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Abstract

Face recognition is one of the most important applications in computer vision. It aims to

automatically identify or verify a person using a still image or a video sequence. The main

difficulty in this application is the variations of a face in pose, illumination, and expres-

sion as these factors will significantly impact the recognition performances. Conventional

methods based on single testing image are often insufficient to achieve satisfactory perfor-

mances due to a fact that the identity features from a single image are hard to overcome

those variations. To extract more effective features, Face Recognition based on Image Set

(FRIS) has been proposed by using a set of testing images to improve the recognition per-

formance. In FRIS, more images would provide more information for the same person on

different conditions. It is a more feasible way to extract identity feature out of variations.

There are two main existing categories in this field: sample based methods and structure

based methods. The sample based methods would define the similarity based on differences

among a small group of samples in sets. Large variation difference is a big problem for this

category of approaches as two sets of the same identity images under different conditions

may have large differences. Structure based methods represent each set as a model and

measure the difference between models. In this case, good representation needs a wide

range of images for one person to reveal the structure of someone’s face manifold. That

requirement is hard to be fully met under real applications. Along with existing methods,

we introduce a novel framework to improve the performance of current methods. The

ultimate goal of this thesis is to improve the performance in FRIS significantly by relieving

the pose variations of images with a face normalizer to convert facial images in different

poses into a frontal standard face. To achieve this goal, we divide the whole process into

three stages: image alignment, face normalization, and feature extraction for recognition.

The manifold alignment technique is firstly introduced in the thesis. This topic has its own

independent interest in computer vision though we mainly use it for face recognition. We

propose two new unsupervised algorithms for the automatic alignment of two manifolds

of different datasets with possibly different dimensionalities. Alignment is performed au-

tomatically without any prior information on the correspondences between two manifolds.

The first proposed algorithm automatically establishes an initial set of sparse correspon-

dences between the two datasets by matching their underlying manifold structures. Local

histogram features are extracted at each point of the manifolds and matched using a robust

algorithm to find the initial correspondences. Based on these sparse correspondences, an
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embedding space is estimated where the distance between the two manifolds is minimized

while maximally retaining the original structure of the manifolds. The problem is formu-

lated as a generalized eigenvalue problem and solved efficiently. Dense correspondences

are then established between the two manifolds and the process is iteratively implemented

until the two manifolds are correctly aligned. The alignment consequently reveals their

joint structure. Next we introduce another improved method by releasing the restriction of

data overlapping and give a more elegant solution for alignment problem. The alignmen-

t process is achieved by iteratively increasing the sparsity of the correspondence matrix

until the two manifolds are correctly aligned and consequently one can reveal their joint

structure.

The second step is the face normalization with an aim to bridging the gap of the large

pose variations in face recognition task. In this thesis, the problem is addressed by di-

rectly transforming an image with non-frontal pose into the frontal view image. Then the

recognition is performed on the transformed frontal images. For such a purpose, we first

estimate a rough head pose of the input image and then use a group of Gaussian Processes

Regression (GPR) models to normalize such pose into frontal view. The GPR models are

learned independently for different poses. A final joint output estimation is the product

of the output Gaussian distributions.

In this thesis, a dimensionality reduction method is also proposed for image set based face

recognition. This algorithm transforms each image set into a convex hull and uses Support

Vector Machine (SVM) to compute margins between each pair sets. Then we use Principal

Component Analysis (PCA) on the margin directions by applying dimension reduction

with an aim to preserve these margins. Classification can be achieved by distance based

on metric of convex hulls in low dimension feature space.

This thesis demonstrates the effectiveness of the proposed methods on different public-

available datasets. Experiments are conducted on different individual stage and the w-

hole framework in terms of alignment accuracy, computational time and face recognition

accuracy. Results show that the proposed framework outperforms existing approaches

significantly, particularly for the case of two image sets without pose overlap.
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Chapter 1

Introduction

1.1 Problem Statement

Face recognition is a challenging problem for identifying a person from images or videos. It

has been an active research topic in computer vision community over the past two decades.

Currently, there are many applications for face recognition. If an accurate image set based

facial recognition system as defined below was properly designed, it could be useful in

many applications. For instance, identification system, the most standard application for

face recognition can be improved to handle pose and lighting variations. Surveillance is

important application for face recognition as automated face recognition can be applied to

search for ‘dangerous’ people or crimes in recorded data. Another important application

is pervasive computing. Most of devices such as smart phones, tablets and wearable

electronics have cameras which can be used to capture photos and identify their users

automatically, and can thus provide personalization messages based on identification.

Traditional approaches for face recognition recognize a person from one single testing im-

age and mainly assume that all images are taken in controlled environments. However

in reality environments, face images are captured from varied video cameras with varia-

tion of conditions in pose, illumination, expression, etc. Most conventional single image

approaches cannot handle facial variations in real world applications in uncontrolled en-

vironments. This is due to the fact that the difference between facial images caused by

those variations are often lager than the identity difference itself. Thus the distance in

feature space between two faces of different persons in the same viewpoint may be smaller

than that of the same person under different poses. That makes the Nearest Neighbor

(NN) classifier in conventional methods to fail easily.

Nowadays, it is easy to obtain large quantity of images for both training and testing.

Theoretically, a set of images for the same individual should provide more variation in-

formation in pose, illumination and expression and thus it is more feasible to find the

intrinsic identity feature to classify different subjects. Methods based on image sets are

expected to achieve better performance than traditional ones based on a single testing
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image, because a set of testing images can incorporate information about the variability of

the individual’s appearance, and make decision based on identity information collectively.

In this situation, face recognition problem can be formulated as follows: Given a set of

query images for one unknown subject, we need to design a classifier based on the training

image sets and use it to find the label information for the query image set. This is called

Face Recognition based on Image Set (FRIS).

FRIS is not an easy task due to the fact that the larger the data set is, the more external

factors there are in effect. These factors can include the lighting of environment, the

continuous change of viewpoints, and different facial actions. For example, Figure 1.1

shows images of three sets of different people at various poses, lighting conditions and

facial expressions. Although the faces in each row have the same identity, they still can be

very confusing to a computer system. However more images mean that more information

are provided. If appropriate approaches can be developed to extract and effectively utilize

features from image sets, we can expect that a well-developed computer system could

achieve satisfactory performance.

Figure 1.1: An illustration of the variation of conditions in three image sets, each row

is a set for one subject. The illumination, pose and facial expression are all different for

images in three image sets.
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1.2 Aims and Research Goals

It has been the goal of face recognition research to have the ability of recognizing identity

in complex scenes. While this seems natural and simple to humans, it is still a challenging

task to computer currently. Despite the research on this topic is fast developing, there are

a number of limitations in the existing image set based face recognition methods.

There are two main categories of methods to solve the FRIS problem. Firstly, some

approaches define the set-to-set similarity based on the local samples between sets, which

is restrictive for sets having similar environment condition. If the sets are captured in

similar condition, those algorithms work perfectly, because these samples have very little

variation to each other. However, this kind of methods are normally sensitive to noise and

outliers. Some other approaches manage to find a model (e.g., linear subspace and affine

hull) for one person and are compared according to the similarity of the models. This

requires that the sets are widely dispersed under different conditions to span a subspace

or manifold. The advantage of model based methods is that few outliers samples may not

influence the model building process and are naturally denoised in the process. However,

in the real application of the face recognition, the samples are often insufficient to build a

good model.

To this end, novel robust algorithms are required to take the advantage of both categories

for unrestricted environments, and overcome the problems in the existing approaches.

Specifically, the desired algorithm should include the following properties:

• No restriction on the relation between sets is required. The proposed algorithm

should be able to handle all set intersection types for poses, i.e., no overlap, with

overlap and even one set being contained in another set.

• No restriction on variation of set is required. The proposed algorithm will handle

sets which have not enough variations to build a model of identity.

• The proposed algorithm is robust against image noises and outliers.

1.3 System Overview

In order to achieve these goals, a framework of face recognition based on image set is

developed in this thesis, which includes many novel techniques and algorithms. The system
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Figure 1.2: Overview of the framework. This framework contains three main parts:

(a)Pose Estimation. (b)Face Pose Normalization. (c)Representation and Classification.
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framework is shown in Figure 1.2. In this thesis, we build up a novel framework for

general image set based face recognition problem by developing a series of techniques.

This framework is designed to overcome the limitations of existing techniques and achieve

the research goals in Section 1.2. The main idea of the whole system is to apply the FRIS

method to a variation of uncontrolled environments and we intend to significantly decrease

the influence of the variations in input images. All the input faces with different poses are

required to be normalized into some standard frontal faces. That means this system have

the ability to handle more wild cases in pose variations.

We explore different ways to learn features, model image sets and use these techniques

to achieve these aims. In particular, we tackle the following tasks: image sets alignment,

face normalization and feature extraction. The image set alignment task is to discover

the intrinsic relationship of two data sets. The alignment is performed on each set with a

reference set to find the correspondence. Its output is a one to one correspondence between

sets. It is an effective way to automatically label the face pose. The face normalization

task is a convenient intermediate step before classification in order to remove large pose

variation impact. All faces are normalized into a standard frontal pose that reduces the

pose variations in order to achieve better performance. The set based feature extraction

task is to find more discriminant low dimension representations that can improve face

recognition performance for FRIS problem.

1.4 Significance and Contributions

This thesis makes contributions to the field of computer vision in two levels: framework

and techniques. From the point view of framework we propose a new system for image set

face recognition which has the capability to handle FRIS in the uncontrolled environment.

For each component of this system, some new techniques are proposed to improve state

of the art approaches. We summarize the main technical contributions of this thesis as

below.

• We propose a new unsupervised algorithm for the automatic alignment of two man-

ifolds of different datasets with possibly different dimensionalities. It requires the

reference set should cover all the variations which could appear in query set. The

proposed algorithm automatically establishes an initial set of sparse correspondences

between the two datasets by matching their underlying manifold structures. Local

histogram features are extracted at each point of the manifolds and matched using

RANSAC algorithm to find the initial correspondences. Based on these sparse cor-
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respondences, an embedding space is estimated where the distance between the two

manifolds is minimized while maximally retaining the original structure of the man-

ifolds. The problem is formulated as a generalized eigenvalue problem and solved

efficiently. Dense correspondences are then established between the two manifold-

s and the process is iteratively implemented until the two manifolds are correctly

aligned consequently revealing their joint structure. We demonstrate the effective-

ness of our algorithm on aligning protein structures, facial images of different subjects

under pose variations and RGB and Depth data from Kinect. Comparison with a

state-of-the-art algorithm shows the superiority of the proposed manifold alignment

algorithm in terms of accuracy and computational time.

• We propose another improved robust unsupervised algorithm for automatic manifold

alignment. The significant contribution is that the proposed alignment algorithm is

performed automatically without the previous assumption on the correspondences

between the two manifolds. For such purpose, we simplify the histogram-based

features of the previous work. The elegance of this idea is that such a complicated

problem is formulated as a generalized eigenvalue problem, which can handle the

outliers by using the extended correspondence matrix. The alignment process is

achieved by iteratively increasing the sparsity of the correspondence matrix until

the two manifolds are correctly aligned and consequently one can reveal their joint

structure. We demonstrate the effectiveness of our algorithm on different datasets

by aligning facial images of different subjects under pose and lighting variations.

Finally, we also compare with state of the art algorithms and the results show the

superiority of the proposed manifold alignment in terms of vision effect and numerical

accuracy.

• We propose a face normalization method for bridging the gap of the large pose

difference in face recognition task. We address the problem by directly transforming

the image of non-frontal pose into the frontal view image. Then the recognition can

be performed by any state of the art classification method. For such purpose, a

group of Gaussian Processes Regression (GPR) models are used to normalize pose

into a frontal view. The GPR models are learned independently for different poses.

A final joint output estimation is the product of Gaussian distributions. We compare

with state of the art algorithms and the results show the superiority of the proposed

technique in terms of normalization error and numerical accuracy.

• We propose a new dimensionality reduction method Margin Preserving Projection

(MPP) for image-set based face recognition. This proposed method is designed for

affine hull modeling based FRIS problem. In the proposed method, we transform

each set into a convex hull and use Support Vector Machine to compute the margins

between each pair of sets. Then we use PCA for dimension reduction with an aim
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to preserve these margins. Finally we use convex hull distance to do classification

in low dimension feature space. Experiments with benchmark face video databases

validate the proposed approach.

• We propose a novel framework for FRIS. This framework can handle the extreme

case when there is no pose overlap between the training set and the query set. The

image sets firstly are aligned to a reference set in order to estimate the pose. The

face normalization is then applied to reduce the wild pose variations. The obtained

frontal standard faces are finally used for a normal FRIS problem. Experiments

on different setups show our system outperforms some state of the art methods in

general cases.

1.5 Structure of the Thesis

This thesis is organized as follows. In Chapter 2, a review of related works is presented.

The state of the art approaches of FRIS are first briefly discussed. This is followed by

exploring the related face recognition techniques,e.g., illumination robust face recognition

and pose robust face recognition. Then the system related techniques are discussed re-

spectively in more details. For example, the manifold alignment is reviewed, and it is

adopted to quickly estimate the pose of each image in a set. In Chapter 3, we introduce

Manifold Alignment using RANSAC technique to show the basic idea. The improved

Manifold Alignment algorithm is presented in Chapter 4 as we remove the assumption of

the previous version and build a more elegant algorithm to solve the alignment problem.

The face normalization step in this framework is presented in Chapter 5 as we discuss

about the Gaussian Processes Regression (GPR) based face normalization techniques in

details. In fact, the nonlinear characteristic of GPR brings satisfactory performance in

cross pose face recognition experiment. In Chapter 6, A discriminant learning algorithm

is designed for convex hull model based methods. Finally, the whole system is built in

Chapter 7. Conclusions and directions for future work are addressed in Chapter 8.
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Chapter 2

Literature Survey

In this chapter, we will review literatures about FRIS approaches for better understanding

the limitations of the existing methods. Furthermore, relevant literatures for each compo-

nent are also reviewed for better analysis to show their advantages and disadvantages.

2.1 Face Recognition based on Image Set

Initially, there is no specific methods proposed for FRIS problem. Some researchers at-

tempt to integrate results from traditional single image face recognition methods. They

apply frame based techniques to all or selected frames from face sequences, and then obtain

corresponding results using majority voting or other decision level fusion algorithms Zhao

et al. (2003). This strategy ignores some important information for the correlation in the

image set. Experiments in Hadid and Pietikainen (2004); Wang et al. (2008) show that

image set based methods outperform those single frame based ones with direct applications

on FRIS.

The emergence of face recognition based on image set actually is a natural development

of face recognition system. Although people can find identity through a single image,

human recognizing is a dynamic process in everyday life. The dynamic in computer

system corresponds to multi images in a video. Researches of FRIS then start from image

sequences based methods which use temporal coherence within a sequence. There is a

strong requirement of those applications that the user should perform a strictly pre-defined

motion with controlled lighting setup. Typical approaches are condensation method and

Hidden Markov Models (HMM) based methods Hadid and Pietikainen (2004); Liu and

Chen (2003). The consecutive assumption of consecutive motion is not always satisfied,

because in most case data may be derived from unordered observations, e.g., multi-sensor

surveillance systems and videos in different periods. Therefore the general case of FRIS

is assumed that the training and testing data used in a FRIS system are organized in set

of images for each subjects with random and typical variations in illumination pose and

facial action, but the temporal coherence may be unnecessary in many applications.
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Unlike the single image based method, the similarity is naturally defined on sample to

sample distance. Considering about image set, there are some difficulties: The size of

the image set normally is different and big. There should be a model to incorporate all

the samples; There is no an effective metric for image set comparison. Therefore many

researchers focus on exploring approaches in following aspects for FRIS problem:

• How to build models to handle image set? There are two main categories of solutions

for this problem. One is parametric method with assumption that the images in a

set satisfy certain distributions; the other one is model-free nonparametric methods

in which the set is seen as sampling of a structure or a manifold.

• How to define the similarity between sets? One straightforward idea is to modify

the sample to sample distance to for image set. More elegant idea is to build the

set into a structure model and the distance is simply defined using the similarity of

models.

• How to extract discriminative features and design classifier with a given similarity?

In next Section 2.1.1, we will mainly focus on reviewing the modeling technique of image

set. The discussion about the two main categories on how to define the similarity measure

is presented in Section 2.1.2. The details of learning the discriminative representation of

the set are described in Section 2.1.3.

2.1.1 Modeling Methods

Existing techniques can be categorized according to the three main challenges of the

FRIS problem. The first challenge is how to extract and represent the information from

an image set. To tackle the first challenge, existing techniques include parametric and

nonparametric representations. Parametric methods model distributions to represent an

image set with the parameters estimated from the dataset itself. Without any assumption

on data distribution, nonparametric methods represent many favorable properties in more

flexible modeling manners.

