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Abstract 

Wind power generation is regarded as the most promising source of all 

renewable energy system to meet the global commitment to combat climate 

change. In this research, a concept to advance the knowledge in the possibility to 

improve the power transfer of the fixed speed wind energy conversion system 

based on a squirrel cage induction generator is presented. The proposed system 

endeavour to increase power extracted from the wind energy system and yet is 

simple as it does not call for the utilisation of any power electronic converter to 

facilitate the interface between the induction generator and the grid. On the other 

hand it proposes an design to utilise the existing variable capacitors and tap 

changing transformer that are already part of the wind conversion system with a 

new control algorithm.  

 

The utilization of variable capacitors and tap changing transformer in tandem can 

improve the power transfer capability of a WECS with fixed speed SCIG, within a 

tolerable window of opportunity. Only minor modification, in the form of a global 

controller that will control the values of excitation capacitor as well as the tap 

position of the transformer, needs to be added to the existing system. It was found 

that annual energy production of the WECS can be improved and this 

improvement can be significant especially  when the proposed system is 

implemented in a large system, which is normally the case for a fixed speed WECS. 
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1.  Introduction 

1.1 Introduction 

Wind is the world's fastest-growing energy source with an average annual 

growth rate of 29% over the last ten years. In 2007, global wind power generating 

capacity crossed 94 GW. This represents a twelve-fold increase from a decade ago, 

when world wind-generating capacity stood at just over 7.6 GW. Being an 

emerging fuel source a decade ago, wind energy has grown rapidly into a mature 

and booming global industry. Further, the power generation costs of wind energy 

have fallen by 50%, moving closer to the cost of conventional energy sources. The 

future prospects of the global wind industry are very encouraging and it is 

estimated to grow by more than 80% over the next five years to reach 600 GWs 

by year 2018 [1]. In Australia, wind industry has made a significant leap forward 

in 2013 with the completion of the Southern Hemisphere’s largest wind farm, the 

420MW Macarthur project in Victoria. [1] Driven by Australia’s vast resource 

potential and supportive government policy, wind power now supply over 

9,200GWh of the nation electricity each year. The Australian government sets a 

renewable energy target that call for at least 20% of Australia’s electricity supply 

from renewable sources by 2020, which is equivalent more than 45,000GWh. [1] 

It is expected that utilities and generating companies will rely heavily toward 

wind farms to achieve this target.    

 

There are many types of WECS for connecting the wind turbine generators to the 

electricity grid. The two major classifications are Fixed Speed and Variable Speed. 

The variable speed WECS employ a power electronic interface together with 

synchronous and asynchronous machines while the fixed speed WECS are 

connected directly to the grid. The power conditioning system in variable speed 

WECS has several advantages including reactive power support to the grid but 

are expensive and introduce harmonics. The fixed speed WECS employing SCIG 

are rugged and much less expensive. They require little maintenance and are 

highly reliable compared to the multi component variable speed WECS. They 

occupy the bulk share of the World’s wind energy market. However, the SCIG- 



 

2 

 

WECS when integrated to a grid, the rotor speed allowed to vary in a very limited 

range and the voltage need to be maintained at the grid connection point. This 

project will develop an enabling technology in renewable energy conversion 

system that will allow an efficient cost effective way of integrating fixed speed 

wind turbine generators to the grid. The SCIG has terminal capacitors installed 

but also require some reactive power support from the grid. The capacitors 

typically provide the no load excitation. The optimisation of wind turbine driven 

induction generators has been well studied for stand-alone case but there has not 

been any attempt made so far to study the optimisation prospects for grid 

connected cases even though the scope of large energy gains are in such cases 

because of their large capacity. This is mainly because researchers have 

overlooked to take for guaranteed that the SCIG-WTGs provide no scope for speed 

and voltage optimisation issues as the machine is grid connected. However, when 

looked carefully at the characteristics of both the Wind Turbines and the SCIG it 

is revealed that there is a limited opportunity to vary the speed and voltage to 

obtain significant gain in energy output without sacrificing grid requirements. 

This research proposes a novel optimisation scheme for the fixed speed WECS 

employing the SCIGs without adding any expensive hardware. The main 

objectives of this research are to: 

 

 Develop a maximum energy extraction scheme for the wind-driven grid-

connected squirrel cage induction generator.   

 Investigate the effect of different load models and scenarios 

 Model the interaction between excitation capacitors, OLTC and different 

load models on the power curve of the wind turbine generator.   

 Develop a supervisory control algorithm to vary the excitation capacitance 

and OLTC settings to maximize the power fed to the grid meanwhile 

keeping the terminal voltage and frequency within their permissible limits.   

 

Wind turbine prime movers convert the wind energy into electrical power using 

a generator. The turbine characteristic is such that it has the best conversion 

efficiency at certain rotational speed corresponding to a certain wind speed and 

the efficiency drops either way. Operating at variable shaft speed enables a 
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greater percent of available wind energy to be converted to electrical power that 

is why synchronous generator does not provide maximum power extraction from 

the wind energy because the prime mover has to be operated at constant speed 

(synchronous speed). Self-excited induction generators are a good candidate for 

wind powered systems operating in parallel with an existing power grid because 

they are simple and they do not need an external power supply to produce the 

excitation magnetic field. This is particularly applicable where the average wind 

speed is favourable and consistently available. The squirrel cage induction 

generator has the following advantages[2]: 

 

a) Rotor bars have more thermal and electrical withstand limit, as a result 

more power can be generated with same rating of wound rotor machine.  

b) It is cheap, rugged and easily available.  

c) Rotor bars are less prone to failure.  

d) No brush loss.  

e) Lower weight and inertia.  

f) It has a self-protection mechanism because the voltage collapses when 

there is a short circuit at its terminals. 

 

Variable speed induction generators can be connected to the grid via a power 

electronic interface (AC-DC-AC converter) to allow the variation of turbine speed 

and to convert the variable generated voltage to fixed voltage and frequency [3, 

4]. However, using a power electronic converters will incur extra cost, losses and 

will inject harmonics into the grid. Most power converters has a six pulse rectifier 

at the front end and hence introduces sizeable amount of 6k+/- 1 characteristic 

harmonic frequency currents in the stator windings. Furthermore, using power 

electronic interface usually complicates the system at the expense of reliability. 

Most wind energy conversion systems use fixed speed induction generators 

which can be connected directly to the grid to provide sinusoidal electrical power 

at any turbine shaft speed (above synchronous speed) but without optimisation 

these WECS do not run efficiently most of the time and they draw some reactive 

power from the grid [5]. The fixed speed machine, although with a decreasing 

market share, still captures about 30% of all wind power generation for its 
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simplicity and low cost. [6, 7] Moreover, the mechanical conversion efficiency 

varies considerably with wind speed. The system will not be able to extract 

maximum energy in a higher speed range; as a consequence the output exported 

power to the grid will be saturated in higher wind speed range [8, 9]. An induction 

generator connected directly to the utility grid would allow the speed to vary in 

a very narrow range, and so the wind turbine operates of optimum efficiency only 

within a small range of wind speed variation.  

 

An induction generator driven by wind turbine should be supplied by reactive 

power in order to build its voltage. This reactive power is provided either from 

an external excitation capacitor or directly from the utility grid [10, 11]. However 

the utilities are concerned on maintaining a power factor at the connection point 

and are not keen to supply reactive resources to the SCIG.  In this research 

external excitation capacitor is used to provide the required no-load reactive 

power to the induction generator. In addition, an online tap changing transformer 

(which is considered as an AC-AC converter) is used to keep the terminal voltage 

at an acceptable limit. In all other studies, researchers have given concern to 

extract maximum power from the wind turbine. However, no concern has been 

given to the generator efficiency. This research aims to develop a novel control 

algorithm to maximise wind power extracted as well as maximising generator 

efficiency. The minimum and maximum values of capacitance required for self-

excitation have been analyzed previously [9–12]. The relationship between the 

value of the load, capacitance, and speed has been investigated. However, no 

attention has been given to the influence of load type on the induction motor 

characteristics. In this research the relationship between speed, capacitance, and 

load type is determined so that the characteristics of the induction generator for 

self-excitation with different static load types (i.e. constant power, constant 

current and constant impedance) can be established. This relationship is 

important to find the region where the induction generator can continue to 

operate without loss of self-excitation. In previous studies [12-14] it is reported 

that the dynamically generated voltage varies with the value of the load, but there 

is no study shows the effect of load type on the dynamic speed of the rotor. In this 
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research, the effect of different static load models on the rotor speed will be 

investigated. 

 

The proposed control system in this research will monitor the difference between 

the actual and the desired generator output power, speed and voltage to adjust 

the external capacitance and OLTC setting so that maximum output power 

delivered to the grid is achieved; in the same time keeping its terminal voltage 

and frequency within their permissible limits. A dynamic model for the wind 

energy conversion system is developed for both controlled and uncontrolled 

operation. The model is then used to theoretically predict the changes in shaft 

speed, torque, and generator power in response to changes in wind speed. 

Preliminary results based on computer simulations are given in the next section. 

The proposed technique does not employ any expensive AC-DC-AC converter but 

exploits the existing capability of the equipment and maintains system simplicity. 

The model will be validated through a laboratory prototype model using a 

microcomputer-controlled wind turbine simulator and squirrel cage induction 

motor.  

 

Due to simplicity and cost advantage, an opportunity of an existing and proposed 

wind farm is presented on fixed speed wind energy conversion systems 

employing induction machines. These direct connected machines offer 

converter-less operation but must be tightly controlled to synchronize voltage 

and frequency for grid connection. In motor technology, excitation control and 

speed control are well established to achieve better efficiency. This paper aims at 

explaining fixed speed wind generator efficiency improvement by controlling the 

generator terminal voltage using tandem control of excitation capacitors and 

OLTC transformer to match the required rotor speed of the WTG for maximum 

aerodynamic conversion efficiency. Results show that improvement in energy 

output is possible. This could translate to millions of additional MWh into the grid 

for medium to large turbines over their lifetime. 

The need of cost effective, sustainable and efficient renewable energy system is 

inevitable especially with the growing world energy demand and increasing 
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concern over the problem of global warming as well as rapid depletion of the 

conventional fossil fuels. Out of the renewable energy system, the wind energy 

conversion system is seen to be the most promising as it is a mature technology 

with many research efforts dedicated to improve its performance. Wind system 

can be classified into the fixed speed and the variable speed system, each with its 

own advantages and disadvantages. Although a lot of the newer wind energy 

conversion systems are the variable type as it can extract more power from the 

wind through the utilization of power electronics interface, many large WECS are 

fixed speed systems. There has not been much literature covering the efficiency 

enhancement of the fixed speed system compared to the variable speed one. This 

is suspected to be due to the limited improvement that can be achieved without 

the utilization of the power electronics converter. However, if carefully observed 

this small window of opportunity can translate to a substantial benefit due to, 

inter alia, the large size of the system as well as the minor modification that need 

to be implemented to the current system. Moreover, to eliminate the fixed speed 

systems and convert them to operate as variable speed WECS will require a 

substantial financial investment.  

 

Depending on many factors such as the wind resources at the site, this becomes 

an optimization problem of finding the most valuable design for the least amount 

of investment. In some cases, the extra cost of converting the current fixed speed 

system configuration into a variable speed WECS cannot be justified with the 

extra power transfer that can be injected to the grid and hence in these cases the 

fixed speed wind system provide a more economically efficient solution. 

 

1.2 The Potential of Renewable and Wind Energy 

Interest in the increasing utilisation of renewable energy has been growing, 

largely as a reaction of increasing energy consumption worldwide, the depletion 

of fossil fuel and uncertainty in its increasing price as well as the increasing 

environmental concern in the form of global warming and greenhouse effect. 
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Figure 1-1 World energy consumption by region (in quadrillion Btu) [15]  

 

The increasing trend of the world population with a predicted expansion from 

the 7 billion people today to nearly 9 billion people in 2040 is seen to be the 

inevitable fact that is a prerequisite to a global economic growth. The increase of 

the global energy consumption is a direct result of this expanding population 

growth. 

 

Figure 1-1 shows the world energy consumption increasing strongly over the 

projected period rising nearly 50% in the period of 1990 to 2035 with most of 

the growth contributed by emerging economies outside the Organisation for 

Economic Cooperation and Development (OECD), especially in Asia. In particular, 

China and India led the energy consumption growth of the non-OECD Asia with 

an increase of above 100% over the projected period, whereas, the slowest 

growth among the non-OECD regions is in Europe and Eurasia where substantial 

gains in energy efficiency are achieved through the upgrade of the inefficient 

Soviet era capital equipment. [15] 

 

The use of energy, from all sources, has been increasing dramatically around the 

world. With the domination of fossil fuel as fuel source to power generation, this 

causes a significant sustainability problem as the utilisation rate of fossil fuel by 

modern society is much higher than the capability of the earth to regenerate this 

type of resources. The depletion of this finite resources will eventually be 

inevitable. On top of this, the prediction of oil prices will remain high as well as 
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the increasing concern about the environmental consequences of greenhouse 

effect, a number of national governments have device regulations and targets as 

incentives in support of the development of alternative energy sources. 

Environmental sustainability is becoming an importantly relevant issue in the 

last decade since the world is starting to experience tangible effect of global 

warning. A lot of the contributing factor of this environmental issue can be traced 

from the power industry with various pollutants resulting from power 

generation. The concept of zero carbon and carbon trading were introduced to 

try quantifying the sustainability of a development. To achieve zero carbon status, 

two strategies can be implanted: demand reduction and offset generation.  

 

Demand reduction can further be classified into passive methods that can be 

easily achieved with minimum cost, such as window treatment and insulation in 

buildings design. In contrast, active method can be utilised to further minimise 

demand, such as by properly selecting building orientation, efficient heating 

ventilation air condition system and energy efficient system. However, regardless 

of the amount of demand reduction that can be achieved by these demand 

reduction strategies, in order to reach zero carbon status, offset generation is 

required because it is impossible to eliminate energy demand altogether. The 

renewable energy can be utilised as a source for this mitigated demand. This type 

of generation power by more sustainable type of resources that is non exhaustive 

and have less negative impact to the environment. This causes renewable energy 

to be the world’s fastest growing source of energy. [15] 
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Figure 1-2 Zero Carbon Principle 

 

 

 

Figure 1-3 Example of Zero Carbon Building in Hong Kong 

 

Out of the renewable energy system, the wind energy conversion system is seen 

to be the most promising as it is a mature technology with many research efforts 

dedicated to improve its performance. [16]  
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Figure 1-4 Cumulative wind energy installation in various regions in the world [1] 

 

Figure 1-4 shows the cumulative forecast of total wind energy installation in the 

world. As can be seen the general increasing trend of wind energy installation is 

likely to continue led by the increase in the European and Asian regions driven 

mainly by China and India. This is further depicted in Figure 1-5 with China 

having the largest cumulative wind energy capacity being installed in 2013. 
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Figure 1-5 Top 10 wind energy installed capacity in 2013 [1] 

 

Increasing expectation of higher wind energy penetration into the grid is evident 

in the recent days, especially with the various ambitious renewable energy 

targets. This, among others, prompts the pressure of the exponential growth of 

wind turbine size, especially when they are installed on an offshore location. 

