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Abstract 

Recently, metal oxides, including α-Fe2O3 nanostructures have been widely used as a 

photocatalyst for wastewater purification owing to their cost-effectiveness, stability 

under deleterious chemical conditions, and environmental friendliness. This study 

concentrates on removing organic pollutants from laundry wastewater by employing 

electrochemical (EC) and photoelectrochemical (PEC) processes on α-Fe2O3 

nanostructure. 

Synthetic laundry water was prepared from commercial detergent powder and water. 

The applied voltage for the EC and PEC processes was between 1 and 3 V. α-Fe2O3 

anodes were obtained by sol-gel spin coating method. The X-ray diffraction (XRD), 

Field emission scanning electronic microscopy (FESEM) was used to investigate 

morphology and crystalline of the α-Fe2O3 anode respectively. TOC removal testing 

was performed in the glass reactor with three-electrode system. For the PEC process, 

the reactor was irradiated under the solar simulator. Total organic compounds (TOC) 

were evaluated by the TOC analyzer. It was found that the PEC process showed 

higher efficiency than the EC method in all testing conditions. The higher the 

voltage, the higher TOC removal efficiency was. Lumped kinetic model was 

developed to simulate the kinetics of the degradation reactions. The model fitted 

experimental data well.  

In the second part of the study, the same testing procedures were used to degrade 

sodium dodecyl sulfate (SDS), which is known as a most popular surfactant 

presented in laundry wastewater. In this case, the deposited substrates were annealed 

with a longer time. The highly porous α-Fe2O3 nanoflake structure was obtained. The 

disappearance of SDS after the first hour of treatment was observed via UV-Vis 

spectrum and Fourier transform infrared spectroscopy (FTIR). The different 

reactions and kinetics were also proposed, and they were numerically modelled. It 

was found that the degradation of SDS follows the first order kinetics, and it was also 

well simulated by ordinary different equations. In this work, the PEC method was 

more efficient than the EC process. The results showed that the simple PEC process 

can completely remove sulfate group from SDS, and reduce 90% of TOC. The 
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remaining organics contains hydroxyl and carboxylic groups are less harmful than 

SDS. 

The results from this study present an economical and environmentally friendly 

method to reduce and remove pollutants from domestic laundry wastewater. The 

method is applicable to rural areas in developing countries where centralized 

wastewater facilities are not available. 
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Chapter 1       Introduction 

1.1.  Motivation 

The rapid urbanization and the unceasing growing demand of water for drinking, 

industrial manufacture as well as daily activities cause the water scarcity in many 

countries throughout the world. This shortage constitutes a large number of severe 

consequences such as diseases, deaths, and pollution, particularly in arid, semi-arid 

areas, rural and remote areas, where centralized water treatment plants and 

technologies are limited. Meanwhile, the temporary solutions to tackle those 

challenges considerably rely on rivers, streams, groundwater and rain. These 

natured water sources, however, are depleting. Consequently, recycling or reusing 

wastewater is an important approach to encounter with this situation. However, 

these approaches have not been fully explored in many areas of the world [1]. The 

reason for this is the heavy financing investment required for wastewater treatment. 

Particularly in developing countries and rural areas, the water scarcity is very 

severe [2]. Surprisingly, the realistic reason is not only financial burden but also the 

ignorance of low - cost wastewater treatment technologies [3]. In other words, not 

only efficient water management but also extensive research is needed for 

sustainable water supply.  

Recently, reusing domestic wastewater has been investigated in several developed 

countries. United States of America and Japan are two world leaders in reusing 

domestic water effectively [4, 5]. For developing countries, the reuse of domestic 

water is a relatively new concept [6]. Regulations and guidelines have only been 

developed recently, and still under modification in some areas [7]. Meanwhile, the 

benefits of treated domestic wastewater reuse for garden watering or general 

irrigation are obvious [8]. Domestic wastewater can be classified into two types: 

black water (from toilets), and grey water (from showers, dishwashers, laundries). 

Black water is much more polluted than grey water. Consequently, grey water is 

more attractive for reusing [9]. One of largest amount type of grey water is laundry 

wastewater. This wastewater is largely discharged every day (e.g., approximately 

34% of the total water usage in Western Australia) [10]. The main ingredient of 
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laundry wastewater is synthetic surfactants. These chemicals are defined as the 

surface-active substances, which contain both hydrophobic and hydrophilic 

moieties, and can reduce the surface tension [11]. These synthesized surfactants are 

hard to be biodegraded in the environment [12]. Discharge of these apparently 

results in environmental pollution and threatens public health [13]. Consequently, 

removal of surfactants from laundry wastewater is a huge challenging for reusing 

purpose.  

Moreover, among synthesis surfactants, sodium dodecyl sulfate (SDS), which is 

known as a strong surface – active anionic surfactant, is also the main ingredient of 

daily washing products such as shower soaps, gels, cosmetic as well as detergent. 

Due to its wide application, SDS has been considered as a major pollutant in 

wastewater. It has been pointed out that SDS in wastewater not only pollutes the 

environment, but also causes dangerous symptoms such as depression, labored 

breath, diarrhoea, and carbon metabolism disruption for animals [14]. Because of 

its extensive usage, SDS presents significantly in wastewater. For developing 

countries, where water treatment facilities are limited, the prolonged presence of 

SDS can have severe impacts on the environment. 

