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Abstract 
 

This thesis investigates the progressive shear behaviour and asperity degradation of 

single rough rock fractures using 2D numerical simulations and laboratory experiments.  

The particle flow code (PFC) was chosen for simulation purposes in this work. The 

fracture and intact sample are modelled as an assembly of circular disks in PFC2D. By 

performing biaxial test simulations in PFC2D, correlations were obtained between micro 

and macro properties of the intact sample. These results were used later for guidance to 

establish the micro properties of models corresponding to mortar samples, based on the 

macro response obtained from the lab experiments. To define a set of micro properties 

corresponding to fracture particles and investigate their effects on shear behaviour of both 

planar and rough fractures, a sensitivity analysis of fracture model micro properties 

including particle size, particle friction coefficient, and contact bond strength were carried 

out. 

Several synthetic profiles with triangular and sinusoidal geometries were simulated 

to study their shear behaviour. A prior knowledge of the shearing response of such simple 

geometries allowed calibration of the model to be made. The results confirmed the 

observation of different failure modes, i.e. sliding, asperity cut-off, and degradation, as a 

result of increasing the normal stress. The simulation results were compared with lab 

experiments that were carried out on synthetic samples with constant height elevations 

along their thickness. This was the closest geometry that could be used to calibrate 2D 

models, and a good agreement was found between the results of the two approaches. 

The lab shear tests were conducted using a fracture shear cell (FSC). This was a 

special set up made from modifications on an existing triaxial stress cell. The FSC was 

capable of applying large shear and normal loads to the sample where the normal load was 

applied in a constant rate using a pressure cylinder. 

Both lab experiments and simulations were performed on pseudo-real as well as 

rock-like fracture specimens. The directionality in shear strength when the sample was 

sheared in opposite directions along a horizontal plane was also studied. The 1D 

Riemannian dispersion parameter (DR1) was determined for different profiles’ geometries 

as a measure of roughness. This parameter showed a good correlation with the profile’s 

shear strength. The spline fits to the peak shear strength data for triangular profile 

geometry as well as the number of rock fracture profiles obtained from literature were 

developed and presented. A detailed discussion on the simulations and lab experiments 

will be given and the results presented and interpreted. 
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Shear behaviour of rough fractures 

 

 

A good understanding of the parameters affecting the mechanical response of natural 

fractures is essential in any rock engineering project for design purposes. Shearing 

deformation of rock fractures is one of the incidents that affect the stability of rock 

masses. It is well understood that the morphology of the fracture surfaces (referred to as 

roughness) plays a major role on hydromechanical behaviour of the fractures. In this 

thesis, the effect of fracture morphological parameters on shear strength will be studied. 

In this Chapter after a brief review of the shear behaviour of rock fractures, the 

importance of fracture surface morphology on deformation mechanism of shearing 

fractures will be discussed and the need for further studying this concept will be 

highlighted. This will be followed by the outline, objectives and significance of this 

research work and the thesis structure. 

1.1 Introduction to rock fractures 

1.1.1 Geometrical properties 

In general the rock mass is the total in situ medium containing structural features such 

as fractures or faults, and rock material refers to the intact rock between discontinuities. 

In rock mechanics, the term discontinuity refers to any fractures or features of negligible 

tensile strength within the rock mass (Brady and Brown, 1993). The most common 

discontinuities are fractures and bedding planes, although faults are an example of large 

size discontinuities. Discontinuities can have a dominant effect on the response of a 

rock mass to rock engineering operations. For example, blocks adjacent to a rock face 

subject to low normal stress may fail because of the existence of an unfavourably 

oriented discontinuity (Jaeger et al., 2007). As another example, in high stress zones 

adjacent to an underground excavation (e.g. wellbores), discontinuities can provide 

planes for shear failure (FJÆR et al., 2008). Moreover, large scale discontinuities (i.e. 

faults) are prone to slide under critical static and dynamic loads; once the ratio of shear 

to normal stress acting on fault plane exceeds the frictional strength of the fault surface 

(Jafari et al., 2003; Sagy et al., 2007). 

1 
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The word „discontinuity‟ denotes any separation in the rock continuum having 

substantially zero tensile strength and is used without any genetic connotation. The 

word „joint‟ or „fracture‟ or „fault‟ describe discontinuities formed in different 

geological conditions (Hudson and Harrison, 1997). The term „rock fracture‟ is used to 

describe the mechanical discontinuities of geological origin that intersect almost all rock 

masses. In current study, as we are studying the mechanical discontinuities, the term 

rock fracture is used throughout the thesis.  

The International Society for Rock Mechanics (ISRM) in 1978 has suggested 

methodologies for determining ten fundamental properties of discontinuities: 

orientation, spacing, extent, roughness, aperture, filling, wall strength, seepage, number 

of sets and block size. Figure 1.1 shows these parameters schematically and definitions 

of these parameters can be found in many rock mechanics textbooks; for example, 

Hudson and Harrison (1997). In this research work the effect of surface roughness on 

shear behaviour and asperity degradation of rock fractures will be studied in particular. 

 
Figure 1.1 Ten discontinuity parameters (from Hudson and Harrison, 1997). 

The presence of discontinuities in the form of fractures and other planes of 

weakness decreases the ultimate strength and stiffness of a rock mass (Brady and 

Brown, 1993; 2004). Therefore, it is important to quantify the mechanical response of 

rock fractures in the design, construction, and operation of surface and underground 

rock structures. One of the most important mechanical characteristic of a rock fracture is 

its shear strength which will be discussed in Section 1.2. 

The topographical features of rock surfaces (i.e. roughness) can affect the 

mechanical properties of rock masses. For example, as will be discussed later in this 
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Chapter, the behaviour of two adjacent blocks with a rough interface shearing along the 

interface is usually affected by the topographical nature of each shearing block. It can 

be imagined how variation of surface roughness can facilitate or impede the process of 

shearing. 

1.1.2 Surface morphology characterisation 

In order to describe the complex topography of discontinuities, a large number of 

parameters may be required. Therefore, characterising or measuring roughness 

especially as a quantitative parameter is very difficult. Although some parameters have 

been proposed based on different approaches, few of them are able to represent the 

effect of roughness and its intrinsic properties on the behaviour of discontinuous rock 

masses. This is due to the high complexity of rock fracture surface topography. 

Patton, in 1966 introduced first and second order asperities reffered to also as 

waviness and roughness, respectively (see Figure 1.2). Brady and Brown (1993) defined 

roughness as „a measure of the inherent surface unevenness and waviness of the 

discontinuity relative to its mean plane‟ (Figure 1.2.a). Surface irregularities with 

shorter wavelengths are known as unevenness or particularly roughness (Figure 1.2.b), 

but larger scale undulation with longer wavelengths is known as waviness. 

Traditionally, asperity angle, i, refers to surface roughness which accounts for all the 

small and large undulations and wavelengths, as shown in Figure 1.2. 

Effects of roughness and waviness are completely different on mechanical response 

of rock fractures. In small scale fractures, roughness has significant influences on 

fracture shear behaviour, whereas in large scale fractures such as faults, waviness is the 

dominant affecting morphological parameter (Barton and Choubey, 1977; Jafari et al., 

2003; Patton, 1966). The effect of roughness on shear strength is more pronounced at 

low levels of normal stress, while at high levels of normal stress, asperity degradation is 

the dominant failure mode. This is discussed in the next Chapter. 
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Figure 1.2 Rock fracture surface first and second order asperities (after Patton, 1966). 

Assuming a ripple marked surface, it is not trivial to appreciate that roughness is 

directional dependent when it is considered at different directions. This will result in 

shear strength to be also anisotropic when it is measured along different directions. This 

concept was perhaps firstly introduced through some shear tests performed on 

laboratory samples by Huang and Doong (1990), as shown schematically in Figure 1.3. 

From this figure, it is seen that by changing the shearing direction values measured for 

shear strength significantly changes (consider the circle corresponding to 0.1 MPa 

normal stress).  

From practical point of view, sliding along the surfaces of rock fractures may occur 

in a particular direction, for example fracture sliding intersecting a wellbore. This 

depends on the kinematic constraints and the external forces (including water pressures, 

and forces induced by earthquakes) acting on the structure. Therefore, it is imperative to 

understand the variation of shear strength of rock fractures in all directions. It is also 

important to note that even for a specified orientation; the shear strength of a natural 

fracture can be substantially different at a given applied load in different directions. As 

shown in Figure 1.3, dependency of shear strength to direction reduces as the normal 

stress increases. 
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Figure 1.3 Anisotropy of shear strength of a rock fracture (from Rasouli, 2002). 

The above discussion shows that fracture surface roughness is anisotropic and 

hence this property should be taken into account in fracture shear strength and asperity 

degradation analyses. However, in the next Chapter, it is discussed that few people have 

integrated this concept in their studies. 

It is widely accepted that the mechanical behaviour of rock fractures is scale 

dependent. The term scale dependency of roughness means that if we determine the 

roughness of a rock fracture profile or surface as a quantitative parameter (such as the 

angle of inclination) at different scales, we will obtain different results, as shown in 

Figure 1.4. Thus the method proposed for roughness determination should allow us to 

take the effect of this parameter into account. 

In practical point of view,  the idea of scale in terms of fracture studies can be 

defined at three levels, as suggested by Vallier et al. (2010). First, the “micro scale” 

which is the scale of the asperities (less than one centimetre in length); second the 

“meso scale” which is the scale of the specimens tested in laboratory (about 10 cm in 

length); and third, the “macro scale” which is the scale of the rock mass (more than one 

meter in length). Average asperity angle, i, varies from one scale to another. these are 

schematically shown in Figure 1.4 
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Figure 1.4 Three different levels of scale applied to non-planar fracture studies. 

 
Figure 1.5 Scale dependency of shear strength of non-planar discontinuities (from Rasouli, 2002). 

As stated by different researchers the mechanical properties of rock fracture differ 

when it is considered at different scales (Bandis et al., 1983; Fardin, 2003; Fardin et al., 

2001; Rasouli, 2002; Rasouli and Harrison, 2010). This effect is schematically shown in 

Figure 1.5. It is seen that by increasing the scale, peak shear stress reduces in non-planar 

rock fractures (Figure 1.5.a). Scale in which fracture studies are carried out can also 

affect the failure modes within rock fractures shearing: this concept is depicted in 

Figure 1.5.b. 

In this research, according to the above definition, the studies of rock fracture shear 

behaviour are conducted at meso scale and all numerical and experimental simulations 

are performed at this scale. 

In addition to scale dependency and anisotropy properties when studying the shear 

strength of rock fractures, it is important to distinguish between filled and unfilled 

fractures. Filled fractures, ranging from those that contain soft plastic materials such as 

clay at a microscopic scale, to faults that contain gouge at a macroscopic scale, form 

particular issues and their shear strength depends on the physical and mineralogical 

properties of the material lie upon opposite sides of fracture walls (Grasselli, 2001). In 

contrast, the shear behaviour of unfilled fractures depends on, apart from the level of 

normal stress acting on the plane of shearing, the properties of the rock fracture walls 

including rock type, roughness, size of the fracture (scale effect), degree of weathering, 
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presence of moisture, and fluid pressure. It is important to note that this is the shear 

strength of unfilled types of fractures which will be studied in particular in this research 

work. 

Having explained the importance of roughness on shear strength of fractures, in the 

following subsection, most commonly used roughness parameters in rock engineering 

field applications are briefly reviewed. 

1.1.3 Roughness quantification methods  

The ISRM (1978) classified rock profiles in the three groups of stepped, undulating and 

planar, and suggested a set of descriptive terms as rough, smooth and slickenside to 

identify the profile roughness for each group. Patton in 1966 demonstrated the 

significant effect of joint surface geometry on the shear behaviour of rough fractures by 

conducting several direct shear tests on the small saw-tooth replicas with different 

asperity inclinations, i, at varying normal stresses.  

Later in 1977, Based on experimental works and observations, Barton and Choubey 

proposed 10 standard profiles (10 cm length) of increasing roughness with assigned 

roughness coefficients ranging from 0 to 20, so called joint roughness coefficient (JRC). 

This method involves comparing a profile of a discontinuity surface with JRC standard 

roughness profiles (Appendix 1) and hence assigning a numerical value to the 

roughness. However, JRC assessment is subjective and its nature is empirical, the JRC 

profiles have proved to be of significant value in rock engineering. Hudson and 

Harrison (1997) stated that “from the practical point of view, only one technique has 

any degree of universality and that is the JRC”. Many researchers have attempted to 

correct the JRC to build an objective parameter for roughness characterisation 

(Kulatilake et al., 2006; Tse and Cruden, 1979; Wakabayashi and Fukushige, 1992). 

However, JRC is still the most commonly used parameter for roughness determination 

in the field of rock mechanics. 

Grasselli (2002), based on a triangulation algorithm which results in a discretisation 

of the fracture surface into a finite number of triangles characterized roughness in terms 

of standard deviation of the angles of these triangles. His approach takes into 

consideration the fracture shear strength directionality. 

Statistical parameters in Riemannian geometry developed by Rasouli (2002) and 

Rasouli and Harrison (2010) based on the distribution of unit normal vectors to the 

surface, as shown in Figure 1.6, is perhaps the latest development in roughness 
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determination. Rasouli (2002) presented two parameters DR1 and DR2 in order to 

estimate roughness of linear profiles (2D) and rock surfaces (3D), respectively. Their 

approach accounts for scale effect and anisotropy in roughness determination. DR1 

concept will be reviewed briefly in the next Chapter.  

In current study, the objective is to integrate DR1 into fracture shear strength 

analysis using numerical and experimental analysis of rock fracture profiles and 

surfaces. This will be presented in Chapters 3 and 4. 

  
Figure 1.6 Distribution of unit normal vectors to the rock fracture profile, from Rasouli (2002). 

1.2 Shear behaviour of rock fractures  

In Figure 1.7, a fracture plane subjected to the external normal ( n ) and shear ( τ ) 

stresses is shown. The traction acting along the fracture plane can be resolved into 

normal and shear components. The normal traction results in normal closure of fractures 

whereas shear component is responsible for shear deformation of the fracture. Dilation 

arises because the asperities of one fracture surface must ride up in order to move past 

those of the other surface, as shown in Figure 1.7. 

  
Figure 1.7 Schematic of a fracture sheared under constant normal stress, after Goodman, 1976. 
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Figure 1.8 Typical curves for fracture under shear conducted under constant normal stress. 

Displacement parallel to the fracture plane is called shear displacement and that of 

perpendicular to the fracture plane is called normal displacement (or dilation) which are 

denoted by uΔ  and vΔ , respectively. A general plot of the shear stress versus shear 

displacement, at a constant normal stress, is shown in Figure 1.8.a. 

In this figure, the shear stress first increases in a manner that is nearly proportional 

to the shear displacement. The slope of this line is called shear stiffness, ks, (see Figure 

1.8.a). During this stage of deformation, the two fracture surfaces slide over each 

other‟s asperities, causing dilation of the fracture. The yield point marks the initiation of 

local micro cracks growth until failure. Peak shear stress shown as pτ in Figure 1.8.a 

also known as “shear strength” corresponds to the point at which the asperities begin to 

shear-off, causing irreversible degradations of the surface asperities (Jaeger et al., 

2007). If shear deformation of fracture continues, the peak shear stress will be followed 

by strain softening regime, during which the reduction in shear stress tends toward a 

value that corresponds to what is termed the residual shear strength of the fracture ( rτ in 

Figure 1.8.a). Residual displacement corresponds to the distance the fracture displaces 

after peak shear stress before reaching its residual shear strength.  
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If the fracture is rough, it will tend to “dilate” during shearing as shown in Figure 

1.7 (Goodman, 1976). Dilatancy is defined as the normal displacement of the upper 

block with respect to the lower block measured during shearing, i.e. the slope of normal 

displacement versus shear displacement curve shown in Figure 1.8.b. 

During shearing, as the shear stress accommodates, a rapid increase in the rate of 

dilatancy is expected, which approaches its maximum at its peak shear stress. 

Thereafter, the shear stress falls continuously and the fracture also dilates slightly until 

the residual displacement is reached (See Figure 1.8.b). Initial dilation angle of fracture 

is measured at the beginning of shearing as 

 
u
vA

Δ
Δtand n  , (1.1) 

where vΔ  and uΔ are the increments of normal and shear displacements, respectively. 

Fracture dilation angle, nd , is also shown as ψ  in some texts (Figure 1.8.b). More 

importantly, fracture dilation rate is proportional to fracture surface roughness and its 

evolution in time. This shows the importance of accurate roughness characterisation to 

estimate the fracture average dilation. 

The behaviour of a fracture under shearing depends very strongly on the normal 

stress acting perpendicular to the fracture plane. Figure 1.8.c indicates that as normal 

stress applied to the fracture plane increases, the shear strength increases accordingly 

(Goodman, 1976; Jaeger et al., 2007). A series of fracture shear tests at different normal 

stresses generates a series of peak shear stress points through which a fracture shear 

strength curve can be drawn (see Figure 1.8.d). The most commonly used fracture shear 

strength criterion is the Coulomb linear friction law as shown in Figure 1.8.d and is 

expressed for planar fractures as 

 fC fn tanστ . (1.2) 

In this equation τ  is the fracture shear strength at corresponding normal stress ( nσ ), 

f is the fracture friction angle, and fC is the fracture cohesion (Jaeger et al., 2007). 

Equation 1.2 does not include the effect of surface roughness. In Figure 1.9, it is 

seen that for a rough fracture (ideally with an asperity angle i), the slope of shear stress 

versus normal stress is larger than that of a smooth fracture surface. This is applied by 

adding the asperity angle to the friction angle f . However, as the normal stress 

increases, due to the degradation of the asperity contacts, above a certain normal stress 

known as transition normal stress ( Tσ  in Figure 1.9) the rough fracture behaves similar 
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to a smooth fracture and the slope of the curve as shown in this figure returns to the 

residual friction angle r . Patton (1966) found the following bilinear functions for peak 

shear strength, Pτ as a function of nσ : 

 

 
Figure 1.9 Bilinear model for the peak shear strength of rock fractures. 

 for  Tn σσ  :     i fnp tanστ , (1.3) 

and 

 for Tn σσ   :    rnp tanστ  fC . (1.4) 

Equations 1.3 and 1.4 demonstrate the fact that at low normal stresses, shearing 

mechanism is dominated by fracture profile asperities‟ sliding. However, at high normal 

stresses fracture possesses a apparent cohesion that is due to the inherent shear strength 

of asperities and has an effective friction angle of i fr  (Jaeger et al., 2007). 

Many researchers correlated idealised roughness angle i to different statistical 

parameters representing morphology of the surface, some of these correlations will be 

given in Chapter 2. 

Significant attempts to the development of fracture shear strength criteria for 

unfilled rock fractures under low normal stresses have been made by Ladanyi and 

Archambault (1970), Jaeger (1971), and Barton and Choubey (1977): these will be 

discussed in Chapter 2. However, few of the strength criteria proposed to date take into 

account the fact that fracture peak shear strength is anisotropic  

At high normal stresses, fracture surface roughness is destroyed and amount of 

surface degradations significantly affect the peak and ultimate shear strength of fracture. 

This is perhaps due to the complexities encountered in determination of roughness 
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evolution. This fundamental concept has not been fully formulated and modelled and 

there is a need for further research in this area. As stated by Jing and Stephenson (2007), 

“the strong correlation between roughness and other aspects of fracture behaviour (e.g. 

scale effects, anisotropy, stress-dependency and conductivity) demonstrate the strong 

requirement to represent, quantitatively, the roughness of rock fractures in both two and 

three dimensions, and its evolution with time and deformation paths to develop more 

reliable constitutive models”.  

Some of these concepts are looked at in current study through both numerical and 

experimental shear test simulations of rock fractures. 

This research aim at linking roughness parameter DR1 with shear strength of 

fracture profiles and develop correlations based on numerical and experimental 

simulations of synthetic, pseudo-real, and rock fracture profiles. 

1.3 Shear strength estimation: analytical, numerical and 

experimental methods 

The past research works have indicated that three principal mechanisms can be 

distinguished when a rock fracture is sheared at different level of normal stresses. 

Asperity sliding (i.e. dilation) is the dominant fracture shear response at low normal 

stresses. Asperity contact shearing (i.e. asperity cut-off) is the most likely mechanism to 

occur at medium values of normal stresses. At large normal stresses, asperity contacts 

degradation (i.e. damage) is expected to be observed during fracture shearing. 

Most analytical shear strength criteria can provide a good estimation of sliding but 

they cannot fully model the asperity cut-off and damage as these mechanisms are highly 

dependent on evolution of surface roughness. Few attempts have been made to develop 

analytical and constitutive relations in order to include these mechanisms in the 

analytical formulae (see for example Huang et al., 2002, and Belem et al., 2007). 

However these models are expected to give unrealistic solutions as there are different 

assumptions being made to simplify derivation of the formulae (detailed discussions 

will be given in Chapter 2). 

To overcome the above issue many numerical models have been developed. Recent 

advances in numerical modelling enable us to simulate fracture shear test in direct 

manner of force-displacement relations where fracture surface roughness evolves with 

time and state of stresses. Numerical works carried out by Cundall (2000), Karmai and 
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Stead (2008), Park and Song, (2009) are the most significant researches in this area. 

However, in-depth simulations of fracture shearing are still in demand and thus further 

research in this field is certainly needed. Most of the available simulators use numerical 

codes which are based on the theory of continuum medium, in particular finite element 

method (FEM). However, fewer applications of numerical codes which are developed 

based on distinct element method (DEM) have been reported. This is while it appears 

that the use of DEM based simulators could be advantageous for fracture shear 

modelling in the sense that it can model a fractured medium more efficiently and 

realistically. Therefore, in this study the particle flow code (PFC), which is a DEM 

based simulator will be used for 2D fracture shear test simulations. The results of such 

modelling will be presented in Chapters 3 and 4.  

Bonded Particle Model (BPM) implemented in PFC has been proven to be a good 

representative of rock material environment (Potyondy and Cundall, 2004). Asperity 

sliding, development of micro-cracks, asperity damage, and intact rock failure under 

high normal stresses are the deformation mechanisms which can be explicitly modelled 

using BPM during fracture shearing (Asadi and Rasouli, 2010). In PFC, force-

displacement curve progresses in time that enables real-time tracing of the fracture 

shearing behaviour. 

Several laboratorial shear tests have been conducted on rough fractures to 

understand their  shear strength (Cho et al., 2008; Grasselli, 2001; Huang et al., 2002; 

Jafari et al., 2003; Jiang et al., 2004; Lee et al., 2001; Yang and Chiang, 2000). Most of 

these experiments have been performed under constant normal load (CNL) condition, 

with  fewer being performed under constant normal stiffness (CNS) (Indraratna and 

Haque, 2000; Li et al., 2008; Olsson and Barton, 2001). This research is not intended to 

compare the results of these two approaches but is focused on understanding the effect 

of surface roughness on shear strength. Therefore, the experimental works conducted as 

part of this research are all under CNL conditions. Recently developed direct shear 

apparatuses for rock fractures (Barla et al., 2009; Hans and Boulon, 2003; Jiang et al., 

2004; Kim et al., 2006) are quite different in terms of normal and shear loading 

capabilities as well as maximum allowable shear displacement, sample size, and fluid 

pressure. These differences can limit the applicability of each in determination of strong 

rock fractures shear strength and asperity degradation during shear test. 

For the purpose of laboratory shear tests in current study, an existing true triaxial 

stress cell (TTSC), which has been originally designed for applying three independent 
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stresses on a cube sample, was modified. These modifications will be discussed in detail 

in Chapter 4 and it will be shown that the current set up is able of applying large normal 

and shear loads to a sample.  The experiments have been mainly performed on synthetic 

samples with different asperity shapes and then on pseudo real fractures whose 

geometry are identical along the sample thickness. This will allow us to compare the 

results of experimental tests with numerical simulations using PFC2D. However, the 

results of experiments on rock-like fracture are also given but 3D numerical simulations 

are recommended to be developed to compare the results.  

The subsequent Sections will describe the objectives and significance of this 

research, and the way this thesis has been structured.  

1.4 Objectives of this study 

According to the statement of the problem briefly introduced in the above Sections, the 

objectives of this PhD thesis can be summarised as below: 

1) Review the strengths and shortcomings of the commonly used techniques and 

methods for shear strength analysis of rock fractures. 

2) Simulate number of synthetic profiles numerically to obtain a correlation for peak 

shear strength estimation as a function of profile roughness, material properties and 

applied normal stress. The PFC2D will be used for the numerical simulations in this 

study as it was found suitable for modelling a discontinuous medium.  

3) Performing shear tests in the lab on different synthetic surfaces with different 

asperity geometries to understand the effect of roughness and normal stress on the 

fracture shear behaviour and asperity degradation. For this purpose, a new 

configuration of fracture shearing device will be applied. 

4) Comparison of the PFC2D simulation and experimental results to calibrate the 

numerical models and establish suitable set of model parameters which lead to a 

more realistic shear strength test results. 

5) Correlate roughness parameter DR1 with shear strength of profiles. Correlations will 

be developed for synthetic profiles and the results for some rock fracture profiles 

presented will demonstrate potential for such correlation.   
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1.5 Significance of this research 

Fracture asperities failure (degradation) and evolution of fracture surface roughness 

during shearing are problems which have been the subject of many analytical, 

numerical, and experimental studies. However, the complexity associated with various 

aspects of these processes requires further research to be conducted in this area.  

This research studies aim at investigating the progressive shear behaviour (i.e. 

contact sliding and asperity failure) of single rough rock fractures. This study is 

significant in several aspects which are briefly highlighted below: 

1) Numerical simulations: in this study a DEM based numerical simulator, PFC2D, has 

been used to model shear strength and asperity failure of rough fractures with 

different synthetic and real surface geometries. Several advantages and limitations of 

PFC2D in modelling realistic behaviour of rock structures and fractured medium will 

be explained and discussed in Chapter 3 when several synthetic and real rock profiles 

are modelled. It is to be noted that this study is among a very few studies which has 

used PFC2D for simulation of rough fractures shear strength and associated failure 

around the fracture. Perhaps the first and the main work belongs to Cundall (2000) 

who simulated the shear behaviour of a simple sinusoidal profile and compared to 

Barton‟s JRC empirical model, but in this work the simulations have been extended 

to any rock profile geometry and under various loading conditions. The results of 

simulations presented in Chapters 3 and 4 will show the capabilities and limitations 

of PFC2D in modelling fracture shear strength and asperity failure during shearing. 

2) Lab experiments: In order to calibrate the numerical models performing shear 

experiments in the lab was essential. The experiments were performed with a fracture 

shear cell (FSC) which was configured by special set up in the true triaxial stress 

cell. The modifications made to triaxial cell to allow it for fracture shear experiments 

are unique practices. Large amount of shear and normal loads that can be applied to 

the shearing sample is one of the advantages of the FSC. To be consistent with 

simulations which are in 2D, synthetic fracture surfaces with identical geometry 

along their third dimension (i.e. thickness) were built in the lab, and mortar with 

relatively similar micro properties as the PFC2D model was used for sample 

preparation. All of these concepts and practices are new capabilities generated during 

this research work which will help to better understand the dilation and failure 

behaviours of rock fractures under shear.  



Chapter 1 Shear behaviour of rough fractures  

 16 

3) Correlations developed in this thesis between newly developed roughness parameter 

DR1 (Rasouli and Harrison, 2010) and shear strength of synthetic and rock fracture 

profiles are another novelty in this work. The results of this study show that DR1 can 

be a good quantitative parameter for roughness characterisation of rough fractures. 

This gives a good reason for a continued study to correlate the 3D version of this 

parameter, i.e. DR2 (Rasouli, 2002) with shear strength of rough rock surfaces whose 

simulations are performed in 3D.    

The above are all innovative concepts which are going to be practiced in this 

research work and the results are expected to advance the fundamental and applied rock 

engineering science in this subject.     

1.6 Structure of the thesis 

Based on the objectives of this work the report is structured in different Chapters which 

are explained briefly below. The thesis comprises five Chapters and two Appendices. 

These are illustrated in Figure 1.10. 

In Chapter 2 different approaches and models proposed for the fracture shear 

strength analysis in rock fractures will be reviewed. The use of Joint Roughness 

Coefficient (JRC) and fractal dimension (D) in shear strength analysis of real fractures 

will be discussed in this Chapter. Also, here a brief review of new roughness parameter 

(DR1) is given. In particular, shortcomings of currently used analytical and numerical 

methods for fracture shear behaviour will be addressed. 

An introduction to the bonded particle model (BPM) which is implemented in PFC 

will be covered at the beginning of Chapter 3. The results of sensitivity analysis of 

model micro-properties through numbers of biaxial test simulations will be given which 

is followed by the analysis of model macro mechanical response. Fracture shear test 

simulation scheme in PFC2D will be introduced and different failure mechanisms will 

be analysed in this Chapter. The output results of simulation of synthetic profiles using 

PFC2D will be presented in this Chapter. The results will be compared with data taken 

from the available literature. Correlations developed to estimate the shear strength of 

symmetric triangular fracture and number of rock fracture profiles based on PFC2D 

simulations and profiles‟ DR1 which are presented in this Chapter. The extension of 

these analyses to real rock profiles are presented next in Chapter 3.  

The digital elevation data of some rock fractures were extracted using 

photogrammetry techniques for the simulation purposes. Also the existence of 
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correlation between DR1 and shear strength of some rock profiles will be shown at the 

end of this Chapter.   

In the first part of Chapter 4, the procedure of modifying the existing true triaxial 

stress cell (TTSC) to perform fracture direct shear tests on small sample blocks of 15cm 

is explained. Steps of sample preparation will be thoroughly explained. The results of 

direct shear tests on samples will be given in this Chapter in which different failure 

mechanisms of fracture and intact rock during fracture shearing are plotted. The fracture 

shear strength directionality will also be investigated by performing shear tests at 

different directions. Experimental outputs will be compared against the corresponding 

PFC2D simulations and applicability of this code to represent rock-like material space 

will be discussed. Finally at the end of Chapter 4, a real fracture surface will be tested in 

two opposite directions in the laboratory to demonstrate the application range of the 

fracture shear cell (FSC).    

Chapter 5 draws together the summary, conclusions and recommendations of this 

work. Finally, substantial reference list and two Appendices of supporting material will 

be given. These Appendices contain the JRC exemplar profiles and analytical 

calculations of synthetic profile cut-off strength criterion.  
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Figure 1.10 Structure of the thesis. 

