009) reported the pre-practice hydration status of 138 male and 

125 female collegiate athletes with similar findings. Thirteen percent of the sample 

had urine specific gravity readings indicative of significant dehydration (USG 

>1.030) while 53% appeared dehydrated (USG1.020-1.029). Only 32% of the 

samples were euhydrated prior to commencing the exercise session. A further 

interesting finding from this study was that a greater percentage of males than 

females were dehydrated (Volpe, Poule, and Bland 2009).  

1.2.3.1 Strength Power and High Intensity Exercise Performance  

Few studies in the literature have investigated the effects of dehydration on power 

based or high intensity exercise performance. A review article by Maughan and 

Shirreffs (2010) discussed the need for clear advice to be given to athletes competing 

in short duration, high intensity events due to the higher rate of metabolic heat 

production leading to faster rate of body temperature rise. In events lasting 20 -30 

minutes, severe hyperthermia may be far more likely to occur than in longer duration 

events where thermal equilibrium will be reached and maintained (Sutton 1990).  

Diuretic induced dehydration was used to investigate the effects of hypohydration on 

50m and 200m sprint running performance (Watson et al. 2005). Administration of 

Frusemide reduced body mass by 1.7kg (2.2%) but there was no decline in 

performance over both distances. In a further study fluid and diet restriction 

combined with forced sweating over a period of 58 hours was used to achieve a 2kg 

(2.7%) weight loss in male wrestlers and judo players prior to 3 x 30m sprints 

(Fogelholm et al. 1993). The subjects in this study were well accustomed to fluid 

restriction. Results showed that fluid and energy restriction had no effect on 30m 

running performance. These studies indicate that body weight loss of between 2-3% 

may have no effect on high intensity sprint performance. 
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Maxwell et al (2009) used 8 untrained males to investigate the effect of dehydration 

on intermittent sprint exercise performance while also monitoring physiological 

strain using the physiological strain index (PSI). The physiological strain index (PSI) 

is a measure designed to evaluate exercise stress and heat strain based on a database 

of rectal temperatures and heart rate responses obtained from a study of 100 males 

exercising in the heat (Moran 2000). Three trials were undertaken, the first in a 

euhydrated state, the second dehydrated by ~2% of body weight and the third 

dehydrated by ~4% of body weight. No difference was found in the amount of total 

work or power output over the 3 trials, however there was a significant increase in 

the physiological strain index with the highest level of dehydration.  

Athletes involved in weight class sports such as weight lifting and wrestling often 

intentionally dehydrate prior to competition. Kraft et al (2010) aimed to investigate 

the effect of dehydration (3% body weight) on a full body resistance exercise 

program. Results showed total repetitions were lower for the dehydrated group, while 

average heart rate and perceived exertion were significantly increased indicating that 

dehydration magnified the feeling of exhaustion.  

In a symposium on ‘Performance, exercise and health, hydration, fluids and 

performance’ Shirreffs (2009) discussed the effect of a reduced body mass on the 

ease of sprinting performance indicating that a reduced body weight may reduce 

physiological demand promoting improved performance which may in fact 

counteract any negative effect of dehydration on sprint performance.  

1.2.3.2 Endurance Exercise Performance  

The effect of dehydration on endurance exercise performance has been studied by 

either inducing a certain degree of body water loss before exercise, or by allowing 

dehydration to develop during exercise (Shirreffs 2005). The experimental findings 

of research are therefore different depending on the approach taken. It is clear from 

review of the current published literature that dehydration does have a marked effect 

on endurance performance. A review of the literature conducted in 2003, looked at 

the effect of dehydration on endurance performance ranging from 1h up to 6h of 

exercise (Cheuvront, Carter, and Sawka 2003). Conclusions from this review paper 

were that dehydration significantly hinders endurance performance when fluid loss is 
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equivalent to 2 – 7% of body weight and this is more significant when exercise is 

performed in the heat (>30ºC). The authors also conclude that when exercise is less 

than 90 minutes in more temperate environmental conditions, a fluid loss of <2% of 

body weight does not affect endurance performance. However, if exercise duration is 

>90 minutes and in hot and humid conditions, performance is more likely to be 

negatively affected (Cheuvront, Carter, and Sawka 2003).  

Consequences of dehydration in the athlete include reduced training capacity, and 

sports performance, along with compromised ability to thermoregulate (Horswill 

1998). Any level of dehydration will greatly affect events that rely heavily on the 

cardiovascular system. When body water content is decreased, cardiovascular strain 

is seen through an increase in heart rate and decrease in stroke volume (Shirreffs 

2005). When exercise is performed in a hot and humid environment, dehydration of 

as little as 2% of body mass has consistently been shown to decrease endurance 

exercise performance (Below et al. 1995; Barr and Costill 1989; Walsh et al. 1994). 

A meta-analysis was performed looking at performance in marathon races. It was 

determined that the optimal temperature for maximal performance is in the range 10 -

12 degrees (Montain, Cheuvront, and Lukaski 2007). Performing in hotter 

environments of greater than 35ºC promotes heat gain and reduces the ability to 

remove body heat resulting in an increase in core body temperature and a subsequent 

performance decline.  

A study performed on endurance cyclists indicated that dehydration resulted in a 

decreased ability to maintain maximal exertion during a cycling effort (Walsh et al. 

1994). In this study the cyclists were to perform a time trial at 90% of O2max for as 

long as they were able, directly after a 60 minute cycle at 70% of peak O2. It was 

noted that a 2% reduction in body weight prior to the start of exercise decreased the 

maximum cycling time at high intensity by approximately 34%, when compared with 

the hydrated group (Walsh et al. 1994). Furthermore, a review article by Sawka and 

Pandolf  (1990) indicated that small (2% body weight) to moderate (4% body 

weight) water deficits were shown to significantly decrease exercise performance, 

primarily due to a significant reduction in maximal oxygen uptake in a hot 

environment. 
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The current research indicates that dehydration causes premature fatigue in athletes 

competing in endurance sport in the heat (Maughan and Shirreffs 2010). This is 

mainly due to the effects on circulation, which make hyperthermia more difficult to 

deal with, causing a further increase in core body temperature, heart rate and ratings 

of perceived exertion. The extent of the performance decline however is highly 

variable ranging from 7% to 60% (Maughan and Shirreffs 2010). In more temperate 

conditions the performance decrement is not so clear with evidence suggesting that a 

1-2% reduction in body weight has no effect on performance (McConell, Stephens, 

and Canny 1999). It must also be noted that due to the different protocols used to 

induce dehydration, the nature of the tests used, as well as the physical characteristics 

of the subjects, it is difficult to determine an exact relationship between the degree of 

dehydration and the performance effect. What is clear from the current literature is 

that dehydration will impair both physical and mental performance to some degree.  

Severe dehydration will impact more seriously on aerobic performance (Kenefick 

and Sawka 2007) and also place an athlete at increased risk of developing serious 

heat illness (Maughan, Shirreffs, and Watson 2007).  

In spite of the known negative effects of dehydration on endurance exercise 

performance, several studies have shown that elite level athletes from a wide range 

of sports regularly begin training or competition in a dehydrated state (Shirreffs, 

Sawka, and Stone 2006b; Maughan, Shirreffs, and Watson 2007).  

1.2.3.3  Team and Skill Based Sports  

Team sports such as basketball, football, hockey, soccer and tennis rely on a high 

level of aerobic fitness combined with the ability to produce bursts of high intensity 

efforts. Performance in these types of events also relies on the ability to perform 

complex skills and cognitive function for decision making.  

Dougherty et al (2006) used exercise heat induced 2% dehydration and euhydration 

with a 6% carbohydrate electrolyte drink to determine the effects of dehydration on 

the skills of young male, basketball players (Dougherty et al. 2006). Compared with 

euhydration, 2% dehydration impaired shooting, lateral movement and defensive 

skills significantly. The drink supplied to the players in the euhydration group was a 

6% carbohydrate solution; therefore it cannot be elucidated whether it was the drink 
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components or the prevention of dehydration which resulted in an improved skill 

performance. In a further study looking at soccer performance, the authors concluded 

that the ‘no fluid’ trial decreased skill performance level by 5% during a 90 minute 

intermediate exercise protocol (McGregor et al. 1999).  
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1.2.4 Effect of Dehydration on Work Performance in the Heat  

A study by Bates et al (2010a) examined the hydration status of migrant workers 

across four separate workplaces in the Middle East. A total of 372 workers had urine 

specific gravity (USG) readings monitored at three time points during the working 

day for two consecutive days. The average USG reading over the two days was 

between 1.016-1.020 indicating an adequate level of hydration. However 

approximately 30% of the workers had USG readings over 1.026 which is a level of 

dehydration that would place them at increased risk of developing a heat related 

illness. Hydration status did not change significantly between the three time points 

analysed. Similar results were found in the Australian mining population where 60% 

of workers had urine specific gravity readings higher than 1.022 prior to 

commencing work (Brake and Bates 2003a). There was no change in USG readings 

over the length of the 12 hour shift indicating that there was no further dehydration 

occurring during work. This was hypothesized to be due to the strong emphasis on 

safe work practices and regular drinking in this particular workplace.  These results 

clearly indicate that it is difficult to improve hydration status in the face of high 

sweat losses when working in challenging environmental conditions. The authors 

concluded from the results that active interventions in the workplace are required to 

increase the awareness of the importance of hydration when working in conditions of 

heat stress. 

1.2.4.1 Effect on Physical Performance  

Workers in the mining and building sector are often required to perform arduous 

physical tasks in very hostile environments for up to 12 hours every day. Focus in the 

literature is mostly commonly placed on athletes competing in the heat while this 

group is often overlooked. Working in such extreme conditions places high demands 

on the thermoregulatory mechanisms of the body, which can result in significant 

fluid losses through sweat on a daily basis which, if not replaced, can result in 

dehydration and electrolyte imbalance. If this is prolonged or severe the health of the 

workers may be seriously at risk (Kenefick and Sawka 2007).  

A recent study conducted on a subset of Australian workers during the summer 

months estimated an average sweat loss of 1 L per hour, with an average sweat 
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sodium concentration of 50mmol/L (Bates and Miller 2008). Over a 12 hour work 

shift this may equate to a substantial fluid and salt deficit if adequate fluid 

replacement strategies are not in place. Progressive dehydration may lead to impaired 

mental and physical performance while posing a serious risk to health. Any level of 

dehydration in the workplace may be contributing to less than optimal performance 

and may increase the risk of work related accidents occurring.   

An additional challenge for some workers is the need to wear encapsulated protective 

clothing which has been reported by Bishop et al (1991) to significantly increase 

sweat rates. The protective clothing has limited vapour permeability therefore 

increasing metabolic heat production while reducing the ability to dissipate heat to 

the environment (Barr, Gregson, and Reilly 2010). Further to this, the use of face 

masks can add additional challenges to maintaining adequate fluid intake (Kenefick 

and Sawka 2007). 

While some studies in the literature have reported the incidence of dehydration in the 

workplace, very few studies have examined the effect of this on the risk of workplace 

accidents or productivity. Wasterlund et al (2004) investigated the effect of 

dehydration on 4 Zimbabwean forest workers engaged in manual harvesting. 

Workers consumed either 0.17L (dehydration) or 0.6L (Euhydration) every 0.5 hours 

for a 12 hour working shift. All workers took longer to finish their designated tasks 

on the low fluid intake regime. 

Other studies have indicated that dehydration may increase the risk of workplace 

accidents due to orthostatic intolerance. Carter et al (2006) showed that when 

dehydrated by 3% of body weight, subjects had a significant decrease in cerebral 

blood flow when going from seated to a standing position. A classic study by Adolph 

(1938) also reported that dehydrated subjects fainted more quickly when undertaking 

an orthostatic challenge test. 

1.2.4.2 Effect on Cognitive Performance  

In another study, Gopinathan et al (1988) used cognitive tests to determine the 

effects of dehydration on mental performance. Eleven soldiers from tropical regions 

in India were dehydrated by between 1 and 4% of body weight by restricting water 
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intake while exercising in a climate chamber. Results of the cognitive tests showed 

significant mental impairments at a level of 2% or more loss of body weight. A 

further study conducted in the same laboratory found similar results while assessing 

the effects of dehydration between 1 and 3% on mental performance (Sharma et al. 

1986). The additional component to this study was that the behavior testing was 

conducted in three different environmental conditions; thermoneutral (27°C, 50% 

RH); hot dry (45°C, 30% RH) and hot humid (39°C, 60% RH). Significant dose 

related effects were found at each of the levels of hydration and these results were 

compounded when comparing the thermoneutral to the hot conditions. Lieberman 

(2007), in a critical review article, noted that while these two studies provide 

evidence to suggest that dehydration negatively affects cognitive function, they do 

not identify specifically which behavioral functions are most affected.  

There is insufficient information available to elucidate what level of dehydration will 

produce decrements in cognitive function. However the research that has been 

conducted in this area clearly shows that dehydration induced by heat, cold, exercise, 

or through fluid deprivation will have some degree of negative effect on behavior, 

mood and overall cognitive performance (Cian et al. 2001; Sharma et al. 1986). The 

dehydration that occurs at the cellular level in the brain as a consequence of 

dehydration is believed to contribute to the impairment in cognitive function 

(Lieberman 2007).  
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1.2.5  Heat Illness  

As mentioned previously, when exercising or working in the heat, water loss can 

occur to such an extent that heat dissipation is impeded, resulting in an elevation of 

core body temperature and compromise to the metabolic and circulatory processes, 

resulting in a decrease in work or exercise performance and potentially resulting in 

heat illness (Jackson and Rosenberg 2010). The active muscles require a constant 

high rate of blood flow in order to supply oxygen and substrate, while blood flow to 

the skin is also vital as a means of dissipating body heat. When the ambient 

temperature is high and an individual has been sweating for some time, there is 

compromise to the blood flow to both of these tissues. If this situation continues for 

some time heat illness may ensue (Jackson and Rosenberg 2010).  

Acclimatisation to the heat and physical training result in physiological adaptations 

which improve the ability to thermoregulate in these conditions (Henkin et al 2010).  

These adaptations include decreased rectal temperature, decrease in sodium 

concentration in sweat and lowered heart rate during exercise while increasing sweat 

rate, sweat sensitivity and plasma volume (Armstrong and Maresh 1991; Wendt, Van 

Loon, and Lichtenbelt 2007). These adaptations will be discussed in more detail later 

in this literature review.  

There are 3 types of heat illness described in the literature, as in Fig 1 – heat cramps, 

heat exhaustion or heat syncope and heat stroke (Kamijo and Nose 2006). These 

conditions are characterised by varying degrees of water and salt loss ranging from 

mild heat cramps to heat stroke with a mortality rate of approximately 80%.  

Workers who are performing long periods of manual labour in environmentally 

challenging conditions are at significant risk of developing heat illness (Jackson and 

Rosenberg 2010). It is important that workplaces are aware of the need to focus on 

prevention by educating workers on the need to replenish lost water and electrolytes, 

particularly sodium lost in sweat.  

 

  



   
 

        20 

 

1.2.5.1 Heat Cramps  

Heat cramps are painful spasms of skeletal muscle often associated with working or 

exercising in hot conditions (Donoghue, Sinclair, and Bates 2000). Most commonly 

occurring in the arms, legs and trunk, heat cramps can range in severity from very 

mild to severe and can be an early warning sign of impending heat exhaustion (Coris, 

Ramirez, and Van Durme 2004). The precise cause of heat cramps has not been 

elucidated, however, high fluid and electrolyte losses, particularly high sodium losses 

have been shown in several studies to be a contributor (Bergeron 2003; Stamford 

1993; Stofan et al. 2005). Adequate replacement of water and electrolytes, 

particularly sodium, are believed to aid in prevention. Donoghue, Sinclair and Bates 

(2000) found a link between heat cramps and dehydration while Horswill (2009) 

found significantly higher sweat sodium losses in cramping than non-cramping 

football players. Both of these studies support the notion that fluid and electrolyte 

balance may be involved in the etiology of heat cramps. Adequate replacement of 

water and electrolytes, particularly sodium, are believed to aid in prevention. There is 

also some evidence to suggest that physical training and heat acclimation may 

decrease the risk of developing heat cramps (Armstrong and Maresh 1991).  

1.2.5.2 Heat Exhaustion  

Heat exhaustion results from the inability of the circulation to meet both 

thermoregulatory and circulatory demands (Day and Grimshaw 2005). Outdoor 

laborers are particularly vulnerable as they are exposed to heat during the extreme 

conditions in the daytime and can also be required to wear personal protective 

equipment, increasing heat retention (Kravchenko et al. 2013). Heat exhaustion can 

occur when an individual performs intense work in the heat as resulting in large fluid 

and electrolyte losses in sweat with subsequent hypovolemia. If these losses are not 

replaced the thermoregulatory system becomes overloaded resulting in an elevation 

in core temperature (Rogers et al. 2007). This is due to a failure of the circulatory 

system to supply adequate blood flow to the skin, resulting in impaired heat 

dissipation. The signs and symptoms of heat exhaustion include nausea, weakness, 

fatigue, thirst, anxiety and fainting (Kamijo and Nose 2006). While the symptoms of 
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heat exhaustion can be reversed quickly after receiving appropriate treatment, the 

condition can progress rapidly to heatstroke if fluid and electrolytes are not replaced.  

A one year prospective case study of 106 cases of heat exhaustion in a deep 

underground metalliferous mine found that dehydration, measured by increased urea, 

creatinine and osmolality, as well as several other biological and haematological 

markers, was associated with the development of heat exhaustion (Donoghue, 

Sinclair, and Bates 2000).   

A population based case control study was conducted investigating cases of 

exertional heat illness in male Marine Corps recruits during  base training (Gardner 

et al. 1996). Results of the study showed a strong relationship between greater BMI 

and longer 1.5 mile run time predicting a higher risk for developing exertional heat 

illness. Of the 390 cases of heat illness, 47% had a BMI greater than 22kg m −2 

coupled with a 1.5 mile run time of greater than 12min. There are several proposed 

reasons for this strong relationship between BMI and development of heat illness. 

Greater heat production as well as reduced heat dissipation due to a lower surface 

area to body mass ratio, may explain this finding, however there may be several 

other metabolic differences in workers carrying excess adipose tissue. Donoghue and 

Bates (2000) found a similar relationship between higher BMI and greater risk of 

heat illness.  

1.2.5.3 Heat Stroke  

Heatstroke results from a complete failure of the thermoregulatory system, resulting 

in core temperatures in excess of 40ºC and is considered a health care emergency 

(Rogers et al. 2007). At temperatures greater than 40 ºC, heat denaturation of 

proteins can cause cells of the nervous system to become necrotic, resulting in brain 

damage to survivors. Widespread tissue necrosis resulting in death occurs when 

temperatures continue to rise (Donaldson, Keatinge, and Saunders 2003). Exertional 

heat stroke has been documented in athletes and military recruits who are performing 

strenuous physical activity, often for prolonged periods in hot environments (Binkley 

et al. 2002). Symptoms of exertional heat stroke include hyponatremia, acute renal 

failure, rhabdomyolysis, prolonged unconsciousness or convulsions and death 
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(Armstrong et al. 2007). Data from the United States indicate that in 2003 to 2008, 

196 deaths were attributed to fatal heat illness (Jackson and Rosenberg 2010).  

Carter et al (2005) examined the incidence of heat illness including hospitalisations 

and death in the US army between 1980-2002. Five thousand two hundred and forty 

six cases were hospitalised during this time, while 37 died due to heat illness. Over 

the 22 year period there was a 60% reduction in the number of cases of heat 

exhaustion indicating that the workplace prevention programs were successful. 

However, there was shown to be a 14% increase in the number of hospitalised cases 

of heat stroke. The authors of this paper speculate that this may be due to the 

increased amount of time spent performing running activities as part of military 

training, as well as the increased use of nutritional supplements.  The other 

possibility is that the increased focus on hydration has decreased the incidence of 

heat exhaustion and enabled workers to continue to exercise until more severe heat 

stroke occurs.  

The available evidence to date suggests that the physically trained and heat 

acclimatised individual is at a decreased risk of developing any form of heat illness 

(Rowlinson et al. 2013; Tian et al. 2011). In addition to this an individual with a BMI 

outside the normal range is at greater risk (Donoghue, Sinclair, and Bates 2000). 

What is also clear is the importance of maintaining fluid and electrolyte balance both 

prior to and during the period of heat exposure. This may be even more important in 

the trained and heat acclimatised individual, when sweat losses may be substantially 

greater.   

1.2.5.4 Fluid and Electrolyte Replacement When Working or 
Exercising in the Heat 

The importance of replacing fluid losses during exercise in order to prevent 

excessive dehydration has been widely acknowledged in the scientific literature. 

However the recommendations for fluid replacement strategies during exercise 

continues to be a widely debated topic (Garth and Burke 2013). Since the early 

1960’s there has been a paradigm shift in the recommendations given to athletes 

from a message of ‘not drink at all’ during exercise to ‘drink as much as tolerable’ 

(Noakes 2007).  Noakes (2012) states that ‘ there is barely any risk that dehydration 

can occur in healthy athletes where ample fluid is available’. According to Noakes 
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(2012), hormonal changes when exercising regulate the conscious sensation of thirst, 

as this thirst sensation rises performance is impaired. The sensation of thirst ceases 

when sufficient fluid and electrolytes have been consumed and the plasma osmolality 

returns to normal. Noakes (2012) believes that this control ensures that humans drink 

enough fluid but not too much to cause osmolality to fall (Noakes 2007). He argues 

that the only advice that should be given to athletes is that they should drink 

according to thirst (Noakes 2007). There are however a number of studies which 

show that athletes have inappropriate drinking behaviours (Shirreffs, Sawka, and 

Stone 2006b; Maughan et al. 2007). A classic study by Pitts et al (1944) showed that 

even when fluid was readily available during long periods of walking in the heat, 

fluid intake did not match sweat losses and subjects became progressively 

dehydrated. Similarly in a group of manual workers, Bates et al (2010c) showed that 

over 30% of the 372  workers tested had USG readings that indicated that the 

subjects were dehydrated. In a recent review article by Garth and Burke (2013), the 

importance of considering other factors influencing fluid intake was discussed. 

Drinking entirely to thirst may be difficult for athletes competing in events that 

involve continuous activity, where the time taken to consume fluid is included in the 

race time. It is also difficult for athletes and some workers to drink ad libitum when 

the opportunity to consume fluids is not self determined. For these athletes an 

individual “paced” fluid plan may be beneficial rather than relying on thirst alone 

(Garth and Burke 2013). 

The American College of Sports Medicine (ACSM) position stand (1996) and the 

National Athletic Trainers association position stand (2000) both recommended that 

during exercise athletes should aim to replace 100% of their sweat losses. “During 

exercise, athletes should start drinking early and at regular intervals in an attempt to 

consume fluids at a rate sufficient to replace all the water lost through sweating (i.e., 

body weight loss), or consume the maximal amount that can be 

tolerated’’(Convertino et al. 1996). However, according to Noakes et al (2005) this 

overzealous advice lead to an increased number of reported cases of exercise–

associated hyponatremia. His concern is also that many athletes as well as fitness 

enthusiasts still believe that when exercising one can never drink too much fluid 

which can have life threatening consequences (Beltrami et al 2008). Almond et al 

(2005) did show that a few participants competing in the Boston marathon event did 
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drink more fluid than they lost in sweat, which has the potential to lead to 

hyponatremia with fatal consequences. This most commonly occurs in non-elite 

competitors who are walking or jogging at the back end of large events as they have 

more opportunity to overdrink (Maughan and Shirreffs 2010). Recreational athletes 

may also more commonly be given inappropriate fluid intake advice, it is therefore 

important that these athletes are aware of the problems relating to excessive fluid 

intakes (Garth and Burke 2013). 

 In 2007 the ACSM released an updated position stand which suggested that athletes 

should aim to maintain body weight to within 2% of pre-exercise weight (American 

College of Sports Medicine 2007). The major change from the 1996 

recommendations was rather than providing a blanket statement for the amount of 

fluid athletes should consume per hour of exercise, the new statement considered 

individual sweat rates, exercise intensity and environmental conditions. These 

guidelines also suggest that athletes should replace 150% of the body weight loss 

during exercise which according to Noakes (2005) will promote dilution of the 

plasma increasing the risk of exercise associated hyponatremia. A further concern 

raised by Beltrami et al (2008) is that many exercise physiology textbooks contain 

advice regarding fluid replacement strategies which are not regularly updated 

therefore students are exposed to dated information. 

 

1.2.5.5 Addition of Glucose to an Electrolyte Replacement Drink 

It is widely recognised that performance is significantly improved in athletes who 

consume a carbohydrate-electrolyte fluid as opposed to plain water during exercise 

(Sawka et al. 2007). The addition of carbohydrate replenishes glycogen depleted 

muscles, but also aids in water retention (Rehrer 2001). In addition to this, glucose 

also aids in the rate of intestinal uptake of sodium which in turn increases water 

retention (Shi and Gisolfi 1998). There are however mixed results in the literature 

regarding the optimal concentration of carbohydrate to maximise water absorption 

while still providing an adequate energy source. For endurance events, a study by 

Tsintzas et al (1995) examined the effect of carbohydrate and electrolyte drinks on 

marathon running performance. They found that a 5.5% solution improved treadmill-

running performance when compared with water. They also reported that numerous 
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runners experienced gastrointestinal discomfort with the use of the more 

concentrated 6.9 % solution. Maughan et al (1989) investigated the effect of 

ingestion of fluids and carbohydrate on cycling time to exhaustion in six healthy 

young males. Maximal time to exhaustion in the no fluid group was 70mins, 76mins 

when 100ml of water was given every 10 minutes, 79mins when a concentrated 

carbohydrate solution was given and 91mins when a dilute carbohydrate solution was 

administered. These results indicate that the composition of the carbohydrate-

electrolyte drink is also important and that hypotonic solutions may produce the 

greatest performance benefits due to an improved gastric emptying and absorption 

time.  

1.2.5.6  Addition of Sodium to an Electrolyte Replacement Drink  

Sodium has been acknowledged as being a vital electrolyte for athletes, particularly 

those competing in the heat.  Current guidelines for sodium replacement are not 

clear, with the American College of Sports Medicine’s recent position stand (2007) 

stating that many athletes will require sodium in much greater quantity than the 

currently recommended upper intake level (2.3g/day). The recommendations state 

that sodium should be added to an electrolyte replacement drink, but no further 

quantitative recommendations for daily sodium intake are provided.  

Far less research has been conducted on the optimal concentration of sodium that 

should be added to an electrolyte replacement drink. Sweat is hypotonic to plasma 

and contains approximately 45 mEq/L of sodium. The addition of sodium to a 

beverage enhances carbohydrate absorption, improves palatability as well as 

promoting fluid homeostasis. It has been shown that the addition of sodium to a 

replacement beverage maintains plasma volume more effectively than plain water 

(Sanders, Noakes, and Dennis 2001; Wemple, Morocco, and Mack 1997). The 

addition of sodium to an electrolyte replacement drink would therefore be of benefit 

to an athlete as it would maintain plasma volume while limiting cardiovascular strain 

(Anastasiou et al. 2009). Merson et al (2008) showed that the cumulative volume of 

urine produced following rehydration was inversely related to the sodium 

concentration of the fluid consumed, therefore indicating that a high sodium 

beverage may enhance rehydration. Post exercise, the administration of high sodium 
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solutions results in restoration of plasma volume to levels higher than those reported 

prior to beginning the exercise session (Nose et al. 1988).  

Modigliani and Bernier (1971) performed an experiment to determine the optimal 

concentration of glucose and sodium in order to maximise absorption. They 

determined that the maximal absorption rate occurred when a 17mEq/L NaCl 

solution was added to a 133mM glucose solution. At a glucose concentration of 

200mM, water absorption fell significantly, at a glucose concentration of 260mM net 

water secretion occurred. Therefore the optimal glucose/Na ratio in this study was 

2:1. A more recent study by Anastasiou et al (2009) reported similar findings. The 

addition of 19.9mmol/L of sodium to a sports drink was shown to effectively prevent 

a decrease in plasma sodium concentration during exercise. The authors of this study 

concluded that replacement of sodium losses should be promoted during prolonged, 

moderate intensity exercise in order to maintain cardiovascular and thermal stability 

(Anastasiou et al. 2009).  

In a practical setting is it vital that the palatability of the drink is maintained to 

ensure that large volumes of fluid can easily be consumed. The addition of high 

sodium concentrations can render a drink unpalatable. It has been well established 

that palatability is an important factor governing the amount of fluid an athlete will 

consume (Passe, Horn, and Murray 2000; Maughan and Leiper 1993). Wemple et al 

(1997) showed that subjects drank significantly greater volumes of a 25mmol/L 

solution than a 0 or 50mmol/L drink.   
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1.2.5.7 Addition of Potassium to a Electrolyte Replacement Drink  

The concentration of potassium in sweat generally ranges from 1-15mmol/L, 

however can become more significant during prolonged exercise in the heat (Gisolfi 

1990). Potassium depletion (hypokalemia) can cause symptoms such as 

disorientation and muscle weakness and in more serious cases paralysis and 

hyporeflexia. Research suggests that potassium should be added to an electrolyte 

replacement beverage at a concentration of between 5 to 10mEq/L to offset sweat 

losses. Potassium may also help in replacing lost intracellular fluid volume and is 

involved in nerve transmission and active transport processes. Far less research has 

been performed to investigate potassium losses in sweat during exercise. 
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1.2.6  The Eccrine Sweat Gland  

There are an estimated 2.5 million eccrine sweat glands distributed across the human 

body surface. There is significant individual variation in size and number of sweat 

glands with a range of between 1.6 to 4 million (Taylor 1986). The density of the 

glands decreases distally with the greatest number of glands on the head followed by 

the upper limbs with lowest density on the lower limbs (Shibasaki, Wilson, and 

Crandall 2006). The primary function of the sweat gland is to maintain body 

temperature through the evaporation of sweat on the skin surface.  

The sweat gland is made up of simple tubular epithelium consisting of a secretary 

coil located in the lower dermis and a duct which extends through the dermal layer 

and opens directly onto the skin surface (Werner 1990). The basic structure of the 

eccrine sweat gland is shown in Figure 1. Sweat glands form on the palms of hands 

and soles of feet by 16 weeks of gestational age and resemble adult sweat glands by 

the eight month of gestation (Shibasaki, Wilson, and Crandall 2006). Reabsorption of 

water and electrolytes occurs throughout the length of the duct allowing vital 

electrolytes, mainly sodium, to be reabsorbed and therefore conserved, throughout 

the passage of sweat to the skin (Werner 1990). This reabsorption depends on the 

active transport of sodium into the interstitial fluid via Na+K+ATPase which is 

localized on the basolateral membrane of the ductal cells. The eccrine sweat glands 

secrete a fluid which is hypotonic to plasma consisting of variable quantities of 

sodium, chloride and potassium and very small quantities of lactate, urea, ammonia, 

proteins and peptides. 

There is a considerable difference in the size of individual sweat glands between 

people with some authors reporting this difference to be fivefold (Sato and Sato 

1983). The same authors have also shown that there is a positive correlation between 

the size of an individual sweat gland and the maximal sweat rate of that gland (Sato 

and Sato 1983). 
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Figure 1. Basic structure of an eccrine sweat gland.  

Reprinted from The Histology Guide: The University of Leeds, n.d., Retrieved 
October 1 2013 from http://www.histology.leeds.ac.uk/skin/glands.php 
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1.2.6.1 Nervous System Control of Sweating  

Regulation of internal body temperature is one of the most fundamental functions of 

the body. The exact neurological pathways responsible for initiating sweating are not 

entirely understood, however results from animal studies have given some insight 

into the possible mechanisms (Shibasaki, Wilson, and Crandall 2006). Local heating 

of the preoptic region of the hypothalamus initiates sweating, vasodilation and 

panting, while preoptic cooling induces shivering (Smiles, Elizondo, and Barney 

1976; Adair 1977). Microelectrode studies have identified two types of 

thermosensitive preoptic neurons: warm sensitive and cold sensitive. There is an 

increase in the firing rate of warm sensitive neurons both when the local preoptic 

temperature increases as well as when there is an increase in skin temperature 

(Boulant 1981). The set point at which sweat is initiated plays a vital role in 

temperature regulation and changes with acclimatisation and during exercise or heat 

exhaustion. During heat exhaustion there is a significant decrease in the sweating rate 

and in extreme cases sweating may be absent even when core temperatures are very 

high (Sato et al. 1989).  

Efferent signals from the preoptic hypothalamus travel to the intermediolateral cell 

columns of the spinal cord. Axons of spinal cord neurons from the ventral horn run 

in the white rami communicantes where they combine with peripheral nerves and 

travel to the sweat glands. Sympathetic postganglionic nerve terminals are contained 

in and around the secretory coil, with some extending to the sweat duct (Shibasaki, 

Wilson, and Crandall 2006). Unlike normal sympathetic stimulation, Acetylcholine 

is the principal terminal neurotransmitter. Vasoactive peptide and periglandular 

norepinephine are also stimulators of sweat secretion however only 20-50% as 

effective as acetylcholine (Sato 1977).  

1.2.6.2 Mechanism of Sweat Gland Function  

The primary function of the eccrine sweat gland is the secretion of fluid and 

electrolytes as sweat. The sweat glands are innervated by sympathetic cholinergic 

nerve fibers, simulation of these fibres results in the secretion of an isotonic 

precursor fluid similar in consistency to plasma minus the plasma proteins (Wendt, 
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Van Loon, and Lichtenbelt 2007).  The mechanism by which this occurs is not 

clearly explained, however some evidence suggests that the binding of acetylcholine 

to the receptor stimulates calcium influx and potassium release while stimulating a 

phosphatidylinositol - protein kinase cascade resulting in sweat secretion (Sato et al. 

1989). The potassium movement out of the cell provides a potential gradient for the 

transport of sodium into the cell via the co-transporter which is then pumped out 

across the basolateral membrane in exchange for potassium.  

1.2.6.3 Effect of Training on Sweat Gland Function 

Physical training is known to modify the sweat rate of an individual by both 

increasing in the number of activated sweat glands as well as increasing the output 

per gland (Ichinose-Kuwahara et al. 2010). Several studies have reported 

significantly higher sweat rates in a trained group compared with a group of 

untrained subjects (Buono, McKenzie, and Kasch 1991; Ichinose-Kuwahara et al. 

2010; Ichinose-Kuwahara et al. 2008). 

A recent study by Ichinose-Kuwahara et al (2010) assessed sex differences in the 

sweat gland response to changes in exercise intensity with respect to subjects’ 

physical training status. They found higher sweat rates in both males and females in 

the physically trained group. A further interesting finding from this study was that 

the increase in sweat rate was greater in males than females, indicating that the 

degree of improvement in sweat gland sensitivity is smaller in females compared to 

males. The reasons for this are currently not clear, however the authors of this paper 

conclude that sex differences exist with respect to the change in sweat gland size 

and/or cholinergic sensitivity with physical training. These findings are in support of 

the early work of Sato and Sato (1983) who reported that subjects who were judged 

to be poor sweaters had sweat glands which were smaller in size, and had lower 

secretion activity than good sweaters. The authors in this study speculated that the 

increased sweat rate seen as a result of physical training, may be a result of one or all 

of the following adaptations: increased cholinergic sensitivity of the gland; increased 

glandular hypertrophy or increased periglandular concentrations of acetylcholine 

(Sato and Sato 1983). 
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Buono and Sjoholm (1988) similarly found a positive linear relationship between 

pilocarpine- induced sweat rate and O2max. The regression equation generated 

from their results would estimate that an individual with a O2max of 65ml.kg-1.min-

1would have a sweat rate that was 210% higher than a subject with a O2max of 

42ml.kg-1.min-1. 

1.2.6.4 Rate of Sweat Loss 

The amount of sweat lost during periods of work or exercise can be calculated from 

changes in body mass over time. These sweat losses are highly variable between 

individuals even when a person is performing a similar task in the same 

environmental conditions (Shirreffs, Sawka, and Stone 2006a). Factors such as 

metabolic rate, sex, acclimatisation status, fitness level and genetics are believed to 

account for this large variation (Shirreffs, Sawka, and Stone 2006a).  There have 

been a number of studies which have been conducted during the last 5 years 

investigating sweat losses associated with different forms of exercise (A table 

summary of a number of these studies is included in Appendix B). The aim of the 

majority of these studies is to provide more accurate fluid intake recommendations 

for athletes competing in different sports. The variation in mean sweat rates across 

the studies is large. This may in part be due to differences in sex, the methodology 

used, subject characteristics and training and acclimatisation status.  

Several studies conducted in male football players have shown average sweat rates in 

excess of 2L/h during training and competition (Godek, Peduzzi, et al. 2010; Godek, 

Bartolozzi, et al. 2010; Kurdak et al. 2010; Shirreffs et al. 2005). Similarly high 

sweat rates have been shown in male basketballers, volleyballers and soccer players 

(Hamouti et al. 2010). A recent study conducted in a small group of professional 

tennis players showed mean sweat rates during match play of 2L/h (Tippet et al. 

2011). 

Some recent studies have raised the question as to whether the mode of exercise 

training and the environmental conditions of the training environment can effect 

sweat gland adaptations and therefore affect the sweat rate of athletes. Henkin et al 

(2010) conducted a study to determine whether differences exist in the sweating 

responses of swimmers, runners and nonathletes. Ten endurance swimmers, 10 
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endurance trained runners and 10 non-athletes completed the study which consisted 

of 30 minutes of cycling exercise in a climate controlled heat chamber, set to 32 

degrees, 40% relative humidity. The interesting finding from this study was that 

when exercising out of water, swimmers had significantly lower sweat rates than 

runners (0.9L/h Vs 1.5L/h). This confirmed the author’s hypothesis that the condition 

of the training environment will impact on the training adaptations that occur at the 

level of the sweat gland. A study by Maughan et al (2009) found similarly low sweat 

rates (0.3L/h) in a group of swimmers. In this study, half of the subjects gained 

weight at the end of the 105 minute hard interval training session. The authors 

concluded that the results from this study indicate that swimming in pool 

temperatures of approximately 27 degrees results in very little challenge to 

thermoregulation and body temperature can be well maintained with little fluid 

intake. 