Other factor that contributes to this trend is cost benefit of bigger turbine power 

production. The development of wind turbine size and power is shown in Figure 

1-6. 
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Figure 1-6 The development of power and size of wind turbine [17] 

 

1.3  The Types of Wind Energy Conversion System 

The wind energy conversion system can be classified by many aspects. From the 

physical point of view, wind turbine can be classified as vertical axis turbine and 

horizontal axis turbine.  

 

One way in differentiating wind turbines that operate with a fixed speed to those 

that operate with a variable speed. In fixed speed wind system, the speed of the 

generator is governed mostly by the speed of the wind with little variation that 

can be done through manipulation of some system parameters. Whereas with 

variable speed wind system, a larger operating speed of the generator can be 

achieved through the utilisation of power electronics equipments.  

 

Wind energy conversion system can also be classified based on the power control 

strategy utilised. This categorisation classifies wind system into passive stall 

control, active control and pitch control. All of this power control methods use 

the blade angle to limit the power produced by the wind turbine. In passive stall 

control, the blades are mounted to the nacelle at a fixed angle but they are 

designed so that the twist in the blades themselves will apply the brakes once the 

wind becomes too fast. The angle on the blades cause turbulence on the upwind 
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side of the blade once the wind speed is above certain limit. This aerodynamic 

principle will cause the speed of the blades to reduce. In active stall control, the 

same aerodynamic principle is used to reduced the blades’ speed, however, the 

blade pitch angle is adjustable and controlled by a controller. In pitch control, 

adjustable pitch angle blades are controlled by a controller to be unaligned with 

the incoming wind to slow the blades rotation. 

 

Another way of describing wind system topology is by classifying the 

configuration into the following categories as shown in Figure 1-7.  

 

In Table 1-1, some speed and power control combination that are not used in the 

wind industry today is not included. A brief explanation on each type of the wind 

turbine configuration is given below. 

 

Speed control 
Power control 

Stall Pitch Active stall 

Fixed speed Type A Type A0 Type A1 Type A2 

Variable speed 

Type B  Type B1  

Type C  Type C1  

Type D  Type D1  

 

Table 1-1 Wind Turbine Concepts [6] 
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Figure 1-7 Typical wind turbine configuration [6] 

 

1.3.1 Type A: Fixed Wind Speed 

This type is used to describe wind turbine with squirrel cage induction generator 

directly connected to the grid without power electronics converter via a 
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transformer. To provide reactive power support to the induction generator a 

capacitor bank is normally utilised. The main problem with this type of 

configuration is the fact that wind speed fluctuation is directly translated into 

power fluctuation that is injected to the grid. This can then be translated into 

voltage fluctuation which will worsen the problem of reactive power fluctuation 

that has to be provided by the grid unless there is a sufficient capacitor bank. 

Hence this configuration will require stiff grid and high tolerance on mechanical 

stress on the construction. Type A configuration can be classified into 3 types, the 

stall control, pitch control and active stall control. The stall control type A0 is the 

conventional concept around the 1980s and 1990s and had been very popular 

due to its low price, simplicity and robustness. In this type of turbine the stall is 

uncontrollable and depends solely on the input wind. The pitch control type A1 

has an advantage of allowing some degree of power control by adjusting the pitch 

angle of the blades, however, this add to the complexity of the system and hence 

the cost. Moreover, the pitch mechanism is relatively slow and can only 

compensate slow variation in wind and not gusts. The active stall control type A2 

provides a similar power quality characteristic as type A0 with better utilisation 

of the overall system and has recently become popular. 

 

1.3.2 Type B: Limited Variable Speed 

This configuration uses wound rotor induction generator with adjustable 

generator rotor resistance directly connected to the grid via a transformer. This 

concept is used by Vestas with their Optislip® in the mid 1990s. Both converter 

and passive components can be utilised to control the slip of this configuration 

with varying level of controllability. Generally speaking a slip up to 10% can be 

achieved. This concept is very rarely used and is almost non-existent in the 

current wind energy market. With this configuration, a capacitor bank is still 

needed to perform reactive power support to ensure acceptable power factor at 

point of common coupling. 
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1.3.3 Type C: Variable Speed with Partial Scale Frequency Converter 

This configuration is largely known as the Doubly-fed Induction Generator (DFIG). 

This concept utilises wound rotor induction generator with partial scale 

converter connected to the generator rotor circuit before being fed to the grid. 

This converter provides the reactive power support and facilitates smoother grid 

connection. It has a wider range of slip and a cost advantage over the full scale 

frequency converter configuration. However, the inclusion of power electronic 

converter increases the complexity of the system. Moreover, issues associated 

with power electronic converters such as power quality and protection affected 

this configuration. 

 

1.3.4 Type D: Variable Speed with Full Scale Frequency Converter 

This configuration corresponds to wind energy system with generator connected 

to the grid through a full scale frequency converter. This converter normally 

includes a back to back AC-DC-AC converter. The generator can be electrically 

excited or excited by a permanent magnet. Gearbox can also be utilised or omitted, 

in which case a low speed large diameter generator must be utilised. With proper 

control technique this configuration can result in the best reactive power and grid 

connection support. However, the full scale converter can add a significant 

financial cost to the system. Moreover, with the additional components included 

in the converter, increasing maintenance and reliability issue must be taken into 

consideration. 

 
Table 1-2 lists a comparative study on the different types of wind turbine 

configuration and it can also be seen that there is a contradiction between cost 

and performance from the grid perspective.  
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System Type A Type B Type C Type D 

Variable Speed No No Yes Yes 

Control Active Power Limited Limited Yes Yes 

Control Resistive Power No No Yes Yes 

Short Circuit (fault-active) No No No/Yes Yes 

Short Circuit Power Contribute Contribute Contribute Limit 

Control Bandwidth 1-10s 100ms 1ms 0.5-1ms 

Standby Function No No Yes + Yes ++ 

Flicker (sensitive) Yes Yes No No 

Softstarter Needed Yes Yes No No 

Rolling Capacity on Grid Yes, partly Yes, partly Yes Yes 

Reactive Compensator  Yes Yes No No 

Island Operation No No Yes/No Yes 

Investment ++ ++ + 0 

Maintenance ++ ++ 0 + 

 

Table 1-2 Comparison of different wind turbine configurations. [18] 

 

Manufacturer (%) Concept 
Diameter 

(m) 
Power 
(MW) 

Vestas (Denmark) 14.8 
DFIG 

GFC PM 
52 – 90 

112 
0.85 – 3 

3 

Sinovel (China) 11.1 DFIG 60-113 1.5 – 3 

General Electric (US) 9.6 
DFIG 

GFC PM 
DD PM 

70.5 – 82.5 
100 
110 

1.5 
2.5 
4.0 

Goldwind (China) 9.5 DD PM 70 – 100 1.5 – 2.5 

Enercon (Germany) 7.5 DD EE 33 – 126 0.3 – 7.5 

Suzlon (India) 6.9 CS 52 – 88 0.6 – 2.1 

Dongfang (China) 6.7 DFIG  1 – 2.5 

Gamesa (Spain) 6.6 
DFIG 

GFC PM 
52-97 
128 

0.85 – 2 
4.5 

Siemens (Germany) 5.9 
GFC IG 
DD PM 

82 – 107 
101 

2.3 – 3.6 
3 

United Power (China) 4.2 DFIG 77 - 100 1.5 – 3 

 

Figure 1-8 Top 10 Wind turbine manufacturer and their generator type and power ranges 
[19] 
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1.4 The Objectives of Thesis 

The first objective of the thesis is to investigate the applicability of the concept of 

voltage control on the fixed speed wind energy conversion system and to model 

the system to understand the relationship between the terminal voltage of the 

generator and the active power transfer into the grid. This thesis also endeavours 

to investigate the utilisation of both the variable capacitor bank and the OLTC 

transformer to achieve this voltage control strategy.  

 

The second objective of the thesis is to quantify the possible improvement on 

active power transfer of existing fixed speed induction generation based wind 

system by the utilization of the coordinated control strategy of the variable 

capacitor bank and on-line tap changer transformer. This quantification will be 

realized based on a comparison of annual energy production with wind data at 

one location with equivalent wind energy conversion system with and without 

the control strategy.   

 

Wind power generation is regarded as the most promising source of all 

renewable energy systems to meet the global commitment to combat climate 

change. The recent high price of oil and increased rate of consumption of 

conventional energy sources has revived worldwide interest in wind turbine 

generators especially in favourable wind locations. Australia has many remote 

locations with favourable wind where the electric grid is very weak and the cost 

of diesel fuel is very high. However, it is now anticipated that an increased 

contribution to grid generation will come from both onshore and offshore wind 

farms. Integration of wind power with a utility grid is not straightforward 

because of the system requirements. In this research a concept to advance the 

knowledge in the possibility to improve the power transfer of the  in the wind-

driven grid-connected induction generator research area is presented. The 

results of this project will be of relevance to the wind turbine operators and 

manufacturers in their design and operational strategy to extract maximum 

power from a wind driven induction generator as it explains an optimisation 

scheme to change the excitation capacitance and the OLTC setting in sympathy 
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with the available wind power. Figure 1-9 shows the stator line voltage of an SCIG 

with various levels of terminal excitations as a function of the rotor speed.   

 

Figure 1-9 Stator Voltage versus Rotor Speed 

 

Figure 1-10 shows the variation of electric torque of a SCIG as a function of 

generator speed at various terminal volts. Even though our grid is designed for a 

fixed voltage and fixed frequency, the regulating standards allow for small 

variations (i.e. up to 5 % slip for the SCIG and ±10% voltage regulation). An 

increased slip will incur minor additional rotor losses but the gain in energy 

output as shown in Figure 1-9 and Figure 1-10 will be significant.  

 

 

Figure 1-10 Generator torque versus rotor speed [20] 
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At this stage no such technique exists worldwide that apply to a fixed speed WECS. 

The proposed system endeavour to increase power extracted from the WTG and 

yet is simple as it does not call for any power electronic converter to connect the 

induction generator to the grid. 

 

1.5 The Outline of Thesis 

This thesis is broken up into several chapters. This first introductory chapter 

covers the background of the potential of renewable and wind energy and the 

types of wind energy conversion system. The objective and contribution of this 

thesis is also elaborated in this chapter.  

 

Chapter 2 gives a more detailed narrative on the challenges of increasing the 

penetration of wind energy into the current power system especially for the 

directly connected SCIG fixed speed wind energy conversion system.  

 

In chapter 3 the components of the wind energy conversion system are explained 

starting from the characteristic of the wind, the wind turbine theory, induction 

generator theory, reactive power compensation requirement and the 

relationship between the terminal voltage of the induction generator, the reactive 

power consumption and the active power produced. 

 

In chapter 4, test system data will be evaluated for model verification. 

 

In chapter 5, a simulation model was built on the Matlab Simulink® software 

platform. Each block of the model is explained. This model was then compared to 

data from real wind turbine to ensure reasonable selection of machine 

parameters was utilised.   

 

Chapter 6 describes the simulation modelling that was performed to illustrate 

and substantiate the principle of this thesis. The simulation model is used to 

simulate some scenarios including variability in wind input and control 

parameter selection. 
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Chapter 7 will provide a conclusion to this thesis with future direction suggested.  
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2. Background 

2.1 The Proposed System 

The system proposed in this paper is a fixed speed WECS directly connected to 

the grid without the utilization of power electronics converter. SCIG is utilized 

and mechanically coupled to the shaft of the wind turbine through a gearbox. This 

proposed solution also includes a variable capacitor bank and OLTC transformer. 

The grid governs a fixed speed fixed frequency operating point of the system and 

the SCIG can only run with a limited rotor speed variation, which is governed by 

the slip. However, unlike the conventional system where the SCIG terminal 

voltage depends solely on the grid voltage and wind speed without any control 

mechanism, in this proposed system some control can be exerted through the 

utilization of the OLTC  transformer supported by the variable capacitor. This 

configuration results in the possibility of extending the operating range of the 

SCIG in terms of terminal voltage and rotor speed compared to the conventional 

system. The variable capacitors and OLTC transformer will be controlled through 

a supervisory control system. The tandem use of OLTC transformer and variable 

capacitor is necessary as, although the main objective is to increase the power 

transfer capability of the system by selecting the optimum operating voltage of 

the SCIG, the power factor at the point of common coupling has to be maintained 

close to unity and the voltage at the grid side has to be kept within an acceptable 

range as specified by the grid code. The power transfer improvement is intended 

to be effective regardless of the existence of under-voltage of overvoltage in the 

grid voltage. In contrast with the conventional system where changes in the grid 

voltage translates directly into variations in terminal voltage of the SCIG, in the 

proposed system, the terminal voltage will be kept at a level where the power 

transfer is maximized within the limitation of the tap position of the OLTC 

transformer. The compensation proposed is steady-state compensation in 

contrast to a transient one. A threshold will be designed before the supervisory 

control system takes places to avoid excessive switching of the transformer taps 

and capacitors. This will reduce the wear and tear of these equipments and 

maintain the equipments within their intended lifespan. Due to this limitation, 
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the proposed system is not intended to compensate wind gust and other wind 

event that are characterized by a sudden temporary change in wind speed. In 

contrast, it is targeted to be effective in capturing the potential energy transfer 

improvement due to diurnal and seasonal wind condition. 

 

2.2 Challenges in the Wind System 

The utilisation of WECS as energy source, like any other energy sources, is not 

without its own issue. The intermittent nature of wind causes energy generation 

to be fluctuative, which directly translate to fluctuation in voltage and active 

power flow. Furthermore, the reactive power flow, as a result of the utilisation of 

induction generator as well as power electronics, is problematic to the stability 

of the power system, with its impact dependent on the degree of preparation. 

Although these problems will create issue for stand-alone system, especially if 

connected to sensitive load, they are really relevant in grid connected system. 