 

Chapter 1 Shear behaviour of rough fractures 

An introduction to shear behaviour of rock fractures with rough surfaces and 
discuss the importance of surface morphology and its effect on the development of 
different failure modes during fractures shearing. 

Chapter 2 Customary methods of fracture shear strength estimation 

 An overview of the roughness effect on shear strength of rock fractures. 
 Introduction of roughness parameter, DR1. 
 A review of the methods proposed to study shear behaviour of rock fractures. 

This is followed by explaining different failure modes of rock fractures surfaces 
during shearing. 

 Review of analytical and empirical models of fracture shear strength. This is 
followed by detail analysis of cut-off behaviour of regular synthetic fractures.  

 Common numerical methods used in modelling fracture shear strength are 
overviewed by giving different examples application. 

 Recent developments of fracture shear apparatuses are reviewed and numbers of 
examples were given. 

Chapter 4 Laboratorial fracture shear tests 

 Laboratorial configuration of a new set up of fracture shear test apparatus is 
presented. This is followed by sample preparation details.  

 The results of direct shear tests on artificial samples are given in which different 
failure mechanisms of fracture and intact rock are discussed. The fracture shear 
strength directionality is examined by repeating the tests at opposite directions.  

 Experimental outputs are compared with PFC2D simulations. A rock fracture is 
also subjected to cyclic lab shear tests in two opposite directions. 

 
 

Chapter 3 2D Numerical simulations of fracture shear test 

 A brief introduction to bonded particle model (BPM) implemented in Particle 
flow code (PFC). 

 Sensitivity analysis of PFC2D micro properties are performed using biaxial test 
simulations. This is followed by selection of set of input data for fracture shear 
test simulation in PFC2D.   

 A new configuration of rough fractures shear strength modelling in PFC2D is 
presented. Micro cracking during fracture shear tests is also analysed. 

 A number of numerical analysis and simulations is run using PFC2D to develop 
a correlation to estimate fracture shear strength of synthetic and pseudo real 
fracture profiles. DR1 is integrated into this correlation.    

 Four real fracture profiles extracted from rock fracture samples are subjected to 
PFC simulations. Correlation is developed for rock fractures shear strength in 
which DR1 represents the profile roughness. 

Chapter 5 Summary, conclusions and recommendations 
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1.7 Summary 

The first part of this Chapter presented the importance of fracture surface roughness on 

mechanical behaviour of rock fractures. Scale effect and anisotropy of surface 

roughness was described as two important properties of fracture surface.  

Principles of fracture direct shear test including loading conditions and roughness 

characterisation were presented according. Evolution of roughness over time 

particularly under high levels of normal stress was highlighted. 

Recent developments in surface roughness characterisation were reviewed and DR1‟ 

a newly developed 2D parameter of roughness, was introduced and will be used in the 

analyses of this work. 

In the last part of this Chapter, a brief introduction to current status of numerical 

simulation of rock fracture shear behaviour was presented. Also, it was mentioned that 

PFC2D is going to be used in this study for this purpose. Objectives and research 

significance of this research were highlighted, and the structure of the thesis was 

outlined in Figure 1.10. Based on this Figure, in the next Chapter, we will continue by 

presenting the customary and recent advances in fracture shear strength estimation and 

roughness characterisation. 
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Customary methods of fracture shear 
strength estimation 

 

In most rock engineering problems, the shear strength of rock fractures varies widely 

under low normal stress levels. This variation is influenced mostly by surface roughness 

and the strength of the fracture wall.  Roughness of fracture surfaces changes depending 

on the rock type and the manner in which the fractures are formed. Conversely, under 

high normal stress levels, the shear strength spectrum of fractures and faults is narrow 

and less dependent on surface roughness (Barton and Choubey, 1977; Priest, 1993). The 

current rock joint models are capable of predicting the shear behaviour of fracture 

surfaces to some extent but most of them are unable to include the complex fracture 

surface characteristics, the effects of infill properties, and the degradation behaviour of 

asperities (Indraratna and Haque, 2000). 

Identification of failure modes along a fracture shearing plane is generally related to 

the surface roughness and material strength. Fracture sliding, shearing (or cut-off), and 

asperity contact damage (i.e. degradation) are three common modes of failure which 

may occur during fracture displacement (Huang et al., 2002). The latter two failure 

modes, however, found to be more cumbersome to model due to their dependency with 

surface roughness effect during shearing (Belem et al., 2009). These failure modes may 

also extend from the fracture planes into the rock matrix which could result in a 

reduction in rock mass strength. This indicates the importance of appropriate modelling 

of roughness when shear strength of a fracture surface is studied. 

In this Chapter, detail review of most commonly used models of fracture surface 

roughness is presented. Then different analytical, numerical and experimental 

approaches for fracture shear strength estimation will be discussed with a special focus 

on how surface roughness is incorporated in these models.  

It is well known that conventional direct shear tests have been carried out to 

investigate fracture shear behaviour, where the normal stress acting on the fracture 

interface is considered to be constant namely Constant Normal Load (CNL). Therefore, 

this particular mode of shearing is suitable for planar fractures where the fracture does 

not dilate during the test. For rough fractures however, there is an inevitable increase in 

normal stress due to inhibited dilation by the surrounding rock mass, where the stiffness 

2 
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exerted on the fractures controls the shear behaviour. This is an idealised mode of 

shearing under variable or Constant Normal Stiffness (CNS) conditions which are 

commonly observed in underground excavations (Indraratna and Haque, 2000). 

Numbers of analytical and empirical criteria have been developed to estimate the 

contacts shear strength under CNL and CNS conditions but in majority of them, 

quantification of fracture surface roughness is the most challenging task. In addition, 

numbers of numerical simulations and laboratorial experiments have attempted to 

estimate pre and post peak shear strength of fractures in different loading and boundary 

conditions. The difficulty encountered to the majority of such models is that they 

generally characterise the fracture surface roughness using only one unique value which 

is not adequate. Moreover in many cases, model does not account for the evolution of 

surface roughness and contact asperity damage, specially after the peak shear strength is 

reached. 

2.1 Rock fracture roughness characterization 

The shear behaviour of non-planar fractures is significantly influenced by surface 

properties of the fractures, or in other words, by the surface geometry or roughness. In 

general, the rougher the fracture surface, the greater the shear strength. Several methods 

have been proposed for estimation of fracture surface roughness. Indraratna and Haque 

(2000) categorized these methods in four different groups of joint roughness coefficient 

(JRC), self-similar and self-affine fractal dimensions, spectral and line scaling method, 

and continuous mathematical functions such as Fourier transform. Grasselli (2002) 

based on a triangulation algorithm which results in a discretisation of the joint surface 

into a finite number of triangles characterized roughness in terms of standard deviation 

of the angles of these triangles. A statistical parameters developed based on the 

distribution of unit normal vectors to the surface, is perhaps the latest development on 

roughness determination. Rasouli (2002) argued that these vectors are circular data and 

therefore their statistical analysis should be carried out using Riemannian geometry. 

Accordingly, he presented two roughness parameters DR1 and DR2 in order to 

characterise roughness of linear profiles and rock surfaces in 2D and 3D, respectively. 

In current thesis, DR1 will be integrated into fracture shear strength correlations using 

numerical simulations of synthetic and rock fracture profiles.  
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The merits of this method against customary methods are presented in Section 2.1.3 

within this Chapter. In the following Sections, the most commonly used and recently 

developed methods of roughness determination are presented. 

2.1.1 Joint Roughness Coefficient (JRC) 

Based on experimental works and observations, Barton and Choubey (1977) proposed 

10 standard profiles (10 cm length) of increasing roughness with assigned roughness 

coefficients ranging from 0 to 20 (see Appendix 1). To estimate JRC for a real fracture, 

one needs to compare its geometry with these standard profiles and choose the closest 

one to the fracture. The immediate difficulty in use of this observational method is that 

the morphology of 3D fracture surfaces is very complicated and the choice of direction 

at which the surface is looked at (surface roughness anisotropy) can influence the results 

significantly. JRC is the most widely used parameter for roughness assessment in rock 

engineering applications, perhaps because of its simplicity. Many works have been 

carried out to relate JRC to different properties of fractures, for example the shear 

strength (see Equation 2.16) and the roughness influence on fluid flow response of 

natural fractures. Despite all these attempts, it should be noted that JRC provides a 

subjective assessment of profile roughness, and hence it is not appropriate for objective 

roughness characterisation.  

Many researchers have encountered difficulties in using JRC as a parameter for 

fracture surface roughness determination and proposed alternative objective methods, 

e.g. artificial neural networks (Lessard and Hadjigeorgiou, 1996), Riemannian 

multivariate statistics (Rasouli, 2002), Fractal and statistical techniques (Kulatilake et 

al., 1995), and combined Fourier/Wavelet transforms (Asadi et al., 2009; Indraratna and 

Haque, 2000). However, most of these approaches are finally correlated to JRC for 

assessing hydromechanical behaviour of fractured rock masses.  

2.1.2 Fractal dimension, D 

A number of researchers have investigated the applicability of various geostatistical and 

fractal based approaches in quantifying roughness (Dight and Chiu, 1981; Kulatilake et 

al., 2006; Maerz et al., 1990; Tse and Cruden, 1979; Wu and Ali, 1978). Kulatilake et 

al. (1995) have pointed out that the values obtained for conventional statistical 

parameters vary with the measurement scale. Therefore, the surface roughness of rock 

joints needs to be characterised using scale invariant parameters such as fractal 

parameters. Several researchers have suggested using the fractal dimension to quantify 
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rock joint roughness (Fardin et al., 2001; Huang et al., 1992; Kulatilake et al., 1995; 

Odling, 1994; Power and Tullis, 1991). 

 
Figure 2.1 Self-similar and self-affine properties surface roughness (Kulatilake et al., 2006). 

Fractal geometry introduced by Mandelbrot in 1982 allowed description of irregular 

shapes which cannot be explained using Euclidean geometry. Fractal surfaces are 

divided into two groups: A self similar surface is a statistically scale invariant surface, 

and a self affine surface which is scale dependent, as shown in Figure 2.1. Fracture 

surface roughness has self-affine properties, as it is scale dependent (Kulatilake et al., 

2006). Most methods of calculating the fractal dimension were developed for self-

similar fractals, which are scale independent, and do not work for self affine surfaces. 

Rasouli (2002) argued that on the basis that roughness is a scale dependent 

phenomenon, the use of this approach seems to be of limited use for roughness analysis.  

 
Figure 2.2 Correlations between fractal dimension (D) and JRC (Rasouli, 2002). 
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Kulatilake et al. (2006) also pointed out that the fractal dimension itself is not 

sufficient and at least two fractal parameters are required to quantify rock joint 

roughness. They stated that based on the assumption that the profile of rock fractures 

has self-similar properties, fractal dimension can be used to characterise profile 

roughness. Many works have attempted based on this assumption to relate profile 

roughness to fractal dimension, D.  

Having the (x,y) coordinates of a profile from roughness measurement, the fractal 

dimension of the ten JRC profiles can be calculated. The results of these calculations by 

different researchers are shown in Figure 2.2. It is seen that the values of D vary in a 

very small range as the JRC changes between 1 and 20. Looking at this figure, it 

appears that the results of different correlations are quite different. For example, the 

values obtained by Carr and Warriner (1987) are larger than those obtained by 

Wakabayashi and Fukushige (1992). 

More importantly, the fractal dimension does not monastically increase as we move 

from JRC=1 to JRC=20. However, on the basis of the stated intent of the JRC system, 

we should expect that profile’s roughness to increase as JRC becomes larger. For 

example, the plot obtained by Kulatilake et al. (1995) has larger fluctuations than the 

other curves which shows that the JRC profiles do not follow a similar roughness  as 

originally proposed by Barton and Choubey (1977), as shown in Figure 2.2. Similar 

issue was reported when JRCs were attempted to be ordered based on their 

corresponding profile signal energy, using a wavelet approach (Asadi et al., 2009).  

Rasouli (2002) also argued that using D for roughness estimation does not provide 

a unique value as an indication of profile roughness if different methods of calculation 

are used. This issue has been studied in detail by Tate (1998). 

Fardin et al. (2001) used the self affine fractals theorem, and based on that proposed 

the two parameters, D (fractal dimension) and A (amplitude parameter), to determine 

roughness of a rock fracture surface as 
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In these two equations, Si is the sampling interval. The important point in the above 

equations is the limit of these parameters as a result of changing Si. Equation 2.2 shows 

that theoretically, when sampling size changes from zero to infinity, the maximum 
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range will be much smaller, and this recalls the earlier noted problem of discrimination 

between roughness of different rock surfaces.  

In consequence, although this approach has improved within the last decade, 

applicability of that needs to be considered as even when applying the self affine fractal 

theorem, it may not be possible to compare roughness of different rock surfaces 

appropriately. 

2.1.3 Riemannian roughness parameter, DR1 

The idea of characterizing roughness of a rough fracture based on the distribution of 

deviation angles from a smooth plate firstly introduced by Barton (1971). Also, Fecker 

and Rengers (1971) through their practical measurements using a compass mounted on 

a smooth plate found that as the base plate (sampling scale) increases, the scatter of the 

measurements decreases. Therefore, statistical analysis of deviation angle is in fact an 

approach to quantify surface roughness. For example, the standard deviation of angles 

of the plate measured at different scales and at different orientations could lead to a 

parameter for characterizing roughness at different scales and orientations. This brief 

explanation indicates two important properties in roughness measurement: scale 

dependency and anisotropy.  

Extracting unit normal vectors from a surface, Rasouli (2002) analysed these 

vectors statistically to characterize surface roughness. In a simple case of a linear 

profile, introducing a hypothetical connected pin sampling device, the unit normal 

vectors to the profile can be extracted at different scales and on a random sampling 

basis. This is shown in Figure 2.3. 

Rasouli (2002) argued that these normal vectors are all located on a periphery of a 

unit circle, i.e. these vectors are circular data and therefore statistical analysis of such 

data is to be carried out in Riemannian space, rather than in Euclidean space, as is a 

common approach.  

n
n

n

n
n

n

 
Figure 2.3 Profile sampling techniques (Rasouli, 2002). 



Chapter 2 Customary methods of fracture shear strength estimation 

 26 

A simple difficulty with Euclidean geometry is that, for example, the mean of two 

unit vectors (0.0, 1.0) and (1.0, 0.0) is (0.50, 0.50), which corresponds to a point located 

inside the circle, while the original data are points located on the circle. This means that 

Euclidean geometry does not consider the shape of the data distribution into account.  

As shown in Figure 2.4, the transfer of 2D Euclidean data in Riemannian space is 

obtained by un-wrapping the circle. In this 1D space the data are points located on a line 

called principal chart, with their coordinates being defined by the distance from a point 

defined in this line. For the two vectors mentioned above the corresponding coordinates 

in Riemannian space are points with length of 0 and /2, i.e. the curved length on the 

circle. The simplest 2D geometry in Euclidean space is a unit circle and its 

correspondence in Riemannian space is a 1D line. All statistical analysis of vectors 

(including data mean and variance) can now be performed in 1D Riemannian space. For 

the two example vectors the mean value is /4. Once the calculations completed the 

data can be transferred back to the Euclidean space, i.e. corresponding to the unit circle.  

 
Figure 2.4 Riemannian representation of a 2D unit vector in Euclidean space (Rasouli, 2002). 
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In this case, one can imagine that, for example, the mean of the data will be located 

on the unit circle. In the above simple example, the mean vector as is transferred back to 

the circle shows point (0.50, 0.50) but this time it is located on the circle. In another 

word, for the case of linear profiles, the data can be considered as their angles with 

respect to a datum axis. In our example here, the representations of the two vectors in 

Riemannian space are 0 and /2, corresponding to the angle identifying vectors (0.0, 

1.0) and (1.0, 0.0).Similar to what explained for a 2D linear profile above, the unit 

vectors extracted from a rock surface using a hypothetical sampling device will be 

located on the surface of a unit sphere. The Riemannian representation of a unit sphere 

is a 2D plane.  
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Figure 2.5 Unit normal vectors to a symmetric synthetic profile (Rasouli, 2002). 
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Transformation of data from a unit sphere to its corresponding Riemannian space is 

not straightforward and requires complicated mathematical computations. The reader is 

referred to Rasouli (2002) for detailed discussion on this. 

For linear profiles, Rasouli (2002) proposed the 1D Riemannian dispersion 

parameter (DR1) corresponding to the standard deviation of unit normal vectors 

calculated on the principal chart as a measure of profile roughness. The larger the DR1, 

the rougher the profile.  

For a synthetic symmetric triangular profile shown in Figure 2.5 

  lhDR 2tanθ -1
1  . (2.4) 

which shows that for such a profile the base angle (represented in radians) of the profile 

is the measure of roughness in Riemannian space.     
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Figure 2.6 Unit normal vectors to an asymmetric synthetic profile (Rasouli, 2002). 
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DR1 changes between 0 and /2 but in real rock profiles the base angle is unlikely to 

be greater than about 10 degrees (i.e. 0.175). 

In Figure 2.6 an asymmetric synthetic triangular profile is shown. The geometry of 

this profile is identified using two angles 1θ  and 2θ  corresponding to chords c1 and c2, 

respectively. For such a profile DR1 is obtained as  
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Figure 2.7 Unit normal vectors to a sinusoidal profile (Rasouli, 2002). 
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As the symmetry ratio (l1/l2) increases towards unity (l1l2=l), it can be seen that 

Equation 2.5 approaches Equation 2.4, i.e. roughness of a symmetric triangular profile.    

For a sinusoidal profile in a general form of bxaz sin , with amplitude 2a and 

wavelength bw 2  (or aspect ratio a/w where b = 2π/w ), as shown in Figure 2.7, 

calculations of DR1 results in 
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which indicates that profile roughness increases as the wavelength (w) decreases or 

amplitude (2a) increases, but not as a linear proportion. From this equation the 

maximum value of roughness is 1.6074. Comparing this equation with Equation 2.4 

(with maximum value of 1.57), it can be found that geometrically a sinusoidal profile 

shows a larger range of roughness values than a synthetic symmetric profile. This is 

because the maximum deviation of normals on a sinusoidal profile is larger than on the 

corresponding symmetric profile (Rasouli, 2002).  

It was extensively shown that the DR1 has large capabilities to be applied as profile 

roughness descriptor. In Chapter 3, numerical simulations will be performed on 

synthetic profiles to estimate their peak and residual shear strengths. Then DR1 of each 

profile will be linked to its peak shear strength to show the applicability of the 

parameter, which is the objective of this work. 

In the following Sections, fracture shear strength models will be reviewed in 

separate Sections as analytical and empirical, numerical, and experimental approaches. 

It was attempted to cover the approaches and models which are somehow related to the 

objectives of this work. 

2.2 Analytical and empirical models 

In this Section, some of the analytical solutions and empirical relationships for fracture 

shear strength estimation are reviewed. 

2.2.1 Coulomb sliding criterion 

Perhaps one of the oldest shear strength criteria is the linear correlation proposed in 

1776 by coulomb with its modified form known as Coulomb’s sliding law. This is 

appropriate for fractures having planar smooth surfaces. The Mohr-Coulomb criteria 

which presented based on earlier Coulomb law (Figure 2.8) is expressed as: 
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Figure 2.8 Mohr-Coulomb fracture curves at peak and residual shear strengths. 

 pnp tanστ  fC . (2.8) 

where p is joint shear strength, p is joint peak friction angle, n is normal stress and Cf 

is the joint cohesion. The criterion can also be used for the residual shear strength by 

taking Cf = 0 and substituting the peak friction angle by residual friction angle, see 

Figure 2.8. 

The Mohr-Coulomb relation is the most widely used criterion for estimating the 

shear strength of rock fractures. The criterion is suitable for wide range of applications, 

except at low stresses, where the shear strength of the fractures is being overestimated 

(Herdocia, 1985). The Mohr-Coulomb criterion has been used to predict shear strength 

of large scale fractures, i.e. faults which generally considered as smooth fractures. 

However, this is debatable considering the different effect of roughness and waviness 

on fractures behaviour as stated by Jafari et al (2003). While it might be acceptable to 

ignore the effect of roughness (i.e. second order asperities) on fault movements, 

waviness (or first order asperities) plays a significant role in fault slippage mechanism.  

2.2.2 Patton’s bilinear equation 

The undulations and asperities on a natural joint surface have a significant influence on 

its shear behaviour (Barton, 1973; Patton, 1966). Patton (1966) demonstrated the 

significant effect of joint surface geometry on the shear behaviour of rough joints by 
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conducting several direct shear tests on the small saw-tooth replicas with different 

asperity inclinations, i, at varying normal stresses. From these tests he established a 

bilinear failure envelope shown in Figure 2.9. This figure shows that the failure curve 

consists of two lines, intersecting at a transition point before which the sliding along the 

asperities at low normal stresses expected to occur, whereas at higher normal stresses 

shearing of asperities is the dominant mechanism.  

Assuming that the asperities slide along each other at low normal stresses, the peak 

shear strength was proposed by Patton (1966) as   

  i Bnp tanστ , (2.9) 

where p is joint shear strength, B is the basic friction angle (i.e. the angle of frictional 

sliding resistance along the asperities), n is the normal stress and i is the asperity 

inclination angle (i.e. dilation angle). At high normal stress, where the asperities are 

assumed to be sheared off and the dilatancy vanishes, the residual shear strength is 

expressed as (Patton, 1966) 

  rnr tanστ  . (2.10) 

where r  is the residual friction angle. Although, such an implication does not account 

for asperity degradation and evolution of roughness in shearing, it is a good estimate of 

shear strength of saw-tooth asperities. The geometry of real fractures is too complex and 

cannot be simply estimated using this simple model.  

 
Figure 2.9 Patton bilinear fracture shear strength model proposed for saw-tooth asperities. 
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Figure 2.10 First and second order roughness (from Patton, 1966). 

In natural fractures, the first-order and second-order asperities introduced by Patton 

(1966) and shown in Figure 2.10 appear to have different impacts on fracture shear 

strength. At low normal stresses, second-order asperities influence the shear behaviour 

of fractures dominantly whereas at high normal stresses this is the first order asperities, 

referred to as waviness, which plays the major role in shear response of fractures. 

Amongst the roughness parameters introduced earlier on, it appears that the DR1 

concept proposed based on the distribution of unit normal vectors to a profile is capable 

of capturing both of these roughness components and therefore can be a good 

representative for roughness characterization. This is further discussed in Chapter 3. 

2.2.3 Ladanyi and Archambault’s criterion 

Ladanyi and Archambault (1970) developed a peak shear strength criterion for rock 

fractures which includes both asperity sliding and shearing-off (i.e. cut-off) behaviours. 

Their criterion is in the form of  

 
  

  B

Bn

tan11
τ.tan1σ

τ





V
V

s

ss




. (2.11) 

 is the fracture shear strength,  is basic friction angle of fracture, n is the normal 

stress and s is the proportion of fracture surface which is sheared through the intact 

material ( AAss   in which As is the contact area over which asperities are being 
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sheared and A is the total projected shear area, see Figure 2.11), V is the dilation rate, 

dudvV   at peak shear stress, and  is the shear strength of the intact material which is 

defined as 

 
Figure 2.11 Sheared-off asperities and visual demonstration of s (after Ladanyi and Archambault, 

1970). 

  tanστ nc . (2.12) 

 Equation 2.11 was developed based on dividing the total shear strength into four 

different components (S1-S4): external work done in dilating against normal force, 

additional internal work in friction due to dilatancy, friction with no dilation, and 

shearing of solid asperities. Equation 2.11 is the final form of the criteria where S1 to S4 

are replaced with their corresponding functions. A schematic diagram of the sheared-off 

area is shown in Figure 2.11. One of the difficulties associated with this model is how to 

determine the s and V for rock fractures as they are expected to vary with the normal 

stress as shown in Figure 2.12. 

 Substituting Equation 2.12 into Equation 2.11, Ladanyi and Archambault (1970) 

determined the critical normal stress, r  as 

    
  


tantan

σ
B

r i
c .    (2.13) 

where c and  are the cohesion and friction angle of the intact rock, respectively. This 

gives an estimate of transition normal stress (see Figure 2.12). Transition normal stress 

indicates the normal stress above which dilation does not take place along the fracture 

surfaces as asperities are completely sheared-off. 

Taking into account the dependency of the dilation rate and the sheared-off area to 

the applied normal stress, Ladanyi and Archambault (1980) proposed following 

correlations 
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where r is the transition normal stress (practically equal to compressive strength of the 

sample) above which no dilatancy is expected along the asperities. L and K are 

dimensionless constants with values of 1.5 and 4, respectively. i0 is the geometrical 

ascending slope of the intact asperities, and  is a parameter which takes into account 

the initial degree of interlocking of the asperities (Ladanyi and Archambault, 1980). 

 
Figure 2.12 Fracture shear strength model for jointed rock (after Ladanyi and Archambault, 1970). 
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Figure 2.12 shows the Ladanyi and Archumbault’s fracture curve, as well as 

variation of both dilation rate and sheared area ratio with normal stress. Figure 2.12.a 

shows that approaching the transition point the dilation rate reduces and becomes zero 

at stresses above this threshold.  

However, as depicted in Figure 2.12.b, the ratio sheared-off area increases as a 

result of applying larger normal stresses but approaches to a constant value at normal 

stress above the transition point (r) meaning that failure ultimately occurs within the 

intact rock. Figure 2.12.c compares the bi-linear failure model proposed by Patton 

(1966) with curved envelope of Ladanyi and Archambault, 1980.      

From the above discussion it may be concluded that although the proposed model 

appears to be robust in terms of considering various failure modes, its applicability is 

likely to be limited due to the need for identifying number of constant variables, which 

practically is not straightforward. Therefore, the need for a simpler model remains on 

demand. Using a similar concept, Huang et al. (2002) proposed a limit equilibrium 

approach to determine the shear strength of triangular shaped asperities, which will be 

discussed later in Section 2.2.7. 

2.2.4 Barton empirical criterion 

Barton (1973) and Barton & Choubey (1977) proposed the most well-known empirical 

shear strength criterion based on Joint Roughness Coefficient (JRC) and strength 

parameters of jointed rock mass. The criterion is expressed as  
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In this equation  is fracture shear strength, n is the normal stress, B is the basic 

friction angle, JCS is the joint wall compressive strength and JRC is the joint roughness 

coefficient, introduced in Section 2.1.1. This criterion was developed based on 

experimental works carried out on more than 100 replicas with different strength 

properties. The criterion has a similar form as Patton’s bilinear law, but here the 

dilation, i, varies as a function of normal stress, in the form of 
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Whilst, in contrast to Patton’s bilinear shear strength criterion, Barton’s criterion has 

the merit of providing a gradual degradation of friction angle with respect to increasing 
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normal stress, its application is often limited by the bias in determination of the JRC 

from the standard profiles (Barton, 1973). This issue was discussed in Section 2.1.1.  

Since both JRC and JCS are scale dependent, Barton et al. (1985) developed the 

following relations, based on their experimental lab works, to estimate the field scale 

values of these parameters: 
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In the above equations the subscripts 0 and n refer to the lab and field scale values, 

respectively. It is to be noted that the nominal lab scale sample length is L0 = 100 mm. 

Although this is the most commonly used criterion for estimation of rough fracture 

shear strength, its application is limited due to difficulties encountered in JRC value 

estimation. In Chapter 3, it will be shown how, in current work, it is attempted to 

correlate roughness parameter DR1 with shear strength of the profile using numerical 

simulation of fracture shear strength.  

More recently, Asadollahi and Tonon (2010a) and Asadollahi et al. (2010) 

Revisited Barton's empirical model for fracture shear strength and later modified their 

model using laboratory experiments. They modified Barton's original model in order to 

address the following limitations: independency of the peak shear displacement to 

normal stress; the assumption of zero mobilized JRC after 100 times the peak shear 

displacement for post-peak shear strength; the assumption of zero dilation displacement 

at up to one-third of peak shear displacement. They collected and analyzed a database of 

results of direct shear tests available in the literature and introduced an empirical 

equation to predict the peak shear displacement, which considers the effect of normal 

stress and works for all types of rock discontinuities, even sawed fractures. This 

equation is expressed as  
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Using this approach, the post-peak mobilized JRC can be obtained using a power-

base equation, instead of employing Barton's table. They stated that the new empirical 

equation for post-peak mobilized JRC works for all ranges of displacements. The 
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modified model can also predict negative compressive dilatancy at small shear 

displacements. 

2.2.5 Fracture deformation models 

The currently existing fracture deformation models are the Coulomb friction model, the 

Barton–Bandis joint model (Barton et al., 1985) and the continuously yielding joint 

model (Cundall and Lemos, 1990). The Coulomb linear deformation model, as 

explained previously in Section 2.2.1, sufficiently models smooth discontinuities. The 

Barton–Bandis joint model is more appropriate to explain the non-linear behaviour of 

rough rock joints (Indraratna and Haque, 2000).  

The continuously yielding model (CYM) proposed by Cundall and Lemos (1990)  

represents plastic deformation during shearing of fracture surfaces. This model can 

simulate the internal mechanism of progressive damage of the joint under shear. The 

CYM is more realistic than the standard Mohr-Coulomb joint model in that it could 

consider the nonlinear behaviour observed in physical tests such as joint shearing 

damage, normal stiffness changes due to different normal stress levels, and decrease in 

dilation angle with plastic shear displacement (Cundall, 2008; Indraratna and Haque, 

2000). 

2.2.6 Asperity degradation models 

Asperity damage (it is also called asperity degradation) is a potential mechanism which 

may take place during shearing a fracture plane. This happens in a complicated manner 

and can influence the ultimate shear strength of the fracture significantly.  

During shearing, the joint roughness undergoes continuous changes due to wearing, 

grinding, breaking and crushing of asperities. The evolution of dilation angle during 

fracture shearing has been addressed by various laws (Hutson and Dowding, 1990; 

Ladanyi and Archambault, 1970; Plesha, 1987; Son et al., 2001). Plesha (1987) 

proposed a plasticity-based model for surface asperity degradation. This concept was 

studied in further details  by Lee et al. (2001). In a recent work by Belem et al. (2007), 

they proposed explicit joint surface roughness degradation models based on 

experimental, analytical and previous works to describe the evolution of initial surface 

roughness under monotonic and cyclic shearing. One of the merits of their work is that 

shear behaviour of jointed specimens were studied under large cyclic shearing loads 

(e.g. strong earthquakes), which causes most of the first- and second-order asperities 

being degraded. Another advantage of the proposed models is that they can predict the 



Chapter 2 Customary methods of fracture shear strength estimation 

 39 

degradation of a fracture surface undergoing shearing as a function of applied initial 

normal stress, normal stiffness and accumulated shear displacement (Asadollahi and 

Tonon, 2010b; Belem et al., 2007, 2009). 