The conventional techniques used to degrade synthesis surfactants, or SDS from 

laundry wastewater involve electrochemistry, adsorption, and various biological 

methods [15]. Recently, Advanced oxidation processes (AOPs) including 

photocatalytic, which oxidize organics from wastewater by generated hydroxyl 

radicals have been a special of interest, particularly when solar light is used [16]. In 

these processes, semiconductor photocatalysts, for example, α-Fe2O3, TiO2, ZnO, or 

WO3 are commonly used to oxidize organic contaminants [17]. Comparing with 

other photocatalysts, α-Fe2O3 exhibits superior properties such as affordability, and 

stability in chemical solution, environmental friendliness [18]. More importantly, 

this material has a suitable band gap (Eg = 2.2 eV) that is appropriate to be photo-

excited by solar light [19].  α-Fe2O3 is thus utilized in a wide variety of applications 

such as water splitting, gas sensor, waste treatment [20]. 

The aim of this study is to explore the available energy (solar energy) to degrade 

synthesis organics from laundry water by photoelectrochemical and electrochemical 
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on α-Fe2O3 nanostructure. Particularly, this work focuses on the removal of a most 

widely used surfactant (SDS) from laundry water, which pollutes the environment, 

and is hard to be decomposed. The research is intended to apply to rural and remote 

areas, where technologies and budgets for wastewater treatment are limited. 

1.2.  Objectives of thesis 

The main objectives of this research are: 

 To synthesize α-Fe2O3 photocatalyst framework. 

 To quantify the efficiency of photoelectrochemical and electrochemical 

processes for the removal of SDS and TOC. 

 To quantify the kinetics of photoelectrochemical and electrochemical 

degradation of SDS and TOC from laundry water. 

 To evaluate the stability of photocatalyst over the treatment time. 

1.3.  Thesis organization 

Chapter 1: introduces the overall situation of the fresh water scarcity. The reasons 

for the need of laundry wastewater treatment were explained. The aims of this study 

are also presented. 

Chapter 2: provides a comprehensive literature review on the physicochemical 

characteristics of laundry wastewater and SDS. Wastewater treatment technologies 

such as incineration, adsorption, chemical, biotechnology, electrochemical, 

advanced oxidation processes (AOPs) were discussed. The main objectives of this 

literature review were to: (i) provide an overview of different wastewater treatment 

technologies; (ii) select an appropriate method for laundry wastewater treatment. 

Chapter 3: presents the methodology, materials, experimental setup of this study. 

Further, the analysis techniques were also introduced. 

Chapter 4: discusses the removal of total organic compounds from laundry water 

by photoelectrochemical and electrochemical processes on α-Fe2O3 nanostructure. 

In this Chapter, α-Fe2O3 porous films were used as an anode for electrochemical 

and photoelectrochemical degradation of organic compounds from laundry water. 
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Lumped kinetic model was also proposed to describe the kinetics of these 

degradation processes.  

Chapter 5: presents the degradation of SDS by photoelectrochemical and 

electrochemical processes. Two independently quantitative methods were used to 

quantify SDS and total organic compound concentration. The kinetics of the 

degradation reactions of SDS were numerically simulated by the different proposed 

models. Further, the presence of intermediates generated in the solution was also 

detected by Fourier transmission infrared spectroscopy. 

Chapter 6: summarizes the study. This chapter is also devoted to the 

recommendations for future works. 
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Chapter 2    Literature review 

2.1.  Introduction 

Water is a fundamental resource for human need. It has been estimated that 

approximately 1.2 billion people are in the shortage drinkable water, 2.6 billion 

lack of sanitation [21], millions of people die every year from diseases related to 

contaminant water [22]. At this situation, a large number of people living under a 

stress of water shortage throughout the world is predicted to increase from half of 

billion to three billion in 2025 [23]. Particularly, about 900 million people living in 

remote and rural areas are forecasted to lack access to fresh water for their daily 

lives [24]. Moreover, food industrial manufacture, environment, energy and 

agriculture are also strongly impacted by water supply [25]. The demand for fresh 

water is thus predicted to increase with population growth and proposes further 

pressure to traditional sources such as rivers, dams, and streams, which, in turns, 

are depleting. For remote and rural areas, in which technologies and budgets for 

wastewater treatment are limited, water scarcity is much more unfavorable for daily 

livings of residents [26]. Apart from the increase in water demand, the adverse 

influence of contaminated water on both environment and human health is also of 

concern. It has been recognized that polluted water is the most serious risk 

associated with human health as well as animals [27]. Organic compounds in 

wastewater can be bio-accumulated in human bodies, and animal tissues, including 

reproductive and immune systems, endocrine disruption, and cancer. Consequently, 

wastewater treatment not only reduces water shortage and environmental pollution 

but also improves human health.  

There are a large number of studies on wastewater treatment technologies such as 

adsorption, chemical, biological, and electrochemical processes. However, these 

techniques present several limitations including hazardous byproducts formation, 

high operation cost, and low treatment efficiency [28, 29]. As mentioned, research 

activities have centered on AOPs for degradation of organics from wastewater. 

Further, hematite nanostructure has also widely used in these technologies. 