A very different situation occurs in athletes training and competing in high intensity 

sports, or endurance based events in the heat. Team sports such as football and 

soccer have additional challenges when ad libitum fluid intake is limited to 

scheduled breaks in play. Further difficulties are experienced in endurance based 

sports such as ironman triathlon when athletes can be competing in the heat for 

multiple hours. In these situations drinking sufficient fluid volume to offset high 

sweat losses can often be challenging for athletes, particularly the elite level 

competitor.  

It should also be mentioned here that while consuming sufficient fluid during an 

endurance event is challenging, at the other end of the spectrum, over drinking can 

place athletes at risk of developing exercise associated hyponatremia (Noakes 2007). 

Because of this it is vital that athletes are aware of their individual sweat rate and 

devise a fluid replacement strategy to match. Exercise associated hyponatremia is 

discussed elsewhere in this literature review. 

A number of studies have reported body weight losses at the end of an exercise 

session in the range of 1.5-3% (Maughan et al. 2005; Godek, Bartolozzi, et al. 2010). 

While the 2000 National Athletic Trainers Association position statement suggested 

that fluid losses during exercise should not exceed 2% of pre-exercise body weight 

(Casa et al. 2000),  Coyle (2004) argued that in cold environments these losses may 
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be tolerated. However, when an athlete begins exercise in a hypohydrated state, or 

loses greater than 2% of body weight during an exercise session in the heat, 

performance will be negatively affected and the athlete is at an increased risk of 

developing heat illness (Maughan et al. 2005). 
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1.2.6.5 Sweat Electrolyte Composition  

1.2.6.5.1 Loss of Sodium in Sweat  

As mentioned previously, the primary fluid secreted from the secretory coil of the 

sweat duct is nearly isotonic to plasma. It is therefore the rate of ductal sodium 

absorption and the sweat rate of an individual that determines total sodium loss. In 

the kidney, aldosterone stimulates sodium resorption via genomic and non genomic 

mechanisms (Lee, Miller, and Buono 2010) is thought to also have an effect on 

increasing ductal sodium absorption in the sweat gland (Ladell and Shephard 1961), 

and is proposed to increase with acclimatisation (Nielsen et al. 1993). The level of 

individual acclimatisation is therefore also a factor influencing the loss of sodium in 

sweat and will be discussed later in this literature review.  

The majority of studies investigating sweat rate and sweat electrolyte composition 

have focused on highly trained young athletes (Maughan et al. 2009; Kilding et al. 

2009; Henkin, Sehl, and Meyer 2010). Few investigations have focused on the 

industrial population who are at greater risk of heat injury due to lower aerobic 

fitness, higher body fat and are often older.  

A study by Bates and Miller (2008) was the first to quantify likely sodium losses 

over a workshift during the summer and winter months in a group of untrained 

workers. 29 male outdoor workers had sweat collected from four sites on the body 

while cycling in a heat chamber (35 ºC, 50%RH) on two consecutive days in summer 

and winter. Results of the study showed significantly higher sweat rates combined 

with lower sodium losses in the summer period (53mmol/L) compared with the 

winter period (73mmol/L), indicating that workers were seasonally acclimatised to 

the heat. The authors in this study concluded that sodium losses of between 4.8-6g 

can be expected during a 12 hour workshift when workers are performing manual 

work, equivalent to 10-15g salt.  

Far more research has been conducted investigating sodium loss in the athletic 

population. Horswill et al (2009) compared sweat sodium loss in a group of cramp 

prone footballers versus a reference group. Mean sweat sodium concentration in the 

cramp prone group (52.6mmol/L) was significantly higher than the reference group 
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(38.3mmol/L).  A further interesting finding from the study was that in the cramp 

prone group, 3 out of the 6 subjects had plasma sodium values less than 135mmol/L 

at the end of the 2 hour training session, while the reference group had plasma levels 

all within the normal range. This provides some evidence to suggest that cramp 

prone athletes are at greater risk of sodium imbalance, particularly during periods of 

heavy training in the heat.  

Godek at al (2010) reported mean sweat sodium losses of 52mEq/L in a cohort of 

American football players. These results are similar to sodium losses reported in elite 

level soccer players (Maughan et al. 2004; Maughan et al. 2005). With reported 

mean sweat rates in the range of 1.5 -2.5L/h in these athletes, daily sodium losses of 

7-12g (17-30g salt) would be expected when these athletes are training in excess of 4 

hours per day. 

Currently the World Health Organisation (WHO) recommends that daily salt intake 

should be less than 5g/day (World Health Organisation 2007). In Australia, the 

National Heart Foundation recommends that the general population reduce sodium 

intake to less than 2300 mg/day (5.75g salt) (National Heart Foundation of Australia 

December 2006). These values were selected with the goal of preventing 

hypertension, one of the primary risk factors for the development of cardiovascular 

disease. There is little doubt that a large percentage of Australians exceed these 

government recommendations, with estimates that the average adult consumes 

upwards of 9g of salt per day (National Health and Medical Research Council 2005). 

It would be expected that athletes and manual workers would consume a higher 

number of calories and therefore have greater salt intake than the general population.  

This however has not been reported in the literature. Hinton et al (2004) showed 

mean sodium intakes of 2.94 ± 1.3g in a group of National Collegiate Athletic 

Association Division 1 athletes. Similarly, Gabor et al (2010) showed lower sodium 

intakes in a group of 309 professional female athletes than those reported in the non-

athlete group from the National dietary survey. Athletes are likely to be more ‘health 

conscious’ and therefore may consciously restrict salt. 
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1.2.6.6 Effect of Sweat Rate on Sweat Electrolyte Composition  

The variability in sweat rate and sodium loss that accompanies prolonged exercise has 

been well documented (Bergeron 2003; Godek, Godek, and Bartolozzi 2005; Shirreffs et 

al. 2005). However, information investigating the effect of exercise intensity on the 

sweat rate and sweat sodium relationship in the athletic population is lacking. An early 

study by Cage et al (1965) showed a strong positive linear correlation between sweat rate 

and sweat sodium concentration, with the authors concluding that with an increase in 

sweating rate there is a subsequent increase in sodium loss. Accurate measurement of 

exercise intensity however was not performed as intensity was varied according to 

perceived exertion rather than any objective measurement of workload. A further 

limitation of the study design was that sweat samples were only taken from one site on 

the body. More recent studies have found that sweat composition varies significantly 

between body sites (Bates and Miller 2008; Sato and Dobson 1970; Kondo et al. 1998). 

The results of the abovementioned study may therefore lack true accuracy due to limited 

sweat sampling. Kondo et al (1998)  however found conflicting results when looking at 

the influence of exercise intensity on whole body sweating efficiency in mild thermal 

conditions, concluding that there is no relationship between exercise intensity and sweat 

rate. Again there are several methodological limitations to this study that may have 

affected the results. The sample size of 6 subjects may not have provided sufficient 

power to detect a difference. There was also no mention of prior testing of the subjects 

O2 max, therefore relative exercise intensity was not controlled. The variation in exercise 

intensity across the three trials was very insignificant and may not have been sufficient 

to detect a difference. 

It is believed that above a certain sweat rate there is insufficient time for sodium 

reabsorption as fluid passes down the duct, resulting in the potential loss of large 

amounts of sodium through sweat (Buono, Ball, and Kolkhorst 2007). It has also been 

shown that at higher exercise intensities, when the heat produced by the working 

muscles is higher, the sweat rate will also be higher in order to dissipate this heat to the 

environment (Montain, Latzka, and Sawka 1995). What has not yet been thoroughly 

investigated is the effect that this increase in exercise intensity has on the rate of sodium 

loss through sweat. It may be hypothesized in this case that the sodium loss will also be 
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magnified due to a reduction in time for reabsorption through the sweat duct on the 

passage of sweat to the skin surface (Shamsuddin et al. 2005).  
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1.2.7 Physiological Mechanisms Regulating Salt Balance  

Body fluid balance is tightly regulated by neuroendocrine control systems. The 

kidneys have the primary role of regulating fluid and sodium balance through water 

and salt excretion in the urine, restoring the ECF osmolarity to within normal levels 

almost instantly (Meneton et al. 2005). Water intake and output is controlled in order 

to maintain extracellular osmolarity at a set point of 290mosmol/L. The steroid 

hormone aldosterone, produced in the adrenal glands, enables conservation of 

sodium by allowing for sodium reabsorption to occur at both the level of the kidney 

and the sweat gland.  

Sodium is by far the most abundant electrolyte in the extracellular fluid and therefore 

has a key role in regulating the volume of the extracellular fluid (Geerling and 

Loewy 2008).  In response to an acute rise in sodium intake, extracellular fluid 

(ECF) volume expands leading to an increase in arterial pressure.  There is a greater 

rise in plasma sodium levels in subjects who are hypertension prone due to a defect 

in the kidneys ability to excrete water and salt in the urine, this defect becomes more 

apparent with higher levels of sodium intake (De Wardener and Macgregor 1983). 

The kidney’s ability to effectively excrete excess sodium and water in the urine 

declines exponentially with age, leading to significant increases in blood pressure 

with only small increases in salt intake in the elderly (Mohan and Campbell 2009). 

Extracellular fluid volume however is unable to be either increased or maintained 

without sodium consumption. Chronic salt deprivation results in a decreased plasma 

volume and secondary increased plasma potassium, and can result in serious health 

consequences (Geerling and Loewy 2008). Chronic periods of salt deprivation have 

been shown in the rat model to cause growth retardation, reproductive problems, 

reduced bone mineral density as well as reduced muscle mass (Bursey and Watson 

1983; Fine, Lestrange, and Levine 1987). In a classic study on experimental human 

salt deficiency, McCance (1936) showed that a short term sodium restricted diet 

resulted in nausea, loss of appetite, muscle cramps, fatigue and considerable weight 

loss. Due to the health consequences associated with salt deficiency, considerable 

research has focused on the inbuilt behavioral mechanisms in humans to regulate 

sodium appetite, promoting sodium intake after a period of salt deficiency (Geerling 
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and Loewy 2008). A classic study by Ricter et al (1936) showed that animals had an 

innate response to increase salt intake when it became necessary for survival. In this 

study, animals had their adrenal glands removed and were therefore unable to 

conserve sodium. Animals who were not given access to salt died within one week, 

animals who were allowed access to unlimited salt had a considerable increase in salt 

consumption which therefore allowed for their continued survival.  

Several physiological mechanisms have been proposed to explain the increased salt 

appetite that occurs with salt deprivation. Dietary salt deprivation is the most potent 

stimulator of the salt conserving hormone aldosterone, which works to increase renal 

and sweat gland sodium conservation at the same time as also increasing sodium 

appetite (Geerling and Loewy 2008). Both of these processes aim to increase the 

extracellular fluid volume to within normal range (Geerling and Loewy 2008). In 

addition to this, a recent study has shown that a variety of brain areas are activated 

after prolonged exposure to a sodium deficient diet which underlines the increased 

preference for a hypertonic salt solution (Lu et al. 2009). Baroreceptors and the 

sodium concentration in the cerebrospinal fluid is also believed to influence the 

sodium appetite (Blackburn, Stricker, and Verbalis 1992).  

1.2.8 Aldosterone 

Aldosterone targets the epithelia of the kidney, sweat gland and colon to regulate 

sodium reabsorption and potassium secretion (Booth, Johnson, and Stockand 2002; 

Williams and Williams 2003). Transcellular transport is dependent on Na+/K+-

ATPase activity, which acts to establish and maintain and electrochemical gradient to 

allow luminal entry of sodium and exit of potassium. The limiting step in sodium 

reabsorption is the number of active luminal sodium channels, while potassium 

secretion is limited by the number of active potassium channels (Booth, Johnson, and 

Stockand 2002). One of the primary actions of aldosterone is to increase the total 

number of ion channels, while stimulating apical ion channels to open (Williams and 

Williams 2003).  

Dietary sodium intake plays a role in the aldosterone response as well as hormone 

synthesis. Allsopp et al (1998) examined the effect of different levels of dietary 

sodium intake on plasma aldosterone and sweat sodium concentrations. Subjects 
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consumed either a low (66mmol/day), moderate (174 mmol/day) or high 

(384mmol/day) dietary sodium intake for 8 days. Aldosterone concentration was the 

highest in the low sodium condition and lowest on the high sodium diet. The results 

of Hargreaves et al (1989) showed similar findings when comparing a low sodium 

diet (50mmol/day) with a moderate sodium intake (150mmol/day). In addition to 

this, sweat sodium secretion was lowest in the low sodium conditions in both studies, 

giving some evidence to suggest that aldosterone is involved in regulating sodium 

reabsorption at the level of the sweat gland as well as the kidney.   

Exercise, heat stress and hypohydration have been shown to stimulate aldosterone 

release. Francesconi et al (1985) altered the hydration state of subjects from a 

euhydrated state, minus 3%, minus 5% or minus 7% of baseline body weight. 

Subjects then performed low intensity exercise (25% O2max) in an environmental 

chamber (49°C, 20%RH) for 2 hours. Renin and aldosterone concentrations 

significantly increased with exercise in a 3% hypohydrated state, however high 

levels of hypohydration did not result in greater hormonal increases. Interestingly, 

between 5% and 7% hypohydration, there were no further decreases in plasma 

volume, leading the authors to conclude that aldosterone concentration may be 

related to the maintenance of plasma volume.  
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1.2.9 Development of Hyponatremia  

Serum sodium levels within the body are tightly regulated between 135-144mmol/L. 

Hyponatremia is defined clinically as a serum sodium concentration of less than 

135mmol/L (Siragy 2006). Hyponatremia is strongly associated with an increased 

risk of death. Even at mildly reduced sodium levels between 130-134mmol/L there is 

a 47% increased risk of hospital mortality (Waikar, Mount, and Curham 2009). The 

reason why this relationship exists is not clear, however, sodium concentration is 

critical to cellular function, nerve impulse transmission, muscle excitation and the 

maintenance of transmembrane electrical gradients (Waikar, Curham, and Bruneli 

2011). 

Over the last 15 years exercise associated hyponatremia (EAH) has been reported to 

have occurred in numerous endurance sporting events, particularly those lasting in 

excess of 3- 4 hours (Almond et al. 2005; Speedy et al. 1999; Rothwell and 

Rosengren 2008; Chorley, Cianca, and Divine 2007; Hew et al. 2003). Hyponatremia 

has also been reported to occur in the military when soldiers are required to perform 

extended periods of strenuous work in oppressively hot environments (O'Brien et al. 

2001; Garigan and Ristedt 1999). In both cases, the failure to replace lost sweat 

sodium and/or the consumption of excess water volume, leads to a reduction in 

plasma sodium levels.  

The incidence of exercise-associated hyponatremia (EAH) has been investigated in 

several marathon-running events around the world. Chorley, Cianca and Divine 

(2007) performed a prospective observational study of 96 marathon runners 

competing in the Houston Marathon between 2000−2004. Eighty seven percent of 

the runners had post-race serum sodium levels lower than their pre-race levels, while 

22% of runners had post-race serum sodium levels less than 135mEq/L, which met 

the criteria for EAH. Interesting findings from this study were that the main risk 

factors for lower post-race serum sodium levels were larger amounts of fluid 

ingested during the race, lower pre-race serum sodium levels and less weight loss 

during the race. The authors also noted that slower runners were more likely to over-

consume during the race, as well as also being exposed to more harsh environmental 

conditions as they are racing into the hotter parts of the day.  
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Almond et al (2005) found a similar correlation between weight gain during the race 

and post-race serum sodium levels in 488 runners competing in the 2002 Boston 

marathon. At the completion of the race 13% had serum sodium levels less than 

135mEq/L, while 0.6% had critical hyponatremia with serum levels below 

120mEq/L.  

A similar study was performed investigating the prevalence of EAH in a group of 

marathon runners in the 2006 Zurich marathon (Mettler et al. 2008). One hundred 

and thirty six runners were recruited. Body mass, plasma sodium and osmolality 

were recorded pre and post-race. Only 3% of runners developed EAH and no 

symptomatic cases were reported. There was however a direct correlation between 

fluid intake and post-race serum sodium levels. The environmental conditions were 

quite mild, approximately 10!degrees with constant light rain and low wind speed 

throughout the race, which may explain the low incidence of EAH reported. The 

results of this study suggest the risk of EAH is significantly reduced when the 

marathon is raced in mild environmental conditions.  

Speedy et al (1999) reported pre and post-race serum sodium values in 330 

competitors in the 1997 New Zealand ironman triathlon. Eighteen percent of the 330 

finishers had serum sodium values below 135mEq/L of these, only 18 (31%) sought 

medical attention post-race suggesting that in the majority of cases the condition was 

asymptomatic. Eleven of the 58 competitors with EAH had severe hyponatremia 

(serum sodium below 130mEq/L). Similar results were found when comparing pre 

and post weight with post-race serum sodium values. Athletes with the lower serum 

sodium levels post-race either gained weight or lost small amounts over the course of 

the ironman event. This again suggests that these athletes had consumed plain water 

or another hypotonic solution in excess to body needs during the race.  

Prior to this, the same authors conducted an investigation in another popular 

endurance event which consisted of a 67km paddle, 149km cycle and 23.8km run 

(Speedy et al. 1997). Forty eight athletes had serum sodium levels measured pre and 

post-race with the average post-race sodium concentration being 139mEq/L. Only 

one athlete had levels below 135mEq/L. The authors speculate that the reason for 

these different finding was due to the nature of the event and the limited number of 
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aid stations providing fluid to athletes. Body weight was reduced on average by 2.5% 

at the end of the event indicating that athletes had lost a significantly greater 

percentage of body weight than the previously mentioned studies.  

The results from observational studies, case reports and case series have noted that 

there are three major risk factors for the development of exercise associated 

hyponatremia: significant weight gain due to water intake during an event; longer 

finishing times and a BMI of less than 20 (Carter 2008).  Other risk factors include 

excessive sodium losses in sweat and insufficient sodium in food consumed. The 

consumption of a carbohydrate-electrolyte drink during an endurance event can 

significantly delay or prevent the occurrence of EAH (Montain, Cheuvront, and 

Sawka 2006).  

Mild chronic hyponatremia is a common electrolyte disturbance with a prevalence of 

2-4% in the general population, 7-11% in the elderly and 42% in hospitalized 

patients (Hawkins 2003). Chronic hyponatremia can develop over several days when 

body mechanisms fail to maintain sodium homeostasis. This may be from profuse 

sweating with inadequate solute intake, resulting in a decrease in extracellular fluid 

volume, compromising the body’s ability to thermo regulate (Hamilton, Dickson, and 

Smith 2006). Cases of hyponatremia have been reported in military and civilian 

personal working in extreme environmental conditions in southern Iraq (Hamilton, 

Dickson, and Smith 2006). While the majority of these cases were due to acute water 

intoxication leading to severe acute hyponatremia, the failure of sodium homeostasis 

in these extreme temperatures was reported to have been further compounded by 

poor dietary salt intake during the patrol period (Hamilton, Dickson, and Smith 

2006).  

Chronic hyponatremia is often thought to be asymptomatic due to the brain 

adaptation to hypo-osmolality (Renneboog et al. 2006), for this reason few studies 

have investigated the effects of long term chronic hyponatremia on the central 

nervous system. A rat study conducted by Miyazaki and colleagues (2010) showed 

that chronic hyponatremia may impair memory function even in asymptomatic rats. 

The mechanisms which may have led to memory impairment are believed to be 

related to both brain swelling and abnormalities in organic osmolytes (Miyazaki, 
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Ohmoto, and Hirose 2010).  The consequences of a long-term decline in plasma 

sodium have recently been shown to increase the incidence of falls as well as being 

associated with impaired gait and attention deficits. Renneboog et al (2006) showed 

that hyponatremia caused more attention deficits than did a blood alcohol reading of 

0.6g/L in a group of age and sex matched subjects. In this study the impaired gait and 

attention deficits occurred with sodium levels between 132-134mmol/L.  

There has been some recent evidence to suggest that chronic hyponatremia decreases 

bone mineral density.  Kinsella et al (2010) showed that mild hyponatremia is 

significantly associated with fracture occurrence independent of bone mineral 

density.  The authors of this paper concluded that hyponatremia is an easily 

identified and modifiable risk factor for fracture occurrence.   

In summary the information from the current literature regarding hyponatremia 

suggests that: 

• Exercise associated hyponatremia is most commonly developed as 

a result of excessive fluid consumption during an event leading to 

plasma dilution 

•  EAH is strongly associated with significant weight gain due to 

water intake during an event, longer finishing times and a BMI of 

less than 20. 

• Chronic hyponatremia may develop over several days or longer 

when sodium intake is insufficient to replace losses 

 

Based on this information an athlete or worker is unlikely to develop low plasma 

sodium (hyponatremia) over the course of their event, or work shift, if an appropriate 

electrolyte replacement fluid, or salt containing food, is consumed in appropriate 

amounts to partially replace losses. However, if a high salt sweater performs 

episodes of prolonged work or exercise in the heat for several days, cumulative 

sodium losses would potentially be large enough to result in chronic hyponatremia. 

Athletes or workers with high sweat rates, who are actively restricting sodium intake 

in line with the current sodium intake recommendations, are particularly at risk.  
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1.2.10  Heat Acclimatisation 

Heat acclimatisation refers to the physiological adaptation of the human body to heat 

(Rowlinson et al. 2013). It has been well recognised that when a person becomes 

heat acclimatised by exposure to increased temperatures for several days, there are a 

number of physiological adaptations that take place enabling them to thermoregulate 

more efficiently (Wendt, Van Loon, and Lichtenbelt 2007). These adaptations 

include decreased rectal temperature, decrease in sodium concentration in sweat and 

lowered heart rate during exercise, while increasing sweat rate, sweat sensitivity and 

plasma volume (Armstrong and Maresh 1991; Wendt, Van Loon, and Lichtenbelt 

2007). This results in a significant decrease in physiological strain, a decrease in 

perceived exertion, leading to an improved capacity to exercise or work for 

prolonged periods in the heat, while reducing the risk of heat illness (Tian et al. 

2011). There is some disagreement in the literature as to the duration, intensity and 

climatic conditions required to induce heat acclimatisation. The next section of this 

review will discuss the key findings of papers investigating the effects of 

acclimatisation on thermoregulation.   

The expansion of plasma volume is one of the key effects of heat acclimatisation, 

allowing for cardiovascular stability increasing stroke volume and maintaining heart 

rate (Wendt, Van Loon, and Lichtenbelt 2007). Patterson et al (2004) measured 

plasma volume, extracellular fluid (ECF) and interstitial fluid volume (ISF) before 

and after a period of heat acclimation. The authors concluded that either short (8 

days) or long term (22 days) acclimation resulted in a generalised expansion of the 

entire extracellular fluid volume resulting in plasma volume expansion.  Following 

more prolonged heat acclimation, (day 22) the elevation in plasma volume was much 

greater than the expansion of the ECF and ICF (Patterson, Stocks, and Taylor 2004).  

Numerous studies in the literature have shown that following a period of heat 

acclimatisation there is a significant increase in the secretory capacity of the eccrine 

sweat gland, as well as morphological changes to the gland itself.  Sato et al (1990) 

in a study using monkeys found in vitro and in vivo methancholine-induced sweating 

was increased significantly after a period of 9 months of heat acclimation. The key 

finding from this paper was that the increased sweating capacity was brought about 

by significant increases in the size of the eccrine sweat glands. The sensitivity to 
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nervous stimulation was also increased following the acclimation period.  In a classic 

study, Peter and Wyndham (1966) assessed the activity of sweat glands during 

exercise in a hot and humid environment before and after heat acclimatisation. Six 

unacclimatised African mine labourers exercised for 4.5 hours by stepping on and off 

an adjustable stool, in a hot and humid environment (32℃, 90% RH) both before and 

after a period of heat acclimatisation. Sweat rates were significantly increased mainly 

due to increased glandular activity, particularly on the back.  

More recent studies have found similar increases in sweat rate associated with 

acclimatisation or acclimation to the heat. Bates and Miller (2008) aimed to quantify 

sweat and sodium losses during work in the heat in both the summer (when subjects 

were assumed to be heat acclimatised) and winter (when subjects were assumed to be 

unacclimatised). Average sweat rates of 0.47L/h were reported in summer compared 

with 0.4L/h. in winter. Chinevere et al (2008) found after 10 days of heat 

acclimation, sweat rates in a sample of eight male subjects had increased by 6%.  

Similar findings have been reported by  Cheung and McLellan (1998) and Magalhaes 

et al (2010). 

The effect of sex on thermoregulatory capacity has been previously discussed in this 

literature review; however, there are additional gender differences at the level of the 

sweat gland that occur with heat acclimation. Buono et al (2009)  showed that humid 

heat acclimation resulted in a 60-70% increase in pilocarpine induced sweat rate in 

both men and women. The interesting finding from this study was that whole body 

sweat rate (WBSR) increased by 20% in the male subjects however there was no 

significant increase in the women. These results suggest that the lack of a significant 

increase in WBSR seen consistently in women is not due to an inability to improve 

sweat gland function with acclimation, but that the peripheral sweat capacity in 

women during exercise in humid conditions is suppressed. These results are 

supported by several other studies in the literature (Avellini, Kamon, and Krajewski 

1980a; Wyndham, Morrison, and Williams 1965).  The physiological mechanism by 

which females avoid the ‘wasteful’ increase in sweating in a humid environment is 

currently unknown. It has been suggested that women have a more sensitive 

feedback mechanism from the wetted skin surface therefore limiting the dripping of 

non-evaporated sweat (Avellini, Kamon, and Krajewski 1980a).   
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Numerous studies in the literature have reported a reduction in sweat sodium 

following a period of heat acclimatisation (Buono, Ball, and Kolkhorst 2007; Bates 

and Miller 2008; Daly and Dill 1937; Kirby and Convertino 1986; Smiles and 

Robinson 1971; Nielsen et al. 1997; Chinevere et al. 2008). This is believed, 

although not confirmed, to be due to the role of the renin-angiotensin-aldosterone 

system in conserving Na+ and Cl- allowing for the maintenance of extracellular fluid 

volume.  

In a classic study, Kirby et al (1986) found 12% increases in sweat rates following a 

period of 10 days of heat acclimatisation. Sweat sodium losses were reported to 

decrease by 59% from 88mmol/l to 42mmol/L. More recently Nielsen et al (1997) 

found similar results, showing that following eight days of humid heat 

acclimatisation sweat rates increased by 26%, while sweat sodium concentration 

decreased from 107mmol/L to 70mmol/L. Buono et al (2007) reported a significant 

decrease in sweat sodium and sodium osmolarity for any given sweat rate, following 

a 10 day acclimatisation period in eight healthy male subjects. The slope of the 

relationship between sweat rate and sodium loss was not affected, however the 

relationship was shifted to the right with a significantly reduced y-intercept. In the 

study mentioned previously, Bates and Miller (2008) showed a significant reduction 

in sweat sodium values in the summer months when the subjects were assumed to be 

heat acclimatised (63 Vs 42mmol/L). 

There are several advantages of an increased sweat rate coupled with the reduced 

sweat sodium concentration that occurs following heat acclimatisation. A more dilute 

sweat results in a relative increase in the number of solutes, primarily sodium and 

chloride remaining within the extracellular space. This increases the osmotic pressure 

in the ECF, allowing for the redistribution of fluid from the intracellular space, 

resulting in the ability to maintain plasma volume and therefore allow the body to 

prevent a rise in core body temperature (Sawka and Montain 2000).  In addition to 

this, high sweat sodium concentration is one of the factors increasing the risk of 

developing hyponatremia during exercise (Montain, Cheuvront, and Sawka 2006). 

The reduction in sweat sodium concentration that accompanies heat acclimatisation 

may therefore be advantageous to athletes competing in endurance events of 

prolonged duration.  



   
 

        49 

This sodium conservation mechanism is believed in part to be due to the increased 

level of aldosterone associated with acclimatisation (Nielsen et al. 1993). However, 

very few studies have investigated the effect of aldosterone at the level of the sweat 

gland and therefore the role of aldosterone in sweat gland secretion is relatively 

unknown.   

An early study by Ladell et al (1961) used a 10 day heat acclimatisation protocol to 

investigate the effects of the aldosterone inhibitor spironolactone on sweat sodium 

concentration. The results showed sweat sodium concentration to be 18mmol/L 

higher on day eight when spironolactone was administered. These results have been 

referenced frequently in the literature, however one major limitation of this study 

was the failure to control for the increase in sweat rate that occurs due to 

spironolactone administration. Previous results have shown a linear relationship 

between sweat rate and sweat sodium excretion; these results may therefore be of 

limited value. Lee et al (2010) investigated the effect of spironolactone on urinary 

and sweat sodium concentration when sweat rate is controlled. Fifteen subjects 

performed two 90-minute exercise bouts at varying intensity, once after the 

administration of spironolactone and once after a placebo. Spironolactone was shown 

to have an effect at the level of the kidney where urinary sodium excretion was 

significantly higher with the treatment vs. placebo. There was no effect at the level of 

the sweat gland. The authors concluded that both genomic and non-genomic 

mechanisms of aldosterone action are evident in the kidney and the sweat gland. 

Results from this study suggest that different isoforms of the mineralocorticoid 

membrane receptor for aldosterone may be present in the sweat gland. 
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1.2.11 Literature Review Summary 

The sweating mechanism is the body’s primary means of dissipating heat generated 

from the active muscles during prolonged work or exercise in the heat. High fluid 

and electrolyte losses are incurred as a result of this, resulting in dehydration if not 

adequately replaced. If fluid losses are greater than 2% of body weight, performance 

decrements, both physical and mental, will result. In the case of athletes this will 

impair performance and in workers will decrease productivity while increasing the 

risk of workplace accidents. If fluid losses are prolonged or severe serious heat 

illness may develop, posing a serious health risk.  

The replacement of electrolyte losses in sweat has had far less attention in the 

literature. Sodium replacement guidelines for athletes and workers are limited and 

often conflicting. In addition to this, current public health guidelines for sodium 

restriction in the general population can cause confusion amongst these groups. The 

adequate replacement of sodium, particularly in heavy salt sweaters is vital in order 

to prevent fluid and electrolyte disturbances such as heat cramps and hyponatremia.  

Heat acclimatisation and physical training are known to improve the ability to 

tolerate prolonged periods of work or exercise in the heat. Fluid and electrolyte 

replacement is even more vital in a physically trained and acclimatised individual as 

sweat losses may be considerably greater.  

Therefore the primary aim of this thesis is to further investigate fluid and electrolyte 

losses in these two at-risk populations. The proposed outcome of this research is an 

improved understanding of the fluid and electrolyte losses associated with prolonged 

work in the heat, which will enable more specific guidelines for replacement to be 

provided. 
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Chapter 2: Plasma sodium levels and 
dietary sodium intake in manual 
workers in the Middle East 

2.1 Introduction 

Dubai is situated on the Arabian Gulf coast in the Northeast of the United Arab 

Emirates. At the time that this study was undertaken, Dubai was engaged in a building 

boom, with over 700,000 expatriate workers employed throughout the country in 

construction and other industries. Situated directly within the Arabian Desert, Dubai 

experiences an arid subtropical climate with summer temperatures regularly reaching in 

excess of 45 degrees, some of the harshest in the world. The thousands of expatriate 

workers are required to perform arduous physical tasks in hostile environments for up to 

12 hours per day. Working in such extreme conditions places high demands on the 

thermoregulatory mechanisms of the body, which can result in dehydration and 

electrolyte imbalance. If this is prolonged or severe the health of the workers may be 

seriously at risk. 

The Dubai Dry Docks employ approximately 8500 workers in predominately manual 

roles, from over 30 countries throughout the world. It is hypothesised that as a 

consequence of the harsh environmental conditions in which they work, sweat rates and 

sodium losses are extremely high. Previous studies have estimated fluid losses in manual 

workers in hot environments of up to 10-12L/day with sodium losses of up to 6g over a 

work shift (Bates and Miller 2008). It is essential that these losses are replaced through 

fluid and dietary sodium intake in order to prevent serious fluid and electrolyte 

imbalances that may lead to dehydration, fatigue, heat illness and significantly reduced 

work rate and overall productivity, as well as increasing the number of work related 

accidents.  

The dockyard workers live in labour camps where all food and fluid is provided at three 

specific times during the day. All workers are provided with the same base diet and 

snacking is seldom. As the staple diet is largely made up of pulses, rice and very small 

quantities of meat, with very low sodium content, it may be inferred that these workers 

are consuming a diet with insufficient sodium to replace estimated sweat losses 



   
 

        52 

particularly in the summer months when temperatures are extreme. It is therefore 

postulated that these workers are at risk of developing chronic hyponatremia, a 

potentially serious abnormality of electrolyte balance where serum sodium drops below 

135mmol/L, (Noakes et al. 1990; Speedy et al. 1999). Over the last 15 years this 

condition has been reported in many athletic populations where athletes are exercising in 

harsh environmental conditions for prolonged duration (Noakes et al. 1990; Noakes 

2002; Speedy et al. 1999). Hyponatremia has also been reported to occur in the military 

when soldiers are forced to perform extended periods of strenuous work in oppressively 

hot environments (O'Brien et al. 2001; Garigan and Ristedt 1999). In both cases, the 

failure to replace lost sweat sodium and/or the consumption of excess water volume 

leads to a reduction in plasma sodium levels. What has not previously been investigated 

is the incidence of hyponatraemia in a population of manual workers exposed to 

similarly harsh environmental conditions for 12 hours/day while eating a predominantly 

starch based diet. The communal nature of food consumption makes this population a 

particularly unique group to study, while allowing for accurate unbiased dietary 

assessment to occur.  

The need for adequate fluid intake during work in these conditions has been well 

documented and workers are generally well aware of the importance of adequate 

hydration. The sodium loss that accompanies high sweat losses has not been so 

extensively investigated. The current World Health Organisation (WHO) 

recommendations state that on a global scale, individuals should aim to reduce salt 

consumption to below 5g per day. This is a public health measure aimed at preventing 

hypertension and the development of cardiovascular disease. While these 

recommendations may be appropriate for the general population, the manual worker has 

substantially greater sodium losses and therefore is hypothesized to require a higher 

sodium intake.  

The aim of the present study was to investigate the hypothesis that workers consuming a 

traditional low salt diet and working in hot conditions are at risk of chronic 

hyponatremia. Firstly plasma sodium levels in a group of manual labourers during both 

the summer and winter months were investigated for evidence of hyponatraemia. A 

further aim was to assess the relative adequacy of the current diet provided to workers 

with focus on the total salt content of the menu. The results of this study will identify 
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whether this population consumes sufficient dietary sodium to offset the high sweat 

losses, particularly during the extreme summer months.  

The key objectives of this study are: 

1. To investigate the risk of chronic hyponatremia in manual workers in the Middle 

East by comparing plasma sodium values in the summer and winter months.  

2. To analyse the sodium intake of workers to determine relative adequacy. 
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2.2 Methods 

The study took place at the DryDocks in Dubai, United Arab Emirates. Part one of 

the study took place at the end of the summer period (July) while part two took place 

at the end of the winter period (February). Both trials were completed within the 

same 12-month period. Plasma sodium levels were tested in the same subjects in the 

summer and winter trials at the same time of day (between 7-8am) and in a fasted 

state. The dietary intake data was collected during the winter period.  

2.2.1 Subjects  

A total of 44 subjects were studied at the end of the summer months and 38 subjects 

were repeated at the end of winter, the age distribution is shown in Figure 1. The 

workers who were involved in the study were from Pakistan (13 workers), India (10 

workers) and Bangladesh (21 workers). Workers were all employed in various roles 

(Dockyard workers (10 workers), steel fabricators (17 workers), mechanics (4 

workers) and some working in hull treatment (13 workers)) at the DryDocks in 

Dubai, United Arab Emirates and were randomly selected to take part in the study. 

Each subject was asked to complete a written informed consent form prior to the 

study commencement. Permission was sought and granted from the management of 

the medical centre at the DryDocks and the research protocol explained to all 

subjects and medical staff involved in the study.  

2.2.1.1 Sample Size Consideration 
Previous studies have reported average plasma sodium values in a group of subjects 

to be between 135- 145mmol/L (Renneboog et al. 2006). It is expected that plasma 

sodium values will be lower in the summer months due to high sweating rates. In 

order to detect a moderate effect size of 0.5 with 80% power, 34 subjects are 

required.  

2.2.1.2 Inclusion criteria 

A full blood profile was taken prior to the start of the study by a trained phlebotomist 

to screen for any chronic health problems including diabetes and impaired liver and 

kidney function. Workers using any regular medication were excluded from the 

study.  
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Criteria for participation were:  

• Aged between 18-50 years.  

• Available for testing during both the summer and winter periods.  

• No medical conditions requiring medication. 

The protocol for testing as outlined below in the summer months was repeated in the 

winter months. Six out of the 44 subjects who were tested in the summer period were 

unable to be retested during winter due to illness or relocation of employment. The 

number in the winter study was therefore reduced to 38. When comparison between 

summer and winter was made, the data for these six subjects was removed for 

statistical analysis.  

Figure 1. Age distribution of subjects participating in Study 1 investigating 

plasma sodium levels and dietary sodium intake in manual workers in 

the Middle East (n = 44) 
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2.2.2 Climatic Conditions at the Study Location  

The study was conducted in the summer and winter months within the same 12-

month period. Dubai experiences some of the harshest environmental conditions in 

the world with extreme temperatures and high humidity for most of the day 

particularly during the summer months. Table 1. below shows the seasonal weather 

averages for the study location. As shown below average summer temperatures for 

July range from 29-39ºC with 80% humidity, compared to the month of February 

when temperatures range from 16-24ºC with 89% humidity. 

Table 1.  Average minimum and maximum temperatures (ºC) and average 

maximum humidity (%) for Dubai, United Arab Emirates. 

SOURCE: World Meteorological Organisation 

  Month  Minimum 
temperature (ºC)  

Maximum 
temperature (ºC)  

Average maximum 
humidity (Avg %)  

January  14  23  90  

February  16  24  89  

March  18  27  85  

April  21  32  83  

May  24  36  80  

June  27  38  85  

July  29  39  80  

August  30  39  82  

September  27  37  85  

October  24  34  87  

November  20  29  86  

December  16  25  88  
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2.2.3 Experimental Protocol  

2.2.3.1 Measurement of Plasma Sodium Levels  
Full blood tests including LFT, FBC, U&E and glucose were taken from all subjects 

in both the summer (July) and winter (February) months to check general health and 

compare blood electrolyte profiles (see Table 2. below for complete list of blood 

variables assessed). Any worker with any medical condition with potential to affect 

the results was excluded from the study.  The venous blood sample was taken in the 

morning prior to eating (between 0700- 0800 hours) by a trained phlebotomist. An 

approved accredited pathology laboratory completed all analysis. 