Characterising roughness in their models using fractal dimension, which is still 

debatable (see discussion given in Section 2.1.2) is perhaps a weakness of this model. In 

this work, we partly investigate the degradation mechanism in fracture shearing and 

show how it is influenced by surface roughness. This is while modelling the continuous 

change in surface roughness during shearing is very cumbersome: this is one of the 

elements which add complexity into modelling asperity degradation mechanism.   

2.2.7 Asperity cut-off mechanism 

Huang et al (2002) proposed a simplified analytical model to estimate shear strength of 

a synthetic crenulated profile with symmetric triangle asperities, as shown in Figure 

2.13. This model was developed based on Mohr-Coulomb failure criterion and 

employing the limit equilibrium analysis of normal and shear forces acting on asperity 

contacts. They also performed direct shear tests on artificial fractures with symmetric 

asperities in the lab and validated their developed analytical model.  

 
Figure 2.13 Simulation of a rock fracture with an idealised triangular asperity profile (after Huang et al. 

2002). 

Figure 2.14 shows a shear box containing a symmetric triangular profile with angle 

q, chord length s, and asperity base length L in a material that obeys a linear Coulomb 

strength criterion. This profile is subjected to both a horizontal shear stress τ  acting 
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from left to the right direction and a normal stress nσ  applying vertically. The stiffness 

of the system is assumed sufficiently high to ensure that failures occur at asperities’ 

upslope (i.e. chord s). The limit equilibrium analysis of free body diagram of the broken 

asperity gives the resultant normal and shear forces on cut-off plane based on normal 

and shear stresses ( nσ , τ ) applied to the shear box. Applying Coulomb’s failure 

criterion the shear strength of the critical plane along which shear failure occurs is 

defined as 

  
 




 αtanσ

tanαsinαcos
αθsin

θsin
τ n

c
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where  is the inclination of the critical plane (found by evaluating 0αdτd  ), q is the 

asperity base angle, and c and  are the cohesion and friction angle of the intact rock, 

respectively (details of derivation of the formula is given in Appendix 2). 

Equation 2.20 was initially developed based on the assumption that horizontal 

displacement of the specimen has caused the right chord of the lower block to have 

previously separated from the upper matched block, and hence forces acting on the right 

side chord are zero. 

 
Figure 2.14 Geometrical features of asperity Cut-off in a symmetric triangular profile. 

Figure 2.14 shows that after asperity failure is taken place, the profile geometry 

changes to an asymmetric triangular profile with angles  and q corresponding to 

chords c1 and c2, respectively, where 

  αθsin
θsin

1 
 lc  (2.21) 

and 

  αθsin
αsin

2 
 lc . (2.22) 
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The normal stress above which the profile roughness will be sheared completely smooth 

is obtained by evaluating   0dd 0n 


, which leads to 

 

2
0n cos)tanθ(cotσ c . (2.23) 

This defines the point at which fracture shear strength curve intersects the intact 

rock material and above which fracture roughness becomes ineffective on peak shear 

strength behaviour of the fracture. This equation was derived in current study which 

derivation details are given in Appendix 2.  

As discussed in Section 2.2.3, Ladanyi and Archambault (1970) defined this point 

using their asperity contact model (see Equation 2.13). The comparison between their 

model and the latter model given by Equation 2.23 is shown in Figure 2.15, where the 

critical normal stress is plotted versus asperity inclination angle q or i. This figure 

shows that in both models the asperities sheared off due to increased normal stresses. 

The difference between the results of the two models comes from the basic friction 

angle (B) appearing only in Ladanyi and Archambault model. As the asperities are all 

sheared-off, it is expected that the critical normal stress to be independent of fracture 

basic friction angle and in this respect the second model is thought to be more 

appropriate. 

 
Figure 2.15 Critical normal stress versus asperity inclination angle for a symmetric triangular asperity 

profile depicted in Figure 2.14. 

However, the effect of basic friction angle reduces at higher normal stresses and 

this is why in Figure 2.15 the two models become less different as normal stress 



Chapter 2 Customary methods of fracture shear strength estimation 

 42 

increases. Equation 2.20 together with the Coulomb sliding model given by Equation 

2.8 could be used to represent the shear strength envelope for a synthetic triangular 

fracture profile. This is shown in Figure 2.16 for different profiles with increased base 

angles, where the corresponding asperity cut-off angles, , for these profiles are also 

plotted. As is seen from this figure, the shear strength increases as the normal stress 

becomes higher and this is larger for rougher profiles (i.e. higher asperity angles).   

Also, from Figure 2.16 it can be seen that the cut-off angle decreases as normal 

stress increases and levels off to zero, which corresponds to a smooth surface where the 

asperities are sheared off from the base line. In general, the shearing process of fractures 

is expected to be a combination of contact sliding at low normal stresses, asperity cut-

off at relatively high normal stresses, and rock failure at normal stresses larger than the 

critical normal stress defined using Equation 2.23. These are depicted in Figure 2.17 

where the transition point between these three mechanisms may vary as a function of 

fracture basic friction angle and cohesion properties. It is to be noted that not all of three 

mechanisms are necessary to occur and depending on the normal stress level the 

fracture may begin to experience the asperity cut-off or even the failure may start within 

the intact rock.  

 
Figure 2.16 Shear strength and asperity cut-off angle of synthetic symmetric triangular profiles as a 

function of normal stress. 
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Figure 2.17 Transition between fracture sliding, asperity cut-off, and intact rock failure mechanisms.  

Huang et al. (2002) through their lab experiments on two sets of artificial 

symmetric triangular fractures with base angles of q = 15 and q = 30, reported on four 

types of failure modes: these are defined as asperity sliding, cut-off, separation, and 

crushing which occur during fracture shearing. Figure 2.18 schematically shows 

asperity sliding and cut-off at different normal stresses from their work. It is seen that as 

normal stress and asperity angle increase, cut-off angle decrease until becomes a smooth 

surface parallel to fracture plane. For example, with asperity angle of 30 degrees, 1.5 

MPa of normal stress gives a horizontal cut-off plane in which asperity is completely 

sheared-off; it can be identified as critical normal stress at which failures (e.g. large 

cracks) take place within the intact rock. Further discussion on this will be made in the 

Chapter 3 together with our simulation outcomes.  

Huang et al. (2002), validated the results of their analytical cut-off model by 

comparing them with experimental results and found a good agreement. Similar 

behaviour was also observed through the numerical simulation of synthetic profiles, the 

results of which will be given in Chapter 3.  

This phenomenon will be experimentally tested and the results of which will be 

presented in Chapter 4. The values of critical normal stress obtained analytically using 

Equation 2.23 in this Section will be used to correlate roughness parameter (DR1) with 

values of peak shear strength obtained from simulations in Chapter 3.     
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Figure 2.18 Failure modes observed in direct shear experiments (after Huang et al. 2002). 

2.3 Numerical models 

Different numerical models have been used to study the significant influence of 

discontinuities on the hydro-mechanical and thermal behaviour of fractured rock masses 

(Cundall and Lemos, 1990; Cundall and Strack, 1979; Ivars et al., 2008; Kulatilake, 

1998) . Amongst these, the three most frequently cited constitutive models which have 

been integrated into the universal distinct element code (UDEC) are Coulomb sliding 

model, Barton-Bandis joint model and the CYM. The recently developed degradation 

model by Belem (2007) uses a similar formulation as the CYM and can be implemented 

in the UDEC. In these models a roughness parameter such as JRC or the average 

asperity angle, i, is used to consider the effects of surface roughness on fracture 

mechanical behaviour. 

Finite difference modelling (FDM) has been widely used in simulation of rock 

fractures behaviour particularly in large strains conditions. Fast Lagrangian Analysis of 

Continua (FLAC) in two and three dimensions is commercial code which is based on 

explicit FDM. Fracture modelling in these codes is done using the interfaces and giving 

them different fracture geometries and properties. Numbers of joint constitutive models 

such as Coulomb sliding and Bandis models have been implemented in FLAC, which 
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can be assigned to the modelled fracture. The difficulty of using FLAC in simulation of 

rock fractures is due to limited number of grids existing along the fracture profile 

(especially large scale faults) which influence the modelling of real rock fractures with 

complex geometries. Moreover, FLAC is used to determine the fracture properties such 

as normal and shear stiffness by back calculations of Young and shear modulus of intact 

rock and rock mass from the uniaxial compression test simulations (Rosso, 1976; Swan, 

1983).  

Many researchers have attempted to model rock fractures behaviour using FDM 

method implemented in few numerical codes. Majority of the studies are considering 

the concept of rock slope stability (Verma and Singh, 2010; Yin et al., 2011; Zhu et al., 

2009). Wang (2006) studied the shear band, axial, lateral and volumetric strains as well 

as Poisson’s ratio of anisotropic jointed rock specimen using the FLAC. In his analysis, 

failure criterion of rock was a composited Mohr-Coulomb criterion with tension cut-off. 

He considered the inclined joint, treated as square elements of ideal plastic material. 

The most relevant numerical works to the current study which have been performed 

within the last decade are taking the advantageous of FEM, DEM, and coupled 

FEM/DEM approaches to model the rock fracture shear behaviour. The following is the 

brief review of these attempts by criticising their benefits and merits to the solutions of 

rock engineering and fracture mechanics problems.     

2.3.1 FEM based approaches 

FEM based approaches are not intended to be used for simulation of fractured media as 

this is developed initially for modelling continuum bodies. However, researchers have 

attempted to adopt the FEM based models for simulation of shear strength of fractured 

rock masses. 
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Figure 2.19 (a) Shear stress versus shear displacement curve for profile with JRC=18-20 under 15 

MPa normal stress. (b) Displacement of fracture profile upper wall at four stages during the 
simulation (after Karami and Stead, 2008). 

Karami and Stead (2008) performed numerical simulations using Hybrid 

FEM/DEM code to investigate the process of fracture surface damage and near-surface 

intact rock tensile failure. They simulated the shear strength of JRC exemplar profiles 

with JRC values of 5, 10, and 20 in a direct shear tests. They investigated the surface 

damage mechanisms in terms of joint surface wear or tensile fracturing of the intact 

rock along the joint plane. Their numerical results agreed closely with published 

experimental observations. Figure 2.19 gives the results of their studies for profiles with 

JRC=18-20. Figure 2.19.a shows the shear stress-displacement plot in which four points 

(1-4) are highlighted starting from peak shear stress and developing to post-peak 

behaviour showing the residual state of the sheared fracture. Visual comparison between 

the pre- and post peak behaviours is given in figure 2.19.b.  

Karami and Stead (2008) concluded that asperity degradation and propagation of 

shear-induced micro cracks must be accommodated within the stability analysis 

particularly for large scale fractures (i.e. faults reactivation analysis). However, this has 
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not been addressed appropriately within the published studies and needs further 

research. Although their model seems to be capable of simulating rock fractures 

deformation under shear loads, it appears to be unable to trace the developments of 

micro cracks.  

Giacomini et al. (2008) performed FEM numerical simulation using a FEM based 

code called ABACUS to simulate shearing behaviour of synthetic saw-tooth profiles 

which was previously tested in laboratory experiments by Yang and Chiang (2000). 

They used the latest version of ABACUS that incorporates an element removal function 

allowing one to simulate asperity contact damage. 

Figure 2.20.a shows the results of their FEM simulations in which degradation of 

asperity contact is visible while shearing the single asperity fracture from right to left. 

Degraded material is removed from the model when some degree of damage occurs on 

asperity contacts and finally shear stress diagram versus shear displacement plotted in 

Figure 2.20.b. As shown in the figure, there is a good agreement between numerical and 

experimental results which shows the accuracy of their produced model. These 

simulations are performed under relatively low normal stresses (here 0.39 and 1.47 

MPa), however, it will be useful to perform further simulation under high normal 

stresses. It must be stated that shear strength of rough fractures are highly affected by 

the grain size of fracture surface material (which may be referred to as micro-roughness 

behaviour) and this can affect the initial shear strength of the fractures: this is not taken 

into account in FEM based simulations since the environment is continuum. We will 

refer to this concept later in Chapter 3 where it is shown how grain size distribution can 

significantly affect the micro-roughness (or say first-order asperity) contribution on the 

ultimate shear behaviour of rough fractures. 
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Figure 2.20 (a) Degradation of the contact asperity during shearing, (b) Shear strength versus shear 

displacement curves, and numerical results versus experimental data at two different 
normal stresses (Giacomini et al., 2008). 

2.3.2 DEM based models 

Indraratna and Haque (2000) conducted numerical modelling of shear strength of rock 

fractures using UDEC and studied the effects of infills on fracture shear behaviour. This 

code has been successfully used to model the shear behaviour of fractured rocks, flow 

through discontinuities and slope stability problems. The calculations performed in 

UDEC are based on Newton’s second law of motion, mass conservation and momentum 

of energy principles. These are actually the principals of all DEM based programs. As 

stated, different joint models are allocated in UDEC program including the linear Mohr-
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Coulomb friction model for non-dilatant fractures, the Barton-Bandis model (known as 

BB model) and continuously yielding model (CYM) for non-linear behaviour of rock 

fractures.  

The continuously yielding model, CYM, (Cundall and Lemos, 1990) can be applied 

for testing under both constant normal load (CNL) and constant normal stiffness (CNS) 

conditions. Indraratna and Haque (2000) used this model with preference as they 

believe it is capable of satisfactorily represent single episodes of shear loading. This 

model is developed to simulate in a simple manner the internal mechanism of 

progressive damage of fractures under shearing, the details of its formulation are given 

by Cundall and Lemos (1990). Some of the shortcomings of this model include the an 

angular block in UDEC cannot break so it is unable to trace the development of micro 

cracks and extent of damage zones around the sheared fractures versus time as well as 

the difficulties in modelling the real fractures geometries. Therefore further 

improvements are required to enable UDEC simulating the rough fractures shear 

strength effectively. 

Particle flow codes (PFC2D and PFC3D) have been widely used in particle 

mechanics modelling in a discontinuum media in which the Bonded Particle Model 

(BPM) is implemented. PFC is a Distinct Element Method (DEM) numerical simulator 

developed by Cundall and Strack (1979). It has been applied in solving many different 

rock mechanics problems such as simulating biaxial testing of a rock specimen in 

laboratory (Potyondy and Cundall, 2004), failure around a circular opening under bi-

axial compression (Fakhimi et al., 2002), and also direct shear test of a rock fracture 

including the effect of fracture surface morphology (Cundall, 2000). 

A PFC2D representation of an intact rock sample is an assembly of circular 

particles with specified statistical size distributions and bounded with four rigid walls. 

These particles are generated with an automatic particle generator with their radii being 

distributed either uniformly or according to a Gaussian distribution. Once the bond is 

installed into the neighbouring particles, the overall mechanical behaviour of the 

assembly is dominated by the micro-properties for particles and bond. The standard 

process of generating a PFC assembly to represent a preliminary test model of a rock 

sample includes particle generation, packing the particles, isotropic stress initialization, 

floating particle elimination and bond installation (Wang et al., 2003).  

Cundall (2000) for the first time used the bonded particle model in particle flow 

code, PFC, to simulate direct shear tests of rough rock fractures. He used a synthetic 
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profile which was produced using a sinusoidal wave function. In this approach, fracture 

track was identified as unbounded path of particles in which contact bond strength of 

particles contact is zero. The synthetic fracture geometry used in his work is very rough 

with a JRC value of 18-20 (the JRC of fracture profile in PFC2D model was roughly 

estimated by visual comparison with JRC standard profiles given in Appendix 1). His 

model presented with no physical units, therefore the scale (sample size) effect could 

not be studied through this model. Figures 2.21.a and 2.21.b show the tensile cracks 

developed along the fracture profile when it is subjected to two normal stresses. As 

expected, the developed crack zone expands as normal stress increases.  

 
Figure 2.21 A synthetic rough fracture subjected to PFC2D simulation of direct shear test (after 

Cundall, 2000). 

The results of his simulation shown in Figure 2.21.c is comparable with those 

obtained from Barton shear strength criteria indicating the potential application of 

PFC2D for fracture shear simulation. It is important to note that the development of 

tensile cracks can be monitored using such simulations. 
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Cundall (2000), suggested further investigation on this model in order to study the 

size effect and the influence of fracture surface roughness on fracture shear behaviour. 

He also proposed this model to be used for studying the rough faults reactivation 

mechanism in petroleum field applications. These are some of the motivations of using 

the PFC2D for the simulation purposes used in current research works. 

Similarly, Jing and Stephansson (2007) used PFC2D code to simulate the shear 

behaviour of rough fractures. They performed primary simulations to show the potential 

of PFC2D for fracture shear strength estimation. Figure 2.22 shows their PFC2D 

simulation of direct shear test results for a typical rough rock fracture.  

 
Figure 2.22 PFC2D simulation of direct shear test at different normal stresses for a relatively smooth 

profile. (a) Distribution of contact forces. (b) Normal dilation versus shear displacement 
(after Jing and Stephansson, 2007). 

Distribution of contact forces through the sheared fracture is shown in Figure 

2.22.a. From this figure it is seen that contact forces are developing from the asperity 

contacts regions, as expected. The plots of normal dilation versus shear displacement 

curves at different normal stresses shown in Figure 2.22.b indicate larger dilations at 
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lower normal stresses, which mean lesser effect of roughness at higher normal stress 

levels. Similar to Cundall (2000), Jing and Stephansson (2007) also recommended 

further works using PFC2D to better understanding the progressive shearing behaviour 

of fractures and their contacts degradation. 

 
Figure 2.23 (a) Results of direct shear test on JRC profile 18-20, and (b) effects of average particle 

size on shear behaviour based on PFC3D simulations (Park and Song, 2009). 

In a most recent 3D work by Park and Song (2009), PFC3D was used to simulate 

direct shear tests of rough fractures. They performed number of sensitivity analyses on 

micro-properties of the model such as particle size, contact bond strength, and friction 

coefficient. Moreover, they compared their simulation results with Barton’s empirical 

shear strength model by performing simulating shear behaviour of five of JRC profiles. 
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The results of their work shown in Figure 2.23.a, as an example for profile 

JRC=18-20 is in close agreement with those obtained from Barton model but the PFC 

results are more conservative. This is thought to be due to the fact that in PFC 

simulations, variations of particle size near the asperity contacts, creates a micro 

roughness (small bumpiness) along the fracture track which may cause an increase in 

fracture shear strength. This will be discussed in further detail in the next Chapter. 

Figure 2.23.b shows how the peak and residual shear strength of the fracture changes as 

the average particle size increases. This is in fact the advantages of using bonded 

particle model with granular material representing the rock material for fractured rock 

mass modelling comparing to conventional DEM based simulators with angular 

contacts such as UDEC. In this research work PFC2D will be used for simulation of 

fracture shear strength. 

2.4 Experimental approaches 

The shear behaviour of rock joints, which is commonly simulated using numerical 

methods (e.g. distinct element method), can be experimented in the laboratory using a 

direct shear apparatus. Different direct shear test equipments have been developed to 

study the effects of surface roughness on shear strength.  These equipments are mainly 

different in terms of their loading capacity and loading condition, i.e. under constant 

normal load (CNL) or constant normal stiffness (CNS). In CNL the normal load is 

maintained constant during the shear process (Barla et al., 2009; Hans and Boulon, 

2003; Huang et al., 2002; Indraratna and Haque, 2000; Jafari et al., 2003; Jiang et al., 

2004; Yang and Chiang, 2000). Shear testing under CNL boundary condition is 

beneficial for cases such as non-reinforced rock slopes. In deep formations where the 

normal stress is extremely high, the shear behaviour of rock fracture is controlled by 

stiffness (shear and normal). In recent years, direct shear tests under CNS condition has 

been shown to be more accurate for such cases.  

Many researchers have attempted to examine the shear behaviour of rough fractures 

experimentally (Barla et al., 2009; Barton and Choubey, 1977; Grasselli et al., 2002; 

Hans and Boulon, 2003; Huang et al., 2002; Indraratna and Haque, 2000; Jafari et al., 

2003; Jiang et al., 2004; Yang and Chiang, 2000). These are the recent attempts which 

have been done to develop direct shear test devices which are aimed at studying the 

effects of surface roughness and asperity degradation on shear strength of fractures. 
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Yang and Chiang (2000) studied progressive shear behaviour of composite rock 

fractures with two different triangle-shaped asperities (15 and 30 degrees) by 

conducting direct shear tests under CNL condition. They studied the effects of asperity 

angle and base-length on ultimate behaviour of fracture and stated that the larger the 

asperity angle and base length, the larger the fracture shear strength. Figure 2.24 shows 

symmetric triangular fractures with single asperity of 30 degrees after shear tests at two 

different normal stresses. It is seen that surface degradations increase by increasing the 

normal stress. They also investigated the effects of asperity angle on shear behaviour of 

rock fractures. Superimposing the basic shear curves for composite fractures was also 

carried out in their studies by repeating the tests for artificial composite fractures with 

two asperities of 15 and 30 degrees asperity angle. Directionality of shear strength was 

also preliminarily studied in their work by performing two shear tests on fractures 

having two asperities of 15 and 30 degrees. This was done in their work first by 

shearing towards smaller asperity and next towards the larger asperity.   

 
(a) 

 
(b) 

Figure 2.24 Appearance of specimens after shearing at 0.39 and 1.47 MPa normal stresses (Yang and 
Chiang, 2000). 

Similarly, Huang et al. (2002) performed experiments on artificial fractures with 

regular triangle-shaped asperities with different angles at different normal stresses. They 

observed asperity sliding and cut-off behaviour in their tests, as discussed in Section 

2.2.7. They conducted variety of shear experiments under CNL condition to validate 
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their theoretical findings in terms of asperity cut-off behaviour at high normal stresses. 

Asperity cut-off behaviour will be investigated through numerical and experimental 

analysis in Chapters 3 and 4 of current thesis.  

Grasselli (2002) developed expressions for rough fractures shear strength based on 

experimental results performed at CNL condition. They analysed several rock fracture 

surfaces based on quantified 3D roughness parameter and investigated the damage and 

sliding of fracture contact asperities during shearing. They stated that “no damage 

appears prior to peak stress; damage occurs principally during the softening and residual 

phases of shearing”. In addition, they concluded that it is the asperity degradation at 

peak-shear stress that initiates sliding.  

Jafari et al. (2003) simulated the effects of weak and strong earthquakes (active 

faults stimulators) and developed mathematical models for evaluating the shear strength 

of rock joints. They also performed lab shear tests to study asperity degradation under 

low, intermediate, and high normal stresses. As a result of this work the number of 

loading cycles, stress amplitude, dilation angle, degradation of asperities and wearing 

were reported to be the main parameters controlling the shear behaviour of rock joints. 

In Chapter 4 of this thesis, modifications will be applied to a true triaxial stress cell 

(TTSC) in order to perform direct shear tests on fracture planes under CNL. This device 

was designed in 2009 to simulate the insitu stresses in Geomechanics applications such 

as hydraulic fracturing and sand production. The TTSC allows vertical and two 

independent horizontal loads to be applied up to 315 KN in each direction on a 30 cm 

cube of rock and, at the same time, allows pore pressure to be applied up to 21 MPa 

(Rasouli and Evans, 2010). 

2.5 Summary 

The main aim of this Chapter was to bring together and review the customary models of 

surface roughness and fracture shear strength. Fracture shear strength models are 

categorized as analytical (and empirical) models, numerical simulations, and 

experimental approaches. 

The first part of this Chapter, discussed the importance of surface roughness on 

mechanical behavior of fractures as well as how complicated is the evolution of surface 

roughness within fracture shear due to different failure modes, e.g. contact sliding, cut-

off, wear, and degradation. 
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It was highlighted that the idealized models, which ignore the complexity of profile 

geometry, are not appropriate for roughness determination. Also, as mentioned before, 

the qualitative parameters and those parameters that are based on visual judgment (for 

example, JRC as the most commonly used parameter) are not appropriate, as one profile 

can be interpreted differently by different people.  

It was discussed that the DR1 is an objective method for roughness characterization. 

DR1 formulas were presented for symmetric and asymmetric triangular asperity and 

sinusoidal geometries.  

The analytical fracture models were presented and it was discussed that the general 

behaviour of the majority of models are dependent on surface roughness and its 

degradation as displacements accumulate within the asperity contacts. It was discussed 

that few of the developed models consider asperity degradation and micro cracking 

within fractures shearing. This concept will be studied in our numerical simulations. 

Number of numerical studies was presented through which FEM and DEM based 

models were compared. FEM based methods were argued to be used in fracture 

modeling as they are appropriate for continuum medium and also due to their 

limitations in simulation of complicated fractures geometries. DEM based models have 

been thought be useful for fractured rock mass modeling. BPM which is a DEM based 

model and implemented in PFC, was considered for current numerical simulations as it 

is capable of modeling different failure modes during fracture shearing including 

asperity sliding and degradation.  

In the last part of this Chapter, a general view of experimental works was presented 

and fundamental objectives of each method were briefly explained.    

In the next Chapter, numerical simulations will be performed on the synthetic 

profiles shown in Section 2.1.3 to estimate shear behaviour of rough fractures. 
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2D Numerical simulations of fracture 
shear test 

 

The review of literature presented in the previous Chapter indicated that majority of 

numerical studies to investigate the fracture shear behaviour, are mostly developed 

based on continuum medium which predict the onset of failure. However, discrete 

element method (DEM) enables us to investigate the failure progression of a fracture 

surface during shearing by tracking the extent of the damage zone boundary. 

In this Chapter, the mechanical shear behaviour of fractures will be simulated in 2D 

using particle flow code (PFC2D). Firstly, a brief review of bonded particle model and 

the process of simulation in PFC2D are given. Accordingly, it will show that PFC2D is 

able to estimate macro-properties of an intact rock (including UCS and Young’s 

modulus) from its composition micro-properties. Secondly, to demonstrate some 

fundamental concepts involved in fracture shearing, several synthetic profiles with 

different geometries will be modelled to study their pre and post-peak shear behaviours. 

Also, different failure mechanisms observed depending on the loading conditions and 

fracture geometry will be explained. The simulation results of number of rock fractures 

will be presented and interpreted.  

Ultimately, an attempt is made to correlate the fracture shear strength with the 

roughness parameter (DR1), introduced in Chapter 2.  

3.1 Bonded particle model  

Potyondy and Cundall (2004) stated that “rock behaves like a cemented granular 

material of complex-shaped grains in which both the grains and the cement are 

deformable and may break that a conceptual model can explain all aspects of the 

mechanical behaviour”. Various numerical models have been proposed that mimic such 

a system. They noted that DEM based model for granular materials, so-called bonded 

particle model (BPM) for rock, directly models this complicated medium and therefore 

exhibits the evolving behaviours that match well with those of rocks. The mechanical 

behaviour of rock masses are governed by the development, extent and interaction of 

micro cracks which can be progressively modelled using BPM. 

3 
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PFC (Itasca Consulting Group, 2008) is a commercial code based on DEM in which 

BPM is implemented, and simulates the rock domain using the interaction between an 

assembly of spheres (in 3D) or circular discs (in 2D). A PFC2D representation of an 

intact rock-like sample is an assembly of circular particles with specified statistical size 

distributions and bounded with four rigid walls. These particles are generated with an 

automatic particle generator with their radii being distributed either uniformly or 

according to a Gaussian distribution. Once the bond is installed between the particles 

the overall mechanical behaviour of the assembly is dominated by the micro-properties 

for particles and bond. The standard process of generating a PFC2D assembly to 

represent a preliminary test model of a rock-like sample includes particle generation, 

packing the particles, isotropic stress initialization, floating particle elimination and 

bond installation (Itasca, 2008; Wang et al., 2003). It is also possible to create particles 

of arbitrary shape by attaching several particles together that create a cluster of particles 

acts as independent object called clump logic (Itasca Consulting Group, 2008). As 

stated in 2004 by Cundall and Potyondy “PFC2D is able to model a brittle solid, by 

bonding every particle to its neighbour; the resulting assembly can be regarded as a 

“solid” that has elastic properties and is capable of “fracturing” when bonds break in a 

progressive manner”. Recently, it has been argued by Cho et al. (2007) that bonded 

clump model can better represent the stress-strain behaviour of intact rocks in which 

cluster of PFC2D particles are defined as rock grains.  

PFC2D simulates the solids as close-packed assemblies of bonded particles: the solid 

may be homogeneous, or it may contain number of discrete blocks. This system may 

also be modelled by the distinct element programs such as Universal Distinct Element 

Code (UDEC), which deal with angular blocks. However, PFC2D is advantageous  due 

to its following abilities as stated by Jing and Stephansson (2007) and Potyondy and 

Cundall  (2004) as: 

 It is potentially more efficient, since detection of contacts between circular objects 

is much simpler than that of angular objects; 

 Unlimited displacements can be modelled;  

 Blocks can break (since they are composed of bonded particles), unlike blocks 

modelled with UDEC or 3DEC which cannot break.  

As stated by Ivars et al. (2008), “the shortcoming to model a blocky fractured system 

with PFC2D is that block boundaries are not planar, and the bumpiness affects the 

fracture response”. This can be fixed by assigning smooth-joint contact model 
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developed by Ivars et al. (2008) to all contacts between particles that lie upon opposite 

sides of the fracture which can eliminate the bumpiness effects on unrealistic response 

of the model. 

The ultimate mechanical behaviour of BMP is described by the movement of each 

particle and the force and moment acting at each contact. The fundamental relation 

between particle motion and the resultant forces and moments causing that motion is 

provided by Newton’s laws of motion (Itasca, 2008). 

By modelling a rock-like sample as a collection of separate particles bonded together 

at their contact points, the simulated material can develop cracks as bonds between the 

particles break under the normal and shear loads. Particles are assumed to be rigid in 

PFC models, but deformability of the assembly is derived from normal and shear bonds. 

Each bond also has a strength that represents intact bonding (cohesive strength). The 

bond which is broken carries no tension when either a tensile or shear force limit is 

reached (Itasca, 2008). 