However, this metal oxide has small hole diffusion length, and fast hole-pair 

recombination [30]. From these points of view, selecting an economical and 
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effective technology for wastewater treatment is a real challenge. 

2.2.  Laundry wastewater 

The treatment of largely discharged laundry wastewater is necessary for 

environmental and recycling purposes.  To reuse this wastewater effectively, its 

properties such as ingredients, physical – chemical characteristics should be 

clarified. Laundry wastewater includes a wide range of components including 

organics from dirty clothes, metal ions, builders (sodium tripolyphosphate), or 

bleaching agents (sodium perborate), enzymes are also found [31]. However, the 

main ingredient is surfactants [32]. Surfactants are organic chemicals, synthesized 

via complex chemical reactions, from oil or fat raw materials [33]. They are 

wetting, emulsifying and dispersing which enable the removal of dirt from fabrics 

and keeping the soil suspended in the washing water [34]. Surfactants can be 

classified into three different groups: non-ionic, anionic and cationic surfactants 

[35]. Among these, anionic surfactants account for approximately 80% of the total 

surfactant production [36]. Anionic surfactants used in daily products such as 

detergent, soaps, shower gels usually include different types such as linear alkyl 

benzene sulfonates (LAS), alkyl sulfate (AS), alkyl ether sulfate (AES), alkyl 

ethoxylates (AE) [37].  

In environmental aspects, the risk assessment of surfactants to terrestrial plants and 

animals was reported in several previous research works [38, 39]. The drainage of 

these types of chemical damages the ecosystem. In fact, the original soaps are very 

difficult to be degraded in the environment, and their residues remained in the 

waterway. Moreover, organic components presented in laundry wastewater are 

almost dissolved matters. Thus, a preferred technique used to treat this kind of 

water should be not only physical methods but also advanced oxidation processes.  

2.3.  Sodium dodecyl sulfate 

Sodium dodecyl sulfate (SDS) is known as a most widely used anionic surfactants 

in science, technology, and industry [40]. This is the most popular surfactant 

amongst alkyl sulfates presented in daily using products. With the average annual 

output of more than eight million tons of detergent products in both powder and 
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liquid forms [41], the accumulation of alkyl sulfate surfactants, including sodium 

dodecyl sulfate as a primary contaminant in municipal wastewater has been an 

environmental concern. Concerning chemical properties, SDS is monomeric form 

in both polar and nonpolar solvents at low concentration. When critical micelle 

concentration (CMC) is reached, regular micelles are formed [42]. At this stage, the 

hydrophobic chain of SDS heads to the bulk of the nonpolar solvents (i.e., oil). On 

contrast, the hydrophilic head group turns inside the micelles. Thus, water - in - oil 

emulsion is formed in this case [43]. In polar solvents, the situation is reversed: 

head group turns into the bulk of solvent while nonpolar hydrocarbon chain points 

to hydrophobic molecules and form micelles (oil - in - water emulsion).  

Because of its favorable physicochemical characteristics, SDS is widely used in 

many industrial fields. However, it has been found that the amphoteric properties of 

SDS assist for the accumulation of SDS in living organisms [14]. The negatively 

charged head group can bind to the positively charged molecular substructures via 

electrostatic forces. While, the hydrophobic moiety may interact with the nonpolar 

parts of the target organs or organisms by hydrophobic forces [44]. Consequently, 

not only living species, or aquatic plants, but also human are adversely impacted by 

the presence of SDS in water [45]. The removal SDS from wastewater has thus 

been intensively investigated recently [46]. 

2.4.  Wastewater treatment processes 

This section reviews the current physical, chemical, biological and advanced 

oxidation processes technologies often used in wastewater treatment. 

2.4.1.   Incineration 

This process is to combust contaminants in oxygen - rich environment at high 

temperature (over 800 0C). In this technique, innocuous carbon dioxide and water 

are formed. Incineration includes the following steps [47]: 

OHCOOHR T

222                 2-1 

HClOHCOOClR T
 222

      2-2 

This conventional technique was widely used and successful. However, it is not 
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always a complete process [48]. In fact, byproducts such as hazardous solid waste, 

NOx, chlorine, dioxin and other gasses are often generated during the combusting 

process [49]. These second pollutants can constitute more dangerous risks (cancer, 

or serious respiratory diseases) than the original wastes [50]. Moreover, this method 

apparently consumes higher energy, and usually requires further treatment steps, for 

instance, air treatment equipment [51]. The whole wastewater treatment is thus 

complicated and expensive. 

2.4.2.   Adsorption 

Adsorption is known as a simple and economical technique for water purification. 

By comparing with another wastewater treatment technologies, adsorption displays 

cost - effective, flexible and simple for design [52]. Moreover, operating conditions 

and harmful byproducts generation are also excluded from this process. There are 

different adsorbents commonly used to remove organic pollutants from wastewater:  

2.4.2.1. Activated carbon 

Activated carbon has been widely used for removing pollutants from both liquid 

and gas phase in the industry [53]. The term “activated carbon” refers to a wide 

range of amorphous or random structures of carbon materials, which are porous and 

have a large surface area for organics to be absorbed [54]. During the treatment 

process, all molecules propose attractive forces driven stronger connections 

between organics and carbon molecules than those between organics in wastewater 

[55]. Accordingly, pollutants in wastewater are not only captured on the surface of 

carbon material, but they also penetrate into the pore channels to contact with the 

internal structures where the strongest attractive forces locate [56]. In this process, 

both physical and chemical adsorption may spontaneously occur on a carbon 

surface [57].  