2.1.1.1 Parametric Methods

Parametric approaches assume that the data satisfy a certain probability distribution.

Image sets are then represented by using the parameters of the distribution, e.g., mean
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and standard deviation of Gaussian distribution. Shakhnarovich et al. (2002) introduce

the probabilistic modeling method. They represent each set by a multivariate Gaussian

distribution and measure the similarity using the Kullback-Leibler divergence. Arand-

jelovic et al. (2005) introduce manifold density divergence which represents each set using

Gaussian mixture models (GMM) to produce more realistic modeling. Kernel PCA is used

in Arandjelović and Cipolla (2006) to build a dissimilarity measure between distributions

of face sets. The resistor-average distance is then applied on nonlinearly mapped data and

used as similarity. The significant limitation of the parametric methods is that the learned

distribution parameters based on training data can be quite different from the testing set.

The arbitrarily densities of sets can significantly affect the parameter estimation.

2.1.1.2 Nonparametric Methods

Nonparametric methods include techniques that do not assume data to satisfy any par-

ticular distribution and model the data in a more flexible way. These methods mostly

attempt to represent the image set by linear subspace or by nonlinear manifold. Mutual

Subspace Method (MSM) Yamaguchi et al. (1998) consider each image set as a linear sub-

space. Based on MSM, an improved Constrained MSM (CMSM) Nishiyama et al. (2005)

project the basis of subspace onto a constrained subspace to handle pose variations. In

MSM, the measure of difference between linear subspace is the sum of cosines of few s-

mallest principal angles. A basic limitation of these methods is that real world variations

usually lead to high curvature of the underlaying manifold structures and have outliers

problem, thus linear subspace may lose good discrimination in this kind of situations. In

Wolf and Shashua (2003) the performance is improved by modeling subspace in a nonlinear

way using the kernel trick. However finding the optimal kernel function and parameters

is a very complicated problem. Mixture of linear subspace Nishiyama et al. (2007); Fan

and Yeung (2006) is another way to model the nonlinear structure of sets. Wang et al.

(2008) model face appearance as some local approximations of manifold using a clustering

method, which depends on the difference between geodesic distance and Euclidean dis-

tance. The similarity is measured by a weighted average of canonical angles and exemplar

distances. It is much easier to formulate due to the linear locality, but accuracy of models

will be lower than global nonlinear methods. Grassmannian manifold Chang et al. (2007)

is another way to model face image set by considering the geometric structure of data.

The kernel trick using in Grassmannian manifold methods Wang and Shi (2009); Harandi

et al. (2011) is able to handle the non-linearity structure in data.
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2.1.2 Set-to-Set Similarity

It is necessary to properly design corresponding measurement of the similarity for specific

models. Some methods have used conventional metrics, e.g., Kullback-Leibler divergence

to parametric method and principal angel for linear space. To capture the set nonlinearity,

complicated models like nonlinear manifold normally need to define effective distance. Two

types of measurement have been reviewed as below. The first one defines the set-to-set

distance using some of the set samples. The second type of similarity is based on their

model structure.

2.1.2.1 Local Sample based Similarity

Derived from traditional face recognition, pair-wise comparison is the most intuitive way.

The similarity between sets can be defined by using minimal, maximal or mean distance

of all pair distances. Earlier work Satoh (2000) directly uses the single frame criterion

by matching the closest pair of samples. The result of Wolf et al. (2011) shows that

directly using pair-wise distance can not achieve satisfactory performance. Cevikalp and

Triggs (2010) model each image set as a affine hull, the similarity is the distance of nearest

points between them. Those points are actually the linear combination of samples within

each affine hull. However it can not be guaranteed that the synthetic points of linear

combination represents a face. Sparse Approximated Nearest Points (SANP) Hu et al.

(2011) include a additional sparse constraint with the affine hull modeling to avoid the

wild linear combination. In Hu et al. (2012) the extension of SANP in kernel version

improves the matching performance of image sets. Another improvement Yang et al.

(2013) replaces the L1 norm constraint in SANP with L2 norm constraint with a slightly

performance improvement.

Experiments show that if the data satisfy the condition that all sets have images with

similar variations, locality based methods demonstrate significant superiority in both ac-

curacy and efficiency. However, such restrictive assumption has limited the use of Locality

based methods. If the data sets can strictly meet such assumption, this type of methods

are still a good choice.
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2.1.2.2 Structural Similarity

The limitation of Locality based approaches is that the similarity metric is based on small

region of samples, and most of the other images are not utilized. Modeling each image

set into a holistic model is a solution. As discussed in Section 2.1.1, the holistic set

structure of each image set can be generally considered as a linear subspace Yamaguchi

et al. (1998); Kim et al. (2007) or a nonlinear manifold Harandi et al. (2011); Wang

et al. (2008); Fan and Yeung (2006). A computationally efficient way of computing the

similarity between two linear spaces is to calculate their canonical correlation, which is

defined as cosines of principal angles Kim et al. (2007); Wolf and Shashua (2003). However,

the global structure may be a nonlinear manifold and a single subspace can not well

represent it. Wang et al. (2008) divide an image set into multiple local linear clusters,

then use principal angle and cluster exemplar distance to measure the similarity. Chen

et al. (2013) compute the distance between different local linear subspaces to achieve

better performance. Although all these techniques can discover the structure feature of

set, classification is still implemented based part of the data points, and the rest of the

image set data are often not effectively utilised. Mahmood et al. (2014) apply improved

spectral cluster on a big data set containing all training data and testing data. It is divided

into small groups to achieve the cluster-wise correspondence between training and testing

data. The classification is determined by distribution distance using most of the data.

The limitation of structure based methods is the requirement for dataset that need to have

large divergence. Only data samples with typical variations can span a low dimensional

subspace. If the data is not adequate, it is hard to reveal the complete structure of data.

2.1.3 Image Set Discriminant Features

Discriminant Analysis is a powerful technique which is widely used in the traditional single

image face recognition. Mutual Subspace Method (MSM) Yamaguchi et al. (1998) uses

the Principal Component Analysis (PCA) Turk and Pentland (1991) to generate subspace

of data and define the similarity based on the smallest principal angle. Directly applying

Traditional method on FRIS problem can not achieve satisfactory performance, since the

similarity definition is different and the set based discriminant feature may be lost in the

process. Therefore learning the discriminant representation for FRIS should properly de-

sign for specific method. Based on MSM, an improved Constrained MSM (CMSM) Fukui

and Yamaguchi (2005) projects the basis of subspace onto a constrained subspace to han-

dle pose variations. Discriminant analysis of Canonical Correlations (DCC) Kim et al.
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(2007) is developed for Canonical Correlations (principal angle) based methods. It follows

the idea of Linear Discriminant Analysis (LDA) Belhumeur et al. (1997) by replacing the

metric with canonical correlations and finally solve this problem iteratively. Grassmann

Discriminant Analysis (GDA) Hamm and Lee (2008) uses two different metrics to define

new Grassmann kernels for Kernel Linear Discriminant Analysis (KLDA) Scholkopft and

Mullert (1999). Kim et al. (2006) propose the Locally Orthogonal Subspace Method (LOS-

M), where the class subspace is only required to be orthogonal to its local neighbors. Kim

and Cipolla (2009) improve LOSM by incrementally updating the principal components

of the class correlation and the total correlation matrices. Discriminant analysis is also

used in the clusters local patches Wang and Chen (2009), where different class data are

better separated and local clusters are more compacted.

2.1.4 Section Summary

In Section 2.1, we reviewed the three aspects of FRIS problem. Methods are carefully

analysed for the advantages and limitations. Two modeling methods are designed for

different case of input data. The nonparametric methods are more flexible to utilize

in most of case. Two types of similarity are compared in Section 2.1.2. Sample based

methods assume there are overlap of variations between sets. Structure based methods

need the data to be sufficient span a low dimension space. However, both of them can

not be used effectively in the uncontrolled environment. In this thesis, we will propose

a novel framework that can be used in uncontrolled environment. We combine Manifold

Alignment and Face normalization technique to handle the wild case. In next sections,

We will introduce those techniques.

2.2 Manifold Alignment

Manifold Alignment is a technique to align two high dimensional datasets when their in-

dividual elements are quite different. It is often hard to directly find the element-wise

matches, especially when there is no prior information about their correspondences. To

solve this problem, many researchers have developed some techniques includes relaxation

labeling Maciel and Costeira (2003), graph spectra Egozi et al. (2013) and tensor mod-

el Chertok and Keller (2010). Recent researches on manifold learning Tenenbaum et al.

(2000); Roweis and Saul (2000); Zhang and Zha (2004) provide a way to discover the

intrinsic structures of high dimensional datasets in a low dimensional space. Manifold

alignment is a powerful technique using this idea for establishing an effective correspon-
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dence between different datasets. Such correspondences are a powerful tool for knowledge

transfer across disparate datasets using their underlying intrinsic manifold structures.

The main idea of manifold alignment is to optimize a problem with two criteria. First, the

alignment should minimize the distance between manifolds, i.e., the two manifolds must

lie close to each other in a feature space. Secondly, the alignment should preserve the

structures of both manifolds, i.e., the relationship between the data elements of individual

manifolds must be preserved as much as possible. Current manifold alignment techniques

mainly focus on two aspects: feature extraction and joint manifold discovery. Feature

extraction tries to find the structure feature of manifold to give an instruction for defining

distance between manifolds. Based on features or prior information, the final aim is to

obtain the joint manifold which satisfy all constraints.

2.2.1 Feature Extraction for Alignment

Feature extraction can be categorized as supervised, semi-supervised and unsupervised

approaches. Supervised approaches, such as Wang and Mahadevan (2008, 2009a), build

correspondences based on a set of manual point pairs selected between the two manifolds.

If the known correspondences are inadequate and low quality for supervised approaches,

we can use semi-supervised methods Ham et al. (2005) to find dense and refined corre-

spondence estimation. For unsupervised methods, all of the features are extracted based

on local properties without prior manual information. Wang and Mahadevan (2009b) in-

troduce a similarity metric based on the permutations of the k nearest neighbor Euclidean

distances, which is computationally expensive. Moreover, it only uses the simple inter-

sample Euclidean distances within a manifold as features. Such features can be highly

sensitive to the data sampling. Pei et al. (2012) describe a similarity estimation method

based on features of B-spline curves, which are fitted to the local neighbors. Cui et al.

(2012) introduce another unsupervised feature based on Canonical Correlation which is

using the similarity of image appearance.

2.2.2 Alignment and Joint Manifold Discovery

There are different methods to find joint manifold structure and refine the correspondence

after the similarity has been built. Two-steps methods like Procrustes alignment Wang

and Mahadevan (2008) are firstly embedded into a low dimensional feature space while

preserving their individual manifold structures using dimensionality reduction such as
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Locality Preserving Projection (LPP) He and Niyogi (2003) or Laplacian eigenmaps Belkin

and Niyogi (2003). Based on correspondences manually or automatically established in

the feature extraction stage, a transformation is derived so that it optimally aligns the

two manifolds by minimizing the distance errors between the corresponding elements.

Iterative Closest Point (ICP) Besl and McKay (1992); Chen and Medioni (1992) is a rigid

registration and can be seen as spacial case in 3D for this propose. Pei et al. (2012)

consider the transformation as an extended affine transform and an instance matching

function. The correspondences of final result are defined only based on the data elements

in the original space. As such an embedding space is not learned, which makes it difficult

to handle new data. Another limitation is that the embedding is performed separately

without taking the similarities between the two datasets into account. Consequently, the

transformation in the embedding space cannot guarantee an optimal alignment.

Other blended methods, such as Wang and Mahadevan (2009b); Cui et al. (2012), formu-

late the correspondence and embedding into feature space as a single optimization problem.

Due to the non-convex nature of the optimization function, it is iteratively solved by first

initializing with some rough correspondences, for example, using prior knowledge. All of

these methods are directly using binary matrix to model the correspondence matrix, they

are sensitive to the initial binary correspondences.

2.3 Pose Robust Face Recognition

As we mentioned in Chapter 1, the variations in pose, illumination and expression would

cause larger facial changes and these can significantly drop the recognition performance.

The lighting problem can be solved based on edge based features Wang et al. (2004);

Tan and Triggs (2010). The expression is a partial deformation of face that can find

stable regions like nose for face recognition Chang et al. (2006). Out of the three types of

variation, pose variation remains the most challenging problem for face recognition. The

changes caused by pose variations are non-linear and significantly larger than the identity

differences. Thus the distance in feature space between two faces of different persons in the

same viewpoint is smaller than that of same person under different poses causing simple

Nearest Neighbor (NN) classifiers in conventional methods such as Eigenface Turk and

Pentland (1991) and Fisherface Belhumeur et al. (1997) to fail easily. In our system, the

alignment outliers are often under different poses. This problem could be solved using

Cross-pose face recognition technique.

Many different approaches have been reviewed in the literature Zhang and Gao (2009) to
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tackle the pose problem. Multi-view approaches simply import multiple pose face images

to train the face recognition system and thus reduce the impact of large pose variations.

Such approaches cannot be considered as cross pose because they can only recognize

previously seen poses. Some methods e.g. Sanderson et al. (2006), transformed frontal

face images to generate non-frontal faces for extending the training set. Then the training

set is used to collaborate for face recognition under pose variations, that is, one actually

can convert a multi-view problem to a FRIS problem Cevikalp and Triggs (2010); Hu et al.

(2012). Next we will introduce some techniques dealing with pose variation. In this thesis,

we will use Gaussian Processes Regression (GPR) technique to do pose normalization.

2.3.1 Assistance of 3D Models

One category of face recognition approaches dealing with pose issue is recognition with

assistance of 3D models. In fact face images are 2D projections of 3D human face under

different viewpoints. To handle face images in small pose variations Gao et al. (2001)

propose a simple pose recovery method using a generic cylindrical 3D face model. Face

images under any horizontal poses where mapped on the generic cylindrical model, are

rotated and recovered to the frontal face for recognition. Castillo and Jacobs (2007) apply

stereo vision techniques to reconstructs 3D face models. The cost of stereo matching of

face image set is used as the measure. Another example is the 3D Morphable model

(3DMM) Blanz and Vetter (2003) based 2D face recognition method. The 3D Morphable

Model is formed using Principal Component Analysis features built from 200 scanned 3D

faces with shape and texture. Then the 3DMM is morphed to generate a given 2D face

image as closely as possible by iteratively minimizing pixel difference of image and the

model. This is a highly non-convex optimization process which estimates a large number

of parameters including 199 shape, 199 texture, camera pose and lighting condition. The

final set of PCA parameters are used to encode gallery faces and recognize a probe face

using NN distance between the gallery and probe parameters. Due to the non-convex

nature of the optimization, a unique global solution is not guaranteed and the technique

can fail. Moreover, this technique also needs manual initialization of the 3DMM pose.

The 3D face morphable Blanz et al. (2005) can also be used to generate novel 2D non-

frontal face images for training. However, the texture model is not a pure albedo and also

contains the lighting conditions of the 200 training images.

In conclusion, reconstructing 3D models from a 2D image is an ill-posed problem. Gener-

ating side poses accurately from frontal views requires the person specific 3D face models

which are not available in most cases. Using an average 3D face model for all faces can

generate inaccurate side poses.
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2.3.2 2D Feature Matching

Directly matching two 2D face images with different poses is not as convenient as 3D

since approaches for 3D like ICP Besl and McKay (1992) are very robust. In 3D case, the

local regions of face are considered to be robust to pose variation Kanade and Yamada

(2003). From different view points, local patches are situated in different positions which

motivates the need for cross pose patch alignment. Ashraf et al. (2008) propose an align-

ment method by Lucas-Kanade-like optimizing process. Li et al. (2009) use a generic 3D

model to estimate the patches correspondence and measure the similarity by canonical

correlation analysis. Another way is to find the pose invariant feature for recognition

Huang et al. (2007); Levine and Yu (2006). However, these features are not robust un-

der large pose variations. Sharma and Jacobs propose a partial least square (PLS) based

method Sharma and Jacobs (2011). PLS can project images from different poses into a

common feature space such that the variance of corresponding features is maximized in

that space. Preserving only the maximum variance implicitly discards some changes due

to pose variations. However, due to the complex nature of pose variations, PLS cannot

achieve complete pose invariance.

2.3.3 Pose Normalization

2D pose transformation is another simplified effective method dealing with pose varia-

tions. Rather than reconstructing 3D face from 2D facial appearances, one can find a

direct 2D image mapping to synthesize a virtual views across different pose gap. Some

researchers Chai et al. (2007); Li et al. (2012); Zhang et al. (2013) found that effective

regressors can be learned to bridge the coupled faces across different poses. This regres-

sion step can be seen as a preprocessing step for face recognition. Actually for every side

face, there is one corresponding frontal face. Theoretically the relation of two faces under

different views is estimated by a linear projection which is formed with 2D-3D projection

and rotation transform in the presence of 3D model. Such fact supports that directly

normalization using machine learning technique is achievable and efficient. In Chai et al.