As stated at the beginning of the Chapter, this study aims at simulating the shearing 

behaviour of a fracture in PFC2D assembly, as an interface between two opposite 

blocks along which the particles are at initially unbounded contacts, as shown 

schematically in Figure 3.1. The calculation scheme used in PFC requires only simple 

laws and a few parameters to govern the interactions at the particle and contact level to 

represent the behaviour of a material including a fracture. On the other hand, other 

available tools use some constitutive (stress–strain) relations, which involve many 

parameters and assumptions. Therefore, the PFC can simulate the effect of the fracture 

roughness and more specifically the asperity degradation in a direct and realistic 

manner. Moreover, an explicit method allows observations of the loads exerted at the 

contacts which enable tracking the propagation of bond breakage events at each 

timestep.  

However, the total number of particles required to represent a real situation is limited 

because of the limited computing capacity, and the model micro-properties are usually 

not known. These unknown properties require careful calibration process of micro-

parameters until the results of laboratory tests verify the macro-scale response of a PFC 

model (Cundall, 2000; Park and Song, 2009). 
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Figure 3.1 PFC2D example model of a rough fracture track (unbonded black balls), bonded particles 

(gray balls), and contact bonds (dark gray lines) shown in the model. 

Many studies have examined the effects of micro-parameters on the macro-scale 

response for an intact rock and suggested a variety of techniques for reproducing the 

brittle behaviours of rock-like samples by performing Triaxial and Brazilian tests 

(Koyama and Jing, 2007; Potyondy and Cundall, 2004).  

Mechanical formulations of BPM are available in PFC2D user manual (Itasca 

Consulting Group, 2008) and can be found in the article presenting the bonded particle 

model (Potyondy and Cundall, 2004). 

3.1.1 PFC two dimensional modelling: specifications and limitations  

The DEM based numerical simulators, such as the PFC, calculate the basic physical 

equations of the grain-grain interaction and therefore are more advantageous than 

commonly used numerical codes. The main advantage PFC is that the rock is modelled 

in micro scale. As a result of this, investigation of micro fracturing and micro damage of 

the rock becomes possible. However, similar to other numerical approaches there are 

some difficulties associated with discrete element modelling. For example, in these 

models, the rock cement is not appearing physically in the model and its properties are 

just contributing in solving the force-displacement equations. On the other hand, all the 

particles are discs with rounded shape whereas in reality rock grains may have any 

angular shapes which, in turn could cause changes in rock mechanical behaviour of rock 

mass. Furthermore, particles used in a DEM code are rigid bodies which never fail 

mechanically during simulations: rock grains however have limited strength and might 

fail in real life.  
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DEM based method was chosen for this study since in this method material is 

modelled in micro scale, so fracturing and failure of the granular material such as rock 

can be studied in detail. On the other hand, commonly used finite element method 

(FEM) based software implement failure criteria in order to predict the type and extent 

of the failure. Well known failure criteria (e.g. Mohr-Coulomb) may not be appropriate 

for modelling the peak and/or post peak deformation behaviour of some fractured rock 

structures. In DEM, the rock is modelled using a large number of bonded particles 

therefore induced micro fractures and the resulting damage can be studied at the micro 

scale and then explained for upscaling to macro scale. DEM is indeed efficient in 

modelling granular rock type material. 

It is necessary to note that current DEM model is essentially two dimensional and is 

unable to realistically model the 3D nature of rock behaviour. In FEM modelling there 

are assumptions based on which 2D models can be used for simulating 3D structures. 

For instance, plane strain assumption is used when one dimension of the model is much 

longer than the others. In the DEM code however; the basic difference between the 2D 

and 3D model is that the round particles in 2D model are disks with unit thickness while 

in the 3D model particles are perfect spheres. While 3D simulation was a choice, since 

generating a 3D rock sample with an average particle size of 1.33mm requires a huge 

computational effort and is a time consuming process, the 2D model was employed for 

simulation purposes. 

Due to the intrinsic nature of 2D particles, the porosity of a 2D model has less 

flexibility than that of 3D and particles may overlap due to the concept of “soft 

contacts”. In addition, the concept of porosity in 2D and 3D is completely different. The 

maximum porosity which can be obtained by a sorted 2D model is 21.5% whereas it is 

47.64% in 3D. When the particle radii are different, porosity calculation becomes more 

complicated. It was understood that the range of achievable porosities in a 2D model is 

between 12% and 18%. In fact it is really difficult to obtain porosities less than 10% in 

a 2D model. In order to obtain more realistic porosities from such a model, the obtained 

porosities need to be correlated with the equivalent 3D values. Although a clear relation 

between 2D and 3D porosity for randomly generated samples does not exist, following 

general rules should be considered during sample generation procedure (Itasca, 2008). 

• There is more void space remaining in a 3D assembly than in a 2D assembly 

• In real rocks, the porosities will be higher, because the particles will have “locked-

up” before reaching the optimal packing. 
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• Small particles can easily percolate through a 3D assembly comprised of larger 

particles, but they can never percolate through a packed model, regardless of 

relative particle sizes. 

For situations in which particle packing has a significant influence upon behaviour, it 

may be necessary to perform a few simulations using the 3D version of code in order to 

establish the relevant parameters needed to obtain measured physical responses, and 

then use these parameters while performing a larger number of parameter studies (Itasca 

Consulting Group, 1998). 

In the following Section, sensitivity analyses of model micro-properties will be 

presented by performing number of biaxial tests and then a set of calibrated micro-

properties are presented which is used for estimation of the intact rock failure envelope 

and to be used for simulation of fracture shear tests. 

3.2 Estimation of material properties from BPM  

A good knowledge about the mechanical properties of the intact rock is required before 

simulating a fracture shear test in PFC2D. The macro-properties of the sample are 

unknown at the beginning of simulation and there is no explicit method to estimate 

them. However, Yoon (2007) has introduced an analytical-statistical method to define 

model micro properties which also need to be calibrated with lab experiments. A good 

approach could be to simulate Biaxial and Brazilian tests in PFC to estimate the sample 

macro-properties including Elastic modulus, Poisson’s ratio, uniaxial compressive 

strength (UCS), tensile strength, cohesion strength, and internal friction angle (Jing and 

Stephansson, 2007; Koyama and Jing, 2007; Potyondy and Cundall, 2004). Although 

very hard, but it is significantly fruitful to correlate the simulation results with 

laboratorial experiments whether quantitatively or qualitatively.  

It is clear that in PFC modelling particle size and distribution differ from one model 

to another (the process used in this study to choose and calibrate the model micro 

properties was trial and error). In addition, it is cumbersome to make different models 

with same macro responses because the computation scheme in PFC is based on time-

stepping algorithm and depending on the specifications of the computing tool, the 

results might be different. However, there are alternatives such as using similar 

processors and fixing the initial random generator number (for particle assembly 

initiation) which may assist the users to run the models in the same conditions as 

another. 
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In this Section, first, the set up of a biaxial test in the PFC2D is briefly described and 

the method of determining the macro-properties from the simulations is explained. Then 

several biaxial tests are carried out by setting certain micro-parameters and analysing 

the influence of micro-parameter changes on macro-parameters. Linear correlations will 

be developed between macro and micro-properties which will be used later for 

generating samples with given properties. Table 3.1 gives four data sets of micro-

properties used in the simulations (A, B, C, and D). 

The procedure for sample generation and isotropic stress initialisation are similar to 

that of explained for direct shear test simulation in the preceding Section. Biaxial tests 

are performed in a 2D box with 5 cm width and 10 cm height in which the upper and 

lower walls of the sample are given a prescribed constant velocity in vertical direction 

(here 0.1 m/s) to achieve compression of the sample while the stress on the left and right 

walls is kept constant at the initial stress value. Figure 3.2 shows the model geometry 

and boundary conditions. The biaxial test simulations were performed under unconfined 

(c = 0) and three different confining stresses (c = 10, 20, and 30 MPa), and intact rock 

failure envelope was obtained from corresponding Mohr-Coulomb circles. Estimation 

of intact rock failure envelope is essentially required to characterise fractured rock mass 

and determine the type of shearing mechanisms, i.e. sliding, cut-off and asperity 

degradation.  

Table 3.1 shows the range of different micro-properties used for the biaxial test 

simulations. In each case one property is changed while others are kept constant in order 

to obtain the macro-property listed in the last column of Table 3.1. In the following 

subsections the process of estimation of each macro-property from biaxial simulations 

are explained. Sensitivity analysis of micro-properties in PFC2D biaxial test simulation: 

the range of values used for each property is marked in bold. 

 
Figure 3.2 Geometry and boundary conditions of Biaxial test simulation in PFC2D. 
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Table 3.1    Sensitivity analysis of micro-properties in PFC2D biaxial test simulation: the range of values used for each property is marked in bold. 

Data set Micro-property 
Particle average  

radius (mm) 

Number of  

particles 

Contact bond  

strength (MPa) 

Contact elastic  

modulus (GPa) 

Ratio of normal to 

shear stiffness 

Altered macro-

parameter 

A-1 Particle average radius 0.993 1400  1.25 2.5  

A-2  0.745 2489     

A-3  0.496 5602     

A-4  0.372 9959     

A-5  0.257 20000 60 1.25 2.5 UCS = 41.26 

B-1 Contact bond strength 0.993 1400 10 1.25 2.5 UCS  

B-2    20    

B-3    30    

B-4    40    

B-5    50    

C-1 Contact elastic modulus 0.993 1400  1.25 2.5 Elastic modulus 

C-2     5   

C-3     10   

C-4     15   

C-5     20   

D-1 Ratio of normal to shear stiffness 0.993 1400  1.25 0.1 Poisson’s   ratio 

D-2      1.0  

D-3      2.0  

D-4      3.0  

D-5      4.0  
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3.2.1 Uniaxial Compressive Strength (UCS) 

Contact bond strength (CBS) acts as the cement between particles. The contact bond 

will fail in tensile and/or shear if the applied forces exceed the defined normal and/or 

shear bond strengths between particles’ contacts, respectively. The overall UCS of 

assembly is sensitive to CBS and this has been studied by few researchers (Potyondy 

and Cundall, 2004; Yoon, 2007). Since UCS is affected by particles’ size and their 

distribution, defining a unique and applicable correlation between UCS and CBS 

appears to be cumbersome. 

Based on the behaviour of PFC system, one could recognize that UCS is highly 

dependent on the strength that a bond can endure either in normal and/or shear. The 

linear regression fit is obtained through a series of biaxial compression simulation by 

varying the CBS from 10MPa up to about 60MPa. It is assumed that typical laboratory 

test results of UCS for soft rocks fall within a range between 20 and 80 MPa. Yoon 

(2007) obtained a linear fit for the hard rocks, which their UCS varies from 70 to 250 

MPa. In this study, the obtained regression fit considers the moderate rocks.  

Biaxial test simulations are performed to investigate this effect. As shown in Table 

3.1, for Set B the CBS is increased from 10 MPa to 50 MPa (that normal and shear bond 

strengths for this case have similar values and called CBS). Since the bonds in the DEM 

simulations act as cement between the rock grains, the larger UCS values are expected 

as the CBS increases. At this stage of simulations, micro-elastic properties of the 

particles (i.e. contact elastic modulus and particle stiffness) remain constant. 

Correspondingly, the macro-elastic properties including Elastic modulus and Poisson’s   

ratio are expected to remain constant as the CBS changes. From the stress-strain curves, 

the UCS corresponding to samples with CBS varying from 10 to 60 MPa are plotted in 

Figure 3.3. It is seen that a perfect linear trend exists between UCS and CBS. The 

results show that the larger the CBS, the greater the UCS. This indicates that changing 

the CBS results in different compression strengths. The CBS is defined with two 

different values: shear and normal bond strengths (given in Table 3.1). 

The particle size can also affect the UCS values, as different particle sizes result 

indifferent porosity and packing density of the model. To assess this effect, a number of 

biaxial tests were performed with different particle sizes (corresponding to different 

total particle numbers in the model) with other parameters being kept unchanged. Data 

set A in Table 3.2 shows the input values corresponding to this model in which average 
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particle radius varies from 0.4 to 1.2 mm. Figure 3.4 shows the results of the 

simulations where a linear correlation with a negative slope fits the data best. 

A linear correlation obtained between UCS and CBS as 

 747.0CBS3269.1UCS  .  (3.1) 

which can be used to estimate the assemblies UCS as the variation of CBS. 

Figure 3.4 shows how an increase in average particle size results in a small UCS 

value which is likely to be due to the increase in ultimate porosity and a less denser 

pack. A linear correlation was obtained between UCS and average particle size, Rave as 

 
Figure 3.3 Correlation of model CBS and assembly’s UCS. 

 
Figure 3.4 Effects of average particle size in assembly’s UCS. 

 812.43645.27UCS  aveR .  (3.2) 

which can be used to estimate the assemblies UCS as the variation of Rave. 
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This concludes that for assemblies which use contact bonding, the overall strength of 

the bonding is inversely proportional to the average particle radius. Thus, to obtain 

constant sample strength, bond strength must be scaled with the particle radii. 

One thing that should be noted here is the ratio of compressive to tensile strength. 

Generally the tensile strength of the modelled samples is obtained form Brazilian test 

simulation in PFC. Yoon (2007) obtained the ratios are in between 2.4 and 5.2, which 

are much smaller than those commonly observed in typical crystalline and sedimentary 

rocks (5–10 or 20). Bruno and Nelson (1991) stated that modelling grains with simple 

circular cross sections produces an assembly that distributes compressive loads 

differently than an assembly composed of more angular grains. The circular grains are 

more efficient wedges, and the use of exclusively circular sections will therefore tend to 

underestimate the ratio of the load required to produce compressive failure compared to 

the load required for tensile failure. He stated that in order to reproduce realistic ratio of 

compressive to tensile strength, one possible approach might be the use of bonded 

clump model in which several particles are bound together with specified bond strength 

to represent angular or blocky grains (Cho et al., 2007). On the other hand, using 

bonded clump model to simulate fracture shear strength is not straightforward. 

Potyondy and Cundall (2004) and Yoon (2007) stated that the ratio of UCS to Brazilian 

tensile strength of bonded particle model should be in the range between 3 and 10. To 

obtain the reasonable values in the above range, the ratio of shear bond strength to 

normal bond strength should lie in the range between 1 and 3 which is considered in 

current study (see Table 3.2). 

3.2.2 Elastic modulus (E) and Poisson’s ratio () 

Development of DEM mathematic assumes that the contact elastic modulus (Ec) is a 

function of material Elastic (Itasca Consulting Group, 2008). To investigate this, biaxial 

tests were performed at five different Elastic moduli corresponding to sample Set C in 

Table 3.1. The Young’s modulus is obtained by estimating the slope of the linear 

portion of stress-strain curve. The results plotted versus corresponding Ec for each 

sample are shown in Figure 3.5. It is observed that the overall modulus of a two-

dimensional assembly is directly proportional to contact stiffness, but is independent of 

particle radius. A linear correlation was obtained between Young’s modulus and contact 

elastic modulus as 

 0742.05564.0  cEE .  (3.3) 
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which can be used to estimate the assemblies E as the variation of Ec. 

From correlation given in Figure 3.5 it is possible to obtain a good estimate of the 

sample Young’s modulus, however, care must be taken since the micro-parameters used 

in PFC2D are dependent to each other, and therefore changing one parameter may 

influence the overall macro-response of the model.  

In two dimensional contact models, the relationship between contact elastic modulus 

(Ec) and ball normal stiffness (kn) is defined as:  

 )(2 tEk cn  . (3.4) 

kn is a secant stiffness as it relates the total normal force ( n
iF ) to the total normal 

displacement (Un), whereas the shear stiffness (ks) is a tangent stiffness as it relates the 

increment of shear force ( s
iFΔ ) to the increment of shear displacement ( s

iUΔ ). These 

linear relationships can be expressed as:  

 inn
n

i nUkF  .  (3.5) 

 
Figure 3.5 Correlation between contact elastic modulus and 2D assembly’s elastic modulus. 
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where ni  is the unit normal vector to the contact plane. 

Considering Equations 3.5 and 3.6, the ratio of normal to shear stiffness is expressed 

as: 
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The increment of shear displacement over total normal displacement in micro-scale can 

significantly change the ratio of radial to axial strain in macro-scale which is the 2D 

assembly’s Poisson’s ratio. Therefore, the ratio of particle normal to shear stiffness 

(kn/ks) causes significant changes in values of Poisson’s ratio which is defined as the 

ratio of radial strain to axial strain. This is analysed using sensitivity analysis of the 

given ratio in Equation 3.7. Plot of contact normal to shear stiffness ratio (kn/ks) versus 

the overall Poisson’s ratio of the assembly is given in Figure 3.6, from which it is seen 

that the larger the ratio of normal to shear stiffness, the greater the 2D assembly’s 

Poisson’s ratio. 

The stress conditions in a two dimensional PFC2D test are neither plane strain nor 

plane stress since there is no “out of plane stress” or “out of plane deformation” (Itasca, 

2008). The Poisson’s ratio calculated from a biaxial test on a PFC2D material represents 

the special case of plane stress (with σz = 0) and constant lateral stress. The value of 

Poisson’s ratio so obtained is not strictly comparable to the Poisson’s ratio of a real 

material obtained from a triaxial test; It is calculated as the negative ratio of lateral 

strain to axial strain as yxν  ΔΔ . The Poisson’s ratio corresponding to a state of 

plane strain can then be calculated using the general relationship between plane stress 

and plane strain as ννν  1 . 

 
Figure 3.6 Effects of the ratio of contact normal to shear stiffness on 2D assembly’s Poisson’s ratio. 

A linear correlation was obtained between Poisson’s ratio and contact normal to 

shear stiffness ratio as 

   0668.00937.0  sn kkv .  (3.8) 
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which can be used to estimate the assemblies   as the variation of kn/ks. 

 
Figure 3.7 Effects of contact normal to shear stiffness on 2D assembly’s elastic modulus. 

Interestingly, it is observed that as the ratio of normal to shear stiffness increases, the 

Elastic modulus of assembly decreases (Figure 3.7). This is due to the reduction in shear 

stiffness as the ratio of kn/ks increases. 

A linear correlation was obtained between Young’s modulus and normal to shear 

stiffness ratio as 

   0382.10979.0  sn kkE .  (3.9) 

which can be used to estimate the assemblies E as the variation of kn/ks. 

It must be stated that the correlations obtained in this Section are case specific which 

means that they cannot be directly used to determine the macro-properties of any 

PFC2D model. To repeat these simulations and reach to the same conclusions, the initial 

condition of the model and composition micro-properties must be same as those used in 

current models given in Table 3.1. However, the results of this Section can be used as 

guidance to select a set of micro-properties corresponding to specific type of intact 

(moderate) rock sample.   

3.3 Intact rock-like sample failure mechanism 

Date set A5 in Table 3.1 represents a fine grain rock-like sample with relatively high 

compressive strength. The data corresponding to this sample will be used to generate a 

fracture shear model later in this Chapter. 
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The Mohr-Coulomb failure criteria is assumed for samples: this is suitable when a 

contact model is used (Saiang, 2008). Plotting the Mohr circles corresponding to 

different confining pressures the cohesion strength and internal friction angle of the 

assembly can be estimated from the intercept and slope of the tangent line to the circles. 

Here, a number of biaxial tests were simulated under confining stresses of 10, 20 and 30 

MPa, respectively.  

 
Figure 3.8 Assembly of balls and contact bonds after biaxial tests simulation under unconfined, and 

confining pressures of 10, 20, and 30 MPa. 

Figure 3.8 shows the biaxial samples after the test the lighter gray and white zones 

show planes of shear failures for each sample. It is seen that the failure pattern is almost 

similar under different confining pressures. From Figure 3.8 larger lateral displacements 

are observed for unconfined tests comparing to the cases where confining pressures are 

applied. As is expected, the number of shear cracks increase as the confining pressure 

reduces. 

 

Figure 3.9 Plot of stress versus strain obtained from PFC2D biaxial test simulations at different 
confining pressures. 
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Density of the white colours in the samples, which shows the extent of the broken 

contact bonds, reduces as the confining pressure increases: this corresponds to a more 

competent behaviour. Figure 3.9 shows the stress-strain curves corresponding to 

samples shown in Figure 3.8. It is seen that as confining pressure increases, the peak 

value of compressive strength increases. There is a small difference between E and  

obtained from these tests which can be due to the large values of confining pressures 

used in these simulations.  

The Mohr circles corresponding to five biaxial tests are plotted in Figure 3.10. The 

diameter of each circle is equivalent to the difference between the two stress 

components at the point of failure of samples (1 and 3). From the tangent line to these 

circles the friction angle and cohesion of simulated rock-like sample are estimated to be 

(242) and (142) MPa, respectively. Unconfined compressive strength of rock-like 

sample was obtained from unconfined biaxial simulation to be equal to 41.26 MPa, 

which represents a relatively strong rock. Equation 3.10 gives a good estimate for 

compressive strength of rock-like sample based on the Mohr-Coulomb failure criteria: 

 





sin1
cos2c

ci . (3.10) 

where ci is the intact rock compressive strength. Using this equation and applying 

strength parameters (c and ) obtained from PFC biaxial tests, unconfined compressive 

strength of the sample material is estimated to be 46.2 MPa which is close enough to the 

one obtained from UCS test simulation showing the validity of the simulations. 

 
Figure 3.10 Mohr circles corresponding to biaxial test simulations at different confining pressures. 
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Table 3.2 gives the selected micro-properties used in shear test simulations and 

corresponding macro-properties estimated. This data set was used for modelling mainly 

because its properties are within the range of relevant models used by other researchers 

for fracture shearing studies (Asadi and Rasouli, 2010, 2011; Cundall, 2000; Park and 

Song, 2009; Potyondy and Cundall, 2004; Rasouli and Harrison, 2010). Also, using the 

available lab facilities it is possible to test samples with these properties in the lab. 

The effects of particle friction coefficient will be investigated in Section 3.3.3 when 

studying the shear behaviour of fractures. This parameter is more pronounced when no 

contact bond is installed between shearing particles. The particle friction coefficient 

shown in Table 3.2 corresponds to intact material modelled in PFC2D. However, the 

value of this parameter must be calibrated to reduce the uncertainty in the results, as 

those particles lie upon opposite sides of the fracture. The calibration process for this 

particular parameter is discussed in Section 3.3.3. 

The above discussion leads to the conclusion that when studying failure mechanisms 

of rock fractures using BPM, the four major controlling parameters which significantly 

change the mechanical behaviours of a sample are grain size, material bond strength, 

particle friction coefficient and ratio of contact normal to shear stiffness. The general 

results obtained in this Section will also be employed as guidance in Chapter 4 when 

modelling a mortar specimen using PFC2D. 

Therefore, the micro-properties of the PFC2D assembly should be selected in a way 

that they represent the macro-properties of the intact rock as closely as possible. 

Table 3.2    PFC2D model micro-properties and corresponding macro-parameters used in fracture shear 
test simulations. 

Property Value Assembly’s macro-properties 

Sample size, width × height (cm2) 10×5 

E = 1.00  0.25 (GPa)  

 = 0.300  0.015 

 

UCS = 40  3 (MPa) 

 

c = 14  2 (MPa) 

= 24  2 (º) 

 

Particle density (kg/m3) 1000 

Minimum particle radius, Rave (mm) 0.257 

Particle size ratio, Rmax/Rmin 1.5 

Porosity, n 0.12 

Number of particles 20000 

Contact elastic modulus (GPa) 1.25 

Contact stiffness ratio, kn/ks 2.5 

Particle friction coefficient,  0.6 

Normal bonding strength , NBS (MPa) 60 

Shear bonding strength, SBS (MPa) 60 
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3.4 Fracture shearing simulation using PFC2D 

The shear behaviour of rock fractures is a function of the effective normal stress acting 

perpendicular to fracture plane. At low normal stresses, the fracture planes slide along 

inclined surface with minor damages to the asperity: this corresponds to high values of 

dilation and friction. At high normal stresses, however, the constraint of normal 

displacement leads to asperity failures, which corresponds to low friction values. In this 

study, a number of synthetic and rock fracture profiles will be subjected to shearing 

simulations in a rock-like sample modelled in PFC2D. The simulations are performed at 

different normal stress levels to plot the fracture failure envelope. From this plot zones 

corresponding to different failure mechanisms, including asperity sliding, asperity 

degradation, and intact rock failure can be distinguished. 

A total number of 20000 particles with an average radius of 0.257 mm were 

generated and packed into a 10×5 cm2 box-shaped region containing 4 walls, as shown 

in Figure 3.11.a. In order to avoid crystalline packing, particle radii are chosen 

randomly within a specified size distribution and are uniformly distributed between 

minimum and maximum particle radius. Once the assembly packing was finished and 

particle floating eliminated; isotropic stress of 0.1 MPa was applied. Figure 3.11.b 

shows that the contact normal and shear forces are distributed uniformly in the assembly 

in an equilibrium state. The contact bond was installed in the sample with uniform 

distribution and micro-parameters of particles and contacts were adjusted to reproduce a 

moderately strong intact material (see Table 3.2).  

To produce a fracture track in this model, a 2D profile is inserted in the centre of the 

shear box using a particular function y = f(x) or coordinate points (x and y) representing 

profile geometry. Zero contact bond strength is assigned to all the particles between the 

upper and lower walls of fracture. A very low particle friction coefficient is assigned to 

all unbonded particles (known as fracture particles) between fracture walls (see Section 

3.3.3). In our model, the friction coefficient shown in the Table 3.2 was assigned to the 

intact block except those discs located along the fracture particles. Coordinates of 

desired fracture profile in particular direction must be digitized at sampling intervals 

smaller than Rave to reproduce a high resolution fracture track in PFC2D model 

accounting for both roughness and waviness. 
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Figure 3.11 (a) PFC2D representation of a rock-like assembly with 20,000 discs of unit thickness, (b) 

contact force distribution (c) rough fracture profile generated in the centre of the model. 

The shear behaviour of fracture is a function of compressive strength of the fracture 

wall rather than the tensile strength (Barton and Choubey, 1977; Kulatilake et al., 1995; 

Ladanyi and Archambault, 1970). The tensile strength of the interior of the block can be 

estimated by performing Brazilian test simulation in PFC2D.  

The UCS of this sample was estimated from biaxial test simulation as 41.26 MPa 

(see Figure 3.10). In Chapter 4, values of UCS and E obtained from corresponding 

PFC2D biaxial test simulations will be calibrated with corresponding lab results for 

mortar samples. However, in here, the intact materials are assumed to have macro-

mechanical properties of close to moderately strong rocks. 
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3.4.1 Bonding type 

As explained earlier, to represent a fracture profile in this study, there is no bond 

between particles lie upon opposite sides of the fracture. The contact bond was used 

with minimum effects on the shear strength and asperity degradation of fractures.  

As stated by Park and Song (2009), they have studied the effects of bonding type on 

fracture shear behaviour by performing preliminary shear tests and concluded that there 

are no major differences between the results obtained from contact and parallel bonded 

models. As appears from their work, they have calibrated the micro-properties of two 

models: one with contact bond and the other one with parallel bond to the same UCS 

and performed direct shear test using these two models. Their observations indicate 

small differences in the peak shear strength, normal dilation and the shear stiffness 

obtained from the two models with different bonding types. Moreover, they have 

mentioned that in the parallel bonded model, more micro cracks develop along the 

fracture plane and also these models reach their residual state faster than that of contact 

bonded model. 

On the other hand, when studying the asperity degradation during fractures shearing, 

micro cracks develop through asperity contacts and intact block. This is the situation 

where the use of parallel bond might be beneficial because contact bonds are unable to 

avoid the particle rotation which can affect the post-peak behaviour of rock fractures. 

However, as in current study the failure pattern is taken into around peak shear stress, 

which is highly influenced by fracture profile roughness, the use of contact bonds found 

to be sufficiently representative. For these reasons, the contact bonded model which has 

less micro-parameters was used in this study and applied to all modelling discussed in 

this Chapter. 

For the purpose of this study, normal and shear bond strengths must be distributed 

uniformly in shear box to ensure consistent response under different loading conditions 

and fracture geometries. Failure to do so may result in some damage occurring where 

bond strength is distributed non-uniformly. Also, in order to prevent spurious failure at 

the boundaries’ edges, the strength of those contacts adjacent to the top and bottom 

edges of the shear box are increased by a factor of ten. Low strength assigned to the 

contacts at the edge of the box would result in huge amount of shearing energy being 

dissipated from large tension cracks initiating from doglegs of asperities and 

propagating to shear box boundaries (i.e. free surfaces), as stated by Cundall (2000). 
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The effects of contact bond strength on shear behaviour of synthetic fractures are 

investigated in Section 3.5.1. 

Effects of particle size and distribution on shear strength of rough fractures are 

examined for a shear box composing a single symmetric triangular asperity profile in 

the following Section. 

3.4.2 Particle size and distribution 

A fracture plane in PFC2D model has an intrinsic roughness even if it is planar. This is 

because of different size distribution of particles along the fracture plane. The micro-

roughness increases along the fracture track with increasing particle size, so by reducing 

the particle size in the model, this effect becomes less important. However, the fracture 

compressive strength will decrease with increasing particle size due to the reduction in 

the number of fracture-contacts bearing the stress, similar to the UCS shown in Figure 

3.4. To minimise the effects of intrinsic roughness (or say micro-roughness), as shown 

in Figure 3.12, a dense pack of particles were used with small size particles’ radii (Rave = 

0.257 mm). Potyondy and Cundall (2004) stated that “Particle size is not a free 

parameter that only controls resolution; instead, it affects the fracture toughness and 

thereby influences damage processes (such as notch formation) in which damage 

localizes at macro-fracture tips experiencing extensile loading”. Koyama and Jing 

(2007) performed over 200 biaxial simulations to systematically investigate the effects 

of model scale, particle size, and size distributions of particles on failure process of 

rocks. Their important findings are summarised as follows: 

     
Figure 3.12 Unbounded path of particles represents a rough fracture profile. 
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 The particle size distribution affects the determination of the representative 

elementary volume (REV) size. The REV is the sample size above which no 

significant variation in measured property is expected. The REV size increases as 

the particle size distribution becomes more heterogeneous. 

 The 5 cm minimum diameter of rock specimen for UCS tests of rock as suggested 

by ISRM is reasonable for rock failure studies in micro-mechanics media. 

 For modelling large scale engineering applications using particle mechanics 

approaches, care should be taken on the effects of model size and particle size 

distributions on the calibrated BPM model parameters. 