There are generally two size activated carbon: (1) powdered carbon (diameter < 

200 mesh) and (2) granular carbon (diameter > 0.1 mm) [58]. Granular carbon is 

much more widely used in wastewater treatment, while powdered carbon is less 

used frequently owing to its relatively small particle size [59]. Activated carbon is 

made of different source materials such as coal, coconut, shells, wood. Coal is a 
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mixture of carbonaceous and mineral materials derived from the combustion of 

plants.  El Quada et al. [52]; Tamai et al. [60]; Banat et al. [61]; have successfully 

used coal as an adsorbent for removing dye from wastewater. Moreover, biomass 

and other waste materials are also considered as the cost effective and renewable 

sources of activated carbon [62]. These disposed materials do not have much 

economic value and often pollute the environment. Reusing these wastes as an 

adsorbent for wastewater treatment is not only ideal for the cost reduction for 

wastewater treatment but also offers potentially inexpensive alternatives to existing 

commercial activated carbon [63]. 

2.4.2.2. Clays 

Natural clays minerals such as bentonite, kaolinite, diatomite have been used as an 

adsorbent for both inorganic ions and organic from wastewater because of their 

high sorption capacity. Moreover, the favorable layered structure and the ability to 

ion exchange with pollutants, and ions result in larger amount pollutants, and ions 

could be absorbed [64].  Particularly, the removal of methylene blue by adsorption 

on clays have been reported by many scientists such as A. Gurses et.al [65] Dipa 

Ghosh [66], Li Zhaohui et al. [67].  The adsorption of methylene blue on clay 

minerals is mainly owing to ion-exchange process. Meanwhile, Ferrero et al., [68] 

also indicated that the adsorption of dye onto clays is general because of physical 

adsorption (dominated by the particle size) and electrostatic interactions (dominated 

by the pH). 

2.4.2.3. Zeolites 

By having favorable physicochemical properties such as porous structure, cation 

exchange, molecular sieving, catalysis and sorption, natural zeolites are at a great 

interest for environmental applications [69]. Natural zeolites such as chabazite, 

mordenite, clinoptilolite, analcime, phillipsite, stilbite, and laumontite are very 

common forms [70]. On contrast, barrerite, paulingite, and mazzite are much rarer 

[71]. Natural zeolites are highly porous aluminum silicates with various hollow and 

three - dimensional structures. Further, they also have a negatively charged lattice. 

For these reasons, natural zeolites possess the high ion-exchange capability, 
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relatively high specific surface areas. More importantly, these materials are 

affordable, and thus, natural zeolites are to be more attractive adsorbents [72].  

Natural zeolites have been proposed for methylene blue removal. Han et al.,  

indicated that approximately 98% methylene blue could be removed by natural 

zeolites [73]. As for these materials, the increase in sorption capacity is mainly at 

the result of the increase in the surface area rather than a specific interaction [74]. 

Consequently, the overall removal efficiency of pollutants from wastewater by 

natural zeolites may not be as high as that of clay materials. However, theses 

associated limitations may be compensated by their availability and inexpensive 

cost. 

In summary, the efficiency removal of pollutants from wastewater by adsorption 

apparently heavily depends on parameters such as temperature, pH, interface 

contacting time, and the absorbent assay pore size [75].  However, it should be 

pointed out that contaminants in wastewater include dissolved organics or smaller 

size than that of the carbon pore openings. Moreover, some constituents in glycol, 

amine, can cause foaming or fouling of equipment [76]. Thus, organics cannot be 

completely collected on and inside absorbents [77]. Consequently, adsorption 

methods should be combined with other advanced processes to remove both 

undissolved and soluble contaminants efficiently. 

2.4.3.   Chemical oxidation 

Chemical oxidation is another simple technique used to transfer organic compounds 

from wastewater to less harmful components by oxidizing agents. In this operation, 

one, or more electron is transferred from the oxidants to the targeted pollutants 

producing the degradation of these contaminants [78]. The capacity of the oxidation 

of chemical compounds against pollutants in the wastewater depends on reduction - 

oxidation (redox) potential of each oxidizing agent [79]. The larger redox potential 

of the oxidant is, the higher the oxidizing ability of oxidants is. The standard redox 

potential of commonly used oxidants is shown in the following table. 
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Table 2-1. Oxidation potential of different oxidants [80]. 

Oxidants Redox Potential Eo (eV) 

Fluorine 

Hydroxl radical 

Sulfate radical 

Atomic oxygen 

Ozone 

Persulfate 

Hydrogen peroxide 

Permanganate 

Chlorine dioxide 

Hypochlorous acid 

Chlorine 

3.03 

2.70 

2.60 

2.42 

2.07 

2.01 

1.78 

1.68 

1.57 

1.49 

1.36 

 

Persulfate, peroxide, ozone, and permanganate are widely used as oxidizing agents 

for wastewater treatment [81]. One another common oxidant of chemical oxidation 

is alkaline chlorination. Accordingly, chlorine under alkaline conditions can 

effectively destruct contaminants such as pesticide, cyanide [82]. However, 

chemical oxidation is a selective oxidizing method for a few pollutants, and it may 

generate second contaminated products such as chloroform and its derivatives [83]. 