Grid integration problems have hampered the increasing penetration of WECS. 

Traditionally, the power system was designed to cater for a centralised 

conventional generator with controllable power generation. The energy 

generated from these generators can be easily planned and controlled by 

increasing/decreasing the fuel, generally coal or oil for base load power plants 

with gas becoming more and more popular as peaking plants.  

 

With the increasing penetration of renewable energy, especially wind energy, 

where generation cannot be planned, the power system faces certain issues in 

maintaining its power quality and stability. Grid management becomes gradually 

more complex with the advent of renewable power generation which inevitably 

cause utility companies to face a number of challenges in grid planning and 

operations where reliability is the top priority. [21] The extend on how much 

disruption can be tolerated by the grid due to the inclusion of wind energy in the 

fuel mix or how much support must the wind energy system provides for the grid 

is governed by the grid code. The requirements demanded by grid code varies 

from countries to countries and regions to regions.  
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To mitigate issues relating to wind energy integration, three factors are deemed 

to be essential prerequisites: availability of resources, adequacy of technology 

and infrastructures and readiness of governance in the form of grid code and 

standards.  

 

2.3 Wind Availability 

The integration of wind energy as resources into the grid fundamentally change 

network planning objectives, as utilities are required to take into account the 

intermittent nature of wind availability. Although, due to the movement of air, 

wind resource always exists, a minimum cut in wind speed is required for wind 

turbine to be operational. Wind farms, as any other renewable energy power 

plants, are highly reliant on the weather conditions and locations. Area with 

ample wind resources are generally remote and might be far from load centre and 

grid infrastructure. Due to the variable nature of wind resources, optimal sitting 

of wind turbine, for which knowledge of specific wind resources analysis, such as 

availability, magnitude and variability, is essential to optimise the wind energy 

that can be harness. An example of wind resources map is shown in Figure 2-1, 

which is an important and very useful to determine the suitability of wind energy 

as fuel source. In some regions, this information is readily available, whereas in 

many developing countries, such as those in the Asian region, there is limited 

understanding of location and potential wind energy source characteristics. A 

wind energy resources map would allow planners to match potential wind energy 

sources with that of load centres. This can also help to determine and identify the 

transmission capacity required and lack thereof to move the energy created from 

the wind to be consumed to the load centre. This might call for the need of long 

term grid planning to optimise the configuration of the grid with respect to the 

availability of the wind energy. 
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Figure 2-1 An Example of wind speed for the period of May 1997 – April 1999 [22] 

 

2.4 Technological and Infrastructure Requirement 

To realistically realise the potential of wind energy, it is essential for its 

development to be accompanied by the advancement and adoption of technology 

and infrastructure requirement. This aspect could be broken down into the 

availability of competent labour, the proximity of wind energy source to the 

electricity grid with transmission network that is capable to cope with the extra 

generation capacity at intermittent time and the availability of equipment to 

efficiently convert wind energy into electricity while maintaining the required 

grid integrity and stability. Technical expertise of skilled labour is necessary to 

operate and maintain the equipment and optimise the operation and 

maintenance of the WECS. It is, therefore, essential that competence building be 

part of the prerequisite for the increasing penetration of wind energy into the 

current power system. The second barrier to increasing penetration of wind 
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energy to the current grid is the proximity of the source to transmission network. 

Electricity networks are generally established along narrow corridors and are 

often situated far away from  wind sites. The long distance increases connection 

cost as utility need to upgrade and extend the network to the new wind energy 

sites. Other factors that might create issue in the integration of wind energy from 

infrastructure point of view including the capability of existing equipment in the 

power system to accommodate not only the increasing generation and hence 

capacity of the grid but also the fact that these new generation might be 

decentralized and intermittent. 

 

The extend to all these issues depends greatly on the level of penetration of wind 

into the power grid as most legacy power systems were not design to 

accommodate high penetration level of renewable energy including wind energy. 

It is important to ensure that grid integrity and stability are not compromised but 

the inclusion of wind energy into the power system. Some new regulation even 

mandated that renewable energy generation including wind must have positive 

impact to grid stability and integrity. 

 

2.5 Codes and Regulatory Framework 

Adequate wind resource, sufficiently advance knowledge, technology and 

infrastructure are not enough to promote higher penetration of wind into the 

current fuel mix of the power industry. Formal standard, codes and regulatory 

framework are absolutely essential to control and mitigate negative impacts that 

may result from unregulated connections. In contrast to conventional fossil fuel 

power generation, renewable energy including wind energy are intermittent, 

which might expose the power system to new risks. In the modern society, the 

reliability and stability of the grid is given high priority and hence the need for 

adequate codes and connection guidelines for wind energy to help improve not 

only the stability and reliability of the network but also the quality of supply is 

unavoidable and should focus on achieving smooth integration of wind energy 

into the current grid. The degree of strictness in the different categories 

governing the wind connection into the grid differs from countries to countries 
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and regions to regions. This might be depending on many factors including the 

current state of gird reliability, the degree of penetration of renewable energy in 

the power system, the technology and skill level of renewable energy equipment 

and infrastructure as well as government policy and plan regarding the utilization 

of renewable energy as fuel in that particular country or region. 

 

2.6 Challenges in the Chosen System 

Currently, the most popular wind turbine configuration seems to be the variable 

speed with pitch control. However, still some manufacturers are providing the 

conventional stall and active stall fixed speed wind turbine especially for 

countries where the grid codes do not demand reactive power control, such as in 

China, India and part of the US. [18] 

 

Constant speed turbine utilises squirrel cage induction generator directly 

connected to the grid via a transformer. Due to its simplicity, this configuration is 

seen to be the most robust and cost effective. It is a simple system with few 

components and hence is a generally more reliable system and requires less 

maintenance, other than on the gearbox. However, this type of configuration has 

many deficiencies and aspects that have to be considered as listed below.  

 

2.6.1 Reactive power regulation 

Without the power electronic converter, a fixed speed system does not have a 

decoupled active and reactive power control. Due to this reason the reactive 

power consumption depends on the active power produced, which in turns 

depends on the wind speed input. In some circumstances, reactive power 

requirement of the wind energy system is obtained from the grid. When this 

happen, it is important that there is a limit of how much reactive power will be 

supplied to the system before it gets disconnected from the grid to prevent other 

grid issues. 
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In modern power system, it is preferable for wind energy conversion system to 

not rely on grid for reactive power supply but instead utilise capacitor bank or 

other components such as SVC and STATCOM. Reactive power support can be 

categorised as shunt or series compensation. 

 

Shunt compensation can be further classified into the following main categories. 

 

1. Shunt Capacitor 

Shunt capacitor is the cheapest reactive power compensation. It is simple and 

inexpensive to maintain. Shunt capacitors can be in the form of fixed capacitor 

bank connected at the induction generator terminal at all time or multiple 

capacitor banks that are mechanically switched in according to need. [23] The 

mechanically switched capacitor has a low smoothness of control, as it is 

dependant solely on the number of capacitor switching units used. [23] Moreover, 

the mechanical switches and relays have the disadvantage of being unreliable and 

requiring high maintenance. [23] The main problem of this type of VAR support 

is the inability of the capacitor banks to deliver high reactive power when the 

voltage is low as the reactive power supplied is directly proportional to the 

terminal voltage of the induction generator. Hence, during low voltage condition, 

the reactive power supplied to the system drops, which in turn will further 

compound the problem.  

 

2. Synchronous Condenser 

Synchronous condenser can be made of a newly built condenser or utilises older 

synchronous machine to provide reactive power control while avoiding new 

investment cost. [24] With the inclusion of a thyristor controlled excitation 

system, the response time of the machine is improved compared to the older 

static excitation system. [24] Synchronous condensers are rarely used today as 

they require substantial foundations and significant amount of starting and 

protective equipments. [23] 
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3. Thyristorised VAR Compensator 

Thyristorised VAR compensator is capable of achieving fine control over the 

entire VAR range with faster response time compared to the synchronous 

condenser. [23] This compensator, which can also be called the Static VAR 

Compensators (SVC) can be grouped into two basic categories as listed below. 

 

 Thyristor Switched Capacitor (TSC)  

 Thyristor Controlled Reactor (TCR)  

 
It is also common for the TSC and TCR to be combined, which are generally 

referred to as the static VAR compensator (SVC). SVC has many configuration, 

some of the more popular consist of fixed capacitor in series with Thyristor 

Controlled Reactor (TCR) or Thyristor Switched Capacitor (TSR) in series with 

TCR. Another can be built up with a Thyristor Switched Capacitor (TSC) in parallel 

with a Thyristor Controlled Reactor (TCR) supported with a shunt fixed capacitor. 

 

4. Saturable Reactors/Inductors 

Saturable reactors or inductors can also be used to provide static reactive power 

compensation. This inductor is typically connected in series with a slope 

correcting capacitor and both are paralleled with a shunt capacitor to provide the 

capacitive voltage.  

 

5. Voltage Source Converter 

STATCOM is a Voltage Source Converter (VSC) based device that is capable of 

compensating the active and reactive power need of the system. The reactive 

power output of a STATCOM is not affected by the terminal voltage level of the 

induction generator. STATCOM significantly increase the complexity of the 

system.  VSC, in its first application was implemented with Gate Turn-off 

Thyristor (GTO) and nowadays utilises Insulated Gate Bipolar Transistor (IGBT). 

VSC for STATCOM can also be in the form of a multilevel converter.  

 

 

6. Superconducting Magnetic Energy 
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Superconducting Magnetic Energy Storage (SMES) is a device for storing and 

instantaneously discharging large quantity of power 

 

Series compensation can be classified into the following categories. 

 

 Fixed series capacitors (FSC), which can be inserted as one block or 

through a series of sub-blocks 

 Thyristor Controlled Series Capacitor (TCSC), generally consists of a TCR 

in parallel with a FSC 

 Static Synchronous Series Compensator (SSSC) is made up of a VSC and 

acts as a controllable series capacitor 

 Dynamic Voltage Restorer (DVR) acts independently of the source voltage 

fluctuation by utilising a VSC to generate active and reactive power  

 Unified Power Flow Controller (UPFC) utilises two VSC back to back with 

a common DC link 

 Interline Power Flow Controller (IPFC) links two VSC from two different 

power lines through a common DC link 

 Superconducting Magnetic Energy Storage (SMES) is a device for storing 

and instantaneously discharging large quantity of power 

 

2.6.2 Power Production Fluctuation 

In fixed speed wind turbine configuration, the variation in the wind speed is 

translated directly to mechanical torque fluctuation. This results in the 

fluctuation of the power that is injected to the grid, which is only slightly 

mitigated by the varying slip.  

 

2.6.3 Voltage Ride Through Capability 

In many modern grid codes, especially where wind penetration into the grid is 

becoming significant, the demand that wind turbine stay connected where there 

is a dip in the grid voltage for a specified period of time is included. This demand 

is generally cannot be met by the Type A fixed speed wind turbine.  
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Previously, when the contribution of wind energy into the power system is 

limited, wind turbine can be simply disconnected when there is a fault at the grid 

and then reconnected when this fault is cleared. However, as the penetration of 

wind into the grid is increasing significantly, it is a requirement in some grid 

codes for wind turbine to stay connected during some disturbances. Moreover, 

the wind system must also provide active and reactive power support to help the 

grid gain its pre-fault state with frequency and voltage recovery after the fault is 

cleared. Generally, reactive current should be injected to the grid during the fault 

to help grid recovery. After the fault is cleared, active power production should 

resume.  

 

As most grid fault is detected through the large fault current, constant speed wind 

turbine can help in this detection. It is able to stay connected during most faults 

as its can handle over-current for a short period of time. However, providing 

reactive power support for voltage recovery after the fault is not possible as this 

system is completely passive. Furthermore, it draws reactive power and can put 

further pressure on the grid recovery after a fault. 

 

With the increasing penetration of wind power into the current power system, 

more and more stringent grid code requirements are demanded to be complied 

by wind farms. [25-27] 

 

Requirements such as FRT capability, reactive power support and frequency 

support need to be complied to a certain extent which differ from countries to 

countries, with some grid operator demanding more stringent requirement 

compliances.  

 

The capability of the Type A system to comply with the grid code requirement is 

limited due to its simple construction. At the occurrence of fault, the Type A 

system rotor accelerates, which result in an increase in the reactive power 

absorption that will exacerbate the voltage sag condition. 
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The proposed tandem control is believed to be able to assist with marginal 

improvement of this LVRT capability of a fixed speed system. This will be 

explored as part of further research to this study. In [25], methods such as the 

utilisation of FACTS devices, fast pitching of turbine blades, dynamic braking 

resistors and SMES have been identified to be effective solutions to improve the 

LVRT capability. 

 

The operating point of induction machine in the FSIG based WECS occurs only 

within a small window and is less flexible when compared to the variable speed 

WECS. To provide reactive support to the grid and satisfy grid code requirement, 

compensating devices such as switchable capacitor banks must be installed in the 

vicinity of the wind farm. Although the fixed speed system might have negative 

impact on the grid in terms of its LVRT and reactive power support capability in 

times of fault, there is a consensus that fixed speed WECS have inherent inertia 

response that counteract the network frequency deviation and in turn 

contributes to the primary frequency support. [25-27] 

 

2.6.4 Reliability 

The reliability of wind turbine can be quantified through its failure rate. With 

more and more turbine being installed offshore and in remote location, 

mitigating maintenance is one aspect that have to be considered. Components 

such as electrical system and its control have generally high failure rate. However, 

the time it takes to repair them is generally low. This is in contrast with 

components such as the gearbox and drive train, which have a low failure rate 

but high hours lost per failure. It is apparently difficult to fix gearbox. This can be 

seen in Figure 2-2. A detailed comparison of the reliability of direct-drive and 

geared wind turbines did not prove one to be more reliable than the other. [28] 
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Figure 2-2 Downtime and failure rate for wind turbine subassemblies [29] 

 

2.6.5 Active Power Regulation 

From a grid operator perspective, it is important that the balance between energy 

demand and supply is maintained. Unlike conventional power plant, the wind is 

uncontrollable. Due to this reason planning active power production can only be 

done with the limitation of the available wind at a particular time. In other words, 

unlike conventional generator where fuel can be added to increase power 

production to satisfy demand, wind energy conversion system depends solely on 

the wind resource.  Moreover, in a wind energy conversion system, it is important 

for mechanical power to be controlled and limited when the wind speed is high. 