Table 2.  Blood variables assessed  

 
Full Blood Count (FBC) Haemoglobin (HGB)  

Haematocrit (HCT)  
Mean Cell Volume (MCV ) 
Platelets (PLT)  
Neutrophils (Neutr %) 
Lymphocytes (Lymph %) 
Monocytes (Mono %) 
Eosinophils (Eosin %) 
Basophils (Baso %) 

Urea and Electrolytes Sodium (Na) 
Potassium (K) 
Urea 

Liver Function Test (LFT) Alkaline Phosphatase (ALK 
Phos)  
Gamma Glutamyl 
Transpeptidase (GGT)  
Aspartate Transaminase 
(AST) 
Alanine Transaminase (ALT) 
Bilirubin 
Total Protein 
Albumin 
Lactate Dehydrogenase( 
LDH) 
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2.2.3.2 Measurement of Dietary Intake  
The candidate, an Accredited Practicing Dietitian conducted an assessment of the 

diet of the workers in two parts. Part one involved recording and analysing menus 

and recipes to allow for an estimation of total daily salt intake. Menus and recipes 

from all food prepared and served in the mess hall were collected and analysed over 

a 3 day period. Foodworks 2007 nutrient analysis package was then used to estimate 

the total daily macronutrient intake along with total daily salt intake. Estimation of 

serve size was conducted through observation of meals served as well as 

measurement of plated food using household measures. Table salt was provided on a 

separate table next to the bain-marie. The use of table salt at meals was observed and 

an estimation of the quantity added was recorded. Part two of the study involved 

individual interviews with the workers, 38 workers were available for this interview 

where questions relating to individual dietary practices were asked. Table 3. outlines 

the questions asked to the workers during the interview. A translator was required for 

this interview as many of the subjects did not speak adequate English (Figure 2). 
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Table 3.  Interview questions asked to workers (n = 38) during the dietary 

assessment component of Study 1 investigating plasma sodium levels and 

dietary sodium intake in manual workers in the Middle East. 

  

Question 

1. Do you normally snack outside of meal times (i.e. Breakfast/lunch/dinner)? 

2. Do your eating habits change in the summer vs winter period? 

3. Do you normally add salt to your food?  

4. What do you normally drink during a work shift? 
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Figure 2. The dietitian conducting interviews with individual workers 

participating in Study 1 investigating plasma sodium levels and dietary 

sodium intake in manual workers in the Middle East (n = 38). 
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2.3 Statistical Analysis 

The mean, 95% confidence interval for the mean, median and standard deviation were 

calculated for all parameters. Data was assessed for normality and between group 

comparisons of plasma sodium values and daily sodium intake. Statistical differences were 

analysed using a two-tailed paired samples t-test to determine differences between plasma 

sodium values in the summer and winter months. All statistical analysis was done using 

SPSS for Windows (SPSS Inc., Chicago, IL). 
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2.4 Results 

2.4.1 Physical Characteristics 

The physical characteristics, including age, height, weight and BMI of the subject 

group are shown in Table 4.  

Table 4.  Physical characteristics of subjects participating in study 1 

investigating plasma sodium levels and dietary sodium intake in manual 

workers in the Middle East. 

 Mean (± Std Dev) 

Age (years) 37 ± 6.1 

Height (cm) 168 ± 6.9 

Weight (kg) 67.5 ± 12.5 

BMI (kg/m2) 23.8 ± 3.7 
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2.4.2 Measurement of plasma sodium levels in the summer and 
winter months 

Results from the blood electrolyte profile in summer and winter showed that a high 

proportion of subjects (55%) were found to be hyponatraemic in the summer months 

(Figure 3), all remaining values were in the lower part of the reference range. 5% of 

subjects had serum sodium levels less than 130mM. Only 8% of subjects had plasma 

sodium values less than 135mmol/L in the winter months.  There was a significant 

difference (p=0.000) between mean plasma sodium values in the summer and winter 

months with the mean plasma sodium level being 134.39 in summer compared to 

137.09 in winter.  

Figure 3. Comparison of serum sodium values in the summer and winter 

periods in Study 1 investigating plasma sodium levels and dietary sodium 

in manual workers in the Middle East. 
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2.4.3 Dietary Assessment 

Tables 5,6 and 7 summarise the dietary assessment data collected at the site during 

the winter period. On average a worker would consume an estimated 2000-3000mg 

of sodium (5-7.5g salt) in food and fluid per day. The total sodium content of the 

lunch meal was particularly low averaging approximately 600mg (1.5g salt). In 

addition to this workers would be provided with a maximum of 1L per day of 

electrolyte replacement fluid that would provide between 200-400mg sodium (500-

1000mg salt). This is only provided in the summer months. Additional table salt is 

available at all meals: 43% of workers indicated that they added salt to their meals 

however few workers were observed to do so. Figures 6 and 7 illustrate a typical 

breakfast, lunch and dinner meal served in the Asian mess daily.  

2.4.4 Further Observations from the Dietary Assessment 

- On average each worker would be provided with at least 5 cups of cooked 

plain white rice per day. 

- Lunch and dinner meals are always served with dahl and a small portion of a 

red meat or chicken based curry. 

- There is little variation from day to day in the nutritional composition of the 

meals provided (0 

- Workers are served an identical portion of food at each meal and are not 

allowed to return for a second helping (Figure 8). 

- Observation of mealtime practices revealed that the majority of workers were 

seen to always finish their entire meal. 

- Water, tea and fruit cordial are always served at meal times. 

- All meals are prepared onsite with very little use of packaged or processed 

food (Figure 4).  
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Photos taken while conducting the dietary assessment component of Study 1 

Figure 4. Preparation of meals in the Asian mess kitchen for 5000 workers 

 

 

 



   
 

        66 

 

Figure 5. The Asian dining hall  
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Figure 6. A typical breakfast served in the Asian Mess Hall 
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Figure 7. A typical lunch/dinner served in the Asian Mess Hall 
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Figure 8. Each worker is served an identical type and portion of each meal. 
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2.4.4.1 Interviews with Workers 
93% of the workers stated that they did not consume any other food outside of what 

was provided in the mess at breakfast, lunch and dinner. This information further 

confirmed the consistency in dietary intake of the workers. The 3 subjects who did 

snack between meals stated that they would only consume fruit or fruit juice on 

occasion; these foods would not contribute significantly to overall daily salt intake. 

94% of the workers stated that they do not change anything about their diet between 

the summer and winter period and that heat did not affect their intake. 43% of the 

workers stated that they regularly add table salt to their lunch and dinner meals. One 

or two small pinches of salt was the typical amount added which would provide an 

estimated 250-500mg of sodium (625- 1250mg salt).  

All workers stated that they did consume an electrolyte replacement solution during 

working hours during the summer months. There is a limit of 1L of electrolyte 

solution per worker during this period while water consumption is unrestricted. 

Medical staff indicated that this restriction was placed as a precaution to avoid 

excessive consumption of sugar and salt.  
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Table 5.  Dietary analysis including total energy (kJ), protein (g), 

carbohydrate (g), fat (g) and sodium (mg) content for day one of the 

dietary assessment component of Study 1 conducted during winter. 

Menu Day 1 Energy 
(kJ) 

Protein 
(g) 

Carbohydrate 
(g) 

Fat 
(g) 

Sodium 
(mg) 

Breakfast 4411 20.9 126.7 49.9 1359 

    3 large sandwich slice 
bread,white 

981 8.0 43.0 2.5 550 

    3 tsp butter 419 0.1 0.1 11.3 109 

    3 tsp jam 219 0.0 13.3 0.0 2 

    5 slices paratha 1751 6.3 42.0 24.6 339 

    1 cup seera - sweet rice 721 2.6 20.1 9.2 13 

    1 cup chana masala - 
chickpea curry 

318 3.7 8.0 2.2 316 

Lunch 3937 42.0 132.1 22.8 624 

    1 cup yellow dahl 493 8.5 17.1 0.8 155 

    3 cup (cooked) white 
rice 

1746 16.4 79.7 1.2 36 

    3 Tbls chicken biryani 801 12.5 2.2 14.8 198 

    1 apple 483 0.6 26.5 0.2 2 

    1 cup rajma masala 414 3.9 6.5 5.8 233 

Dinner 3415 39.2 118.3 16.9 773 

    2 cup (cooked) white 
rice 

1164 10.9 53.6 0.8 24 

    3 slices tandoori roti 1214 8.1 44.6 8.0 420 

    1 cup yellow dahl 493 8.5 17.1 0.8 155 

    3 Tbls beef masala 375 10.8 1.5 4.2 92 

    1 cup green salad 167 0.7 1.8 3.0 82 
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Table 6.  Dietary Analysis including total energy (kJ), protein (g), 

carbohydrate (g), fat (g) and sodium (mg) content for day two. 

Menu Day 2 Energy 
(kJ) 

Protein 
(g) 

Carbohydrate 
(g) 

Fat 
(g) 

Sodium 
(mg) 

Breakfast 4624 31.6 121.8 53.3 1235 

    3 large sandwich slice 
bread,white 

981 8.0 43.0 2.5 550 

    3 tsp butter, 419 0.1 0.1 11.3 109 

    3 tsp jam, 219 0.0 13.3 0.0 2 

    5 slices paratha 1751 6.3 42.0 24.6 339 

    1 cup oats 601 3.7 21.2 4.2 7 

    0.5 cup scrambled egg 651 13.3 2.2 10.6 228 

Lunch 4105 44.7 134.7 23.8 464 

    1 cup yellow dahl 493 8.5 17.1 0.8 155 

    3 cup (cooked) white 
rice 

1746 16.4 79.7 1.2 36 

    3 Tbls chicken kadhi 821 15.2 4.6 12.6 151 

    1 apple 483 0.6 26.5 0.2 2 

    4 Tbls cabbage thoran 460 1.9 4.0 8.9 105 

     1 cup coleslaw salad 99 1.9 2.6 0.1 15 

Dinner 3651 34.4 118.2 25.5 1005 

    2 cup (cooked) white 
rice 

1164 10.9 53.6 0.8 24 

    3 slices tandoori roti 1214 8.1 44.6 8.0 420 

    3 Tbls sausage masala 779 6.8 3.3 15.9 406 

    1 cup yellow dahl 493 8.5 17.1 0.8 155 
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Table 7.  Dietary Analysis including total energy (kJ), protein (g), 

carbohydrate (g), fat (g) and sodium (mg) content for day 3  

Menu Day 3 Energy 
(kJ) 

Protein 
(g) 

Carbohydrate 
(g) 

Fat (g) Sodium 
(mg) 

Breakfast 3903 19.3 117.5 37.4 1145 

1 cup uppma  631 3.6 14.6 8.1 277 

3 slices paratha  1050 3.7 25.2 14.8 200 

1 cup cooked oats  601 3.7 21.2 4.2 7 

3 large sandwich slice 
bread,white 

981 8.0 43.0 2.5 550 

   3 tsp butter, 419 0.1 0.1 11.3 109 

  3 tsp jam, 219 0.0 13.3 0 2 

Lunch 4263 42.2 151.6 22.6 654 

3 cup (cooked) white 
rice 

1746 16.4 79.7 1.2 36 

1 cup yellow dahl 493 8.5 17.1 0.8 155 

2 slices tandoori roti 809 5.4 29.7 5.3 280 

3 Tbls aloo baingan  255 0.8 3.4 4.7 132 

3 Tbls fish fry  477 10.5 1.1 10.3 49 

1 apple 483 0.6 26.5 0.2 2 

Dinner 3428 44.2 103.8 21.2 571 

2 cup (cooked) white 
rice 

1164 10.9 53.1 0.8 24 

3 Tbls lahori chicken 
curry  

812 16.6 4.3 12.0 132 

3 Tbls aloo palak  555 3.4 10.9 4.8 119 

1 cup yellow dahl 493 8.5 17.1 0.8 155 

1 slice tandoori roti  404 2.7 14.8 2.6 140 
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Table 8.  Average energy (kJ), fat (g), protein (g), carbohydrate (g) and 

sodium (mg) intake for the 3 day analysis period. 

Day Meal Energy 
(kJ) 

Fat (g) Protein 
(g) 

Carbohydrate 
(g) 

Sodium 
(mg) 

 
1 

Breakfast 4411 49.9 20.9 126.7 1359 

Lunch 3937 22.8 42.0 132.1 624 

Dinner 3415 16.9 39.2 118.3 773 

Total 11763 89.7 102.2 377.2 2757 

 
2 

Breakfast 4624 53.3 31.6 121.8 1235 

Lunch 4105 23.8 44.7 134.7 464 

Dinner 3651 25.5 34.4 118.2 1005 

Total 12381 102.8 110.7 374.8 2704 

 
3 

Breakfast 3903 41.0 19.3 117.5 1145 

Lunch 4263 22.6 42.2 151.6 654 

Dinner 3428 21.2 44.2 103.1 571 

Total 11595 84.7 105.8 372 2371 

Average 3 Day 
average 

11913 92.5 106.2 374.6 2610 

 
 

 
Note: There was no significant difference (p<0.05) between energy, fat, protein, 

carbohydrate or sodium values, using one-way ANOVA, between the 3 days of 

testing. 
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2.5 Discussion 

The initial hypothesis that sodium intake in this population is inadequate to replace 

estimated sweat losses is supported by the results of this study. During the summer 

period 55% of workers were found to be clinically hyponatremic with plasma sodium 

values less than 135mM, compared with only 8% during the winter period. Given 

that dietary intake is consistent throughout the year, these results indicate that the 

hyponatremia during summer is most likely due to high sweat sodium losses coupled 

with inadequate sodium replacement. Nearly 5% of workers were shown to have 

extremely low plasma sodium levels (below 130mM) posing a serious health risk. At 

this level it is possible that workers would become symptomatic and be unable to 

continue work. 

Assessment of dietary intake revealed that on average workers consumed between 

2000-3000 mg of sodium (5 – 7.5 g salt) per day. This quantity is insufficient, 

particularly during summer when temperatures are extreme (Exceeding 40ºC on a 

daily basis) and fluid and electrolyte losses through sweat are assumed to be high due 

to high sweat rates.  

Previous studies conducted in manual labourers in Australia have found average 

sweat rates of 1.1L/h., equating to over 10L of fluid loss during a work shift (Miller 

and Bates 2007a; Brake and Bates 2003b). Average sweat sodium losses over a 10 

hour work shift in hot conditions have been estimated to be 4.8 – 6 g, equivalent to 

10-15g salt (NaCl) (Bates and Miller 2008). Due to the large inter-individual 

variation in sweat rate and sodium loss these values may be even higher in some 

individuals, with reported values in excess of 10g of sodium (25g salt) per day (Bates 

and Miller 2008). The results from this study clearly indicate that salt intake in this 

population is falling well short of replacing potential sweat losses. Even in a worker 

with a low sweat rate (500ml/h) with below average sodium losses (20mmol/L), 

working for a 12-hour work shift could experience over 6L of fluid loss with the loss 

of nearly 3g of sodium (7g salt). The sodium intake in the workers in the studied 

workplace would not be sufficient to replace even these losses. In workers at the 

higher end of fluid and sodium losses, dietary intake is significantly lower than 

estimated losses, placing workers at risk of developing electrolyte disturbances and 

heat illness. 
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There is some evidence to suggest that long term dietary salt restriction may have 

some potentially adverse health effects (Egan & Stepniakowski, 1997(Cohen, 

Hailpern, and Alderman 2008). An observational cohort study based on the results 

from the Third National Health and Nutrition Examination Survey (NHANES 3) 

found that overzealous restriction of dietary sodium may be associated with 

increased risk of cardiovascular disease and all-cause mortality (Cohen, Hailpern, 

and Alderman 2008).  

What is also unclear is the effect that this reduction of sodium intake may have on 

the ability to tolerate prolonged exercise or work in the heat. The effect of the 

prolonged consumption of a sodium deficient diet in those performing work in the 

heat has not been thoroughly investigated. Investigations in rats fed a chronic low 

sodium diet showed a fluid shift towards intracellular compartments resulting in a 

decreased plasma volume and significantly increased haematocrit (Francesconi, 

Hubbard, and Mager 1983). It may be argued that this change in hemodynamic state 

would seriously compromise the body’s ability to tolerate further circulatory stress 

such as that imposed by excessive sweating in the heat.  

In a rat study, circulating levels of aldosterone and cortisol have been shown to be 

significantly increased in sodium depleted mice in order to conserve and maintain 

circulating sodium levels (Francesconi, Hubbard, and Mager 1983). In salt resistant 

subjects, salt restriction may lead to activation of the renin-angiotensin system and 

vasoconstriction which may lead to a rise in blood pressure and potentially adverse 

metabolic effects in these subjects (Egan, Weder, Petrin, & Hoffman, 1991). In this 

study a salt resistant subject was an individual who had a mean intraarterial pressure 

(MAP) during the low NaCl phase greater than or equal to that during the high NaCl 

phase.  A meta-analysis by Graudal et al (1998) found similar results. Subjects with a 

decreased sodium excretion due to lower intake had 5-6 times higher aldosterone and 

renin than those with higher excretion. Oliver et al (1975) found similar results in 

Yanomano Indians who consume habitually a very low sodium diet. The authors 

found that these people have 3 times higher levels of plasma renin and 10 times 

higher urinary aldosterone excretion than normal controls. These results indicate that 

the renin-angiotensin aldosterone system is activated in order to minimise fluctuation 
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in blood pressure; this may explain why there is a relatively small effect of a 

decreased sodium intake on blood pressure readings.  

There is also some evidence to suggest that chronic salt restriction may result in 

growth retardation, reproductive problems, as well as reduced muscle mass (Bursey 

and Watson 1983; Fine, Lestrange, and Levine 1987; Hoorn et al. 2011). While these 

studies have only been attempted in the rat model, the classic human experimental 

trial by McCance (McCance 1936) clearly showed that a short term period of salt 

restriction resulted in nausea, loss of appetite, muscle cramps, fatigue and 

considerable weight loss. There has also been some recent evidence to suggest an 

increased risk of fractures in patients with hyponatremia (Hoorn et al. 2011). Hoorn 

et al (2011) also discuss the effect of hyponatremia on bone architecture. One recent 

study in a rat model showed that hyponatremia increased the number of osteoclasts in 

bone while serum osteocalcin was decreased, both changes indicative of osteoporosis 

(Verbalis 2010). In one study hyponatremia increased the odds of having a fall-

related fracture threefold to fourfold (Gankam Kengne et al. 2008). The proposed 

mechanism responsible for the marked increase in fracture risk is gait instability and 

attention deficits.   

In addition to these effects, a higher sodium diet is known to enhance the 

thermoregulatory and cardiovascular adaptations that occur during heat 

acclimatisation (Luetkemeier, Coles, and Askew 1997).  A recent study by Miyazaki 

et al (2010) showed that stable chronic hyponatremia resulted in impaired memory 

function in rats that was normalised when sodium levels were corrected to within 

normal range. The effect of chronic hyponatremia on the central nervous system in 

humans is largely unknown and requires further investigation.  A study by 

Renneboog et al (2006) indicated that patients with mild chronic hyponatremia had 

an increased incidence of falls due to a global decrease in attention capabilities, 

posture and gait mechanisms (Renneboog et al. 2006). While the patients in this 

study were reported to be asymptomatic, the results also identified significant 

impairment in cognitive function. The mechanisms of these observations are thought 

to be a result of slowed peripheral and central nerve conduction (Renneboog et al. 

2006). For manual workers performing intense physical labour, any impairment in 

judgment or cognitive capacity will increase vulnerability to workplace accidents and 

injury and is therefore a major concern. 
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It is estimated that on a global scale cardiovascular disease alone is killing 17 million 

people each year and is the single largest risk factor for mortality. High blood 

pressure is the leading cause of global burden of disease with approximately two-

thirds of stroke and one half of ischemic heart disease being attributed to 

hypertension (Lawes, Vander Hoorn, Law, MacMahon, & Rodgers, 2006). Further to 

this, a recent study by Gardener et al (2012) showed that a high salt intake was 

associated with an increased risk of stroke, independent of vascular risk factors. Due 

to the increasing incidence of cardiovascular disease and high blood pressure on a 

global scale, dietary salt restriction is being strongly advocated as a public health 

measure to reduce the incidence of chronic disease worldwide. Currently the World 

Health Organisation recommends that salt intake should be less than 5g/day (less 

than 2g/day sodium) (World Health Organisation 2007).  

A recent meta-analysis by Graudel et al (2012) investigated the effect of a low vs 

high sodium diet on blood pressure readings and hormonal responses (renin and 

aldosterone). A total of 167 studies were included in the meta-analysis. Results 

indicated that sodium reduction on average resulted in a significant decrease in blood 

pressure of 1% in normotensives. The authors of this paper concluded that the small 

size of this effect might be due to the persistent increase in plasma renin and 

aldosterone that was also found. To date, there has been no randomized clinical trial 

to determine the effect of a long-term reduction in dietary sodium on cardiovascular 

health or mortality (Cohen, Hailpern, and Alderman 2008). This has raised 

considerable debate as to whether a reduction in salt intake on a public health level 

will be of benefit. A recent Cochane review examining the evidence on the long term 

effects of reducing salt intake in patients with elevated blood pressure concluded that 

there is currently insufficient evidence to assess the effects of reduced salt intake on 

overall health outcomes (Hooper et al. 2009). There is however some evidence to 

suggest that a reduction in salt intake may help to maintain lower blood pressure in 

patients who have recently withdrawn from the use of hypertensive medication. The 

lack of clear evidence is due to the lack of long term randomised controlled trials and 

the difficulties in controlling salt intake over an extended period of time (Hooper et 

al. 2009). In addition to this there are a multitude of genetic, ethnic, behavioral and 
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environmental factors which determine the appropriate level of sodium intake for 

good health (Alderman 2010). Because of these additional factors it is difficult to 

indicate a universal level of sodium intake that is appropriate for the population at 

large. In population groups such as manual labourers or endurance athletes who are 

sweating profusely for prolonged periods these recommendations are not appropriate.  

The results of this study provide some support for the development of sodium intake 

guidelines specific for these populations. Currently the message to reduce sodium 

intake, while suitable for the majority of the population, is misleading for these ‘at 

risk’ groups. This was highlighted in this study as the medical staff were advising 

workers to reduce salt intake as a measure to reduce the risk of chronic disease.  

In the last five years there have been reports of a number of young labourers 

presenting to the Intensive Care Unit in hospitals within the Middle East with 

seriously low plasma sodium levels, placing them at risk of neuromuscular 

dysfunction. Dr Sadeq Qadri, Chair of the Intensive Care Unit at the Mafraq hospital, 

in a letter to the Clinical Affairs Director, advised that laborers working in the 

construction field in a hot environment be advised to consume fluids with added 

sodium to prevent seriously low plasma sodium levels (Qadri, personal 

communication, November 2008). This information and the results from this study 

indicate that there is a need for sodium intake guidelines specific for manual laborers 

working in the heat to be developed. Providing the workplace with specific 

guidelines showing estimated sweat sodium losses and practical replacement 

guidelines for the various working roles will acknowledge that workers in physically 

demanding outdoor roles will have greater fluid and salt requirements than stationary 

indoor workers. Interviews with the workers in this study revealed that several 

individuals had been actively trying to limit salt intake to prevent hypertension. 

Similar findings have been reported in a study in South African forestry workers 

where Community Health Workers were advising workers to only consume water 

and restrict salt intake in an attempt to prevent hypertension (Biggs, Paterson, and 

Maunder 2011).  Given that current health recommendations are aimed at restricting 

dietary salt intake, educating medical staff and workers on the importance of both 

fluid and sodium replacement when working in very hot environmental conditions of 

heat stress is necessary.  
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The position stand by Sawka et al (2007) supports the need for athletes with high sweat 

losses to replace sweat electrolyte losses through the addition of salt to meals. The 

results of this study as well as the results from the study by Biggs et al (2011) support 

the need for this recommendation to be extended to manual labourers working in 

extreme environments. In order to increase sodium intake the addition of salt to meals 

during cooking is indicated. In addition to this, educating workers, particularly those in 

more physically demanding roles on the benefit of adding table salt to meals is also 

warranted. When working in severe thermal conditions, replacement of fluid losses 

with water alone is insufficient, as it does not replace sodium lost in sweat, thus 

increasing the risk of dilutional hyponatremia and acute water intoxication (Hoorn and 

Zietse 2008). The provision of an electrolyte replacement fluid that has been designed 

for prolonged use in an industrial setting is indicated (Nose et al. 1988). The benefit of 

providing an electrolyte replacement beverage between meals is to promote water 

uptake and retention, and to offset fatigue by maintaining blood glucose, whilst 

palatability encourages fluid intake when compared with plain water (Sawka et al. 

2007). However, even regular consumption of an electrolyte replacement fluid 

throughout the work shift would not make up for the dietary inadequacy; the addition 

of salt to meals is also warranted.  

  



   
 

        81 

2.6 Summary 

The data from this study demonstrate that the diet of some workers in the Middle 

East has inadequate salt content. High sweat sodium losses due to long periods of 

manual work in the heat are not being adequately replaced potentially leading to 

chronic hyponatremia. While workers may be relatively asymptomatic there may be 

safety implications for workers who are managing heavy machinery or working at 

height due to an impaired cognitive ability and neuromuscular function and increased 

susceptibility to fatigue, both of which may increase the risk of workplace accidents. 

The information collected in this study may apply to hundreds of thousands of 

workers in the Middle East and other countries where workers are engaged in 

prolonged manual labour in hot climates while consuming a diet that is 

predominantly starch based. Increasing the total salt content of both fluid and food 

consumed by workers may be effective in reducing the incidence of work related 

illness and accidents in this population.  

2.7 Conclusions 

• A significant proportion of workers at this site in the UAE were clinically 

hyponatremic during the summer period. This was not shown during winter 

indicating that it is primarily due to high sweat sodium losses that are not 

being replaced. 

• The salt content of the diet is insufficient to replace estimated sweat sodium 

losses during summer. 

• Workers are unable to consume food at regular intervals between meals due 

to logistics of the work environment and will benefit from regular 

consumption of an electrolyte replacement fluid specifically designed for 

prolonged industrial use.  

• Educating workers and medical staff on the importance of adequate fluid and 

salt intake to prevent dehydration and electrolyte imbalances is strongly 

indicated. 
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• Salt intake guidelines specific for workers engaged in prolonged work in the 

heat are necessary to decrease the incidence of hyponatremia in this 

population. Sample guidelines are given in the summary chapter of this 

thesis.  
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Heat Chamber Studies 
 

 

 

 

Figure 9. The setup in the environmental chamber where studies 2 and 3 

were conducted.   
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Chapter 3: Methodology used in Heat 
Chamber studies 

 

3.1 Introduction 

This chapter will describe and validate the experimental procedures implemented in 

both of the controlled environmental chamber studies (Chapters 4 and 5).  Specific 

details of the subjects recruited and the experimental protocol will be discussed in 

detail in subsequent chapters of this thesis.  

3.2 Ethical Approval 

The Curtin University ethics committee approved both environmental chamber 

studies reported in this thesis. Testing was carried out in the physiology laboratories 

at Curtin University. All subjects were informed of the purpose and procedures 

involved in the study and gave their full written and verbal consent to participate. 

Subjects were advised that they had the right to withdraw from the study at any time.  

3.3 Body height and weight measurement 

Nude body weight was measured and recorded immediately after voiding, on an 

electronic balance scale (Ohaus Corporation, Model CW-11) recorded to the nearest 

0.01 kg.  

Standing height was measured using a stadiometer fixed to the wall and recorded to 

the nearest 0.1cm. 

3.4 Pre-trial Standardisation 

A medical prescreening process was conducted during the recruitment phase of the 

study either via phone interview or email, in order to ensure that athletes involved in 

the heat chamber studies were not taking any regular medication.  

All subjects strictly followed the following protocol in the 24-hour period prior to 

testing. 
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• No alcohol of caffeine to be consumed.  

• A maximum of 1 hour of low intensity aerobic exercise.  

• 500mL of water or electrolyte replacement fluid was to be consumed before 

going to bed the night before each testing session. 

• On the morning of the testing session all subjects were asked to consume a 

light breakfast of toast with spread plus consume at least 500mL of water or 

electrolyte replacement fluid. 

3.5 Data Collection 

3.5.1 Measurement of Hydration Status  

Hydration status was assessed through Urine specific gravity readings (Atago 

instruments: Hand held urine refractometer) taken prior to subjects entering the 

environmental chamber. Subjects recording Usg readings >1.015 were asked to 

consume 500ml of fluid in small aliquots over a 30 minute prior before beginning the 

testing session.  

Dehydration has been shown in numerous studies to reduce the capacity to 

effectively thermoregulate, while the composition of sweat may also be altered 

(Senay 1968). Several studies have been performed to assess the validity of Usg as a 

marker of hydration status. These studies have generally concluded that measurement 

of hydration status using refractometry is a valid assessment of hydration status. 

Urine specific gravity measurement has been reported to give a more sensitive 

indication of hydration status than the use of plasma osmolarity, while also 

correlating well with urinary osmolarity (Armstrong, Maresh, and Castellani 1994; 

Armstrong et al. 1998). However, in situations pertaining to dynamic fluid changes 

such as during post exercise recovery or in acute dehydration, Usg may not be an 

effective indicator of hydration status as changes in urinary measures may be delayed 

when compared to changes in plasma osmolarity (Oppliger et al. 2005; Steiner, 

Nager, and Wang 2007). These large fluid changes are unlikely to occur in the heat 

chamber studies due to the short duration of testing.  

The most recent National Athletic Trainers’ Association position statement on fluid 

replacement (2000) stated that Usg measurement should be used in athletes as a 

marker of hydration status due to its reliability and feasibility for use in the field 
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situation. Table 9. outlines the Urine specific gravity values used to determine 

hydration status. 

Table 9.  Indexes of Hydration Status (Casa et al. 2000) 

* % Body weight change = [(pre-exercise body weight – post-exercise body weight)/ 

pre-exercise body weight] x 100 

3.5.2 Sweat Collection Method 

Sweat collection via the Whole Body Washdown (WBW) technique is considered the 

criterion method for accurate determination of whole body sweat mineral losses 

(Baker et al. 2011). This method is considered to be most accurate as all produced 

sweat is collected and accounted for, while it does not interfere with the normal 

sweat evaporation process (Baker et al. 2009b). Limitations of this method include 

the need for testing to be performed in a controlled laboratory setting with cycling 

being the only means of exercise. There is also the potential for airborne 

contaminants to enter the sample.  

Regional skin surface collection is the most practical method of sweat collection 

particularly for use in the field setting and has been used frequently in the recent 

literature. This method involves sampling sweat from various regions of the body 

and using this information combined with weighing to estimate whole body sweat 

losses. Baker et al (2009b) investigated the validity of using this method of sweat 

collection as means of estimating whole body sweat electrolyte losses. Results 

Condition % Body Weight 

Change* 

Urine Specific Gravity 

Well hydrated + 1 to -1 <1.010 

Minimal dehydration -1 to -3 1.010 – 1.020 

Significant dehydration -3 to -5 1.021 – 1.030 

Clinical dehydration >5 >1.030 
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showed that all sweat sampling sites (forearm, back, chest, forehead, and thigh) were 

significantly correlated with the WBW technique for both sodium and potassium 

concentrations. The regional skin surface collection method did however 

significantly overestimate both [Na+] and [K+] across all body sites. Results from the 

thigh and upper arm produced the least variation from WBW results, with the thigh 

underestimating sodium loss by 7% and the arm overestimating by 20%. The 

variation in [K+] values was not significantly different.  The authors on this paper 

conclude that regional skin surface sweat collection is a valid method of accurately 

and reliably predicting sweat [Na+] and [K+] losses. As there was significant [Na+] 

overestimation reported when using the regional sweat patch method, the authors 

suggest the use of appropriate regression equations to account for this.  

The thigh and upper arm have been chosen as sites for sweat collection in both 

environmental chamber studies reported in this thesis as they appear to correlate 

most accurately with the whole body wash down technique, and are the most 

commonly used sweat collection sites reported in the literature.  

3.5.3 Sweat Collection Protocol 

Before entering the climate chamber subjects changed into their exercise clothing 

(shorts and t-shirt) and were fitted with a heart rate monitor (Polar, Model S710i). 

After the 15-minute warm up period, subjects were required to towel dry and be 

weighed in minimal clothing (males wore bike shorts and females wore bike shorts 

and a sports bra) on an electronic balance scale accurate to the nearest 0.01kg. It is 

recognised that this may introduce some inaccuracy in estimating sweat loss, 

however the facilities were not suitable for nude weighing. This was minimised by 

weighing in minimal clothing which would already have been partly saturated with 

sweat absorbed during the start-up period. Subjects then returned to the climate 

chamber and were fitted with four sweat collecting devices positioned on the upper 

arms and upper thighs. The sweat collecting devices were Wescor sweat collection 

capsules (Hammond, Turcios, and Gibson 1994). The time delay between exercise 

onset and attachment of devices was to allow sweat onset to be initiated. This avoids 

any possible concentration changes between “start up sweat” and regular sweat flow. 

Care was taken to ensure consistent, minimal pressure was applied to the skin. This 

is to prevent sweat leaking into the collection site. The capsules were positioned on 
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the lateral aspect of both upper arms and the front of both thighs, approximately 

midway between the knees and hip. The devices were secured to the limbs after the 

sites had been shaved and cleaned with alcohol swabs. The high correlation between 

sodium concentration between the right and left limbs confirms consistency of 

macroduct placement. It may also suggest that minor variations in placement do not 

matter as sweat from the whole gross anatomical area is of similar composition.  

At the end of the sweat collecting period, sweat collecting devices were removed and 

placed in individual sealed plastic bags. Subjects were then instructed to shower 

without wetting their hair, abstain from drinking, eating or urinating and ensure they 

were completely dry before dressing into the clothes in which they were originally 

weighed. After re-weighing, the sweat rate (L/hr) was calculated from the weight 

loss of the subject over time. In calculating the sweating rate, the ‘end of sweating’ 

time was taken from when the subject stood under the cool shower, immediately 

following the exercise session. 

 

3.5.4 Heart Rate Monitoring 

Polar heart rate monitors (model S710i) were worn by all subjects while cycling in 

the chamber. Each subject was given a heart rate goal prior to entering in the 

environmental chamber. The heart rate receiver was placed on each subject’s bike so 

they were able to monitor their performance. Heart rate was manually recorded at 5 

minute intervals throughout the exercise trials.  No subject was unable to maintain 

the desired heart rate level for the entire duration of testing in either study.  

Heart rate was used as a guide to estimate relative workload in both of the 

environmental chamber studies. A percentage of subjects maximal heart rate (%HR 

max) was used to estimate % 02max in each study according to the target values 

recommended by the American College of Sports Medicine (American College of 

Sports Medicine 1991). Swain et al (1994) reported that while this method of 

estimating relative exercise intensity may have some limitations particularly in 

untrained individuals, it does provide a relatively accurate measure of workload. In 

both of the heat chamber studies absolute workloads were not critical and were 
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simply designed to either produce various sweat rates or ensure a constant workload 

was maintained across the different trials.  

3.5.5 Analysis of Sweat Sodium and Potassium Concentration  

The sweat collected was evacuated from the sweat collecting devices with 

compressed air into small test tubes and immediately frozen. For analysis, test tubes 

were thawed and sweat was weighed on individual weighing trays. A volume of 0.01 

ml was drawn into an automatic pipette by capillary action. Sweat samples were then 

diluted 1:200 in a volumetric flask (2 ml) for analysis. The sodium and potassium 

concentration in the samples was determined by an atomic absorption 

spectrophotometer (Avant E GBC, AA hydride system HG3000).  

3.5.6 Calculated Sweat Loss 

A change in body weight was calculated from the difference between body weight 

measurements before and after exercise. The rate of sweat loss (mL) was calculated 

from the difference in body weight measurement before and after the trials as well as 

taking into account any fluid volume consumed during cycling. If subjects needed to 

urinate during the cycling effort, total volume of urine was accounted for by 

measurement of urine weight.  
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Chapter 4: Heat Chamber study #1: The 
effect of exercise intensity on sweat 
rate and sweat sodium losses in well 
trained athletes during cycling 
exercise in the heat 

 

4.1 Introduction 

Endurance athletes often train and compete in harsh environmental conditions prompting 

high sweat losses. During endurance exercise, body metabolism can increase by up to 20 

times the resting rate in order to support skeletal muscle contraction (Nadel, Mack, and 

Takamata 1993). The majority of this energy is released as heat which must be dissipated 

from the body in order to maintain a stable internal core temperature. The sweating 

response, whereby water is evaporated from the skin surface, is an important 

physiological mechanism by which to dissipate this heat to the environment, without 

which a continual rise in internal body temperature would occur, leading to hyperthermia 

and severely compromising exercise performance (Hargreaves and Febbraio 1998; 

Rehrer 2001; Nadel, Mack, and Takamata 1993). Sweat induced dehydration will occur 

if sufficient and appropriate fluid is not consumed resulting in a substantial decrease in 

plasma volume.  

There is a large body of literature to suggest that a loss of body weight between 2-7% 

due to dehydration, can significantly reduce exercise performance, particularly when 

exercise is performed in the heat (i.e. >30 ºC) (Shirreffs 2009). In addition to this, 

dehydration will increase the physiologic strain associated with exercise and negate the 

thermoregulatory advantages that are known to result from high aerobic fitness (Coyle 

2004). If dehydration is prolonged or severe, the athlete is at risk of more serious 

medical consequences such as heat stroke, resulting from impaired central nervous 

system control of thermoregulation.  
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The sodium loss that accompanies water loss through sweat has had much less attention 

in the literature. Work in this area has generally been focused on team based sports such 

as tennis, soccer, football and basketball. Endurance events can often last for in excess of 

12-15 hours in hot and humid conditions. Athletes participating in these events therefore 

represent a group who are at increased risk of fluid and electrolyte disturbances.  

Guidelines for the adequate replacement of the sodium lost through sweat are limited, 

often conflicting, and do not differ for athletes training and competing in different 

events. Lack of specific recommendations for athletes may lead to the inadequate 

replacement of salt losses in some endurance athletes (Valentine 2007; Montain, Sawka, 

and Wenger 2001). This is particularly the case for athletes who are training twice daily 

or for prolonged duration, with large sweat losses. Further research in this unique group 

is needed to allow for the development of more specific fluid and electrolyte guidelines 

for athletes competing in these events.  