Potassium permanganate considered as an eco-friendly oxidant is also commonly 

used for water purification. In the permanganate ion, manganese has an oxidation 

state of +7, and it can form series of oxidation state in wastewater solution such as 

MnO4
-, HMnO4, MnO3

+, H2MnO+
4 [84]. The change of these intermediate 

oxidation states depends upon various reaction conditions, types of substrate and 

their stability [85]. Potassium permanganate can be effectively used to destroy a 

wide range of organic compounds in wastewater such as acids and alcohols. 

However, this technique generates precipitations in magnesium oxide forms [86]. 

Consequently, it needs further treatment processes.  
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Figure 2-1. A diagram of oxidizing process by potassium permanganate [86]. 

One another oxidizing method widely used in wastewater treatment is ozone 

method. Ozone is known as a vigorous oxidant including both single and one 

double oxygen bond [87]. The double bonds are inactive while single bonds are 

straightforward to be released. Hence, free OH* radicals in water oxidizing 

pollutants can be formed easily by these single attacks.  

 

Figure 2-2. Resonant structure of ozone [88]. 

Ozone is a highly reactive chemical that can quickly react with many organic 

compounds, particularly for substances having C=C, N=N, C=N bonds [89]. 

However, this treatment process is only effectively used to degrade minerals and 

salts [89]. Moreover, ozone is also high energy consumption.  

Chemical oxidation can be effectively used to remove dissolved pollutants from 

wastewater. Nevertheless, this method produces harmful byproducts, and exhibits 

lower rates of organic degradation compare to other techniques based on the free 

radicals [90].  

2.4.4.   Biological degradation 

Biological processes have been widely used in wastewater treatment. The visible 
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advantages of this method compared to other techniques are operating cost and 

capital investment [91]. Biological degradation can take place in two ways: aerobic 

and anaerobic. In aerobic biological treatment, microorganisms (called aerobes) 

operating as catalysts are used to decompose organics in oxygen - riched 

environment [92]. By contrast, when those pollutants are degraded by anaerobes 

without free oxygen surrounding is anaerobic treatment technique [93]. In general, 

the final products of these two processes are CO2, biomass, and methane (anaerobic 

process) [94]. 

In the aerobic biological process, activated sludge system is commonly used to 

remove organic compounds. This system includes an aeration tank where reactions 

take place, an aeration source (mixed liquor suspended solids or mixed liquor 

volatile suspended solids) that supplies dissolved oxygen [95]. Aerobic bacteria 

thrive, and move around the aeration tank. These microorganisms multiply rapidly 

with sufficient food and oxygen from aeration source. Subsequently, they use most 

of the organic matter to produce new cells, and eventually settle to the bottom of 

the clarifier tank, separating from the clean water [96]. 

Anaerobic methods are also appropriate techniques for removing surfactants from 

daily laundry wastewater. By comparing with aerobic processes, they exhibit higher 

performance in treating industrial and agricultural effluents [97]. In this process, 

anaerobic filters, hybrid digesters, upflow anaerobic sludge blanket, and anaerobic 

sequencing batch reactors are also employed for treating dairy effluents (Figure 

2-3).  

Wastewater

Biogas

Effluent

Sludge blanket

 

Figure 2-3. Upflow anaerobic sludge (UASB) blanket [98]. 
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There are two types of anaerobic processes: single – and two – phase. The 

performance of these processes generally can be up to 97 % [99]. Original 

objectives of these two techniques are to obtain a high degree of wastewater 

stabilization, and a high conversion of effluents to methane [100]. Whereby, 

anaerobic filter reactors are used in single – phase methods. By contrast, the acid 

reactor is utilized to provide the appropriate substrate for the subsequent methane 

phase reactor in two – phase operation [101]. The second anaerobic process is 

considered higher efficacy than conventional single – phase design [99]. Moreover, 

two – phase anaerobic treatment system are particularly suitable for treating 

wastewater containing high concentrations of organic suspended solids [102].  

Recently, membrane bioreactor (MBR) has been known as the latest technology of 

biological wastewater treatment for removal of contaminants from wastewater 

[103]. This technique is widely applied in domestic wastewater treatment. The 

membrane bioreactor process is almost similar to the activated sludge processes in 

terms of liquor solids mixed in suspension in an aeration tank [104]. However, in 

the MBR process, the bio-solids are separated employing a polymeric membrane 

based on microfiltration or ultrafiltration unit, as against the gravity settling process 

in the secondary clarifier in conventional activated sludge process [105]. As a 

consequence, membrane bioreactor has more benefits than the activated sludge 

process regarding higher bio-solid concentration, occupied space (aeration tank in 

this method is smaller than that in activated sludge process) [106].  

Overall, biological technologies can be utilized to remove synthetic surfactants 

from wastewater. However, these methods need additional treatment steps to 

remove suspended contaminants [107]. Moreover, they are unfriendly to operate. 