(2007) a simple linear regression has been used for constructing this transformation. In

considering the variations in distortion, alignment and cropping errors, the theoretical lin-

ear regression transformation is not always satisfactory for the real-world data. Improved

methods consider the error by coupling the bias and variance of source images and target

images by using L1-norm Zhang et al. (2013) and L2-norm Li et al. (2012). However,

the main function still follows the linear assumption. By considering this problem as a

nonlinear regression problem, we will propose a nonlinear data driven model to handle
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such transformation.

2.4 Chapter Summary

We present a review of related works in this chapter. The state of the art approaches

for FRIS problem are briefly discussed. There are three key aspects in solving the FRIS

problem. For modeling, the Non-Parametric methods are better performed than Para-

metric methods, since it have less restrict on data. Different metric criteria show different

limitations in the uncontrolled environment. Either of structure based and sample based

methods are limited for our aim to solve the uncontrolled FRIS problem. The methods for

learning the discriminate feature are finally reviewed. This technique can further improve

the recognition performance.

Following the FRIS technique review, we explore techniques related to FRIS, e.g., face

recognition under varying pose and lighting condition. Then the system related techniques

are discussed respectively in detail. The manifold alignment can be adopted to quickly

estimate the pose of each image set. It includes two parts: Feature extraction and joint

structure discovery. Pose robust face recognition includes a lot of techniques to solve

pose variation issue. We will adopt the face normalization technique to reduce the pose

variation in both training and testing set.
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Chapter 3

Image Set Manifold Alignment

As discussed in Chapter 2, the existing methods for face recognition based on image set

have been reviewed and analyzed. Among them, the works that are state of the art

and most related to the aims of this thesis are Mahmood et al. (2014) and Cui et al.

(2012). They have similar ideas to combine the structure based and sample based method

to improve the FRIS problem. The first step is to find correspondence between sets.

In Mahmood et al. (2014), a rough correspondence is obtained by a hierarchical sparse

spectral clustering to group the two sets into tiny clusters that the corresponding samples

are lied in the same group. There is no exact correspondence achieved in the process,

hence the refined process on the sets may not be achievable. We intend to find better and

accurate correspondence using manifold alignment technique with similar criteria like Cui

et al. (2012). The main idea of manifold alignment is discussed in Section 2.2. Firstly,

the alignment should minimize the distance between manifolds, i.e., the two manifolds

must lie close to each other in a certain feature space. Secondly, the alignment should

preserve the structures of both manifolds, i.e., the relationship between the data elements

of individual manifolds must be preserved as much as possible.

The limitations of previous alignment approaches we discussed in Section 2.2, are 1) sensi-

tive to the initial correspondence condition and 2) hard to take different types of similarities

into account except the closing neighbors. We propose a manifold alignment method to

overcome these problems and achieve better performance than state of the are methods.

A two-step process is proposed for estimating the initial set of correspondences which is

then followed by an iterative single-step refinement procedure that can find better and

dense correspondences. Such a process combines the advantages of different type of meth-

ods. Our approach falls in the unsupervised category avoiding the cumbersome manual

annotations associated with supervised approaches. The aim of this manifold alignment

method is to find the correspondence samples in a complete reference set for a test set.

We will discuss a more general case which requires no prior relationship assumption in

Chapter 4.

More specifically, the technique contributions are summarized as follow. Our method

extracts a novel 16-dimensional histogram from rotation invariant features such as the re-
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lationships between normal vectors. We use RANSAC to perform robust feature matching

which not only gives accurate matches but also avoids the massive computational com-

plexity required for exhaustive comparisons Wang and Mahadevan (2009b). An initial

set of correspondences is automatically established based on the local structures of the

manifolds that are invariant to transformations and robust to sampling. In the single-

step stage, a point-wise distance between corresponding points is employed to minimize

the inter-manifold distance, while a local reconstruction constraint is imposed to preserve

intra-manifold structures. This is formulated as a generalized eigenvalue problem which

can be efficiently solved. An iterative optimization framework is employed to refine the

alignment. Additionally, a joint manifold structure is achieved which is useful for further

information transfer between the datasets.

The effectiveness of the proposed algorithm is demonstrated on facial images of different

subjects under pose variations. We also show the alignment ability on different data

like protein structures and RGB-Depth data obtained from the Microsoft Kinect sensor.

Comparison with the manifold alignment proposed by another unsupervised method Wang

and Mahadevan (2009b) shows that our method is more accurate and executes about 20

times faster.

3.1 Initial Correspondence Estimation

To establish correspondences for unsupervised manifold alignment, one way is to directly

match their features in the original space. However, this is not possible if the two datasets

are from different sources or their dimensions are not equal. Even if the data are in same

dimensions like face images, there are still identity and variation differences. An alternate

way is to find the similarity between the local structures of the manifolds. The assumption

in manifold alignment is that the two datasets have similar underlying manifold structures

in feature space. Following this idea, we firstly apply a manifold learning algorithm to

discover the underlying manifold structures. This is essentially equivalent to embedding

the manifolds in some feature space where the local relationship between the manifold

samples is preserved. Features extracted in this embedding space can be matched directly

to find correspondences between two manifolds.

Given a reference dataset X = [x1, x2, . . . , xNx ] ∈ Rdx×Nx and a test dataset Y =

[y1, y2, . . . , yNy ] ∈ Rdy×Ny , where the columns xi and yi are the samples, dx and dy are the

dimensions of datasets, and Nx and Ny are the number of samples in X and Y respectively.
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Figure 3.1: Example of a query point pi and its k-neighbors. The query point and its

neighbors are fully connected.

To measure the distance between two manifolds, a rough correspondence between their

elements should be established first. We define an Nx × Ny correspondence matrix W xy

such that

W
(x,y)
i,j =

{
1 if xi corresponds to yj

0 otherwise.
(3.1)

Each column of W (x,y) can contain the value 1 at only one location. This means that for

any point in Y , there is only one corresponding point in X (Nx ≥ Ny).

Normally, the intrinsic dimension of the underlying manifolds is very low and the geometric

features are hard to observe in the original space. Nonlinear dimensionality reduction

techniques are capable of preserving the manifold structure in a low dimension embedding

space. We apply a nonlinear manifold learning method called Local Generative units and

Global Affine transformation (LGGA) Huang et al. (2009) on two datasets X and Y to

find same dimension features Px and Py. Before feature extraction, the manifolds are

normalized with respect to the scales of their respective largest principal components.

The scale of the embedded points is calculated first using Principal Component Analysis

(PCA) and then the complete dataset is rescaled according to the largest eigenvalue.

3.1.1 Local Histogram Feature

In order to efficiently obtain and compare the local manifold structures, we define a fea-

ture based on the histogram of measurements that encode the neighborhood’s geometric
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properties. We choose a histogram based feature and it is orientation invariant. This is

essential because the manifolds are generally misaligned initially.

Consider a point pi in Px. As shown in Figure 3.1, all of its k-neighbors pik in the Euclidean

space are selected and organized in Ri = [pi, p
i
1, · · · , pik], termed as the k-neighbors. The

normal vector ni at point pi can be approximated by the normal of the best fit plane to

k-neighbors using PCA. ni can be obtained by selecting the eigenvector corresponding to

the smallest eigenvalue Hoppe et al. (1992).

For each pair of points ps and pt in the k-neighbors R of point p, and their corresponding

normals ns and nt (calculated from their respective k-neighbors Rs and Rt), we define a

unit difference vector between them:

v =
pt − ps
‖pt − ps‖

. (3.2)

Similarly, we define some angular features for the pair as

f1 = max(nt · ns,−nt · ns) (3.3)

f2 = max((nt · (v × ns),−(nt · (v × ns)) (3.4)

f3 = | arccos(max(nt · v,−nt · v))− arccos(max(ns · v,−ns · v))| (3.5)

f4 = ‖pt − ps‖ (3.6)

The four features measure the curvature and the angles between the normals and the

difference vector. f1 and f2 are dot products between the unit vectors. They are in fact

the cosine of the angles between these vectors. The maximum operation is performed to

select only the acute angles. Similarly, f3 shows the difference of the two angles between

the two normals and the difference vector. We quantize each feature into two bins to

make a 16 dimensional histogram of the curvature features. Since the features are based

on mutual angles, it can be proven that they are rotation invariant. Moreover, these

features are still comparable when we choose different value of k for the two manifolds.

3.1.2 Correspondence Estimation

The 16 dimensional histogram features of two manifolds can be matched using the nearest

neighbor metric in the Euclidean space. However, in practice, the correct correspondences

my not be the nearest ones because such a low dimensional representation of the manifold

structure is not unique everywhere. Directly choosing the nearest features as correspon-

dences may not represent the manifold distance metric very well. A solution is to select
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Figure 3.2: A pair of points and their normals and vectors used for constructing the feature

histogram. This feature is rotation invariant.

the top few potential correspondences for each feature rather than the best one at this

stage and later reject the outliers based on a robust algorithm. Next we will describe the

process in detail.

Once the 16-D point features are obtained for a given k, the distance between two manifolds

(structural similarity) can be represented as a distance matrix Dk = [dkij |i = 1, · · · , Nx, j =

1, · · · , Ny]. The dkij in the matrix is the local structure similarity between the ith point of

X and the jth point of Y . A local feature correspondence set Ck can be defined as

Ck = {(xi, yj)|dkij < θj} (3.7)

We only assign the pair (xi, yj) to the local feature correspondence set Ck when the

distance dkij is below certain thresholds θj for jth column. The parameters θj depend

on the amount of ambiguity in the nearest neighbors step and can be adjusted based on

the training data. We take the top 10% nearest neighbors to each point as its matching

pairs, i.e., the value of each θj is set dynamically based on the jth column of Dk. In

order to achieve reliable correspondences, they are chosen based on multiple values of k.

Corresponding points should have similar feature even if the regions determined by the

number of neighbors k changes. In our experiments, two different values of k are used. If

a correspondence appears in multiple values of k it is accepted as reliable, otherwise it is
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rejected, that is:

C =
⋂
i

Cki (3.8)

where Cki indicates the set of correspondences which are selected for a given ki. The

intersection C still contains outliers which must be filtered out.

If the two manifolds have a similar structure in the embedding space, their rough alignment

can be approximated by an affine transform. The RANSAC algorithm Fischler and Bolles

(1981) is employed to find the inlier set by maintaining similar geometric relationships of

the correspondences without exhaustively trying all combinations in C. Details are given

below:

1. Select n correspondences from C as the initial inliers and compute an affine trans-

form.

2. Apply the affine transformation on the test manifold and verify all other correspon-

dence in C. Consider all other correspondences that fit well with the estimated

transform as inliers.

3. Count the number of inliers as the confidence.

4. Save the correspondences with the maximum confidence and iterate until convergence

or maximum number of iterations is reached.

A fixed number of iterations are used in our implementation. The final set of correspon-

dences, with the maximum confidence, is selected to initialize the correspondence matrix

W for the next alignment step.

3.2 Manifold Alignment

Given the small set of initial correspondences W between two manifolds, the dense cor-

respondences and the joint manifold structure can be derived by iteratively solving a

generalized eigenvalue problem as described below.
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3.2.1 The Loss Function

Assume that there are two projection functions fx and fy that map X,Y to F (x) ∈
Rd×Nx , F (y) ∈ Rd×Ny respectively, in an intrinsic space with dimension d. Note that F (x)

and F (y) are the low dimensional representations of X and Y , and columns xi and yi are

mapped to F
(x)
i and F

(y)
i respectively.

Our aim is to find projection functions fx and fy that can project the data into a joint

low dimensional space. Inspired by some manifold alignment techniques in Wang and

Mahadevan (2009a,b), we formulate the loss function for the mapping as follow:

J(F (x), F (y)) = µJC(F (x), F (y)) + JW (F (x)) + JW (F (y)) (3.9)

The first term JC indicates the between-manifold distance via corresponding points across

the datasets. The last two terms represent the reconstruction error of the locally generated

models for each dataset. The following subsections provide the details of each term.

3.2.2 Manifold Matching Error

Measuring the distance between two manifolds can be represented as a problem of mea-

suring the distance between their corresponding points. Thus the first term of (3.9) is as

follows:

JC =
∑
i,j

‖F (x)
i − F (y)

j ‖2W
x,y
i,j

= tr(F (x)Ωx(F (x))T + F (y)Ωy(F (y))T − F (x)W x,y(F (y))T − F (y)W y,x(F (x))T )

= tr(FLxyF T ) (3.10)

where Ωx is a Nx×Nx diagonal matrix with elements Ωx
ii =

∑
jW

x,y
i,j equal to the sum of

corresponding rows of W . Similarly, Ωy is a Ny×Ny diagonal matrix with Ωy
jj =

∑
iW

x,y
i,j ,

the sum of columns of W . We combine F (x) and F (y) into F = [F (x), F (y)] and build a

new joint Laplacian matrix

Lxy =

(
Ωx −W xy

−W yx Ωy

)
(3.11)
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3.2.3 Reconstruction Error

To ensure the local relationships are preserved when aligning two manifolds, we intro-

duce a reconstruction error constraint for manifold structure discovery that is inspired

by LGGA Huang et al. (2009). For any sample xi, its k-neighbors X(i) = [x
(i)
1 , . . . , x

(i)
k ]

can be seen as a local linear region, and its element can be reconstructed based on PCA

regarding xi as a mean.

x
(i)
k ≈ xi + U (i)v

(i)
k . (3.12)

where U (i) and v
(i)
k are obtained by PCA. For each X(i), this is easily achieved through

Singular Value Decomposition (SVD) of the local region of xi’s K-neighbors

X̄(i) = (X(i) − xieT ) ≈ U (i)Σ(i)(V (i))T = U (i)v
(i)
k (3.13)

The obtained v
(i)
k . where Σ(i)(V (i))T = v

(i)
k is a denoised low dimensional representation

of the original data with the minimized reconstructed error. Measuring the difference

between projected v
(i)
k and data in feature space indicates the reconstructed error of this

low dimensional feature, which can be formulated as

J
(f)
i = ‖W (i)Σ(i)(V (i))T − (F (i) − fieT )‖2F . (3.14)

where e is a column vector of all 1’s. Now, let the matrix S(i) and Si be the 0-1 selection

matrix such that FS(i) = F (i) and FSi = fie
T , then the optimal W (i) that minimizes the

error can be computed as

W (i) = F (S(i) − Si)(Σ(i)(V (i))T )+ (3.15)

where ()+ is the Moor-Penrose inverse matrix. The overall reconstruction error JW is then

given by

JW =
∑
i

J
(f)
i

=
∑
i

‖W (i)Σ(i)(V (i))T − (F (i) − fieT )‖2F

=
∑
i

‖F (S(i) − Si)Θi‖2F

= ‖FSΘ‖2F (3.16)

where

S = [(S(1) − S1), . . . , (S(n) − Sn)] (3.17)

Θi = (I − (Σ(i)(V (i))T )+Σ(i)(V (i))T ) (3.18)

= I − V (i)(V (i))T (3.19)

Θ = diag{Θ1, . . . ,Θn} (3.20)
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Equation (3.16) can now be rewritten in a compact matrix form,

JW (F ) = tr(FBx(F )T ) (3.21)

where

B = SΘΘTST . (3.22)

3.2.4 Solution of J

Following the above definitions of matching error and reconstruction error, the loss function

(3.9) can be formulated as

arg min
F
J = arg min

F
tr(FLF T )

s.t. FF T = I . (3.23)

Here, we impose the unit variance FF T = I constraint to guarantee a unique solution.

It follows that F can be computed as the eigenvectors corresponding to the second to

(d+ 1)th smallest eigenvalues of the middle sparse matrix

L =

(
Bx + Ωx −W xy

−W yx By + Ωy

)
(3.24)

Finally, Manifold Alignment can be solved as a general eigenvector problem.

3.2.5 Iterative Alignment

After solving (3.23), we can obtain the aligned joint manifold in feature space. The

correspondences matrix W between the two manifolds can be recalculated based on this

new finding joint manifold. In section 3.1, we assume that for every data point in query set,

there is a correspondence point in the reference set. The correspondence update process

can be achieved by finding the nearest reference sample for every point in query set. The

whole process is repeated iteratively until a stopping criterion is reached. The complete

procedure is summarized in Algorithm 1. Here Init(X,Y ) performs the initialization of

correspondences as described in Section 3.1. Bx and By are calculated by (3.22) following

the procedure in Section 3.2.3. Align(Bx, By,Wt) is the optimization (3.23) that finds

the joint feature in a low dimensional space using manifold alignment with a certain L

computed from (4.8). The function NN(F (x), F (y)) returns correspondences W based on

the best matches in the joint feature space, i.e., the nearest points in F (x) for each F
(y)
i

are set as the correspondences.
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Algorithm 1: Iterative Manifold Alignment using RANSAC

Input: X and Y : two datasets

Output:

F (x) and F (y): the embedding features of X and Y in low dimensional space.