The sweat rate of an athlete can be calculated simply and practically in large athlete 

groups by measuring weight loss over an exercise session. There are however, practical 

difficulties in estimating sweat sodium losses, as comprehensive sweat analysis in the 

laboratory is required for accurate assessment. Several studies in the literature have 

reported a linear relationship between increases in sweat rate and sweat sodium loss in 

untrained subjects (Cage and Dobson 1965; Buono, Ball, and Kolkhorst 2007; Buono et 

al. 2008). This information cannot be directly applied to athletes, due to the sweat gland 

adaptations that are known to occur with physical training such as sweat gland 

hypertrophy and an increase in output per gland. Sweat rates have been shown to be 

higher in athletes resulting in an increase in inter-individual sweat rate variation 

(Ichinose-Kuwahara et al. 2008).  

The aim of this study is to determine whether the linear relationship between sweat rate 

and sweat sodium concentration previously demonstrated in untrained subjects, is shown 

in the athlete population. It is hypothesized that there will be an increase in sweat sodium 

concentration with increases in sweat rate, therefore amplifying sweat sodium losses. 

With a greater understanding of the effect of sweat rate on sweat sodium loss, more 

specific sodium replacement guidelines may be developed for athletes competing in 

endurance events. Athletes with known high sweat losses, who are at an increased risk of 

heat related illness, need to be identified early so an appropriate fluid and electrolyte 

replacement strategy can be developed.    
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The key objectives of this study are: 

In a group of well trained endurance athletes: 

1. To investigate the effect of increases in exercise intensity on sweat rates and sweat 

electrolyte (sodium and potassium) concentrations during cycling exercise in a 

controlled environmental chamber. 

2. To investigate the relationship between sweat rate and sweat sodium concentration.  

3. To determine the variability in sweat rates and sweat electrolyte concentrations. 

4. To estimate daily sodium and potassium losses based on observed sweat rates to aid 

in the development of specific fluid and electrolyte replacement guidelines for 

endurance athletes. 
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4.2 Method 

4.2.1 Subjects 

Eighteen male well trained male triathletes (Age 37.9 ± 9.7 years, Weight 83.2 ± 

13.6kg, O2max 60.8 ± 9.4ml/kg/min) volunteered to be part of the study (Data 

shown in Table 10. All trials were conducted in the environmental chamber at Curtin 

University, Perth, Western Australia. The trials were conducted in January and 

February during the summer period. The climatic conditions at the study location are 

shown in Table 11. Subjects were recruited from triathlon and cycling clubs around 

Western Australia through advertising on the club websites and newsletters. Prior to 

the start of the investigation all subjects gave their voluntary, written informed 

consent to participate.  

Criteria for participation were: 

• Male between the ages of 18-50 years. 

• Must have been participating in at least 10 hours per week of moderate 

intensity cycling and/or running in the three months prior to the trial. 

• Have no known medical condition or taking any regular medication. 

Each subject was also asked to complete a pre-testing questionnaire determining 

demographic details and current training volume.  

This study was approved by the Curtin University ethics committee. 
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Table 10.  Physical characteristics of subjects involved in Study 2 (n=18).  

Note: Values are means ± standard deviation 

 

  Characteristic Value 

Age (years) 37.9 ± 9.7 

O2max ml/kg/min 60.8 ± 9.4 

Training (Hours per week) 16.2 ± 4.9 

Weight (kg) 83.2 ± 13.6 
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4.2.2 Climatic Conditions at the Study Location  

The study was conducted during all of January and the first two weeks in February. 

Table 11. below shows the seasonal weather averages for the study location in the six 

months prior to the commencement of the study.  

Table 11.  Mean minimum and maximum temperatures (ºC) and relative 

humidity (%) for Perth Western Australia in the four months prior to 

testing 

SOURCE: Western Australian Bureau of Meteorology  

  Month  Mean minimum 
temperature (ºC)  

Mean maximum 
temperature (ºC)  

Mean relative 
humidity (%) 

September  8.0 22.1 67 

October  9.7 25.1 58 

November  14.3 30.3 52 

December  15.8 30.5 50 

January 19.0 33.7 51 

February 20.8 34.9 53 
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4.2.3 Study Design 

 
Subjects were randomised into one of three groups for the experimental trials. Group 

1 began with a low intensity trial (60% max HR), Group 2 moderate intensity (80% 

max HR) and Group 3 with a maximal effort time trial. Groups were then crossed 

over so all subjects completed one trial at each of the exercise intensities in order to 

compare intra-individual differences as well as inter-individual differences (Figure 

10). Subjects completed one trial per week over three consecutive weeks. 

Before entering the climate chamber, all subjects were required to void their bladder 

and provide a urine sample for specific gravity analysis to verify that they were 

adequately hydrated (Usg <1.015).  

Figure 10. Study design, Study 2 
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4.2.4 Experimental Protocol 

Before the experimental trials all subjects were required to undergo an initial 

familiarisation trial where O2 max was estimated based on heart rate and work rates 

using the modified Ǻstrand nomogram (Astrand 1960). The aim of the 

familiarisation trial was to familiarise subjects with the testing equipment and 

procedures involved. One week following the initial trial subjects performed the first 

of 3 exercise trials of various intensities. Each of these trials were conducted one 

week apart. The three trials were performed in a climate chamber set to 35 degrees 

and 50% relative humidity (RH). These are similar climatic conditions to those 

encountered in Perth at the height of summer. All trials were conducted in the 

morning between 0600-0900 hours. The intensity of exercise for each of the trials 

varied from: 

 1) Low intensity (60% max HR) 

 2) Moderate intensity (80% max HR)  

3) High intensity – maximal intensity time trial.  

The trial order varied among subjects to minimise any effect of trial order. 

All subjects performed an incremental protocol of exercise using a cycle ergometer 

in the environmental chamber. All trials consisted of a 15-minute warm up at a 

workload estimated (from 220 minus age) to be approximately 50% of maximal HR 

followed by 15 minutes at one of the three intensities. Sweat was collected from the 

lateral aspects of both upper arms and at the midpoint on both thighs. 

The 15-minute sweat collection period was chosen for use in this study as it allows 

for sufficient time for the sweat collecting coils to be saturated with sweat. There 

have been few studies investigating the changes that occur in sweat rate and sweat 

composition over time. The majority of heat chamber studies investigating sweat rate 

and electrolyte loses have used a short duration protocol of between 15-40 minutes of 

heat exposure (Meyer et al. 1992; Bates and Miller 2008).  A recent long duration 

study (7h of exercise-heat stress) by Montain et al (2007) aimed to investigate the 

effect of sustained sweating on sweat mineral composition. The results of this study 

showed that sweat sodium, potassium and calcium losses during prolonged sweating 
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can be predicted from initial sweat composition (Montain, Cheuvront, and Lukaski 

2007).  

4.2.5 Statistical Analysis 

Subjects were randomized to one of three exercise intensity groups. Data were 

summarized as mean (± standard deviation) and tested for normality of distribution. A 

one-way repeated measures analysis of variance (ANOVA) was then used to detect 

differences in study outcomes (sweat rate, sweat sodium concentration and sweat 

potassium concentration) amongst the three exercise intensity levels. Post hoc 

Bonferroni adjusted t-tests were used for pairwise comparisons. Pearson product-

moment correlation was used to assess the relationships between sweat rates and sweat 

sodium concentration. For all analysis the 0.05 level of significance was used. All 

statistical analysis was performed using SPSS for Windows (version 18.0, SPSS Inc., 

Chicago, IL, USA) 

4.3 Results 

Sweat Rates 

 

Results from the one-way repeated measure ANOVA showed a significant effect of 

exercise intensity on sweat rate (p<0.001). At the lowest exercise intensity level the 

mean ± SD sweat rate (L/h) was 1.0 ± 0.3 (95% CI: 0.8, 1.2) compared to 1.48 ± 0.3 

(95%CI: 1.3, 1.6) at the moderate intensity level and 1.9 ± 0.3 (95%CI: 1.7, 2.0) at 

the highest exercise intensity level. This data is presented in Table 12. and Figure 

11). There was a large inter-individual variability in sweat rates across the three trials 

with the coefficient of variation calculated at 27%, 25% and 21% in the low, 

moderate and high trials, respectively.  

Sweat sodium concentration 

There was a significant effect of exercise intensity on sweat sodium concentration in 

both the arm and leg sweat collection sites between the low and high exercise 

intensity trials (p<0.001). At the lowest exercise intensity the mean ± SD sweat 

sodium concentration (mmol/L) in the arms and legs respectively was 32.7 ± 15.1 

(95% CI: 25.2, 40.1) and 28.5 ± 10.1 (95%CI: 23.6, 33.6) compared to 51.7 ± 27.7 
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(95%CI: 37.9, 65.5) and 46.8 ± 20.4 (95%CI: 36.6, 56.9) in the arms and legs in the 

high intensity trial (shown in Figure 13). There was no significant difference in the 

sodium concentrations between the low and moderate or moderate and high intensity 

trials. 

There was a large individual variation in sweat sodium concentrations across the 

three trials at varying intensity, with the coefficient of variation ranging from 35%-

45%, indicating a high degree of between subject variability. 

There was also a significant difference between arm and leg sweat sodium 

concentration across each of the three trials. Sodium concentration in the arms was 

consistently higher than the legs, however the difference was statistically significant 

(p<0.05) in the low intensity trial only.  

Sweat rate vs Sweat sodium relationship 

Within the range of sweat rates studied there was a significant positive linear 

relationship (p<0.001) between sweat rate (L/h) and sweat sodium concentration 

(mmol/L) with a Pearson’s correlation coefficient R =0.479 ( shown in Figure 12). 

Based on the R2 value of 0.229, approximately 23% of the variability in sweat 

sodium concentration can be explained by changes in sweat rate.  

Sweat potassium concentration 

There was no significant difference (p>0.05) in sweat potassium concentration from 

the arms or legs among any of the three exercise intensity trials (Table 12.   

 

Estimated sweat electrolyte (sodium and potassium) losses (mg/h)  
The mean ± SD estimated electrolyte losses (mg/h) are displayed in Table 13. There 

was a significant difference between estimated sodium and potassium losses between 

the low, moderate and high intensity trials. Mean estimated sodium losses in the high 

intensity trial were 3 times higher than estimated losses from the low intensity trial. 
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Mean estimated potassium losses in the high intensity trial were 1.5 times higher 

than the low intensity trial.  
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Table 12.  Sweating rate, sweat sodium and potassium concentration in each 

of the exercise trials of varying intensity. 

 

*Repeated measures ANOVA analysis completed for sweat rate and sweat 
electrolyte (sodium and potassium) concentrations for arms and legs and the average 
of arms and legs for all subjects (n=18).  

Values are means ± SD.  

Note: 1Significantly different using repeated measures ANOVA (p<0.05); 
2Significantly different using repeated measures ANOVA (p<0.01); 3Significantly 
different between low and moderate intensity trial using post hoc pairwise 
comparisons (p<0.01); 4Significantly different between moderate and high intensity 
trial using post hoc pairwise comparisons (p<0.01); 5Significantly different between 
low and high intensity trial using post hoc pairwise comparisons (p<0.01) 

Variable* Low Moderate High 

Sweat rate 
(L/h)2 

1.0±0.33, 5 1.5 ± 0.34 1.9 ± 0.4 

Sweat [Na+] 
arms 
(mmol/L)1 

32.7 ± 15.15 42.3 ± 18.2  51.7 ± 27.7 

Sweat [Na+] 
legs (mmol/L)1 

28.5 ± 10.15 39.7 ± 16.7 46.8 ± 20.4 

Sweat [Na+] 
average 
(mmol/L)1 

30.6 ± 11.45 41.0 ± 17.1 49.3 ±22.9 

Sweat [K+] 
arms (mmol/L) 

8.4 ± 2.4 

 

7.3 ± 2.0 

 

7.1 ± 2.6 

Sweat [K+] legs 
(mmol/L) 

10.3 ± 3.0 9.6 ± 3.8 8.7 ± 3.6 

 

Sweat [K+] 
average 
(mmol/L) 

9.4 ± 2.1 

 

9.1 ± 2.6 

 

7.9 ± 2.5 
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Table 13.  Estimated sweat electrolyte losses (mg/h)  

 Sodium  Potassium  

Estimated 
sweat 
losses^ 
(mg/h) 

Low 
Intensity 

705.9 ± 333.41 358.5± 94.11 

Moderate 
Intensity 

1389.2 ± 646.22 484.9 ± 166.52 

High 
Intensity 

2196.3 ± 1305.53 580.6 ± 220.53 

 
^Estimated mean sweat sodium loss (mg/h) calculated based on the sodium 
concentration and the sweat rate recorded at each intensity level for each individual. 
1 Low intensity trial is significantly different to the moderate intensity trial 2 
Moderate intensity trial is significantly different to the high intensity trial 3 Low 
intensity trial is significantly different to the high intensity trial 

 
Values are mean ± SD 
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Figure 11. Mean sweat rate (L/h) in the low (60% maxHR), moderate 

(80%maxHR) and high intensity (Maximal effort) exercise trials as part 

of Study 2. 

Graph displays mean ± Standard error 
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Figure 12. Scatter plot illustrating a statistically significant (p<0.001) 

positive linear association between sodium concentration (mmol/L) and 

sweat rate (L/h)      
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Figure 13.   Sweat sodium concentrations (mmol/L) in the low (60%max 

HR), moderate (80% max HR) and high intensity (Maximal effort) 

exercise trials.  

Graph displays mean ± Standard error 
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Reliability and Repeatability of the Sweat Collection Method 
 

The sweat collection methodology was tested for reliability and repeatability by 

comparing sweat sodium and potassium values collected on the left side of the body 

with those collected on the right.  

There was a strong linear relationship between right and left samples in both the 

arms and legs for both sodium and potassium values. The correlation for right and 

left sodium samples were consistently stronger than those for potassium with 

Pearson’s correlation coefficient values between 0.83 – 0.95 for sodium, and 0.69-

0.85 for potassium (Table 14.  

The consistency of the results provides evidence for the reliability and repeatability 

of the sweat collection methodology.  
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Table 14.  Mean, standard deviation and Pearson product-moment correlation 

comparing sweat sodium concentration (mmol/L) collected from the arms 

and legs on the right and left sides of the body of each individual subject.  

 
 

Intensity Mean ± SD Correlation 
(r value) 

Left Right 

Low Arms 32.5±14.5 32.8±13.4 0.94 

Legs 28.9±12.5 26.1±8.9 0.83 

Moderate Arms 40.3±17.0 41.6±19.6 0.95 

Legs 39.9±17.5 38.6±14.7 0.89 

High Arms 52.5±26.4 50.5±28.2 0.92 

Legs 47.3±19.4 46.0±20.7 0.93 
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Table 15.  Mean, standard deviation and Pearson product-moment correlation 

comparing sweat potassium concentration (mmol/L) collected from the 

arms and legs on both sides of the body of each individual subject.  

 

Intensity Mean ± SD Correlation 
(r value) 

Left Right 

Low Arms 8.6±2.4 8.5±2.5 0.85 

Legs 10.2±2.9 10.0±3.6 0.75 

Moderate Arms 7.1±2.4 7.8±1.9 0.69 

Legs 9.4±2.9 9.2±3.2 0.70 

High Arms 6.9±2.6 7.2±2.7 0.81 

Legs 9.1±3.5 8.3±3.2 0.74 
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4.4 Discussion 

This study investigated the effect of increases in exercise intensity on sweat rates and 

sweat sodium and potassium concentrations. To the best of our knowledge this study 

is the first to document the sweat rate and sweat sodium relationship in an athlete 

group with average sweat rates in excess of 1L/h. 

The major findings from this study are:  

1) A statistically significant (p<0.001) fair degree (R = 0.479), positive linear 

inter-individual relationship between sweat rate and sweat sodium 

concentration (mmol/L) was shown.  

2) A statistically significant intra-individual increase in sweat sodium 

concentration (mmol/L) was shown with increases in exercise intensity from 

the low intensity trial to the maximal effort trial.  

3) There was a significant inter-individual variation in both sweat rates (L/h) 

and sweat sodium and potassium concentrations (mmol/L) at the same 

relative exercise intensity in the 18 subjects tested.  

Relationship between Sweat Rate and Sweat Sodium Concentration 

The statistically significant increase in sweat sodium concentration with increasing 

sweat rates shown in this study supports previous work conducted in untrained 

subjects (Buono, Ball, and Kolkhorst 2007; Buono et al. 2008; Inoue et al. 1998).  

Both of these studies, however, have demonstrated a much stronger relationship 

(R=0.73) than was displayed in the results of the present study (R=0.479). This may 

be explained by the large inter–individual variation in both sweat rate and sweat 

sodium concentrations in the 18 athletes tested.  Sweat rates ranged from 0.6L/h to 

2.6L/h and sweat sodium concentration from 13mmol/L to 103mmol/L, much greater 

than those previously reported in untrained subjects. These large variations are 

similar to what has previously been reported by Maughan et al (2005) and Sherriffs 

et al (2005) in male professional football players.  

Several factors may account for the wide variation in both fluid and electrolyte losses 

including, the state of heat acclimatisation, habitual salt intake and aerobic fitness 

level (Kirby and Convertino 1986; Allsopp et al. 1998). Physical training has been 

shown to result in significant increases in the rate of sweat loss due to increases in 
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both the size and density of sweat glands as well as an increase in the output per 

gland (Buono and Sjoholm 1988; Ichinose-Kuwahara et al. 2008; Ichinose-Kuwahara 

et al. 2010). An individual’s resting aldosterone concentration, influenced by habitual 

salt intake also influences sweat sodium concentration (Yoshida et al. 2006). At low 

levels of sodium intake there is increased aldosterone synthase activity (Williams and 

Williams 2003). Aldosterone is postulated to be the principal regulator of ductal 

sodium reabsorption, therefore basal levels are potentially increased in athletes 

consuming a low sodium diet as a mechanism to conserve plasma sodium (Allsopp et 

al. 1998; Hargreaves et al. 1989). The only data available to suggest that sweat 

sodium concentration is reduced in athletes was published in a textbook table which 

is not cited (Wilmore and Costill 2004). However, a recent study by Hamouti et al 

(2011) questions this information as exercise intensity level was not given. This is 

important information as exercise intensity determines sweat rate which in turn 

affects sweat sodium concentration (Buono et al. 2008). Hamouti et al (2011) 

investigated sweat sodium concentrations during exercise in the heat in a group of 

aerobically trained compared to untrained subjects. Results showed that when 

normalized for sweat rate, high aerobic fitness does not reduce sweat sodium 

secretion or enhance Na+ reabsorption.  

The physiological mechanism responsible for the increase in sodium concentration 

with increases in sweat rate is currently unknown. However, there are several 

possible explanations for these findings. The human eccrine sweat gland consists of 

two distinct regions involved in both the production and reabsorption of sodium and 

chloride ions. The secretory coil produces an isoosmotic precursor sweat, while the 

sweat duct actively reabsorbs sodium from the precursor sweat throughout the 

passage of sweat to the skin (Shibasaki, Wilson, and Crandall 2006). This 

reabsorption depends on the active transport of sodium into the interstitial fluid via 

Na+ - K+ ATPase which is localized on the basolateral membrane of the ductal cells.  

At low levels of sweat production there is ample time for active sodium reabsorption 

to occur. At higher levels of sweat loss there is insufficient time for complete 

reabsorption (Taylor 1986). This mechanism is supported by the results of the 

present study. At higher rates of sweat loss there was a significantly greater 

concentration of sodium in sweat. The in vivo study by Buono et al (2008) provides 

further support for this mechanism. This study demonstrated that with higher sweat 
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rates, the rate of sodium secreted from the secretory coil is greater, while the 

proportion reabsorbed is decreased, leading to an overall increase in the sodium 

concentration of the sweat on the skin surface.  

Several previous investigations have hypothesized that Na+ reabsorption would 

become saturated at high sweat rates, therefore resulting in elevated sweat Na+ 

(Shamsuddin et al. 2005; Buono, Ball, and Kolkhorst 2007). The data presented in 

this study does not support this mechanism as there was a proportional increase in 

sweat sodium concentration from the low to moderate intensity trial (25% increase) 

and the moderate to high intensity trial (21% increase). Average sweat rates ranged 

from 1.0L/h up to nearly 2L/h without a plateau effect being demonstrated. In order 

to confirm whether a saturation point does in fact exist at higher levels of sweat loss, 

a study investigating the sodium secretion rates and reabsorption rates in athletes 

with high sweat rates would need to be performed.   

Results of the present study showed on average a 60% increase in sweat sodium 

concentration (mmol/L) from the low to the high intensity trial. This increase was 

demonstrated in 14 of the 18 athletes tested. The 4 athletes who did not exhibit this 

relationship had higher sweat rates (1.7-2.2L/h), lower sweat sodium concentrations 

(13-33mmol/L) and higher sweat potassium concentrations (10-14mmol/L) than the 

mean data. It is possible that these 4 athletes had superior thermoregulatory 

adaptations potentially as a result of acclimatisation to the heat.  Heat acclimatisation 

is known to result in an increased volume of dilute sweat believed to be due to 

hormonal adaptations involving plasma antidiuretic hormone (ADH) and 

aldosterone. (Collins and Weiner 1968; Kanikowska et al. 2010). Aldosterone targets 

the epithelia of the kidney, colon and sweat gland. At the level of the kidney, 

aldosterone acts on the cortical portion of the renal collecting ducts to increase 

sodium absorption and potassium excretion. The role of aldosterone at the level of 

the sweat gland is not clear. However it has been suggested that different isoforms of 

the mineral corticoid membrane receptor for aldosterone may be present in the 

kidney and the sweat gland, further work is required to elucidate the aldosterone 

effect on the sweat gland (Lee, Miller, and Buono 2010).  

Another potential explanation for these findings is that these 4 athletes were in 

negative sodium balance. Allsopp et al (1998) demonstrated that a chronic low 
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sodium diet potentiates the aldosterone effect associated with heat exposure, further 

increasing sodium reabsorption. A chronic low sodium diet and acclimatisation to the 

heat will potentiate aldosterone secretion further increasing sodium reabsorption.  

Regional variation in sweat electrolyte concentrations 

From a physiological perspective another interesting finding from this study was that 

there was repeatedly shown to be a lower sweat sodium concentration in the legs 

compared with the arms. This was statistically significant in the low intensity trial 

only, however there was a strong trend across all intensity levels. This finding has 

been reported in previous work by Bates et al (2008). The mechanisms believed 

responsible for this finding is not entirely understood however, could be explained by 

the difference in metabolic heat production in the arms and legs during cycling 

exercise. This relates again to the effect of training on sweat gland adaption. The 

athletes involved in this study were triathletes with the majority of their training 

consisting of cycling and running. It is therefore possible that the sweat glands in the 

legs have adapted to repeated training stress to a greater extent that the relatively 

inactive arms, resulting in a greater capacity to reabsorb sodium. In this study the 

volume of sweat from the arms and legs was not collected and weighed. We cannot 

therefore comment on any sweat rate differences between these two regions. A study 

by Miyagama (1988) reported that the sweat rate on the thigh was significantly 

higher than on the arms in athletes who trained the lower limbs repetitively. This is a 

potential area for future research. 

To date there has been no study designed to investigate whether sweat rate and 

composition varies in athletes who predominantly exercise the upper limbs regularly. 

Most sweat composition studies in the literature have used cycling as the 

predominant form of exercise. It would be interesting to determine whether 

predominantly using the arm muscles would alter sweat composition. This would 

give further indication as to the mechanism behind the regional sweat rate and 

composition variation.  

Estimation of sodium and potassium losses in sweat 

The extent of sweat electrolyte losses is dependent on sweat electrolyte concentration 

in combination with the volume of sweat lost. Magnitude of sweat sodium losses can 

vary significantly between individuals due to large variation in these two variables. 
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Despite this, in the present study there was on average a 70% increase in total 

sodium loss (mg/h) from the low to the high intensity trial. There was however 

significant individual variation in estimated sodium losses ranging from 600mg/h up 

to over 6000mg/h in one athlete in the high intensity trial. This information has 

practical implications for fluid and sodium intake in athletes. The current 

recommendations for sodium replacement state the need for adequate replacement, 

however, do not quantify potential losses in a range of athletes or discuss appropriate 

methods for replacement. Fluid and sodium losses are obviously higher when 

performing moderate-high intensity exercise, however, if long duration (greater than 

4 hours) exercise is performed at low intensity, losses may be equally high or 

potentially greater.  

The large coefficient of variation observed in this study demonstrates the wide 

variability that exists between individuals in relation to both sweat rate and sodium 

concentration. This further highlights the difficulties associated with developing 

blanket guidelines for fluid and electrolyte intake for all athletes and further supports 

the need for advice to be specific to the needs of the individual. Although the present 

study employed a short, 15 minute sweat collection protocol, the results from the 

long duration study by Montain et al (2007) showed that it is possible to make 

predictions about the sodium and potassium losses over time from initial sweat 

electrolyte concentrations. Therefore we are able to predict that over a 4 hour 

exercise session, an athlete sweating at 0.9L/h with a sodium concentration of 

13mmol/L will lose approximately 1.2g of sodium; this quantity will easily be 

replaced in a normal diet. At the other end of the spectrum, a high salt sweater may 

lose considerably more than this. For example, in the low intensity trial in this study, 

completed at a workload that is possible to maintain for a 4 hour period, one subject 

had a sweat rate of 1.5L/h with a sodium concentration of 33mmol/l. This would 

equate to a loss of approximately 4.5g sodium and would require an active sodium 

replacement strategy in order to prevent a severe deficit in total body sodium, 

particularly if training was repeated daily.   

Adequate fluid and sodium replacement is vital to ensure complete rehydration post 

exercise, this is particularly important in athletes incurring large sweat losses during 

exercise who will soon return to training or competition. Despite this information, 

several recent studies in professional level players have shown that athletes regularly 



   
 

        114 

return to training or competition in a state of hypohydration, indicating inadequate 

post exercise rehydration strategies (Hamouti et al. 2010; Volpe, Poule, and Bland 

2009). Ingesting water alone is not sufficient to restore lost sweat volume due to the 

rapid fall in plasma osmolality leading to an decrease in ADH production, 

consequently increasing urine output (Shirreffs and Maughan 1998). The addition of 

sodium to an electrolyte replacement drink restores extracellular fluid volume while 

maintaining ADH levels, therefore preventing diuresis (Rehrer 2001). Sodium has 

also been shown to increase thirst and the taste appeal of a drink, therefore 

significantly increasing voluntary rehydration (Clapp et al. 2000).  

The current American College of Sports Medicine (2007) recommendations state the 

importance of replacing the sodium lost in sweat to ensure euhydration. However, 

unlike the recommendations for fluid replacement, which are based on body weight, 

environmental conditions and running speed of an athlete, the sodium guidelines are 

not specific to the needs of the individual athlete. It is difficult to provide specific 

sodium intake recommendations because of the large variation in sodium losses due 

to factors such as genetics, dietary intake, physical fitness and heat acclimatisation 

state (Sharp 2006). A comprehensive laboratory assessment of electrolyte losses is 

the ideal scenario in developing a fluid and electrolyte regime, this is obviously not 

practical for all athletes (Valentine 2007).  Therefore it may be useful to advise 

athletes on ways to estimate their own sweat electrolyte losses and therefore 

formulate replacement strategies. The results of this study indicate that in an athlete 

group, predicting sweat sodium concentrations based on the sweat rate of an athlete 

may be appropriate. More research in a larger athlete group is required to confirm 

these results.  

It has been suggested that athletes may be able to self-assess their sweat composition 

by subjectively identifying the salty taste of sweat, through the observation of salty 

stains on clothing or from eye irritation when sweat drips into their eyes (Maughan 

and Shirreffs 2010; Maughan and Shirreffs 2008). To date no studies have been done 

to assess the validity of these measures. Combining these indicators with sweat rate 

data and other subjective information such as the prior history of cramping may be 

practical for use in a field situation. The development of a multifaceted questionnaire 

to self-assess sodium losses may be a direction for future research. This may be 

useful to subjectively identify subjects with high sweat sodium losses and if this tool 
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is determined to be effective, could potentially be used by coaches, athletes and 

others who are working in thermally stressful environments. 

From a practical viewpoint it is appropriate to recommend increased dietary sodium 

intake in athletes training or competing in the heat on a daily basis. Given that the 

public health message is to reduce sodium intake it is important that athletes are 

aware of their increased needs. In order to meet the high sodium requirements of 

athletes with high sweat sodium losses, adding salt to meals, consuming an 

electrolyte replacement drink and consuming high salt snacks is warranted. This 

information may also be pertinent to other groups such as those in military training 

or manual labour where endurance exercise or work is undertaken in harsh 

environmental conditions for prolonged periods.  

Limitations of the study 

Although this research was carefully prepared there are some limitations that should 

be addressed. Eighteen subjects were recruited for this study; this number could have 

been increased to improve the power of the study. It was however difficult to recruit 

additional subjects who met the selection criteria particularly criteria relating to 

training volume completed in the three months prior to the study commencement. It 

is important to note that a small sample size reduces the chance of detecting a true 

effect as well as potentially overestimating the effect size.  

 As discussed in the chapter 3 (Methodology used in the Heat Chamber studies) the 

Whole Body Washdown (WBW) technique is considered to be the criterion method 

for accurate determination of whole body sweat losses (Baker, Stofan et al, 2011). 

The laboratory facilities used in this study did not allow for this collection method to 

be used. Regional skin surface collection, the method used in this study, while often 

overestimating both [Na+] and [K+], has been reported to be a valid method of sweat 

collection (Baker et al. 2009b). 

A further limitation of the present study was that regional sweat rates were not 

assessed. This is something that has not previously been done in our laboratory, as 

the macroduct sweat collection method is not suitable for estimation of regional 

sweat rates as it is not possible to guarantee that all of the sweat secreted by the area 

under the macroduct, is collected by the collection coil. Other methods for 

determining regional sweat rates would involve determination of the surface area of 
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each region or via a washdown technique, both of these methods were not practicable 

within the scope of this project. This is however a potential area for future research, 

as it would provide further information on the changes in sweat rate and composition 

with changes in exercise intensity across various body sites.  

As has been discussed, the long duration study by Montain et al (2007) reported that 

sweat sodium and potassium concentration over a long duration training session 

could be predicted from initial sweat electrolyte concentrations. We would however 

have been able to predict sweat electrolyte losses over a long duration exercise 

session with more accuracy if the duration of sweat testing had been longer.  

The estimation of 02max using the Astrand and Rodahl protocol could also be seen 

as a limitation of the present study. Using a direct method of 02max assessment 

would have enabled us to modify workload more accurately. The estimation of          

02max was deemed appropriate for this study as the absolute workloads were not 

critical and were designed to produce a range of sweat rates (ranging from low to 

very high).  

While every effort was made to ensure that the sweat collecting devices were placed 

in the same position on each subject, there was potentially some minor variation, as 

placement site was not marked up prior to study commencement.   
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4.5 Conclusions 

1. There is a fair positive linear relationship between sweat rate and sweat 

sodium concentration in athletes. It is therefore appropriate to derive sodium 

intake requirements from sweat rate if more accurate methods of assessing 

sweat sodium are not practical. 

2. With increases in exercise intensity there is an increase in both sweat rate and 

sweat sodium concentration in athletes. Fluid and electrolyte requirements 

may therefore vary depending on the type and intensity of exercise.  

3. There is considerable variation in sweat rate and sweat sodium loss in athletes 

performing exercise of similar intensity and duration. This emphasizes the 

importance of an individual approach to fluid and electrolyte replacement. 

4. Some athletes have the potential to lose large amounts of sweat sodium in 

training on a daily basis. The current guidelines for sodium intake for the 

general population (2300mg/day) may not sufficient to replace these losses. 

Recommendations for replacement in athletes include consuming an 

electrolyte replacement drink combined with choosing high salt snacks and 

adding additional salt to meals.  
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Chapter 5: Heat chamber study # 2: The 

effects of physical training and 

seasonal acclimatisation on fluid and 

electrolyte losses during cycling 

exercise in the heat 

5.1 Introduction 

Heat acclimation refers to the physiological adaptation of the human body to heat 

(Rowlinson et al. 2013). It has been well recognised that when a person becomes heat 

acclimatised by exposure to increased temperatures for several days, there are a number 

of physiological adaptations that take place enabling them to thermoregulate more 

efficiently (Wendt, Van Loon, and Lichtenbelt 2007). When working or exercising in 

thermally stressful environments these adaptations serve to reduce physiological strain 

and maintain thermal comfort while increasing tolerance during work in the heat 

(Cheung and McLellan 1998). Adaptations involve both the cardiovascular and 

thermoregulatory systems where heart rate, core body and skin temperature decrease 

while blood volume increases (Cheung and McLellan 1998; Buono et al. 2011). 

Expansion of plasma volume occurs very rapidly with some authors reporting major 

changes in plasma dynamics within the first 4-6 days of heat exposure (Senay and Kok 

1976; Cheung and McLellan 1998).  

Heat acclimatisation also produces several adaptations in sweating response that serve to 

increase the rate of heat dissipation via sweat evaporation. Several studies in untrained 

individuals have shown that following a period of heat acclimatisation there is a 

significant increase in the secretory capacity of the eccrine sweat gland as well as 

morphological changes to the gland itself (Sato et al. 1990; Peter and Wyndham 1966). 

A reduction in the core temperature threshold at which sweating is initiated, an increase 

in sweating rate as well as a reduction in the sodium concentration of secreted sweat, has 
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been observed (Bates and Miller 2008; Taylor 1986; Kirby and Convertino 1986). The 

physiological mechanism responsible for these changes are not entirely understood, 

however, the increased sweat rate is potentially due to sweat gland hypertrophy (Sato 

and Sato 1983) or improved efficiency (Collins, Crockford, and Weiner 1966; Lee et al. 

2010).  

The electrolyte content of secreted sweat has also been shown to alter after a period of 

heat acclimatisation. Bates and Miller (2008) investigated the effect of seasonal heat 

acclimatisation on sweat sodium concentration in 29 untrained subjects. Results showed 

a significant decrease in sodium concentration (Winter: 63.8mol/L; Summer: 

44.7mmol/L) at the end of the summer period. Therefore, one adaptation resulting from 

heat acclimatisation is thought to be the production of a more dilute sweat (Buono, Ball, 

and Kolkhorst 2007). This sodium conservation mechanism is believed to be due to the 

increased reabsorptive capacity of the sweat duct post acclimatisation, possibly via the 

action of aldosterone(Nielsen et al. 1993; Francesconi, Sawka, and Pandolf 1983). Some 

authors have reported that the increase in aldosterone concentration is only apparent in 

those subjects with salt deficiency therefore augmenting the aldosterone response 

(McCance 1936; Smiles and Robinson 1971). It has been since demonstrated, however, 

that a salt deficiency is not necessary (Davies et al. 1981). There is also some evidence 

to suggest that the sweat glands may be more sensitive to aldosterone when a person is 

heat acclimatised (Kirby and Convertino 1986). Aldosterone concentration has also been 

shown in two separate studies to be elevated at the end of the summer period. This is 

believed to be a compensatory mechanism in order to minimise sodium and water loss 

and therefore prevent electrolyte disturbance and dehydration (Kanikowska et al. 2010; 

Bain and Jay 2011).  

Aldosterone is a steroid hormone that acts directly on the epithelia of the kidney, colon 

and sweat gland in order to regulate sodium reabsorption and potassium secretion. Few 

studies have investigated the effect of aldosterone at the level of the sweat gland, 

therefore the role that aldosterone plays in sweat sodium conservation and potassium 

excretion is relatively unknown. The aim of part A of this study is to investigate the 

effect of seasonal heat acclimatisation on sweat sodium and potassium loss in a group of 

well-trained endurance athletes. Based on the proposed mechanisms relating to 

aldosterone action it is postulated that at the end of summer when subjects are heat 

acclimatised, aldosterone concentration will be at its maximum, leading to a decrease in 
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sweat sodium concentration and increase in potassium concentration. With a better 

understanding of fluid and electrolyte loss in sweat, accurate advice regarding fluid 

replacement can be provided to athletes training in the heat.  

The current fluid and electrolyte replacement guidelines for athletes do not vary 

depending on an athlete’s acclimatisation state. In addition to this, Maughan and 

Shirreffs(2010) have recently reported that many athletes are incorrectly informed that 

their need for fluid consumption decreases as they become accustomed to the heat. The 

studies that have been performed in untrained subjects in this area have clearly identified 

the need to increase fluid requirements when heat acclimatised due to the enhanced 

sweating response. It is also known that if an athlete becomes dehydrated, the improved 

ability to tolerate heat developed through the heat acclimatisation process will disappear 

completely (Sawka and Pandolf 1990). Educating athletes on the importance of adequate 

fluid intake is vital in preventing dehydration and maintaining performance.  

The adequate replacement of sweat potassium loss in athletes has received very little 

focus in the recent literature. The issue as to whether potassium supplementation is 

necessary in heavy sweaters training in hot weather needs consideration particularly 

given the potential link between deficiency and skeletal muscle and cardiovascular 

performance (Knochel, Foley, and Walker 1970). To our knowledge, no previous study 

has investigated the effect of seasonal heat acclimatisation on sweat potassium loss in 

endurance trained athletes. The documentation of potassium losses in athletes at different 

time points within the year will enable more accurate replacement guidelines to be 

developed.  

Highly trained endurance athletes have been shown to display similar thermoregulatory 

adaptations to those of heat acclimatised individuals (Gisolfi and Robinson 1969).  There 

is some controversy in the literature as to whether physical training or fitness are 

adequate substitutes for heat exposure. The mechanism response for this is believed to be 

related to the effect of physical training on sweat gland sensitivity and a decrease in 

sweating temperature threshold (Roberts et al. 1977).  It has also been shown that 

individuals with low to moderate aerobic fitness may experience a greater benefit from a 

period of heat acclimatisation than those individuals with a high level of aerobic fitness 

(Caderette et al. 1984). Therefore, athletes who are highly trained may have less adaptive 

potential than their untrained or moderately trained counterparts (Garrett et al. 2011). 
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Few studies have examined differences in sweat composition between trained and 

untrained individuals.  Major limitations of the few studies that have been conducted in 

this area are; minimal differences between the O2max of the trained and untrained 

subjects selected, and small sample sizes. Additionally, all previous investigations have 

used a heat acclimation protocol over 1-2 weeks to induce heat acclimation. To the best 

of our knowledge no previous study has investigated the separate and combined effects 

of aerobic fitness and seasonal heat acclimatisation on sweat rate and electrolyte losses.  
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This study was designed to investigate the following questions: 

1) What are the effects of seasonal heat acclimatisation on sweat rates, sweat sodium 

and potassium loss in endurance trained athletes? 