Therefore, selection of adequate number of particles is crucial as it affects the 

behaviour of the entire model. By changing the number of particles in assembly, mean 

particle radius will change, which in turn affects the ultimate response of the model. 

Generally, the variation of the results in the models with different mean particle sizes is 

due to the change in their porosity and therefore the UCS of the pack, as was shown 

through biaxial test simulations in Section 3.2.1. An increase in particle size results in 

an increase in the final porosity, which reduces the UCS as stated also by Park and Song 

(2009) and examined in current study (Figure 3.13).  

 
Figure 3.13 Visual demonstration of fracture micro-roughness corresponding to various particle sizes. 
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To investigate the effects of particle size on rough fracture shear behaviour, five sets 

of shear test simulations were performed with similar micro-properties for all models 

summarised in Table 3.2, but each filled with different number of particles resulting 

different particle radius. The mean particle radius was varied between 0.1 and 1.0 mm 

which represents the range of small to medium sand grains. Then a symmetric triangular 

profile (i.e. a crenulated profile) with base angle, of 30° was generated in the centre of 

model to investigate the effects of particle size on shear strength of the profile. Figure 

3.13 shows the PFC2D model of the profile being sheared under 5.0 MPa normal stress 

corresponding to three assemblies with 0.257, 0.431, and 0.647 mm average particle 

radii, respectively. It is seen, as expected, that by reducing the particle size, since the 

number of particles increases in the model, a finer failure pattern is observed. 

Figure 3.14 shows the peak shear stress versus the mean particle size at normal stress 

of 5.0 MPa. The peak shear stress reaches a maximum at a mean particle radius of 0.6 

mm and then reduces due to a significant reduction in matrix strength. A relatively 

similar trend was obtained at normal stresses of 1.0 and 10.0 MPa. This variation in 

shear strength can be due to the superposed effects of the inherent roughness 

(bumpiness) of fracture surfaces, as discussed. Hence, local particle contact orientations 

along the fracture surface may cause significant changes in fracture shear strength. It is 

seen that peak shear stress reduces in fracture models with Rave ≤ 0.4 mm which is 

perhaps due to the reduction in strain localisation in particles along the fracture. 

 
Figure 3.14 Effects of particle size on peak shear stress of a symmetric triangular asperity profile 

depicted in Figure 3.13. 
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Therefore, to simulate the shearing of rough fractures, i.e. influence of fracture 

geometry on shear behaviour which is the purpose of this study; it is advisable to 

decrease the particle radius to reduce the effects of fracture micro-roughness. In this 

study, as the major focus is on fracture surface geometry (i.e. both waviness and 

roughness), the average particle size was set to Rave = 0.257 mm. It is also noticed that 

when the average particle radius is greater than 0.7 mm (Rave ≥ 0.7 mm), the peak shear 

strength would be influenced more by the significant decrease in fracture compressive 

strength than by an increase in fracture surface roughness. Although, these examples 

and the obtained results are case specific, a similar concept is applied to fractures with 

different geometries modelled in this way.   

The objective of this study is to investigate the effect of profile geometry (i.e. 

roughness and waviness) on fracture shear behaviour and therefore the analyses are to 

be repeated for shear boxes with similar number of particles but different fracture 

geometries. In this way the effects of generated micro-roughness becomes insignificant 

in the ultimate model response. However, in all models it was attempted to use the 

smallest possible particles sizes based on the available computer memory. 

3.4.3 Fracture particles friction coefficient 

The shear strength of fracture modelled in PFC2D is affected by the friction coefficient 

of unbonded particles along the fracture plane (Cundall, 2000; Lambert et al., 2010; 

Park and Song, 2009). In contact models such as BPM, if there is no bond between 

particles (or say after the existing bond is broken), friction coefficient controls the 

particles sliding. So the value of friction coefficient for particles lie upon opposite sides 

of fracture is of major importance and must be correlated to the basic friction angle of 

planar fracture. Here, it is assumed that a typical smooth fracture has the basic friction 

angle of 30° (Cundall, 2000; Patton, 1966).  

In developed models assigning a proper value for fracture particles friction 

coefficient and estimation of basic friction angle and apparent cohesion of the fracture 

are important parameters as granular materials create micro roughness along the fracture 

surface which affects the mobilized peak and residual friction angles of the fracture.  

Cundall (2000) and Park & Song (2009) have stated that the friction coefficient of 

fracture particles must be assigned close to zero to ensure a realistic estimation of shear 

strength is being made. More recently, Park & Song (2009) simulated the shear strength 

of fractures in PFC3D and analyzed the effects of particles friction coefficient on shear 
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strength of smooth surfaces and surfaces with different JRC values. They found that in 

larger JRCs (JRC > 12), increasing the particle friction coefficient (e.g. from 0.0 to 0.3) 

affects the fracture cohesion more than its friction angle. They correlated their findings 

with shear strength obtained from Barton empirical equation. 

To understand the effects of fracture particle friction coefficient (i.e. particles located 

along the fracture profile) on shear behavior of planar and rough fracture profiles, two 

sets of preliminary PFC2D shear tests were performed under the same conditions but 

with different particle friction coefficients of 0.05 and 0.6. Shear test simulations were 

performed for a planar fracture as well as a rough fracture with symmetric triangular 

profile of 30° asperity angle, as shown in Figure 3.15. This figure shows the fracture 

envelope (i.e. the curve of peak shear strength versus normal stress) corresponding to 

two different friction coefficients (i.e. 0.05 and 0.6). It is observed that for rough 

fractures, a wide increase in particle friction coefficient, i.e. from 0.05 to 0.6, causes 

only a small increase in fracture macro friction angle property from 47.57° to 51.05°, 

whereas, fracture apparent cohesion increases from 1.6 to 6.3 MPa which is a significant 

increase. Asadi & Rasouli (2011) has shown the role of particle friction coefficient on 

shearing simulation of synthetic fracture profiles using PFC2D modeling. 

Effects of fracture profile roughness with particles having very small friction 

coefficient (here 0.05) on fracture shear behaviour was investigated by simulating a 

planar and a rough (i.e. 30°symmetric triangular profile) fracture profile. 

     

Figure 3.15 Effects of particle friction coefficient on peak shear strength of planar and rough fractures. 
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The results show that fracture friction angle and cohesion become larger with 

increasing fracture roughness: friction angle changes from 29.36° to 47.56° whereas 

cohesion increases from 0.912 to 1.6 MPa (see Figure 3.16). The analysis was repeated 

for a friction coefficient of 0.6 and results with a similar trend were obtained.  

These simulation results together with findings by Park & Song (2009) which 

showed for JRC > 12 (i.e. rough cases), roughness has larger effects on cohesion than 

friction angle does. This shows that the value of particle friction coefficient does not 

significantly change the mechanical shear behaviour of fracture. The large values for 

fracture friction coefficient will result in overestimation of the apparent cohesion and in 

turn peak shear strength, as shown in Figure 3.16. This figure indicates that particle 

friction coefficient of 0.05 for a planar fracture profile results in a basic friction angle of 

29.36° for this fracture profile.  

Based on the review of literature, data from past work, and preliminary simulation 

results the following points were considered for modelling rough fractures shear 

strength in PFC2D in this study: 

 In PFC2D simulation of fracture shear strength, roughness has larger effects on 

cohesion than friction angle. This effect increases as fracture roughness increases. 

 Reducing particle friction coefficient close to zero will result in reduction of 

ultimate shear strength of fracture. 

     
Figure 3.16 Effects of particle friction coefficient on peak shear strength of planar and rough fractures. 



Chapter 3 2D Numerical simulations of fracture shear test 

 83 

3.4.4 Boundary conditions and stress calculation 

In models presented in this study the normal load is applied vertically to the upper 

block. To simulate the shear test under Constant Normal Load (CNL) condition, vertical 

motion of the upper block over the lower block is allowed (i.e. dilatation is permitted). 

This is controlled by a numerical servomechanism as to keep the vertical reaction force 

constant at some specified values of normal load. Horizontal shear displacement then 

applied by giving a velocity to the elements of upper block which displaces against the 

lower fixed block. The procedure to compute and control the stress state in the sample 

during the shear test is discussed below. 

The boundary particles comprising the upper and lower blocks of the shear box are 

controlled to perform the shear test. After deleting the walls, all the particles existing in 

the model are divided into two groups: those located above and below the fracture 

profile. This allows controlling the velocities of upper and lower blocks independently.  

The lower block is kept stationary throughout the test, and the upper block is 

translated as a rigid unit with constant velocity (i.e. shearing rate) in the horizontal 

(shearing) direction. Shear and normal loads are applied by giving horizontal and 

vertical velocities to the upper block. Both normal and shear forces on the upper block 

are evaluated continuously. The shear stress was calculated by dividing the average 

shear force of upper and lower blocks by the fracture width. A similar procedure was 

applied to measure the normal stress using the average normal force applied to the upper 

and lower blocks which then divided by shear box width to estimate the normal stress. 

The vertical displacement is controlled by a numerical servo mechanism described in 

PFC2D user manual (Itasca, 2008).  

To control the velocity (displacement) of upper block during shear test, while 

progressing the program, the numerical servomechanism was applied (Itasca, 2008). 

The sample is loaded by specifying the velocities of the top and bottom blocks’ 

particles. The state of stress and strain  of the sample are computed by taking the 

average forces of upper and lower blocks  divided by shear box width. The strains in 

both x and y directions are computed as  

 
 LL

LL






0

0

2
1

 , (3.11) 

where L0 and L are the original and current sample length in a given direction. As 

stated, during the loading process, the normal stress is kept constant by adjusting the 
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velocities using a numerical servomechanism that is implemented by servo mechanism 

function and a gain parameter. This function determines the stresses and uses a 

numerical servo-control to adjust the upper block velocities in such a way as to reduce 

the difference between the measured force and the required force. Based on 

servomechanism implemented in the model, the following equation gives the velocity of 

the blocks as 

  required
n

measured
n ffGu  . (3.12) 

where G is the “gain” parameter that needs to be adjusted for different applications 

based on time steps and contact force area (Itasca, 2008). 

In current simulations, shearing velocity was set to 0.3 m/s and gain parameter was 

adopted in the model for both vertical and horizontal directions to ensure a constant 

normal stress throughout the shear test with a constant velocity. Displacements are 

calculated based on the assumption that velocities are constant in each timestep. Having 

the values for timestep and velocity, displacements can be measured in both vertical and 

horizontal directions. Histories of shear stress, normal stress, and shear and normal 

displacements were recorded in each timestep to enable plotting the shear stress-shear 

displacement and normal displacement-shear displacement curves. It is widely accepted 

that by increasing the shearing speed (rate), the shear strength of fractures increase. So 

an appropriate shear loading rate should be considered depending on the applications 

required.  

In this study, a large number of shearing cycles was applied to capture the post-peak 

behaviour of fracture profiles. A 3.0 mm shear displacement allowed for fractures with 

10.0 cm width to undergo a complete failure cycle including the post-peak region. 

3.4.5 Development of cracks 

The advantages of using PFC2D in simulation of fracture shearing is that it can simulate 

the complex failure process in pre and post-peak stress behaviour of intact rocks with an 

ability to visualize the entire process of crack initiation, growth, coalescence, 

localization and complete breakdown process without requiring continuous system re-

configuration. 

Preliminary simulations were performed on a rock fracture profile shown in Figure 

3.17 which aimed at tracing the process of micro cracking (i.e. failure pattern) under 

different normal stresses. It is expected to observe an increase in the number and 

magnitude of induced cracks during shearing. Figure 3.17 shows the profile view after 
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shearing under 3.0 and 7.0 MPa normal stresses, respectively. In this figure, shear 

failures are shown in gray and tensile cracks in black. It is seen that at low normal 

stresses (i.e. 3.0 MPa) sliding is the dominant failure mechanism (Figure 3.17.a) as local 

shear failures are only concentrated around the asperity contacts. Small tensile cracks 

also develop at profiles doglegs. In comparison, at high normal stresses (i.e. 7.0 MPa), 

the amount of contact shear failure reduces but large tensile cracks are developing at 

asperity doglegs which corresponds to either asperity cut-off or intact rock failure 

(Figure 3.17.b). In this case, dilation decreases significantly which is believed to be due 

to the concentration of compression forces on shearing chord of fracture profile and the 

accumulated force tries to open a large tensile crack as shown in this figure.  

 The above analysis shows the applicability of PFC2D in simulation of rough 

fractures shear behaviour and asperity degradation. 

  
Figure 3.17 Micro cracking pattern after rough fractures shear test in PFC2D at (a) 3.0 MPa  and (b) 

7.0 MPa normal stress; shear displacement is 3.0 mm. 

3.5 Shearing simulation of synthetic profiles  

As stated in Chapter 2, DR1 is 1D Riemannian dispersion parameter developed based on 

the multivariate analysis of unit normal vectors to a profile to characterise profile 

roughness. The larger is DR1 the rougher will be the profile. It is also well understood 

that the larger the profile roughness, the greater will be the fracture shear strength.    

Rasouli and Harrison (2010) have shown the applicability of DR1 as fracture roughness 
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parameter through the analysis of synthetic and rock fracture profiles. They, through 

analysis of a symmetric synthetic profile, showed the direct correlation between DR1 and 

the fracture shear strength. A part of this research work aims at developing this concept 

to synthetic profiles with different geometries and also to rock fracture profiles. 

Therefore, PFC2D was used to simulate fracture shearing behaviour of synthetic 

profiles with symmetric and asymmetric triangular as well as sinusoidal geometries. 

This was also extended to the analysis of some randomly generated profiles and later to 

rock fracture profiles. The results of simulations were compared with profile roughness 

parameter DR1, in order to develop correlations between profile shear strength and its 

geometry. The results are discussed in the following Section. 

3.5.1 Symmetric triangular profile 

A simple symmetric triangular linear profile with wavelength l and amplitude h, as 

shown in Figure 3.18 can be characterised using either the aspect ratio h/l or the angle . 

For this profile DR1 is expressed as (Rasouli, 2002):  

  lhD 2tan 1
1R

 , (3.13) 

which corresponds to the asperity angle of the profile. 

Shearing behaviour of a synthetic profile with symmetric triangular asperity 

geometry was simulated using PFC2D. In simulations reported here, the asperity 

wavelength l is assumed to be constant so by increasing the amplitude h, the effect of 

profile roughness in shearing process can be investigated. In this example, profile 

wavelength is 2 cm, so DR1 can be calculated based on the radians of asperity base angle 

(e.g. DR1 for a single asperity with base angle of 30° is 0.577). Consequently, DR1 for 

any symmetric triangular profiles used in this Section can be readily calculated by 

taking the tangent of asperity base angle, . 

 
Figure 3.18 Geometrical features of a symmetric triangular profile (Rasouli, 2002). 
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It is noted that asperity amplitude and wavelength has separate effects on fracture 

shear strength and care must be taken once different profiles’ shear strength are to be 

compared, in which asperity amplitude h, or wavelength l, are varied.  

The PFC2D fracture shear box used here has the same properties as the one 

described in detail in Section 3.2 (see Table 3.2). Simulations were performed under 

variety of normal stresses (from very small, 1.0 MPa to very high, 10.0 MPa). This 

enables us to plot fractures failure envelopes corresponding to several scenarios.   

Figure 3.19 shows the PFC2D model after shearing of a symmetric triangular profile 

with base angles of 15°, 30° and 45° from left to right direction under normal stress of 

5.0 MPa. In this test, horizontal (shear) displacement was allowed up to 3 mm to fully 

capture the deformation response of the shearing asperity. 

The results show that asperity damage increases as the asperity base angle  

increases, but in some cases asperity failure does not occur equally on all the asperities. 

This is thought to be due to the inherent roughness of the contact asperities which is 

related to the particle size distribution along asperity contacts as explained earlier. 

The cut off plane (discussed in Section 2.2.7 ) along which asperities are sheared off 

in angles less than asperity base angle , are clearly visible at larger asperity base angles 

(here 30° and 45°), whereas it becomes more difficult to recognise a cut-off plane at 

smaller asperity angles (i.e. 15° in this example). This denotes the fact that at low 

asperity angles (e.g. 15°) sliding is the dominant mechanism in fracture shear test 

(Figure 3.19.a). It is observed that the orientation of cut-off plane is nearly horizontal 

under a higher vertical stress regardless of the fracture morphology, which is because in 

this situation, the asperities all fail and the effect of profile roughness becomes 

insignificant. Separations were observed at down-slope sides of the asperity contacts in 

both low and high normal stresses. Crushing (i.e. asperity degradation) is occasionally 

found at the tips of asperities (Figure 3.19.b). Tensile fractures initiate from asperity tips 

and develop initially at an angle almost perpendicular to shearing direction, followed by 

wing-crack type fractures propagation at almost 45° to the shearing direction.  

Similar failure mechanisms observed in our simulations has been previously reported 

by Huang et al. (2002) during their direct shear experiments of regular tooth-shaped 

fractures. In Chapter 4 of this thesis, we will perform several laboratorial shear tests 

using newly developed fracture shear apparatus to validate the accuracy of the PFC2D 

simulation results. 
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Figure 3.19 PFC2D shearing simulation of symmetric triangular profiles with asperity base angles of 

(a) 15°, (b) 30°, and (c) 45° under 5.0 MPa normal stress. 

   As can be seen from Figure 3.19, by increasing the shear displacement, the amount 

of local degradations increases which affect the residual shear stress and dilation (i.e. 

post-peak shear behaviour) considerably.   

The residual shear stress of fractures in current simulations appears to be significant 

since in all simulated cases we observe asperity degradation at high normal stresses and 

after a large displacement of fractures. This predominantly affects the post-peak 

behaviour of fractures; therefore the difference between residual shear strength of 
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fractures with different profile’s roughness can be identified as the rate of degradation 

and used for calculation of effective degraded area of asperity contacts.  

The advantages of using PFC2D in simulation of fractures shear behaviour is the 

potential of tracing the development of micro cracks in different timesteps. Once the 

model is calibrated and the results are in good agreement with physical experiments, 

simulations can be performed instead of doing costly and time consuming laboratorial 

tests to capture the post-peak stress-strain curves of fracture shearing. Figure 3.20 

shows shear stress versus shear displacement curves corresponding to fractures with 

asperity angles of 15°, 30° and 45°, respectively. It is seen that as asperity angle 

increases, peak shear stress of fracture asperity increases, as expected.  

 
Figure 3.20 Shear stress versus shear displacement curves for asperity angles of 15, 30, and 45 

under 5.0 MPa normal stress. 

From Figure 3.20 it is seen that the difference between profiles with asperity angles 

of 30° and 45° is significant, which is believed to be due to the fact that as asperity 

angle becomes larger than a critical value, failures will partially occur through the intact 

rock, and thereafter the effect of surface roughness reduces. 

It is interesting to compare the shear stresses at peak and post-peak states. The 

difference between peak and residual shear stress ( rp fC ) decreases as asperity 

base angle increases, i.e. profile roughness becomes larger. Comparing the curves for 

different asperity angles in Figure 3.20 it is seen that the difference between peak and 

residual shear strength decreases while asperity angle increases: this difference is 

approximately 5.5, 5.0, and 4.5 MPa for fractures with asperity angles of 15°, 30°, and 
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45°, respectively (see Figure 3.20). This demonstrates that the chance of local asperity 

degradations and intact rock failure increases by increasing fracture profile roughness, 

as shown in Figure 3.19.c. It is also observed that sudden drop of the curve at the peak 

which occurs when the samples experiences the major tensile cracking, reduces as 

profile roughness decreases. 

Figure 3.21 shows the plot of normal displacement versus shear displacement (i.e. 

dilation) of symmetric profiles with different asperity angles. A similar dilation is 

observed for three different asperity angles when the shear displacement is less than 

about 1 mm. However, for shear displacements larger than 1 mm, dilation increases 

mainly in larger asperity angles (here 30° and 45°).  

 
Figure 3.21 Normal displacement versus shear displacement curves (i.e. dilation) for asperity angles 

of 15, 30, and 45 from PFC2D simulations. 

This behaviour is included in Barton’s dilation equation (Barton and Choubey, 1977) 

which is expressed as 

  n10n log  JCSJRCd . (3.14) 

In this equation dilation, dn, is directly related to the JRC value. As expected and was 

observed from PFC2D simulation results, by increasing profile roughness, dilation 

increases.  

In Figure 3.22, the effect of normal stress magnitude on shearing process is depicted. 

This figure shows the results of PFC2D simulation for a symmetric profile subjected to 

1.0, 3.0 and 5.0 MPa normal stresses, respectively. The results show that asperity 

damage increases as the normal stress increases.  
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It is interesting to note that in Figure 3.22, the cut-off angle decreases as normal 

stress increases and at normal stresses equal to or more than 5.0 MPa the observed cut-

off plane is nearly horizontal. This is in agreement with analytical calculations of cut-off 

angle which is obtained through the limit equilibrium analysis by Huang et al. (2002) 

and extended in Section 2.2.7 of current work, as discussed. 

Interestingly, from Figure 3.22 it is seen that by increasing the normal stress, more 

asperities enter into the failure mode. Also, it is observed that at normal stress of 1.0 

MPa (Figure 3.22.a), cut-off plane develops in two asperities only but the others are 

only slide over the lower block. However, by increasing the normal stress to 5.0 MPa 

(Figure 3.22.c), the asperity cut-off occurs almost uniformly in all four asperities along 

the fracture profile.  

This also shows the significant effect of high normal stresses on post-peak behaviour 

of fractures where both first and second order asperities are prone to fail. The post-peak 

behaviour of fractures during shearing is also more influenced by material (here rock-

like assembly) strength than that of fracture surface geometry since in post-peak state of 

stress at high normal stresses, asperities have already been sheared-off or degraded. 

Shear stress versus shear displacement is plotted in Figure 3.23 for a symmetric 

profile with asperity angle of 30°. From this figure it is seen that peak shear stress 

increases as normal stress increases. Also large differences are observed between profile 

dilation when it is sheared under different normal stresses. Figure 3.23 also indicates 

how dilation reduces as a result of increasing the normal stress. 
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Figure 3.22 Effects of normal stress on asperity shearing: (a) normal stress = 1.0 MPa, (b) normal 

stress = 3.0 MPa and (c) normal stress = 5.0 MPa. 

To estimate the normal stress corresponding to very low dilations (close to zero), 

simulations performed under very high normal stresses. It was observed that asperities 

are completely sheared-off under normal stress equal or above 15.0 MPa with no 

noticeable dilation. Similar results have been reported by Huang et al. (2002) in their 

experimental works on profiles with base angles of 15° and 30° under different normal 

stresses. They confirmed that as asperity base angle and normal stress increase, dilation 

decreases.  
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Figure 3.23 Shear stress versus shear displacement and dilation curves for a profile with asperity 

angle of 30° under different normal stresses after 3.0 mm horizontal shearing. 

Effects of shear displacement on evolution of asperity degradation are also seen in 

Figure 3.23. It is seen that at shear displacement corresponding to peak shear stress, 

dilation increases significantly, and then gradually decreases. 

The shear strength of symmetric triangular profiles with base angles of 15°, 30° and 

45°, corresponding to DR1 values of 0.262, 0.523 and 0.785, respectively, are shown in 

Figure 3.24. As expected, the results indicate increasing shear strength with both 

increasing normal stress and profile roughness. It is seen that almost all profiles 

intersects intact rock criterion at a particular normal stress value. Interestingly, a 

correlation is observed between profile base angle and this intersection point: as profile 

base angle or DR1 increases, the point of intersection moves towards left, i.e. failure of 

intact rock begins sooner or profile roughness becomes less dominant in failure of the 

rock. This, again, demonstrates the fact that at low normal stresses, sliding is the most 
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dominant mechanism, whereas at high normal stresses, asperity cut-off and degradation 

mechanisms are more likely to take place. 

  
Figure 3.24 Shear strength of symmetric triangular profiles with different asperity angles at different 

normal stresses obtained from simulation. 

The point at which fracture shear strength curve intersects the intact rock material is 

the point above which fracture roughness becomes ineffective on shear stress of the 

fracture profile as profile asperities will be sheared off completely smooth. The normal 

stress corresponding to this point, 
0n 

 , can be analytically estimated from Equation 

2.23 (in Chapter 2) by substituting the current PFC2D rock-like assembly’s strength 

properties (c and ) in this equation: 

   


4cos)4tanθ(cot15MPa 2
0n .  (3.15) 

In Table 3.3 the results of normal stress corresponding to the cut-off angle zero 

obtained from analytical solution and simulations for fractures with asperity angles of 

15°, 30° and 45° are given. From this Table, a close agreement is observed between the 

results of the two approaches; however, the simulation results appear to be lower than 

those of analytical solutions. Interestingly, it is seen that as the asperity angle increases, 

the difference between the results obtained from the two methods becomes larger. This 

could be due to a more complicated failure mechanism at high normal stresses, which 

may be either an asperity cut-off or degradation. This complexity is not adequately 

captured using a simple analytical formula and therefore the PFC simulation can be 

fruitful in that regards.  
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Yet, it is to be noted that in real situations it is very unlikely to have rock fractures 

with asperity angles of as high as 30° (Barton, 1973; Patton, 1966). The importance of 

this transition point, i.e. 
0n 

 , is its potential for developing correlations between DR1 

and shear strength of the profile from PFC2D simulation results as will be explained in 

Section 3.5. 

Effects of contact bond strength 

Since the UCS of the material is highly affected by the bond strength between particles’ 

contacts, assigning a proper value to bond strength is important (see the discussion in 

Section 3.2.1). As was shown before, the CBS and UCS are linearly correlated in a 

BPM, but the correlation is dependent on average particle size of the rock-like 

assembly. Therefore, the CBS will be referred to in our analysis here. The effect of CBS 

on fracture shear strength was examined by simulation of number of shear tests with a 

wide range assumed for the CBS. Sensitivity analysis was performed for two different 

symmetric triangular fracture profiles with 15° and 30° asperity base angles under 

different normal stresses. The aim of this analysis was to investigate the effects of 

material internal strength on fracture shear strength. In these simulations, the CBS 

ranges from 30 to 150 MPa as given in Figures 3.25 and 3.26. 

From Figure 3.25 it is seen that as normal stress increases, dependency of shear 

strength to material strength increases (i.e. slope of the linear correlation increases from 

0 to 0.0339, corresponding to normal stresses of 1 to 10 MPa). Figure 3.26 shows 

similar results for an asperity with 30° base angle, where the slope of the linear 

correlations increases from 0.025 to 0.0676, corresponding to normal stresses of 1 to 10 

MPa). Comparing Figures 3.25 and 3.26 brings us to the conclusion that the shear 

strength shows to be more sensitive to material internal strength (here CBS) at high 

normal stresses and high asperity angles (i.e. larger profile roughness). 

This is believed to be due to the extent of micro-cracking within the process of 

material bond breakage. As the chance of sliding decreases by increasing the normal 

Table 3.3    Normal stress corresponding to complete asperity shearing-off. 

Asperity base angle,º 0n 
  from PFC2D simulations 

(MPa) 

0n 
 from Analytical solution 

(MPa) 

DR1 

15 40.8 41.146 0.261 

30 14.9 16.109 0.523 

45 5.1 6.944 0.785 
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stress, a large number of micro-cracks are developed in the asperity contact area due to 

the concentration of shearing forces. In this situation the rock material strength (here 

CBS) plays a more influencing role in bond breakage than fracture surface properties. 

 
Figure 3.25 Effects of CBS on peak shear stress of symmetric triangular profiles with base angle of 

15° at different normal stresses. 

 
Figure 3.26 Effects of CBS on peak shear stress of a symmetric triangular profile with base angle of 

30° at different normal stresses. 
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3.5.2 Asymmetric triangular profile 

For an asymmetric synthetic triangular profile with its geometry being characterised 

using angles 1  and 2  corresponding to chords c1 and c2 (Figure 3.27), DR1 is obtained 

from  Equation 2.5 (Rasouli and Harrison, 2010) as:  

 
Figure 3.27 Geometrical features of an asymmetric triangular profile (Rasouli, 2002). 

Geometry of asymmetric triangular profiles from their (x,y) coordinates data was 

generated in PFC2D shear test model. Several shear test simulations, similar to those of 

symmetric profiles, were performed considering different symmetry ratios ( 21 ll ) for 

the profile and assuming a wide range of normal stresses.  

Figures 3.28.a to Figure 3.28.c show the results of simulations for profile symmetry 

ratios of 0.25, 1 and 4 under 1.0 MPa normal stress, respectively. As is expected, for 

such profile geometry the shear strength is directional dependent. The results shown in 

Figure 3.28 correspond to shear tests from left to the right direction. From this figure it 

is seen that peak shear stress increases as the symmetry ratio increases. In Figure 3.28.a, 

asperities are degraded since chord c1 with a higher angle than chord c2 faces against the 

shearing direction and this resists upward movement of upper block along the lower 

block.  

Figure 3.28.b exhibits a behaviour of symmetric profile which is a special case of 

asymmetric profile with 21 ll = 1, as explained. In Figure 3.28.c symmetry ratio has 

increased to 4, corresponding to a lower angle for chord c2 than chord c1, in which 

dominantly sliding of asperities along each other is observed. This indicates the 

directional dependency in shear strength of an asymmetric profile: shearing the profile 

with symmetry ratio of 4 from left to right corresponds to shearing the profile with 

symmetry ratio of 0.25 from right to left.  
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Figure 3.28 Effects of asperity symmetry ratio on profile shear strength: (a) l1/l2= 0.25, (b) l1/l2= 1.0 

and (c) l1/l2= 4.0 under 1.0 MPa normal stress. 

This suggests that for a fracture profile, using a single roughness parameter to be 

used for estimation of its shear strength may not be appropriate but different roughness 

values need to be used depending on the shearing direction. Figure 3.29 gives shear 

stress versus shear displacement curves for profiles with symmetry ratios of 0.25, 1, and 

4 at 1.0 MPa normal stress where shearing taken place from left to right direction. It is 

seen that as profile symmetry ratio decreases, not only peak shear stress increases but 

post-peak behaviour exhibits significant changes. This figure also shows the effect of 

normal stress on fracture shear strength and asperity failure. It is interpreted from the 

plot that as the normal stress increases (i.e. 5.0 and 10 MPa), the amount of degradation 

increases and post peak shear strength appears to be larger as well as that fracture 

reaches its residual state sooner than that of under 1.0 MPa normal stress.   