W : the correspondence Matrix

1 begin

2 t← 0 ;

3 W0 ← Init(X,Y ) (Section 3.1);

4 Bx ← SxΘxΘT
xS

T
x ;

5 By ← SyΘyΘ
T
y S

T
y (Section 3.2.3);

6 repeat

7 F (x), F (y) ← Align(Bx, By,Wt);

8 Wt+1 ← NN(F (x), F (y));

9 t← t+ 1 ;

10 until Jt − Jt−1 < ε;

11 W ←Wt

12 end

3.3 Linear Manifold Alignment

In Section 3.2, we assume that the projection functions fx and fy are unknown. According

to this assumption, we can directly obtain the low dimensional representations F (x) and

F (y). However we cannot easily project the low dimensional representation back to the

original high dimensional space. Actually if we assume the projection is a linear one, we

can obtain the projection matrix, that is F (x) = P Tx X and F (y) = P Ty Y , and

F = P TZ =

[
Px

Py

][
X 0

0 Y

]
(3.25)

Next we can just slightly modify the optimization process (3.23) to obtain the projection

P :

arg min
P
J = arg min

P
tr(P TZLZTP )

s.t. P TZZTP = I . (3.26)

It can be seen that, this is still a general eigenvalue problem, and P can be computed as

the eigenvectors corresponding to the smallest eigenvalues of ZLZ.

Normally, we apply linear manifold alignment in the final step after the whole iterative

process and the optimal matches are obtained. The main advance for linear mapping
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Figure 3.3: Matching accuracy with different values of k in the initial correspondence

estimation.

is that we can transfer information between manifolds. We can project samples from

original space, find correspondence in another manifold and project it back. However,

linear manifold alignment will have larger error than the original nonlinear version.

3.4 Experiments and Discussion

Several experiments are conducted to demonstrate the effectiveness of the proposed man-

ifold alignment. The datasets we used include protein bioinformatics data Wang and

Mahadevan (2009b), face images with pose variations, and Kinect camera data compris-

ing RGB and depth images. Wang and Mahadevan (2009b) apply to those datasets for

performance comparisons. For the third dataset, the results of the proposed method are

also compared with the ground truth provided inherently by Kinect i.e. the RGB images

and depth images have a one-to-one correspondence.

3.4.1 Protein Data

Protein structure estimation is an important step in Nuclear Magnetic Resonance (N-

MR). The structure is estimated from partial pairwise distances with some constraints

and human experience Wang and Mahadevan (2009b). Models related to the same pro-
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Figure 3.4: Alignment of protein structures using Wang and Mahadevan (2009b) method

(top row) and the proposed method (lower row) shown in 3D, 2D, and 1D space.

tein usually have similar structure to each other but are not exactly the same. Wang

and Mahadevan (2009b) test their manifold alignment algorithm using protein data. For

comparison, we apply the proposed method to the same database acquired from RCSB

protein Data Bank Berman et al. (2000). The first, 10th and 21st structures of Glutare-

doxin protein PDB-1G7O are picked for testing similar to the setup used by Wang and

Mahadevan (2009b). Each protein molecule has 215 amino acids, which are represent-

ed as 3D points. In this experiment, we directly align two protein structures without

dimensionality reduction.

The choice of k-neighbors determines the local area used for matching. We use the inter-

secting set of correspondences for k and k + 1 neighbors. Figure 3.3 shows the matching

accuracy with different k values. We can see that the accuracy is not sensitive to the value

of k. However, the larger the value of k, the more number of features need to be calculated.

Approximately setting k at 5% to 10% of the total number of samples is usually sufficient.

In this experiment, we set k = 10 given the total number of 215 samples. The 3D, 2D, and

1D aligned protein structures are illustrated in Figure 3.4. It can be clearly seen that our

method achieves more accurate alignment compared to Wang and Mahadevan (2009b).

3.4.2 FacePix Dataset

The FacePix database Little et al. (2005) consists of face images of 40 subjects with

pose variations in yaw. For each subject, there are 181 images representing yaw angles
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Figure 3.5: Alignment results for subject 10 and subject 11 in the FacePix database. The

first row are selected images (with 10 degrees pose increment) from the reference image

set (subject 10). The second row are the corresponding images for subject 11 found by

Wang and Mahadevan’s method Wang and Mahadevan (2009b) and the last row are the

corresponding images of subject 11 found after the proposed manifold alignment. Note

that our method finds better visually correct corresponding poses.

form −90◦ to +90◦ at 1 degree increments. Therefore, each subject has an underlying

manifold of pose variations. The images are downsampled from 128 × 128 to 32 × 32 in

this experiment. Five subjects (number 10 to 14) are chosen for testing manifold alignment

between them. During each alignment, a test subject’s images (manifold) are aligned with

that of a reference subject with different identity. The nearest images, in the embedded

manifold space, of the two subjects are then taken as the corresponding poses. Figure 4.8

compares alignment results of our method to Wang and Mahadevan’s method Wang and

Mahadevan (2009b). We can see that our method performs better visual alignment of the

poses. Moreover, the proposed method obtains a more meaningful aligned joint manifold as

shown in Figure 3.6b compared to Wang and Mahadevan’s method Wang and Mahadevan

(2009b) (see Figure 3.6a).

To quantify the accuracy of the proposed manifold alignment, we plot the cumulative

percentage of correct poses versus the pose error. More precisely, a match is considered

correct if it falls within ±r degrees pose error. Figure 3.7 compares the alignment accuracy

of the proposed method with Wang and Mahadevan’s method Wang and Mahadevan

(2009b). Note that our method achieves significantly higher accuracy.

3.4.3 Kinect Data

The proposed manifold alignment is also tested on a dataset obtained with the Kinect

sensor. Kinect simultaneously captures color (RGB) images and Depth (D) images with
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Figure 3.6: Alignment of FacePix images of different subjects using (a) Wang and Ma-

hadevan (2009b) and (b) the proposed method.(c)
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Figure 3.8: The alignment of color image and depth data from Kinect. The depth data is

set as reference set , and color image is matched to depth data using the proposed method.

inherent correspondences which is used as ground truth. The two kinds of data (RGB and

Depth) are totally different but represent the same scene. RGB-D video data is recorded

in an office environment with a moving Kinect camera and the RGB and depth images

are resized to 60 × 80. The depth dataset is set as the reference and the colour images

are aligned to them using the proposed method. In this experiment, the parameter for

the nonlinear dimensionality reduction is set to kn = 10 and in correspondence estimation

k is set to 15. It should be emphasized here that manifold alignment is now performed

on completely different datasets since RGB represents the reflectance of the scene and

depth represents the shape of the scene. The alignment results are compared against the

ground truth. Some sample aligned frames are shown in Figure 3.8. Given the challenging

nature of this alignment problem, highly satisfactory results have been achieved by the

proposed method with only minor visual differences. Figure 3.9 demonstrates the quan-

titative accuracy of the proposed method on Kinect data. As can be seen, the proposed

approach can achieve the matching accuracy exceeds 95%, when tolerance time equals to

300ms. Figure 3.10a and Figure 3.10b show the alignments after one iteration and after 10

iterations. It is clear that the iterative process significantly improves the final alignment.

3.4.4 Computational Time Cost

Table 3.1 lists the time required for the alignment of two manifolds from the three dataset-

s. Timing is reported for Matlab implementations on a 3.2GHz machine with 4GB RAM.

Notice that the proposed method outperforms Wang and Mahadevan’s method by a sig-

nificant margin.
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Figure 3.9: Cumulative accuracy for RGB image to Depth image alignment with respect

to time.

Table 3.1: Alignment time comparison using a Matlab implementation on a 3.2GHz ma-

chine with 4GB RAM.

Database Dim.
# of Times (sec)

samples Wang and Mahadevan (2009b) proposed

Protein 3 215 581 23

FacePix 1024 181 439 7

Kinect 4800*(3+1)(RGB+Depth) 300 523 15
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Figure 3.10: The joint manifolds of Kinect Data in different period of iteration. After

iterations, the alignment results are perform better.
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3.5 Chapter Summary

This chapter first reviews the main idea of manifold alignment and some related algo-

rithms. Then we propose a novel method for unsupervised manifold alignment. Using

feature histograms for characterizing the local manifold geometry and a robust matching

algorithm, accurate correspondences are estimated between two manifolds. These initial

correspondences are refined under an iterative optimization framework under manifold

structure preserving constraints. A joint manifold is achieved with this algorithm. The

proposed manifold alignment algorithm was applied to three different types of datasets

and achieved significantly superior results when compared to existing state-of-the-art al-

gorithms. The common assumption that the reference set is a complete set that must

include all the variations of testing sets is followed here.

In the next chapter, an approach is proposed to remove the assumption that the reference

set is necessary to be complete. It can achieve better alignment accuracy and more freedom

of applicability. The main idea is still following the criteria of manifold alignment with

some improvement of correspondence modeling.
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Chapter 4

Robust Image Set Manifold

Alignment

In Chapter 3, we discussed the manifold alignment technique using RANSAC and iterative

binary optimization. Similar to Wang and Mahadevan (2009b); Cui et al. (2012), all these

approaches aim to formulate the correspondence and embedding into feature space as a

single optimization problem. Due to the non-convex nature of the optimization function,

it is iteratively solved by first initializing with some rough correspondences, for example,

using prior knowledge. All of these methods directly use a binary matrix to model the

correspondence matrix and they are sensitive to the initial binary correspondences. The

two step alignment structure is hard to integrate the third criteria into a single objective

function. To convert the numerical feature similarity to the initial binary matrix will also

lose some useful information about the correspondence. On the other hand, in Chapter 3

and previous works of manifold alignment Cui et al. (2012); Pei et al. (2012), there is a

critical assumption that all of test data has a correspondence in reference set. That means

the reference set should be a complete set including all variations appeared in query set.

To overcome these two limitations, we further improve the manifold alignment in this

chapter using the Softassign technique.

In this chapter we aim to remove the tight constraint, and allow the correspondence to

exist for part of both datasets. The advantages in this chapter are summarized as follows:

• We do not need to estimate an initial correspondence. Also a more elegant way to

use features is proposed and can simplify the whole procedure by avoiding usage of

Sample Consensus method.

• Initial correspondence assumption in last chapter is removed.

• Higher alignment accuracy is achieved comparing to the state of the art methods.

In detail, the technique contributions are summarized. An initial feature matching is au-

tomatically established based on the local structures of the manifolds that are invariant
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to transformations and robust to sampling. A local reconstruction constraint is imposed

to preserve intra-manifold structures. To remove the constraint on the correspondence

assumption, we model an extended correspondence matrix with extra space to handle

non-correspondence data. This matrix is employed to measure the inter-manifold dis-

tance, which is supposed to be minimized. An iterative optimization is employed to refine

the alignment. Additionally, a joint manifold structure with a correspondence matrix is

learned which is useful for further information transfer between the datasets. The effec-

tiveness of the proposed algorithm is demonstrated on facial images of different subjects.

Comparison with the manifold alignment proposed by Wang and Mahadevan (2009b) and

method in Chapter 3 shows this method is more accurate.

4.1 Local Shape Descriptors

For unsupervised manifold alignment, there is no prior information on correspondences.

It is only possible to estimate relationship between manifolds based on structure and

certain feature similarities in manifolds. One straightforward way is to directly match

their features in the original space. However, this is very hard if the two datasets are

from different sources or their dimensions are not equal. An alternate way is to find the

similarity between the local structures of the two manifolds. In this section, we analyze the

Local Histogram Feature proposed in Section 3.1.1, discuss how to simplify and improve the

features, and further improve the procedure for accurate alignment. A manifold learning

step is required to project data down to a feature space before feature extraction in the

last chapter. Actually this feature can be directly applied on the original data, if the

dataset contains the same type of data.

4.1.1 Improved Local Histogram Feature

The main idea of Local Histogram Feature is to represent the manifold structure and define

features based on measurements that can encode its neighborhood’s geometric properties.

Now consider a point pi in Px. As shown in Figure 4.1, all of its k-neighbors pik in

the Euclidean space are selected and organized in Ri = [pi, p
i
1, · · · , pik], termed as the

k-neighbors. The normal vector ni at point pi can be approximated by the normal of

the best fit plane to k-neighbors using PCA. It is obtained by selecting the eigenvector

corresponding to the smallest eigenvalue.

39



Pi

Figure 4.1: Example of a query point pi and its neighbors. The query point and its

neighbors are fully connected in three different levels.

For each pair of points ps and pt in the k-neighbors R of a point p, and their corresponding

normals ns and nt (calculated from their respective k-neighbors Rs and Rt), we define a

unit difference vector between them:

v =
pt − ps
‖pt − ps‖

. (4.1)

Similarly, we can define some angular features for a pair as

f1 = max(nt · ns,−nt · ns) (4.2)

f2 = | arccos(max(nt · v,−nt · v))

− arccos(max(ns · v,−ns · v))| (4.3)

f3 = ‖pt − ps‖ (4.4)

In Section 3.1.1, besides the three mentioned features, there is another feature representing

the angles between ns and nt. Since such operation has used the cross product of vectors, in

such case data needs to project into a 3D feature space before feature extraction. Moreover,

since such features have a similar function with f1 and f2, its exclusion in this chapter

would cause no significant performance decrease in terms of alignment performance. More

importantly, removal of this feature can simplify the operation.
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The three features measure the curvature and the angles between the normals and the

different vectors. f1 is dot product between two unit vectors. They are in fact the cosine

of the angles between these vectors. The maximum operation is performed to select only

the acute angles. Similarly, f2 shows the difference of the two angles between the two

normals and f3 is the difference vector. We quantize each feature into two bins to make a

9 dimensional histogram of the curvature features. Since the features are based on mutual

angles, it can be proven that they are rotation invariant. Moreover, these features are still

comparable when we choose different values of k for the two manifolds.

4.1.2 Multi-scales

It can be seen in discussions from Section 4.1.1 that the three features are important to

describe local structures and the choice of the radius is important. Though we can use

the fixed radius sphere strategy to choose the k-neighbors for local features, it is somehow

hard to choose the best radius for extracted features. Take 3D objects for example, the

features for small corners show better discrimination with a small radius rather than with

a large radius, as these festers only have large gradient magnitude difference in a small

local area. While small local range cannot distinguish points on a nearly flat surface.

Therefore, a fixed radius for selecting neighborhood cannot suit for every case. In order to

guarantee the robustness and reliability of these features, we apply the multi-scale radius

to select features in our experiments. Three different radiuses are chosen, and each radius

generates a 9 dimensional histogram. Eventually, we combine all histograms into a 27

dimensional feature to build the initial correspondence matrix for iterative alignment.

4.2 Robust Manifold Alignment Approach

Based on the improved features in the last section, we start to design the robust man-

ifold alignment algorithm. With the extended row and column for the correspondence

matrix, we still need to formulate the objective function following the criteria of manifold

alignment. The key point is to convert this function into a solvable optimization problem.

In this section, the objective function is effectively solved using the Softassign technique.

Next we will describe the detail.

Given a reference dataset X = [x1, x2, . . . , xNx ] ∈ Rdx×Nx and a test dataset Y =

[y1, y2, . . . , yNy ] ∈ Rdy×Ny , where the columns xi and yi are the samples, dx and dy are

dimensions of datasets, and Nx and Ny are the number of samples in X and Y respectively.
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Figure 4.2: An example of the binary correspondence matrix. The inner sub-matrix defines

the correspondence. the extra row and column represent the possible outliers.

To measure the distance between two manifolds, a correspondence between their elements

should be established first. For such purpose, we can define an (Nx + 1) × (Ny + 1)

binary correspondence matrix Ŵ xy such that
∑Nx+1

i=1 Ŵ x,y
i,j = 1 for j ∈ 1, 2, · · · , Ny,∑Ny+1

j=1 Ŵ x,y
i,j = 1 for i ∈ 1, 2, · · · , Nx, and Ŵ x,y

i,j ∈ {0, 1}. The summation constraints

guarantee that each row and column of Ŵ (x,y) can contain the value 1 at only one loca-

tion. This means the correspondence is one to one for two elements between the two sets.