2) Should fluid and electrolyte guidelines for athletes consider the heat acclimatisation 

status of an athlete? 

3) Do subjects with a low level of aerobic fitness demonstrate a greater magnitude of 

improvement (sweat gland adaptation) with heat acclimatisation compared to 

subjects with high aerobic fitness? 
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5.2 Methods 

5.2.1 Subjects 

Two separate groups were randomly selected for this study. Group one consisted of 

26 (15 male, 11 female) well trained endurance triathletes. Group two was made up 

of 22 (9 male, 13 female) untrained subjects. All trials were conducted in the 

environmental chamber at Curtin University, Western Australia. Trial one in both 

groups was conducted at the end of winter (August/September) and trial two at the 

end of summer (February/March).  

  Criteria for participation were:  

Group One (Endurance athletes): 

• Age range between 18-50 years  

• Completing at least 10 hours of moderate - high intensity exercise per week  

• No expected change in training volume over the 9 months duration of the 

study 

• Have no known medical condition or taking any regular medication  

Group Two (Untrained subjects): 

• Age range between 18-50 years  

• Completing  0 - 5 hours of low - moderate intensity exercise per week  

• No expected change in training volume over the 9 months duration of the 

study 

• Have no known medical condition or taking any regular medication  

The athletes in Group 1 were recruited from numerous triathlon clubs around Perth. 

Recruitment was done through advertising on a local triathlon online forum as well 

as through various coaches around Perth. Subjects in Group two were recruited 

through a volunteer program run through the Nutrition department at Curtin 

University. Prior to the start of the investigation all subjects gave their voluntary, 

written, informed consent to participate.  
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Each subject was also asked to complete a pre-testing questionnaire determining 

demographic details of the subjects.  

Prior to initiating this investigation, approval was obtained from the Curtin 

University Ethics Committee.  

5.2.2 Experimental Protocol 

The 48 subjects (26 trained and 22 untrained) underwent 2 separate trials in the 

environmental chamber at Curtin University. Trial one was conducted at the end of 

summer (February/March), trial two was conducted at the end of winter 

(September/October). Each subject participated in 2 testing sessions on separate days 

(separated by one week) during both trial periods. Testing session one was a 

familiarization trial where the testing protocol was explained to the subjects.             

O2max was also estimated during this session from heart rate and work rate using 

the modified Åstrand nomogram (Astrand 1960). Testing session two consisted of 

approximately 40 minutes of moderate intensity cycling at 70% of estimated 

maximal heart rate in a hot and humid environment (35ºC, 60% relative humidity 

(RH)) prompting extensive sweat losses. The temperature and humidity of the 

environmental chamber was continually monitored in order to minimise fluctuations. 

Athletes were tested at the same time of day for both summer and winter testing. All 

trials were conducted in the morning between 6am and 11am.  

On arrival at the laboratory for testing session two subjects voided their bladders and 

provided urine samples for analysis. The samples were used immediately to assess 

the subject’s pre-exercise hydration status using urine specific gravity monitoring. 

Atago hand held clinical refractometers were used (Atago instruments: Hand held 

urine refractometer). Each subject was weighed using scales (Ohaus Corporation, 

Model CW-11) accurate to the nearest 0.01kg. Subjects were instructed to wear 

lightweight shorts and singlets for the weighing. Subjects then re-dressed in cycling 

shorts and attached a Polar heart rate monitor (model S710i) transmitter belt to the 

chest before entering the environmental chamber. For each subject a work rate was 

set to elicit a HR of 70% of the estimated maximal heart rate (220-age). Heart rate 

was recorded at 5-minute intervals throughout the testing session to ensure that the 

required work rate was being maintained.  
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Once in the chamber subjects were reminded of the testing protocol. Subjects then 

mounted their bikes (Monark cycle ergometer) for the 40-minute session. The seat 

height of the bikes was individually set in order to produce maximum pedaling 

efficiency. After the initial 20 minutes of cycling, athletes were asked to stop cycling 

for two minutes while sweat collecting devices were placed on the arms and legs of 

all subjects. These were positioned bilaterally on the lateral aspects of the upper arm 

and on the anterior aspects of the thigh approximately midway down the femur. The 

collecting devices (Wescor) were secured to the limbs after the areas had been 

shaved and sterilized with alcohol swabs. Once the devices had been securely 

attached subjects continued to cycle for a further 20 minutes or until each of the four 

collecting devices had been filled with sweat. The devices were continually 

monitored during cycling to ensure that the tension on the straps had not altered and 

that sweat was being successfully collected in the ducts.  

On completion of each exercise session the sweat collecting devices were removed, 

placed in individually sealed labeled plastic bags. Subjects were then instructed to 

immediately shower without wetting their hair, towel dry thoroughly and refrain 

from drinking or urinating. Each subject was then individually weighed in the same 

clothing as the pre-exercise body weight measurement. Sweat rate (mL/min) was 

calculated from the weight loss of the subjects over time.  

The same protocol described above was conducted in the winter months to 

investigate differences between fluid and electrolyte losses over the two seasons as 

well as to investigate the effect of training on these losses.  

At the end of the summer period all subjects were assumed to be heat acclimatised as 

they had been exposed to an Australian summer. The degree of of acclimatisation 

would depend on the amount of time the subject habitually spent outdoors, this was 

not controlled for in this study. Similarly at the end of winter all subjects were 

assumed to be unacclimatised. No subjects left Perth for any substantial length of 

time during the study period. 
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5.2.3 Statistical Analysis 

Two tailed paired samples t-tests were used to examine the difference in sweat rate and 

electrolyte losses between summer and winter periods for both trained and untrained 

groups, respectively. Independent samples t tests were used to detect the difference in 

sweat rate and electrolyte losses between trained and untrained groups for summer and 

winter periods respectively.  Mixed design repeated measures analysis of variance was 

used to compare the difference in body weight, O2max, sweat rate and electrolyte 

losses between summer and winter periods; between trained and untrained subject 

groups; and to detect possible interaction between seasons and training status. 

Assumption of normality and homogeneity variances were assessed and if the 

assumptions had been violated, natural logarithm transformation was used.  Box’ test 

and Mauchly’s test were used to assess the assumption of equality of covariance 

matrices and the assumption of sphericity, respectively. When a significant F-ratio was 

obtained, a Bonferroni post-hoc analysis was performed. For all analysis the 0.05 level 

of significance was used. All data are expressed at mean ± Standard deviation. All 

statistical analysis was done using SPSS for Windows (SPSS Inc., Chicago, IL).  
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5.3 Results 

Physical Characteristics 

Twenty-eight (15 male, 13 female) well-trained endurance athletes were initially 

recruited for the study, however due to injury and illness 2 female subjects were 

unable to take part in the study. Twenty six subjects (15 male, 11 female) completed 

all of the experimental trials. Twenty three (14 female, 9 male) untrained (less than 5 

hours per week of exercise) subjects were also recruited for the study. One of these 

female subjects was unavailable for the winter testing due to illness; this subject’s 

results were excluded from the data analysis.  

The physical characteristics of the subjects are presented in Table 16. There was no 

statistically significant difference in subject’s weight or O2max between the summer 

and winter. There was a significant difference (p<0.05) found in O2max values and 

pre trial weights between the trained and untrained subject groups for both the 

summer and winter periods with untrained group having lower O2max values on 

average for both seasons. There was also a significant difference (p<0.05) between 

the pre trial weight of the male and female subjects in both the trained and untrained 

subject groups. There was however no statistically significant difference between age 

or estimated O2max values of the male and female subjects in either the trained or 

untrained subject groups. 

The trained subject group reported to complete an average of 15.1 ± 3.3 hours of 

training per week while the untrained subject group reported to complete 2.2 ± 1.8 

hours per week, given that some subjects were undertaking no exercise on a regular 

basis. 

The pre-trial hydration schedule was successful as all subjects reported to the 

laboratory in a hydrated state (USG less than 1.015). There was no significant 

difference (p>0.05) between USG readings in the summer and winter trials in either 

group.  

  



   
 

        128 

 

Table 16.  Physical characteristics of subjects in the trained and untrained 

groups in both the summer and winter testing periods 

 
Note: Values are mean ± standard deviation; 1Significantly different from untrained 
group (p<0.05). 2 Male group is significantly different from female group (p<0.001) 
 
  

Group Age (years) Weight (kg) O2max (ml/kg/min) 

Summer Winter Summer Winter 

Trained 
(n=26) 

Male 
(n=15) 

28.6 ± 5.7 79.4  ± 7.72 80.3  ± 7.02 64.6 ± 7.4 62.2 ± 9.3 

Female 
(n=11) 

24.8 ± 5.6 65.3 ± 5.5 65.5 ± 6.0 58.7 ± 8.4 59.2 ±7.6 

Average 
(n=26) 

26.3 ± 6.0 73.5 ± 10.61 74.3 ± 9.91 63.3 ± 9.91 60.8 ± 9.81 

Untrained 
(n=22) 

Male  
(n=9) 

26.9 ± 6.3 

 

73.7 ± 7.82 75.4 ± 8.12 39.1 ± 6.0 39.1 ± 6.1 

Female 
(n=13) 

23.5 ± 6.0 55.9 ± 4.9 57.0 ± 5.5 37.1 ± 6.0 39.1 ± 4.6 

Average 
(n=22) 

24.8 ± 6.2 63.2 ± 10.8 64.2 ± 11.2 37.2 ± 6.0 38.1 ± 5.1 
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Sweat rates 

Based on the mixed design repeated measures ANOVA, there was no significant 

interaction (p=0.915) between seasons and training status for sweat rates. There was 

however a significant main effect of training and season on sweat rates (p<0.001). 

The trained subject group had significantly higher (p<0.001) sweat rate in both the 

summer and winter periods than the untrained subject group (see Table 17. and 

Figure 14).  

For sweat sodium and sweat potassium outcomes, the mixed design repeated 

measures ANOVA was performed for observations measured from two body sites 

(leg and arm), as well as the mean value of the two body sites. Estimated sweat 

sodium/potassium loss (which was obtained based on actual sweating rate and 

average sweat sodium/potassium concentration taken from the two body sites) was 

also calculated.   

Sweat Sodium 

For arm sweat sodium concentrations, no significant interaction between seasons and 

training status (p=0.477) and no effect of training status (p=0.221) was found. The 

main effect of season was significant (p<0.001).  Irrespective of training status, sweat 

sodium concentrations observed from the arms in the winter period were higher by 

8.97 mmol/L (95% CI: 4.81, 13,13) compared to the average summer values. A 

similar trend was found for sweat sodium concentration measured from legs.  No 

significant interaction between seasons and training status was found (p=0.897 for 

the legs and p = 0.4 for the average concentration). There was also no significant 

effect of training status (p = 0.301 for the legs and p = 0.212 for the average 

concentration). The impact of seasons was significant on both the legs (p=0.001) and 

average concentrations (p<0.001). The sweat sodium concentration observed in the 

winter period was higher by 8.13 mmol/L (95% CI: 3.72, 12.54) for leg 

concentrations and 7.94 mmol/L (95%CI: 3.82, 12.05) for average concentrations, 

than in the summer period.  

When looking separately at the trained and untrained subject groups, paired samples 

t-test results showed that there was a significantly greater sweat sodium 

concentration in the winter period in the arms and legs than in summer in both 

groups (p<0.05). In the untrained subject group, sweat sodium concentration in the 



   
 

        130 

arms and legs in the winter period was higher by 10.45 mmol/L (95% CI: 5.16, 

15.74) and 9.21 mmol/L (95% CI: 2.55, 15.86) respectively while in the trained 

subject group sweat sodium values in the arms and legs in winter were higher by 

7.48mmol/L (95% CI: 1.03, 13.94) and 7.22 mmol/L (95% CI: 0.93, 13.51) 

respectively (Table 17.   

The mixed design repeated measure ANOVA failed to find a significant interaction 

(p= 0.165) and main effect of seasons (p= 0.150) on sweat sodium loss.  However 

there was a significant main effect of training found on estimated sweat sodium loss 

(p<0.001). Estimated sodium loss in summer in the trained group was greater than in 

winter, while in the untrained group, sodium loss was greater in the winter. The 

trained subject group lost 2.4 and 1.9 times more sodium than the untrained group in 

the summer and winter periods respectively (Table 17. and Figure 15). 

Sweat Potassium 

For sweat potassium observations measured from arms, legs and average 

concentration, no statistical significant effect of interaction (p = 0.260 for arms, p = 

0.299 for legs, and p = 0.184 for average, respectively), no effect of season (p= 0.862 

for arms, p = 0.114 for legs, and p = 0.285 for average, respectively) and no effect of 

training status (p = 0.521 for arms, p = 0.236 for legs, and p = 0.310 for average, 

respectively) were found.  

When looking separately at the effect of season on the trained and untrained subject 

groups, paired samples t-test analysis showed that there was a significantly greater 

sweat potassium concentration (p=0.044) in the summer period in the legs in the 

trained subject group only. Leg sweat potassium concentration in the summer was 

higher on average by 0.68mmol/L (95%CI: 0.02, 1.35) than in the winter period.  

For estimated sweat potassium loss, a significant ordinal interaction between seasons 

and the training status was found (p<0.001), indicating the effect of seasons on 

estimated sweat potassium loss was modified by training status. The difference in 

mean estimated sweat potassium loss between summer and winter for the untrained 

group was significantly different compared to that for the trained group. In the 

trained group, the reduction in estimated sweat potassium between the summer and 

winter periods was 157mg/h compared to 26mg/h in the untrained group.   
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Table 17.  Sweat rates (L/h), sodium and potassium concentration (mmol/L) 

and estimated daily sodium and potassium loss (mg/h) in both the trained 

(n= 26) and untrained groups (n=22) in the summer and winter months. 

1Summer values are significantly different from winter values (p<0.01); 2Summer 
values are significantly different from winter values (p<0.05); 3Trained subject 
results are significantly different from untrained results (p<0.01); 4Trained subject 
results are significantly different from untrained results (p<0.05). 

Variable Average Trained Untrained 

Summer Winter Summer Winter Summer Winter 

Sweat 
rate (L/h) 

1.3 ± 0.5 1.2 ± 0.5 1.7 ± 0.41,3 1.5 ± 0.43 0.9 ± 0.21 0.8 ± 0.2 

[Na+] 
arms 
(mmol/L) 

46.4±15.51 55.2±16.4 49.4 ± 16.52 56.9 ± 18.0 42.8± 13.61 53.3 ± 14.7 

[Na+] legs 
(mmol/L) 

40.7±14.51 48.8±15.1 43.0 ± 16.32 50.3 ± 14.4 37.9± 11.71 47.1 ± 16.2 

[Na+] 
average 
(mmol/L) 

43.8±15.31 51.9±15.1 47.0 ± 17.22 53.3 ± 15.9 40.4± 12.31 50.2 ± 14.5 

[K+] arms 
(mmol/L) 

7.9 ± 2.0 7.8 ± 2.7 8.0 ± 2.3 7.4 ± 2.8 7.9 ± 1.7 8.2 ± 2.6 

[K+] legs 
(mmol/L) 

8.1 ± 1.7 7.7 ± 2.1 8.0 ± 2.02 7.3 ± 1.9 8.3 ± 1.3 8.1 ± 2.3 

[K+] 
average 
(mmol/L) 

8.0 ± 1.7 7.7 ± 2.0 8.0 ± 2.0 7.3 ± 2.0 8.1 ± 1.4 8.2 ± 2.0 

Estimated 
[Na+] loss 
(mg/h) 

1507±948 1458±807 2048 ± 9473 

 
1869 ± 8003

  
 

869 ± 394 

 
972 ± 490 

Estimated 
[K+] loss 
(mg/h) 

442 ±1981 344 ±151 575 ± 1461, 3 418 ± 1343 284 ± 119 258 ± 124 
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Figure 14. Mean sweat rates (L/h) for both trained (n=26) and untrained 

(n=22) subjects in both the summer and winter trials. 

Graph displays mean ± Standard error 
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Figure 15. Estimated sweat sodium loss (calculated based on sweat rate and 

sweat sodium concentration) in both the trained (n=26) and untrained 

(n=22) subject groups during both the summer and winter testing 

periods. 

Graph displays Mean ± Standard error 

 
Trained subject results are significantly different from untrained results (p<0.01)  
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Figure 16. Estimated sweat potassium loss in both the trained (n=26) and 

untrained (n=22) subject groups during both the summer and winter 

testing periods. 

Graph displays Mean ± Standard error 
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5.4 Discussion 

5.4.1 Part A: The Effect of Heat Acclimatisation on Sodium and 
Potassium Losses in Endurance Trained Subjects. 

This study is the first of our knowledge to report the effect of heat acclimatisation on 

sweat sodium and potassium loss in a group of endurance athletes.  It is clear from 

these results that repeated exercise in the heat over a prolonged period of time results 

in physiological adaptations that improve the ability to tolerate exercise in the heat. 

The main findings from this study were significant increases in sweat rate and sweat 

potassium concentration in the legs and a significant decrease in sweat sodium 

concentration at the end of the summer period when athletes were assumed to be heat 

acclimatised. These findings are in support of previous work by Bates and Miller 

(2008), Nielson and Strange (1997) and Kirby and Convertino (1986) who 

demonstrated significant increases in sweating rates and decreases in sweat sodium 

concentration in a group of untrained subjects after a period of heat acclimatisation. 

To the best of our knowledge this is the first study to report variation in sweat 

potassium concentrations after heat acclimatisation.  

The mechanism responsible for the increase in sweating rate remains unclear and the 

glandular mechanisms have not been addressed in the present study. It has been 

proposed that increases in sweat rate after a period of heat acclimatisation are due to 

an increase in the size of the eccrine sweat gland (Sato et al. 1990), an increase in the 

number of activated sweat glands or an increase in output per gland (Peter and 

Wyndham 1966) reflecting adaptive changes in thermoregulation. Another potential 

mechanism is that blood volume expansion may attenuate the competition between 

metabolic and thermoregulatory demands for blood flow (Rowell 1974). This in turn 

will increase cutaneous blood flow, promote convective heat transfer and fluid 

delivery to the sweat glands contributing to an increased sweat rate (Nadel 1984) 

Kanikowska et al (2010) recently investigated seasonal changes in hormonal and 

thermoregulatory responses at four time points throughout the year. Aldosterone 

(ALD) and antidiuretic hormone (ADH) concentrations were shown to be 

significantly higher at the end of the summer period. Sweat rate was also reported to 

be significantly higher in the summer months in a group of 8 untrained students. The 

authors of this paper concluded that elevated hormone levels may be a compensatory 



   
 

        136 

mechanism to avoid dehydration during the summer period through both water and 

sodium conservation in the kidney and the sweat gland (Kanikowska et al. 2010). As 

this study was performed in untrained subjects, a study designed to investigate 

hormonal responses in trained athletes would be an interesting comparison. Given 

that athletes are known to have higher average sweat rates, greater increases in both 

ALD and ADH may be expected as a mechanism to further prevent dehydration.  

Numerous studies in the literature have reported a reduction in sweat sodium 

concentration following a period of heat acclimatisation (Bates and Miller 2008; 

Chinevere et al. 2008; Kirby and Convertino 1986; Nielsen et al. 1997). Following 8 

days of humid heat acclimatisation, Nielsen et al (1997)  reported sweat rates 

increasing by 26% while sweat sodium concentrations decreased from 107mmol/L to 

70mmol/L. Kirby et al (1986) reported a 12% increase in sweat rate following a 

period of 10 days of heat acclimatisation while sweat sodium concentrations 

decreased by 59% from 88mmol/L to 42mmol/L. Bates and Miller (2008) reported 

significant seasonal variation in sweat rates and sweat sodium concentrations in a 

group of untrained subjects. Sweat rates were 13% higher at the end of summer while 

sweat sodium concentration had decreased from 64 mmol/L to 45mmol/L. Similar 

results are reported in the present study with a 12% increase in sweat rates at the end 

of the summer period and a 12% decrease in sweat sodium concentration from 

53mmol/L to 47mmol/L in the trained subjects. The variation in sweat sodium 

concentration between studies may reflect methodological differences as well as 

variation in the level of acclimatisation.  

Buono et al (2007) were the first to report significant decreases in sweat sodium 

concentration after a period of heat acclimation across a range of sweat rates.  The 

decline in sodium concentration was attributed to an increased sodium absorptive 

capacity of the sweat gland possibly via the action of aldosterone. Some authors 

believe that plasma aldosterone concentrations rise following a period of heat 

acclimatisation (Nielsen et al. 1993) while others report an increased sensitivity to 

aldosterone when in the acclimatised state (Kirby and Convertino 1986). As 

aldosterone concentrations were not measured in the present study we cannot be sure 

of the mechanism involved. Our results however provide evidence of sodium 

conservation occurring at the level of the sweat gland after heat acclimatisation.  
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A further interesting finding from this study was a significant difference between 

potassium concentrations in the summer (8.0mmol/L) and winter (7.3mmol/L) in the 

leg sweat of the athletes. These potassium concentrations are similar to the levels 

reported in previous studies (Baker et al. 2009b; Maughan et al. 2005; Meyer et al. 

1992). While there was a trend towards a higher potassium concentration in summer 

for both the arms and legs, there was a significant increase in the legs only. However, 

in 19 of the 26 subjects, average sweat potassium concentration across all body sites 

in summer were greater than those reported in winter. At the level of the kidney, 

aldosterone is known to stimulate sodium conservation as well as potassium 

secretion. This mechanism may therefore explain why there was an increase in sweat 

potassium concentration in the summer period when sweat sodium was shown to be 

significantly lower across all collection sites. It is not clear as to why the legs were 

shown to have greater losses than the other collection sites. Sodium losses in the legs 

at the end of summer also demonstrated greater adaptation than the arms. As 

aldosterone is a systemic hormone, its effects would be expected to be widespread 

across all body sweat glands. It is possible that the increased metabolic activity in the 

legs may have increased the sweat gland sensitivity to aldosterone. It is also possible 

that, as the athletes in this study were triathletes who were regularly cycling and 

running, both the size and/or density of sweat glands are increased in the highly 

trained legs. The early work of Sato and Sato (1983) clearly identified that 

functionally active sweat glands are characterised by greater gland size and density, 

as well as increased cholinergic sensitivity.  Future studies should aim to address 

whether the increased metabolic heat generated by the active leg muscles during the 

cycling and running exercise is responsible for greater sweat gland adaptation.  

Little is known about the effects of aldosterone at the level of the sweat gland 

therefore, the role it plays in sweat sodium conservation and potassium excretion is 

relatively unknown. The few studies that have been conducted have produced 

conflicting results. The early study by Ladell and Shephard(1961) showed that 

administration of spironolactone, an aldosterone antagonist, significantly increased 

both urinary and sweat sodium excretion as previously noted. The major limitation of 

this study was that they did not control for the differences that occur in sweat sodium 

concentration with changes in sweat rate. Buono et al (2007) has previously reported 

that a linear relationship exists between sweat rate and sweat sodium concentration in 
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untrained subjects and, therefore, the results of Ladell and Shephard(1961) are 

questioned. The more recent study by Lee et al (2010) examined the effect of 

spironolactone on sweat sodium secretion, this time accounting for sweat rate 

differences. The results of this study did not support the conclusions made by Ladell 

and Shephard(1961) as spironolactone administration resulted in significant 

natriuresis, however there was no change in sweat sodium excretion. From these 

results the authors concluded that the non-genomic effects of aldosterone on the 

sweat gland are different to the actions on the kidney. The most likely explanation 

for these findings is due to different isoforms of the aldosterone membrane receptor 

being present in the kidney and sweat gland. Further research is needed to determine 

if aldosterone receptors in the kidney are distinct from those in the sweat gland.  

The results of the present study identify a need for fluid and electrolyte replacement 

guidelines to consider an athlete’s state of acclimatisation. Significant increases in 

sweat rates have been noted consistently in both trained and untrained individuals 

(Bates and Miller 2008; Nielsen et al. 1997; Kirby and Convertino 1986). While 

sweat sodium concentration declined in the summer period in our study, estimated 

sweat sodium losses were not different between seasons indicating that, due to 

increased total sweat losses, sodium requirements do not decrease when 

acclimatised.   

Maughan and Shirreffs (2010) have reported that many athletes are incorrectly 

informed as to their increased fluid requirements when heat acclimatised. Educating 

athletes and coaches on the need for increased fluid intake both during training and 

in the recovery phase is vital to maintain fluid balance.  

The loss and replacement of potassium in sweat has received very little focus in the 

literature; however, over the course of an endurance event, losses may be quite 

considerable. The variation in sweat potassium losses between subjects in this study 

was large; with the lowest reported concentration being 4.4mmol/L and the highest 

13.3mmol/L. This variation indicates that while some athletes may be able to easily 

replace potassium losses with a normal diet, athletes with losses at the higher end of 

the spectrum may require additional supplementation. Based on median population 

intake, the current adequate intake guidelines for potassium intake in Australia are 

set at 2800mg for women and 3800mg for men (National Health and Medical 



   
 

        139 

Research Council 2005). These levels may not be adequate for an athlete with high 

sweat losses. For example, an athlete with an average sweat rate of 1.2L/h and a high 

potassium concentration of 10mmol/L would lose approximately 4.5g of potassium 

over the course of a 10 hour endurance event. If losses of this magnitude occur 

regularly there may be associated neuromuscular disturbances and alteration to the 

acid base balance of cells. The extracellular fluid compartment (ECF) is the initial 

source of the potassium lost in sweat. The intracellular fluid (ICF), being high in 

potassium concentration, is then able to replace the lost ECF levels. At low levels of 

potassium loss this is able to occur without compromise to the cellular acid base 

balance, however, in cases of high sweat potassium loss, acid base disturbances may 

occur due to the influx of hydrogen ions into the ICF compartment in order to 

maintain the electrochemical gradient between the ICF and ECF compartments. 

Symptoms of depleted intracellular potassium levels include cardiac rhythm 

abnormalities, muscular weakness and impaired nerve conduction (Hubbard, Szlyk, 

and Armstrong 1990).  Defective storage and synthesis of glycogen has also been 

noted as a consequence of muscle potassium deficiency therefore significantly 

limiting endurance performance (Blachley, Knochel, and Long 1974). 

For athletes with known high sweat potassium losses competing in endurance events 

it may be necessary to ensure dietary potassium intake is high as well as regularly 

consuming an electrolyte replacement beverage containing potassium. A study by 

Knochel (1977) demonstrated significant potassium depletion in a group of healthy 

men undergoing 5 weeks of intensive physical training in hot weather. Although 

subjects were not hypokalemic at the end of the 5 weeks, there was a significant 

reduction in serum potassium levels. This occurred despite the provision of adequate 

nutrition to meet their needs and what is considered to be a normal potassium intake 

of 106mEq/day (4100mg/day).  As the potassium losses that occur as a result of 

continuous sweating has received little focus in the literature, future studies should 

aim to determine whether potassium supplementation is required, particularly for 

those athletes competing in ultra-endurance events or those seeking optimal 

performance. In recreational athletes with relatively low sweat losses, the potassium 

contained in a normal diet would easily replace these losses.  
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Conclusion 

Seasonal heat acclimatisation in athletes was shown to significantly increase total 

sweat losses, decrease sweat sodium concentration and increase potassium losses 

from the legs. The hypothesized increase in aldosterone concentration after a period 

of heat acclimatisation is the most likely explanation for these findings. As 

aldosterone concentrations were not measured in this study it is difficult to draw 

direct conclusions; this would be an interesting follow up study. From a practical 

viewpoint, educating athletes, particularly those training and competing in endurance 

events, on the need for their fluid and electrolyte intake to vary depending on their 

acclimatisation state is vital.  
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5.4.2 Part B: The Effect of Training Status and Heat 
Acclimatisation on Sweat Rate and Electrolyte Losses 

The aim of part B of this study was to compare the effect of seasonal heat 

acclimatisation in trained and untrained individuals in order to determine the separate 

and combined effects of physical training and heat acclimatisation. There is a large 

body of literature addressing the issue of sweat rates and training. Few studies have 

examined differences in sweat rates and composition between trained and untrained 

individuals. A major limitation of each of the previous studies is the small difference 

in O2max between the trained and untrained groups. In the recent study by 

Ichinose-Kuwahara (2010) the untrained group had a mean O2max of 43 ml kg-1 

min-1compared to 53 ml kg-1 min-1in the trained subject group. In the present study 

there was a 26 ml kg-1 min-1difference (37 ml kg-1 min-1vs 63 ml kg-1 min-1 )in

O2max between the two groups. The trained group was competitive endurance 

athletes while the untrained group was participating in less than 5 hours per week of 

low intensity physical activity.  

 It has been previously suggested that trained athletes behave physiologically as if 

they have undergone a period of heat acclimatisation (Taylor and Cotter 2006). 

Typical adaptations include a lowered resting core temperature and a lower core 

temperature at the onset of sweating. When heating is coupled with exercise, these 

adaptations are further pronounced (Taylor and Cotter 2006). We therefore expected 

the magnitude of any physiological changes to be lower in the trained group in 

comparison to the untrained subject group.  

The hypothesis that sweat glands need to actively produce sweat in order to fully 

acclimatise has been explored in the literature using pilocarpine to artificially induce 

sweating. Buono et al (2009) used intra-dermal injections of BOTOX in order to 

prevent neural stimulation and sweat production during heat acclimatisation. Prior to 

heat acclimatisation the sweat rate in the BOTOX treated arm and the control arm 

were equal. Following a period of heat acclimatisation the pilocarpine induced sweat 

rate in the control arm was 18% higher while the BOTOX forearm had a decrease of 

52%. The authors concluded that in order for complete acclimatisation to occur the 

sweat glands must be active if they are to effectively adapt and increase their 

sweating capacity. 
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Several studies however have alluded to the fact that even in the absence of physical 

activity, partial heat adaptation is evident after repeated exposure to heat (Fox et al. 

1967).  Both the trained and untrained groups in this study demonstrated an increase 

in sweat rate at the end of the summer period when they were assumed to be heat 

acclimatised. This may be due to a centrally mediated decrease in the temperature 

threshold for vasodilation and sweating onset, known to occur with acclimatisation 

(Nadel 1984). Our results also demonstrated a slightly greater relative change in both 

sweat rates and sodium concentration in the untrained group compared to the trained 

group between seasons. Sweat rates were 14% greater in the summer months 

compared with the winter in the untrained group compared with a 12% increase in 

the trained subjects. Sweat sodium concentrations showed greater variation with a 

20% decrease in sodium concentration in the summer compared to the winter months 

in the untrained group compared with a 12% decrease in the trained subjects.  This 

may suggest that the athletes, who were regularly exposed to thermal stress during 

training, had already experienced some exercise-induced adaptation and therefore the 

effects of seasonal acclimatisation were not as great when compared to the untrained 

group. However, as mentioned by Taylor and Cotter (2006) endurance training 

without regular heat exposure does not provide adequate stimulus for complete heat 

adaptation. Our results support this as additional thermoregulatory adaptations 

(increased sweat rate and decreased sweat sodium concentration) were seen in the 

trained group when seasonally heat acclimatised. Therefore for the endurance athlete 

it is essential that training in the heat forms a component of their preparation for 

competition in the heat (Taylor and Cotter 2006). 

The environmental conditions at the study location during the summer period are hot 

and moderately humid, so likely to be sufficient to elicit some acclimatisation 

response without the need for intense physical training. Very low intensity physical 

exercise, even incidental exercise, may be sufficient to stimulate active sweating in 

these conditions. It should also be noted that modern behavioral responses to hot 

conditions such as living and working in air conditioning and the tendency towards a 

more sedentary lifestyle could minimise summer induced heat acclimatisation. This 

was not investigated in the present study however is a potential area for future 

research.  
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The other notable finding from Part B of this study was that the untrained subject 

group had significantly lower (p<0.05) mean sweat rates in both the summer 

(0.90L/h) and winter (0.78L/h) periods compared to the trained group (summer 

1.73L/h, winter 1.53L/h. There are several possible explanations for this finding: 

In order for the trained subjects to reach the 50% O2max they are required to 

perform at a greater metabolic work rate, therefore producing greater metabolic heat 

than the less aerobically trained subjects. Therefore in order to maintain heat balance 

and dissipate this heat, the physically trained group requires a higher sweat rate.  

The untrained subject group also had a greater number of females (13 vs 11) than the 

trained subject group. It has previously been reported in that females display lower 

mean sweat rates than males at the same workload possibly due to their larger 

surface area to mass ratio and improved thermoregulatory efficiency (Inoue et al. 

1998; Ichinose-Kuwahara et al. 2010). There is also some evidence to suggest that 

testosterone is involved in enhancing the sweating response while estradiol may 

inhibit it (Kawahata 1960). The increase in testosterone as a result of physical 

training is also significantly greater in males than females (Keizer et al. 1989). 

A further possible explanation is due to increased thermoregulatory efficiency that is 

gained as a result of physical training therefore resulting in improved heat loss 

mechanisms. This is believed to be due to a reduction in the temperature threshold at 

which sweating is initiated (Nadel 1984), an increase in the size and number of 

activated sweat glands as well as increased cholinergic sensitivity (Sato et al. 1990; 

Buono and Sjoholm 1988).  Buono and Sjoholm(1988) have reported that sweat rate 

is significantly greater in the trained individual compared to untrained due to a 

greater number of activated sweat glands (ASG) and sweat output per gland (SGO). 

The recent study by Henkin et al (2010) provided some evidence to suggest that the 

thermal adaptations seen in trained subjects come about as a result of constant 

exposure to heat rather than as a direct result of physical fitness. In this study sweat 

rates and electrolyte concentrations in swimmers, runners and nonathletes were 

compared. The sweat rates in swimmers (0.9L/h) was significantly lower than the 

runners (1.5L/h) and similar to the nonathletes (0.6L/h). Similar results were shown 

when analysing sweat sodium concentrations. The swimmers and nonathletes had 

sodium concentrations of approximately 65mmol/L while significantly lower average 
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concentrations were shown in the runners (45mmol/L). The authors concluded from 

this study that the degree of thermal load experienced regularly during training is the 

primary factor influencing the adaptations to the heat. While swimmers have a large 

aerobic capacity, their training environment allows for their core and skin 

temperature to remain largely unchanged therefore resulting in low levels of thermal 

stress. The athletes in the present study were triathletes who were spending the 

majority of their training either cycling or running therefore experiencing conditions 

of high thermal load regularly. The mean sweat rates of 1.5-1.7L/h in this group are 

similar to those reported in the runners in the above-mentioned study.  

In order to accurately determine the effect of physical training on sweat rate, a 

comparison between trained and untrained male and female subjects, exercising at 

the same absolute workload would need to be made. It is possible to make an indirect 

comparison using the data collected in both of the heat chamber studies reported in 

this thesis (Study 2 and 3). The trained group of subjects involved in Study 2 of this 

thesis, investigating the effect of exercise intensity on sweat rates and sodium 

concentration, had an average O2max of 60mL/kg/min. At the lowest intensity trial 

where the subjects worked at 60% of age adjusted maximal heart rate (220-age), 

equivalent to approximately 40% 02max (24mL/kg/min), the average sweat rate 

recorded was 1.0L/hr. This data was collected at the end of the summer period when 

the subjects were assumed to be heat acclimatised. Similarly, in Study 3, the heat 

acclimatisation trial, the untrained subjects in the summer period had an average         

02max of 40mL/kg/min and were required to exercise at a workload of 70% of age 

adjusted maximal heart rate (220-age), equivalent to approximately 50% 02max  

(20mL/kg/min). At this workload average sweat rates of 0.9L/hr were reported, a 

similar value to that of the trained subjects at a similar workload. This information 

suggests that the greater sweat rates reported in the trained subject group may largely 

be due to the increased metabolic work rate required to reach the set workload. 

Future studies should aim to address the effect of physical training on sweat rates by 

matching absolute workload of the two groups. 

The other significant finding from part B of this study was that there was a 

significant decrease in sweat sodium concentration at the end of the summer period 

across all body sites in both the trained and untrained subject groups. There was 

slightly greater sodium conservation observed in the untrained group at the end of the 
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summer period when acclimatised. On average the summer sodium concentration 

was 80% of the winter concentration in the untrained group compared to 

approximately 85% in the trained group. This could be explained by the fact that the 

trained group are constantly exposed to a heat load through exercise and therefore are 

partially heat acclimatised. In comparison the untrained group, without any prior 

exposure, responds to the effect of seasonal change more strongly.  

There was no significant difference in average sodium concentration (mmol/L) 

between the trained and untrained groups in either the summer or winter period.  

Roberts et al (1977) states that since training and heat acclimatisation share similar 

adaptations, it is possible that trained athletes could have lower than average sweat 

sodium concentrations. Few studies have investigated whether differences in sweat 

sodium concentration exist between trained and untrained individuals. The studies 

that have been conducted have produced conflicting results. There is information 

discussed in a textbook by Wilmore and Costill (2004) which suggests that sweat 

sodium concentration in trained individuals is lower than untrained subjects even 

prior to heat exposure. This information has been criticised however due to the lack 

of recording of exercise intensity. It has been previously shown that exercise 

intensity determines sweat rate which in turn affects sweat sodium concentration 

(Buono et al. 2008). A recent study by Hamouti et al (2011) did not support the 

information reported by Wilmore and Costill (2004), showing that aerobic fitness 

level does not reduce sweat sodium concentration when normalised for sweat rate.  

A further significant finding from the present study was that there was a significant 

difference between estimated sweat sodium loss (mg/h), which also considers sweat 

rate, between the two groups in both summer and winter. Total sodium loss in the 

trained group was 2048mg/h in summer compared with 869mg/h in the untrained 

group. At the end of the winter period total sodium loss in the trained group was 

1869mg/h compared to 972mg/h in the untrained group when exercising at the same 

relative intensity. This information is relevant to the area of sports nutrition as 

aerobic fitness level will potentially influence the degree of sodium loss and 

therefore determine sodium intake requirements. Recreational athletes with low to 

moderate sodium losses coupled with low training outputs will easily be able to meet 

their sodium intake requirements following a normal moderate sodium diet as 

recommended by the Heart Foundation. Well trained endurance athletes however 
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with higher sodium losses and extreme training outputs will often have much higher 

requirements than the current recommendations. In addition to this, many endurance 

athletes are also health conscious and may be actively restricting dietary salt intake 

through low intake of processed foods without being aware of their increased needs.  