2.4.5.   Electrochemical technologies 

Wastewater treatment by electrochemical processes was first proposed in the UK in 

1889 [108].  These methods have been intensively investigated and developed. 

Electrochemical technologies can be classified into two main different methods 

such as electrocoagulation, electro - oxidation.   
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2.4.5.1. Electrocoagulation 

Electrocoagulation, sometimes named as electro - flocculation, has been widely 

utilized for wastewater treatment on an industrial scale. This technology has early 

illustrated its superior efficiency in removing wastewater containing suspended 

solids, oil, and grease [109]. Furthermore, inorganic or organic pollutants, which 

can be flocculated, can also effectively be removed by this technique. 

Coagulants in electrocoagulation are generated by dissolving either aluminum or 

iron ions from respectively aluminum or iron electrodes electrically. The metal ions 

formation occurs at the anode. Meanwhile, at the cathode, H2 gas is released. This 

gas also assists to float the particles out of the water. The reaction pathways are as 

the following equations [108]. 

At aluminum anode:  

 33 AleAl       2-3 

In alkaline conditions:  

3

3 )(3 OHAlOHAl        2-4 

In acidic conditions:  

  HOHAlOHAl 3)(3 32

3     2-5 

In case of iron anode used: 

 22 FeeFe       2-6 

In alkaline conditions:  

2

2 )(2 OHFeOHFe       2-7 

In alkaline conditions:  

  OHFeOHOFe 4424 3

22

2    2-8 

The oxygen evolution reaction is:  
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 HOeOH 44 22
     2-9 

Meanwhile, at the cathode, hydrogen gas is released:  

 OHHeOH 422 22
    2-10 

In the simplest configuration, an electrocoagulation reactor may include an 

electrolytic cell with cathode and anode. However, this reactor is not appropriate 

for wastewater treatment due to metal dissolution (the anode is corroded, and the 

cathode is passive). This issue has been overcome by monopolar electrodes either 

in parallel or in series connections for the reactor shown in the following figure.  

+           -  

Monopolar Anode Monopolar Cathode

Power source

Sacrificial elctrodes

- + - +

Wasetwater

 

Figure 2-4. The electro-coagulation reactor [110]. 

In this configuration, when the current crossing between anode and cathode, the 

neutral sides will be transformed to charged sides of the conductive plate.  

Accordingly, these charged sides will have opposite charge respect to the parallel 

side [111]. At this stage, the sacrificial electrodes are used as bipolar electrodes. 

Consequently, anodic reactions occur on the positive sides. On contrast, cathodic 

reactions are encountered on the negative sides. Iron or aluminum is normally 

utilized as sacrificial electrodes [112]. These materials also continuously produce 

ions for the electrocoagulation system. Moreover, coagulation is initiated while the 

charges of the particles are also neutralized by generated ions [113]. Pollutants 

from wastewater can also be removed by these free ions via the chemical reaction 

and precipitation [114].  
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In summary, electrocoagulation requires simple equipment, and it is easy to 

operate. However, the high conductivity of wastewater suspension is required. 

Furthermore, gelatinous hydroxide may tend to solubilize in some cases. More 

importantly, the physicochemical properties of both water and pollutants may be 

altered by interactions between applied current and colloidal, oils moving through 

the system. 

2.4.5.2. Electro-oxidation 

Electro-oxidation science was investigated from the 19th century when cyanide 

electrochemical decomposition was conducted [115]. The intensive investigations 

on this technology have started since the late 1970s. Electrochemical processes 

have recently drawn large interests for the treatment of polluted waters. In 

comparison with other wastewater treatment processes, electrochemical oxidation 

has been considered as an effective technology, which can be able to decompose 

non-biodegradable organic pollutants, and remove nitrogen species from 

wastewater [108]. Electrochemical oxidation of organic pollutants can occur 

through two different oxidizing mechanisms as shown in Figure 2-5:  

(i) Decomposing organic pollutants at the anode surface. This process is called 

direct oxidation (Figure 2-5a).  

(ii) A mediator (HClO, H2S2O8) is used to electrochemically oxide pollutants 

under electrochemical activities. It is indirect oxidation (Figure 2-5b). 

 

Organics

Destroyed organics

Mediators

Oxidants

Electrons
Oxidation in the bulk

Organics

Destroyed organics

Electrode Electrode

(a) (b)
 

Figure 2-5. Diagram of (a) direct and (b) indirect oxidation treatment of 

pollutants [116]. 
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Direct electrochemical oxidation requires adsorption of contaminants onto the 

electrode surface. This process can occur at relatively low potentials. On contrast, 

indirect electrolysis depends on oxidizing species generated at the electrode that 

can mediate the transformation of pollutants. 

2.4.5.2a. Direct oxidation 

Direct anodic oxidation is the simplest form of electrochemical technologies for 

water purification. Direct oxidation of pollutants occurs as two following steps 

[117]:  

- Pollutants diffuse from the bulk solution to the anode surface. 

- Pollutants are oxidized at the anode surface. This oxidizing process occurs 

though physically adsorbed “active oxygen” (adsorbed hydroxyl radical, 

*OH) or chemisorbed “active oxygen” MOx+1).  