The extra (Nx + 1)th row and (Ny + 1)th column of Ŵ x,y makes the constraints always

being satisfied even if there exist outliers. An example of the correspondence matrix is

given in Figure 4.2. If some elements in the extra row and column are one that means

those elements are outliers with no correspondence in other set. The remaining Nx ×Ny

partial correspondence matrix are defined as W x,y. In comparison with the correspon-

dence matrix defined in Section 3.1, the extra row and column give the ability to handle

the outliers and missing correspondence.

4.2.1 The Energy Function

Assume that there are two projection functions fx and fy that map X,Y to F (x) ∈ Rd×Nx ,
and F (y) ∈ Rd×Ny respectively, in an intrinsic space with dimension d. Note that F (x)
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and F (y) are the low dimensional representations of X and Y , and elements xi and yi are

mapped to F
(x)
i and F

(y)
i respectively.

We now need to define an energy function for manifold alignment. As our aim is to find

projection functions fx and fy that can project the data into a joint low dimensional space

that corresponding data points of two manifolds are matched as closely as possible while a

reasonable number of points can be rejected as outliers. Follow the objective function (3.9)

we formulate a new energy function that with two more terms, which represent feature

matching cost and the outliers controller.

min
Wxy ,F

E(W xy, F ) = min
Wxy ,F

Nx∑
i=1

Ny∑
j=1
‖F (x)

i − F (y)
j ‖2W

xy
i,j

+λ1[JW (F (x)) + JW (F (y))]

+λ2tr(D
TW xy) + λ3|Ŵ xy|1 (4.5)

subject to ∑Nx+1
i=1 Ŵ x,y

i,j = 1, j ∈ 1, 2, · · · , Ny,∑Ny+1
j=1 Ŵ x,y

i,j = 1, i ∈ 1, 2, · · · , Nx,

W x,y
i,j ∈ {0, 1}.

The first term represents the distance between two manifolds in the low dimensional space

which is already explained in Section 3.2.2. The second term represents the reconstruction

error of the locally generated models for each dataset, which is already defined in Section

3.2.3. The third term is the feature matching cost depending on D. If two points are

corresponded, there is only one 1 appears in middle part of W ; If two points are mis-

aligned, there are two 1 in extra row and column respectively. The last term is the

controller term preventing rejection of too many points as outliers. The parameters λ1, λ2

and λ3 are weightings which are used to balance these terms. The following subsections

provide more details.

4.2.1.1 Feature Matching Error

In order to measure the reliability of correspondences in term of feature matching criteria,

we introduce the third term of (4.5) as the feature matching cost. Unlike the first term

which just aims to keep two manifold close, this term constraints the matching with limited

effort. If the two manifold are properly aligned, the structure feature of corresponding

points should be similar. This term is manage to minimize the sum of feature distance.

This is another improvement to obtain the robustness. Usually, the feature distance matrix
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D is used on the features defined in Section 4.1. Of course, other features can be imported

into this optimization. More than one feature can be easily combined together by using

different weightings on each feature, i.e.,

D = θ1D1 + θ2D2 + ...+ θnDn

For face images the specific features are discussed in Experiment Section 4.4.4.

4.3 Efficient Alignment Algorithm

In Section 4.2.1, we defined the problem clearly and now we need to develop an efficient

algorithm to solve it. One can see that the alignment objective function in (4.5) consists

of two alternative optimization problems: a linear assignment discrete problem on the

correspondence W xy and a least-squares problem on the low dimensional features F x

and F y. Both problems are solvable when we consider them separately. However, their

combination makes the nonlinear manifold alignment problem difficult. To solve the whole

problem, it is natural to take an alternating algorithm approach.

At each step of the alternating approach, solving the binary one-to-one correspondences is

very complex (which is NP-Complete). Consequently, we adopt the softassign Rangarajan

et al. (1997) technique here and relax the binary correspondence Ŵ xy to be a continuous

valued matrix in an interval, while still keeping the row and column summation constraints.

From an optimization point of view, this fuzziness makes the energy function easier to

solve because the correspondences in relaxed form are able to improve gradually and

continuously during the optimization process without jumping around the binary points.

Deterministic Annealing Rose (1998) is another useful technique for combinational op-

timization problem, by adding an entropy term β
∑Nx

i=1

∑Ny
j=1wij logwij in (4.5). The

parameter β acts as the temperature and models some thermal agitation. The higher

temperatures, the entropy term would force the correspondence to be more fuzzy.

In consideration of these techniques, we then transform the original binary problem (4.5)

into the problem of minimizing the following fuzzy energy function:

E(W,F ) =
Nx∑
i=1

Ny∑
j=1
‖F (x)

i − F (y)
j ‖2W

xy
i,j + λ1[JW (F (x)) + JW (F (y))]

+λ2tr(D
TW xy) + λ3|W xy|1 + β

Nx∑
i=1

Ny∑
j=1

wij logwij (4.6)
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where wij still satisfies
∑Nx+1

i=1 Ŵ
(x,y)
i,j = 1, j ∈ {1, 2, · · · , Ny} and

∑Ny+1
j=1 Ŵ

(x,y)
i,j = 1, i ∈

{1, 2, · · · , Nx}, but wij ∈ [0, 1]. The parameter λ1 weighs the reconstruct cost for each

manifold, and can be seen as the deformation of manifolds. The parameter λ2 balances

the prior feature and the alignment cost between manifolds. The parameter β controls the

fuzziness of the correspondence matrix. When β reaches zero, the fuzzy correspondence

Ŵ xy becomes binary.

4.3.1 Feature Updates

Following the above discussion, we start discussing about the two subproblems. The first

subproblem updates the low dimensional feature F when we fix the correspondence W xy.

To build the subproblem, the terms independent on F are dropped. Now the function can

be formulated as

arg min
F
J = arg min

F
tr(FLF T )

s.t. FF T = I . (4.7)

Keep in mind that we impose the unit variance FF T = I constraint to guarantee a unique

solution. It follows that F can be computed as the eigenvectors corresponding to the

second to (d+ 1)th smallest eigenvalues of the sparse matrix

L =

(
Bx + Ωx −W xy

−W yx By + Ωy

)
(4.8)

where the Bx and By are defined as the reconstruction term in (3.22). Ωx and Ωy are

diagonal matrix derived from (3.10).

4.3.2 Correspondence Updates

After estimating the aligned manifold F , The second subproblem is to update the corre-

spondence matrix W xy. To solve it, we apply the Deterministic Annealing technique and

the update strategy is chosen as follows:

wij =
1

β
e
−
‖F (x)
i
−F (y)

j
‖2+λ2D

2
ij−λ3

2β (4.9)
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Algorithm 2: Robust Manifold Alignment Algorithm using Softassign

Input: X and Y : two datasets

Output:

F (x) and F (y): the embedding features of X and Y in low dimensional space.

W : the correspondence Matrix

1 W0 ← Init(X,Y );

2 begin

3 repeat

4 Update the Feature F using (4.7). Update the correspondence matrix W using

(4.9).

5 repeat

6 Normalize W using (4.10) and (4.11).

7 until W converge;

8 until E(W,F ) converge;

9 Decrease β and λ.

10 end

for the points i = 1, 2, · · · , Nx and j = 1, 2, · · · , Ny. We run iterative row and column

normalization to make sure the sum constraints are satisfied:

wij =
wij∑Nx+1

i=1 wij
, j = 1, 2, · · · , Ny, (4.10)

wij =
wij∑Ny+1

j=1 wij
, i = 1, 2, · · · , Nx. (4.11)

When the temperature parameter β approaches zero, the distances between different wij

are increasing. The iterative normalization (4.10) and (4.11) will bring the sparseness into

the correspondence matrix W xy with temperature decreasing.

4.3.3 Robust Manifold Alignment Algorithm

After previous discussion, we can summarize and present Algorithm 2. First, the initial

W0 is obtained from defined feature from Section 4.1. Each element W 0
ij indicates the

feature distance between of Xi and Yj . In iterative alignment, the whole update process is

controlled by the temperature parameter β. According to a linear annealing schedule, we

update β using a certain annealing rate r that is βnew = βold ·r. The higher temperature in

the beginning makes the correspondence fuzzy, so that the alignment is roughly matching

the overall structure. When temperature decrease closes to zero the correspondence matrix

will converge to binary, that can been seen as a refinement of the previous alignment in high
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Figure 4.3: Alignment of protein structures using Wang and Mahadevan’s method Wang

and Mahadevan (2009b) (top row) and the proposed method (lower row) shown in 3D,

2D, and 1D space.

temperature. Large value of λ will limit the range of deformation of manifold structure.

Similarly, we apply annealing scheme on λ. The basic idea is that more global and rigid

alignment should be done first and then refine the local accuracy.

4.4 Experiments and Discussion

In this section, several experiments are conducted to demonstrate the effectiveness of the

proposed manifold alignment. The datasets are used including protein bioinformatics data

Wang and Mahadevan (2009b), 3D face data and face images with different variations.

Wang and Mahadevan’s method Wang and Mahadevan (2009b) and our previous work

Manifold Alignment using RANSAC in Chapter 3 are applied to these datasets for per-

formance comparisons. For face image datasets, the results of the proposed method are

compared with the ground truth.
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(a) visualization for Correspondence matrix of Protein alignment result.

(b) visualization for Correspondence matrix of Protein alignment with missing alignment. the

green area is the outliers indicator in the extend row.

Figure 4.4: The Correspondence matrix of Protein alignment. a) result for fully matched

alignment. b) incomplete reference set.

48



Figure 4.5: Alignment of protein structures with the missing aligned part.

4.4.1 Protein Data

Protein structure has been used for a simple test in Section 3.4.1. The experiment set-

up is same as previous one. We apply the robust manifold alignment method to the

database acquired from RCSB protein Data Bank Berman et al. (2000). The first, 10th

and 21st structures of Glutaredoxin protein PDB-1G7O are picked for testing. Each pro-

tein molecule has 215 amino acids, which is represented as 3D points.

A correspondence matrix of two proteins’s alignment result is shown in Figure 4.4a. Ac-

tually, 100% matching accuracy is achieved in this alignment with 90.7% accuracy initial

direct feature matching. The 3D, 2D, and 1D aligned protein structures are illustrated

in Figure 4.3. It can be seen clearly that our method achieves more accurate alignments

compared to Wang and Mahadevan (2009b). Comparing to result in Section 3.4.1 our two

methods can achieve 100% accuracy rate.

To show the ability to handle outliers, we remove 15 amino acids in reference set. Then

some part of these two proteins will be misaligned, and our method can identify this part.

The alignment result is shown in Figure 4.5. We can easily find the outliers between two

proteins from the correspondence matrix (shown in Figure 4.4b).
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4.4.2 BU-3DFE Face Data

In this section, we select first five subjects to build ten pairs of sets from BU-3DFE

database Yin et al. (2008). This data is used to verify the effectiveness of the proposed

manifold alignment method on the high dimensional data with low dimensional structure.

Each face data is downsized by sampling the number of points to 20 percent of the total

points, in order to reduce the computational time and memory consuming in the experi-

ment. The selected 3D face points clouds are rotated to random directions and projected

into 20 dimension space using two random projection matrix. In addition, some noises

are added into the high dimensional data (20 dimension). This pre-processing aims to

simulate the conditions that two data cannot align directly and need to be aligned in a

low dimension space. ICP Besl and McKay (1992) have no capability to apply dimensional

reduction and registration simultaneously. ICP is applied on original 3D face data as a

reference of 3D registration result in Figure 4.7a. The two data are in different space, but

have similar intrinsic structure (3D face). Our manifold alignment technique can handle

this non-comparable data. One example of aligned results of our proposed method is

shown in Figure 4.7b. We quantify the align accuracy results in Table 4.1 using the nor-

malized leat-square Euclidean distance between the nearest correspondent points. Since

the transformation of our method is not rigid, our method can achieve better quantity

result even the task is harder in comparison with ICP.

Table 4.1: Normalized least-square distance between nearest neighbor between two aligned

models.

Methods ICP The proposed approach

Normalized least-square distance 102.86 43.66

4.4.3 FacePix Database

The FacePix database Little et al. (2005) consists of face images of 40 subjects with pose

variations in yaw. Its small part has been used in Section 3.4.2. We use all the 40 subjects

in this experiment. For each subject, there are 181 images representing yaw angles from

−90◦ to +90◦ at 1 degree increments. Therefore, each subject has an underlying mani-

fold of pose variations. The images are downsampled from 128 × 128 to 32 × 32 in this

experiment. 200 pairs of sets are randomly chosen for testing manifold alignment between

them. During each alignment, the image in testing set is aligned with a reference set with

different identities. Figure 4.8 compares alignment results of our method to Wang and

50



Figure 4.6: Example from BU-3DFE database.
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(a) Aligned result using ICP

(b) Aligned result using Algorithm 1

Figure 4.7: Comparison of aligned methods on a pair of 3D face.
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Figure 4.8: Alignment results for subject 10 and subject 11 in the FacePix database. The

first row are selected images (with 10 degrees pose increment) from the reference image

set (subject 10). The last row are the corresponding images of subject 11 found after the

proposed manifold alignment. Note that the MA-S method finds better visually correct

corresponding poses.
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Mahadevan (2009b). We also compare to the matching method Manifold Alignment using

RANSAC (MA-R) in Chapter 3, HoG feature (DM-HoG) Dalal and Triggs (2005) and

Canonical Correlation Analysis (DM-CC) Kim et al. (2007). HoG and Canonical Corre-

lation feature are often used for pose estimation Huang et al. (2011). In this experiment,

directly matching using these two features is used for comparison.We can see that our

method achieves better visual alignment of the poses. Moreover, the proposed method

obtains a more meaningful aligned joint manifold as shown in Figure 4.9b compared to

Wang and Mahadevan (2009b) (see Figure 4.9a).

To quantify the accuracy of the proposed manifold alignment, we plot the cumulative

percentage of correct poses versus the pose error. More precisely, a match is considered

correct if it falls within ±r degrees pose error. Figure 4.10 compares the alignment ac-

curacy of the proposed method with Wang’s method Wang and Mahadevan (2009b) and

MA-R method. Note that our method achieves significantly higher accuracy.
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Figure 4.9: Alignment of FacePix images of different subjects using (a) Wang and Mahade-

van’s method Wang and Mahadevan (2009b) and (b) the proposed method.(c) Accuracy

curve for the average pose accuracy of aligning C5
2 pairs of image sets.
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(a) Result for Wang & MahadevanWang and Mahadevan (2009b)
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(b) Manifold Alignment using Softassign (MA-S)
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Figure 4.10: Alignment accuracy on FacePix Database
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Figure 4.11: Alignment results for subject 10 and subject 12 in the multipie database.

The first row are random selected images from the reference image set (subject 10). The

second row are the corresponding images for subject 12 found by Wang and Mahadevan’s

method Wang and Mahadevan (2009b) and the third row are the corresponding images of

subject 12 found after the proposed manifold alignment. The last row is the ground truth

image has same lighting and pose condition. Note that our method finds better visually

correct corresponding poses.
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4.4.4 Multi-PIE Database

In Multi-PIE dataset in Gross et al. (2010), 300 images are captured for each subject under

15 view points and 20 illumination conditions. These images are cropped and resampled

to 40×40 pixels for computational convenience. We demonstrate two experiments on this

database in a more complicated situation with variations of illumination and pose. In

first experiment, We randomly collect 200 pairs of subjects and use the entire 300 images

to evaluate our method. For each pair of sets, the variation of two sets are same, i.e.,

the testing set is covered by the reference set. We compare the matching performance

using HoG feature (DM-HoG) Dalal and Triggs (2005), Canonical Correlation Analysis

(DM-CC) Kim et al. (2007), Manifold Alignment using RANSAC (MA-R) and Wang and

Mahadevan (2009b). Due to Multi-PIE database include different type of variations, the

structure feature is not enough for the alignment. The HoG feature are imported into the

feature matching error in Section 4.2.1.1. We can see that our method achieves better visu-

al alignment in Figure 4.11. Moreover, the proposed method obtains a meaningful aligned

joint manifold and nearly binary correspondence matrix result as show in Figure 4.14. In

Multi-PIE database, the interval of different pose is 15 degrees. To quantify the accuracy

of the proposed manifold alignment, we present the percentage of correct poses versus

the pose error in Table 4.2. Note that our method achieves significantly higher accuracy.

Since this database has larger gap between poses and the lighting changes are included in

dataset, the test results are lower than FacePix database.