This is especially important as power in the wind is proportional to a cube of the 

wind speed and hence a small increase in wind speed above the rated limit 

translates to a significant increase in the power. This power control can be done 

through techniques such as  

 

 Stall control, where the blade position is fixed but stall of the wind occurs 

along the blade at high wind speed 
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 Active stall control, where the blade angle can be adjusted to create stall 

at high wind speed 

 Pitch control, where the blade angle can be adjusted to turn out of the win 

 

 

 

Figure 2-3 Power characteristic from different power control strategy with passive stall 
technique based on fixed speed machine [18] 

 

Although the main purpose of the power control strategy is to limit power from 

the wind when the wind speed is high, pitch can also be utilised to maximise 

power when the wind is below the rated wind speed. Pitch control can also be 

used to help support many grid issues such as power smoothing and LVRT. [30]  

 

2.6.6 Power Quality 

As a result of the inclusion of power generator and power electronic converter in 

the wind energy conversion system, some harmonics and flicker might pollute 

and reduce power quality of the grid. For the issue of power quality IEC 610003 

must be adhered to by the wind turbine. [31] The fixed speed wind generation 

system does not utilised power electronic converter and hence does not produce 
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harmonics. However, voltage flicker that result from the fluctuation of the input 

wind can create an issue for the grid.    

 

 Voltage regulation 

 Mechanical stress especially during wind gusts 

 Limited power quality control 

 Power factor regulation 

 Frequency regulation 

 

2.7 Fault Ride through of Fixed Speed System 

Fixed speed system wind turbine has high sensitivity to voltage sags due to the 

fact that the generator is directly connected to the main grid. In the case of a 

voltage drop, the electromagnetic torque of the generator reduces significantly 

while mechanical torque is still applied. This leads to the unbalance torque, which 

in turn leads to accelerating rotor that might lead to rotor instability. 

Furthermore, when a fault occurs, the induction generator will consume more 

reactive power to recover their air gap flux. This adds to the burden of the grid 

that is trying to recover from the fault. This might lead to voltage reducing further 

and induction generator becoming unstable requiring disconnection from the 

power system. Solutions to support fault ride through can be classified into 2 

categories. 

 

The first category is preventing an over speeding phenomenon by reducing the 

mechanical power input or consuming this power to help balance the input and 

output power. This can be done through pitch angle control, where the pitch angle 

of the turbine is adjusted so that the mechanical power input to the system is 

reduced. This will in turn reduce the acceleration of the rotor speed. However, 

this approach is limited due to the physical limitation of the blades and the pitch 

regulation mechanism. Another approach that can be utilised to reduce the 

imbalance of power at time of fault is the series dynamic braking resistor that is 
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capable of consuming the excess power of the wind turbine and prevent the over 

speed problem. 

 

The second category of recovery support of fixed speed wind turbine is by 

providing reactive power and hence voltage support to the generator. Several 

solutions have been proposed including the static synchronous compensator 

(STATCOM), static VAR compensator (SVC) and dynamic voltage restorer (DVR). 

Other components such as energy capacitor system (ECS) and superconducting 

magnetic energy storage (SMES) have also been reported to be able to provide 

the necessary recovery support for the system. In recent years, using reactive 

power and voltage support from nearby variable speed wind turbines (VSWT) 

has also been proposed and considered as promising solution to enhance the fault 

ride through (FRT) capability of the fixed speed system. In [32], it can be seen 

that the STATCOM can be utilised to perform a successful fault ride through on a 

fixed speed system. Because of the STATCOM operation, after the fault is cleared 

the terminal voltage can be recovered and the wind turbine restores its normal 

operation. 

 

 Hexagram converter based STATCOM [33] 

 Braking resistor [34] 

 

In [35], it can be seen that the inclusion of tap capacitor and its proper controlled 

can be utilised to support the grid to recover from fault. Capacitor bank may cost 

effectively improve the dynamic performance of induction generator [35] and 

help the grid to return to its pre-fault state. As reactive power compensation 

equipment, the capacitor bank could also support the voltage and torque 

recovery, performing similar function as the STATCOM and DVR. From [35], it can 

be seen that the capacitor bank is able to increase the electromagnetic torque and 

consequently extend the stability range of the induction generator. When more 

capacitors are switched in after the fault occurrence, the generator speed and 

torque can be restored and the generator is returned to its pre fault state. 
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3. The Components for the Proposed System 

3.1  Variability of the Wind 

Wind is a clean and free energy source. However, modelling wind as an energy 

source is significantly different to conventional energy source due to its 

intermittent nature. To understand wind energy conversion system, it is 

important that the characteristic of wind as an energy source is explained. Air 

masses moves because of the different thermal conditions of these masses. The 

movement of these air masses is the basic physics of the existence of wind. Wind 

variability can be explained in both global and regional scale. On the global scale, 

wind is affected by both climate differences between continents on earth as well 

as their solar exposure. On a regional scale, wind is affected by the aerographic 

condition, which describes the surface structure and terrain of the region such as 

the ratio of land and sea as well as the number of mountains and plains. The 

boundary layer that is wind energy closest to the ground is the one utilized by the 

wind turbine to drive the turbine blades. This wind energy is turbulent owing to 

the roughness of the earth surface. [6] 

 

The wind speed varies continuously as a function of height and time. The wind in 

the planetary boundary layers is influenced by the surface roughness and in turn 

this wind influence the layer above them changing the mean wind speed with 

height until the shear forces are reduced to zero. [36] At that height, called the 

gradient height, the wind speed depends solely on the pressure field and its 

latitude position. The rate of change of wind speed with height is called the wind 

shear with profile as shown in Figure 3-1. 
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Figure 3-1 Wind shear profile [37] 

 

A simple analytical formulation can be utilized to approximate wind speed at an 

elevated site. This is stated in (3-1). [36] 

𝑈

𝑈𝑟
=

In (
𝑧
𝑧0

)

In (
𝑧𝑟

𝑧0
)
 

(3-1) 

 

Where U is the mean wind speed at an elevated height z,  𝑈𝑟 is the mean wind speed 

at reference height zr and z0  is the roughness height.  

 

This equation can be further simplified to the commonly used form using the shear 

exponent  as stated in (3-2). [36] 

𝑈

𝑈𝑟
= (

𝑧

𝑧𝑟
)

∝

 

(3-2) 
   

Both oz  and  are site-specific parameters.  
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The time scales of typical wind speed variations are presented in Figure 3-2 as a 

wind frequency spectrum. [6, 36, 38]  

 

 

Figure 3-2 Wind speed spectrum [38] 

 

The macro-meteorological range describes the large-scale movement of air 

masses and 3 peaks can generally be found in the time period larger than 2 hours.  

 

1. The diurnal peak depends on the daily wind speed variation such as those 

that is caused by the land-sea breeze and the different temperature 

between day and night  

2. The synoptic peak usually occurs with period of around 4 days and 

depends on the changing weather patterns  

3. The annual peak varies with the degree of latitude and diminishes at 

locations closer to the equator. Based on Ackermann [6], it has been 

estimated that the variation of wind resource over the lifetime of a wind 

turbine (20 years) is not large and this uncertainty is much less than the 

availability of water for hydropower production 

 

From the perspective of wind generation, the variation of wind speed in the 

macro-meteorological range mainly affect the long term balancing of the power 

system. [6] In the micro-meteorological range, the turbulent peak is caused 

mainly by gusts in the sub-second to minute range due to atmospheric turbulence. 
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These are caused by the mechanical mixing of the lower layers of the atmosphere 

by the surface roughness and have their energy centred around periods of 1 

minute. [36] From the power system perspective, the turbulent peak may affect 

the power quality of wind power production especially for strongly grid-coupled 

turbine. [6] An interesting phenomenon is the spectral gap, which occurs 

between the period of 10 minutes and 2 hours. If an averaging period for mean 

wind speed is chosen to lie within this spectral gap it is possible to separate the 

turbulent peaks from the macro-meteorological variation. [36] 

 

Wind is generally defined by the wind speed and direction of flow. For 

simplification purposes, the wind model can be defined only by its speed. [39] 

Wind speed for wind modelling purposes can be characterised by four 

components, namely, the average value component, the ramp component, the 

gust component and the turbulence component. [6, 39-41] This leads to (3-3). 

 

𝑈𝑤(𝑡) = 𝑈𝑤𝑚𝑒𝑎𝑛
+ 𝑈𝑤_𝑟𝑎𝑚𝑝(𝑡) + 𝑈𝑤_𝑔𝑢𝑠𝑡(𝑡) + 𝑈𝑤𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒

(𝑡) 

(3-3) 

 

The wind fluctuation can be modelled by the spectral power density or actual 

wind measurement with instrument such as the anemometer.  

 

3.1.1 Target Wind Speed 

For each wind turbine, it is possible that the gearbox ratio is adjusted so that the 

induction machine is running at a speed that corresponds to the optimal tip speed 

ratio to operate at the optimal Cp point. As the tip speed ratio is dependent on 

wind speed, it is beneficial to match the average wind speed at a wind farm 

location to the target wind speed of the SCIG to improve the power production of 

the WECS. 
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3.2 Wind Turbine Theory 

3.2.1 Wind turbine power and cp lambda curve 

The power of an air mass with an air stream speed Uw through an area A with air 

density  is based on cube law equation. This equation denotes the total power in 

the wind as stated in (3-4). 

𝑃𝑤 =
1

2
∙ 𝜌 ∙ 𝐴 ∙ 𝑈𝑤

3 

(3-4) 

 

The air density  is a function of air pressure and air temperature. The air density 

as a function of altitude above sea level z, can be defined as shown in (3-5). 

 

𝜌(𝑧) =
𝑃0

𝑅𝑇
∙ exp (

−𝑔𝑧

𝑅𝑇
) 

(3-5) 

 

where P0 is the standard sea level atmospheric density (1.225kgm-3), R is the gas 

constant for air (287.05Jkg-1K-1), g is gravity constant (9.81ms-2) and T is 

temperature in Kelvin. [6] 

 

However, naturally, the wind turbine electrical power output is less than this 

power and is limited by the power coefficient Cp. It is impossible for the wind 

turbine to extract the total power in the wind, as this will cause the air mass to 

stop completely in the rotor area. This is the result of the reduction in air mass 

speed when the original power in the air mass is converted into the mechanical 

energy that rotates the turbine rotor. Hence, the power developed by the wind 

turbine is given by the (3-6). 

 

𝑃𝑡 =
1

2
∙ 𝜌 ∙ 𝐴 ∙ 𝑈𝑤

3 ∙ 𝐶𝑝 

(3-6) 
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A German aerodynamicist, Betz, conducted a detailed analysis of wind turbine 

performance and found that the maximum value of the power coefficient is
 27

16
 

or around 0.593. [39] This is eventually called the Betz limit of wind turbine Cp. 

Practical wind turbines designed for power generation generally have Cp values 

below 0.45. 

 

The power coefficient is a function of turbine’s blade tip speed ratio  and the 

turbine’s blade pitch angle . However, since most of constant speed wind turbine 

is equipped with stall control instead of pitch control, the cp is just a function of 

 and  can be left out of the equation. The wind turbine rotor can be 

approximated through a general equation as shown in (3-7). [42] 

 

𝐶𝑝(λ, β) = 𝑐1 (
𝑐2

𝜆𝑖
− 𝑐3𝛽 − 𝑐4) 𝑒

−
𝑐5

𝜆𝑖
⁄

+ 𝑐6𝜆 

(3-7) 

 

Where, 

 

1

𝜆1
=

1

𝜆 + 0.08𝛽
+

𝑐0

𝛽3 + 1
 

(3-8) 

 

With  being defined by 

 

𝜆 =
𝑈𝑇

𝑈𝑤
=

𝜔𝑟𝑅

𝑈𝑤
 

(3-9) 

 

where UT is the turbine’s blade tip speed, r is the rotor rotational speed and R is 

the radius of the blade. 

 

The power coefficient relationship with tip speed ratio varies slightly depending 

on the size, type and operating condition of the wind turbine.  From the Cp- 
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curve characteristics, it is possible to generate the relationship between the wind 

turbine output power and wind turbine shaft speed at various given wind speeds. 

 

3.2.2 System inertia 

The energy stored in a rotating mass such as an induction machine can be defined 

by (3-10). 

 

𝐸 =
1

2
∙ 𝐽 ∙ 𝜔𝑚

2 

(3-10) 

 

where J is the inertia of the machine and m is the rotational speed of the machine. 

The inertia constant H can also be used to quantify inertia by giving the indication 

of the time that the generator can provide nominal power by only using the 

energy stored in its rotating mass. The inertia constant uses S to specify the 

nominal apparent power of the generator and is defined in ((3-11).  

 

𝐻 =
𝐽 ∙ 𝜔𝑚

2

2 ∙ 𝑆
 

(3-11) 

 

Typical inertia constant for the generators of the large conventional power plants 

are in the range of 2-9s. [43] 

 

The inertia of a body can be expressed as 

 

𝐽 = ∑𝑚𝑖 ∙ 𝑟𝑖
2 

(3-12) 

 

where ri is the radial distance from the inertia axis to the representative particle 

of mass mi and the summation is taken over all particles of the body. The inertia 

of the wind system is made up of the inertia of the turbine rotor and the inertia 
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of the induction generator. This inertia is essential in understanding the torque 

equation of the system. The inertia of a wind turbine will be strongly dependent 

on the size and rated power of the turbine. A representative approximation of the 

inertia of a three bladed wind turbine, assuming that the mass middle point is 

about 1/3 of the radius r, is shown in (3-13). [43] 

 

𝐽 = 3 ∙ 𝑚𝑏 ∙ (
𝑟

3
)
2

=
1

9
∙ 𝑚𝑟 ∙ 𝑟2 

(3-13) 

 

where mb is the mass of one of the rotor blade and mr is the total mass of the rotor. 

The approximate relation between rotor diameter and rated power of MW class 

wind turbines is given by (3-14), whereas the approximation between rotor mass 

and diameter is given by (3-15). [43] 

 

𝑃𝑟 = 195 ∙ 𝑑𝑟
2.155 

(3-14) 

 

𝑚𝑟 = 0.486 ∙ 𝑑𝑟
2.6 

(3-15) 

 

where Pr is the rated power of the turbine in MW, dr is the diameter of the rotor 

in meters. Combining (3-14) and (3-15) , (3-16) can be derived to relate rotor 

mass and rated power. 

 

𝑚𝑟 = 14500 ∙ 𝑃𝑟
1.2 

(3-16) 

 

From (3-10) to (3-16), the total stored energy E in the rotating mass can be 

derived as in (3-17) and approximated in (3-18). 