As expected, by reducing the symmetry ratio, asperity degradation takes place which 

causes an increase in the post-peak shear strength of fracture profile as stated also by 

Karami and Stead (2008) in their Hybrid FEM/DEM numerical simulations. 
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Figure 3.29 Shear stress versus shear displacement curves for an asymmetric profile with different 

symmetry ratios. 

3.5.3 Sinusoidal profile 

A sinusoidal profile given by bxaz sin , with amplitude 2a and wavelength bw 2  

(or aspect ratio wa2 ) is shown in Figure 3.30. DR1 for this profile is expressed as :

  

    231
1R 2tan32 waD  . (3.16) 
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Equation 3.16 shows that profile roughness increases nonlinearly as the wavelength (w) 

decreases or amplitude (2a) increases. Comparing this to Equation 3.13 shows that, 

geometrically, a sinusoidal profile has a larger range of roughness values than does a 

symmetric triangular profile.  

 
Figure 3.30 Geometrical features of a sinusoidal profile (Rasouli, 2002). 

This is because the maximum deviation of unit normal vectors to a sinusoidal profile 

is larger than that of a symmetric triangular profile of equivalent aspect ratio. A profile 

with sinusoidal asperities was simulated in PFC2D shear test model. Similar to 

triangular profiles, here we assume constant asperity wavelength, so by increasing the 

asperity amplitude, the effect of fracture profile roughness in shearing behaviour to be 

investigated. Simulation of sinusoidal profiles was carried out for different aspect ratios 

(i.e. 2a/w) under normal stresses of 1.0, 3.0, and 5.0 MPa, respectively. Figure 3.31 

shows the results corresponding to two different aspect ratios and at 1.0 MPa normal 

stress. In this figure, the results of a symmetric triangular profile with similar aspect 

ratios are shown for comparison purposes. 

 The results given in Figure 3.31 indicate that in general shear strength of profiles 

increases as profile aspect ratio increases. It is observed that both shear and tensile 

cracks in both profile geometries develop at almost similar locations, however 

sinusoidal profiles exhibit larger shear strength as well as more damages comparing to 

triangular profiles. This, from a mechanical point of view, is perhaps due to the larger 

surface exposed in shearing a sinusoidal profile than that of a triangular profile. Figure 

3.32 shows a comparison between shear strength of synthetic triangular profiles with 

30° base angle (dashed line) and the corresponding  sinusoidal profile with aspect ratio 

of 0.288 (solid line).  
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Figure 3.31 Comparison between shearing response of a synthetic triangular (a and c) and a 

sinusoidal (b and d) profiles under 1.0 MPa normal stress. 

A considerable difference between peak shear stress of these profiles is observed 

which is likely to be due to the effect of the shape of asperities, as explained before. 

Also, as previously mentioned, by increasing profile roughness, post-peak shear 

behaviour varies considerably and this is also the case here: in Figure 3.32, the residual 

shear strength changes from about 0.5 MPa for a triangular profile to approximately 3.0 

MPa for a sinusoidal profile. Figure 3.2 also indicates the effect of normal stress on 

fracture shear strength and asperity failure. It is interpreted from the plot that the 

shearing behaviour of sinusoidal profiles is fairly similar to the corresponding triangular 

profiles, with the only difference of that sinusoidal profile fractures exhibit larger peak 

and perhaps post peak shear strengths than that of triangular profile fractures. 

Table 3.4 shows the comparison between DR1 values obtained for simulated profiles 

together with peak and residual shear stresses. It is seen that peak and post-peak shear 

stresses as well as corresponding DR1 are larger for sinusoidal profiles, as explained 

earlier. It is interesting to note the profiles behave similarly in pre and post-peak state of 

stress. This shows that the appearance of sharp asperities along the fracture profile will 

reduce the peak and residual shear strength significantly. This also can be applied in 

differentiating between shear behaviour of hammered and corrugated surface fractures: 

a hammered fracture is less prone to have spiky and sharp asperities than a corrugated 

surface. 
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Figure 3.32 Comparison between shear strength of synthetic triangular (a and c) and sinusoidal (b 

and d) profiles under 1.0 MPa normal stress. 

 

 

Table 3.4   Comparison of roughness and shear strength of a triangular and sinusoidal profile. 

Fracture ID Property 
Peak shear stress 

(MPa) 

Residual shear stress 

(MPa) 
DR1 

Triangular profile =30º , 2h/l = 0.288 6.0 0.45 0.280 

Sinusoidal profile 2a/w = 0.288 7.3 2.10 0.515 
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The above results obtained from PFC2D simulation confirm that sinusoidal profiles 

shows a larger range of roughness values than does a corresponding symmetric 

triangular profile. This demonstrates why DR1 is thought to be a good representative 

parameter for profile roughness, as DR1 is larger for a sinusoidal profile than a 

symmetric triangular profile with similar symmetry ratio. 

3.5.4 Randomly generated profiles 

To assess the applicability of DR1 in estimation of fracture shear strength of more 

complex geometries, number of profiles was generated using a simple linear random 

generation algorithm. The width of profiles is 10 cm and asperities’ amplitude varies 

between 0.0 and 0.5 cm. Generated profiles (named A to J) are shown in Figure 3.33 

with the corresponding DR1 value calculated using (x,y) coordinate data of profiles.  

In general, DR1 is estimated from the statistical analysis of normal unit vectors 

corresponding to a rock fracture profile extracted at a given scale (see Section 2.1.3). 

From Figure 3.33 it is seen that profiles A to E consist of ten asperities, where 

profiles F to J consist of five asperities. The symmetry ratio ( 21 ll ) for all 10 profiles 

was assumed 3, which allows studying the fracture shear strength directionality. 

Observationally, DR1 of profiles with 10 asperities are expected to be larger than 

those with 5 asperities (profiles F to J). This is perhaps due to having large asperity 

wavelength for profiles F to J which results in smaller asperity base angles  than that of 

profiles A to E. Accordingly, assuming that a correlation exists between profile 

roughness and shear strength, the shear strengths of profiles A to E are expected to be 

larger than those of profiles F to J. 

PFC2D numerical simulations were performed using the fracture shear box explained 

earlier. All the model micro-properties and corresponding macro-properties are the 

same as those used for simulations of synthetic profiles (see Table 3.2).  

The simulations performed in opposite directions to investigate direction dependency 

in shear strength estimation. Three different normal stresses of 1, 5, and 10 MPa were 

used to capture different failure mechanisms. Similar to a symmetric profile, 3 mm 

shear displacement allowed a complete observation of the shear response throughout to 

the post-peak region. The results of simulations are discussed below. 
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Figure 3.33 Randomly generated profiles with different DR1 values. Profile’s projected length is 10 cm. 

Figure 3.34 shows the view of profiles A to E after being sheared at 1.0 MPa normal 

stress. Profiles on the left column correspond to left to right shearing (LR direction), 

whereas on the right column the results of shearing from right to left (RL direction) are 

shown. In both cases, upper block moves over the lower block with a constant shear rate 

applied to the model while lower block is fixed.  

From Figure 3.34 it can be seen that in shearing profiles A and C form left to right, 

profile C which have less harsh asperities in the direction of shearing exhibits lesser 

shear resistance than that of profile A.  

It is noted that 1.0 MPa normal stress is not large enough to develop tensile cracks 

through intact sample as is seen in most cases given in Figure 3.34. 
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Figure 3.34 View of sheared samples (profiles A to E) in PFC2D fracture shear test box under 1.0 

MPa normal stress.  

Significant differences are obtained between the results of profiles shearing in two 

different directions (i.e. LR and RL) illustrating the directional dependency of fracture 

shear strength. Shear strength of fracture profiles is much higher when they are sheared 

from right to left, as expected. As stated, every single asperity along the profile has the 

symmetry ratio ( 21 ll ) of 3 which causes severe directionality to profiles’ shear 
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strength. This can be quantified by measuring the average mean angle of asperity’s left 

and right chords (+ and ), respectively. Furthermore, asperity damage is observed in 

profiles A and C when sheared from right to left and the extent of damage can be traced 

by recording the data at different shear displacements. Asperity cut-off is also observed 

in profiles D and E where the high angle asperities are located against the shearing 

direction. 

Figure 3.35 shows the curves of shear stress versus shear displacement for profiles A 

to E and for shearing from left to right. Similar results for shearing in opposite direction 

are given in Figure 3.36. From these figures it appears that profiles are sheared more 

easily in the LR shearing direction than that of RL direction since the values obtained 

for fracture shear strength is larger in LR direction.  

Considering the post-peak behaviour of factures, it is understood that when shearing 

in RL direction (Figure 3.36), the majority of shearing energy is spent on developing the 

tensile cracks at asperities doglegs and propagating them through the fracture or even 

the intact rock. This increases the residual shear strength of these fractures in 

comparison with those sheared in LR direction (Figure 3.35). Also by comparing the 

shear stress versus shear displacement curves of profiles A to E in LR direction, it is 

seen that those with higher asperity amplitudes result in larger residual shear strengths 

(e.g. profile D): this is important when comparing the peak and post-peak shear 

behaviour of rough fractures.  

  
Figure 3.35 Shear stress versus shear displacement curves for profiles A to E simulated at 1.0 MPa 

normal stress: shearing from left to right.  
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Figure 3.36 Shear stress versus shear displacement curves for profiles A to E simulated at 1.0 MPa 

normal stress: shearing from right to left.  

From Figure 3.36 is seen that when profile E is sheared in RL direction, it has large 

peak shear stress and small residual shear stress in comparison with other profiles. As 

stated before, the difference between peak and residual shear stresses is considered as 

fracture cohesion (Cf).   

Figure 3.37 shows profiles F to J after being sheared under a normal stress of 1.0 

MPa, with samples sheared from left to right direction shown on the right column. 

Shearing in both directions results in the upper block moving over the lower block with 

an applied constant shear rate and while the lower block is fixed.  

The major difference between the shearing response of profiles A to E and profiles F 

to J is the effect of number of asperities along each profile (i.e. 10 for profiles A to E 

and 5 for profiles F to J). Firstly, it is seen that less asperity breakage and cut-off occur 

in profiles shown in Figure 3.37. This is perhaps due to the decrease in number of 

asperities which may result in reduction of surface roughness and shear strength.  

Generally, magnitude and extent of asperity damage in profiles F to J is much less 

than that of profiles A to E (compare Figures 3.34 and 3.37). Figure 3.38 shows the 

curves of shear stress versus shear displacement for profiles F to J when they are 

sheared in LR (top) and RL (bottom), respectively. From this figure it is seen that the 

peak shear stresses are smaller comparing to profiles A to E with 10 asperities. 
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Figure 3.37 View of sheared samples (profiles F to J) in PFC2D fracture shear test box under 1.0 

MPa normal stress. 

This demonstrates that profile roughness increases as the asperity wavelength 

decreases (or say asperity amplitude increases). Larger wavelengths results in a more 

flat and planar profile, which in turn reduces the shear strength (compare Figures 3.35 

and 3.38). It is interesting to note that the peak shear stress of profiles A to J follows a 

similar trend as profiles’ DR1 values listed in Figure 3.33: this correlation will be 

discussed in this Section. 
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Figure 3.38 Shear stress versus shear displacement curves for profiles F to J simulated at 1.0 MPa 

normal stress: shearing from left to right. 

Comparing the shear stress versus shear displacement curves of all profiles (A to J) 

when are sheared in RL direction (Figures 3.36 and 3.38, bottom), it is seen that the 

residual shear strength of profiles with 10 asperities is much higher than those with 5 

asperities. Comparing shear stress versus shear displacement curves, profiles A to E do 

not show a large reduction when they transit from peak to the residual stress level. 

However, this transition occurs with a noticeable reduction for profiles F to J. This 

difference is most likely as a result of the first set of profiles having larger number of 
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asperities. This shows how the existence of large amplitude asperities (corresponding to 

larger number of asperities) increases the residual shear strength. Similar to profiles A 

to E, profiles F to J show directional dependency in their shear strengths, however, this 

appears to be more significant for rougher profiles, i.e. A to E as the difference between 

their peak shear strength in opposite directions are larger.  

 
Figure 3.39 Shear strength of profiles A to J in both directions together with profiles’ DR1values.  

In Figure 3.39, the shear strengths of profiles A to J obtained in both directions are 

shown.  The shear strengths are ordered according to their DR1 values, which is also 

plotted in this Figure.  The results demonstrate how shear strength is a function of 

profile geometry or roughness. A linear correlation fits the data, however small 

fluctuations are observed.  

In Figure 3.40, profiles A to J are shown where they are ordered from roughest to the 

smoothest from top to bottom. As is seen from this figure, DR1 decreases from 0.4860 

corresponding to profile E (here the roughest profile) to 0.2094 corresponding to profile 

G (the smoothest profile). Visual comparison of profiles in Figures 3.40 also verifies 

that the general trend obtained from PFC2D simulations and DR1 analyses are in very 

good agreement. This analysis demonstrates the applicability of DR1 in estimation of 

fracture shear strength. In the next Section correlations are developed between DR1and 

shear strength of a simple symmetric triangular profile. 
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Figure 3.40 Profiles A to J ordered according to their corresponding DR1.  

3.6 Correlating fracture profile DR1 and shear strength 

As stated before, the objective of this study is to incorporate the effect of profile 

roughness, which is characterised using DR1 parameter, in the calculation of profile 

shear strength. This is ultimately believed to be an approach to be used in estimating the 

shear strength of fractures instead of performing costly and time consuming physical 

tests in the lab. In this Section, correlations between DR1 and shear strength of a simple 

symmetric triangular profile are developed. Similar approach can be used for other 

profile geometries.  
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To express the shear strength in terms of profile asperity angle we use a parametric 

cubic spline curve. In the mathematical field of numerical analysis, cubic spline fitting 

is a form of interpolation where the interpolant is a special type of piecewise 

polynomial called a spline.  

In parametric from, cubic splines are expressed by start point (p1), end point (p2), and 

control as many as control points (here two control points (cp1 and cp2) which lie 

between start point and end point (Figure 3.41). Between the start point  11 y,x  and end 

point  22 y,x  spline curves may be expressed as (Piegl and Tiller, 1997): 
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where  11, pp yx  and  22 , pp yx  are two control points that determine the shape of the 

spline curve. The coefficients A, B and C are given by  

 133 23  tttA  , tttB 3633 23  ,  23 33 ttC   (3.18) 

where 10  t . 

In Section 3.4.1, we plotted peak shear stress versus normal stress for symmetric 

triangular profiles with asperity angles of 15, 30, and 45 degrees, based on the PFC2D 

simulation results. The normal stresses corresponding to the point at which fracture 

shear strength curves intersects the intact rock material, 
0n 

 , for three mentioned 

synthetic profiles, were calculated analytically and verified by simulations (see Table 

3.3). 
0n 

  is used as the end point of cubic splines. In the following, parametric cubic 

splines are to be fitted to the data plotted in Figure 3.24. To do that, we use the 

following assumptions: 

 
Figure 3.41 Schematic of parametric cubic spline with four points. 

 

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/Piecewise
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Spline_(mathematics)
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 The fracture is assumed to have no cohesion and hence the start point is at the 

origin, i.e.    0011 ,y,x  . 

 The end point  22 y,x  is where the shear strength curve meets the intact rock 

criterion, and determined using Equation 3.15 and the peak strength criterion of the 

intact rock (i.e.  tannc ) as 

                           








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 The tangent vector at the origin is vertical, so the first control point takes a general 

form of    111 0 ppp y,y,x  . 

 The second control point is    222 ,0, pyyx  , where the value of 2py  is equivalent to 

the cohesion (c) of the intact rock. This ensures that all curves are tangent to the 

intact rock criterion at their intersection with this curve.  

Together, these assumptions show that the only variable controlling the fit of the 

cubic spline to the results of the numerical analysis is the position of the first control 

point, i.e. 1py . 

The mechanical properties of the rock (cohesion and friction angle, c and ) and the 

roughness angle (, which is DR1 for a symmetric triangular profile) are other factors in 

the calculations.  

For any particular value of DR1, it is straightforward to identify the value of 1py  that 

gives the best fit spline to the numerical analysis output. The results of this are given in 

Figure 3.42, and show that cubic splines fit the data well. The values of 1py  

corresponding to the 1RD  values of 0.262, 0.523 and 0.785 are -2, 1 and 8, respectively. 

These results lead to the relation 

 146.1118.29 R1
2

R11  DDyp , (3.20) 

which has a coefficient of determination close to unity. 

The assumptions listed above, together with Equation 3.20, means that Equations 

3.17 can be written as  
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Figure 3.42 Cubic splines fitted to the shear strength data of symmetric triangular profiles obtained 

from PFC2D simulations. 

which allow an estimated shear strength curve to be produced for other profile asperity 

angles. Similar methodology will be used to estimate the shear strength of rock fracture 

profiles, as is discussed in the next Section. 

3.7 Analysis of rock fracture profiles 

Several rock fracture profiles were simulated using PFC2D to study their shear 

behaviour and then investigate the possible correlation between DR1 and profile’s shear 

strength. 

 
Figure 3.43 Geometry of rock fracture profiles (I to IV) after Rasouli and Harrison, 2010. 
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Here the results of analysis of four rock fracture profiles (profiles I to IV, after 

(Rasouli, 2002) whose geometries are shown in Figure 3.43 are reported. DR1 for these 

profiles, which were estimated numerically at a sampling size of close to zero, are 

0.3612, 0.1911, 0.3404 and 0.3543 for profiles I to IV, respectively (see Figure 3.43). 

According to DR1 values profile I is expected to be the roughest with highest shear 

strength and profile II the smoothest with the lowest shear strength amongst these four 

fracture profiles. Close shear strength is expected for profiles I and IV based on DR1 

comparison of these profiles.  

 
Figure 3.44 Visual comparison of shearing progress of rock fracture profiles (I to IV) with different 

roughness (DR1) at 3.0 MPa normal stress modelled in PFC2D. 
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PFC2D shear test model was used to simulate shear behaviour of these profiles. 

Fracture profiles (I to IV) were modelled in a shear box with the same specifications 

and micro-properties applied to synthetic profiles (see Table 3.2). Simulations were 

performed at different normal stresses to produce the curve of peak shear stress versus 

normal stress. Figure 3.44 shows profiles after shearing at a 3.0 MPa normal stress. 

Similar to the simulation results of synthetic profiles, it was observed that by increasing 

the normal stress, asperity damage increases and the chance for sliding decreases. 

Interestingly it was found that DR1 shows an ascending trend with increasing 

profiles’ shear strength: this shows possible correlations between DR1 and shear strength 

for these rock fractures. Figure 3.45 shows peak shear stress versus shear displacement 

for profiles I to IV. It is seen that as profile roughness (DR1) increases, peak shear stress 

increases. There are fluctuations in residual shear stress of fractures and the trend 

observed for peak shear stresses of profiles I to IV, is not seen here. This can be due to 

the major differences between waviness (or say bumpiness) of the fracture profiles 

which has longer lasting effects (that can be extended to the post-peak region) on shear 

behaviour of fractures than that of roughness. 

The shear strength of profiles was also estimated at different normal stresses. Figure 

3.45 shows that shear strength increases as both profile roughness (DR1) and normal 

stress increase. Similar to synthetic profiles, cubic splines were fitted to simulation data 

as shown to be the best possible fits. 

 
Figure 3.45 PFC2D simulation of rock fracture profiles (I to IV) with different roughness (DR1) at a 3 

MPa normal stress. 
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To determine the end points of cubic splines a simplified approach based on 

analytical solutions developed for symmetric triangular profiles was utilised. Base angle 

 of a symmetric triangular profile, corresponding to DR1 of each rock profile, was 

calculated and then Equation 3.15 was used to determine the end point of splines. The 

values of 1py  corresponding to DR1 values of 0.1911, 0.3404 and 0.3612 are -3, 0 and 7, 

respectively. These results lead to 

   008.3624.1894.57
1

1R 
D

p ey , (3.22) 

Substituting this equation in Equation 3.17, shear strength curve corresponding to rock 

fracture profiles with different DR1 could be produced. Applying the same procedure as 

used for symmetric profiles and employing Equation 3.17, the shear strength curve 

corresponding to a fracture with roughness DR1 and corresponding intact rock properties 

of c and  for range of normal stresses can be estimated as:  
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which is similar to the Equation 3.21 obtained earlier for synthetic profiles; the only 

difference is in control point 1 in which yp1 is related to profile DR1 based on Equation 

3.22. Figure 3.46 shows the cubic splines obtained from Equation 3.23 fitted to peak 

shear strength data obtained from PFC2D simulations. 

 
Figure 3.46 Cubic splines fitted to shear strength data of rock fracture profiles. 
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The analyses here showed that the fracture peak shear strength data are well fitted by 

cubic splines which in turn can be give good estimates of profile shear strength. 

Although the applicability of this correlation may be limited at this stage but it clearly 

indicates that DR1 is a representative parameter to characterise profile roughness and 

could be employed in shear strength estimation of rock fractures. 

3.8 Summary 

The first part of this Chapter presented the theory of BPM which is implemented in PFC 

as a DEM based code. Then usefulness of using PFC2D in simulation of rock-like 

material was discussed and its shortcomings were addressed. This was followed by 

performing sensitivity analyses on PFC2D micro-properties to obtain corresponding 

macro-response of the model. Most influencing micro-parameters in PFC2D models 

including particle size, contact elasticity, ratio of contact normal to shear stiffness, and 

bond strength were analysed by performing several biaxial test simulations. Rock-like 

assembly’s UCS and E were determined based on biaxial test simulations and 

correlations were developed for different scenarios. Finally, a set of micro-properties 

corresponding to moderately strong material was selected and applied to fracture shear 

test simulations in all models used in this study. 

Later, the PFC2D simulation scheme for fracture shear test was explained in detail. 

Effect of micro-roughness on ultimate shear behaviour of fractures was investigated by 

performing shear test simulations of synthetic fracture profiles. Fracture Particles 

friction coefficient was calibrated for smooth and rough fracture profiles and sensitivity 

of shear strength to this micro-parameter was discussed. Effects of intact material bond 

strength on asperity degradation during fractures shearing was analysed in detail. In 

addition, it was explicitly shown how PFC2D is capable of tracing the development of 

micro-cracks during fracture shearing at different normal stresses. 

Accordingly, synthetic and rock fracture profiles were numerically simulated and 

direct shear tests were carried out using PFC2D. Effects of profile roughness, shearing 

direction, and normal stress on fracture shear strength and asperity degradation were 

thoroughly investigated. During fracture shearing, evolution of asperity degradation was 

visually and quantitatively presented and discussed based on the observed failure 

patterns. Peak and residual shear strength and failure mechanisms of the simulated 

fractures corresponded well to those reported in previous laboratory tests and analytical 

models, suggesting the feasibility of reproducing a fracture using BPM. 
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In the last part of this Chapter, roughness parameter (DR1) was calculated for 

synthetic and four rock fracture profiles. It was found that in most cases, the values of 

peak shear strength estimated by PFC2D are well correlated with profile DR1. Also, DR1 

was correlated to peak shear strength and parametric cubic splines were fitted to the data 

obtained from PFC2D simulations. Correlations were developed for both symmetric 

triangular and four rock fracture profiles. 

The next Chapter presents the lab experiments carried out to simulate shear 

behaviour and asperity degradation of rough fracture surfaces. 
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Laboratorial fracture shear tests   

 

 

Several lab studies have been reported on fracture shear tests. These are performed 

under constant normal load (CNL) or constant normal stiffness (CNS) loading 

conditions.  

In this Chapter, modifications made on an existing true triaxial stress cell (TTSC) 

with the purpose of using it for shearing experiments of fracture surfaces under CNL 

conditions are explained.  

The large loading capacity and large size cell of the TTSC together with the use of 

accurate hydraulic pumps capable of applying constant shear velocity are the main 

elements in this shearing device which allows experiments to be carried out on a wide 

range of fractures with different mechanical and geometrical properties. The results of a 

number of experiments performed on synthetic and rock-like fracture samples will be 

presented and compared with PFC2D simulation results. 

4.1 Shear tests in the lab  

The shear behaviour of rock fractures, which was simulated using DEM numerical 

method in this research study, can be experimented in the laboratory using a direct shear 

apparatus. Different direct shear test devices have been developed to study the effects of 

surface roughness on shear strength.  These devices are mainly different in terms of 

their loading capacity and loading condition, i.e. under constant normal load (CNL) or 

constant normal stiffness (CNS).  In CNL the normal load is maintained constantly 

during the shearing process (Barla et al., 2009; Hans and Boulon, 2003; Huang et al., 

2002; Indraratna and Haque, 2000; Jafari et al., 2003; Jiang et al., 2004; Yang and 

Chiang, 2000). Shear testing under CNL boundary conditions is beneficial for cases 

such as non-reinforced rock slopes. In deep formations where the normal stress is 

extremely high, the shear behaviour of rock fracture is controlled by stiffness (shear and 

normal). In recent years, direct shear tests under CNS conditions have been shown to be 

more realistic for such cases. 

Yang and Chiang (2000) studied progressive shear behaviour of composite rock 

fractures with two different triangle-shaped asperities (15 and 30 degrees) under CNL 

4 
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condition. They studied the effects of asperity angle and base-length on the shear 

behaviour of fractures. They confirmed that the larger the asperity angle and base 

length, the large the fracture shear strength. Similarly, Huang et al. (2002) performed 

experiments on artificial fractures with regular triangle-shaped asperities with different 

angles under CNL conditions. They observed asperity sliding and cut-off mechanisms 

in their tests and developed a mathematical formula to estimate rough asperities shear 

strength (see Section 2.2.7). Jafari et al. (2003) simulated the effects of weak and strong 

earthquakes (active faults stimulators) and developed mathematical models for 

evaluating the shear strength of rock joints. They also performed different lab shear tests 

under CNL and CNS conditions and studied asperity degradation at low, intermediate, 

and high normal stresses. As a result of this work the number of loading cycles, stress 

amplitude, dilation angle, degradation of asperities and wearing were reported to be the 

main parameters controlling the shear behaviour of rock joints; these failure modes are 

reported within the shear experiments of the current study discussed in Section 4.4.  

The current work introduces the modifications applied to a true triaxial stress cell 

(TTSC) in order to perform direct shear tests on fracture planes under CNL conditions. 

The TTSC was designed in 2009 to simulate the in-situ stresses in Geomechanics 

applications such as hydraulic fracturing and sand production. This cell allows vertical 

and two independent horizontal loads to be applied up to 315 KN in each direction on a 

30 cm cube of rock (Rasouli and Evans, 2010). 

The fracture shear cell (FSC) is the shearing device designed based on modifications 

of TTSC, and allows the fracture shear tests to be conducted under high normal and 

shear loads (maximum applied load is 315 KN). The normal load is kept constant during 

the fracture shear test using a duplex cylinder and the shear load is applied on a constant 

velocity using high pressure pumps when they perform under constant flow rates.  

In this Chapter, after a description of the device, the results of the experiments 

carried out on synthetic and rock-like fractures will be presented. PFC2D numerical 

simulations are also carried out to compare to the lab results. 

4.2 Description of the device 

A top view of the TTSC is shown in Figure 4.1 where the horizontal stresses are 

applied independently through two sets of rams. The Linear variable differential 

transducer (LVDT) shown in this figure record the displacements of the ram. The 

normal stress is applied using the vertical ram after the top lid of the cell is in place. An 



Chapter 4 Laboratorial fracture shear tests 

 122 

LVDT placed between the vertical ram and the top lid records the normal displacement 

if it occurs. The horizontal stresses are transferred to the sample, which is a cube of 

30cm in size, through the internal plates. In order to ensure that the plates do not 

experience any bending or torsion forces during loading it is important that the sample 

is cut accurately in size and its sides are polished to be precisely parallel. This reduces 

the chance for asymmetric load distribution across the plates and therefore the sample. 

The maximum displacement of the rams is also limited to 2cm. This is adequate for 

direct shear experiments performed in the lab scale.  

The pressure can be applied using hydraulic pumps with a maximum pressurisation 

capacity of 15000 Psi (see Figure 4.2.a). However, fluid injection is performed under a 

constant flow rate with a maximum capacity of 650 cc/hr using high pressure pumps, as 

shown in Figure 4.2.b. Four pumps are capable of the total constant flow rate of 2600 

cc/hr when required. All loads and displacements are constantly monitored during the 

test. The data acquisition system shown in Figure 4.3.a receives the readings through 

different channels at the rate of one data per second (it is also adjustable) and transfers 

them into a monitoring PC, shown in Figure 4.3.b. 

 
Figure 4.1 A top view of the TTSC where the horizontal stresses applied independently through two 

sets of rams; LVDTs are shown in each ram. 

All the loads including horizontal and vertical are recorded with high accuracy by 

load cells located in the rams. Displacements are also recorded by five LVDTs 
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corresponding to the movement of each ram (four horizontal and one vertical); these are 

the major data recorded during the experiments. Furthermore, the cell can be sealed 

when the top lid is in place and this shows the unique capability of the cell which can be 

performed at saturated states (i.e. applying pore pressure). 

In order to use the TTSC for fracture shearing experiments some modifications were 

applied, the details of which are described in this Section. 

 
Figure 4.2 (a) Handy pumps for applying normal stress and (b) Automatic high pressure syringe 

pumps for applying constant shear rate. 

 
Figure 4.3 (a) Data acquisition system and (b) monitoring PC. 
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4.2.1 Fracture shear test configuration  

Performing a fracture shear test using the TTSC requires only one horizontal ram to 

come into motion in order to shear the upper block of the shearing sample over the 

lower block, whereas the other three rams are kept stationary during the test. In order to 

achieve this requirement, based on the current design of the TTSC, a sample size of 

20cm×15cm×10cm was adopted with a configuration similar to that shown in Figure 

4.4. The shearing area of this sample is 150cm2 which enables the shear stress to be 

applied up to 21 MPa according to the maximum load capacity of the tool (315 KN).  

In this figure, a synthetic sample having symmetric triangular asperities is shown. 

The specimen size can be adjusted further close to the boundaries of the stress cell to 

suit, but the chosen size was found to be adequate for the purpose of this study. This 

figure shows a number of rigid shims being placed around the sample to limit the lower 

block of shearing samples inside the cell and prevent it from any lateral, axial, and 

rotational movements. 

The “T” shaped shim (labelled I in Figure 4.4) in the left of the sample transfers 

shear load to the upper block ensuring the load is applied to the centre of the plates. 