In the second experiment, we use the same 200 pairs of image sets. However, we only

randomly select 240 out of 300 images to build incomplete reference set. In this case, the

testing set has larger range of variation than the reference set, and some samples in the

testing set should be misaligned. Figure 4.12b is an example of obtained corresponding

matrix of aligning a testing set (300 images) to a reference set (240 images). The ex-

tended row is enhanced for better visualization. Only our method can detect the outliers

during the alignment process. The comparison of joint manifold structure between two

experiments in Figure 4.14 shows that the incomplete reference set have no negative effect

on our method. The experiment results in Table 4.3 show our method achieved the best

alignment accuracy. Although the alignment performance is lower than that in the first

experiment, 78.8% of outliers are detected. That means if we only consider the aligned

samples, our method can still achieve the accuracy of 76.19%. Discovering outliers is a

very useful feature and an important advantage of our approach. As outliers can be further

processed in other step this can be our further improvement.
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Figure 4.12: A example of Corresponding Matrix for results for Multi-PIE database.
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(a) Correspondence matrix result for complete reference set case.

(b) Correspondence matrix result for incomplete reference set case. We enhance

the extend row to show the misaligned samples. Only our proposed method

has the capability to detect the outliers.
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Table 4.2: The pose alignment accuracy (%) of MultiPIE database via different methods

for complete reference set

Method DM-CC DM-HoG Wang and Mahadevan (2009b) MA-R MA-S

Accuracy 58.19 65.62 32.96 70.14 75.45

Table 4.3: The pose alignment accuracy (%) of MultiPIE database via different methods

for incomplete reference set (with outliers). The number between brackets is the accuracy

after removing outliers.

Method DM-CC DM-HoG Wang and Mahadevan (2009b) MA-R MA-S

Accuracy 53.26 58.25 24.58 56.75 64.18 (76.19)
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Figure 4.13: Visualization of aligned joint manifold of MulitPIE images of different sub-

jects using Wang and Mahadevan (2009b) Wang and Mahadevan (2009b)
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Figure 4.14: Visualization of aligned joint manifold of MulitPIE images of different subject-

s using the proposed method in (a) complete reference set case. (b) incomplete reference

set case. Our method can achieve similar result in different corresponding conditions.
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(a) Result for Manifold Alignment using Softassign (MA-S) using complete

reference set
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4.5 Chapter Summary

In this Chapter, we proposed a novel unsupervised method for robust manifold alignment.

We improved the Local Histogram Features for characterizing the local manifold geome-

try and then developed a robust matching algorithm, in which accurate correspondences

are estimated between two manifolds. These extracted features are set as initials of an

iterative optimization framework under manifold structure preserving constraints. A joint

manifold and a correspondence matrix are approximated within this framework. The main

advantages are improvement of the features and removal of the assumption for reference

set, which work together in a more elegant way to handle manifold alignment problem.

The proposed manifold alignment algorithm was applied to four different datasets and

has achieved significantly superior results when compared to existing state-of-the-art ap-

proaches.

The techniques in Chapter 3 and 4 can be used for group pose estimation on face image

sets. In the next chapter, we will discuss normalize faces with different poses into the

standard frontal faces.
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Chapter 5

Face Normalization using

Gaussian Processes Regression

As discussed in Chapter 2, there are already some good solutions to the illumination and

expression variation problems, but pose variation remains the most challenging problem

for face recognition. Among many techniques dealing with pose issues in Section 2.3, we

adopt the 2D transformation method to handle this problem due to its simplicity and

effectiveness. The existing methods are mainly using the linear assumption with different

noise modeling. They cannot achieve satisfactory performance, when the pose difference

becomes large.

In this chapter, we propose a novel regression approach based on Gaussian Processes Re-

gression (GPR) technique. Unlike conventional linear regression method, the output of

GPR is a Gaussian distribution. The mean of distribution is used as output, and addi-

tionally the variance can include more information about the reliability of the regression

result. We choose a combined kernel function which can adaptively handle the linear and

nonlinear cases. For face recognition scenario, we first train the GPR models for different

poses with an aim to transforming one non-frontal pose image into a frontal view. When

an unknown image comes, we should estimate the pose and assign it to the corresponding

GPR model. In this chapter, a LDA based classifier is applied to find the most related 3

possible pose classes. Then we use the corresponding GPR models to predict the frontal

view distribution respectively. The joint distribution is also a Gaussian distribution which

is the product of the three output distributions. Face recognition is implemented on the

normalized faces. The effectiveness of the proposed method is demonstrated on Multi-PIE

databases Gross et al. (2010). Comparison with another regression based method Sparse

Representation-based Regression (SRR) Zhang et al. (2013) shows that our algorithm is

more accurate even when using a smaller size pre-training set. In this chapter we focus

on describing the technique itself, its usage in our FRIS system will be investigated in

Chapter 7.

The rest of the chapter is organized as follows. In Section 5.1, we introduce the Gaussian

Processes Regression technique. Then we present how to implement regression technique

62



for a face pose normalization problem in Section 5.2. Section 5.3 presents our experiments

and results emphasizing the power of the proposed method. Section 5.4 concludes this

chapter and briefly introduces the application in FRIS system.

5.1 Gaussian Processes Regression

In this section, we will briefly review the Gaussian Process Regression model for learning

a mapping. Regression aims to estimate the relationship between input (independent)

and output (dependent) variables. Rather than defining an exact function f in normal

regression techniques, we can assume f(x) as a collection of random variables.

5.1.1 Gaussian Process

The definition of a Gaussian process is “a collection of random variables, any finite number

of which have a joint Gaussian distribution.” see Rasmussen (2006). A real process f(x)

is following a Gaussian distribution which is specified by the mean function m(x) and

covariance function k(x, x′) as

m(x) = E[f(x)] (5.1)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (5.2)

and the Gaussian process can be written as

f(x) ∼ GP (m(x), k(x, x′)). (5.3)

That means for a given x the random variables represent the distribution of the function

f(x). Originally the Gaussian process is defined over time, that is, x in the formulation

represents time. In our case, x represents input data and the d dimensional face images

X = {x1, ..., xn} ∈ Rd are used as input. For finite high dimensional input data, the

output f follows a joint Gaussian distribution:

f ∼ N (0,K(X,X)) (5.4)

where K(X,X) is the n×n covariance matrix and can be calculated for specific covariance

function k(x, x′) , i.e., Kij = k(xi, xj). Usually, the mean function is set to be zero for

notational simplicity.
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5.1.2 Finding Hyperparameters

In this thesis, we adopt a widely used covariance function

k(xi, xj) = θ0exp(−
1

2
(xi − xj)>M(xi − xj)) + θ1x

>
i xj + θ2 (5.5)

where θ1 and θ2 are weight variances for each radial basis function and linear kernel,

M = diag(m1, ...,md) are parameters of length scales for different input dimension (in our

case they are for each pixel), θ2 is the model bias. Since this covariance function is the

combination of linear and Gaussian kernel, it has the capability to handle both linear and

non-linear data structures.

In practice, image noise should be considered. A white Gaussian noise ε with variance θ2
3

is used for this purpose. The covariance function becomes

k(xi, xj) = θ0exp(−
1

2
(xi − xj)>M(xi − xj)) + θ1x

>
i xj + θ2 + θ2

3εij (5.6)

where εij = 1 when i = j, otherwise εij = 0. Now we can formulate our problem as below.

With given training data set {X : f}, the hyperparameters Θ = {θ0,M, θ1, θ2, θ3} can

be found by maximizing the following marginal likelihood via using the Scaled Conjugate

Gradient algorithm (SCG) Møller (1993).

log p(f |X) =
1

2
fTK(X,X)−1f − 1

2
log |K(X,X)| − n

2
log 2π (5.7)

Generally, GPR models are designed for multi-input but only one output dimension, i.e.,

GPR is an univariate regression model. For our purpose, to have a d dimensional output,

we need to employ d GPR models for each output dimension. That means there are

d2 + 4d hyperparameters in one pose mapping function, which is far too complicated and

the whole model will overfit easily. To simplify the whole model, we assume that the

output dimensions (each pixel in image x) are a priori identically distributed Rasmussen

(2006). This allows us to employ the same d+ 4 hyperparameters for each output.

5.1.3 Regression

Given a test points x∗, it is not too hard to find the regressing results which are correspond-

ing to the conditional joint Gaussian prior distribution on the observations Rasmussen

(2006). We obtain the predictive mean and corresponding variance as follows:

f̄∗ = K(x∗, X)[K(X,X) + θ2
3I]−1f (5.8)

var(f∗) = K(x∗, x∗)−K(x∗, X)[K(X,X) + θ2
3I]−1K(X,x∗) (5.9)
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Figure 5.1: The process of normalize one face image without pose label. For each image,

we use 3 Gaussian Processes Regression model to do the normalization.

Since each dimension is assumed to be identically distributed, variances of each dimension

are the same as others.

5.2 Face Normalization

In this section, we propose a novel face normalization approach to assist in face recognition

with different poses. Firstly, we estimate the head pose using a rough pose classifier. Next

a face with different pose will be normalized into a frontal standard face using Gaussian

Processes Regression (GPR). Face recognition is then performed on the normalized front

pose faces with probability metric. These processes are described in detail in the following

sections and shown in Figure 5.1 with Algorithm 4.

Assuming we have the pre-training data X already labeled with P discrete poses which is

X = [X0, ..., Xk, ..., XP ]. For each pose k the data set Xk = [xk1, ..., x
k
Nk

] contains Nk im-

ages. We denote X0 to be the frontal pose, which we set as the regression target. Then we

organize the data into pairs as T = [{X1, X0}, ..., {Xk, X0}, ..., {XP , X0}] and each sub-

set T k = [{xk1, x0
1}, ..., {xkNk , x

0
Nk
}], where we put the side face images with corresponding

frontal face with the same identity.
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Algorithm 3: LDA based Pose Estimation Algorithm

Input: Face image x∗ in an unknown pose

Output: 3 possible facial pose label l1, l2, l3

1 Find LDA projection matrix W using grouped training data X1, ..., XP .

2 Project X1, ..., XP and x∗ into LDA feature space.

y∗ = W Tx∗

Y k = W TXk

3 Calculate mean vector µk = 1
Nk

∑
(Xk) and the covariance matrix Σk of each pose set.

4 Compute the Mahalanobis distance

dk(y∗) =
√

(y∗ − µk)T (Σk)−1(y∗ − µk)

and choose the 3 smallest pose set as the output.

5.2.1 Training GPR model for Pose Normalization

The most straightforward idea to solve the cross-pose problem is to learn one single GPR

model for all P pose pairs T at once. However, the size of the covariance matrix K(X,X)

in the learning stage is unreasonably huge due to the oversize training samples. A practical

way is to learn one GPR model GP k for each pose pair T k independently. More specifically,

each GP k is defined by its hyperparameters Θk and achieved by solving the optimization

derived from (5.7) as follow:

arg max
Θk

log p(X0|Xk) (5.10)

This strategy means that each GPR model only has the ability to handle small range

of poses, but each model has limited data size and are easily solved. Thus, the pose

estimation is required to assign an unknown input into the corresponding GPR models

first. Next we will solve this problem.

5.2.2 Head Pose Estimation

Given input face image x∗ with an unknown head pose, our goal is to identify pose la-

bel of each image. Firstly images are projected to a low-dimensional LDA subspace,

and identify the pose label by using a normal density metric. The estimated distance

of data x being in pose k is given by computing the Mahalanobis distance dk(x) =√
(x− µk)T (Σk)−1(x− µk), where µk is the center of the projected Xk and Σk is the
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Algorithm 4: Gaussian Processes Regression based Cross-Pose Face Recognition Algo-

rithm
Input: Face image x∗ in an unknown pose

Output: Facial identity label (l)

1 Apply the pose estimation (Section 5.2.2) to obtain pose label l1, l2, l3.

2 Normalize x∗ to frontal estimation m1,m2,m3 using corresponding GPR model

GP l1 , GP l2 , GP l3 .

3 Synthesis the joint final output m∗ using (5.12)

4 Face recognition classification with the normalized frontal pose.

covariance of pose k. LDA is used since it is a simple linear transformation which can

preserve the pose variations while reducing the impact of other variations. Although this

simple pre-process only gives a rough pose label to the test data, the uncertainty of pose

estimation can be predicted through the GPR’s output covariance. In order to improve

pose prediction accuracy, we chose the top 3 likely poses l1, l2, l3 for the next step, since

the correct pose estimation is normally lied within this range.

5.2.3 Pose Normalization

With 3 pose labels, one test face image x∗ can be transformed to the frontal view through

three corresponding GPR models GP l1 , GP l2 , GP l3 . Applying (5.8) and (5.9) we can

obtain the output of three mean vectors m1,m2,m3 and the variances v1, v2, v3. The

product of these three Gaussian distributions is still a Gaussian distribution which can

represent the synthetic frontal image. The mean m∗ and the variance v∗ of final joint

distribution can be computed as follows:

v∗ =

(
3∑
i=1

v−1
i

)−1

(5.11)

m∗ =

[
3∑
i=1

mi

vi

]
v∗ (5.12)

Then m∗ is the final estimation of the normalized frontal face.
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(a) Sample Images for different subjects

(b) 9 choosen camera views in MultiPIE database.

Figure 5.2: MultiPIE database.

5.3 Experiments

Several experiments are conducted to demonstrate the effectiveness of the proposed method.

The dataset we used is MultiPIE database containing multi-view face data with different

illumination and expression. In Multi-PIE dataset Gross et al. (2010), 300 images are

captured for each subject under 15 view points and 20 illumination conditions.

9 poses are chosen from 60◦ to −60◦ with 15◦ apart and 20 illumination conditions for each

pose (shown in Figure 5.2). Since we focus on cross-pose issue in this chapter, only the

neutral expression faces in MultiPIE database are used in experiments. These images are
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Table 5.1: Normalization error (RMSE of pixel difference) under different pose (smaller is

better)

Pose 15◦ 30◦ 45◦ 60◦ −15◦ −30◦ −45◦ −60◦

SRR 58.07 64.28 78.18 85.04 58.60 71.01 79.57 86.89

GPR 41.43 47.73 55.00 60.47 41.80 48.44 54.01 60.37

Table 5.2: Recognition rate(%) under different training size

subjects number 15◦ 30◦ 45◦ 60◦ −15◦ −30◦ −45◦ −60◦

50 92.1 75.7 58.5 36.95 92.65 75.05 65.15 37.55

100 94.7 80.6 59.35 46.65 94.15 79.95 69.25 49.8

150 95.4 86.5 68.45 48.4 96.65 85.3 74.65 52

200 97.4 91.7 72.45 55.2 96.8 87.9 76.6 61.9

cropped and re-sampled to 20×20 pixels for computational convenience. We compare the

proposed method with conventional pose-robust face recognition Sparse Representation

Regression (SRR) Zhang et al. (2013).

Following the experiment setup in Zhang et al. (2013), we select 300 subjects in all 4

sessions of multiPIE and split the data into three parts:

• Pre-training set: This set consists of images of the first 200 subjects with all 9 poses.

Each side pose is used jointly with a frontal face for dictionary learning in SRR

Zhang et al. (2013) and for training face normalized GPR models.

• Gallery set: The frontal faces of the remaining 100 subjects are assigned to be the

training set.

• probe set: Testing sets consists of the side faces of the remaining 100 subjects.

Note that the three parts have no overlap between each other. The aim of the experiments

is to evaluate face recognition in scenarios that testing and training images are in different

poses. The pre-training set is used for view-dictionary learning in Zhang et al. (2013) and

training Gaussian processes model to obtain hyperparameters. We set the dictionary size

as 800 which is the best performance size reported in Zhang et al. (2013).
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Figure 5.3: Comparison the results from different pose normalization methods. The first

row is the testing images from pose 15◦, 30◦, 45◦, 60◦. The third subject has a mustache.

The last subject wears glasses.
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Table 5.3: Recognition rate(%) using different classifier

Pose 15◦ 30◦ 45◦ 60◦ −15◦ −30◦ −45◦ −60◦

GPR+NN 97.4 91.7 72.45 55.2 96.8 87.9 76.6 61.9

GPR+SRC 97.25 82.85 65.35 43.3 98 76.05 57.2 40.35

GPR+PCA 98.4 94.45 82.25 69.85 98.8 93.95 86.25 66.1

GPR+LPP 98 94.6 81.55 63.5 99.8 92.8 85.1 67.95

GPR+LDA 99 95.05 87.5 64.9 100 96.95 91.45 68.35

Table 5.4: Recognition rate(%) under different pose

Pose 15◦ 30◦ 45◦ 60◦ −15◦ −30◦ −45◦ −60◦

SRR 89.1 69.5 44.2 27.7 88.7 67.35 45.8 31.45

GPR 97.4 91.7 72.45 55.2 96.8 87.9 76.6 61.9

GPR(without label) 95.5 87 70.4 30.3 94.6 85.2 70.3 35.2

5.3.1 Face Pose-normalization

In the first experiment, we present the normalization quality of different methods. The

Root Mean Squared Error (RMSE) between the normalized face and the ground truth

(Pose 0 in database with same lighting condition) is adopted as the criteria to measure

the difference between images. For convenience of comparison, we use the corresponding

GPR model to normalize face based on the known pose label for testing image. The

complete test will be provided in the next section.