 

𝐸 =
1

18
∙ 𝑚𝑟 ∙ 𝑟2 ∙ 𝜔𝑚

2 

(3-17) 
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𝐸 = 5.2 × 106 ∙ 𝑃1.2 

(3-18) 

 

Differences between the supplied and demanded power will immediately result 

in a change in the rotational speed of the generator. The rate of change of this 

speed depends on the amount of discrepancy between the power from the wind 

and the power that is transferred through the air gap to the stator as well as the 

rotational mass or inertia of the generator. This difference in power is balanced 

with the stored energy in the rotating mass as explained above. The rate of change 

of speed can be defined by (3-19).  

 

𝜕𝜔𝑟

𝜕𝜏
=

𝑇𝑊 − 𝑇𝑔

𝐽
 

(3-19) 

 

Written as a function of power instead of torque will produce (3-20). 

 

𝜕𝜔𝑟

𝜕𝜏
=

𝑃𝑊 − 𝑃𝑔

𝐽𝜔𝑟
 

(3-20) 

 

Hence, from (3-19) and (3-20), the more inertia the generator has, the less rotor 

speed will change during an imbalance of power. With the larger value of inertia, 

speed and voltage stability can be better achieved and the system can be kept 

stable following a disturbance.  

 

In contrast with the decoupled variable speed system, in fixed speed wind system 

where the turbine is directly connected to the power system, the inertia of the 

generator is ‘seen’ by the system and available to help stabilize the system in fault 

clearing time. However, the total inertia damps the system response, which in 

turn act as an impediment to reduce the possibility of the system to achieve 

maximum possible efficiency and hence makes it more difficult for the system to 
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operate at optimum operating point. Furthermore, as can be seen from the 

equations, in steady state analysis, the value of inertia doesn’t influence can be 

ignored in the discussion.  

 

3.3 Induction Generation Theory and Modelling 

The basic principle of induction machine is the utilization of electromagnetic 

induced in the air gap to energize either the rotor, when operating as a motor, or 

the stator, when operating as a generator. [6, 20] An induction machine is 

essentially a transformer with rotating secondary winding.  The rotation speed 

however is not the same as the speed of the stator field. The difference is called 

the slip, which greatly influence the produced torque.  

 

The induction machine can be classified through the structure of its rotor. Some 

induction machine uses cast iron rotor bars laid into slots and shorted at either 

end by rings. This type is referred to as the squirrel cage rotor. The other type is 

wound rotor induction machine. This type of machine has a complete set of three-

phase winding that are mirror images of the stator winding. The winding is 

connected to slip rings and shorted by brushes. The wound rotor induction 

machine rotor current is accessible at the brushes, which makes it possible for 

extra impedances to be inserted to alter the machine’s torque speed relationship. 

However, wound rotor induction machine is more expensive and requires more 

maintenance compared to cheap and rugged squirrel cage induction machine.  

 

The use of SCIG in wind energy generation is widely accepted as a simple and 

cheap option, as it is reliable and requires very little maintenance due to its 

brushless rotor. Hence, it offers significant cost advantage over other type of 

generators. However, the capability of SCIG to produce power is proportional to 

its consumption of reactive power, hence to be able to improve the power 

transfer of induction generator driven WECS, an appropriate reactive power 

support need to be included.  
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3.3.1 Steady State SCIG model 

Theoretical model of squirrel cage induction generator is well established. The 

induction machine modelled through its per-phase equivalent circuit is widely 

utilised for steady state analysis as shown in Figure 3-3. 

 

 

 

Figure 3-3 Per phase equivalent circuit of induction machine [44] 

 

Where R1 is the stator resistance, X1 is the stator leakage reactance, R2 is the rotor 

resistance referred to the stator side, X2 is the rotor leakage reactance referred to 

the stator side, Rc is the core loss resistance and Xm is the magnetizing reactance. 

The parameters of this equivalent circuit can be found through the no-load test 

and locked rotor test. [20, 45] S is defined to be the slip, which is shown in (3-21). 

 

𝑆 =
𝑛𝑠𝑦𝑛𝑐 − 𝑛𝑚

𝑛𝑠𝑦𝑛𝑐
=

𝜔𝑠𝑦𝑛𝑐 − 𝜔𝑚

𝜔𝑠𝑦𝑛𝑐
 

(3-21) 

 

Although the per-phase equivalent circuit has been a simple and effective tool in 

steady state analysis of induction machine, it is not appropriate to be used in 

predicting the dynamic performance of the machine. [45] 

 

3.3.2 Dynamic SCIG model 

A dynamic model of three-phase induction generator can be mathematically 

explained by coupling the rotor and stator using the phase variables. This model 

is referred to as the abc model, which include differential equations with time 

varying coefficients that resulted from the dependence of stator and rotor 

inductances on rotor position.  Transforming this model through some well-
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known transformation such as the Park’s transformation, it is possible to 

substitute the time varying coefficient into time invariant ones. Depending on the 

transformation used, the time varying coefficients can be translated into various 

reference frames, which result in differential equations with constant variables. 

Moreover, it is quite common to represent the model in per-unit value where all 

the system’s quantities are referred to a common set of base parameters. [6] 

 

The SCIG is modelled in abc reference frame through (3-22) to (3-29)the 

following equations in SI unit. 

 

[𝑣𝑎𝑏𝑐 ,𝑠] = [𝑅𝑠] ∙ [𝑖𝑎𝑏𝑐 ,𝑠] + [𝐿𝑠] ∙
𝑑

𝑑𝑡
[𝑖𝑎𝑏𝑐 ,𝑠] + [𝑀𝑠𝑟] ∙

𝑑

𝑑𝑡
[𝑖𝑎𝑏𝑐 ,𝑠] 

(3-22) 

 

[𝑣𝑎𝑏𝑐 ,𝑡] = [𝑅𝑟] ∙ [𝑖𝑎𝑏𝑐 ,𝑡] + [𝐿𝑡] ∙
𝑑

𝑑𝑡
[𝑖𝑎𝑏𝑐 ,𝑡] + [Msr ]

2 ∙
𝑑

𝑑𝑡
[𝑖𝑎𝑏𝑐 ,𝑡] 

(3-23) 

Where, 

[𝑣𝑎𝑏𝑐 ,𝑠] = [

𝑣𝑎 ,𝑠

𝑣𝑏 ,𝑠

𝑣𝑐 ,𝑠

]                    [𝑣𝑎𝑏𝑐 ,𝑟] = [
0
0
0
] 

(3-24) 

[𝑖𝑎𝑏𝑐 ,𝑠] = [

𝑖𝑎 ,𝑠

𝑖𝑏 ,𝑠

𝑖𝑐 ,𝑠

]                    [𝑖𝑎𝑏𝑐 ,𝑟] = [

𝑖𝑎 ,𝑟

𝑖𝑏 𝑟

𝑖𝑐 ,𝑟

] 

(3-25) 

The parameter matrices can be defined as follows: 

 

[𝑅𝑠] = [

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

]                    [𝑅𝑟] = [
𝑅𝑟 0 0
0 𝑅𝑟 0
0 0 𝑅𝑟

] 

(3-26) 
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[𝐿𝑠] =

[
 
 
 
 
 𝐿𝑠 + 𝑀𝑠𝑟 −

𝑀𝑠𝑟

2
−

𝑀𝑠𝑟

2

−
𝑀𝑠𝑟

2
𝐿𝑠 + 𝑀𝑠𝑟 −

𝑀𝑠𝑟

2

−
𝑀𝑠𝑟

2
−

𝑀𝑠𝑟

2
𝐿𝑠 + 𝑀𝑠𝑟]

 
 
 
 
 

  

(3-27) 

[𝐿𝑟] =

[
 
 
 
 
 𝐿𝑟 + 𝑀𝑠𝑟 −

𝑀𝑠𝑟

2
−

𝑀𝑠𝑟

2

−
𝑀𝑠𝑟

2
𝐿𝑟 + 𝑀𝑠𝑟 −

𝑀𝑠𝑟

2

−
𝑀𝑠𝑟

2
−

𝑀𝑠𝑟

2
𝐿𝑟 + 𝑀𝑠𝑟]

 
 
 
 
 

 

(3-28) 

[𝑀𝑠𝑟] =

[
 
 
 
 
 cos 𝜃 cos (𝜃 +

2𝜋

𝜃
) cos (𝜃 −

2𝜋

𝜃
)

cos (𝜃 −
2𝜋

𝜃
) cos 𝜃 cos (𝜃 +

2𝜋

𝜃
)

cos (𝜃 +
2𝜋

𝜃
) cos (𝜃 −

2𝜋

𝜃
) cos 𝜃 ]

 
 
 
 
 

  

(3-29) 

The mutual inductance and torque are defined as shown in (3-30). 

 

                            𝑇𝑖𝑚 = 𝑃 ∙ [𝑖𝑎𝑏𝑐  𝑟]
𝑟 ∙

𝑑

𝑑𝜃
[𝑀𝑠𝑟] ∙ [𝑖𝑎𝑏𝑐  𝑡] 

(3-30) 

The same model in DQ reference frame is shown below.  

 

 

Figure 3-4 Q reference frame 

 

Vqs = Rsiqs + dφqs/dt + ωφds 

Vds = Rsids + dφds/dt – ωφqs 

srm ML
2

3




 

50 

 

V'qr = R'ri'qr + dφ'qr/dt + (ω – ωr)φ'dr 

V'dr = R'ri'dr + dφ'dr/dt –(ω – ωr)φ'qr 

Te = 1.5p(φdsiqs – φqsids) 

 

 

Figure 3-5 D reference frame 

 

ω — Reference frame angular velocity 

ωr —Electrical angular velocity 

φqs = Lsiqs + Lmi'qr 

φds = Lsids + Lmi'dr 

φ'qr = L'ri'qr + Lmiqs 

φ'dr = L'ri'dr + Lmids 

Ls = Lls + Lm 

L'r = L'lr + Lm 

 

The conventional losses in an induction generator model include the stator and 

rotor iron conductor losses, magnetic loss and friction and windage loss. In a 

practical induction machine, due to the non-ideal nature of the machine, there is 

an additional loss component that is generally termed the stray load loss. [20] 

 

3.3.3 Torque in both models  

The torque equation for the induction generator is the same in both static and 

dynamic model and can be defined as shown in (3-31)and (3-32). 

𝑑

𝑑𝑡
𝜔𝑚 =

1

2 ∙ 𝐻
(𝑇𝑒 − 𝐹 ∙ 𝜔𝑚 − 𝑇𝑚) 

(3-31) 
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𝑑

𝑑𝑡
𝜃𝑚 = 𝜔𝑚 

(3-32) 

 

3.4 Voltage Control of IG and its relationship with Torque and Power 

The principal of voltage control in induction motor is a well-established theory. 

Voltage control can be seen as an avenue to implement the speed control of 

induction machine. This control can be utilised to maintain efficiency when the 

motor’s load varies over a large range. Figure 3-6 is the torque speed 

characteristic of a typical induction motor at various voltages. It can clearly be 

seen that altering the voltage results in the vertical shift of the torque speed curve 

of the induction motor.  

 

Figure 3-6 Torque speed curve of an induction motor at various voltages [46] 

 

The implementation of stator voltage control to maintain the efficiency of the 

induction machine when loaded with various load can be explained in terms of 

motor losses, especially the iron and copper losses.  

Iron losses consist of hysteresis losses and eddy current losses. At constant 

frequency the hysteresis loss is proportional to maximum flux density in the air 

gap, B whereas the eddy current loss is proportional to B2. When the applied 

voltage is kept constant, the maximum flux density remains constant. Thus, as the 
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load is decreased, voltage remaining constant, the iron loss constitutes a greater 

percentage of the output. This results in poor efficiency. This efficiency can be 

improved by reducing the applied voltage to the motor. This will be especially 

effective if the running slip of the motor is in the steep region of the torque-slip 

curve around the zero slip. When the applied voltage is reduced, the load torque 

intersects the motor curve at a new point. Due to the steepness of the curve, the 

small change in speed will result in a more significant change in torque. [47] 

Furthermore the reduction in voltage results in and initial decrease of currents 

and copper losses. However, there is a point where decreasing the voltage further 

will result in an increase in copper loss and subsequently total motor losses. 

Hence, there is one particular voltage level at which the total losses in the motor 

is minimum and hence the efficiency maximized. [47] 

 

Torque is dependent on V2. The variation of the speed torque curves with respect 

of the applied voltage can be derived. From the curves it can be seen that the slip 

at maximum torques remain relatively constant with changes in voltage and the 

speed range for stable operation remain constant.  

 

From the principals of motor, it can be deduced [1] that the efficiency of a lightly 

loaded induction motor can be very substantially improved by controlling the 

voltage applied to it. In addition, controlling the voltage also improves the power 

factor at which the motor operates. It has been proved that similar to the 

induction motor, in an induction generator, the efficiency of the machine can be 

varied by controlling the stator voltage. Furthermore, there is always an optimum 

voltage for every torque at which the efficiency and hence power is maximum, as 

shown by point A in Figure 3-7. A pre-calculated optimum input voltage 

depending on the wind can be utilized in the control system [2]. Extension of this 

principle has been implemented to a variable speed wound rotor induction 

generator implemented in a wind energy conversion system through the 

utilization of variable AC regulator and variable external rotor resistor [2]. 

 

Implementing the same principle, [3] it can be deduced that wind turbine output 

power depends on both wind and rotation speeds, which is indirectly dependant 
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on the voltage. The relationship between voltage and power is shown in Figure 

3-7. 

 

Point A in Figure 3-7 indicates the optimum operating voltage of a particular bus 

in a system which illustrate the existence of operating point that gives optimum 

power transfer capability of the system. 

 

 

Figure 3-7 Voltage and power relationship 

 

Various voltage control methods can be utilised to achieve the improvement in 

efficiency for a fixed speed WECS. One method can be implemented through 

reactive power control. The utilisation of dynamic reactive power support in 

fixed speed system has been reported [4] to be able to dampen voltage fluctuation 

by mitigating P and Q fluctuation. In another words, voltage control can be 

achieved through P and Q control. [5] Although the regulation of voltage 

magnitude has much more influence over the reactive power flow than the active 

power flow, regulating the magnitudes of sending and receiving ends voltages can 

also control power flow in transmission line, subject to grid allowance of voltage 

variation, which in this proposed system will be supported by the utilisation of 

the OLTC transformer [6]. Moreover, stator voltage control of the induction 
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generation can extend the operating region of the system, which translates to 

further improvement of the power transfer. 