Shim II prevents a forward movement of the lower block during shearing. As seen from 

this figure the normal stress is applied to the sample through another shims sitting on 

top of the sample as a cap (shown as III). Also, in order to limit lateral movement of the 

lower block two shims are set on both sides of the sample with their height being lesser 

than the height of the lower block. This is depicted in Figure 4.4 where the perspective 

of the sample configuration is shown.  

 
Figure 4.4 Shearing specimen confined by rigid shims, (a) Perspective and (b) Front-view. 



Chapter 4 Laboratorial fracture shear tests 

 125 

Two Teflon sheets are also used: one is placed between the top shim (III) and the 

vertical ram and the other between the T shaped shim (I) and the shearing side of the 

specimen. The purpose of using these Teflon sheets is to minimise the friction in the 

sliding components of the device which may affect the shearing response of the fracture. 

The one attached to shim I, is used to ensure the dilation of the sample (i.e. vertical 

movement of the upper block over the lower block) during shearing under CNL. 

4.2.2 CNL Loading configuration 

In the CNL shear experiment, dilation of the upper block over the lower block is 

expected as a result of the normal load being constant. Therefore, in direct shear tests, 

the normal load is kept constant during the shear loading using hydraulic pumps.  

For this purpose, in the modified system presented here, a duplex high pressure 

cylinder (DHPC) was designed, a photo of which is shown in Figure 4.5. The cylinder 

consists of two chambers isolated using a diaphragm, one side is filled with nitrogen gas 

to a pressure equivalent to the normal stress required for the experiment and the other 

side is filled with oil. In this figure, the pressure gauge shows 300 Psi pressure on the 

vertical ram which in turn applies a 3.5 MPa constant normal stress on the shearing 

sample (see also Figure 4.6 for more clarifications). 

 
Figure 4.5 Duplex high pressure cylinder (DHPC) to apply constant normal load. 



Chapter 4 Laboratorial fracture shear tests 

 126 

In the event of dilation (i.e. normal displacement) of the upper block, the gas is 

compressed but the pressure is kept constant. This causes an equivalent amount of oil to 

be returned from the vertical ram to the DHPC which in turn results in an upward 

movement of the vertical ram. By recording the load cell data placed in the vertical ram, 

the fluctuations of normal load applying to the specimen can be measured which in turn 

is related to the amount of oil displaced. This system ensures a constant normal load 

being applied to the sample during shearing.  

This device is capable of applying a constant shear load to the shearing specimen 

using high pressure pumps which can be performed either in constant pressure or 

constant flow rate, as explained in Section 4.2. This is believed to be a more appropriate 

approach in applying the shearing velocity to the sample throughout the experiment 

compared to the more commonly used methods. Table 4.1 compares the configurations 

of the apparatus developed in this work (A in the table) against two other direct shear 

test devices recently developed by Barla et al., 2009 (B in the table) and Jiang et al., 

2004 (C in the table). This Table indicates an increased capacity of normal and shear 

loads with a larger specimen size in the current tool. 

The latter improvement reduces the likelihood of sample motion in the form of 

lateral displacement and in particular twisting around the vertical axis, when the fracture 

surface is very rough (i.e. high angle asperities). 

The experimental results obtained from shearing synthetic fracture blocks presented 

in Section 4.4 will show that how, for samples with high angle asperities (e.g. 45 degree 

base angle for a symmetric triangular profile sample) the induced tension cracks 

developed from asperity contacts propagate through the intact rock to some extent and 

then stop. The results match well with those observed from 2D numerical simulations. 

Figure 4.6 gives a schematic front view of the apparatus showing all the components 

and connections used in the current modification. In this figure, different parts are given 

a symbol and the legend below the figure shows the corresponding names. The 

connection of DHPC to and from normal ram is also shown in this figure. 

Table 4.1   Comparison between three different shear test apparatus recently developed. 

Feature A B C 

Loading system CNL CNL & CNS CNS 

Maximum normal load (KN) 315 100 400 

Maximum shear load (KN) 315 100 400 

Maximum shear displacement (mm) 20 18 20 
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Figure 4.6 Schematic view of the specimen showing the system configuration. 

One of the unique configurations of the FSC is that when the top lid is placed onto its 

position, the inner part of the cell becomes completely isolated from the outside. The 

sealing is mainly a result of metal to metal contact and is further supported by O-rings 

placed between the top lid and the upper part of the cell. This means the cell can be 

pressurised by any fluid or gas to a certain pressure (here 21 MPa). According to this 

ability, the sample used for the shear test could be saturated in fluid inside the cell. 

Although the modification proposed here allows shear testing under CNL conditions, 

there is no practical reason why the experiment cannot be performed under CNS 

conditions using the FSC. This condition (CNS) can be adopted for FSC by inserting 

constant stiffness springs between the vertical ram and the upper block of the shearing 

sample. The original TTSC is made in such a flexible manner that allows various 

changes to be adopted in order to perform the experiment under CNS loading 

conditions. 

4.3 Sample preparation 

To understand the fractures shearing mechanisms in the lab and draw some conclusions, 

simple synthetic samples were tested first. Mortar synthetic fracture specimens with 

symmetric triangular shape asperities were made and subjected to direct shear tests 

using FSC.  
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To prepare the synthetic samples, a metal mould as shown in Figure 4.7 was built. 

The artificial plates (galvanized iron of 5 mm thickness) with defined surface 

geometries, is placed in the middle of the mould. For instance, Figure 4.7 shows a 

fracture with a 45 degree asperity angle. Filling the mould with desired material, such as 

mortar, produces the synthetic fracture geometries. The procedure for sample 

preparation is discussed below and in this study only one set of material composition 

was used to ensure similar mechanical properties for all tested samples. This allows a 

consistent comparison between lab and simulation results. The geometry of these 

synthetic surfaces allows, to a large extent, a reasonable comparison of the lab results 

with 2D models simulated in PFC.  

As seen in Figure 4.7, the shearing block has a width of 15cm, a height of 20cm, and 

a thickness of 10cm. A shear box with this size is to be created in PFC for 2D 

simulations to represent lab size tests.  

 
Figure 4.7 A metal mould used to prepare synthetic rough fracture geometries. 

A rock fracture surface from a core sample (usually with a diameter of less than 5cm) 

can also be accommodated in this mould with the remaining space filled with high 

strength mortar. This allows for the testing of real fracture surface versus synthetic ones. 

This technique is used to prepare a rock-like fracture block explained in Section 4.4.3. 

A number of blocks with identical fracture geometry (i.e. symmetric and asymmetric 
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triangular) was made under the same conditions to perform shear tests under a variety of 

normal stresses and in opposite directions, along the fracture horizontal plane. 

Hard plates were used to shape symmetric triangular asperities as well as pseudo-real 

fracture geometries, where variation of surface elevation is only in the x-z plane. This 

was thought to be the closest approach to be able to compare the lab results with 2D 

simulations run in PFC. A set up for making a synthetic symmetric fracture surface is 

shown in Figure 4.7.   

The properties of the mortar material used for making the synthetic samples in this 

work are given in Table 4.2. Removing the plate soon after the mortar is cured, a mate 

fracture geometry is produced. The samples are saturated in water for 28 days, as per 

ASTM guidelines, to reach their ultimate strength before they are tested in FSC.   

Estimation of mechanical properties of the samples used for lab experiments is 

essential as the results are compared to corresponding PFC2D simulations. For this 

purpose, we adopted a similar approach in this study to what was proposed by Lambert 

et al. (2010). They calibrated the results of lab UCS tests with PFC2D biaxial tests. The 

micro-properties of both mortar material and the generated PFC2D model are given in 

Table 4.2. 

We also used the results of PFC2D micro-properties sensitivity analyses presented in 

Section 3.2 as guidance to tune the macro-response of this model. For instance, 

Equation 3.2 was considered which gives a correlation between the assembly’s UCS 

and average particle size. However, this equation could not be directly employed here to 

estimate the UCS of PFC2D model as the bond strength used in this correlation is 60 

MPa, while here it is reduced to 35 MPa to obtain a smaller value of UCS.   

To obtain similar UCS values for all blocks tested in this study, the synthetic samples 

were made up of a volumetric combination of 20% cement, 65% fine grain sand, and 

15% fresh water as it gives a moderately high strength mortar.  

This combination was found to be suitable for the purpose of the current work, where 

studying the failure of the asperities is the main focus. This is, however, different than 

that used by Lambert et al. (i.e. 45% cement and 55% sand) with the samples expecting 

to have a larger UCS and Young modulus. 

The results of UCS tests performed in the lab and corresponding PFC2D biaxial test 

simulations are presented in the following Section. 

 



Chapter 4 Laboratorial fracture shear tests 

 130 

4.3.1 Unconfined compressive strength (UCS) tests 

Figure 4.8 shows a cylindrical sample with a 52mm diameter and 104 mm height (close 

to ISRM recommendation standards) used for UCS tests. Five samples were made from 

a similar material (see Table 4.2). UCS tests were performed by applying a relatively 

low velocity to ensure that the tests are performed in quasi-static loading conditions. 

Loads and displacements were recorded during the tests.  

The average UCS obtained from testing the samples was 29.2 MPa. Figure 4.9 shows 

one of the sample after the UCS test in which the plane of failure shows an average 

angle of  = 30±2° with respect to the loading direction. This angle is related to the 

intact sample friction angle through the linear Mohr Coulomb criterion as 

 
2

45 
 , (4.1) 

which results in an average internal friction angle of 30±2° for the tested sample. 

Having the UCS and friction angle of the sample, an estimation of the sample cohesion 

can be made using the Mohr Coulomb criterion which is presented in the form of 

 





sin1
cos2σ ci

c . (4.2) 

 

 
Figure 4.8 UCS test on a cylindrical sample using the TTSC. 
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Figure 4.9 Cylindrical sample before and after the UCS test showing the shear failure plane. 

From this equation, an average cohesion and internal friction angle for the sample 

obtained to be 7.0 MPa and 32 degree, respectively.  

PFC2D biaxial test simulations were performed under unconfined and confined 

compressive stress conditions to determine the UCS and E. The micro properties of the 

model are given in Table 4.2 and the PFC2D simulation scheme for biaxial tests was 

explained in Section 3.2.  

Here, the same procedure was used for model generation but the average particle 

radius was set to 0.322mm. Although this is few millimetres larger than that considered 

for simulations in Chapter 3, it is in the range of fine grain sandstones which was used 

Table 4.2   Micro-properties of mortar sample and PFC2D rock-like assembly. 

Property Mortar  PFC2D 

Cement Sand Assembly 

Average particle radius (mm) - - 0.3247 

Density (kg/m3) 1380 1380 1380 

Contact elastic modulus (GPa) 18 25 20 

Ratio of particle normal to shear stiffness (kn/ks) 2.5 2.5 2.5 

Particle friction coefficient 0.35 0.35 0.40 

Contact normal bond strength (MPa) 65 60 35 

Contact shear bond strength (MPa) 65 60 35 

Table 4.3   Rock strength properties correlated with lab tests and PFC2D simulations. 

Property Mortar  

Lab experiment PFC2D 

UCS (MPa) 29.2 31.5 

E (GPa) 8.051 9.54 

c (MPa) 7.0 7.5 

(deg) 32 29 
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for mortar preparation in the lab. This allows for a comparison of lab and simulation 

results. Based on PFC2D biaxial simulations, an average UCS of 31.5 MPa was 

estimated for a rock-like assembly which is very close to the value obtained from lab 

tests (i.e. 29.2 MPa). Based on the Mohr-Coulomb analysis, the failure envelope of the 

sample is plotted in Figure 4.10.  PFC2D biaxial test simulations were performed, under 

confined compressive strength where it was assumed the PFC models were representing 

this loading condition, after several tests were carried out.  

 
Figure 4.10 Mohr-Coulomb representation and failure envelope of mortar sample modelled in PFC2D. 

From this envelope, cohesion and internal friction of the intact sample corresponding 

to lab samples and the PFC2D models are measured as 7.5 MPa and 29°, respectively. 

Table 4.3 shows the average UCS and E for mortar correlated with UCS experiments 

and PFC2D biaxial test simulations where five different randomly packed particles were 

subjected to biaxial tests and the average values obtained are given here. It can be seen 

that the values obtained from the lab tests and PFC2D simulations are similar, so the 

model and sample are expected to behave similarly under compression loading 

conditions.  

In the PFC2D models presented in this Chapter, the results of which will be 

compared with lab experiments, a particle friction coefficient of 0.05 was applied to the 

fracture zone particles in all models to produce realistic curves for fracture shear 

strength (see Section 3.4.3). 
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Strength parameters of the testing material computed and measured in this Section 

will be used to plot fracture rock failure envelopes and later to discuss failure 

mechanisms during fractures shearing. 

4.4 Fracture shear tests using FSC 

In this Section, the results of shear tests conducted using FSC for synthetically made 

symmetric triangular and pseudo-real fractures as well as a rock-like fracture will be 

presented. For the synthetic samples, where the third dimension (thickness) of the 

samples exhibits identical amplitude, the lab results are compared with PFC2D 

simulations. 

 
Figure 4.11 Cross-sections of symmetric triangular fractures with 15°, 30°, and 45° asperity angles 

used for shear tests. 

4.4.1 Symmetric triangular asperity fractures  

Different synthetic fractures with symmetric triangular asperities of 15°, 30°, and 45° 

base angles, shown in Figure 4.11 are subjected to direct shear tests. Amplitude and 

wavelength of asperities as well as the profiles’ length are shown in this figure. 

Shear tests will be performed at two different normal stresses (low and high) and in 

two opposite horizontal directions (LR: shearing the upper block from left to right and 

RL: shearing the upper block from right to left) along the fracture horizontal plane. As 

can be seen from this figure, a constant asperity wavelength of 4 cm was used for all 

three geometries. In Section 3.4.4 the influence of changing asperity wavelength and 

height in shearing mechanisms was discussed.  

Figure 4.12 shows the view of the samples built in the lab based on the procedure 

and using material properties given in Section 4.3. 
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Fracture shear tests were performed using FSC and constant normal stresses of 1.5, 

2.0, and 2.5 MPa were applied to the samples during different shear experiments using 

the DHPC. 

 
Figure 4.12 Synthetic samples with triangular shape fracture surfaces. 

Shear load was applied on a constant velocity of 0.5 KN/min to the samples. Each 

test took approximately two hours to complete and this period of time was adequate for 

the sample to reach its residual state. Therefore, the post peak behaviour of sheared 

fractures was also recorded after the samples’ upper block was displaced horizontally up 

to 1.0cm. 

The shear load and displacements were recorded during the experiments using a high 

precision data recorder and the curve of pressures versus time plotted constantly during 

the tests on the computer screen for instant observation of a sample shearing response. 

Figure 4.13 shows the view of samples after the shear test under 2.5 MPa normal stress. 

This is the largest normal stress applied to the samples and found to be large enough to 

cut-off the high amplitude asperities (e.g. 45°). The asperities in the rough sample 

tended to shear-off during the experiment and this resulted in a larger peak shear stress, 

whereas for the sample with lower asperity angles (e.g. 15°) the dominated shear 

mechanism was the sliding of the upper block over the lower block.  
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Figure 4.13 View of samples after shear experiments under 2.5 MPa normal stress. 

Curves of shear stress versus shear displacement at a normal stress of 1.5 MPa were 

produced based on recorded data and plotted for each case which are presented in 

Figure 4.14. A peak shear stress of 4.3 MPa followed by a sharp reduction to a residual 

stress of 3.2 MPa is observed for the rougher sample (i.e. 45° asperity angle). However, 

the results for the sample with the lesser asperity angle showed a gradual increase in 
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shear stress but a levelling off at approximately 1.39 MPa shear stress and no sudden 

reduction in stress was observed for this sample.  

 
Figure 4.14 Plot of shear stress – shear displacement for symmetric triangular fractures based on lab 

shear tests conducted at normal stress of 1.5 MPa. 

In Figure 4.15, the shear test results for a fracture with an asperity angle of 15° 

conducted at normal stresses of 1.5, 2.0, and 2.5 MPa are plotted. It is seen, as expected, 

that as normal stress increases, both peak and residual shear strength of the fracture 

increases.  

 
Figure 4.15 Fracture with asperity angle of 15 degree sheared in lab at different normal stresses. 
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At larger normal stress, shear stress at higher levels fluctuates as the asperities are 

being degraded, and tensile cracks are developing through the intact sample. Once all 

the asperities are sheared-off completely, residual shear strength is reached. This is 

observed at a normal stress of 2.5 MPa as shown in Figure 4.15. 

 

 
(a) Asperity angle = 15º 

 
(b) Asperity angle = 30º 

 
(c) Asperity angle = 45º 

Figure 4.16 PFC2D simulations of fracture shearing with geometries depicted in Figure 4.11, after 1.0 
cm shear displacement at 2.5 MPa normal stress. 

 

The observation of the sample after completion of the test indicated a major tensile 

crack in the sample which could be linked to the sudden drop of stress in shear stress-

shear displacement curves (see Figures 4.14 and 4.15).   
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PFC2D simulations were conducted to compare the results with lab experiment 

findings. Figure 4.16 shows the results correspond to a normal stress of 2.5 MPa. In 

these simulations the sample size, material properties, and fracture geometries were 

chosen to be identical to lab samples.  

A good agreement is observed between lab and PFC2D results. From Figure 4.16 it 

is seen that by increasing the asperity angle, fracture mode changes from asperity 

sliding to cut-off and tensile cracking which is consistent with the lab observations of 

Figure 4.13, to a large extent.  

Since the stiffness of this model is sufficiently high, development of micro-cracks is 

limited and more pronounced at larger asperity angles (e.g. 45° asperity angle), as 

shown in Figure 4.16. 

Plot of -n for the fracture with an asperity angle of 30° is shown in Figure 4.17 

corresponding to both lab experiments and PFC2D simulations. From this Figure, a 

similar trend is observed from both approaches, but PFC2D appears to overestimate the 

peak shear strength. This is believed to be due to the cohesive effects of the fracture 

particles friction coefficient laying on opposite sides of the fracture, as explained in 

Section 3.4.3. It is seen that the trend of envelopes obtained from both PFC2D and lab 

results are almost similar. 

The plot of Figure 4.17 allows estimation of fracture surface mechanical properties to 

be made. Considering the cohesion along the fracture surface, fC being the difference 

between peak and residual shear stresses (see Figure 4.15), the shear strength of the 

fracture ( p ) can be represented as a function of fracture friction angle ( f ) through 

Mohr Coulomb failure criterion as  

    fC fnp tan . (4.3) 

where θ  is the asperity angle of the fracture.  

From the fracture failure envelopes shown in Figure 4.17, friction angles of 29° and 

27.3° were measured from lab tests and PFC2D simulations, respectively. As these are 

very close together, the overestimation of peak shear strength by PFC2D is thought to 

be due to the cohesive effects of the fracture particles friction coefficient laying upon 

opposite sides of the fracture particles, in the PFC2D model 
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Figure 4.17 -n curve estimated from lab tests and PFC2D simulations. 

Since, fracture shear tests were not performed for normal stresses larger than 3.0 

MPa, discussions on fracture shear behaviour at larger normal stresses will be made 

based on PFC2D results.  

In Figure 4.17, the slope of the curve corresponding to the fracture with an asperity 

angle of 30° is  θf  =59°. However, when the normal stress exceeds a threshold it is 

expected that the asperities are completely sheared-off and failures develop into the 

interior of the block. The normal stress corresponding to this critical behaviour could be 

analytically estimated for a symmetric triangular asperity fracture as 

  2T
n )costan(cotc , (4.4) 

where T
n  is the critical normal stress, c is the rock cohesion, and   is the rock internal 

friction (see Section 3.4.1). If the failure envelope of the intact sample is added onto the 

fracture failure envelopes, T
n  can be identified. This is shown in Figure 4.17 for an 

asperity angle of 30 where it is seen that the fracture intersects the intact sample failure 

envelope at almost a 5.5 MPa normal stress level. By reducing the fracture surface 

roughness, the transitional normal stress will be shifted to larger values. This, as 

explained in Sections 2.2.7 and 3.4.1, is because larger asperities with sharper teeth are 

more likely to be sheared-off earlier than smaller asperities with small aspect ratios. 

From Figure 4.17, it appears that the shearing mechanism for a sample with  =30° is 
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expected to be mainly sliding along asperities at normal stresses less than 3.0 MPa with 

asperity shearing more likely to occur at normal stresses beyond this. 

Figure 4.17 also shows that by increasing the normal stress, the difference between 

lab and PFC2D results appears to reduce. This is because at larger normal stresses, both 

methods are expected to give close results. As stated, the most probable parameter for 

overestimation of shear strength by PFC2D is friction of particles laying on opposite 

sides of the fracture which in this case (i.e. large normal stresses) has lower effects on 

shear strength since the dominant failure mechanism is not asperities’ contact sliding 

but it is asperity cut-off and degradation along the fracture plane. 

4.4.2 Pseudo-real fractures  

Pseudo real fracture blocks were built artificially using mortar and according to the 

procedure for sample preparation which was explained in Section 4.4.1. The block has 

an identical geometry along its thickness and this will result in comparable lab results 

and those obtained from PFC2D simulations. The samples (A and B) are shown in 

Figure 4.18 with a cross-section shown in Figure 4.19.  

 
Figure 4.18 Shearing block with A and B fracture geometries prepared for lab shear tests. 
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Figure 4.19 Geometry of pseudo-real fracture profiles A and B extracted from prepared testing block. 

The micro and macro properties of samples A and B are similar to those given in 

Tables 4.2 and 4.3, respectively. Both samples were subjected to shear tests in two 

opposite directions to investigate directional dependency in shear strength estimation.  

Visual observation of profiles in Figure 4.19 shows that profile A includes one major 

asperity which appears to be steeper on one side than another, whereas profile B 

includes three asperities with different heights. These two profiles were chosen amongst 

several tested geometries to show, as examples, the importance of rough asperities in 

shear strength estimation. 

The results of lab experiments and PFC2D simulations for these two samples are 

reported below. 

Profile A shearing analysis 

Shearing procedure, testing configurations, and the sample’s material micro and macro 

properties are similar to the symmetric triangular asperity fractures discussed in the 

previous Section.  

In Figure 4.20, the view of the fracture block A after shear tests in opposite 

directions (i.e. LR and RL) are shown. These tests are performed at normal stresses of 
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1.5 and 2.5 MPa and a shear displacement of up to 1.0cm was allowed. The results 

indicate a distinguished shear behaviour depending on the shearing direction. Fracture 

shearing in RL direction at both normal stresses of 1.5 and 2.5 MPa, causes sliding of 

the upper block against the lower block and minor asperity contact damage is observed. 

Looking at Figure 4.18 this is due to the fact that the left chord of the single large scale 

asperity in this fracture exhibits a smaller angle compared to that of the right side.  

The fracture shearing in a RL direction however, as shown in Figure 4.20, shows the 

development of a large crack through the intact sample for both normal stresses of 1.5 

and 2.5 MPa is observed. 

 
Figure 4.20 Profile A block view after shear tests at 1.5 MPa normal stress in opposite directions (top) 

and at 2.5 MPa normal stress (bottom). 
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This means that for these particular geometry and material properties, the failure due 

to shearing in a RL direction occurs within the intact sample and the post peak 

behaviour will depend on the material mechanical properties (i.e. tensile strength), 

instead of fracture surface parameters. The failure pattern for this case when a normal 

stress of 2.5 MPa was applied indicates the extent of several micro-cracks from the 

large crack, which is a result of shear stresses concentrated along this surface. These 

results are in agreement with what is expected from a visual observation of the profile 

geometry. The fracture experiences a large step when it is sheared from right to left and 

this causes the failure to develop within the rock texture in a tensile mode. 

To investigate directional dependency of shear strength using PFC2D simulations, 

the profile A sample was subjected to shearing simulation in both directions (i.e. RL 

and LR). Figure 4.21 shows the profile after simulation at 2.5 MPa normal stress.  

 
Figure 4.21 PFC2D simulation of profile A shearing in opposite directions, LR (top) and RL (bottom) 

at 2.5 MPa normal stress. 
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This figure shows that the dominant mechanism in LR direction is sliding, whereas 

the tensile and shear failures are expected to develop through the large asperity and 

intact sample when the fracture is sheared in the opposite direction (i.e. RL). In the 

latter case, i.e. shearing in RL direction, in addition to the extension of a large crack 

within the intact sample, a clear asperity cut-off is also observed in which the upper part 

of the asperity is dislocated and displaced due to shear stresses. 

 
Figure 4.22 Shear stress versus shear displacement curves of Profile A shearing at 2.5 MPa normal 

stress, (a) results of lab shear tests and (b) results of PFC2D simulations. 
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Comparing the lab and PFC2D results, a good agreement is observed in terms of 

location and extent of tensile cracks (see Figures 4.20 and 4.21).   

Figure 4.22 shows the plot of shear stress versus shear displacement obtained from 

lab shear tests and PFC2D simulations. Results are shown for shearing in both 

directions, i.e. LR and RL. 

A large difference is observed in shear behaviour due to a changing of the shear 

direction. As expected, the pre peak and peak shear stress of the profile is larger when it 

is sheared from right to left than that of the opposite direction. 

The post-peak (or residual) shear stress is also higher when the fracture is sheared in 

a RL direction. Lesser dilation is observed when shearing has taken place in a RL 

direction compared to that in an opposite direction, which is due to profile geometry. It 

is also important to note that the relatively sharp reduction observed in Figure 4.22 at 

the peak is because of the large asperity height or roughness for the profile we used here 

for demonstration purposes, which is similar to what was seen for synthetic profiles. 

However for real fractures, in general, a smooth reduction of stress after peak is 

expected. 

The above analyses show why the shearing direction as well as the state of shear 

stress, i.e. pre or post peak, must be taken into account when characterising the ultimate 

shear strength of fractures. This is caused by surface roughness and therefore proposing 

an appropriate method to quantify roughness and integrate it with shear strength of the 

surface is important. 

Profile B shearing analysis 

In Figure 4.23, the view of fracture B after a shear test from left to right (at normal 

stress of 2.5 MPa and maximum shear displacement of 1.0 cm) is shown. However, 

tests were performed at normal stresses of 1.5 and 2.5 MPa and in both directions on 

this sample. 

This sample includes three sinusoidal asperities with different amplitudes and 

wavelengths along the horizontal plane and it was therefore interesting to see the 

percentage of contribution of each asperity in shearing resistance when it was tested in 

LR or RL directions. In the first test, which was performed under 1.5 MPa normal 

stress, the sliding of upper block asperities over the lower block was observed with a 

small dilation taking place. Also, similar to profile A, under this low normal stress, 

minor asperity contact damage (called asperity contact wear) was also observed. 
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However, when normal stress increased to 2.5 MPa, the shearing mechanism was 

completely changed and as can be seen from Figure 4.23, all asperities experienced 

failure but in different fracturing modes. In LR shearing it was seen that the first two 

asperities (from the left) of the lower block were sheared off and detached from the rock 

body. However, the most right asperity with a larger amplitude and wavelength 

experienced a large crack which extended to the intact sample itself. 

 These results confirm the theories of failure mechanisms discussed in Sections 2.2 

and 3.4 and despite the extensive attempt of the author, very few similar lab works were 

found available to visually illustrate this.  

 
Figure 4.23 Profile B block view after shear tests under 2.5 MPa normal stress and 1.0 cm shear 

displacement from left to right. 

Figure 4.24 shows a close view of the asperities of fracture B inside the FSC soon 

after the completion of the experiment. From this figure it can be seen that the first two 

asperities (a and b) are completely detached from the lower block with no further direct 

contribution in the shearing process. However, they fill in the fracture aperture space as 

gouge material and this can, depending on the mechanical properties of the rock 

material, significantly affect the post peak shear strength of the fracture. The PFC 
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simulation takes this process into account, while it is ignored when simple analytical 

calculations are used for shear strength estimations.   

 

Figure 4.24 Profile B block view after shear tests at 2.5 MPa normal stress. 

Similar to profile A, a large tensile crack was developed from this asperity’s doglegs 

and propagated through the intact sample. The large asperity amplitude is responsible 

for this to happen (see Figure 4.24). This implies that, in a fracture with a number of 

asperities, the asperity with the largest amplitude will be the one which dominates the 

failure response of the fracture. 

Here, the PFC2D shear simulation of sample B was performed under the same 

conditions as the lab shear tests. Figure 4.25 shows the PFC2D samples after being 

sheared under the 2.5 MPa normal stress in two different directions (i.e. RL and LR).  

It can be seen that if the fracture is sheared in a RL direction, it immediately faces 

the largest asperity located to the most right. Considering the applied normal stress is 

large enough (here 2.5 MPa), most of the shear stress is consumed to develop a tensile 

crack in this asperity while the other two asperities experience minimum failure (see 

Figure 4.25, top). In LR shearing however, (see Figure 4.25, bottom), it can be seen that 

all asperities are sheared-off and a small dilation is observed in this case.  

In comparing Figure 4.25 with Figures 4.23 and 4.24, a good agreement is seen in 

general between the results of the lab tests and the PFC2D simulations. However in 

PFC2D models where shearing takes place in a LR direction, the largest asperity 

experiences not only the tensile crack as observed in the lab but asperity cut-off was 

also observed which could be due to fracture particles size and distribution along the 

surface (compare Figures 4.24.c and 4.25, bottom).  
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Figure 4.25 PFC2D simulation of profile B shearing in opposite directions, RL (top) and LR (bottom) 

at 2.5 MPa normal stress. 

Figure 4.26 shows the plot of shear stress versus shear displacement obtained from 

both lab shear tests and PFC2D simulations. Results are shown for shearing in a LR 

direction corresponding to normal stresses of 1.5 and 2.5 MPa.  

From the lab results (Figure 4.26.a), it can be seen that there is a large difference 

between the peak shear strength of the two fractures and that by increasing the normal 

stress the peak shear strength increases. Interestingly, the residual shear strength of both 

curves approach to an almost similar level (≈3.0 MPa) after the peak shear strength is 

reached.  

A similar trend is seen from the PFC2D simulation results as shown in Figure 4.26.b. 