The importance of exposure to thermal load in order to maximize adaptation to the 

heat may be of relevance to athletes who are travelling to compete in a hot climate. 

Prior exposure to a thermal stimulus will ensure that athletes optimise performance 

while minimising the risk of heat related illness. The length of time required to 

maximize these effects is not entirely clear however for most individuals between 7-

14 days of heat exposure is sufficient to develop full adaptation (Wendt, Van Loon, 

and Lichtenbelt 2007).  

Limitations of the study 

It is important to note the methodological limitations of this research project. 

Athletes involved in the study were assumed to be heat acclimatised leading into the 

summer testing as they had been regularly training outdoors in the hot and humid 

conditions typical of a Perth summer. The exact details relating to time spent training 

outdoors in the months leading into the study was not known and therefore may have 

influenced the acclimatisation state of the athletes involved.  

Another limitation that should be addressed is that the menstrual cycle was not 

accounted for when testing the female athletes. Core temperature has previously been 

shown to vary depending on the phase of the menstrual cycle (Janse et al. 2012). 

There has also been some evidence to suggest that sweating rates increase in women 

during the luteal phase of the menstrual cycle (Garcia et al. 2006). 

While every effort was made to ensure that the sweat collecting devices were placed 

in the same position on each subject, there was potentially some minor variation, as 

placement site was not marked up prior to study commencement.  The strong 

correlation between right and left limbs suggests that this variation is minor.  

Conclusion 

Sweat rates were shown to be significantly greater in the trained subject group 

compared with the untrained group. There are several possible explanations for this 

finding, one of them being due to the sweat gland adaptations that occur as a result of 
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physical training. Future studies should address the effect of physical training on 

sweat rates when athletes are working at the same absolute work rate. There was no 

significant difference between sweat sodium concentration noted between the trained 

and untrained subject groups, however due to significantly higher sweat rates in the 

trained subjects, estimated sweat sodium loss was significantly greater. From a 

practical viewpoint, athletes with high aerobic fitness, who are training in endurance 

based events, should be aware of their increased fluid and sodium needs particularly 

if training or competing in hot and humid environmental conditions. 
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Chapter 6: General Conclusions and 
Recommendations for Fluid and 
Electrolyte Replacement  

6.1 Overview 

Over the last decade there has been a number of position statements published on the 

need for adequate fluid replacement particularly in those individuals who are 

exposed to a hot environment for prolonged periods of time (Sawka et al. 2007; 

Convertino et al. 1996; Casa et al. 2000). There has been far less published work 

investigating the electrolyte losses, particularly sodium and potassium, 

accompanying large sweat losses. In both athletes and manual workers it is known 

that large sweat losses can result in significant losses of fluid and other sweat 

constituents mainly sodium and potassium. It has been documented previously that 

large sodium losses can have detrimental effects on both the physical and cognitive 

performance of an individual, while losses in large quantity can result in a significant 

risk to health. The loss of sodium in sweat has been linked to hyponatremia 

(Montain, Cheuvront, and Sawka 2006), muscle cramping (Horswill et al. 2009; 

Donoghue, Sinclair, and Bates 2000) and alterations in fluid balance (Sawka 1992). 

Current sodium replacement recommendations for the general population place 

emphasis on the need to reduce sodium intake in order to prevent hypertension and 

the link with coronary heart disease. These recommendations are potentially set too 

low for athletes and manual workers with high sweat rates who are working or 

exercising for prolonged duration. There is a need for separate sodium replacement 

guidelines for these populations.  
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The aim of this thesis was to address the following questions: 

1) Are manual workers who are performing prolonged periods of work in the 

heat plus consuming a potentially low sodium diet, at risk of hyponatremia? 

(Chapter 2) 

2) What are the current levels of dietary sodium intake in a population of 

manual workers from the Middle East? (Chapter 2) 

3) Is there a relationship between sweat rate and sweat sodium concentration in 

well trained endurance athletes? (Chapter 4) 

4) What is the effect of seasonal heat acclimatisation on sweat rates and 

electrolyte (sodium and potassium) concentrations? (Chapter 5) 

5) Does physical fitness change the response of an individual to seasonal heat 

acclimatisation? (Chapter 5) 

6) Are there individuals or specific situations that may require an increased 

sodium and potassium intake? (Chapters 2, 4 and 5) 

6.2 Fluid intake recommendations for manual workers 

Several recent studies have shown that manual workers regularly begin work in a 

hypohydrated state (Bates and Schneider 2008; Miller and Bates 2007b; Bates, 

Miller, and Joubert 2010c).  This finding has been consistent across a range of 

cultural, ethic and economic backgrounds indicating that this population is 

challenged by hydration issues (Miller and Bates 2009). Working in a dehydrated 

state places workers at a significantly increased risk of developing all forms of heat 

illness. Dehydration in the workplace can also affect productivity, morale and may 

increase the risk of workplace accidents. The risk is substantially greater when 

working for prolonged periods in thermally stressful environments prompting high 

sweat losses. As mentioned previously in the literature review of this thesis, it is not 

uncommon for workers to lose up to or exceeding 1L/h (Brake and Bates 2003a; 

Miller and Bates 2007b). Over the course of a 12 hour work shift this can equate to 

over 12L of fluid loss. This becomes a significant issue when work is repeated for 6 

or even 7 days of the week, which is common practice in many workplaces.   

Educating workers on the need to consume adequate quantities of fluid both before 

and during work is an important strategy in order to address this issue. An 
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interventional study conducted in the Middle East by Bates and Schneider (2008) 

showed that educating workers with simple fluid intake strategies significantly 

increased fluid consumption while reducing physiological strain associated with 

work in the heat.   

Discussion with medical staff and workers at the workplace studied in Chapter 2 

highlighted the misinformation surrounding adequate fluid and electrolyte 

replacement. There is need for education as to the most appropriate fluid for 

prolonged work in the heat (Bates and Miller 2008). Many of the commercially 

available sports drinks are hypertonic in relation to plasma and therefore delay both 

gastric emptying from the gut and absorption from the small intestine (Valentine 

2007). Over the course of a 12 hour working day, regular consumption of these fluids 

would greatly increase sugar and total energy (kj) intake to unadvisable levels.  

Conversely, the consumption of plain water may result in a dilution of the plasma 

further increasing the risk of hyponatremia (Noakes 2002). The most appropriate 

beverage is one which is hypotonic to plasma, containing glucose and sodium in 

levels which help to maintain plasma volume and blood glucose levels, while 

maximizing absorption from the gut. Sodium is required in a beverage in order to 

promote fluid consumption and help to increase glucose absorption (Valentine 2007).  

6.3 Electrolyte Replacement Recommendations for manual 
workers 

The results of study 1 (Chapter 2) of this thesis have highlighted the need for sodium 

replacement guidelines appropriate for manual labourers to be developed. This is 

particularly important in countries such as the Middle East where the typical diet of 

workers consists primarily of rice and legumes with very low total sodium content.  

Educating workers on the need for adequate salt intake is vital given the public 

health message is strongly advocating a global reduction in salt intake. A number of 

the medical staff and workers interviewed as part of this study were misinformed as 

to the need for increased salt intake when working in conditions of thermal stress.  

The following recommendations were made to the medical staff at the workplace 

studied. These guidelines were based on previous work investigating the fluid needs 

of manual workers (Brake and Bates 2003a). In addition to the recommendations for 
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fluid consumption, the present study supports recommendations for electrolyte 

replacement in the form of fluid or regular food intake. These guidelines could be 

adapted to suit the needs of any occupational setting where workers are performing 

physical labour in the heat coupled with a diet low in salt or processed foods.  
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Table 18.  Fluid and electrolyte recommendations for workers performing 

manual work in thermally stressful environments while consuming a 

predominantly starch based diet.  

 

Role in the 
workplace 

Recommendations 

For all workers 

 

• Workers are to carry their own personal water 

bottle with them to their work area so they are 

able to assess their individual fluid intake. 

• Urine specific gravity readings prior to the start of 

a work shift should be <1.015 

• Educating both medical staff and workers on the 

need for adequate fluid and electrolyte 

consumption is vital. Workers particularly need to 

be aware of their increased needs during the 

summer period when sweat losses are 

substantially increased. It is recommended that 

the work management strategy for hot workplaces 

includes ongoing training in the importance of 

hydration and electrolyte replacement.   

• An appropriate electrolyte replacement formula 

developed for use in the industrial setting should 

be made available to workers in unlimited 

quantity particularly during the summer period. If 

workers are able to snack every couple of hours 

the need to consume an electrolyte replacement 

drink is reduced. 

o It is important to ensure that this fluid is 

kept cool and therefore increase 

palatability 
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For workers in 

physically 

demanding roles 

 

• Approximately 1 litre of electrolyte replacement 

formula per hour of working time is advised 

• If possible, the consumption of salty snacks 

during meal breaks is advised 

• Informing these workers on the need to 

supplement their meals with additional salt is 

warranted.  When meals are predominately rice 

and legume based, 1-2 pinches of salt (~2g salt or 

800mg sodium) per meal is advised or 

alternatively salt could be added to food during 

cooking.  

For machinery 

operators and 

workers in 

sedentary roles 

 

• 400 – 600ml of electrolyte replacement formula 

per hour of working time is advised 

• Informing workers of the need to supplement rice 

and legume based meals with additional salt 

during the summer months is warranted. 
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6.4 Fluid intake recommendations for athletes 

The importance of replacing both fluid and electrolytes lost in sweat continues to be 

a topic that is debated by many sports scientists (Beltrami et al 2008). There has also 

been debate over the real-word practical application of some of the developed 

hydration guidelines for athletes (Garth and Burke 2013). As mentioned in the 

literature review, there has been a paradigm shift in fluid intake recommendations 

over the last 50 years, which have ranged from ‘not drinking at all’ to ‘drink as much 

as tolerable’ (Noakes 2007). There is also debate over whether the current guidelines 

are practical in a real world setting where there are many other factors influencing 

fluid consumption (Garth and Burke 2013).  

Noakes (2008) argues that thirst is the best physiological indicator of fluid needs 

during exercise and that athletes should drink only when thirsty. The basic premise 

of Noakes’ ideas is that humans are able to subconsciously self regulate fluid intake 

when under duress. Several authors in the literature however have stated that thirst is 

an inadequate indicator of the fluid needs of athletes (Convertino  et al 1996; Casa et 

al 2000). A recent article by Garth and Burke (2013) discusses the complex array of 

factors, which influence an athlete’s opportunity to drink, many of which are out of 

the athlete’s control, therefore making it difficult for fluid intake to be truly ‘ad 

libitum’.  Factors such as the availability of fluids, the rules and regulations of the 

sport regarding when is appropriate for drinking to take place, as well as in the elite 

competitor, the need to maintain speed and technique, which can all influence the 

volume of fluid consumed (Garth and Burke 2013).  Noakes (2002) raises concern 

over the current fluid intake guidelines which he believes promote overdrinking 

which can have fatal consequences in an endurance event. There are reports in the 

literature of exercise-associated hyponatremia occurring over the course of an 

endurance event, potentially due to excessive fluid intake (Almond 2005). This 

situation however is more common in slow paced participants as they take more 

frequent breaks with a larger fluid volume consumed than do faster paced 

participants (Speedy et al. 2001). It is important that recreational competitors are 

aware of the consequences of overdrinking during long duration events (Garth and 

Burke 2013).  
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This situation, which allows for overconsumption as mentioned above, is not the case 

across all sporting events. Athletes who are competing in multiple events per day or 

training twice daily may commence an exercise session with a fluid deficit due to 

failure to replace large fluid losses from previous sessions. In these athletes an 

individual, paced fluid plan may be advantageous (Garth and Burke 2013). Casa et al 

(2000) have reported that if an athlete has in excess of 24 hours between exercise 

sessions, adequate fluid restoration can occur from normal food and fluid intake, 

however, when training twice daily and the fluid deficit is large, athletes may fail to 

adequately replace losses.  Silva et al (2011) showed that in a group of youth soccer 

players training twice daily, a substantial proportion of the players were 

hypohydrated prior to training and continued to voluntarily dehydrate during the 

training session. Soccer is an example of a sport in which there are limited 

opportunities for fluid intake. The authors on this paper concluded that, as sweat 

losses can be substantial in these athletes, educating athletes on their individual fluid 

losses may be more appropriate than relying on thirst alone (Silva et 2011).  

The information collected in many previous studies as well as in both of the heat 

chamber studies in this thesis has shown that there is a wide variation in sweat rates 

in athletes.  Individual fluid needs are therefore also widely variable depending on 

factors such as the environmental conditions, state of heat acclimatisation, physical 

fitness and activity intensity and duration (Baker et al. 2011). The results of chapter 4 

of this thesis showed that sweat rates varied from 700ml/h to 2.6L/h in one athlete. A 

similar range in sweat rates has been shown in previous studies (Maughan et al. 

2005; Shirreffs et al. 2005). It is impractical and dangerous for athletes to aim to 

replace all fluid losses incurred as a result of prolonged exercise in the heat. Current 

fluid replacement guidelines encourage athletes to drink enough to maintain body 

weight to within 2% to prevent performance impairment and reduce heat illness 

(Sawka et al. 2007). In an ACSM roundtable discussion on hydration and physical 

activity, Casa, Clarkson and Roberts (2005) identified a need for individualised fluid 

replacement strategies to be devised particularly for athletes with large sweat losses 

(>1L/h). It was also advised that athletes should learn to estimate sweat rate to 

optimize hydration strategies for long distance events (Casa, Clarkson, and Roberts 

2005) 
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Because of the multitude of factors influencing sweat rate and the many sports 

specific differences in the factors influencing fluid intake during exercise, it is 

inappropriate to prescribe a fluid and electrolyte regime that meets the needs of all 

athletes. Athletes need to be educated on the importance of recognizing their 

individual needs based on their estimated sweat losses and to develop strategies to 

overcome practical issues in maintaining fluid intake during exercise (Casa, 

Clarkson, and Roberts 2005).   

What is clear from the current literature in this area is that further studies 

investigating hydration practices of athletes in a field setting are required. As the 

needs, and factors influencing fluid consumption in recreational and elite competitors 

vary considerably, there may be a need for different hydration guidelines for each 

group. As there is currently large numbers of recreational athletes participating in 

endurance and ultra endurance events, there is a public health need for data to be 

collected on the hydration practices of these athletes who may be at risk of 

hyponatremia due to excessive hypotonic fluid intakes (Garth and Burke 2013).  

6.5 Electrolyte replacement recommendations for athletes 

In both studies in the separate athlete groups there was also shown to be a wide 

variation in mean sweat sodium losses with the following factors shown to influence 

sodium losses. In terms of developing guidelines for sodium intake in athletes, this 

information indicates that again recommendations need to be based on the needs of 

the individual athlete rather than providing a blanket guideline for all. What was 

clearly shown from the data collected in both athlete studies was that a large number 

of athletes require sodium in greater quantity than what is currently recommended 

for the average person. Currently the Australian Heart Foundation recommends an 

intake of less than 6g salt per day (2400mg sodium). Data from these studies showed 

that over a modest 2 hour exercise session an athlete could lose between 600 – 

6000mg sodium. Clearly an athlete at the higher end of this scale would require 

significantly greater quantities of sodium than these recommendations, while an 

athlete at the lower end could easily meet their requirements from a normal diet. 

There is a known link between high dietary salt intake and blood pressure it is 

therefore not appropriate to recommend that all athletes consume a high salt diet or 
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consume an electrolyte replacement beverage during exercise, the needs of the 

individual athlete must be considered.  

Based on the results of the studies conducted as part of this thesis the following 

factors need to be considered in forming sodium guidelines for athletes: 

• Sweat Rate – The results from heat chamber study 1 (Chapter 4) showed a 

fair positive linear relationship between an athlete’s sweat rate and sweat 

sodium concentration. This information suggests that athletes with higher 

than average sweat rates are therefore more at risk of sodium depletion due to 

increased sodium concentration of sweat as well as large total sodium losses. 

Calculating sweat rate from body weight loss over an exercise session is a 

relatively simple procedure and is practical for use in large athlete groups 

(Cheuvront, Haymes, and Sawka 2002). Further research is required in a 

range of athletes competing in different sports to determine whether sweat 

rate can be accurately used as a measure from which to predict sweat sodium 

concentration.  

 

Early identification of athletes with high sweat losses is an important strategy 

in order to avert potential heat related illness as well providing appropriate 

fluid and electrolyte replacement strategies to maintain performance.  

 

• Intensity of Exercise – The results from heat chamber study 1 (Chapter 4) 

showed on average a 60% increase in sweat sodium concentration and a 50% 

increase in sweat rates from the low to the high intensity exercise trials. This 

increase was reported in 14 of the 18 subjects tested. This data is similar to 

that reported previously by Buono et al (2007) and Yoshida et al (2006). It is 

important to note that fluid and sodium requirements will vary significantly 

depending on the duration and intensity of exercise. 

• Physical Training Status – The results from heat chamber study 2 (Chapter 

5) showed a significant difference between mean sweat rates in the trained 

and untrained subjects groups in both the summer and winter months. 

Although there appeared to be no effect of training status on mean sweat 

sodium concentration in either season, the untrained group demonstrated a 
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slightly greater relative decrease in sweat sodium concentration at the end of 

the summer period. These results are similar to the recent findings of 

Hamouti et al (2011) who reported no significant differences between sweat 

sodium concentrations in trained and untrained subjects exercising at the 

same relative intensity. Due to the significantly higher sweat rates in the 

trained subject group in both seasons, estimated total sodium loss (mg/h) was 

significantly higher. Dietary sodium requirements are therefore also higher in 

the trained group in order to replace these losses.  

It is often expected that well trained athletes will consume greater than 

average dietary sodium intakes simply due to their high energy requirements. 

This has been shown in several studies to not be the case, with athletes 

reported to be consuming sodium in similar quantities to that of untrained 

individuals (Hinton et al. 2004). There are several explanations for this 

including the possibility that energy requirements in endurance athletes are 

often over estimated with athletes regularly consume significantly lower 

intakes than estimated. Health conscious athletes may also be actively 

restricting sodium intake through limiting processed food intake and avoiding 

adding additional salt when cooking.  

This information has practical implications for the development of sodium 

intake guidelines. Athletes at risk of sodium deficiency due to high sweat 

losses coupled with the consumption of a relatively low sodium diet, need to 

be educated on the need for both fluid and sodium replacement particularly 

when training twice daily or for prolonged duration. 

• State of Acclimatisation – A period of seasonal heat acclimatisation was 

shown in heat chamber study 2 (Chapter 5) to significantly increase sweat 

rates, decrease the sodium concentration in sweat in both the trained and 

untrained subject groups, and increase the potassium concentration in the legs 

samples only in the trained subject group. Sweat sodium concentrations in the 

trained group decreased by an average of 6 mmol/L at the end of the summer 

months when the athletes were assumed to be heat acclimatised. In the 

untrained subject group, seasonal acclimatisation resulted in an average 

decrease of 10 mmol/L at the end of summer. In both groups average sweat 
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rates were also significantly greater at the end of the summer period 

indicative of seasonal heat acclimatisation. Total sodium losses calculated 

based on sweat rate and sweat sodium concentration was therefore not 

significantly different between seasons in either the trained or untrained 

subject group. Based on this information, dietary sodium intake requirements 

are not necessarily lower in the summer period due to significant increases in 

sweating rate. For this reason focus on maintaining adequate fluid intake 

during summer should perhaps be the main focus for athletes whilst being 

aware of their high salt needs year round.  

Results from this study also showed a significantly greater sweat potassium 

concentration from the leg sweat glands at the end of summer in the trained 

athletes. The loss and replacement of potassium in sweat has received little 

focus in the recent literature and this is the first study of our knowledge to 

report this finding. Estimated sweat potassium losses in the trained athletes in 

this study during summer averaged nearly 600mg/h. Endurance athletes, 

particularly in those with high sweat losses, should be educated on the need 

to maintain adequate dietary potassium intake.  

Based on this information the following practical recommendations for fluid, sodium 

and potassium intake are made for endurance athletes with high sweat losses who are 

training and competing in the heat: 

• A comprehensive hydration protocol should be established for each 

individual athlete which considers the duration and intensity of exercise, 

frequency of training sessions, heat acclimatisation status, environmental 

conditions as well as practical limitations associated with carrying fluid.  

• Athletes should be advised to weigh themselves before and after training 

sessions of various duration and intensity to assess sweat losses. Athletes 

with losses greater than 1-2% body weight per session should be advised that 

their fluid intake is insufficient. Any athlete who has gained weight over a 

training session should be advised that they may need to consume less fluid to 

prevent over hydration.  
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• Athletes should be educated on the effect of heat acclimatisation on fluid and 

electrolyte losses and be particularly aware of the increased fluid needs in the 

summer period.  

• During exercise of greater than 60-90 minutes duration the consumption of an 

electrolyte replacement beverage is indicated.  

• For athletes with known high sweat losses or those with a history of heat 

cramping, the addition of salt with meals or consuming salty snacks is also 

indicated. The use of salt tablets is rarely warranted.  

o Adding salt to everyday foods is an inexpensive and effective method 

of increasing salt intake. Table 19. shows examples of high salt snack 

foods suitable for inclusion in the diet of athletes with high salt 

requirements 

o Athletes may be advised to consume an electrolyte beverage 

containing sodium at regular intervals throughout the day, particularly 

if training twice daily or for prolonged durations. 

• Post exercise there is considerable evidence to support the replacement of 

both fluid and sodium losses to aid in the restoration of fluid balance.  

• Educating athletes with known high sweat losses on their need for additional 

sodium while advising some health conscious athletes against choosing low 

salt options may be indicated.  
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Table 19.  High salt snack examples suitable for inclusion in the diet of 

athletes with high salt requirements 

 

Food product Sodium (mg/100g) Sodium (mg/typical 

serve) 

White bread 509 325 

Deli sliced ham 1580 790 

Rice crackers 575 143 

Corn flakes 1081 270 

Cheddar cheese 655 262 

Baked beans 400 548 

Flavoured tuna 438 810 

Potato chips 640 320 

Salted peanuts 340 340 

Pretzels 1980 990 

Pickled onions 790 632 

 

  



   
 

        162 

Chapter 7: References 
____________________________________________________________________ 
 
Adair, E.R. 1977. "Skin, preoptic and core temperatures influence behavioural 

thermoregulation." J App Physiol no. 42:559-564. 

Adolph, E.F., and D.B. Dill. 1938. "Observations on water metabolism in the desert." 
Am J Physiol no. 123:369-399. 

Alderman, M.D. 2010. "Reducing dietary sodium: The case for caution." JAMA no. 
303 (5):448-449. 

Allsopp, A.J., R. Sutherland, P. Wood, and S.A. Wootton. 1998. "The effect of 
sodium balance on sweat sodium secretion and plasma aldosterone 
concentration." Eur J Appl Physiol no. 78:516-521. 

Almond, C. S., A. Y. Shin, E. B. Fortescue, R. C. Mannix, D. Wypij, B. A. Binstadt, 
C. N. Duncan, D. P. Olson, A. E. Salerno, J. W. Newburger, and D. S. 
Greenes. 2005. "Hyponatremia among runners in the Boston Marathon." N 
Engl J Med no. 352 (15):1550-6. 

American College of Sports Medicine. 1991. Guidelines for exercise testing and 
prescription. Vol. 4th Ed. Philadelphia: Lea and Febiger. 

———. 2007. "Exercise and fluid replacement." Medicine and Science in Sports and 
Exercise no. 39:377-390. 

Anastasiou, C.A., S.A. Kavouras, G. Arnaoutis, M. Kollia, E. Botoula, and L.S. 
Sidossis. 2009. "Sodium replacement and plasma sodium drop during 
exercise in the heat when fluid intake matches fluid loss." Journal of Athletic 
Training no. 44 (2):117-123. 

Armstrong, C. G., and W. L. Kenney. 1993. "Effects of age and acclimation on 
responses to passive heat exposure." Journal of Applied Physiology no. 75 
(5):2162-2167. 

Armstrong, L. E., D. J. Casa, M. Millard-Stafford, D. S. Moran, S. W. Pyne, and W. 
O. Roberts. 2007. "American College of Sports Medicine position stand. 
Exertional heat illness during training and competition." Med Sci Sports 
Exerc no. 39 (3):556-72. 

Armstrong, L. E., R.W. Hubbard, B.H. Jones, and J.T. Daniels. 1986. "Preparing 
Alberto Salazar for the year of the 1984 olympic marathon." Physician 
Sportsmed no. 14:73-81. 

Armstrong, L. E., and C. M. Maresh. 1991. "The induction and decay of heat 
acclimatisation in trained athletes." Sports Medicine no. 12 (5):302-312. 

Armstrong, L.E., C.M. Maresh, and J.W. Castellani. 1994. "Urinary indices of 
hydration status." International Journal of Sports Nutrition no. 4:265-279. 

Armstrong, L.E., J Soto, A,H., F.T. Hacker, D.J. Casa, S.A. Kavouras, and C.M. 
Maresh. 1998. "Urinary indices during dehydration, exercise and 
rehydration." International Journal of Sports Nutrition no. 8:345-355. 



   
 

        163 

Astrand, I. 1960. "Aerobic work capacity in men and women with special reference 
to age." Acta Physiol Scand no. 49:1-92. 

Avellini, B., E. Kamon, and J.T. Krajewski. 1980a. "Physiological responses of 
physically fit men and women to acclimation to humid heat." J App Physiol 
no. 49:254-261. 

Avellini, B.A., E. Kamon, and J.T. Krajewski. 1980b. "Physiological responses of 
physically fit men and women to acclimation to humid heat." J App Physiol 
no. 49:254-261. 

Bain, A.R., and O. Jay. 2011. "Does summer in a humid continental climate elicit an 
acclimatization of human thermoregulatory response?" Eur J Appl Physiol 
no. 111:1197-1205. 

Baker, L. B., J. R. Stofan, A. A. Hamilton, and C. A. Horswill. 2009a. "Comparison 
of regional patch collection vs. whole body washdown for measuring sweat 
sodium and potassium loss during exercise." J Appl Physiol no. 107 (3):887-
95. 

———. 2009b. "Comparison of regional patch collection vs. whole body washdown 
for measuring sweat sodium and potassium loss during exercise." Journal of 
Applied Physiology no. 107 (3):887-895. doi: 
10.1152/japplphysiol.00197.2009. 

Baker, L.B., J.R. Stofan, H.C. Lukaski, and C.A. Horswill. 2011. "Exercise-induced 
trace mineral element concentration in regional versus whole-body wash-
down sweat." International Journal of Sport Nutrition and Exercise 
Metabolism no. 21:233-239. 

Barr, D., W. Gregson, and T. Reilly. 2010. "The thermal ergonomics of firefighting 
reviewed." Applied Ergonomics no. 41:168-172. 

Barr, S. I., and D. L. Costill. 1989. "Water: can the endurance athlete get too much of 
a good thing?" J Am Diet Assoc no. 89 (11):1629-32, 1635. 

Bates, G. P., C. Gazey, and K. Cena. 1996. "Factors affecting heat illness when 
working in conditions of thermal stress." J Hum Ergol no. 25:13-20. 

Bates, G. P., V. Miller, and D.M. Joubert. 2010a. "Hydration status of expatriate 
manual workers during summer in the middle east." Ann Occup Hyg no. 54 
(2):137-142. 

———. 2010b. "Hydration status of expatriate manual workers during summer in 
the middle east." Ann Occup Hyg no. XX (XX). 

Bates, G. P., and V. S. Miller. 2008. "Sweat rate and sodium loss during work in the 
heat." J Occup Med Toxicol no. 3:4-10. doi: 1745-6673-3-4 [pii] 

10.1186/1745-6673-3-4. 
Bates, G., and J. Schneider. 2008. "Hydration status and physiological workload of 

UAE construction workers: A prospective longitudinal observational study." 
Journal of occupational medicine and toxicology no. 3 (21). 

Bates, G.P., V.S. Miller, and D.M Joubert. 2010c. "Hydration status of expatriate 
manual workers during summer in the Middle East." Annals of occupational 
hygiene no. 54 (2):137-143. 



   
 

        164 

Below, P. R., R. Mora-Rodriguez, J. Gonzalez-Alonso, and E. F. Coyle. 1995. "Fluid 
and carbohydrate ingestion independently improve performance during 1 h of 
intense exercise." Med Sci Sports Exerc no. 27 (2):200-10. 

Bergeron, M. F. 2003. "Heat cramps: fluid and electrolyte challenges during tennis in 
the heat." J Sci Med Sport no. 6 (1):19-27. 

Biggs, C., M. Paterson, and E. Maunder. 2011. "Hydration status of South African 
forestry workers harvesting trees in autumn and winter." Ann Occup Hyg no. 
55 (1):6-15. 

Binkley, H.M., J. Beckett, D.J. Casa, D.M. Kleiner, and P.E. Plummer. 2002. 
"National athletic trainers' association position statement: exertional heat 
illnesses." J Athl Train no. 37:329-343. 

Bishop, P. A., R. E. Pieroni, J. F. Smith, and S. H. Constable. 1991. "Limitations to 
heavy work at 21 degrees C of personnel wearing the U.S. military chemical 
defense ensemble." Aviation space and environmental medicine no. 62 
(3):216-220. 

Blachley, J., J.P. Knochel, and J. Long. 1974. "Impaired muscle glycogen synthesis 
and prevention of muscle glycogen supercompensation by potassium 
deficiency." Clin Res no. 22 (3):517. 

Blackburn, R.E., E.M. Stricker, and J.G. Verbalis. 1992. "Central oxytocin mediates 
inhibition of sodium appetite by naloxone in hypovolemic rats." 
Neuroendocrinology no. 56:255 - 263. 

Booth, R.E., J.P. Johnson, and J.D. Stockand. 2002. "Aldosterone." Advances in 
Physiol Ed no. 26 (8):8-20. 

Boulant, J.A. 1981. "Hypothalamic mechanisms of thermoregulation." Fed Proc no. 
40:2843-2850. 

Brake, D. J., and G. P. Bates. 2003a. "Fluid losses and hydration status of industrial 
workers under thermal stress working extended shifts." Occup Environ Med 
no. 60 (2):90-6. 

Brake, D.J., and G. P. Bates. 2003b. "Fluid losses and hydration status of industrial 
workers under thermal stress working extended shifts." Occup Environ Med 
no. 60:90-96. 

Buono, M. J., S. Avila, L. Garnero, L. Fader, and F. W. Kolkhorst. 2011. "The effect 
of heat acclimation on maximal urine osmolality in humans." Journal of 
Thermal Biology no. 1 (1). 

Buono, M. J., K. D. Ball, and F. W. Kolkhorst. 2007. "Sodium ion concentration vs. 
sweat rate relationship in humans." J Appl Physiol no. 103 (3):990-4. doi: 
00015.2007 [pii] 

10.1152/japplphysiol.00015.2007. 

Buono, M. J., R. Claros, T. Deboer, and J. Wong. 2008. "Na+ secretion rate increases 
proportionally more than the Na+ reabsorption rate with increases in sweat 
rate." J Appl Physiol no. 105:1044-1048. 



   
 

        165 

Buono, M. J., S. L. Martha, and J. H. Heaney. 2009. "Peripheral sweat gland 
function, but not whole- body sweat rate increases in women following 
humid heat acclimation." Journal of Thermal Biology no. 35:134-137. 

Buono, M. J., B.K. McKenzie, and F.W. Kasch. 1991. "Effects of aging and physical 
training on the peripheral sweat production of the human eccrine sweat 
gland." Age and ageing no. 20 (6):439-441. 

Buono, M. J., T. R. Numan, R. M. Claros, S. K. Brodine, and F. W. Kolkhorst. 2009. 
"Is active sweating during heat acclimation required for improvements in 
peripheral sweat gland function?" American Journal of Physiology-
Regulatory Integrative and Comparative Physiology no. 297 (4):R1082-
R1085. doi: 10.1152/ajpregu.00253.2009. 

Buono, M. J., and N.T. Sjoholm. 1988. "Effect of physical training on peripheral 
sweat production." J App Physiol no. 65 (2):811-814. 

Bursey, R.G., and L. Watson. 1983. "The effect of sodium restriction during 
gestation on offstring brain development in rats." Clin Nutr no. 37 (1):43-51. 

Caderette, B.S., M.N. Sawka, M.M. Toner, and K.B. Pandolf. 1984. "Aerobic fitness 
and the hypohydration response to exercise-heat stress." Aviat Space Environ 
Med no. 55:507-512. 

Cage, G. W., and R. L. Dobson. 1965. "Sodium Secretion and Reabsorption in the 
Human Eccrine Sweat Gland." J Clin Invest no. 44:1270-6. doi: 
10.1172/JCI105233. 

Carter, R. 2008. "Exertional heat illness and hyponatremia: An epidemiological 
prospective." Curr Sports Med Rep no. 7 (4):S20-S27. 

Carter, R., 3rd, S. N. Cheuvront, J. O. Williams, M. A. Kolka, L. A. Stephenson, M. 
N. Sawka, and P. J. Amoroso. 2005. "Epidemiology of hospitalizations and 
deaths from heat illness in soldiers." Med Sci Sports Exerc no. 37 (8):1338-
44. 

Carter, R., S.N. Chenvront, C.R. Vernieuw, and M. Sawka. 2006. "Hypohydration 
and prior heat stress exacerbates decreases in cerebral blood flow velocity 
during standing." J App Physiol no. 101:1744-1750. 

Casa, D. J., L. E. Armstrong, S. K. Hillman, S. J. Montain, R. V. Reiff, B. S. Rich, 
W. O. Roberts, and J. A. Stone. 2000. "National Athletic Trainers' 
Association Position Statement: Fluid Replacement for Athletes." J Athl 
Train no. 35 (2):212-224. 

Casa, D. J., P. M. Clarkson, and W. O. Roberts. 2005. "American College of Sports 
Medicine roundtable on hydration and physical activity: consensus 
statements." Curr Sports Med Rep no. 4 (3):115-27. 

Cheung, S. S., and T. M. McLellan. 1998. "Heat acclimation, aerobic fitness, and 
hydration effects on tolerance during uncompensable heat stress." J Appl 
Physiol no. 84 (5):1731-9. 

Cheuvront, S. N., R. Carter, 3rd, and M. N. Sawka. 2003. "Fluid balance and 
endurance exercise performance." Curr Sports Med Rep no. 2 (4):202-8. 



   
 

        166 

Cheuvront, S.N., E.M. Haymes, and M.N. Sawka. 2002. "Comparison of sweat loss 
estimates for women during  prolonged high-intensity running." Med Sci 
Sports Exerc no. 34:1344-1350. 

Chinevere, T. D., R. W. Kenefick, S. N. Cheuvront, H. C. Lukaski, and M. N. 
Sawka. 2008. "Effect of heat acclimation on sweat minerals." Med Sci Sports 
Exerc no. 40 (5):886-91. 

Chorley, J., J. Cianca, and J. Divine. 2007. "Risk factors for exercise-associated 
hyponatremia in non-elite marathon runners." Clin J Sport Med no. 17 
(6):471-7. 

Cian, C., P.A. Barraud, B. Melin, and C. Raphel. 2001. "Effects of fluid ingestion on 
cognitive function after heat stress or exercise-induced dehydration." Int J 
Psychophysiol no. 42 (3):243-251. 

Clapp, A., P. Bishop, J. Smith, and E. Mansfield. 2000. "Effects of carbohydrate-
electrolyte content of beverages on voluntary hydration in a simulated 
industrial environment." AIHAJ no. 61:692-699. 

Cohen, H.W., S.M. Hailpern, and M.D. Alderman. 2008. "Sodium intake and 
mortality follow-up in the third National Health and Nutrition Examination 
Survey." J Gen Intern Med no. 23 (9):1297-1302. 

Collins, K.J., G.W. Crockford, and J.S. Weiner. 1966. "The local training effect of 
secretory activity on the response of the eccrine sweat glands." J Physiology 
no. 184:203-214. 

Collins, K.J., and J.S. Weiner. 1968. "Endocrinological aspects of exposure to high 
environmental temperatures." Physiol Rev no. 48:785-839. 

Convertino, V. A., L. E. Armstrong, E. F. Coyle, G. W. Mack, M. N. Sawka, L. C. 
Senay, Jr., and W. M. Sherman. 1996. "American College of Sports Medicine 
position stand. Exercise and fluid replacement." Med Sci Sports Exerc no. 28 
(1):i-vii. 

Coris, E.E., A.M. Ramirez, and D.J. Van Durme. 2004. "Heat illness in athletes: the 
dangerous combination of heat, humidity and exercise." Sports Medicine no. 
34 (1):9-16. 

Coyle, E. F. 2004. "Fluid and fuel intake during exercise." J Sports Sci no. 22 (1):39-
55. 

Daly, C., and D.B. Dill. 1937. "Salt economy in humid heat." Am J Physiol no. 
118:285-289. 

Davies, J.A., M.H. Harrison, L.A. Cochrane, R.J. Edwards, and T.M. Gibson. 1981. 
"Effect of saline loading during heat acclimatization on adrenocortical 
hormone levels." Journal of Applied Physiology no. 50 (3):605-612. 

Day, T.K., and D. Grimshaw. 2005. "An observational study on the spectrum of heat-
related illness with a proposal on classfication." J R Army Med Corps no. 151 
(1):11-18. 

De Wardener, H.E., and G. Macgregor. 1983. "The relation of a circulating sodium 
transport inhibitor (the natriuretic hormone?) to hypertension." Medicine no. 
62 (5):310-326. 



   
 

        167 

Donaldson, G.C., W.R. Keatinge, and R.D. Saunders. 2003. "Cardiovascular 
responses to heat stress and their adverse consequences in the healthy and 
vulnerable human populations." Int J Hyperthermia no. 19 (3):225-235. 

Donoghue, A. M., and G. P. Bates. 2000. "The risk of heat exhaustion at a deep 
underground metalliferous mine in relation to body-mass index and predicted 
VO2max." Occup Med (Lond) no. 50 (4):259-63. 