 

The effectiveness of voltage control scheme in improving the power transfer 

capability of the system is illustrated in the following graphs. The intersection 

between the wind turbine power curve and the induction generator power speed 

characteristic denotes the operation point of the wind energy conversion system. 

Wind turbine power curve shifts depending on the wind speed at any given time. 

Hence, in conventional system, the intersections between these curves with the 

induction generator curve govern the operating point of the system. However, by 

performing voltage control, it is possible for the operating points to be altered 

due to the shift in induction generator curve. By altering voltage, the induction 

generator curve shifts vertically enabling new operating points to be followed by 

the system. The effectiveness of the voltage control depends on the shape of these 

graphs and where do they intersect.  

 

The red lines are power from the induction generator with low (80% rated 

voltage), medium (rated voltage) and high (120% rated voltage). The blue lines 

are the power from the wind turbine at low wind speed (5 m/s), medium (8 m/s) 

and high (11 m/s). So instead of operating along one red curve, in the proposed 

scheme the system can operate on various red curves and due to this the power 

transferred can be improved. 
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Figure 3-8 Voltage Control Principle 

 

Figure 3-9 Voltage Control Principle (Generator Mode) 

 

The relationship between terminal voltage of the induction generator and rotor 

speed as well as the torque and power is shown in (3-33).  

𝑇𝐿 − 𝑇𝑒 = 𝐽
𝑑𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟

𝑑𝑡
 

(3-33) 
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In steady state, the rate of change of the generator rotor speed is zero.  

 

𝑑𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟

𝑑𝑡
= 0 

𝑇𝐿 = 𝑇𝑒 

(3-34) 

The wind turbine in this case is acting as a generating load 

 

𝑃𝑤𝑖𝑛𝑑_𝑡𝑢𝑟𝑏𝑖𝑛𝑒 =
1

2
∙ 𝜌 ∙ 𝜋 ∙ 𝑅2 ∙ 𝑈𝑤

3𝑐𝑝(𝜆) 

(3-35) 

 

𝜆 =
𝜔𝑡𝑢𝑟𝑏𝑖𝑛𝑒_𝑟𝑜𝑡𝑜𝑟𝑅

𝑈𝑤
 

(3-36) 

 

𝑐𝑝(𝜆) = 𝑐1 (
𝑐2

𝜆𝑖
− 𝑐3𝛽 − 𝑐4) 𝑒

𝑐3
𝜆1 + 𝑐6𝜆 

(3-37) 

 

Where, 

1

𝜆𝑖
=

1

𝜆 + 𝑐7𝛽
−

𝑐8

𝛽3 + 1
 

(3-38) 

 

𝑇𝑡𝑢𝑟𝑏𝑖𝑛𝑒 =
𝑃𝑤𝑖𝑛𝑑_𝑡𝑢𝑟𝑏𝑖𝑛𝑒

𝜔𝑡𝑢𝑟𝑏𝑖𝑛𝑒_𝑟𝑜𝑡𝑜𝑟
=

1
2𝜌𝜋𝑅3𝑐𝑝(𝜆)

𝜔𝑡𝑢𝑟𝑏𝑖𝑛𝑒_𝑟𝑜𝑡𝑜𝑟
 

(3-39) 

 

𝑇𝐿 = −
𝑇𝑡𝑢𝑟𝑏𝑖𝑛𝑒

𝑔𝑒𝑎𝑟𝑏𝑜𝑥
= −

𝑃𝑤𝑖𝑛𝑑_𝑡𝑢𝑟𝑏𝑖𝑛𝑒
𝜔𝑡𝑢𝑟𝑏𝑖𝑛𝑒_𝑟𝑜𝑡𝑜𝑟

⁄

𝑔𝑒𝑎𝑟𝑏𝑜𝑥
 

(3-40) 

= −
𝑃𝑤𝑖𝑛𝑑_𝑡𝑢𝑟𝑏𝑖𝑛𝑒

𝜔𝑡𝑢𝑟𝑏𝑖𝑛𝑒_𝑟𝑜𝑡𝑜𝑟 × 𝑔𝑒𝑎𝑟𝑏𝑜𝑥
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(3-41) 

 

= −
𝑃𝐿

𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟
= −

1
2𝜌𝜋𝑅2𝑈𝑤

3𝑐𝑝(𝜆)

𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟
 

(3-42) 

With 

 

𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟 = 𝜔𝑡𝑢𝑟𝑏𝑖𝑛𝑒_𝑟𝑜𝑡𝑜𝑟 × 𝑔𝑒𝑎𝑟𝑏𝑜𝑥 

(3-43) 

 

So load torque is affected by the generator rotor speed, which is mechanically 

coupled to the rotor of the induction generator through a gearbox, assuming that 

the system is a lossless system with power produced by the wind turbine directly 

conveyed to the rotor of the induction generator. 

 

𝑃𝑒 = 3𝐼′
𝑅

2
∙ (

𝑅′
𝑅

𝑠
) 

(3-44) 

Ignoring the magnetisation inductance for simplification purpose,  

 

𝐼′
𝑅 =

𝑈𝑅

√(
𝑅′

𝑅

𝑠 )
2

+ 𝑋′
𝑅

2

 

 

=
𝑈𝑠

√(𝑅𝑠 +
𝑅′

𝑅

𝑠 )
2

+ (𝑋𝑠 + 𝑋′
𝑅)2

 

(3-45) 

 

 

𝑃𝑒 =
3𝑈𝑠

2 (
𝑅′

𝑅

𝑠 )

(𝑅𝑠 +
𝑅′

𝑅

𝑠 )
2

+ (𝑋𝑠 + 𝑋′
𝑅)2

 

(3-46) 
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𝑇𝑒 =
𝑃𝑒

𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑠𝑡𝑎𝑡𝑜𝑟
=

𝑃𝑒

𝜔𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠
 

(3-47) 

 

𝜔𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 =
2𝜋

60
𝑛𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 =

2𝜋

60
×

120𝑓

𝑝𝑜𝑙𝑒𝑠
 

 

=
4𝜋𝑓

𝑝𝑜𝑙𝑒𝑠
=

2𝜋𝑓

𝑝𝑜𝑙𝑒𝑝𝑎𝑖𝑟𝑠
 

(3-48) 

 

Hence, 

𝑇𝑒 =
3 ∙ 𝑝𝑜𝑙𝑒𝑝𝑎𝑖𝑟𝑠

2𝜋𝑓

𝑈𝑠
2 (

𝑅′
𝑅

𝑠 )

(𝑅𝑠 +
𝑅′

𝑅

𝑠 )
2

+ (𝑋𝑠 + 𝑋′
𝑅)2

−

1
2𝜌𝜋𝑅2𝑈𝑤

3𝑐𝑝(𝜆)

𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟
 

=
3 ∙ 𝑝𝑜𝑙𝑒𝑝𝑎𝑖𝑟𝑠

2𝜋𝑓

𝑈𝑠
2 (

𝑅′
𝑅

𝑠 )

(𝑅𝑠 +
𝑅′

𝑅

𝑠 )
2

+ (𝑋𝑠 + 𝑋′
𝑅)2

− (
1

2
𝜌𝜋𝑅2𝑈𝑤

3𝑐𝑝(𝜆)) (2𝜋𝑓) [(𝑅𝑠 +
𝑅′

𝑅

𝑠
)

2

+ (𝑋𝑠 + 𝑋′
𝑅)2] 

 

= 3 ∙ 𝑝𝑜𝑙𝑒𝑝𝑎𝑖𝑟𝑠(𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟) [𝑈𝑠
2 (

𝑅′
𝑅

𝑠
)]

− (𝜌𝜋𝑅2𝑓𝑈𝑤
3𝑐𝑝(𝜆)) [(𝑅𝑠 +

𝑅′
𝑅

𝑠
)

2

+ (𝑋𝑠 + 𝑋′
𝑅)2] 

 

= 3 ∙ 𝑝𝑜𝑙𝑒𝑝𝑎𝑖𝑟𝑠(𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟) [𝑈𝑠
2 (

𝑅′
𝑅

𝑠
)] 

(3-49) 

with slip being defined as 

 

𝑠 =
𝜔𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 − 𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟

𝜔𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠
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(3-50) 

 

so 

𝜔𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟_𝑟𝑜𝑡𝑜𝑟 = (1 − 𝑠)𝜔𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 = (1 − 𝑠) (
2𝜋𝑓

𝑝𝑜𝑙𝑒𝑝𝑎𝑖𝑟𝑠
) 

(3-51) 

 

The equation becomes 

−(𝜌𝜋2𝑅2𝑓𝑈𝑤
3𝑐𝑝(𝜆)) [(𝑅𝑠 +

𝑅′
𝑅

𝑠
)

2

+ (𝑋𝑠 + 𝑋′
𝑅)2]

= 3 ∙ 𝑝𝑜𝑙𝑒𝑝𝑎𝑖𝑟𝑠(1 − 𝑠) (
2𝜋𝑓

𝑝𝑜𝑙𝑒𝑝𝑎𝑖𝑟𝑠
) [𝑈𝑠

2 (
𝑅′

𝑅

𝑠
)] 

 

−(𝜌𝜋2𝑅2𝑓𝑈𝑤
3𝑐𝑝(𝜆)) [(𝑅𝑠 +

𝑅′
𝑅

𝑠
)

2

+ (𝑋𝑠 + 𝑋′
𝑅)2] = 6𝜋𝑓(1 − 𝑠)𝑈𝑠

2 (
𝑅′

𝑅

𝑠
) 

 

−(𝜌𝜋𝑅2𝑈𝑤
3𝑐𝑝(𝜆)) [(𝑅𝑠 +

𝑅′
𝑅

𝑠
)

2

+ (𝑋𝑠 + 𝑋′
𝑅)2] = 6(1 − 𝑠)𝑈𝑠

2 (
𝑅′

𝑅

𝑠
) 

𝑈𝑠 = √
(𝜌𝜋𝑅2𝑈𝑤

3𝑐𝑝(𝜆)) [(𝑅𝑠 +
𝑅′

𝑅

𝑠 )
2

+ (𝑋𝑠 + 𝑋′
𝑅)2]

6(𝑠 − 1) (
𝑅′

𝑅

𝑠 )
 

(3-52) 

 

Implementing this equation in Matlab® and it produces the following figure. As 

can be seen from the equation, the terminal voltage depends on not only the 

speed of the generator but also the wind speed and 𝑐𝑝 value. Furthermore, 𝑐𝑝 

value is a function of tip speed ratio, which in turn is a function of wind speed. 

Hence, wind speed has significant effect in the relationship between voltage and 

speed.  
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Figure 3-10 Voltage Speed Relationship 

 

 

 

Figure 3-11 Voltage speed relationship at 5m/s,7m/s,9m/s,11m/s,13m/s and 15m/s 
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Figure 3-12 Power Vs Voltage for wind speed at 5m/s 

 

 

 

Figure 3-13 Power Vs Voltage for wind speed at 10m/s 
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Figure 3-14 Power Vs Voltage for wind speed at 15m/s 

 

3.5 Reactive Power Compensation Needed 

An induction machine can work as a generator if the required amount of reactive 

power is supplied to sustain the excitation requirement, while the rotor speed is 

maintained by some prime mover above the synchronous speed. When the 

generator is connected to the grid, theoretically, it is possible for this reactive 

power requirement to be supplied by the grid. However, due to the connection 

regulation, it is required that at the point of common coupling a certain power 

factor is maintained. This means that the generator is not allowed to take reactive 

power from the grid and have to be self-sufficient through the utilization of 

excitation capacitors.  

 
The voltage and current of the excitation capacitors in DQ reference frame can be 

expressed in (3-53) and (3-54). 

  

icq = (
C

ωb
) p(vqs) + ωeCvdc 

(3-53) 
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icd = (
C

ωb
) p(vds) + ωeCvqc 

(3-54) 

 

Reactive power support can be realised through various different configurations. 

It can be implemented through series or shunt compensation. [23, 24] 

 

3.5.1 Relationship between terminal voltage and reactive power 

To explain the relationship between terminal voltage of the induction generator 

and reactive power consumed by the generator, the  model is utilised. The 

reactive power consumed can be broken up into two components: one caused by 

the leakage inductances in the rotor and stator windings of the generator and one 

caused by the magnetisation inductance. It was found that this magnetisation 

inductor consumed most part of the reactive power due to its significantly larger 

size compared to the leakage inductances. 

Qi = 3I′g
2
(XS + X′

g) 

 

=
3Us

2(Xs + X′
g)

(Rs +
R′

R

s )
2

+ (Xs + X′
R)2

 

(3-55) 

 

Qm =
3Us

2

Xm
 

(3-56) 
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Q = Qi + Qm 

 

=
3Us

2(Xs + X′
R)

(Rs +
R′

R

s )
2

+ (Xs + X′
R)2

+
3Us

2

Xm
 

 

3XmUs
2(Xs + X′

R) + 3Us
2 [(Rs +

R′
R

s )
2

+ (Xs + X′
R)2]

[(Rs +
R′

R

s )
2

+ (Xs + X′
R)2] Xm

 

(3-57) 

 

 

 

 

 

 

 

At 5m/s of wind Speed 

 

Figure 3-15 Q Vs V for wind speed at 5m/s, 10m/s and 15m/s 

(To be continued in the next page) 
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At 10m/s of wind Speed 

 

 

 

At 15m/s of wind Speed 

 

Figure 3-15 Q Vs V for wind speed at 5m/s, 10m/s and 15m/s 
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At 5m/s of wind Speed 

 

 
At 10m/s of wind Speed 

 

Figure 3-16 Q Vs P for wind speed at 5m/s, 10m/s and 15m/s 

(To be continued in the next page) 
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At 15m/s of wind Speed 

 

Figure 3-16 Q Vs P for wind speed at 5m/s, 10m/s and 15m/s 

 

Figure 3-15 and Figure 3-16 depicts the relationship between real power and 

voltage with reactive power at different wind speed. These figures represent the 

relationship as mathematically derived in (3-57). 
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4. Test System Data 

4.1 Background of Case Study 

To validate the simulation model and the proposed system of this research a case 

study has been performed on a wind farm in China. The wind turbine is a 49.5 

MW wind farm that consists of 66 wind turbine, each 750kW. The turbine is a 

squirrel cage induction generator and directly connected to the grid without 

power electronic converters.  

 

This study gathers a wind profile from a met mast of a wind farm as well as energy 

produced by one of the 750kW wind turbine in the farm. The collected data is 

explained in the following chapters. 