The efficiency of this technique depends on three factors: (i) The anode material; 

(ii) the generation of adsorbed hydroxyl radicals; and (iii) the competition with the 

oxygen evolution reaction [118]. During anodic oxidation process, there are two 

different ways can be followed [119]: 

 Electrochemical conversion: In this period, partial oxidization of organics 

occurs, whereby, toxic, non-biocompatible contaminants are oxidized and 

transformed to biocompatible organics.  

R → RO + e-             2-11  

 Electrochemical combustion: Organics are transferred to innocuous carbon 

dioxide, water, and salts, and thus, no post-treated process is necessary. 

R → CO2 + H2O + Salts + e-            2-12            

The anodic oxidation does not require a lot of chemicals added to wastewater, or 

even to provide oxygen to cathodes [120]. Apparently, these advantages contribute 

to the larger attraction of direct oxidation compared to other electro-oxidation 

processes [121]. For this process, the important factor is undoubtedly the anode 

material. There have been many types of anode materials such as boron-doped 

diamond electrodes [122], diamond [123] or metal oxides RuO2[124], IrO2 [125], 
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TiO2 [126]. However, they are either expensive or not efficient enough. Developing 

an alternative anode material for wastewater treatment is thus a part of this study 

work. 

2.4.5.2b. Indirect oxidation 

In this technique, peroxide, Fenton’s reagent, Cl2, hypochlorite, peroxidisulfate, and 

ozone are used as mediators to decompose organics in wastewater. Among these, 

chlorine is commonly used electrochemical oxidant to destroy pollutants because of 

its ubiquitous character of Cl- ion in wastewater. The efficiency of this method 

depends on the diffusion of oxidants in wastewater treatment, temperature and pH 

[127]. Chlorine and hypochlorite generated at the anode can be used to destruct 

contaminants [128]. In fact, this method is more effective than direct oxidation in 

preventing electrode corrosion [129]. However, it also should be considered the 

formation of halogenated byproducts. Moreover, to maintain the efficiency of the 

process, the concentration of chlorine in solution must not be decreased [130]. As a 

result, a large amount of salt has to be periodically supplemented. This issue limits 

the wider applications of indirect oxidation in the industry. In spite of concerns 

about chlorine intermediates and complicated facilities required, but indirect 

oxidation is an applicable process to treat wastewater containing toxic or bio - 

refractory pollutants. 

In summary, electrochemical oxidations can be effectively used for decentralized 

gray water treatment owing to their high efficiency, operation at ambient 

temperature and pressure. Furthermore, the influent composition and flow rate can 

also be able to be the adjusted to variations. More importantly, electrochemical 

processes can be adapted to various applications, and can be easily combined with 

other existing treatment techniques [120]. However, the high cost of electrodes and 

energy consumption limit the wider application of electrochemical process [131].  

2.4.6.   Advanced oxidation processes 

Advanced oxidation technologies for wastewater treatment have recently drawn 

many attentions from scientists and researchers. These methods are cost - effective, 

highly efficient and environmentally friendly [132]. These techniques include 
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different processes such as Fenton’s reagent, photocatalytic oxidation. Their 

oxidizing efficacy mainly depends on the hydroxyl radicals (*OH) generated 

oxidizing reagent or photocatalysts under illumination. Free radicals are reactive 

and none - selective,  and can oxidize a large number of pollutants [133].  

2.4.6.1. Fenton processes 

2.4.6.1a. Fenton reagent 

The mixing ability of hydrogen peroxide and iron (II) to destroy tartaric acid was 

first discovered in 1876 [134]. After the next eighteen years, this Fenton’s 

chemistry study was officially published [16]. Hydrogen peroxide is decomposed 

by ferrous ions used as a catalyst. The Fenton reactions are continued by Fe2+ 

regeneration that can occur by the reduction of Fe3+ with H2O2 as shown in the 

following equations [135]:  

  OHOHFeOHFe *3

22

2

     2-13 

      

  HHOFeOHFe *

2

2

22

3

       2-14 

Moreover, in the condition of a proper pH condition (2.8 - 3.0), the activity of 

oxidizing radicals via the catalytic properties of Fe3+/Fe2+ couple can be thrust 

[136].  

  HOOHFeOHFe *2

22

2 )(      2-15 

*

2

*22)( HOFeOOHFe  

      2-16 

  HOFeHOFe 2

2*

2

3

     2-17 

Organic compounds (RH) are mainly oxidized by hydroxyl radicals as presented as 

the following equation [137]:  

*2

* ROHRHOH        2-18 

The produced intermediate organic radicals (R*) can react with Fe3+ and H2O2, 

forming R+ and ROH that can be further oxidized as in the Eq.2-19 to the Eq.2-21 
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[138, 139]. Finally, innocuous carbon dioxide and water are produced from 

(Eq.2-22) reaction: 

  RFeRFe 2*3
      2-19 

ROHOHR 
      2-20  

OHROHOHR *

22

*       2-21  

OHCOOHROH 22

*       2-22  

The performance of this process depends upon different parameters such as pH, 

temperature, concentration of peroxide and catalyst. Particularly, a careful pH 

control is needed to operate this method properly [140]. At low pH value, for 

example, 2.8, the concentration of Fe2+ available in the system is high, and it thus 

boosts Fenton’s reaction rate. Conversely, Fe(OH)3 begins to accumulate when pH 

value > 5.0, and thus, decreases catalyst activity. Likewise, the temperature is also 

an important factor. When the temperature increases, the kinetics of the reactions 

are enhanced. However, oxygen and water are also largely formed by the vigorous 

decomposition of hydrogen peroxide. These species diminish the oxidizing 

efficiency. 