Donoghue, A. M., M. J. Sinclair, and G. P. Bates. 2000. "Heat exhaustion in a deep 
underground metalliferous mine." Occup Environ Med no. 57 (3):165-74. 

Dougherty, K. A., L. B. Baker, M. Chow, and W. L. Kenney. 2006. "Two percent 
dehydration impairs and six percent carbohydrate drink improves boys 
basketball skills." Med Sci Sports Exerc no. 38 (9):1650-8. 

Dufour, A., and V. Candas. 2007. "Ageing and thermal responses during passive heat 
exposure: sweating and sensory aspects." European Journal of Applied 
Physiology no. 100 (1):19-26. doi: 10.1007/s00421-007-0396-9. 

Dyer, A., P. Elliot, D. Chee, and J. Stamler. 1997. "Urinary biochemical markers of 
dietary intake in the INTERSALT study." The American Journal of Clinical 
Nutrition no. 65:1246S-1253S. 

Fine, B.P., N. Lestrange, and O.R. Levine. 1987. "Sodium deprivation growth failure 
in the rat: Alterations in tissue composition and fluid spaces." J Nutr no. 117 
(1):1623-1628. 

Fogelholm, G. M., R. Koskinen, J. Laakso, T. Rankinen, and I. Ruokonen. 1993. 
"Gradual and rapid weight loss: effects on nutrition and performance in male 
athletes." Med Sci Sports Exerc no. 25 (3):371-7. 

Fox, R.H., R. Goldsmith, I.F. Hampton, and T.J. Hunt. 1967. "Heat acclimatisation 
by controlled hyperthermia in hot-dry and hot-wet climates." J Appl Physiol 
no. 22:39-46. 

Francesconi, R. P., R.W. Hubbard, and M Mager. 1983. "Chronic low sodium diet in 
rats:hormonal and physiological effects during exercise in the heat." J Appl 
Physiol no. 55 (3):870-874. 

Francesconi, R. P., M. Sawka, and K. B. Pandolf. 1983. "Hypohydration and heat 
acclimation: plasma renin and aldosterone during exercise." J App Physiol no. 
55:1790-1794. 

Francesconi, R.P., M.N. Sawka, K.B. Pandolf, R.W. Hubbard, A.J. Young, and S. 
Muza. 1985. "Plasma hormonal responses at graded hypohydration levels 
during exercise-heat stress." J Appl Physiol no. 59 (6):1855-1860. 

Freda, B.J., M.B. Davidson, and P.M. Hall. 2004. "Evaluation of hyponatremia: A 
little physiology goes a long way." Cleveland clinic journal of medicine no. 
71 (8):639-650. 

Gabor, A., V.A. Kovacs, Z. Fajcsak, and E. Martos. 2010. "From guidelines to 
practice - Nutritional habits of Hungarian elite athletes compared with the 
data from the 3rd National Dietary survey." 



   
 

        168 

Gankam Kengne, F., C. Andres, L. Sattar, C. Meiot, and G. Decaux. 2008. "Mild 
hyponatremia and risk of fracture in the ambulatory elderly." QJM no. 
101:583-588. 

Garcia, A.M., M.G. Lacerda, I.A. Fonseca, F.M. Reise, L.O. Rodrigues, and E. 
Silami-Garcia. 2006. "Luteal phase of the menstrual cycle increases sweating 
rate during exercise." Braz J Med Biol Res no. 39 (9):1255-1261. 

Gardener, H., T. Rundek, C.B. Wright, M.S. Elkind, and R.L. Sacco. 2012. "Dietary 
sodium and risk of stroke in the Northern Manhattan study." Stroke no. 
43:1200-1205. 

Gardner, J. W., J. A. Kark, K. Karnei, J. S. Sanborn, E. Gastaldo, P. Burr, and C. B. 
Wenger. 1996. "Risk factors predicting exertional heat illness in male Marine 
Corps recruits." Med Sci Sports Exerc no. 28 (8):939-44. 

Garigan, T.P., and D.E. Ristedt. 1999. "Death from hyponatremia as a result of acute 
water intoxication in an Army basic trainee." Mil Med no. 164 (3):234-8. 

Garrett, A.T., R. Creasy, N.J. Rehrer, M.J. Patterson, and J.D. Cotter. 2011. 
"Effectiveness of short-term heat acclimation for highly trained athletes." Eur 
J Appl Physiol no. 81 (1). 

Garth, A.K., and L.M. Burke. 2013. "What do athletes drink during competitive 
sporting activities." Sports Med no. 43:539-564. 

Geerling, J.C., and A.D. Loewy. 2008. "Central regulation of sodium appetite." Exp 
Physiol no. 93 (2):177-209. 

Gisolfi, C.V., D.R. Lamb, and E.R. Nadel. 1993. "Temperature regulation during 
exercise: An Overview." In Perspectives in Exercise Science and Sports 
Medicine: Exercise, heat and thermoregulation. Dubeque: Brown and 
Benchmark. 

Gisolfi, C.V., and S. Robinson. 1969. "Relations between physical training, 
acclimatization and heat tolerance." Journal of Applied Physiology no. 
26:530-534. 

Godek, S. F., A. R. Bartolozzi, C. Peduzzi, and S. Heinerichs. 2010. "Fluid 
consumption and sweating in National Football league and collegiate football 
players with different access to fluids during practice." Journal of Athletic 
Training no. 45 (2):128-135. 

Godek, S. F., J. J. Godek, and A. R. Bartolozzi. 2005. "Hydration status in college 
football players during consecutive days of twice-a-day preseason practices." 
Am J Sports Med no. 33 (6):843-51. 

Godek, S. F., C. Peduzzi, R. Burkholder, S. Condon, G. Dorshimer, and A. R. 
Bartolozzi. 2010. "Sweat Rates, Sweat Sodium Concentrations, and Sodium 
Losses in 3 Groups of Professional Football Players." Journal of Athletic 
Training no. 45 (4):364-371. 

Gonzalez, R.R., and K. Cena. 1985. "Evaluation of vapor permeation through 
garments during exercise." J App Physiol no. 58 (3):928-935. 



   
 

        169 

Gonzalez-Alonso, J., R. Mora-Rodriguez, P. R. Below, and E. F. Coyle. 1997. 
"Dehydration markedly impairs cardiovascular function in hyperthermic 
endurance athletes during exercise." J Appl Physiol no. 82 (4):1229-36. 

Gopinathan, P. M., G. Pichan, and V. M. Sharma. 1988. "Role of dehydration in heat 
stress-induced variations in mental performance." Arch Environ Health no. 
43 (1):15-7. 

Graudal, N.A., A.M. Galloe, and P. Garred. 1998. "Effects of sodium restriction on 
blood pressure, renin, aldosterone, catecholamines, cholesterols and 
triglyceride." JAMA no. 279:1383-1391. 

Graudal, N.A., T. Hubeck-Graudal, and G. Jurgens. 2012. "Effects of low-sodium 
diet Vs high-sodium diet on blood pressure, renin, aldosterone, 
catecholamines, cholesterol and triglyceride." American Journal of 
Hypertension no. 25 (1):1-15. 

Hamilton, S., S.J. Dickson, and J.E. Smith. 2006. "Hyponatremia on an operational 
deployment in Southern Iraq - A case series." J Royal Navel medical Service 
no. 92:114-117. 

Hammond, K.B., N.L. Turcios, and L.E. Gibson. 1994. "Clinical evaluation of the 
macroduct sweat collection system and conductivity analyzer in the diagnosis 
of cycstic fibrosis." J Pediatr no. 124 (2):255-260. 

Hamouti, N., J.D. Coso, E. Estevez, and R. Mora-Rodriguez. 2010. "Dehydration and 
sodium deficit during indoor practice in elite European male team players." 
European Journal of Sport Science no. 10 (5):329-336. 

Hamouti, N., J. Del Coso, J.F. Ortega, and R. Mora-Rodriguez. 2011. "Sweat sodium 
concentration during exercise in the heat in aerobically trained and untrained 
humans." Eur J Appl Physiol no. 111:2873-2881. 

Hargreaves, M., and M.A. Febbraio. 1998. "Limits to exercise performance in the 
heat." Int J Sport Nutr no. 19:S115-116. 

Hargreaves, M., T.O. Morgan, R. Snow, and M. Guerin. 1989. "Exercise tolerance in 
the heat on low and normal salt intakes." Clinical Science no. 76:553-557. 

Havenith, G., A. Fogarty, B. Bartlett, C.J. Smith, and V. Ventenat. 2008. "Male and 
female upper body sweat distribution during running measured with technical 
absorbents." Eur J Appl Physiol no. 104:245-255. 

Hawkins, R.C. 2003. "Age and gender as risk factors for hyponatremia and 
hypernatremia." Clin Chim Acta no. 337:169-173. 

Hazelhurst, L. T., and N. Claassen. 2006. "Gender differences in the sweat response 
during spinning exercise." Journal of Strength and Conditioning Research 
no. 20 (3):723-724. 

Henkin, S.D., P.L. Sehl, and F. Meyer. 2010. "Sweat rate and electrolyte 
concentration in swimmers, runners and nonathletes." Int J Sports Physiol 
Perform no. 5 (3):359-366. 

Hew, T. D., J. N. Chorley, J. C. Cianca, and J. G. Divine. 2003. "The incidence, risk 
factors, and clinical manifestations of hyponatremia in marathon runners." 
Clin J Sport Med no. 13 (1):41-7. 



   
 

        170 

Hinton, P.S., T.C. Sanford, M.M. Davidson, O.F. Yakushko, and N.C. Beck. 2004. 
"Nutrient intakes and dietary behaviours of male and female collegiate 
athletes." Int J Sport Nutr Exerc Metab no. 14 (4):389-405. 

Hooper, L., B. Bartlett, G.D. Smith, and S. Ebrahim. 2009. "Advice to reduce dietary 
salt for prevention of cardiovascular disease." The Cochrane Library (1). 

Hoorn, E.J., G. Liamis, R. Zietse, and M.C. Zillikens. 2011. "Hyponatremia and 
bone: an emerging relationship." Nat Rev Endocrinol no. 8:33-39. 

Hoorn, E.J., and R. Zietse. 2008. "Hyponatremia revisited: translating physiology to 
practice." Nephron Physiol no. 108 (3):46-59. 

Horswill, C. A. 1998. "Effective fluid replacement." Int J Sport Nutr no. 8 (2):175-
95. 

Horswill, C. A., J. R. Stofan, M. Lacambra, T. A. Toriscelli, E. R. Eichner, and R. 
Murray. 2009. "Sodium Balance During US Football Training in the Heat: 
Cramp-Prone vs. Reference Players." International Journal of Sports 
Medicine no. 30 (11):789-794. doi: 10.1055/s-0029-1234056. 

Hubbard, R.W., P.C. Szlyk, and L. E. Armstrong. 1990. "Influence of thirst and fluid 
palatability on fluid ingestion during exercise." In Perspectives in exercise 
science and sports medicine, edited by C. V. Gisolfi and D. R. Lamb. Carmel, 
Indiana: Brown and Benchmark. 

Ichinose-Kuwahara, T., Y. Inoue, M. Hirata, A.K.M. Shamsuddin, and N. Kondo. 
2008. "Enhanced heat loss responses induced by short-term endurance 
training in exercising women." Exp Physiol no. 94 (1):90-102. 

Ichinose-Kuwahara, T., Y. Inoue, Y. Iseki, S. Hara, Y. Ogura, and N. Kondo. 2010. 
"Sex differences in the effects of physical training on sweat gland responses 
during a graded exercise." Experimental physiology no. 95 (10). 

Inoue, Y., M. Nakao, H. Ishizashi, J. Tsujita, and T. Araki. 1998. "Regional 
differences in the Na+ reabsorption of sweat glands." Appl Human Sci no. 17 
(5):219-21. 

Jackson, L.L., and H.R. Rosenberg. 2010. "Preventing heat related illness amoung 
agricultural workers." Journal of Agromedicine no. 15:200-215. 

Janse, D.E., X.A. Jonge, M.W. Thompson, V.H. Chuter, and L.N. Silk. 2012. 
"Exercise performance over the menstrual cycle in temperate and hot,humid 
conditions." Med Sci Sports Exerc no. 44 (11):2190-2198. 

Johnson, J.M., and D.L. Kellogg. 2010. "Thermoregulatory and thermal control in 
the human cutaneous circulation." Frontiers in Bioscience no. 2:825-853. 

Kaciuba-Uscilko, H., and G. Ryszard. 2001. "Gender differences in 
thermoregulation." Curr Opin Clin Nutr Metab Care no. 4:533-536. 

Kamijo, Y., and H. Nose. 2006. "Heat illness during working and preventive 
considerations from body fluid homeostasis." Industrial Health no. 44 
(3):345-358. 

Kanikowska, D., J. Sugenoya, M. Sato, Y. Shimizu, Y. Inukai, N. Nishimura, and S. 
Iwase. 2010. "Influence of season on plasma antidiuretic hormone, 



   
 

        171 

angiotension 2, aldosterone and plasma renin activity in young volunteers." 
Int J Biometeorol no. 54:243-248. 

Kawahata, A. 1960. Sex differences in sweating. Edited by S. Ito, H. Ogato and H. 
Yoshimura, Essential Problems in Climatic Physiology. Nankodo, Japan. 

Keizer, H., G.M. Janssen, P. Menheere, and G. Kranenburg. 1989. "Changes in basal 
plasma testosterone, cortisol and dehydroepiandrosterone sulfate in 
previously untrained males and females preparing for a marathon." Int J Sport 
Med no. 10:S139-S145. 

Kenefick, R.W., and M. Sawka. 2007. "Hydration at the work site." Journal of the 
American College of Nutrition no. 26 (5):597-603. 

Kenny, G. P., D. Gagnon, L. E. Dorman, S. G. Hardcastle, and O. Jay. 2010. "Heat 
balance and cumulative heat storage during exercise performed in the heat in 
physically active younger and middle-aged men." European Journal of 
Applied Physiology no. 109 (1):81-92. doi: 10.1007/s00421-009-1266-4. 

Kilding, A. E., H. Tunstall, E. Wraith, M. Good, C. Gammon, and C. Smith. 2009. 
"Sweat Rate and Sweat Electrolyte Composition in International Female 
Soccer Players during Game Specific Training." International Journal of 
Sports Medicine no. 30 (6):443-447. doi: 10.1055/s-0028-1105945. 

Kinsella, S., S. Moran, M.O. Sullivan, M.G.M. Molloy, and J.A. Eustace. 2010. 
"Hyponatremia independant of osteoporosis is associated with fracture 
occurance." Clinical Journal of the American Society of Nephrology no. 5 
(2):275-280. 

Kirby, C. R., and V. A. Convertino. 1986. "Plasma aldosterone and sweat sodium 
concentrations after exercise and heat acclimation." J Appl Physiol no. 61 
(3):967-70. 

Knochel, J.P. 1977. "Potassium deficiency during training in the heat." Annals of the 
New York Academy of Sciences no. 301 (1):175-182. 

Knochel, J.P., F.D. Foley, and H.L. Walker. 1970. "Effect of potassium depletion on 
cardiac output and lactate response to exercise in the dog." Clin Res no. 
18:92. 

Kondo, N., S. Takano, K. Aoki, M. Shibasaki, H. Tominaga, and Y. Inoue. 1998. 
"Regional differences in the effect of exercise intensity on thermoregulatory 
sweating and cutaneous vasodilation." Acta Physiol Scand no. 164 (1):71-8. 

Kraft, J.A., J.M. Green, P.A. Bishop, and J.D. Leeper. 2010. "Impact of dehydration 
on a full body resistance exercise protocol." European Journal of Applied 
Physiology no. 109:259-267. 

Kravchenko, J., A.P. Abernethy, M. Fawzy, and H.K. Lyerly. 2013. "Minimization 
of heatwave morbidity and mortality." American Journal of Preventive 
Medicine no. 44 (3):274-282. 

Kumar, S., and T. Beryl. 1998. "Sodium." Lancet no. 352:220-228. 

Kurdak, S.S., S. M. Shirreffs, R. J. Maughan, K.T. Ozgunen, C. Zeren, S. Korkmaz, 
Z. Yazici, G. Ersoz, M.S. Binnet, and J. Dvorak. 2010. "Hydration and 



   
 

        172 

sweating responses to hot-weather football competition." Scand J Med Sci 
Sports no. 20:S3. 

Ladell, W.S.S., and R.J. Shephard. 1961. "Aldosterone inhibition and acclimatization 
to the heat." J Physiol no. 160:19-20. 

Lee, J.B., T.W Kim, Y.O. Shin, Y.K. Min, and H.M. Yang. 2010. "Effect of the heat-
exposure on Peripheral Sudomotor activity including the density of active 
sweat glands and single sweat gland output." Korean J Physiol Pharmacol 
no. 14 (5):273-278. 

Lee, N.V., P.W. Miller, and M. J. Buono. 2010. "The effect of spironolactone on 
sweat and urinary sodium excretion during exercise in humans." Clinical 
physiology and functional imaging no. 30 (1). 

Lieberman, H.R. 2007. "Hydration and cognition: a critical review and 
recommendations for future research." Journal of American college of 
Nutrition no. 26 (5):555-561. 

Lu, B., X.L. Yang, K. Chen, D.J. Yang, and J.Q. Yan. 2009. "Dietary sodium 
deprovation evokes activation of brain regional neurons and down-regulation 
of angiotension 2 type 1 receptor and angiotensin-convertion enzyme mRNA 
expression." Neuroscience no. 164:1303-1311. 

Luetkemeier, M.J., M.G. Coles, and E.W. Askew. 1997. "Dietary sodium and plasma 
volume levels with exercise." Sports Med no. 23 (5):279-286. 

Madeira, L. G., M. A. da Fonseca, I. A. T. Fonseca, K. P. de Oliveira, R. L. D. 
Passos, C. A. Machado-Moreira, and L. O. C. Rodrigues. 2010. "Sex-related 
differences in sweat gland cholinergic sensitivity exist irrespective of 
differences in aerobic capacity." European Journal of Applied Physiology no. 
109 (1):93-100. doi: 10.1007/s00421-009-1262-8. 

Magalhaes, F. C., R. L. F. Passos, M. A. Fonseca, K. P. M. Oliveira, J. B. Ferreira, 
A. R. P. Martini, M. R. M. Lima, J. B. Guimaraes, V. G. Barauna, E. Silami-
Garcia, and L. O. C. Rodrigues. 2010. "Thermoregulatory Efficiency is 
Increased after Heat Acclimation in Tropical Natives." Journal of 
Physiological Anthropology no. 29 (1):1-12. doi: 10.2114/jpa2.29.1. 

Maughan, R., C.E. Fenn, and J.B. Leiper. 1989. "Effects of fluid, electrolyte and 
substrate ingestion on endurance exercise capacity." Eur J Appl Physiol no. 
58:481-486. 

Maughan, R. J. 2010. "Distance running in hot environments: a thermal challenge to 
the elite runner." Scand J Med Sci Sports no. 20 (S3):95-102. 

Maughan, R. J., L. A. Dargavel, R. Hares, and S. M. Shirreffs. 2009. "Water and Salt 
Balance of Well-Trained Swimmers in Training." International Journal of 
Sport Nutrition and Exercise Metabolism no. 19 (6):598-606. 

Maughan, R. J., and S. M. Shirreffs. 2010. "Development of hydration strategies to 
optimize performance for athletes in high-intensity sports and in sports with 
repeated intense efforts." Scand J Med Sci Sports no. 20 (Suppl 2):59-69. 

Maughan, R. J., P. Watson, G. H. Evans, N. Broad, and S. M. Shirreffs. 2007. "Water 
balance and salt losses in competitive football." Int J Sport Nutr Exerc Metab 
no. 17 (6):583-94. 



   
 

        173 

Maughan, R., S.J. Merson, N.P. Broad, and S. M. Shirreffs. 2004. "Fluid and 
electrolyte intake and loss in elite soccer players during training." Int J Sport 
Nutr Exerc Metab no. 14 (3):333-346. 

Maughan, R., S.M. Shirreffs, S.J. Merson, and C.A. Horswill. 2005. "Fluid and 
electrolyte balance in elite male football (soccer) players training in a cool 
environment." Journal of sports sciences no. 23:73-79. 

Maughan, R.J., and J.B. Leiper. 1993. "Post exercise rehydration in man: effects of 
voluntary intake of four different beverages " Med Sci Sports Exerc no. 
25:1358-1364. 

Maughan, R.J., and S.M. Shirreffs. 2008. "Development of individual hydration 
strategies for athletes." Int J Sport Nutr Exerc Metab no. 18 (5):457-472. 

Maughan, R.J., S.M. Shirreffs, K.T. Ozgunen, S.S. Kurdak, G. Ersoz, M.S. Binnet, 
and J. Dvorak. 2010. "Living, training and playing in the heat: challenges to 
the football player and strategies for coping with environmental extremes." 
Scand J Med Sci Sports no. 20 (Suppl 3):117-124. 

Maughan, R.J., S.M. Shirreffs, and P. Watson. 2007. "Exercise, heat, hydration and 
the brain." Journal of the American College of Nutrition no. 26:604-612S. 

Maxwell, Neil, Richard W. A. McKenzie, and David Bishop. 2009. "Influence of 
hypohydration on intermittent sprint performance in the heat." International 
journal of sports physiology and performance no. 4 (1):54-67. 

McCance, R.A. 1936. "Experimental human salt deficiency." Lancet no. 1:823-830. 
McConell, G.K., T.J. Stephens, and B.J. Canny. 1999. "Fluid ingestion does not 

influence intense 1h exercise performance in mild environment." Med Sci 
Sports Exerc no. 31:386-392. 

McGregor, S. J., C. W. Nicholas, H. K. Lakomy, and C. Williams. 1999. "The 
influence of intermittent high-intensity shuttle running and fluid ingestion on 
the performance of a soccer skill." J Sports Sci no. 17 (11):895-903. 

McLellan, T. M. 1998. "Sex-related differences in thermoregulatory responses while 
wearing protective clothing." Eur J Appl Physiol Occup Physiol no. 78 
(1):28-37. 

Mehnert, P., P. Brode, and B. Griefahn. 2002. "Gender-related difference in sweat 
loss and its impact on exposure limits to heat stress." International Journal of 
Industrial Ergonomics no. 29 (6):343-351. 

Meneton, P., X. Jeunemaitre, H. Wardener, and G. Macgregor. 2005. "Links between 
dietary salt intake, renal salt handling, blood pressure and cardiovascular 
disease." Physiol Rev no. 85:679-715. 

Merson, S.J., R. Maughan, and S. M. Shirreffs. 2008. "Rehydration with drinks 
differing in sodium concentration and recovery from moderate exercise-
induced hypohydration in man." Eur J Appl Physiol no. 103:585-594. 

Mettler, S., C. Rusch, W.O. Frey, L. Bestmann, C. Wenk, and P.C. Colombani. 2008. 
"Hyponatremia amoung runners in the Zurich marathon." Clin J Sport Med 
no. 18:344- 349. 



   
 

        174 

Meyer, F., O. Baror, D. Macdougall, and G. J. F. Heigenhauser. 1992. "Sweat 
electrolyte loss during exercise in the heat - effects of gender and 
maturation." Med Sci Sports Exerc no. 24 (7):776-781. 

Miller, V., and G. P. Bates. 2007a. "Hydration of outdoor workers in northwest 
Australia." The Journal of Occupational Health and Safety - Australia and 
New Zealand no. 23:79-87. 

Miller, V. S., and G. Bates. 2007b. "Hydration of outdoor workers in northwest 
Australia." The journal of occupational health and safety no. 23:79-87. 

Miller, V.M., and G. P. Bates. 2009. "Hydration, Hydration, Hydration." Ann Occup 
Hyg:1-3. 

Mirabelli, M.C., S.A. Quandt, R. Crain, J.G. Grzywacz, E.N. Robinson, Q.M. 
Vallejos, and T.A. Arcury. 2010. "Symptoms of heat illness among Latino 
farm workers in North Carolina." American Journal of preventative medicine 
no. 39 (5):468-471. 

Miyagawa, T. 1988. "Factors causing bilateral differences in sweating activity." J 
Aichi Med Univ Assoc no. 16:135-145. 

Miyazaki, T., K. Ohmoto, and T. Hirose. 2010. "Chronic hyponatremia impairs 
memory in rats:effects of vasopressin antagonist tolvaptan." Journal of 
Endocrinology no. 206 (1):105-111. 

Modigliani, R., and J.J. Bernier. 1971. "Absorption of glucose, sodium and water by 
the human jejunum studied by intestinal perfusion with a proximal occluding 
balloon an at variable flow rates." Gut no. 12 (3):184-93. 

Mohan, S., and R.C. Campbell. 2009. "Salt and high blood pressure." Clinical 
science no. 117:1-11. 

Montain, S., S.N. Cheuvront, and M. Sawka. 2006. "Exercise associated 
hyponatremia: quantitative analysis to understand the aetiology." Br J Sports 
Med no. 40:98-105. 

Montain, S. J., S. N. Cheuvront, and H.C. Lukaski. 2007. "Sweat mineral-element 
responses during 7h of exercise- heat stress." Int J Sport Nutr no. 17:574-82. 

Montain, S. J., and E. F. Coyle. 1992a. "Fluid ingestion during exercise increases 
skin blood flow independent of increases in blood volume." J Appl Physiol 
no. 73 (3):903-10. 

———. 1992b. "Influence of graded dehydration on hyperthermia and 
cardiovascular drift during exercise." J Appl Physiol no. 73 (4):1340-50. 

Montain, S. J., W. A. Latzka, and M. N. Sawka. 1995. "Control of thermoregulatory 
sweating is altered by hydration level and exercise intensity." J Appl Physiol 
no. 79 (5):1434-9. 

Montain, S. J., M. N. Sawka, and C. B. Wenger. 2001. "Hyponatremia associated 
with exercise: risk factors and pathogenesis." Exerc Sport Sci Rev no. 29 
(3):113-7. 

Moran, D.S. 2000. "Stress evaluation by the physiological strain index (PSI)." 
Journal of basic and clinical physiology no. 11 (4):403-423. 



   
 

        175 

Morgan, R, M., M Patterson, J., and M.A. Nimmo. 2004. "Acute effects of 
dehydration on sweat composition in men during prolonged exercise in the 
heat." Acta Physiol Scand no. 182:37-42. 

Nadel, E. R. 1984. "Temperature regulation and hyperthermia during exercise." Clin 
Chest Med no. 5 (1):13-20. 

Nadel, E.R., G.W. Mack, and A. Takamata. 1993. "Thermoregulation, exercise adn 
thirst: Interrelationships in humans." In Perpectives in exercise science and 
sports medicine: Exercise, heat and thermoregulation, edited by C. V. 
Gisolfi, D. R. Lamb and E.R. nadel. Dubuque, IA: Brown & Benchmark. 

National Health and Medical Research Council. 2005. Nutrient reference values for 
Australia and New Zealand. 

National Heart Foundation of Australia. December 2006. Position statement on the 
relationships between dietary electrolytes and cardiovascular disease. 

Neville, V., N. Gant, and J.P. Folland. 2009. "Thermoregulatory demands of elite 
professional America's Cup yacht racing." Scand J Med Sci Sports no. 20 (3). 

Nielsen, B., J. R. Hales, S. Strange, N. J. Christensen, J. Warberg, and B. Saltin. 
1993. "Human circulatory and thermoregulatory adaptations with heat 
acclimation and exercise in a hot, dry environment." J Physiol no. 460:467-
85. 

Nielsen, B., S. Strange, N. J. Christensen, J. Warberg, and B. Saltin. 1997. "Acute 
and adaptive responses in humans to exercise in a warm, humid 
environment." Pflugers Archiv-European Journal of Physiology no. 434 
(1):49-56. 

Noakes, T. 2002. "Hyponatremia in distance runners: fluid and sodium balance 
during exercise." Curr Sports Med Rep no. 1 (4):197-207. 

Noakes, T. D. 2007. "Drinking guidelines for exercise: what evidence is there that 
athletes should drink "as much as tolerable", "to replace the weight lost 
during exercise" or "ad libitum"?" J Sports Sci no. 25 (7):781-96. doi: 
776699117 [pii] 

10.1080/02640410600875036. 

Noakes, T. D., R. J. Norman, R. H. Buck, J. Godlonton, K. Stevenson, and D. 
Pittaway. 1990. "The incidence of hyponatremia during prolonged 
ultraendurance exercise." Med Sci Sports Exerc no. 22 (2):165-70. 

Noakes, T. D., K. Sharwood, D. Speedy, T. Hew, S. Reid, J. Dugas, C. Almond, P. 
Wharam, and L. Weschler. 2005. "Three independent biological mechanisms 
cause exercise-associated hyponatremia: evidence from 2,135 weighed 
competitive athletic performances." Proc Natl Acad Sci U S A no. 102 
(51):18550-5. 

Noakes, T.D. 2012. "Commentary: role of hydration in health and exercise." BMJ. 
doi: 10.1136/bmj.e4171. 

Nose, H., G.W. Mack, X.R. Shi, and E.R. Nadel. 1988. "Role of osmolality and 
plasma volume during rehydration in humans." J App Physiol no. 65:325-
331. 



   
 

        176 

O'Brien, K. K., S. J. Montain, W. P. Corr, M. N. Sawka, J. J. Knapik, and S. C. 
Craig. 2001. "Hyponatremia associated with overhydration in U.S. Army 
trainees." Mil Med no. 166 (5):405-10. 

Oliver, J, W., E.L. Cohen, and J.V. Neel. 1975. "Blood pressure, sodium intake and 
sodium related hormones in the Yanomamo Indians, a "no-salt" culture." 
Circulation no. 52:146-151. 

Oppliger, R.A., S.A. Magnes, L.A. Popowski, and C.V. Gisolfi. 2005. "Accuracy of 
urine specific gravity and osmolality as indicators of hydration status." 
International Journal of Sports Nutrition and Exercise Metabolism no. 
15:236-251. 

Pahnke, M.D., J.D. Trinity, J.J. Zachwieja, J. R. Stofan, W.D. Hiller, and E.F. Coyle. 
2010. "Serum sodium concentration changes are related to fluid balance and 
sweat sodium loss." Medicine and Science in Sports and Exercise no. 42 
(9):1669-1674. 

Palmer, M.S., H.M. Logan, and L.L. Spriet. 2010a. "On-ice sweat rate, voluntary 
fluid intake and sodium balance during practice in male junior ice hockey 
players drinking water or a carbohydrate-electrolyte solution." Appl Physiol 
Nutr Metab no. 35:328-335. 

———. 2010b. "On-ice sweat rate, voluntary fluid intake, and sodium balance 
during practice in male junior ice hockey players drinking water or a 
carbohydrate electrolyte solution." Appl Physiol Nutr Metab no. 35:328-335. 

Passe, D. H., M. Horn, and R. Murray. 2000. "Impact of beverage acceptability on 
fluid intake during exercise." Appetite no. 35 (3):219-29. doi: 
10.1006/appe.2000.0352 

S0195-6663(00)90352-0 [pii]. 
Patterson, M. J., S. D. R. Galloway, and M. A. Nimmo. 2000. "Variations in regional 

sweat composition in normal human males." Experimental Physiology no. 85 
(6):869-875. 

Patterson, M.J., J.M. Stocks, and N.A.S. Taylor. 2004. "Sustained and generalized 
extracellular fluid expansion following heat acclimation." J Physiol no. 559 
(1):327-334. 

Peter, J., and C. H. Wyndham. 1966. "Activity of the human eccrine sweat gland 
during exercise in a hot humid environment before and after acclimatization." 
J Physiol no. 187 (3):583-94. 

Pitts, C., R.E. Johnson, and F.C. Consolazio. 1944. "Work in the heat as affected by 
intake of water, salt and glucose." Am J Physiol no. 142:253-259. 

Rehrer, N. J. 2001. "Fluid and electrolyte balance in ultra-endurance sport." Sports 
Med no. 31 (10):701-15. 

Renneboog, B., W. Musch, X. Vandemergel, M. Manto, and G. Decaux. 2006. "Mild 
chronic hyponatremia is associated with falls, unsteadiness and attention 
deficits." The American Journal of Medicine no. 119:71-79. 

Richter, C.P. 1936. "Increased salt appetite in adrenalectomized rats." Am J Physiol 
no. 115:155-161. 



   
 

        177 

Roberts, M.F., C.B. Wenger, J.A.J. Stolwijk, and E.R. Nadel. 1977. "Skin blood flow 
and sweating following exercise training and heat acclimation." Journal of 
Applied Physiology no. 43:133-137. 

Rogers, B., K. Stiehl, J. Borst, A. Hess, and S. Hutchins. 2007. "Heat-related 
illnesses: The role of the occupational and environmental health nurse." 
AAOHN no. 55 (7):279-287. 

Rothwell, S. P., and D. J. Rosengren. 2008. "Severe exercise-associated 
hyponatremia on the Kokoda Trail, Papua New Guinea." Wilderness Environ 
Med no. 19 (1):42-4. 

Rowell, L.B. 1974. "Human and cardiovascular adjustments to exercise and thermal 
stress." Physiological Reviews no. 54:75-159. 

Rowlinson, S., A. Yunyan, B. Li, and C.C. Ju. 2013. "Management of climatic heat 
stress risk in construction: A review of practices, methodologies and future 
research." Accident Analysis and Prevention. doi: 10.1016/j.aap.2013.08.011. 

Sanders, B., T. D. Noakes, and S. C. Dennis. 1999. "Water and electrolyte shifts with 
partial fluid replacement during exercise." Eur J Appl Physiol Occup Physiol 
no. 80 (4):318-23. 

———. 2001. "Sodium replacement and fluid shifts during prolonged exercise in 
humans." Eur J Appl Physiol no. 84 (5):419-25. 

Sato, F., E. Owen, R. Mattes, K. Sato, and C.V. Gisolfi. 1990. "Functional and 
morphological changes in the eccrine sweat gland with heat acclimation." J 
Appl Physiol no. 69:232-236. 

Sato, K. 1977. "The physiology, pharmacology and biochemistry of the eccrine 
sweat gland." Rev Physiol Biochem Pharmacol no. 79:51-131. 

Sato, K., and R. L. Dobson. 1970. "Regional and individual variations in the function 
of the human eccrine sweat gland." J Invest Dermatol no. 54 (6):443-9. 

Sato, K., W.H. Kang, K. Saga, and K.T. Sato. 1989. "Biology of sweat glands and 
their disorders. 1. Normal sweat gland function." J Am Acad Dermatol no. 20 
(4):537-563. 

Sato, K., and F. Sato. 1983. "Individual variations in structure and function of human 
eccrine sweat gland." Am J Physiol Regul Integr Comp Physiol no. 
245:R203-208. 

Sawka, M., L. Burke, E. Eichner, R. Maughan, S. Montain, and N. Stachenfeld. 
2007. "Exercise and fluid replacement." Medicine and science in sports and 
exercise no. 39 (2):377-390. 

Sawka, M. N. 1992. "Physiological consequences of hypohydration: exercise 
performance and thermoregulation." Med Sci Sports Exerc no. 24 (6):657-70. 

Sawka, M. N., and S. J. Montain. 2000. "Fluid and electrolyte supplementation for 
exercise heat stress." Am J Clin Nutr no. 72 (2 Suppl):564S-72S. 

Sawka, M. N., and K.B. Pandolf. 1990. "Effects of body water loss on physiological 
function and exercise performance." In Perspectives in exercise science and 
sports medicine: Fluid Homeostasis during exercise, edited by C. V. Gisolfi 
and D. R. Lamb. Carmel (IN): Benchmark Press Inc. 



   
 

        178 

Senay, L. C., Jr. 1968. "Relationship of evaporative rates to serum [Na+], [K+], and 
osmolarity in acute heat stress." J Appl Physiol no. 25 (2):149-52. 

Senay, L.C., and R. Kok. 1976. "Body fluid responses of heat tolerant and intolerant 
men to work in a hot wet environment." J Appl Physiol no. 40:55-59. 

Shamsuddin, A.K.M., S. Yanagimoto, T. Kuwahara, Y. Zhang, C. Nomura, and N. 
Kondo. 2005. "Changes in the index of sweat ion concentration with 
increasing sweat during passive heat stress in humans." Eur J Appl Physiol 
no. 94:292-297. 

Sharma, V. M., K. Sridharan, G. Pichan, and M. R. Panwar. 1986. "Influence of heat-
stress induced dehydration on mental functions." Ergonomics no. 29 (6):791-
9. 

Shi, X.R., and C.V. Gisolfi. 1998. "Fluid and electrolyte replacement during 
intermittent exercise." Sports Medicine no. 25:157-172. 

Shibasaki, M., T.E. Wilson, and C.G. Crandall. 2006. "Neural control and 
mechanisms of eccrine sweating during heat stress and exercise." J App 
Physiol no. 100:1692-1701. 

Shirreffs, S. M. 2005. "The importance of good hydration for work and exercise 
performance." Nutr Rev no. 63 (6 Pt 2):S14-21. 

———. 2009. "Symposium on 'Performance, exercise and health' Hydration, fluids 
and performance." Proceedings of the Nutrition Society no. 68 (1):17-22. doi: 
10.1017/s002966510800877x. 

Shirreffs, S. M., L. F. Aragon-Vargas, M. Chamorro, R. J. Maughan, L. Serratosa, 
and J. J. Zachwieja. 2005. "The sweating response of elite professional soccer 
players to training in the heat." Int J Sports Med no. 26 (2):90-5. doi: 
10.1055/s-2004-821112. 

Shirreffs, S. M., and R. Maughan. 1998. "Volume repletion after exercise-induced 
volume depletion in humans:replacement of water and sodium losses." Am J 
Physiol Renal Physiol no. 724:868-875. 

Shirreffs, S. M., M. Sawka, and M. Stone. 2006a. "Water and electrolyte needs for 
football training and match-play." J Sports Sci no. 24:699-707. 

Shirreffs, S.M., M.N. Sawka, and M. Stone. 2006b. "Water and electrolyte needs for 
football training and match-play." Journal of Sports Sciences no. 24:699-707. 

Siragy, H.M. 2006. "Hyponatremia, fluid-electrolyte disorders, and the syndrome of 
inappropriate antidiuretic hormone secretion: Diagnosis and treatment 
options." Endocr Pracrt no. 12:446-457. 

Smiles, K.A., R.S. Elizondo, and C.C. Barney. 1976. "Sweating responses during 
changes of hypothalamic temperature in the rhesus monkey." J App Physiol 
no. 40:653-657. 