 

4.2 Wind Speed Data Collection 

The wind data was collected from sensors at the met mast that was installed prior 

to the commissioning at the wind farm. Wind speed data is collected spanning a 

number of years to investigate the profile of the wind and will be used in the 

decision making process on the switching profile of the variable capacitors and 

OLTC.  

 

These sensors were located at 10m, 30m, 50m and 70m of height. The data from 

the 50m met mast sensor height corresponds to the actual hub height at the wind 

turbines.  

 

4.2.1 Diurnal Wind Data 

Table 4-1 and Figure 4-1 illustrate the 2005 yearly average wind speed and 

power density for a day gathered from met mast data from the wind farm. From 

Figure 4-1, it can be seen, that the general trend of the wind speed and power 

density is correlated and minimum average wind speed occurs around dawn to 

morning, with 7.2m/s at 4am, 5am, 7am and 10am and the maximum average 
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wind speed occurs in the evening, with 9.1m/s at 7pm and 8pm.  Looking at this 

profile, the diurnal variation and characteristic is reasonably distinguishable. 

Although local variation must be taken into account as wind characteristic varies 

greatly between different geographical location, this diurnal cycle of the wind 

profile is beneficial in the segmentation of input for this project. 
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Table 4-1 2005 average wind speed and power density diurnal variation 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 2005 average wind speed and power density diurnal variation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Average

Wind Speed 

(m/s)

7.8 7.4 7.3 7.3 7.2 7.2 7.3 7.2 7.3 7.3 7.2 7.4 7.6 7.9 8.1 8.2 8.5 8.8 8.9 9.1 9.1 9 8.7 8.2

Wind Power

(kW)
627 590 605 601 587 584 584 576 578 571 543 545 583 644 664 678 689 752 744 755 763 756 703 637

Time (hr)
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4.2.2 Monthly Diurnal Wind Data  

Further to the diurnal variation in the average wind speed and power density in 

the annual data, the wind profile was also collected to investigate the effect of 

monthly weather on this diurnal profile. The 2005 data is depicted with 3 

different met mast height, 10m, shown with the yellow line, 50m is shown by the 

pink line and the 70m data is shown by the blue line. For each month in the year, 

the average one day diurnal wind data are shown in the following 12 graphs. The 

x-axis, in the following graphs, corresponds to hours (hr), whereas the y-axis 

represents the wind speed (m/s).   

 

   

 

January 

 

February 

 

March 

 

April 
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The next 12 graphs show the power density to correspond with the wind data. 

The x-axis, in the following graphs, corresponds to hours (hr), whereas the y-axis 

represents the wind power (W). 

 

 

January 

 

February 

 

March 

 

April 

 

May 

 

June 
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July 

 

August 

 

September 

 

October 

 

November 

 

December 

 

 

From the graphs, it can be seen that the wind speed gathered from the 50m and 

70m met mast are closer in value then the data from the 10m mast. This is 

explainable by the wind shear theory as shown in (3-1).  

 

Further observation from the wind profile, in this particular wind farm location 

in China, during the colder months between December and March, the diurnal 

variation is significantly more noticeable whereas the wind speed doesn’t vary 
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very much in a day of the hotter months. The month of January is generally the 

coldest month of the year and with the high amount of fluctuation in average wind 

speed. Average wind speed is lowest during the hot month of July which is 

directly translated in the lower power density. 

 

The data show that diurnal variation of wind speed varies with season and time 

of the year. This dictates the need to adjust the wind input segmenting strategy 

that is used in determining the control parameter of the variable capacitor and 

OLTC.  

 

4.2.3 Annual Wind Statistics 

In addition to the diurnal variation of the wind, average wind speed also vary 

depending on the season and general weather condition.  

 

Table 4-2 illustrates the monthly average wind speed for the year of 2001 to 2004. 

From Figure 4-2, it can be seen that there is a seasonal trend that define the 

annual average wind speed profile. Wind is generally highest during colder 

months, in this case study peaking at 8.1m/s average in January and lowest 

during the hotter month with the minimum occurring at 3.9m/s average in July. 

It should be noted, that this trend slightly varies from year to year and in the 

occurrence of extreme weather condition.  

 

In Figure 4-3, the average monthly wind speed and power density is shown for 

the year of 2005. This data is gathered from measurement at the wind farm 50m 

hub height. In this figure, it can be seen that the trend is in agreement with that 

shown for the previous years.   
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Wind Speed Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Annual 

Average 

2001 6.9 8.7 7.7 7.5 5.1 4.8 3.8 4.1 4.4 6.4 6.9 8.1 6.2 

2002 7.6 7.1 8.5 6.4 5.1 4 4 4.2 5.2 5.1 6.4 8.5 6 

2003 9.1 8.3 6.9 5.4 4.3 4.4 3.4 3.7 4.4 5.8 7.3 8.2 5.9 

2004 8.7 7.8 6.2 5.5 4.9 4.5 4.2 4.3 4.4 6.2 7.8 7.3 6 

Average 

Wind Speed 8.1 8 7.3 6.2 4.9 4.4 3.9 4.1 4.6 5.9 7.1 8 6 

 

Table 4-2 Monthly average wind speed for 2001 to 2004 in m/s 

 

 

 

 

 
Figure 4-2 Monthly average wind speed for 2001 to 2004 
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Figure 4-3 Monthly average wind speed and power density for 2005 

 
The following tables and figures show the 2005 percentage of occurrence wind 

speed and wind energy data at various wind speeds and met mast heights. From 

Table 4-3 and Table 4-4, it can be seen that wind speed is directly related with 

the height of the met mast with the higher wind speed occurring more often at 

the 70m met mast height compared to the lower height. More wind energy is also 

extracted at higher wind speed with the exception of the data of above 18m/s 

wind speed for the 70m met mast. In this particular wind farm site, this is due to 

the occurrence of wind speed above the cut out wind speed at this met mast 

height. However, the difference between the 50m and the 70m data did not 

warrant the additional cost that would have been incurred by the higher hub 

height and hence 50m was selected as the hub height of the turbines in the wind 

farm. 
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 Wind Speed (m/s) 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 >18 

10m 3.7 5.7 9.8 11.8 10.8 10.2 8 6.8 7.4 5.2 4.8 4.1 3.2 2.4 1.7 1.5 1.1 0.7 0.6 0.5 

30m 3.1 4.8 8.9 10.2 9.1 8.4 7.8 7.4 6.2 5.5 4.7 4.5 4.3 3.5 2.7 2.3 1.6 1.4 0.2 3.4 

50m 3.2 4.4 7.5 9 8 8.3 8 7.6 6.7 6.1 5 4.5 4.3 3.9 3 2.5 1.8 1.5 1.4 3.3 

70m 2.4 4.8 7.3 8.9 8.5 8.3 7.7 7.4 7.2 6.4 5.6 4.9 4.7 3.7 3.1 2.4 1.8 1.7 1.1 2.1 
 

Table 4-3 2005  wind speed frequency 

  

 

 Wind Speed (m/s) 

  0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 >18 

10m 0 0 0.1 0.5 1.2 2.1 2.8 3.8 6.2 6.2 7.9 9 9.1 8.7 7.7 8.3 7.4 5.7 5.8 7.5 

30m 0 0 0.1 0.3 0.7 1.2 1.9 2.9 3.6 4.5 5.3 6.8 8.4 8.7 8.4 8.8 7.4 7.8 6.3 16.9 

50m 0 0 0.1 0.2 0.5 1 1.6 2.4 3.2 4.1 4.7 5.6 6.9 8 7.7 7.8 6.9 6.9 7.6 24.8 

70m 0 0 0.1 0.3 0.6 1.1 1.8 2.7 3.9 4.9 5.9 6.9 8.6 8.6 9 8.5 7.8 8.8 6.8 13.7 
 

Table 4-4 2005 percentage of occurrence for energy
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Figure 4-4 Wind speed and energy spectrum at 10m height 

 

 

 

 

Figure 4-5 Wind speed and energy spectrum at 30m height 
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Figure 4-6 Wind speed and energy spectrum at 50m height 

 

 

 

 

Figure 4-7 Wind speed and energy spectrum at 70m height 
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Based on manufacturer’s calculation and experience, the designated project site 

has efficiency of 92% with the consideration of energy lost from the system in 

this particular wind farm site. The overall effect of different aspect on wind 

turbine losses are illustrated in Table 4-5. 

 

 Air 

Density 

Wake 

Effect 
Availability Blade 

Efficiency 

Turbulence 

intensity 

Power 

Lost 

Overall 

Efficiency 

% 95% 94% 96% 98% 98% 92% 76% 

 

Table 4-5 Reference data from wind farm in the case study 
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5. Energy Simulation 

The WECS proposed in this research study is as shown in Figure 5-1. The wind 

kinetic energy captured in the wind turbine drives a rotor that is mechanically 

coupled to the SCIG. The SCIG is configured to operate as a fixed-speed generator 

and utilizes variable external capacitors connected at its terminals for excitation. 

The capacitors are sized to provide a maximum of no load reactive power 

requirement of the induction generator to avoid over excitation. The SCIG is grid-

connected without any power electronic converter and hence the grid governs a 

fixed voltage and fixed frequency operating point of the SCIG that can only run 

with a limited rotor speed variation (defined by the slip). The voltage variation is 

compensated by the tap changing transformer, which is considered as an AC-AC 

converter that keeps the grid side voltage within acceptable fixed limits. As the 

capacitors’ value increases/decreases, the stator terminal voltage of the SCIG also 

increases/decreases. This will be compensated by changing the OLTC settings. 

The variable capacitors and tap changing transformer will be controlled through 

a supervisory control system to achieve maximum power transferred to the grid 

and maintain the grid side voltage and frequency at acceptable limits. 

 

 
 

Figure 5-1 Schematic diagram of the proposed model 

 

The operating points of the fixed speed wind energy system are defined by the 

intersection points between the torque speed or power-speed curves of the 

induction generator and the wind turbine. For every wind speed there is a 

corresponding curve that characterises the operation of the wind turbine at that 

particular speed. However, instead of these curves intersecting a single induction 
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machine curve as in conventional system, in the proposed system, the stator 

terminal voltage varies resulting in the shift of the power speed curve. For 

maximum optimal power to be obtained within the limitation of the fixed speed 

induction generator, ideally both the stator terminal voltage and rotor speed 

should be set to maximum. However, these two are interdependent in an inverse 

relation manner. Moreover, the speed of the induction generator is limited by the 

slip and the stator voltage is limited by the operating range of the OLTC 

transformer. To explain the relationship between the terminal voltage of the 

induction generator and rotor speed, firstly the inertia equation has to be 

investigated. 

 

So load torque is affected by the turbine rotor speed, which is mechanically 

coupled to the rotor of the induction generator through a gearbox. Assuming that 

the system is a lossless system with power produced by the wind turbine directly 

conveyed to the rotor of the induction generator, the power at the rotor of the 

induction generator that can be conveyed to the grid is defined by implementing 

this equation verifies the inverse relationship between rotor speed and stator 

voltage. Due to this inverse relationship it is impossible to maximise both speed 

and voltage of improvement in power transfer, instead there exist an operating 

point where the combination of speed and voltage at that point will result in more 

efficient energy transfer than any other point. 

 

Moreover, in contrast to a single operating point that will be adopted by the 

conventional system at a particular wind speed, with the proposed system, the 

operating point can be shifted to another more beneficial position to improve the 

power transfer. Thus, as long as the original operating point is not the optimal 

operating point within the allowable operating region of the proposed system, 

the implementation of the proposed system will improve the power that can be 

transferred to the grid. 

 

The SCIG has torque-slip characteristic as shown in Figure 5 2. The system is 

intended to operate in the fixed speed region of between -0.05% to -4% 
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(1501rpm – 1560rpm for a 4 poles SCIG connected to 50Hz grid). The key for 

significant gain is the high slope of the induction generator’s torque-speed curve 

in this operating region. The terminal voltage of the SCIG is intended to vary 

between 10% of the rated voltage. 

 

 

 
 

Figure 5-2 Torque-slip characteristic of an Induction Machine [20] 

 
An induction machine can work as a generator if the required amount of reactive 

power is supplied to sustain the excitation requirement, while the rotor speed is 

maintained by some prime mover above the synchronous speed.  When the 

generator is connected to the grid, theoretically, it is possible for this reactive 

power requirement to be supplied by the grid. However, due to the connection 

regulation, it is required that at the point of common coupling a certain power 

factor is maintained. This means that the generator is not allowed to take reactive 

power from the grid and have to be self-sufficient through the utilization of 

excitation capacitors. Utilising squirrel-cage induction machine as self-excited 

induction generator is beneficial as it has high power density and simple 

construction. Furthermore, the self-excitation characteristics causes the voltage 

to collapse rapidly when overloaded, thus providing self-protection.  
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Transformer with tap changer acts to maintain the grid side voltage within its 

permissible limits despite any voltage variation on the generator side due to 

changing in the excitation level or any load changes. Authors of this research 

project have proved in a previous study [48] that OLTC can improve power 

transfer capability of power systems. This power depends on the tap settings, 

load type and level of capacitor compensation. Figure 5-3 shows the system 

proposed in this study. 

 

 
 

Figure 5-3 Simplified power system with OLTC and capacitor-compensated load 

 

Figure 5-4 shows the effect of different static load models namely; constant 

impedance (CZ), constant current (CI) and constant power (CP) on the power 

transfer to the load at different OLTC settings. It can be seen from Fig. 5-4 the load 

model and OLTC tap settings significantly affect the power transfer to the load 

centre. In all cases, the power transfer is increased by increasing the OLTC tap 

settings, when optimum power is reached; further increase in OLTC settings will 

decrease power transfer to the load.  
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Figure 5-4 Power transfer as a function of transformer tap ratio 

 

Figure 5-5 shows the capacitor compensation effect on the power transfer limit 

to a constant current load at different OLTC tap settings. The maximum power 

limit for uncompensated load (XC=  ) is 0.5pu while in case of little 

compensation (XC=10pu), the maximum power is 0.62pu. It can be concluded 

that The shunt capacitor increases the power transfer limit and shifts the optimal 

setting of OLTC to a higher value. Thus the maximum power transfer limit to a 

compensated load can be increased by either adjusting the tap ratio of OLTC or 

by increasing the degree of compensation. The power increase is attributed to the 

fact that the OLTC tap settings allow the match between the network impedance 

and the reflected compensated load impedance. 