As summarized in Table 5.1, the recognition errors using the normalized faces using the

proposed method compared with the ground truth are always smaller under all poses. In

general, the errors of all methods will become larger when pose differences increase. That

may be caused by the large missing part of the face when pose difference is rising.

Moreover, we present the pose-normalized results of 4 selected subjects from 4 different

poses in Fig. 5.3. The first two subjects are normal face with different light conditions;

the third subjects has mustache and the last one wears glasses. It can be seen that the

proposed GPR method can synthesize better visual frontal images than the SRR method,

which is more similar to the ground truth images. In details, for the first two simple cases,

the proposed GPR performs in a stable and robust manner when the pose difference are
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large, while the SRR method performs worse visually. In fact, when faces have little pose

difference, one may have a nearly linear mapping, but when the pose difference increases,

linear mapping cannot handle these large changes anymore. That may be the reason why

the proposed GPR can perform better. For people with glasses, both methods perform

worse than for cases without glasses, but the proposed GPR shows perceptibly better

visual results.

5.3.2 Pose Robust Face recognition

From above discussions, it is demonstrated that the proposed GPR approach can produce

better performance in pose normalization with regard to ground truth. In fact, the lower

error of pose normalization cannot guarantee the better accuracy rate on face recognition.

In this section, we evaluate two different methods for face recognition.

We divide the testing set into groups of different poses to evaluate the face recognition

performance. The pose differences indicate the degree of difficulty for face recognition. We

first present one experiment using different pre-training size to evaluate the generalization

ability of the proposed GPR model. We test face recognition performance on different

size of pre-training set and report it in Table 5.2. The recognition accuracy is reasonably

good even with a smallest training set size and the performance is increasing when the

pre-training set expands. We notice that the GPR model has achieved higher performance

than SRR even with just a quarter of pre-training samples used in SRR.

We also test the GPR with different classification methods and report its performances in

Table 5.3. The results show that this normalization method can well cooperate with most

of state of the art techniques and further improve the performance even to 100% in small

pose difference using LDA.

We finally compare the proposed GPR model with the state of the art algorithm SRR. We

conducted three experiments on SRR, and the proposed GPR with and without knowing

the pose labels for testing images, and the recognition results are shown in Table 5.4.

Note that the results of SRR are slightly lower than results report in Zhang et al. (2013),

since we double the size of the gallery set, thus the recognition difficulty is increased. The

proposed GPR method can achieve superb performances that are much higher than SRR.

It is just a slightly worse when comparing with the ideal case (with known pose labels).

This indicates that the GPR model can perfectly handle the unknown pose issue, which

is not possible for traditional regression methods in current literatures.
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5.4 Chapter Summary

In this chapter, a novel facial pose normalization approach is proposed based on Gaussian

Processes Regression. Technically, in the training phase, instead of learning one single

complete GPR model for the whole pre-training set, we train each pose subset separately

for each GPR model. In the testing phase, the probe faces are firstly assigned three

possible pose labels by a LDA based pose estimation. Three prediction distributions

are obtained by the corresponding GPR models and then these models are integrated

into a joint distribution, which can represent the final synthetic result. Experimental

results demonstrate the advantages of the proposed method in comparison with the SRR

method both in face pose normalization and face recognition. Next, the face normalization

technique will be tested on FRIS problem in Chapter 7.
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Chapter 6

FRIS using Margin Preserving

Projection

A state-of-the-art work Cevikalp and Triggs (2010) characterizes each image set as a

convex region and proposes a new metric for comparison of image sets, which is defined

as the minimum distance between points in convex sets. The experiments in Cevikalp

and Triggs (2010) show that this approach can achieve better performance than previous

works Hadid and Pietikainen (2004); Yamaguchi et al. (1998); Fan and Yeung (2006).

Technically, Cevikalp and Triggs (2010) mainly concerns how to measure the similarity

of two image sets, but pays less attention to discriminant learning with such similarity.

Further, the classification in Cevikalp and Triggs (2010) is done in original dataset without

dimensionality reduction. The main technique contribution of this chapter is that we use

the idea of dimensional reduction into the FRIS system to improve the performance. And

state the relations between SVM technique and convex hull distance in detail.

In this Chapter, a novel linear dimensionality reduction algorithm designed for convex

hull model is proposed. We intend to compute the convex hull distance by definition.

However, when two image sets are inseparable, direct computation is not suitable. In

this case, SVM is implemented to handle the problem. The margin obtained from SVM

is used to approximate the convex hull distance. Using PCA on directions derived from

SVM, one can find a subspace spanned by the dominant directions. Finally, classification is

implemented in the reduced feature space based on the convex hull distance. Comparing to

state-of-the-art methods, the proposed method achieve better results in terms of accuracy

and computational time.

6.1 Preliminaries

Let Nc be the number of classes and nc (c = 1, . . . , Nc) be the number of data samples

belonging to the cth class (
∑

c nc = N). The input data set Xc = {xck ∈ Rd, k = 1, . . . , nc}
is sampled from the cth class. The proposed method aims to perform dimensionality
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Figure 6.1: Two convex hulls and the distance between them.

reduction from the input space data points X ∈ Rd×N to a lower dimensional feature

space Z = [z1, . . . , zN ] ∈ Rm×N (m� d) for FRIS.

6.1.1 Convex Model

An intuitive idea for FRIS is to approximate each image set with a convex model Cevikalp

and Triggs (2010). For an unknown set we try to find its class label by using distance

between convex models of testing and training image sets. The label is assigned to the

training set which is closest to the testing set.

There are two major convex models, affine hull and convex hull. In the original pixel

space, the dimension of affine hulls is less than d, and this necessarily holds for nc � d.

The affine space is a subset of Rd. In low-dimension feature space, the affine hulls have

dimension nearly or exactly the same as the feature space dimension m. The comparability

for two sets will be lost, because the affine spaces of two image sets may easily overlap

even though they are separable. The restricted linear combination coefficients of a convex

hull make a tighter convex model and reduce the chance of overlap in low dimension space.

In this paper, we focus on the convex hull model where each image set is modeled by:

Hc = {x =

Nc∑
k=1

αkxck|
Nc∑
k=1

αk = 1, αk ≥ 0} (6.1)

Suppose we have two image sets Xi and Xj . As illustrated in Figure 6.1, the distance

between them is defined as the minimum distance between any point in convex hull Hi
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and any point in convex hull Hj :

dc(Xi, Xj) = D(Hi, Hj) = min
x∈Hi,y∈Hj

‖x− y‖ (6.2)

where Hi and Hj include Xi and Xj respectively. In fact, the distance can be computed

by solving the following optimization problem:

(α∗, β∗) = arg minα,β ‖Xiα−Xjβ‖2 (6.3)

s.t.
∑ni

k=1 αk =
∑nj

k′=1 βk′ = 1, αk, βk′ ≥ 0

For convenience, we denote the distance by

dc(Xi, Xj) = ‖Xiα
∗ −Xjβ

∗‖ (6.4)

This problem can be written more concisely in a constrained least square problem

min ‖Θγ‖2

where Θ =
(
Xi −Xj

)
and γ = ( αβ ). However, the constraints of (6.3) are not standard

and sometimes the solution is not unique. The possibility of solving (6.3) is under the

assumption that two image sets are linearly separable. If two image sets are not linearly

sparable, the defined distance will be zero. In this case, we propose to use SVM to find

the support vectors, which can be used to approximate the similarity between two image

sets.

6.1.2 Support Vector Machine Approximation

In an ideal case when two sets are linear separable, SVM aims to find a decision hyperplane

through maximizing its margin. When the optimization margin was found, it is actually

equal to the smallest distance between any samples between two sets Bishop (2006), which

is exactly the definition of convex hull distance. However in practice, soft margin SVM

((6.5)) is normally applied to avoid noises caused problem. Soft margin will enlarge the

distance comparing to the hard one, but will have the ability to handle the misgrouped

and noisy samples. Therefore, we use the soft margin to approximate the convex hull

distance in this Chapter. Suppose we have some training data xk with corresponding class

label yk ∈ {−1, 1}. Usually, we solve the following soft margin SVM optimization problem

arg min
w

1

2
‖w‖2 + C

∑
k

ξk s.t. yk(w
Txk + b) ≥ 1− ξk, ξk ≥ 0 (6.5)

to find the vector w perpendicular to the decision hyperplane. w represents the direction

of margin, and related to the length of margin by 2/‖w‖. When we consider the direction
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w as a projection vector, the margin in the reduced subspace remains the same as in the

original space as shown in Figure 6.1. Approximately, SVM problem (6.5) can be seen as

the following convex hull distance problem:

arg max
wij

dc(wTijXi, w
T
ijXj). (6.6)

Here w can be found by solving the problem (6.5). w here represent not only the optimal

direction of projection and the approximated convex hull distance between two image sets

by

dc(Xi, Xj) =
2

‖wij‖
. (6.7)

In our experiments, all convex hull distances are calculated using (6.7).

6.2 Margin Preserving Projection

In this section, we introduce a new dimensionality reduction approach for FRIS. The

process is described as follows. Given training sets [X1, · · · , Xc, · · · , XC ], we intend to

find an optimal projection A, which maps all sets to a bunch of low dimensional sets Yc,

with Yc = ATXc. We expect this projection to keep sufficient discriminant information

through preserving margins between any two sets in lower dimensional spaces.

6.2.1 The Proposed Algorithm

The proposed algorithm is named as Margin Preserve Projection (MPP) and it includes

the following three major steps:

1. Finding the maximum margin directions: Let wij be the maximum margin

direction between sets Xi and Xj . We can obtain wij by solving SVM (6.5). (Only

for i < j)

2. Choosing the weights: In order to preserve the local structure between two image

sets, we calculate the relationship between them. This is motivated by Locality

Preserving Projections (LPP) He and Niyogi (2003). A possible choice of Sij is

Sij = exp(−dc(Xi,Xj)
2

σ2 ) where σ is a suitable constant. dc() is computed using the

margin of SVM. One simple way of selecting parameter σ is σ = mean(dc(Xi, Xj)).
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3. Solving eigenvector problem: Compute the eigenvectors and eigenvalues of the

scatter matrix: P =
∑(

wij
‖wij‖

)(
wij
‖wij‖

)T
Sij , where

wij
‖wij‖ is a normalized direction of

wij . Let the column vectors a1, · · · , am be the eigenvector of P , ordered according to

their corresponding eigenvalues λ1 > · · · > λm. The projection matrix is computed

as A = [a1, · · · , am] with size d × m, and dimensionality reduction can be easily

implemented by Yc = ATXc where the dimension of Yc is m.

6.2.2 Intuition of MPP

The principal idea of this approach is underlying Principal Component Analysis (P-

CA) Turk and Pentland (1991). The aim of PCA is to project the data onto a low

dimensional space which maximizes the variance of the projected data. The objective

function of a general PCA is stated as below:

arg max
A

∑
ij

d(ATxi, A
Txj)

2 s.t ATA = I (6.8)

where d() is the distance between two points, which is generally chosen to be the Euclidean

distance. Following this idea, we expect to find a projection matrix A which can maximize

the convex hull distances among image sets. The objective function can be intuitively

modified as follows:

arg max
A

∑
i<j i,j∈{1,··· ,C}

dc(ATXi, A
TXj)

2Sij s.t ATA = I (6.9)

Here we weigh each distance by Sij . Since the closest two sets are the most difficult to

classify, their nearest neighbors involve most important information for discrimination.

According to the above analysis, we put larger weights on smaller distances.

Since A is unknown, we can hardly compute the distance dc() with variable A. In fact

solving (6.9) directly is very difficult. Instead, we find A through the maximum-margin

directions wij (i < j and i, j ∈ {1, · · · , Nc}), which are obtained by solving the SVM

optimization problem (6.5).

Let W be the space spanned by the Nc(Nc−1)
2 direction vectors wij . The intrinsic dimension

MW of this space satisfies 0 ≤MW ≤ Nc(Nc−1)
2 , and the dimension of projection A should

be in the range 0 ≤MA ≤MW .

Information contained in the subspace A may not be capable to maximize all the pairwise
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distance, therefore we have:

max
∑

dc(ATXi, A
TXj)

2Sij ≤ max
∑

dc(W TXi,W
TXj)

2Sij (6.10)

Let W̃ ∈ RMA be a subspace of W . W̃ can be defined as MA dominating directions of

wij . The training error

τ = max
∑

dc(W TXi,W
TXj)

2Sij −max
∑

dc(W̃ TXi, W̃
TXj)

2Sij (6.11)

should be very small, when unimportant directions are ignored. In this case, W̃ can be

seen as an approximation of the optimal projection A.

Base on above analysis, the approximation of optimum projection A can be found as

eigenvectors corresponding to the largest MA eigenvalues for the pairwise scatter matrix

P . Choosing enough eigenvectors can guarantee that the margins are mainly preserved.

Abandoning eigenvectors corresponding to small eigenvalues will reduce noise.

In general, we in fact expand PCA for the case of image sets by replacing point-to-point

distances with set-to-set convex hull distances. Our approach is to find a subspace spanned

by dominant projection directions of all wij . This subspace should provide enough infor-

mation for a convex distance classifier. After projection, we expect improvements on

classification performance and reduction on computational cost.

In comparison to LDA, our proposed method relaxes the dimensionality bound, the max-

imum rank of A is min(Nc(Nc−1)
2 , Nsv), where Nsv is the number of all support vectors,

instead of Nc − 1.

6.3 Experiments

We tested the proposed method on two benchmark databases: Honda/UCSD Lee et al.

(2005) and CMU MoBo Gross and Shi (2001). These two sets contain several videos

each recording one subject’s movement. We use a Viola-Jones face detector Viola and

Jones (2004) to find all facial images used for training and testing. Before experiments all

detected images were histogram normalized to eliminate some lighting effects Russ (2002).
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(a) Honda/UCSD Database

(b) CMU MoBo Database

Figure 6.2: Facial images detected from Honda/UCSD and CMU-MoBo database.

6.3.1 Databases

The Honda/UCSD Video Database was collected for video-based face recognition. It

contains 62 video sequences (including videos with partial occlusion) of 20 different people.

It is divided into two subsets: 20 videos for training and the remaining 42 videos for testing.

Each cropped facial image was normalized to 40 × 40 gray scale image. Figure 6.2a

presents some images from this database that belong to the same subject. From each

training and testing set in this database, we build a randomly selected corresponding

subset which contains 50% quantity of images and perform experiment on those subsets.

The experiments are repeated for 10 times and the average performances are recorded. 1

The CMU MoBo database contains video of 24 individuals walking on a treadmill in an

indoor environment. There are totally 96 sequences for 24 subjects, and each person has 4

sets of images. Each detected image was resized to 40× 40 gray scale image. Figure 6.2b

shows some examples of the detected faces from one subject. In this experiment, we

randomly select one set of four for each subject as training and the remaining 3 as testing.

1We did not use the setup for Honda/UCSD database in Cevikalp and Triggs (2010), because the

number of testing sets is too small.
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Again, all the experiments are repeated for 10 times and we report the average results.

The methods compared here include: Manifold-Manifold Distance (MMD) Wang et al.

(2008), Convex Hull based Image Set Distance (CHISD) Cevikalp and Triggs (2010),

Locality Preserving Projections (LPP) He and Niyogi (2003), Linear Discriminant Analysis

(LDA) Belhumeur et al. (1997), Principal Component Analysis (PCA) Turk and Pentland

(1991) and the proposed method MPP. We tested CHISD and MMD in the original pixel

feature space as baselines. For all other methods, we perform dimensionality reduction

first and then implement CHISD in these corresponding reduced feature spaces. For MMD,

we use the same setup of parameters in Wang et al. (2008). For simplicity, we set k = 10

the number of neighbors in LPP. The penalty parameter C in SVM varies from 10 to 100

to explore its effects.

6.3.2 Experimental Results and Discussions

Figure 6.3 shows the average recognition accuracy of LDA, PCA, LPP and MPP under

different reduced dimensions (m = 11, · · · , 100). One exception is LDA which only can

extract at most Nc−1 meaningful dimensions. The best recognition rates and the averaged

running time are shown in Table 6.1. Some interesting observations are provided on the

performance of the evaluated algorithms.