It should be noted that the values of peak shear strengths obtained from the simulations 

are slightly larger than that of lab tests at low normal stress, but at high normal stress, 

this variation reduces and close values are observed from both approaches. Comparing 

the peak shear strengths in Figure 4.26.a and 4.26.b for normal stress of 2.5 MPa, a 

shear strength of ≈ 8.0 MPa is obtained. 
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Figure 4.26 Shear stress versus shear displacement curves for sample B sheared at 1.5 and 2.5 MPa 

normal stresses: results of (a) lab shear tests and (b) PFC2D simulations. 

The results presented so far demonstrate the capabilities of PFC in the shear 

simulation of fractures and the lab results obtained from FSC experiments confirm this 

to a large extent. In the next Section, the lab shear experiment performed on a rock-like 

fracture sample will be presented and some conclusions are made from the observed 

results. Confirmation of the results requires 3D simulations of the model, which is not 

within the scope of this work and therefore is left as a subject for a future study. 
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4.4.3 A rock-like fracture   

To generate a replica of the geometry of a real rock fracture, we placed the real sample 

inside the mould (shown in Figure 4.7) and filled the part opposite to the fracture face 

with mortar material. This generates a sample geometry, which can be used to produce 

the opposite face of the discontinuity in a similar way. Indeed, the mechanical 

properties of the created sample is different from that of the real rock but in this study it 

is the geometry of the fracture which is important to us and the approach adopted here 

provides a reasonable replica of rock fracture geometry. The produced sample has the 

micro and macro properties explained in Section 4.4.1, and the sample is shown in 

Figure 4.27. 

High resolution photos were taken from each surface of the fracture (i.e. lower and 

upper) and were subjected to photogrammtery techniques using Siro3D software to 

produce 3D and wireframe images of upper and lower surfaces of this rock fracture as 

shown in Figure 4.28. Siro3D generates a spatially fully referenced 3D image from 

overlapping digital images taken from a rock surface (CSIRO, 2009; Haneberg, 2006). 

The rock fracture block was tested in the lab using FSC in a similar procedure 

explained in Section 4.4.1. The sample was sheared in opposite directions along x-y 

plane and under 2.5 MPa normal stress. Each sample was tested twice in order to 

examine the evolution of surface roughness after one cycle of shearing. After the first 

cycle it is expected that some of the asperities are broken and therefore lesser shear 

strength is to be observed for the second cycle, assuming that both experiments are 

conducted under an identical normal stress. 

 
Figure 4.27 Artificial rock-like fracture made of mortar. 
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Figure 4.28 Rock-like fracture lower (top) and upper (bottom) surfaces. 

The fracture sample after shearing in a LR direction is shown in Figure 4.29 which 

gives the results of shearing for two cycles of shearing. In the first cycle, the fracture 

was allowed to displace up to 1.0cm and is seen that a limited amount of asperity 

contact degradations occurred. Thereafter, fracture surfaces were brought to their initial 

position (i.e. matched surfaces) and the second cycle of shear tests were performed at 

the same level of normal stress (here 2.5 MPa). The view of the sample after the second 

cycle is also shown in Figure 4.29 where it is observed that the amount of degradations 

has been increased. Locations of the damaged area on the fracture surface are marked in 

this figure which clearly shows that all asperity contacts were damaged at this cycle of 

the test.  
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Figure 4.29 Rock fracture block sheared in the lab at 2.5 MPa normal stress and at two shearing 

cycles. 

Considering the analysis, reproducing the 3D image of the fracture after each cycle 

of shearing will be useful in the prediction of mobilised roughness of the fracture 

surface which is not the purpose of this study. Figure 4.30 shows the plot of shear stress 

versus shear displacement obtained from lab shear tests for this rock fracture. Results 

are shown for shearing in both LR and RL directions at a normal stress of 2.5 MPa. 

Curves corresponding to each cycle of shearing are also given. 

Figure 4.30.a gives the results of lab shear tests where the fracture is sheared in a LR 

direction. It can be seen that there is a large difference between the peak shear strength 

obtained in the first and second cycles of shearing. This is due to the predominant 

effects of fracture surface geometry (i.e. roughness) on shear strength.  

From the first to second cycle, fracture roughness evolves and therefore a different 

shearing response is observed in the second cycle. The peak shear strength of ≈4.7 and 

≈2.7 MPa were measured for the first and second cycles of the shear test, respectively. It 

is seen that peak shear strength reduces in the second cycle, as expected, comparing to 

the first cycle which demonstrates that large asperities were damaged during the first 

cycle of the shear test. 

From Figure 4.30.a, a sharp drop of shear stress is recorded which is most probably 

because of a large asperity cut-off followed by the development of micro-cracks in the 
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fracture surface. A different response is seen in the second cycle as no major sharp 

asperities exist at this time but instead the broken asperities which fill in the fracture 

will make a contribution in fracture shear strength during the second cycle of the 

shearing test. 

The average asperity angle can be calculated based on the mobilised friction angle of 

fractures in both cycles of shearing.  

 
Figure 4.30 Plots of shear stress versus shear displacement at 2.5 MPa normal stress, (a) shearing in 

LR direction and (b) shearing in RL direction. 
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Assuming the basic friction angle of 31° for this fracture as discussed in Section 

4.4.1, the average asperity angle (i.e. roughness) estimated using the Patton bilinear 

equation after the first and second cycles of shear tests are 30.9° and 16.2°, respectively. 

It is seen that the asperity angle is reduced in the second cycle as twice as in the first 

cycle: this indicates the effects of asperity degradation in shear strength. 

Comparing the peak shear strengths in Figure 4.30.a and 4.30.b for normal stress of 

2.5 MPa, shows that fracture shear strength is much larger if it is sheared in a LR 

direction than that of a RL direction. This is in agreement with the expectations from a 

visual observation of the sample.  

For PFC simulation of this fracture, a 3D simulation is required which is not the 

purpose of this study. However, performing a 3D simulation of rock fracture shear 

strength is highly recommended for future studies. 

4.5 Summary 

In this Chapter, modifications applied to use an existing true triaxial stress cell (TTSC) 

for fracture shearing experiments were reported. Large shear and normal load 

capacities, adjustability of the specimen size, and highly controlled shearing velocity are 

the main features of this fracture shear cell.  

In the next part of this Chapter, UCS tests were performed in the lab for mortar 

samples and the results compared with corresponding PFC2D models.  

The shear experiments carried out on samples with symmetric triangular asperity 

fractures, pseudo real fracture and a rock-like fracture at a constant normal load 

indicated that the shearing mechanism changes from sliding to asperity shearing (i.e. 

degradation) as the fracture surface becomes rougher.  

The results of the PFC2D simulations of both synthetic and pseudo fracture profiles 

presented here indicated a general agreement with the results obtained from 

corresponding lab experiments. 

Fracture shear strength directionality was investigated by performing lab shear tests 

on synthetic samples along their horizontal plane in two opposite directions. 

In the last part of this Chapter, a rock-like fracture was subjected to shear tests and its 

directional dependency was studied in two shearing cycles. The results indicated that 

shear strength is reduced in the second cycle due to a reduced roughness after the first 

shearing cycle. 
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Summary, conclusions and 
recommendations 

 

In this thesis, the progressive shear behaviour of rock fractures with different surface 

roughness and normal stress acting perpendicular to a fracture direction was studied. It 

was shown how the shear behaviour of a fracture was different under low and high 

normal stresses. Also, fracture sliding (dilation), asperity shearing (cut-off), and asperity 

contact damage (degradation), were outlined as the three common modes of failure 

during fracture shearing and were simulated using PFC2D. 

In the current study, the shearing process and failure modes of rough fractures were 

studied. The analysis was limited to single unfilled rough fractures and analytical, 

numerical and experimental approaches were used for modelling and data analysis. A 

detailed summary and conclusions made from this study are presented in Sections 5.1 to 

5.3 with Section 5.4 outlining some of the future studies recommended as a continuation 

of this work. 

5.1 Shear strength and roughness 

 The 1D Riemannian dispersion parameter (DR1) proposed by Rasouli (2002), 

corresponding to the standard deviation of unit normal vectors to a fracture 

profile, is perhaps the most recently developed roughness parameter. Correlation 

between DR1 and fracture shear strength was examined in this study. A good 

correlation was found for synthetic fractures including symmetric and asymmetric 

triangular and sinusoidal profiles. 

 A review of analytical solutions and empirical expressions of fracture shear 

strength showed that the current constitutive models such as the Barton empirical 

relation and Patton bilinear criterion are useful to estimate the shear strength of 

fractures where asperity degradation does not take place. 

 For rough fractures sheared at high normal stresses, it was shown that a fracture 

failure mechanism includes both dilation and surface damage. 

 A simple equation was derived based on the initial work of Huang et al (2002). 

Using this equation, the critical normal stress, above which the asperities are 

5 
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completely degraded, can be estimated. This equation was also used to fit a 

parametric cubic spline to peak shear strength data obtained from simulations. 

 Based on an analysis of the asperity cut-off expression, it was understood that the 

shearing process of fractures is expected to be a combination of contact sliding at 

low normal stresses, asperity cut-off at relatively high normal stresses, and rock 

failure at normal stresses larger than the values of critical normal stress. 

 A review of rock fractures deformation and degradation models showed that due 

to evolutional effects of surface roughness on shear strength and asperity 

degradation, a single parameter used in constitutive models was unable to take 

into account the effects of roughness on asperity degradation. 

 To obtain a more realistic model in studying the progressive shear behaviour and 

degradation process of rough fractures, an explicit numerical method could be 

used which could monitor the deformation process of fracture surface and intact 

rock through time. This results in the development of a complete stress-strain 

relation for the fracture. The simplistic assumptions in developing analytical 

solutions make their applications limited to very special scenarios. 

5.2 Numerical analysis of fracture shearing 

 The literature review indicated that most of the existing numerical studies on 

fracture shearing, which are mostly developed based on a continuum medium (e.g. 

FEM based models), predict the onset of failure. However, a number of 

simulators, which use the discrete element method (DEM) such as PFC, enable us 

to investigate the failure progression of a fracture surface during shearing by 

tracking the extent of the damage zone boundary. In this study, PFC2D was used 

for the simulation of fracture shearing. 

 In PFC simulations, the detection of contacts between circular objects is much 

simpler than that of angular objects as used in other simulators. Also, unlimited 

displacements can be modelled in PFC and more importantly the blocks can 

break, unlike the majority of other DEM codes such as UDEC. 

 The bonded particle model (BPM) implemented in PFC has proven to be a good 

representative of rock material environment. Asperity sliding, development of 

micro-cracks, asperity damage, and intact material failure are the deformation 

mechanisms which can be explicitly modelled in BPM as force-displacement 
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curve progresses in time that enables real-time tracing of the fracture shearing 

behaviour. 

 Using PFC2D the shearing behaviour of a fracture can be simulated as an 

interface between the two opposite blocks along which the particles are at initially 

unbounded contacts. 

 PFC2D uses simple laws to establish interactions at the particle and contact level 

to represent the behaviour of a material. Therefore, the PFC can simulate the 

effect of the fracture roughness, and more specifically, the asperity degradation 

during shearing in a direct and realistic manner.  

 The total number of particles required to represent a real rock situation is limited 

because of the limited computing capacity. 

 A sensitivity analysis of the model micro-properties using a PFC2D biaxial test 

simulation demonstrated the existence of a relationship between micro and macro 

properties. 

 Micro properties are usually not known and must be calibrated for any specific 

rock type. In this study, this was done using available literature data and 

performing biaxial and Brazilian test simulations to determine the macro-

mechanical properties of the model such as UCS, Young’s modulus, and tensile 

strength. 

 It was observed that UCS is linearly correlated with contact bond strength and 

average particle size. Contact elastic modulus is also correlated with Young’s 

modulus, and the ratio of contact normal to shear stiffness correlated with 

Poisson’s ratio and Young’s modulus. Parametric correlations were developed in 

order to estimate macro mechanical parameters of the model based on micro 

properties. 

 The micro-properties calibration process must be done for the PFC fracture shear 

test model to investigate shear behaviour of the model in addition to those 

performed for intact samples using biaxial test simulations. Also, Macro-response 

of the intact sample as well as its fracture shear behaviour must be calibrated 

against lab experiments to ensure the reliability of the results. 

 Normal and shear contact bond strengths must be distributed uniformly in a shear 

box to ensure a consistent response under different loading conditions and fracture 

geometries. Failure to do so may result in some spurious damage occurring where 

bond strength is distributed non-uniformly. 
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 It was observed, as noted by others previously, that a fracture plane in a PFC2D 

model has an intrinsic roughness even if it is planar. This is because of the 

different size distribution of particles in the model. This micro-roughness 

increases with increasing particle size, so by reducing the particle size in the 

model, this effect becomes less important. Accordingly, the sensitivity analysis 

indicated that an average particle size of Rave = 0.257 mm is small enough for the 

purpose of our modelling. 

 The simulations indicated that selection of an adequate number of particles was 

crucial as it affected the behaviour of the entire model. By changing the number of 

particles in the assembly, the mean particle radius would change, which in turn 

affected the ultimate response of the model: the larger the particle size, the greater 

the final porosity, which in turn reduced the UCS. 

 Effects of particle size on peak shear strength of a symmetric triangular profile 

were investigated using a parametric study in which particle radius ranged from 

0.1 to 1.0 mm. It was observed that the peak shear stress reached a maximum at a 

mean particle radius of 0.6 mm and then reduced.  

 In current fracture models it was seen that the peak shear strength reduced with   

Rave ≤ 0.4 mm which was due to the reduction in strain localisation in particles 

along the fracture. 

 Simulations were performed to investigate the effects of fracture particles friction 

coefficient on the shear behaviour of fractures. The results showed that roughness 

had larger effects on cohesion than those of friction angle of fracture in PFC2D 

models.  Assigning large values for friction coefficients would result in the 

overestimation of the fracture apparent cohesion. 

 Micro-cracks development in the PFC2D model showed that at low normal 

stresses, sliding was the dominant failure mechanism, whereas at high normal 

stresses, asperity degradation and intact rock failure were dominant. As a result, 

the model appeared to be capable of simulating both asperity sliding and 

degradation during fractures shearing.  

 Simulation of symmetric triangular profiles with different asperity angles showed 

that asperity damage increased as the asperity base angle  increased, but in some 

cases asperity failure did not occur equally on all the asperities. This is thought to 

be due to the inherent roughness of the contact asperities which is related to the 

particle size distribution along asperity contacts. 
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 For synthetic triangular profiles it was explicitly observed that the orientation of 

the cut-off plane was nearly horizontal under a higher normal stress regardless of 

the roughness as the asperities all failed and the effect of profile roughness 

became insignificant. This corresponds to asperity degradation. By increasing the 

shear displacement, the amount of local degradations increased, which affected 

the residual shear stress and dilation considerably.   

 For symmetric triangular profiles, the simulations corroborated the general 

expectations for shear strength of these profiles: the larger the asperity base angle 

(roughness) or correspondingly DR1, the greater the peak shear strength.  

 An analysis of critical normal stress at the transition between sliding to cut-off 

obtained from both analytical solutions and simulations for fractures with asperity 

angles of 15°, 30° and 45° showed a close agreement between the results of the 

two approaches. However, the simulation results appeared to be lower than those 

of analytical solutions. This is due to a more complicated failure mechanism at 

high normal stresses, which may be asperity degradation. This complexity has not 

been adequately captured using a simple analytical formula and therefore the 

PFC2D simulation results are thought to be more applicable. 

 Asperity degradations for synthetic and rock-like fractures modelled in this study 

were observed dominantly in the post-peak shear stress region (i.e. no damage 

was observed before the peak); therefore the difference between residual shear 

strengths of fractures with different profile roughness can be identified as the rate 

of degradation and used for calculation of the effective degraded area of asperity 

contacts. 

 In the simulations carried out, it was found that fracture shear behaviour was more 

sensitive to material internal strength (here bond strength) at high normal stresses 

and high asperity angles (i.e. larger profile roughness) than surface frictional 

properties. This is believed to be due to the extent of micro-cracks developed 

within the process of bond breakage. 

 PFC2D simulation of a sinusoidal profile with the aspect ratio corresponding to a 

triangular symmetric profile showed that micro-cracks in both profile geometries 

developed at almost similar locations. In contrast, sinusoidal profiles exhibited 

larger shear strength as well as more damage compared to triangular profiles. 

This, from a mechanical point of view, is perhaps due to the larger surface 

exposed to shear in a sinusoidal profile than that of a triangular profile. This 
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demonstrates why DR1 is thought to be a good representative parameter for profile 

roughness, as DR1 is larger for a sinusoidal profile than a symmetric triangular 

profile with a similar symmetry ratio. 

 A PFC2D simulation of asymmetric triangular profiles with different symmetry 

ratios demonstrated the effects of shearing direction on fracture shear behaviour 

and asperity degradation.  

 For an asymmetric triangular profile, it was observed that peak shear strength and 

asperity degradation effectively changed when it was sheared in two opposite 

directions of the fracture horizontal plane (i.e. from left to right and vice-versa). 

This suggests that for a fracture profile, using a single roughness parameter for the 

estimation of its shear strength may not be appropriate but different roughness 

values need to be used depending on the shearing direction.  

 Effects of asperity amplitude, wavelength, and number on the shear behaviour of 

fractures were studied based on the analysis of randomly generated profiles. It 

was observed that shear strength increased as the number of asperities (roughness) 

along the fracture plane increased. A large directional dependency of shear 

strength was also observed through these analyses.  

 The residual shear strength of profiles with more asperities is much larger than 

those with fewer asperities. This shows how the existence of large amplitude 

asperities increases the fracture shear strength and asperity degradation. 

 The shear strengths of ten randomly generated profiles obtained in both directions 

from PFC2D simulations were ordered according to their DR1 values. The results 

demonstrated how shear strength is a function of profile roughness (here DR1). A 

linear correlation fitted the data, however small fluctuations were observed.  

 PFC2D simulation of shear strength of randomly generated profiles showed the 

applicability of this model in shear strength estimation of rough fracture profiles. 

Good correlations between profile roughness, DR1 and peak shear strength of 

profiles were also observed. 

 Four rock fracture profiles were analysed using PFC2D shearing simulations 

under different normal stresses and shear stress data were plotted against normal 

stress. The shear strength of these profiles was found to be highly correlated with 

the roughness parameter, DR1.  
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5.3 Experimental analysis of fracture shearing  

 Modifications applied on an existing true triaxial stress cell were explained, which 

was used for rough fractures shear experiments under CNL. 

 Large shear and normal loading capabilities as well as large shear box size are the 

main features of the fracture shear cell (FSC), which enable a study of the shear 

behaviour and asperity degradation of rough fractures at high normal stresses.   

 A duplex high pressure cylinder (DHPC) was designed and used in conjunction 

with the FSC to keep the normal load constant within the shear tests. 

 One type of mortar was used for sample preparations to ensure similar mechanical 

properties for all testing samples, which also allowed a consistent comparison 

between lab and simulation results. The consistent geometry of synthetic and 

rock-like fractures allowed the reasonable comparisons of the lab results with 

PFC2D models. 

 Similar micro-properties for both mortar material and the generated PFC2D model 

were used to ensure similar mechanical responses for both lab samples and the 

PFC2D model. 

 The average UCS obtained from testing the five samples in the lab was 29.2 MPa. 

Based on PFC2D biaxial simulations, an average UCS of 32.0 MPa was estimated 

for this sample which is very close to the one obtained in the lab. 

 Based on UCS tests in the lab, cohesion and internal friction of the intact sample 

was measured as 7.5 MPa and 29°, respectively, which is in close agreement with 

those of PFC2D biaxial test simulations. 

 The experimental results obtained from shearing symmetric triangular fractures 

with different asperity angles showed how, for samples with high angle asperities 

(e.g. 30º and 45º asperity base angles), the induced tension cracks developed from 

asperity contacts, propagated through the interior of the block to some extent and 

then stopped. Good agreements were observed between 2D numerical simulations 

and lab tests. 

 Large peak shear stress followed by a sharp reduction to a residual stress was 

observed for the rougher sample (i.e. 45° asperity angle). However, the results for 

the sample with a lesser asperity angle under high normal stress showed a gradual 

increase in shear stress but leveled off with no sudden reduction in shear stress.  
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 The failure pattern of the samples after the shear test showed a good agreement 

between the lab tests and the PFC2D results. 

 A plot of -n for the fracture with an asperity angle of 30°, corresponding to both 

lab experiments and PFC2D simulations, showed a similar trend for both 

approaches, but PFC2D appeared to overestimate the peak shear strength. This is 

believed to be due to the cohesive effects of the fracture particles friction 

coefficient laying on opposite sides of the fracture. 

 From fracture failure envelopes, friction angles of 29° and 27.3° were measured 

from lab tests and PFC2D simulations, respectively, which showed a good 

correlation between the two approaches. 

 Pseudo-real fracture blocks where a variation of fracture surface elevation is only 

in the x-z plane (i.e. along the sample thickness) were used for lab tests as this was 

thought to be the closest approach for comparison of the lab results with PFC2D 

simulations.  

 Results of testing two fracture blocks indicated a distinguished shear behaviour 

depending on the shearing direction. Fracture shearing in one direction caused 

sliding of the upper block against the lower block and minor asperity contact 

damage, whereas when shearing in the opposite direction, the development of a 

large crack through the intact sample was observed.  

 The lab experiments on both synthetic and rock-like surfaces showed that the 

asperity degradation affected the post peak behaviour of sheared fractures to a  

significantly greater extent than that of peak shear strength. 

 In comparing the lab and PFC2D results, a good agreement was observed in terms 

of location and extent of tensile cracks after shearing of the pseudo-real fractures.  

 Both PFC2D simulations and lab tests performed on pseudo-real fractures showed 

that the asperity with the highest amplitude would be the one which dominated the 

failure response of the fracture. 

 A shear test of pseudo-real fracture with three sinusoidal asperities, having 

different amplitudes and wavelengths, showed that at high normal stresses 

asperities were completely detached from the lower block and could fill in the 

fracture aperture space as gouge material. This could, depending on the 

mechanical properties of the material, affect the post peak shear strength of the 

fracture. 
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 It was observed that in some cases, the values of peak shear strengths obtained 

from simulations were slightly larger than those obtained from lab tests at low 

normal stress. But at high normal stress, this difference decreased and similar 

values were observed from both approaches. 

 Analyses of pseudo-real fractures showed why the shearing direction, as well as 

the state of shear stress, i.e. pre- or post peak, must be taken into account when 

characterising the ultimate shear strength of fractures. This is caused by surface 

roughness and therefore proposing an appropriate method to quantify roughness 

and integrate it with shear strength of the surface is important. 

 The effects of shearing cycle and direction were investigated through the lab shear 

tests of a rock-like fracture sample. After the first cycle, a limited amount of 

asperity contact degradations occurred, while after the second cycle of shear test 

at the same level of normal stress, it was observed that the amount of degradations 

increased. Locations of the damaged area on fracture surface showed clearly that 

most of the asperity contacts were damaged after the second cycle of shear test.  

 For the rock-like fracture, a large difference was observed between the peak shear 

strengths obtained in the first and second cycles of shearing. This is because of the 

predominant effects of fracture surface geometry (i.e. roughness) on shear 

strength. From the first to second cycle, fracture roughness evolved and therefore 

different shearing responses were observed in the second cycle. Expectedly, the 

peak shear strength of the fracture reduced as the number of cycles increased. 

 Similar to symmetric triangular and pseudo-real fracture profiles, a large 

directional dependency was observed for the shear strength of a rock-like fracture 

sample. 

 Assuming the basic friction angle of 31° for a rock-like fracture, the average 

asperity angle (i.e. roughness) estimated using Patton bilinear equation after first 

and second cycles of shear tests were 30.9° and 16.2°, respectively. This shows a 

reduction in the average asperity angle corresponding to the second cycle, which 

is due to the effects of asperity degradation during shearing. 

 The results presented in this thesis demonstrate the capabilities of PFC2D in the 

estimation of fracture shear strength. The model is capable of predicting different 

fracturing scenarios as tested in the lab. 

 For a symmetric triangular profile with a base angle, , a correlation was 

developed between profile’s DR1 and peak shear strength estimated based on 
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PFC2D simulations. The results indicated that the larger the DR1, the greater the 

peak shear strength of the fracture profile. Parametric cubic spline curves were 

used to express the shear strength in terms of profile’s DR1. 

 Critical normal stress at which fracture shear strength curves intersects the intact 

rock material was used as the end point of cubic splines. 

 The mechanical properties of the rock (cohesion and friction angle, c and ) and 

the roughness parameter (, which is DR1 for a symmetric triangular profile) were 

other factors integrated in the correlation developed for the peak shear strength. 

 Spline curves were fitted well to the shear strength data obtained from PFC2D 

simulations for both synthetic and rock fracture profiles. For any particular value 

of DR1, it is straightforward to identify the spline control point value that gives the 

best fit spline to the numerical analysis output. 

 Although the applicability of this correlation may be limited at this stage, it 

clearly indicates that DR1 is a representative parameter to characterise profile 

roughness and could be employed in shear strength estimation and asperity 

degradation of synthetic and rock fractures. 

5.4 Recommendations for Future work 

 Using a bonded clump model to generate a rock-like assembly in PFC models is 

seen as a significant benefit since it may represent a more realistic mechanical 

behaviour of rock fractures. 

 Using a smooth-joint contact model in PFC fracture shearing simulations, and 

assigning this contact model to all particles laying on opposite sides of the 

fracture track, is useful in terms of reducing the effects of the fracture particles 

friction coefficient on shear strength. 

 Employing an expansion of the PFC models to 3D for simulations of both 

synthetic and real rock fracture surfaces would clearly be an important future 

development of this work.  

 The correlation of the equivalent Riemannian roughness parameter in 3D (i.e. 

DR2) with shear strength could be an interesting future investigation.   

 Development of a mobilised roughness parameter which accounts for fracture 

shearing mechanisms, shearing direction, and evolution of surface roughness (e.g. 

asperity degradation) could be another future research direction. 
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 The lab shear experiments presented here are limited to simplified geometry for 

comparison with PFC2D results. Further lab experiments on more complicated 

fracture geometries are suggested to verify the results of PFC3D simulations.  

 An investigation of scale effect and anisotropy of fracture shear strength using the 

presented fracture shear cell and PFC3D model is also recommended for future 

studies. 

 One of the unfavourable incidents in hydrocarbon production is fault reactivation 

due to reservoir depletion or injection. Therefore, performing large scale 

simulations using PFC to study deformation behaviour of large scale fractures (i.e. 

faults) in the presence of insitu stresses and pore pressure is strongly 

recommended. 
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Appendix 

Appendix A: Exemplar JRC profiles 

 
Figure A.1 Exemplar JRC profiles (Hudson & Harrison 1998). 
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Appendix B: Derivation of asperity cut-off (shear) strength 

As stated in Section 2.2.7, Huang et al (2002) proposed a simplified analytical 

model to estimate shear strength of synthetic symmetric triangular profiles with 

symmetric triangle asperities, as shown in Figure B.1. This mathematical expression 

gives the shear strength of the profile acting on the cut-off plane along which the 

asperity is sheared-off (broken). This model was developed based on the Mohr-

Coulomb failure criterion and employs the limit equilibrium analysis of normal and 

shear forces acting on asperity contacts. A derivation of this equation is given here. 

 
Figure B.1 View of a shear box with symmetric triangular asperity profile. 

Figure B.2 shows a shear box with a symmetric triangular asperity profile with 

angle , chord length s, and asperity base length l in a material that obeys a linear 

Coulomb strength criterion. This profile is subjected to both a horizontal shear stress τ  

acting from a left to right direction and a normal stress nσ  applied vertically, as shown 

in Figure B.1. The stiffness of the system is assumed sufficiently high to ensure that 

failures occur at the asperities’ upslope (i.e. chord s).  

 
Figure B.2 Geometrical features of asperity Cut-off in a symmetric triangular profile. 
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The limit equilibrium analyses of the free body diagram of the broken asperity 

gives the resultant normal and shear forces acting on the asperity upslope (chord s) as nf  

and sf , respectively (see Figure B.3). Assuming that the asperity profile is sheared-off 

at large normal stresses, a cut-off plane (chord c1 in Figure B.3) appears through the 

asperity with an inclination angle of   (smaller than ) with respect to the horizontal 

plane. Accordingly, N and S are the transformed normal and shear forces acting on the 

cut-off plane, as shown in Figure B.3. 

 
Figure B.3 Free body diagram of the sheared asperity with cut-off plane. 

From this figure, N and S are determined based on a limit equilibrium analysis as 

follows: 
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Substituting Equations B.1 and B.3 into Equations B.2 and B.4, resultant normal 

and shear forces (N, S) acting on broken asperity’s (cut-off) plane are expressed as 
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Considering Figure B.2, the following equation is derived for the length of 

asperity’s chord c1: 
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Applying the Mohr-Coulomb failure criterion, the shear strength of the critical 

plane along which the shear failure occurs is defined in terms of stresses as 

  tanστ nc , (B.8) 

or in terms of forces as 

    tan1 NccS . (B.9)        (1.8) 

By substituting amounts of N, S, and c1 from Equations B.5, B.6, and B.7 into 

Equation B.9, this equation is expressed as 
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which is reduced to 
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where  is the inclination angle of the cut-off plane (found by evaluating 0αdτd   

which determines the minimum shear stress of the asperity along cut-off plane),  is the 

asperity base angle, and c and  are the cohesion and internal friction angle of the intact 

rock, respectively. 

Equation B.11 was initially developed based on the assumption that horizontal 

displacement of the specimen has caused the right chord of the lower block to have 
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previously separated from the upper matched block, and hence forces acting on the right 

side chord are zero. 

From Figure B.2 it is seen that after asperity failure has taken place, the profile 

geometry changes to an asymmetric triangular profile with angles  and  

corresponding to chords c1 and c2, respectively, where 

  αθsin
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 lc  (B.12) 

and 

  αθsin
αsin

2 
 lc . (B.13) 

As stated in Chapter 2, the normal stress above which the profile roughness will 

be sheared completely smooth is obtained by evaluating   0αdd 0 


, which is 

expressed as 
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if 0 , then expressed as 
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rewriting Equation  B.15, 0nσ   corresponding to critical normal stress is defined as 

 

2
0n cos)tanθ(cotσ c . (B.16) 

This estimates the normal stress at which the fracture shear strength curve 

intersects the intact rock failure envelope. It is noted that at normal stresses larger than 

the critical level, failure occurs through the intact rock. This equation was used in 

Chapters 2, 3 and 4 where fracture failure envelopes were plotted together with intact 

material failure envelopes to estimate the transition points. 