 

 

 

Figure 5-5 Effect of compensation and OLTC setting on Power transfer to CI load 
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The above methodology will be used to develop a control algorithm to control the 

OLTC settings and the excitation level in the proposed WECS to maximise power 

transfer from the induction generator to the grid subject to all other constraints 

such as maintaining the terminal voltage and frequency within their permissible 

limits. The WECS is proposed to operate in a small window of fixed speed region  

as shown in Figure 5-6 by the shaded area. The turbine output power is computed 

using the data from Vestas V82-1.63MW wind turbine specification [49]. The 

dashed horizontal lines in Figure 5-6 shows that by controlling the stator 

terminal voltage it is possible to move the point of operation at any particular 

wind speed [50].  

 

 
 

Figure 5-6 System Operation Region 
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Figure 5-7 PSIM Simulation Results 

 

Within the tolerable fixed speed region, output power can be significantly 

improved by adjusting the terminal voltage obtained by varying the excitation 

capacitors. The key here for significant gain is the high slope of the induction 

generator’s torque-speed curve as shown in Figure 5-6. The method of stator 

terminal adjustment to vary output power and generator torque for stand-alone 

application can be found in [51]. Simulation of a self excited SCIG operating 

without connection to the grid has been performed on PSIM software. The 

simulation was performed by running a mathematical model coded in C++, built 

in Borland and integrated with the object-oriented load module in PSIM. This was 

done to ensure the scalability of the model so that various loads can be simulated. 

A snapshot of the simulation results is shown in Figure 5-7. It can be seen that 

increasing the excitation capacitors will result in increasing the power transfer 

to the load as well as the stator terminal voltage. 

 

Simulation of a scalable SCIG operated as a grid-connected IG has been performed 

on PSIM® simulation platform. The wind turbine is modelled from a 3kW 
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WestWind turbine specification with power curve shown in Figure 5-8. [52] The 

simulation model is shown in Figure 5-9. It consists of a wind turbine model 

directly coupled with a SCIG through a gearbox, as well as a capacitor bank, a 

transformer and a grid, modelled by a three-phase voltage source. The realization 

of tap-changing transformer is not included in this preliminary modelling of the 

system and the turn ratio of the transformer is changed manually for every 

simulation performed.  
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Figure 5-8 Westwind 3kW Wind Turbine Power Curve [52] 

Figure 5-9 PSIM simulation model 

 

In PSIM, an SCIG generates power when supplied by a negative torque on its shaft. 

Due to the placement direction of the meters, power is negative when generated 

by the SCIG and positive when consumed by the SCIG. The gearbox is tuned to 

optimize the operation at a wind speed of 8m/s, which will make Cp value ranging 

at 0.45. The SCIG has a rated voltage at 220V and a base turn ratio of 1:2 is used 

for the transformer.  

 

A snapshot of a simulation result is shown in Figure 5-10 and Figure 5-11. From 

these figures, it can be seen that after an approximately 0.4s initialization period, 

the turbine model supplies negative torque to the SCIG, which in turn generates 

real power to the grid and consumes reactive power from the grid.  
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Figure 5-10 PSIM Simulation Results showing the Initialization and Power Transfer of the System 
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Figure 5-11 PSIM simulation results showing the negative torque, Tip Speed Ratio (TSR) and cp  
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A partial hardware testing was performed on a three-phase, 4 poles, 2.2 kW 

induction machine running as a self excited induction generator to validate the 

simulation results. Switched shunt capacitor is utilized to provide various level of 

reactive power to excite the SCIG. Figure 5-12 shows the results obtained by 

loading the system with resistive loads. The rotor speed was kept at 1545 rpm, 

which is corresponding to a 3% slip (within the region of fixed speed operation). 

Figure 5-12 shows that by increasing the excitation capacitors, terminal voltage 

increases and more power can be transferred to the load. 

 

 

Figure 5-12 Results at Generator Rotor Speed of 1545rpm 

 

The above results show that the utilization of variable capacitors and tap 

changing transformer can significantly improve the power transfer capability of 

a WECS with fixed speed SCIG. A global controller that can control the value of 

excitation capacitor as well as the tap position of the transformer can be further 

investigated in the future.  
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6. Energy Simulation Results for the Test System  

6.1 Model Verification 

To provide verification to the proposed simulation model, data from an 

operational wind farm utilising the 750kW wind turbine is used. This wind farm 

is located in China with 900m elevation above sea level and is equipped with 66 

wind turbines to have the total capacity of 49.5MW. The average temperature is 

6.5 Degrees Celsius with the average pressure being 152.5kPa. 

 

The wind turbine is a three bladed with 750kW rated capacity and has a rotor 

diameter of 48m with a swept area of 1886m2 (including the area of the hub). The 

generator is rated at the same rated power of 750kW with frequency of 50Hz and 

rated voltage of 690V. The rated rotational speed of the generator is 1520rpm. 

The wind resource analysis from the farm reports that the 70m hub height 

average annual wind speed is 7.9m/s and the effective operating hour of the wind 

turbine is above 6000 hours in a year. This is an above 68% annual operational 

percentage for the wind farm. 

  

The average wind speed at different hub height of the site is shown in Table 6-1. 

The wind farm is connected to 110kV grid connection point through a main 

transformer with the capacity of 50MVA. 

 

Hub height (m) Average wind speed (m/s) 

10 6.5 

30 7.4 

50 7.9 

70 7.9 

 

Table 6-1 Average wind speed at different hub heights 
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To verify the model, it is compared to data from turbine manufacturer. The 

simulation model must try to closely emulate the power curve or the steady state 

behaviour of the real wind turbine.  

 

 

 

Figure 6-1 The power curve for the wind turbine published by manufacturer 

 

 

Stator resistance (Rs) 0.013  

Stator inductance (Ls) 0.3503 mH 

Rotor resistance (Rr) 0.01718  

Rotor inductance (Lr) 0.3949 mH 

Magnetising inductance (Lm) 24.84 mH 

Inertia (J) 7.8 kgm2 

  

Table 6-2 Parameters from the actual wind turbine given by the manufacturer 
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Wind Speed 

(m/s) 
Cp 

Thrust 

Coefficient 

Power Data from 

Real Wind Turbine 

(kW) 

4 0.190838 1.22137 12.9773 

5 0.359223 1.07417 47.7159 

6 0.428127 0.968511 98.2639 

7 0.456555 0.883695 166.403 

8 0.466093 0.81261 253.576 

9 0.460995 0.746488 357.109 

10 0.439844 0.677434 467.383 

11 0.40402 0.605723 571.423 

12 0.354901 0.533662 651.668 

13 0.304329 0.468056 710.462 

14 0.255296 0.4111 744.395 

15 0.211757 0.362553 759.43 

16 0.175088 0.322761 762.062 

17 0.144288 0.289957 753.274 

18 0.119389 0.263098 739.873 

19 0.099316 0.240705 723.861 

20 0.083333 0.221837 708.406 

21 0.070562 0.205791 694.394 

22 0.060452 0.192212 684.005 

23 0.052458 0.180716 678.219 

24 0.046046 0.17087 676.403 

25 0.040872 0.162333 678.617 

 

Table 6-3 Wind data from the actual 750kW wind turbine used 
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Figure 6-2 Manufacturer provided Cp lambda curve 

 

 

 

Figure 6-3 Generated power curve based on test by the manufacturer 
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Wind Speed 

(m/s) 

Real Power Data 

from Wind Turbine 

(kW) 

Power Curve 

Data 

(W) 

Difference 

(%) 

4 12.9773 12.6 3.150 

5 47.7159 47.2 1.011 

6 98.2639 98.0 0.283 

7 166.403 166.2 0.107 

8 253.576 253.2 0.133 

9 357.109 356.3 0.217 

10 467.383 466.2 0.258 

11 571.423 570.1 0.238 

12 651.668 651.3 0.055 

13 710.462 710.9 -0.060 

14 744.395 746.4 -0.266 

15 759.43 762.9 -0.460 

16 762.062 766.8 -0.625 

17 753.274 759.6 -0.845 

18 739.873 747.2 -0.988 

19 723.861 731.9 -1.114 

20 708.406 716.8 -1.178 

21 694.394 702.8 -1.214 

22 684.005 692.1 -1.179 

23 678.219 685.6 -1.094 

24 676.403 683.2 -0.998 

25 678.617 684.6 -0.879 

 
Table 6-4 Wind data comparison between the actual and simulated wind turbine 

 

 

 

 

 

 



 

99 

 

 

The turbine power limiting control strategy is done through passive stall of the 

turbine’s 3 blades and is equipped with a squirrel cage induction generator. This 

data is depicted in Table 6-3. To further illustrate the data, the Cp has been plotted 

against tip speed ratio in Figure 6-2 and its power has been plotted against wind 

speed in Figure 6-3.  

 

Emulating this turbine in a Simulink model the power curve in Figure 6-4 can be 

obtained. In Figure 6-4, the simulated results are shown as compared to the 

manufacturer’s power curve.  

 

 

Figure 6-4 Power curve comparison 

 

As can be seen from Figure 6-4, the difference between the two curves are very 

small with average deviation of less than 1%. The biggest deviation is seen on the 

low wind speeds as power produced at these wind speed are lower and hence 

resulting in small denominator when percentage is calculated. 
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Wind 
Speed 
(m/s) 

Hours 
Proposed 

Power 
(kW) 

Original 
Power 
(kW) 

Proposed 
Energy 
(kWh) 

Original 
Energy 
(kWh) 

0 0 0 0 0 0 

0.5 70 0 0 0 0 

1 138 0 0 0 0 

1.5 203 0 0 0 0 

2 263 0 0 0 0 

2.5 317 0 0 0 0 

3 365 0 0 0 0 

3.5 404 0 0 0 0 

4 434 10 9 4133 4126 

4.5 457 23 23 10514 10514 

5 470 42 42 19638 19624 

5.5 475 63 63 29988 29960 

6 473 89 89 42208 42139 

6.5 464 119 118 54985 54892 

7 448 153 153 68509 68357 

7.5 427 191 190 81621 81424 

8 403 234 233 94191 93926 

8.5 375 280 279 104927 104608 

9 345 330 329 113861 113447 

9.5 314 381 380 119727 119328 

10 283 434 432 122692 122214 

10.5 252 486 485 122431 122059 

11 222 536 534 118970 118592 

11.5 194 583 581 113029 112705 

12 168 621 619 104169 103824 

12.5 144 658 655 94371 94028 

13 122 686 683 83481 83150 

13.5 102 712 709 72719 72407 

14 85 729 726 61961 61684 

14.5 70 743 739 52045 51801 

15 57 751 748 43004 42800 

15.5 46 756 753 35034 34864 

16 37 760 756 28218 28080 

16.5 30 759 755 22401 22293 

17 23 757 753 17602 17518 

17.5 18 751 747 13632 13568 

18 14 746 743 10490 10440 

18.5 11 738 735 7960 7925 

19 8 732 729 6006 5978 
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19.5 6 723 720 4473 4453 

20 5 717 714 3313 3299 

20.5 3 709 706 2427 2417 

21 3 703 700 1767 1760 

21.5 2 695 692 1274 1269 

22 1 690 687 913 910 

22.5 1 685 682 649 646 

23 1 681 679 458 456 

23.5 0 678 676 321 320 

24 0 677 674 224 223 

24.5 0 676 673 155 154 

25 0 676 673 106 106 

Total       1890597 1884288 

 
Table 6-5 Annual Energy Production of the proposed and original system 

 
In Table 6-5, it shows the per turbine annual energy production of the proposed 

and original system. There is an increase of 6349.43 kWh or 6.35MWh annual 

energy productions per turbine. In the site of Dacheng wind farm, 66 of the 

750kW turbines are installed. Multiplying this increase with the number of 

turbines will result in a total increase of 416.4 MWh for the wind farm in a year. 

This is a significant improvement that can lead to a significant financial advantage. 

With a typical household consuming 4000kWh per year, the improvement in 

power transfer can be utilized to power a neighbourhood of around 100 

households. 

 

The possible improvement in energy production of the proposed system at the 

same site with different mean wind speed ranging from low 4m/s to high 10m/s 

is shown in Table 6-6. It was found that the proposed system is capable of 

improving this energy production by around 0.2% to more than 0.3%. 

 

The utilization of variable capacitors and tap changing transformer in tandem can 

improve the power transfer capability of a WECS with fixed speed SCIG, within a 

tolerable window opportunity. Only minor modification, in the form of a global 

controller that will control the values of excitation capacitor as well as the tap 

position of the transformer, needs to be added to the existing system. It was found 

that annual energy production of the WECS can be improved and this 
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improvement can be significant especially when the proposed system is 

implemented in a large system, which is normally the case for a fixed speed WECS. 

Further investigation is being undertaken by the authors to decide on the most 

optimum control solution for the proposed system. 

 

 

Average 
Wind 
Speed 
(m/s) 

Proposed 
Energy 
(MWh) 

Original 
Energy 
(MWh) 

Gain in 
Energy 
(MWh) 

% 
Improvement 

4 249 249 0.47 0.19 

4.5 389 388 0.85 0.22 

5 559 558 1.36 0.24 

5.5 756 754 2 0.26 

6 973 971 2.75 0.28 

6.5 1206 1203 3.59 0.3 

7 1448 1444 4.52 0.31 

7.5 1694 1689 5.5 0.33 

8 1939 1933 6.51 0.34 

8.5 2179 2172 7.54 0.35 

9 2410 2402 8.56 0.36 

9.5 2631 2621 9.55 0.36 

10 2837 2827 10.49 0.37 

 
Table 6-6 The possible improvement of the proposed system at site 
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7. Conclusions and Further Research 
The utilization of variable capacitors and tap changing transformer in tandem can 

improve the power transfer capability of a WECS with fixed speed SCIG, within a 

tolerable window of opportunity. Only minor modification, in the form of a global 

controller that will control the values of excitation capacitor as well as the tap 

position of the transformer, needs to be added to the existing system. It was found 

that annual energy production of the WECS can be improved and this 

improvement can be significant especially  when the proposed system is 

implemented in a large system, which is normally the case for a fixed speed WECS.  

 

Opportunity is available to further extend this research through investigation of 

the most optimum control criteria and algorithm to implement the tandem 

variable capacitor and tap changing transformer. This control algorithm can then 

be implemented as part of a fully automatic prototype, for example on a 

Raspberry Pi, connected to a virtual WECS to further validate the effectiveness of 

the research.  

 

Further investigation is also necessary to investigate the effectiveness of this 

tandem configuration especially in supporting the type A fixed speed SCIG WECS  

to be compliant to modern grid code that requires reactive and active power 

control, which could possibly be further enhanced through the utilisation of blade 

pitch control. This will be useful in making the case for a balanced uninterrupted 

and maximum energy extraction possible with fault support for the grid. 
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