Smiles, K.A., and S. Robinson. 1971. "Sodium ion conservation during 
acclimatization of men to work in the heat." J App Physiol no. 31 (1):63-69. 

Speedy, D. B., R. Campbell, G. Mulligan, D. J. Robinson, C. Walker, P. Gallagher, 
and J. H. Arts. 1997. "Weight changes and serum sodium concentrations after 
an ultradistance multisport triathlon." Clin J Sport Med no. 7 (2):100-3. 



   
 

        179 

Speedy, D. B., T. D. Noakes, N. E. Kimber, I. R. Rogers, J. M. Thompson, D. R. 
Boswell, J. J. Ross, R. G. Campbell, P. G. Gallagher, and J. A. Kuttner. 2001. 
"Fluid balance during and after an ironman triathlon." Clin J Sport Med no. 
11 (1):44-50. 

Speedy, D. B., T. D. Noakes, I. R. Rogers, J. M. Thompson, R. G. Campbell, J. A. 
Kuttner, D. R. Boswell, S. Wright, and M. Hamlin. 1999. "Hyponatremia in 
ultradistance triathletes." Med Sci Sports Exerc no. 31 (6):809-15. 

Stamford, B. 1993. "Muscle cramps: untying the knots." Physician Sportsmed no. 
21:115-116. 

Steiner, M.J., A.L. Nager, and V.J. Wang. 2007. "Urine specific gravity and other 
urinary indices - Inaccurate tests for dehydration." Pediatric Emergency Care 
no. 23 (5):298-303. 

Stofan, J. R., J.J. Zachwieja, C. A. Horswill, R. Murray, S.A. Anderson, and E. 
Eichner. 2005. "Sweat and sodium losses in NCAA football players: A 
precursor to heat cramps?" International Journal of Sport Nutrition and 
Exercise Metabolism no. 15:641-652. 

Sutton, J.R. 1990. "Clinical implications of fluid imbalance." In Fluid homeostasis 
during exercise, edited by C.V. Gisolfi and D.R. Lamb, 425-448. Carmel: 
Benchmark Press. 

Swain, D.P., K.S. Abernathy, C.S. Smith, S.J. Lee, and S.A Bunn. 1994. "Target 
heart rates for the development of cardiorespiratory fitness." Med Sci Sports 
Exerc no. 26 (1):112-116. 

Taylor, N. 1986. "Eccrine sweat glands: Adaptations to physical training and heat 
acclimation." Sports Med no. 3:387-397. 

Taylor, N.A.S., and J.D. Cotter. 2006. "Heat adaptation: guidelines for the 
optimisation of human performance." Int Sportsmed J no. 7:1-37. 

Tian, Z., N. Zhu, G. Zheng, and H. Wei. 2011. "Experimental study on physiological 
and psychological effects of heat acclimatization in extreme hot 
environments." Building and Environment no. 46 (10):2033-2041. 

Tippet, M.L., J. R. Stofan, M. Lacambra, and C. A.  Horswill. 2011. "Core 
temperature and sweat responses in professional women's tennis players 
during tournament play in the heat ." Journal of Athletic Training  
no. 46 (1):55-60. 

Tsintzas, O. K., C. Williams, R. Singh, W. Wilson, and J. Burrin. 1995. "Influence of 
carbohydrate-electrolyte drinks on marathon running performance." Eur J 
Appl Physiol Occup Physiol no. 70 (2):154-60. 

Valentine, V. 2007. "The importance of salt in the athlete's diet." Curr Sports Med 
Rep no. 6 (4):237-40. 

Verbalis, J.G. 2010. "Hyponatremia-induced osteoporosis." J Bone Miner Res no. 
25:554-563. 

Volpe, S.L., K.A. Poule, and E.G. Bland. 2009. "Estimation of prepractice hydration 
status of National Collegiate Athletic Association Division 1 athletes." 
Journal of Athletic Training no. 44 (6):624-629. 



   
 

        180 

Waikar, S.S., G.C. Curham, and S.M. Bruneli. 2011. "Mortality assocaited with low 
serum sodium concentration in maintenance hemodialysis." American 
Journal of Medicine no. 124:77-84. 

Waikar, S.S., D.M. Mount, and G.C. Curham. 2009. "Mortality after hospitalisation 
with mild, moderate and severe hypoatremia." Am J Med no. 122 (9):857-
865. 

Walsh, R. M., T. D. Noakes, J. A. Hawley, and S. C. Dennis. 1994. "Impaired high-
intensity cycling performance time at low levels of dehydration." Int J Sports 
Med no. 15 (7):392-8. 

Wasterlund, Dianne, Janet Chaseling, and Lage Burstrm. 2004. "The effect of fluid 
consumption on the forest workers' performance strategy." Applied 
ergonomics no. 35 (1):29-36. 

Watson, G., D. A. Judelson, L. E. Armstrong, S. W. Yeargin, D. J. Casa, and C. M. 
Maresh. 2005. "Influence of diuretic-induced dehydration on competitive 
sprint and power performance." Med Sci Sports Exerc no. 37 (7):1168-74. 

Wemple, R. D., T. S. Morocco, and G. W. Mack. 1997. "Influence of sodium 
replacement on fluid ingestion following exercise-induced dehydration." Int J 
Sport Nutr no. 7 (2):104-16. 

Wendt, D., L. J. Van Loon, and W. D. Lichtenbelt. 2007. "Thermoregulation during 
exercise in the heat: strategies for maintaining health and performance." 
Sports Med no. 37 (8):669-82. 

Werner, J. 1990. "Temperature regulation during exercise: An overview." In 
Perspectives in exercise science and sports medicine: Exercise, heat and 
thermoregulation, edited by C. V. Gisolfi, D. R. Lamb and E.R. Nadel. 
Dubuque, IA: Brown and Benchmark. 

Williams, J.S., and G.H. Williams. 2003. "50th Anniversary of aldosterone." J Clin 
Endocrinol Metab no. 88:2364-2372. 

Wilmore, J.H., and D.L. Costill. 2004. "Environmental influences on performance." 
In Physiology of sport and exercise, edited by Champaign Human Kinetics. 

World Health Organisation. 2007. Less Salt: Less Risk ; WHO forum on reducing 
salt intake in populations. Paris, France: WHO press. 

Wyndham, C.H., F. Morrison, and C.G. Williams. 1965. "Heat reactions of male and 
female caucasians." J App Physiol no. 20:357-364. 

Yoshida, T., H. Shin-ya, S. Nakai, A. Yorimoto, T. Morimoto, T. Suyama, and M. 
Sakurai. 2006. "Genomic and non-genomic effects of aldosterone on the 
individual variation of the sweat Na+ concentration during exercise in trained 
athletes." Eur J Appl Physiol no. 98:466-471. 

 

 



   
 

        181 

Every reasonable effort has been made to acknowledge the owners of copyright 

material. I would be pleased to hear from any copyright owner who has been omitted 

or incorrectly acknowledged. 

  



   
 

        182 

Chapter 8: Appendices 

8.1 Appendix A: Published Paper 

1. Holmes NA, Miller VS, Schneider J, Hasan O, Bates GP. 

Plasma sodium levels and dietary sodium intake in manual workers in the 

Middle East. 

Annals of Occupational Hygiene 2011; 55: 397-402. 

 

 

  



   
 

        183 

Plasma sodium levels and dietary sodium intake in manual 

workers in the Middle East 

Nicola Holmes1, Veronica Miller1, John Schneider2, Omer Hasan3, Graham Bates1 

 

Address: 

1 Curtin University of Technology, School of Public Health, Perth, Western 

Australia; 

2 University of the United Arab Emirates, Department of Community Medicine, 

United Arab Emirates;3 The Medical Centre, Drydocks world Dubai, United Arab 

Emirates 

  

  



   
 

        184 

Introduction 

Manual labourers working in the building and construction industry in some parts of 

the world perform physically demanding tasks in the heat for 12 hours per day, 6 

days per week. High sweat rates over the workshift can lead to progressive 

dehydration placing an individual at significant risk of heat related illness and injury 

(Donoghue and Bates 2000; Mirabelli et al. 2010). While several studies have 

investigated the incidence of dehydration in susceptible populations (Bates, Miller, 

and Joubert 2010b; Bates, Gazey, and Cena 1996), there has been little focus on the 

need to replace electrolyte losses associated with prolonged sweating in the 

occupational setting. The majority of research has focused on the electrolyte needs of 

endurance athletes due to their known high fluid and electrolyte losses (Baker et al. 

2009a; Palmer, Logan, and Spriet 2010b; Maughan et al. 2005). The industrial 

population form a unique group, performing longer periods of work at a lower 

metabolic rate and repeating the process daily. Requirements for salt intake in this 

population need further consideration.  

In developed countries such as the United States and Australia an estimated 75% of 

salt intake comes from processed foods (Dyer et al. 1997). Because of the high intake 

of these foods the dietary salt intake is seldom inadequate and often excessive. In 

countries where the traditional diet consists primarily of rice and legumes with very 

little processed food, the salt content is comparatively low. It was therefore 

hypothesised that workers consuming such a diet and working in hot environments 

would be at risk of chronic hyponatraemia due to inadequate replacement of sweat 

sodium losses. Expatriate manual workers in the Middle East form such a group, 

many thousands of these workers in the UAE are housed in labour camps, whereeach 

worker is served an identical type and quantity of food at each meal. The communal 

nature of food preparation and consumption leads to a uniformity of dietary intake 

not present in other populations. The consistency in dietary intake makes this 

population a unique group to study, while allowing for accurate dietary assessment. 

Previous studies conducted in manual labourers in Australia  have found average 

sweat rates of 1.1L/h, equating to over 10L of fluid loss during a work shift (Miller 

and Bates 2007a; Brake and Bates 2003b). Average sweat sodium losses over a 10 

hour work shift have been estimated to be 4.8 – 6 g, equivalent to 10-15g salt (NaCl) 
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(Bates and Miller 2008). Due to the large inter-individual variation in sweat rate and 

sodium loss these values may be even higher in some individuals, with reported 

values in excess of 10g of sodium (25g salt) per day (Bates and Miller 2008). 

Regular consumption of food and fluid containing adequate salt content is therefore 

essential to replace these sweat losses to avoid the development of chronic 

hyponatremia, potentially compromising the health and safety of the worker. 

While chronic hyponatremia is often throught to be asymptomatic the consequences 

of a long term decline in plasma sodium may put the health and safety of a worker at 

risk. The clinical symptoms of hyponatremia depend largely on the extent of plasma 

sodium decline and the rapidity of onset (Freda, Davidson, and Hall 2004) and can 

range from nausea, headache, vomiting, confusion, coma, convulsion and ultimately 

death (Kumar and Beryl 1998). Chronic hyponatremia can develop over several days 

when body mechanisms fail to maintain sodium homeostasis. This may be from 

profuse sweating with inadequate solute intake, resulting in a decrease in 

extracellular fluid volume, compromising the body’s ability to thermoregulate 

(Hamilton, Dickson, and Smith 2006). Cases of hyponatremia have been reported in 

military and civilian personal working in extreme environmental conditions in 

southern Iraq (Hamilton, Dickson, and Smith 2006). While the majority of these 

cases were due to acute water intoxication leading to severe acute hyponatremia, the 

failure of sodium homeostasis in these extreme temperatures was reported to have 

been further compounded by poor dietary salt intake during the patrol period 

(Hamilton, Dickson, and Smith 2006).  

The aim of the present study was to investigate the hypothesis that workers 

consuming a traditional low salt diet and working in hot conditions are at risk of 

chronic hyponatremia. Firstly plasma sodium levels in a group of manual labourers 

during both the summer and winter months were investigated for evidence of 

hyponatraemia. A further aim was to assess the relative adequacy of the current diet 

provided to workers with focus on the total salt content of the menu. The results of 

this study will identify whether this population consumes sufficient dietary sodium to 

offset the high sweat losses, particularly during the extreme summer months.  
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Methods 

This study was carried out at a ship building and construction site in Dubai, United 

Arab Emirates, during summer (July) and winter (February).  

All participants were volunteers who gave their written and informed consent to 

participate in the study. The study was supported and authorised by management and 

ethical approval was obtained from the Al-Ain Medical District Human Research 

Ethics Committee. 

A total of 44 subjects were studied at the end of the summer months and 38 subjects 

were repeated at the end of winter. The same subjects were used in the summer and 

winter trials. The subjects were male dockyard workers (various trades) from India, 

Bangladesh and Pakistan, aged between 18 and 50 years.  

Biochemistry 

Full blood tests including LFT, FBC, U&E and glucose were taken from all subjects 

in both the summer (July) and winter (February) months to check general health and 

compare blood electrolyte profiles. Any worker with any known medical condition 

was excluded from the study.  The venous blood sample was taken in the morning 

prior to eating (0800 hours) by a trained phlebotomist. An approved accredited 

pathology laboratory completed all analysis. 

Dietary Assessment 

An assessment of the diet of the workers was conducted in two parts by an 

Accredited Practising Dietitian. Part one involved recording and analysing menus 

and recipes to allow for an estimation of total daily salt intake. Menus and recipes 

from all food prepared and served in the mess hall was collected and analysed over a 

3 day period. Foodworks 2007 nutrient analysis package was then used to estimate 

the total daily macronutrient intake along with total daily salt intake. Estimation of 

serve size was conducted through observation of meals served as well as 

measurement of plated food. Table salt was provided on a separate table next to the 

bain-marie. The use of table salt at meals was observed and an estimation of the 

quantity added was recorded. Part two of the study involved individual interviews 

with the workers, 38 workers were available for this interview where questions 
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relating to individual dietary practices were asked. Table 1 outlines the questions 

asked to the workers during the interview.  
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Results 

Table 2 summarises the physical characteristics of the subject group. 

Biochemistry 

Results from the blood electrolyte profile in summer and winter showed that a high 

proportion of subjects (55%) were found to be hyponatraemic in the summer months 

(Graph 1), all remaining values were in the lower part of the reference range. 5% of 

subjects had serum sodium levels less than 130mM. In the winter months only 8% of 

subjects were found to be hyponatremic.  

Dietary Assessment 

Part One: Menu and Recipe Analysis 

Table 3 summarises the dietary assessment data collected at the site during the 

summer period. On average a worker would consume an estimated 2000-3000mg of 

sodium (5-7.5g salt) in food and fluid per day. The total sodium content of the lunch 

meal was particularly low averaging 600mg (1.5g salt). In addition to this workers 

would be provided with a maximum of 1L per day of electrolyte replacement fluid 

which would provide between 200-400mg sodium (500-1000mg salt). This is only 

provided in the summer months. Additional table salt is available at all meals, 

however only 43% of workers indicated that they added salt to their meals.  

Part Two: Interviews with workers 

93% of the workers stated that they did not consume any other food outside of what 

was provided in the mess at breakfast, lunch and dinner. This information further 

confirmed the consistency in dietary intake of the workers. The three subjects who 

did snack between meals stated that they would only consume fruit or fruit juice on 

occasion; these foods would not contribute significantly to overall daily salt intake.  

94% of the workers stated that they do not change anything about their diet between 

the summer and winter period and that heat did not affect their intake. 

43% of the workers stated that they regularly add table salt to their lunch and dinner 

meals. One or two small pinches of salt was the typical amount added which would 

provide an estimated 250-500mg of sodium (625- 1250mg salt).  Observation of 
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table salt use did support these self-reports as it was noted that few workers chose to 

add salt to their meals and if they did it was in small quantities. 

All workers stated that they did consume an electrolyte replacement solution during 

working hours during the summer months. There is a limit of 1L of electrolyte 

solution per worker during this period while water consumption is unrestricted. 

Medical staff indicated that this restriction was placed as a precaution to avoid 

excessive consumption of sugar and salt.  
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Discussion 

The initial hypothesis that sodium intake in this population is inadequate to replace 

sweat losses is supported by the results of this study. During the summer period 55% 

of workers were found to be clinically hyponatremic with plasma sodium values less 

than 135mM, compared with only 8% during the winter period. Given that dietary 

intake is consistent throughout the year, these results indicate that the hyponatremia 

during summer is most likely due to high sweat sodium losses coupled with 

inadequate sodium replacement. Assessment of dietary intake revealed that on 

average workers consume between 2000-3000 mg of sodium (5 – 7.5 g salt) per day. 

This quantity is insufficient, particularly during summer when temperatures are 

extreme and fluid and electrolyte losses through sweat are assumed to be high due to 

high sweat rates.  

Due to the increasing prevalence of hypertension and cardiovascular disease on a 

global scale, dietary salt restriction is being strongly advocated as a public health 

measure to reduce the incidence of chronic disease worldwide. Currently the World 

Health Organisation recommends that salt intake should be less than 5g/day (less 

than 2g/day sodium) (World Health Organisation 2007). These recommendations are 

not appropriate for populations engaging in heavy manual labour in the heat as sweat 

sodium losses far exceed this level of intake.  

The long term health effects of a chronic sodium restricted diet have not been well 

investigated. The results from animal studies have shown a significantly decreased 

plasma volume and increased haematocrit in sodium depleted mice (Francesconi, 

Hubbard, and Mager 1983). It is postulated that this change in hemodynamic state 

would seriously compromise the body’s ability to tolerate further circulatory stress 

such as that imposed by excessive sweating. In addition to this, a higher sodium diet 

is known to enhance the thermoregulatory and cardiovascular adaptations that occur 

during heat acclimatisation (Luetkemeier, Coles, and Askew 1997).  A recent study 

by Miyazaki et al (2010) showed that stable chronic hyponatremia resulted in 

impaired memory function in rats that was normalised when sodium levels were 

corrected to within normal range. The effect of chronic hyponatremia on the Central 

Nervous System in humans is largely unknown and requires further investigation.  A 

study by Renneboog et al (2006) indicated that patients with mild chronic 
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hyponatremia had an increased incidence of falls due to a global decrease in 

attentional capabilities, posture and gait mechanisms (Renneboog et al. 2006). While 

the patients in this study were reported to be asymptomatic, the results also identified 

significant impairment in cognitive function. The mechanisms of these observations 

are throught to be a result of slowed peripheral and central nerve conduction 

(Renneboog et al. 2006). For manual workers performing intense physical labour, 

any impairment in judgment or cognitive capacity will increase vulnerability to 

workplace accidents and injury and is therefore a major concern. 

Since conducting this research there have been reports of a number of young laborers 

presenting to the Intensive Care Unit in hospitals within the Middle East with 

seriously low plasma sodium levels, placing them at risk of neuromuscular 

dysfunction. This information and the results from this study indicate that there is a 

need for sodium intake guidelines specific for manual laborers working in the heat to 

be developed. Providing workers with specific guidelines showing estimated sweat 

sodium losses and practical replacement guidelines for the various working roles will 

acknowledge that workers in physically demanding outdoor roles will have greater 

fluid and salt requirements than stationary indoor workers. Interviews with the 

workers in this study revealed that several individuals had been actively trying to 

limit salt intake to prevent hypertension. Given that current health recommendations 

are aimed at restricting dietary salt intake, educating medical staff and workers on 

the importance of both fluid and sodium replacement when working in conditions of 

heat stress is necessary.  

In order to increase sodium intake the addition of salt to meals during cooking is 

indicated. In addition to this, educating workers, particularly those in more physically 

demanding roles on the benefit of adding table salt to meals is also warranted. When 

working in severe thermal conditions, replacement of fluid losses with water alone is 

insufficient, as it does not replace sodium lost in sweat, thus increasing the risk of 

dilutional hyponatremia and acute water intoxication (Hoorn and Zietse 2008) The 

provision of an electrolyte replacement fluid that has been designed for prolonged use 

in an industrial setting is indicated. The benefit of providing an electrolyte 

replacement beverage between meals is to promote water uptake and retention, and 

to offset fatigue by maintaining blood glucose, whilst palatability encourages fluid 
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intake (Sawka et al. 2007). However even regular consumption of an electrolyte 

replacement fluid throughout the work shift would not make up for the dietary 

inadequacy; the addition of salt to meals is also needed.  

The data from this study demonstrate that the diet of some workers in the Middle 

East is not adequate in salt content. High sweat sodium losses due to long periods of 

manual work in the heat are not being replaced leading to the chronic hyponatremia 

shown. While workers are relatively asymptomatic there may be safety implications 

for workers who are managing heavy machinery or working at height due to an 

impaired cognitive ability and increased susceptibility to fatigue, both of which may 

increase the risk of workplace accidents. The information collected in this study may 

apply to hundreds of thousands of workers in the Middle East as well as anywhere 

where workers are engaged in prolonged manual labour in hot climates while 

consuming a diet that is predominantly starch based. Increasing the total salt content 

of both fluid and food consumed by workers may be effective in reducing the 

incidence of work related illness and accidents in this population.  

Conclusions 

• A significant proportion of workers at this site in the UAE were clinically 

hyponatremic during the summer period. This was not shown during winter 

indicating that it is primarily due to high sweat sodium losses that are not 

being replaced. 

• The salt content of the diet is insufficient to replace estimated sweat sodium 

losses during summer 

• Workers are unable to consume food at regular intervals due to logistics of 

the work environment and will benefit from regular consumption of an 

electrolyte replacement fluid specifically designed for prolonged industrial 

use.  

• Educating workers and medical staff on the importance of adequate fluid and 

salt intake to prevent dehydration and electrolyte imbalances is strongly 

indicated. 
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• Salt intake guidelines specific for workers engaged in prolonged work in the 

heat are necessary to decrease the incidence of hyponatremia in this 

population 
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TABLES AND FIGURES 

Table 1: Interview questions asked to workers 

Question 

5. Do you normally snack outside of meal times (i.e. Breakfast/lunch/dinner)? 

6. Do your eating habits change in summer compared with winter?  

7. Do you normally add salt to your lunch and dinner meals? 

8. Do you consume an electrolyte replacement drink during working hours? 
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Table 2:Physical Characteristics of subjects 

 Mean (± Std Dev) 

Age (years) 37 ( 6.1) 

Height (m) 168 (6.9) 

Weight (kg) 67.5 (12.5) 

BMI (kg/m2) 23.8 (3.7) 
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Graph 1: Comparison of serum sodium values in summer and winter 
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Table 3: Analysis of energy and sodium content in the 3 day menu 

Day Meal Energy (kJ) Sodium (mg) 

 

1 

Breakfast 4411 1359 

Lunch 3937 624 

Dinner 3415 773 

Total 11763 2757 

 

2 

Breakfast 4624 1235 

Lunch 4105 464 

Dinner 3651 1005 

Total 12381 2704 

 

3 

Breakfast 3903 1145 

Lunch 4263 654 

Dinner 3428 571 

Total 11595 2371 

Average 3 Day average 11913 2610 
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8.2 Appendix B: Sweat rates and sodium loss across a range of sports 

Referenc
e 

Sport Condition
s 

Sweat 
collection 
method 

Testing Sweat rate 
(L/h) 

Sodium 
concentration 
(mmol/L) 

Potassium 
concentrat
ion 
(mmol/L) 

Bates 
and 
Miller 
(2008) 

Work in 
the heat 

35 degrees 

50%RH 

chamber 
study 

Wescor coils 
(Right and 
left upper 
arm and 
thigh) 

29 manual 
workers, untrained, 

2 consecutive days 
testing in summer 
and winter 

 

Summer = 
0.47L/h 

Winter = 
0.41L/h 

Summer = 
53mmol/L 

Winter = 
73mmol/L 

N/A 

Neville et 
al (2009) 

Competitiv
e sailing   

32 degrees 

52%RH 

field study 
in summer 

Sweat 
patches 
(chest, 
scapular, 
forearm, 
thigh) 

32 elite males 

100 minutes of 
racing 

 

1.4L/h 

(0.44-2.1L/h) 

27mmol/L 

(12-
43.5mmol/L) 

N/A 
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Baker et 
al 
(2009b) 

Triathletes 30degrees, 
44% RH  

Heat 
chamber 
study 

Sweat 
patches 
(Forearm, 
back, chest, 
forehead and 
thigh) and 
whole body 
wash down 

10m/10f athletes 
cycled in heat 
chamber for 90 
minutes 

0.8L/h 

(0.6-1.2L/h) 

41 mmol/L 

(21-
127mmol/L) 

4.4mmol/L 

(3.1 – 
5.8mmol/L
) 

Maugha
n et al 
(2005) 

Professiona
l football 
players 

5 degrees 
88% RH 

Field study 

 

Sweat 
patches 
(chest, 
forearm, 
back and 
thigh) 

17 males, 1h 
40min training 
session 

 

1.69 ± 0.45L/h 

(1.06-2.65L/h) 

73 ± 
31mmol/L 

(29-
121mmol/L) 

7.1 ± 
2.8mmol/L 

(3.4-
14.8mmol/
L) 

Shirreffs 
et al 
(2005) 

Football 
players 

32 degrees, 
20%RH 

Field study 

Sweat 
patches 
(chest, arm, 
back and 
thigh) 

26 males, 90 mins 
training session 

 

2.2 ± 0.4L/h 

(1.67-3.14L/h) 

67 ± 
37mmol/L 

(26-
129mmol/L) 

8 ± 
2.0mmol/L 

(5-
12mmol/L) 
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Godek et 
al (2010) 

Professiona
l football 
players 

 

25.9ºC 

Field study 

Sweat 
patches 
(right 
forearm) 

18 backs and 
receivers (BK) 

12 linebacks (LB), 
14linemen (LM),  

2 hour practice 

BK = 1.41L/h 

LB = 1.98L/h 

LM = 2.16L/h) 

50 ± 16 
mmol/L 

(15-99 
mmol/L) 

N/A 

Maugha
n et al 
(2009) 

Swimmers  

 

36ºC – air 
temp 

27ºC – 
pool temp 

Field study 

Sweat 
patches 
(forearm, 
back, chest 
and thigh) 

9 male 8 female, 
105 min training 
session 

0.31 ± 0.1L/h 

 

43 ± 
14mmol/L 

4.0 ± 
1.0mmol/L 

Horswill 
et al 
(2009) 

Professiona
l American 
Football 
players 

 

29-32ºC 

Field study 

Sweat 
patches 

(forearm 
only) 

14 males, 2.2h 
training session 

Crampers: 2.9 
± 1.6L/h 

Non-crampers: 
2.3 ± 0.4L/h 

Crampers:  

52.6mmol/L 

Non-crampers: 
38.3mmol/L 

N/A 
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Kilding 
et al 
(2009) 

internation
al female 
soccer 
players 

 

14.1 ± 
0.7ºC 

Sweat 
patches 

13 players 2 x 90 
min soccer specific 
training sessions. 
Sweat patches used 

0.5 ± 0.27L/h 46 ± 
14mmol/L 

6.1± 
3.9mmol/L 

Pahnke 
et al 
(2010) 

Ironman 
triathletes 

Hawaii 
Ironman® 
2003 

26.4℃, 
65% RH 

 

Sweat 
patches 
(right 
forearm and 
right 
scapula) 

46 male athletes Females: 1.1 ± 
0.38L/h 

Males: 1.53 ± 
0.36 L/h 

Females: 39.95 
± 12.6 mmol/L 

Males: 

44.97 ± 16.4 
mmol/L 

N/A 

Palmer 
et al 
(2010a) 

Club level 
Ice hockey 
players 

11.4℃, 
52% RH 

Sweat patch 
(forehead) 

14 males, 90 
minute training 
session 

1.5L/h  

(0.7-2.1L/h) 

71.6 mmol/L N/A 
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Kurdak 
et al 
(2010) 

Club level 
football 
players  

34℃, 65% 
RH 

Sweat 
patches 
(forearm, 
chest, back 
and thigh) 

22 males, 90 min 
game 

2.0L/h 43mmol/L± 11 
(27-59) 

3.5mmol/L 
± 0.5 (2.9-
4.0) 

Hamouti 
et al 
(2010) 

Elite team 
players 
(volleyball, 
basketball, 
handball 
and soccer) 

21℃, 32% 
RH 

Sweat patch 
(forearm) 

43 males, 70 min 
practice game 

1.4 ± 0.3L/h 49 ± 
10mmol/L 

4.3 ± 
0.3mmol/L 

Bergeron 
(2003) 

Tennis 
players 
(cramp 
prone) 

31.9 ± 
0.5ºC 

Sweat 
patches 

Game (duration 
N/A) 

2.6 ± 0.1L/h 44.5 ± 
13.5mmol/L 

N/A 
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8.3 Appendix C: Consent Forms 
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____________________________________________________________________ 

FORM OF DISCLOSURE AND INFORMED CONSENT: STUDY #1 

____________________________________________________________________ 

PROJECT TITLE 

“Fluid and electrolyte losses associated with working/exercising for prolonged 

periods in thermally stressful environments” 

NAME OF CHIEF INVESTIGATORS 

Miss Nicola Holmes, Dr Jill Sherriff, Dr Veronica Miller, Dr Graham Bates 

Thank you for expressing interest in our study. 

The work that we are doing will increase our knowledge of the risks associated with 

working or exercising in hot environments, and enable us to make recommendations 

which will help to protect your health and safety in hot conditions. 

The study involves:  

• Answering a few questions about your health and habits, this gives us 

background information to assist in interpreting your data. 

• Recording of your fluid intake during the shift and answering questions about 

your fluid intake when off duty. 

• Having your blood collected in the morning of your shift after an overnight fast. 

This will be performed by a trained phlebotomist. 

• Having your diet assessed by a trained dietitian who will analyse the nutritional 

content of the food you consumed throughout your shift 

 

 

 

 

 

 



   
 

        213 

POSSIBLE RISKS, INCONVENIENCE AND DISCOMFORTS 

There are no substantial risks with this study 

I have been asked to participate in the above research study and give my consent by 

signing this form on the understanding that: 

1) The research study will be carried out in a manner conforming to the 

principles set out by the National Health and Medical Research Council. 

2) I comprehend the general purposes, methods, demands and possible risks, 

inconvenience or discomforts of the study 

3) In giving my consent I acknowledge that my participation in this research 

study is voluntary and that I may withdraw at any time and if I do withdraw 

there will be no adverse consequences. 

4) I agree that research data gathered for the study may be published provided 

my name is not used and if I request I may have a copy of my own results. 

5) Any questions concerning the project can be directed to Nicola Holmes 

contact number 0414 765 906. Email nicola.holmes@postgrad.curtin.edu.au 

6) This study has been approved by the Curtin University Human Research 

Ethics Committee.  If needed, verification of approval can be obtained either by 

writing to the Curtin University Human Research Ethics Committee, c/- Office of 

Research and Development, Curtin University of Technology, GPO Box U1987, 

Perth, 6845 or by telephoning 9266 2784 or by emailing hec@curtin.edu.au. 

 

Participant _______________________________  Date ________________ 

 

Investigator______________________________ 

 Date_________________ 

 

 

 

____________________________________________________________________ 
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FORM OF DISCLOSURE AND INFORMED CONSENT: STUDY #2/3 

PROJECT TITLE 

 “Fluid and electrolyte losses associated with working/exercising for prolonged 

periods in  thermally stressful environments” 

NAME OF CHIEF INVESTIGATORS 

Miss Nicola Holmes, Dr Jill Sherriff, Dr Veronica Miller, Dr Graham Bates 

Thank you for expressing interest in our study. 

The work that we are doing will increase our knowledge in the effects of sweat rate 

on sweat sodium loss. This information will enable us to make recommendations 

which will help to ensure that your hydration level is best maintained during 

exercise. 

The study involves: 

• Answering a few questions about your health and training habits. This gives 

us background information to assist in interpreting your data 

• Measurement of your hydration status at the start of the exercise trial. This 

test simply requires a small urine sample which will be discarded after testing 

• Determination of your sweat rate by weighing you at the start and end of the 

shift and recording all inputs and outputs over the shift 

• Exercising on a stationary bicycle at a set workload for a period of 

approximately 30 minutes. 15 minutes of this will be done as a warm- up at a 

low intensity level. The next 15 minutes will consist of exercise at low- high 

intensity The conditions in the chamber will be hot and humid.  

• Having samples of your sweat collected in small collection coils secured by 

Velcro straps to shaved areas of skin. 

 

 

 

POSSIBLE RISKS, INCONVENIENCE AND DISCOMFORTS 
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There are no substantial risks with this study 

I have been asked to participate in the above research study and give my consent by 

signing this form on the understanding that: 

1) The research study will be carried out in a manner conforming to the 

principles set out by the National Health and Medical Research Council. 

2) I comprehend the general purposes, methods, demands and possible risks, 

inconvenience or discomforts of the study 

3) In giving my consent I acknowledge that my participation in this research 

study is voluntary and that I may withdraw at any time and if I do withdraw 

there will be no adverse consequences. 

4) I agree that research data gathered for the study may be published provided 

my name is not used and if I request I may have a copy of my own results. 

5) Any questions concerning the project can be directed to Nicola Holmes 

contact number 0414 765 906. Email nicola.holmes@postgrad.curtin.edu.au 

6) 6)This study has been approved by the Curtin University Human Research 

Ethics Committee.  If needed, verification of approval can be obtained either 

by writing to the Curtin University Human Research Ethics Committee, c/- 

Office of Research and Development, Curtin University of Technology, GPO 

Box U1987, Perth, 6845 or by telephoning 9266 2784 or by emailing 

hec@curtin.edu.au. 

 

Participant _______________________________  Date ________________ 

 

Investigator______________________________ 

 Date_________________ 
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8.4 Appendix D: Information to volunteers 
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Dear athletes, 

Thank you for your interest and for volunteering your time to be part of this research. 

Please read through this information prior to your designated testing day. If you have 

any further questions please don’t hesitate to contact me at 

nicola.holmes@postgrad.curtin.edu.au 

 

Information to read prior to your testing days 

 

Hydration 

 

It is vitally important that you are adequately hydrated prior to your sessions. We 

will be measuring your hydration level before you commence cycling (be ready to 

give a urine sample on arrival!) 

Hydration Protocol – 24 hours prior to test day 

- Drink at least 1.5L of water or electrolyte replacement fluid in the 24 hours 

prior to your test day. 

o A good way to tell whether you are well hydrated is by your urine 

colour. When you are adequately hydrated your urine will be a 

straw yellow colour.  

- Avoid alcohol 

- Consume at least 500ml of fluid and avoid all caffeinated  beverages on the 

morning of the test 

 

Where to go on the day 

 

All testing will be conducted in the heat chamber at Curtin University located in the 

Public Health building (building 400).  Go to the link below to see a detailed map of 

Curtin  

http://properties.curtin.edu.au/maps/ 
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Building 400 is close to the hockey stadium. As you will be coming to Curtin outside 

of normal working hours you are able to park in any parking bay.  

Please meet outside the glass sliding doors at the entrance of the building, someone 

will meet you and direct you to the heat chamber.. 

 

What to bring 

o Normal cycling clothing (light weight clothing is best as it doesn’t 

absorb as much sweat) 

o bike shoes or sneakers 

o Heart rate monitor if you own one 

o Towel 

o Water bottle 

There are stationary bikes set up in the chamber which we will be using for the 

testing.  

There are shower facilities that you are able to use after your session. 

If you cannot find the building on the morning of testing my contact number is 

0414765906, please call me and I will point you in the right direction. 

 

I look forward to meeting you. 

Kind Regards 

Nicola 

 

This study has been approved by the Curtin University Human Research Ethics 

Committee.  If needed, verification of approval can be obtained either by writing to 

the Curtin University Human Research Ethics Committee, c/- Office of Research and 

Development, Curtin University of Technology, GPO Box U1987, Perth, 6845 or by 

telephoning 08 9266 2784. 
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8.5 Appendix E: Pre-testing Questionnaires: Study #2/3 
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Heat Chamber study #1: The effect of exercise intensity on sweat rate and sweat 

sodium loss in well trained athletes during cycling exercise in the heat 

 

Name_______________________________  Age_______________ 

 

Contact Number:  

 

(Home)_________________(Mobile)____________________ 

 

Email:  ____________________________________ 

 

Anthopometry measurements 

 

Height: ______________________ Weight: _____________________________ 

 

Estimated Maximal Heart rate (BPM)  _____________________________ 

 

1) Are you currently training for any particular event? 

____________________________________________________________________

____________________________________________________________________

________________________________________________________ 

 

2) Do you ever suffer from cramps during training or competition? 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 
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3) Do you currently use an electrolyte replacement fluid during training/competition? 

If yes what type? 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________ 

 

Please estimate your current approximate training hours per week. 

 

a) Swimming _____ hs 

 

b) Cycling ____ hs 

 

c) Running _____ hs 

 

d) Other _______hs 
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Heat Chamber study #2: The effects of physical training and seasonal 

acclimatisation on fluid and electrolyte losses during cycling exercise in the heat 

 

Name_______________________________  Age_______________ 

 

Subject ID Number __________________ 

 

Contact Number: _________________________________ 

 

Email:  ____________________________________ 

 

Anthopometry measurements 

 

Height: ______________________  

Pre weight:___________________ 

Post Weight:___________________ 

Sweat rate:______________________ 

 

Estimated Maximal Heart rate (BPM)  _____________________________ 

 

Skinfolds 

Bicep_________________________________________ 

Tricep_________________________________________ 

Subscapular_____________________________________ 

Abdominal_____________________________________ 

Supra spinale_____________________________________ 



   
 

        223 

Iliac Crest _______________________________________ 

Mid Thigh________________________________________ 

Calf____________________________________________ 

% Body Fat ____________________________________ 

 

Please outline below the amount/type/intensity of physical activity you have been 

doing over the last 2 months on a weekly basis 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 
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8.6 Appendix F: Dietary intake questionnaires: Study #1 
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Plasma sodium levels and dietary sodium intake in manual workers in the 
Middle East 
 
Department ___________________________         Date 
________________________ 
Nationality____________________________ 

 

1. Where do you normally eat your meals: 

Home    Asian Mess        

 

Filipino Mess   Guest House 

 

Other 

 

2. Do you normally snack outside of meal times: 

No  

 

Yes  

 

If ‘Yes’ what types of snacks do you normally eat?   

 

3. Do your eating habits change in the summer period Vs winter period? 

No 

 

Yes 

 

If ‘yes’ how do your eating habits change? 
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4. Do you normally add salt to your food? 

 

No  

 

Yes 

 

If ‘yes’ approximately how much salt do you add? (i.e. 1 teaspoon per 

meal) 

 

5. What do you normally drink during a work shift? 

 

Water 

 

Electrolyte solution 

 

Other 

 

Nothing 

 