Firstly, for most methods, recognition rates increase consistently when the reduction di-

mensions increase. It can be seen that the two traditional methods - LDA and LPP yield

poor performances. The performance of PCA is better than LDA and LPP, but not over-

takes the baseline CHISD. Moreover, in a single frame based recognition problem, PCA

can improve performance by preserving principal data variances, but here it is just similar

to baseline CHISD. This result is different from some previous frame based experiments He

and Niyogi (2003). Though it may be not fair to compare them here, the experiments

suggest that traditional dimensionality reduction methods may be unsuitable for set based

classification. This is due to the fact that PCA, LDA and LPP are performed on data

points, but the final classifier is based on image sets. Secondly, the proposed MPP gives

superior results than other methods with the best performance. Unlike other methods, the

proposed MPP method preserves the margins, especially the smaller ones which contain

more discriminant information. By focusing on set based information, the MPP method

provides significant performance benefits. Note that the best result does not come with

the highest dimension, which means that abandoned eigenvectors contain noises and have

no help in recognition. Finally, CHISD, MPP and PCA are very stable when C changes.

However, the performance of LDA and LPP are susceptible to the variations of C. In fact,
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(a) Honda/UCSD C = 10
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(b) CMU-MoBo C = 10
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(c) Honda/UCSD C = 50
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(d) CMU-MoBo C = 50
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(e) Honda/UCSD C = 100
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(f) CMU-MoBo C = 100

Figure 6.3: Comparison of the averaged accuracy versus the reduced dimension of L-

DA, LPP, PCA and MPP on the Honda/UCSD and CMU-MoBo database.
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Table 6.1: Comparison of the related algorithms to MPP on the Honda/UCSD and CMU-

MoBo database. In accuracy, the first number is the highest recognition rates through

different reduced dimensions; the following number is the corresponding dimension. The

running time in seconds is the average time consumed on testing one set with the best

dimension.

Algorithms
Honda/UCSD CMU MoBo

accuracy time(s) accuracy time(s)

MMD 79.76% 1.13 82.54% 182.20

CHISD 94.05% 6.27 93.23% 18.21

LDA+CHISD 80.00%,19 0.04 84.37%,20 0.38

LPP+CHISD 89.52%,75 0.14 82.82%,87 1.46

PCA+CHISD 94.05%,92 0.12 92.81%,94 2.74

MPP+CHISD 97.14%,44 0.10 94.09%,76 1.76

C represents the training error of SVM. Less sensitive to different C implies that these

approaches have good generalization capability.

6.4 Chapter Summary

In this chapter, we proposed a new linear dimensionality reduction algorithm called Margin

Preserving Projections (MPP). It is based on the metric of convex hulls for FRIS. The most

interesting feature of this method is that it focuses on the relations between image sets

rather than single images. This allows the algorithm to retain more important information

for set based classification problems. Experiments on face image databases show that the

proposed method produces better recognition accuracy and is less time consuming than

some related algorithms.
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Chapter 7

Pose Robust FRIS Systems

As we discussed in Section 2.1.2, methods using local sample based similarity can only

apply on data set with similar variation conditions. The existing structure based approach-

es need model training data to cover complete variations in order to span the manifold

structure. The current methods are limited for certain variation conditions of image set.

Actually, these are a significant limitations since the image sets in real applications are

hard to satisfy either of these above assumptions. Since such problems are caused by

the unpredictable variations appeared in the image set, how to reduce influences of pose

variations is the key issue of solving this problem.

To overcome the limitations, the basic idea is to transform the uncontrolled input image

set to satisfy the assumption of existing methods. There are two choices for satisfying

the two assumptions respectively. The first one is to generate different conditions to build

manifold structure for every person. This requires complete training set for each person,

which is not always possible in practice. Converting an unknown condition image into

another condition is a difficult task, since it require huge amount of training images to

construct the possible transformations. On the other hand, normalizing unrestricted face

into a standard one is a more reasonable solution. It is to reduce the variation which will

be less noisy and more robust. Also it only requires building reasonable size training set

for normalization which is much more achievable.

In this chapter, we propose a new framework to follow the second choice. We will use

techniques introduced in the previous Chapters to build an automatic FRIS system for

unrestricted input image sets. Manifold Alignment technique is used to assign a possible

pose label to each input image. Then faces with uncontrolled variations are transformed

into the standard frontal ones. Finally the dimensional reduction technique is applied to

further extract the discriminant features for face recognition. We will introduce the details

in the following sections.
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7.1 System Overview

We introduced the overall system in Section 1.3. Figure 1.2 shows an overview of our

FRIS system. The system consists of three major components:

• Manifold Alignment and Pose Estimation. We proposed manifold alignment tech-

nique in Chapter 3 and Chapter 4. The approaches find correspondence between

image sets using structure and sample features. This correspondence can be utilized

to estimate the pose for face images.

• Face Pose Normalization. We discussed the face normalization in Chapter 5. In this

system, the LDA based pose estimation is only used for missing aligned samples.

Most of the pose label is assigned based on the alignment results.

• Discriminate Feature Extraction. In Chapter 6, we proposed a discriminant feature

learning algorithm for affine hull model based similarity. It can reduce the dimension

of data and improve the time consuming and accuracy.

• Classification. In our system, the Sparse Approximated Nearest Points (SANP) Hu

et al. (2012) is used for classification.

In the previous chapters, we only introduced the technique separately. There are some

details about the integration of the whole system (shown in Figure 7.1). The training and

testing stage have some common process including pose estimation and face normaliza-

tion. A projection matrix is learned using the algorithm in Section 6.2.1 to generate the

discriminant feature for classification. Testing images are then projected to this feature

space, and classification is applied on the projected data.

7.1.1 Manifold Alignment and Pose Estimation

We introduced the manifold alignment technique in Chapter 3 and Chapter 4. We use

the robust version of Manifold alignment (from Chapter 4) in our system, since it has

higher alignment performance. The output of alignment is the correspondence between

two image sets. It can be used for face image set pose estimation, if we have a reference

set in which all the sample labels are already known. Then we can transfer the reference

sample label to the corresponding testing image set. In our case, the testing image set

will have the pose label for aligned images.
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Figure 7.1: The flowchart of training and testing stage

86



Figure 7.2: An illustration of the reference mean face image set. The illumination and

pose are different in this image set.

We build a series of experiments on the Multi-PIE database. The reference set is built

using the mean faces of 200 subjects in the Multi-PIE database. The reference set has

the 11 poses and 20 illuminations conditions (shown in Figure 7.2). Every image set

will be firstly aligned to this reference set and assigned the pose labels. In manifold

alignment, it is possible that a few samples are outliers which have no assigned pose label.

Next we use the LDA based pose estimation in Section 5.2.2 to detect the pose labels.

Note that the alignment algorithm only assigns one possible label to one image, but LDA

based estimation output three candidate poses for one image. This is because LDA pose

estimation has lower accuracy and the Gaussian Processes Regression has the ability to

handle uncertainty labels.

7.1.2 Pose Normalization

We use the Gaussian Processes Regression (GPR) in Chapter 5 as the transformation

method. The aim of pose normalization in our FRIS system is slightly different, in the

sense that our output of the normalization is an image set. The training process of GPRs

is the same as we described in Section 5.2. For each pose, there is one GPR model to

transform the corresponding pose image into the standard one. Images are normalized

according to the pose obtained from alignment and pose estimation. For missing aligned
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samples, we still use LDA based pose estimation. The only difference is that we do not

use the product in Section 5.2.3 to integrate the different GPR results. Those outputs are

considered as an individual sample of normalized image set. Since the variance v of each

normalization result indicates the reliability of the output mean. We set a threshold to

eliminate the implausible normalized output. To obtain an effective threshold, we use the

experiment results in Section 5.3.1. In that experiment, we used labeled data to evaluate

each GPR model that means all the results are based on correct pose. The experiment

results show the confidence interval of the believable variance v. For each pose p the

threshold vpM is set as a value that can include 95% of the known variances. We believe

that if any variance of output is smaller than the threshold vpM , the normalization is

believable and applied on correct estimated pose.

After the above process, all training and testing sets can be normalized into the standard

pose. Then the normalized sets satisfy the assumption of local sample based similarity:

all image sets are under similar conditions. Thus any the state of the art algorithm

can be used. In our system, the state of the art local sample based algorithm Sparse

Approximated Nearest Points (SANP) Hu et al. (2012) is used.

7.2 Experiments

In this section, the Multi-PIE database Gross et al. (2010)is again used to evaluate the

effectiveness of our proposed framework. Since the Multi-PIE database has different labels

for identity, pose and lighting conditions, it is suitable to simulate different conditions of

FRIS. Our experiment will apply on different setup of pose condition, i.e., image set with

or without similar pose. Following the setup in Section 5.3, the whole database is separated

into three parts: pre-training set, training set and testing set. The pre-training set consists

of the first 200 subjects with different poses which is same setup as in Section 5.3. The

remaining images in database are the source of training and testing sets. We use the

pre-training set to train the GPR models and generate mean reference set for alignment.

The difference of each experiment is on how to choose training and testing sets.

The first experiment is to evaluate the simple case where the training and testing image

set have similar poses. We randomly select different size of image sets from each subject

to build the training and testing set. Images in the training set will not appear in testing

set. That means there is no exactly same condition of face image in training and testing

set. However, image sets have a good chance to appear in similar conditions, like the

same pose with different lightings. We run the experiment for 10 times, each time the

88



Table 7.1: Comparison of the related FRIS algorithms to the proposed system on the

Multi-PIE database in the case image set with similar pose. Average recognition rate (%)

is shown in this Table.

Image Set Size 30 50 70

MSM 83.74 90.24 92.51

MMD 78.98 83.42 85.71

CHISD 92.32 96.84 98.25

SANP 93.54 97.38 99.1

The Proposed 94.32 96.68 97.5

training and testing set are re-selected randomly. The methods compared here include

state of the art local sample based and structure based methods: Mutual Subspace Method

(MSM) Yamaguchi et al. (1998), Manifold-Manifold Distance (MMD) Wang et al. (2008),

Convex Hull based Image Set Distance (CHISD) Cevikalp and Triggs (2010) and Sparse

Approximated Nearest Points (SANP) Hu et al. (2012). The experiment results are shown

in Table 7.1. It can be seen that the performance of our system is better than the others

when the image set size is small. That is because when image set are small, two image

sets will have lower chance to have similar conditions. However our method can normalize

face into the same pose to force images to lay in similar appearance. When the size of the

image set becomes bigger, the performances of state-of-the-art methods are improving and

exceed that of our system. That may be caused by the noise produced in the normalization

process.

Since our aim is to solve the uncontrolled environment FRIS problem, we build another

experiment in an extreme case that the training and testing set have no similar pose. We

randomly select training set from left side images and testing set form right side pose

(shown in Figure 7.3). Again the four methods in the last experiment are compared,

and the results are shown in Table 7.2. In this experiment, there is no similar pose

existing in both training and testing set, and only half partial conditions existing in all

images which are not sufficient to discover manifold structure. From the results it is

clearly demonstrated that both the structure based methods (MSM and MMD) and the

local sample based methods (CHISD and SANP) are failed totally in this setup. On the

contrary, our method still can achieve reasonably good and stable results.

From both experiments, it is evident that our system can handle both simple and extreme

condition of FRIS problem. It is robust than most of state of art algorithm. And the

experiments also prove our proposed system reached the aim and goal we set in Section
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Figure 7.3: The building of training and testing image set for second experiment.

Table 7.2: Comparison of the related FRIS algorithms to the proposed system on the

Multi-PIE database in second experiment that image sets without similar poses. Average

recognition rate (%) is shown in this Table.

Image Set Size 30 50 70

MSM 7.01 10.65 9.69

MMD 15.51 21.78 22.15

CHISD 20.81 18.51 24.37

SANP 21.57 24.84 27.18

The Proposed 70.42 74.15 74.82

1.2.

7.3 Chapter Summary

In this chapter, we described the details of the our proposed complete FRIS system with

the way of collaboration between each proposed component. Experiments are conducted

to demonstrate the advantage of the proposed system. The capability of handling wild

condition FRIS problem is proven by the convincing results. From the second experiment,

we can see that our system significantly outperforms state of the art algorithms in uncon-

trolled environments. We will summarize the whole thesis in the next chapter and present

the prospect of further improvement.
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Chapter 8

Conclusions

This thesis proposed a system for the general FRIS problem. With the proposed system,

there is no restriction on the image set and no assumption on relationship between training

and testing set. It overcome the limitations of existing structure based and local sample

based method that discussed in Chpater 2. There are three main techniques proposed in

this system: manifold alignment, face pose normalization and image set based discriminant

feature learning.

In Chapter 3, we proposed a novel method for unsupervised manifold alignment. It is

assumed that a query set can be completely matched to a reference set. The main con-

tribution is that we proposed a feature histograms for characterizing the local manifold

geometry; and a matching algorithm to estimate accurate correspondences between t-

wo manifolds. The local histogram feature is used to establish an initial sparse corre-

spondences. Then the initial correspondences are refined under an iterative optimization

framework under manifold structure preserving constraints. A joint manifold is achieved

within this framework. The proposed manifold alignment algorithm was applied to three

different types of datasets and achieved significantly superior results when compared to

existing state-of-the-art algorithms.

We then further improved the manifold alignment algorithm in Chapter 4. The significant

contribution is that the proposed alignment algorithm is performed without the previ-

ous assumption on the correspondences between the two manifolds. The improvement

is achieved by using an extended correspondence matrix with the ability to handle the

outliers. We also improved the histogram-based features in Chapter 3. Based on such im-

provements, an embedding space is derived with the criteria that the distance between the

two manifolds is minimized while maximally retaining the original structure of the mani-

folds. The elegance of this idea is that the extracted features can be directly applied in a

generalized eigenvalue problem by using the Softassign technique. The alignment process

is achieved by iteratively increasing the sparsity of the correspondence matrix until the

two manifolds are correctly aligned. We demonstrate the effectiveness of our algorithm on

different datasets. In comparison with state of the art algorithms and the MA-R method

in Chapter 3, the results show the superiority of the proposed manifold alignment in terms
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of visual effect and numerical accuracy.

In Chapter 5, a novel facial pose normalization approach is proposed based on Gaussian

Processes Regression. The contribution of this work is to overcome the limitation of linear

based regression methods. Unlike traditional regression technique, the output of Gaussian

Processes Regression is a normal distribution with mean and variance. The variance

can indicate the quality of the output. In training phase, instead of learning one single

complete GPR model for whole pre-training set, we training each pose subset separately

for each GPR model. This can significantly reduce the computation complexity. In testing

phase, a LDA based pose estimation is used for assigning faces to the corresponding GPR

model. Three prediction distributions are obtained by corresponding GPR models and

then these models are integrated into a joint distribution, which can represent the final

synthetic result. Experimental results demonstrate the advantages of the proposed method

in comparison with the SRR method in face pose normalization and face recognition.

In Chapter 6, a new linear dimensionality reduction algorithm called margin preserving

projections is proposed. We design this algorithm for convex hull model based methods,

since experiments show that conventional methods are not suitable for FRIS problem.

Based on the metric of convex hulls, it focuses on the relations between image sets. This

is the key feature and a main advantage for the FRIS problems. Experiments on face

image databases show that the proposed method produces better recognition accuracy

and is less time consuming compared to related algorithms.

After discussion of each component, the whole system is demonstrated in Chapter 7.

The collaboration of different components given the ability to handle extreme conditions

of image sets. Experiments show that our system achieve similar high performance on

simple case setup and significant improvement on extreme case, compared with existing

state of art algorithms.

The new framework we proposed in this thesis is to overcome the problem that two image

set have no overlap. After the whole process,image set will normalize into a variation

reduced data. Image Set based recognition performance will improve greatly when using

the normalized dataset. The framework can not only be suitable for FRIS problem, but

also for other image sets based problem if there is an intrinsic model for each sets.
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8.1 Future Study

Even though our FRIS system achieved significantly higher performance, there are still

room for improvement in our system. In the manifold alignment, there are two problems

worth attention. The first one is appropriately designed feature for face alignment. The

local histogram feature is a general feature suitable for any kind of data; and HoG feature

is not designed for face pose estimation. In an ideal case, a new feature should have the

property associate with pose variation and ignore the identity information. For example,

pose feature can be represented by the structure based landmark feature extracted from

Active Appearance Model (AAM) Cootes et al. (1998). Another problem is how to handle

the miss aligned images. We have not fully utilized the aligned joint manifold structure.

The position of outliers in this manifold indicates the information of the intrinsic conditions

of different variation. The variations should be able to be predicted based on this position.

In general, the critical point of this system is the quality of the face normalization. From

experiments, Gaussian Processes Regression can be improved significantly when the pose

differences are large. In that case, the transformation should be quite complicated and the

GPR models may not be able to handle the complexity. Recent researches on deep learning

point out a way to further improve the performance. Hierarchical networks are proved

to have the capability to simulate complicated nonlinear regression and classification.

Convolutional Neural Network (CNN) is a typical method using this idea to discover the

intrinsic feature. The similar idea was also applied on GPR models in Deep Gaussian

Processes Damianou and Lawrence (2013). We expect that the hierarchical structure of

GPR models can handle the large difference pose normalization problem.
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