2.4.6.1b. Photo-Fenton reaction 

In this process, ultraviolet or solar light illumination is used to support the 

oxidizing reactions of Fenton’s reagent. Accordingly, this combination generates 

much more reactive radicals than only Fenton reactions. In this case, hydroxyl 

radicals are generated by the reaction between hydrogen peroxide and UV light (λ < 

285 nm) as shown in the Eq.2-23 [141, 142].  

OHROHOH hv *

22       2-23 

Photo-reduction reactions, which reproduce Fe2+ from the Eq.2-23 of aqueous 

ferric ions also occurs [143]. Apparently, photon activities in this process are 

boosted since hydroxyl radicals are both generated from Fenton’s reactions and 

photon excitation. However, the precipitation of Fe (III) species decreases the 

treatment efficiency
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Overall, Fenton processes are effective techniques for decomposing a wide range of 

organic pollutants such as anilines, toluene, herbicides, phenols, anilines, and 

toluene from wastewater [144]. However, several drawbacks of these processes 

such as highly remained iron concentration, manpower requirement for removing 

sludge, and catalysts recycling should also be taken into account [145, 146].  

2.4.6.2. Photocatalysis technologies 

Among advanced oxidation processes, photocatalysis methods such as 

photochemical, photoelectrochemical techniques have early exhibited their high 

performance for wastewater treatment. These techniques have been widely used to 

treat both dissolved and solved organics from wastewater since nineteenth century 

[147]. 

2.4.6.2a. Photocatalysis mechanism 

Photocatalysis processes have been considered as the effective and inexpensive 

methods for the removal of organic pollutants from wastewater [148]. Many 

semiconductor metal oxides such as Fe2O3, TiO2, ZnO have been utilized for 

photocatalytic oxidation. The commonly - used photocatalysts are listed in the 

following table. 

Table 2-2. List of band gap energy and adsorption threshold of various 

semiconductor photocatalysts [149]. 

Semiconductor Band Gap Energy (eV) Wavelength Sensitivity  

TiO2 (anatase)  3.2 388 

TiO2 (rutile) 3.0 413 

ZnO 3.2 388 

ZnS  3.6 344 

Fe2O3 2.3 539 

SrTiO3  3.2 388 

WO3 2.8 443 
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When photon energy (hv) from the illuminated light is greater than or equal to the 

band gap energy of semiconductor (as 2.3 eV for α-Fe2O3), the electrons are photo-

excited to the empty conduction band in femtoseconds. Empty unfilled valence 

band is left, and hence creating the electron-hole pair (e- - h+) (Eq.2-24) [150].  

  hehvOFe 32         2-24  

TRCB ee          2-25 

TRVB eh          2-26 

The generated holes escape direct recombination (Eq.2-27) to reach the surface of 

α-Fe2O3. They react with surface adsorbed hydroxyl groups, or water to form 

adsorbed *OH radicals as shown in the Eq.2-28, Eq. 2-29 [147]. 

heatehhe CBTRVBTR   )(       2-27 

  *

22 OeO        2-28 

*OHhOH               2-29  

Organic contaminants (R-H) are photo-oxidized by OH* as shown in the following 

equations [148, 151]: 

OHROHRH 2

*'*       2-30 

  **' RhR  Intermediates/final products      2-31 

In this process, oxidative species such as O2
*- and H2O2, which are generated from 

the reduction sites, and radical reactions, are given in the following reactions [152]: 

   ***

2 HOOOHO           2-32 

  2

* HOeHOO        2-33 

22

* OHhHOO          2-34 

Overall, photocatalytic removal of organic pollutants from wastewater can be 

summarized as the following: 

OHCOhvO

22

/Fe-  tesIntermediatscontaminan Organic 32    2-35 
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Or, 

     OHCOhvO

22

/Fe- 32tsContaminan Organic       2-36 

This process can be theoretically divided into five following independent steps 

[153]: (i) mass transfer of the organic pollutants in the liquid phase to the 

photocatalyst surface such as α-Fe2O3; (ii) adsorption of the organic contaminants 

onto the photon activated α-Fe2O3 surface; (iii) photocatalysis reactions for the 

adsorbed phases on the α-Fe2O3 surface; (iv) desorption of generated intermediates 

from the α-Fe2O3 surface; (v) transfer of these intermediates to the bulk. The 

reaction rate of this process heavily depends on mass transfer speed, surface 

interact between the catalyst and pollutants as well as photocatalyst itself (Figure 

2-6). 
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Figure 2-6. Schematic diagram of photocatalytic mechanism [153]. 

2.4.6.2b. Photoelectrochemical mechanism 

Likewise to electrochemical process, under applied voltage, oxidizing species are 

generated as the following equations: 

At the anode: 

  eHOHMOOHMO x

bias

x )(*

2                2-37 
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

  eHMOOHMO xx 1

* )(                   2-38               

At the cathode, the counter reaction is: 

 OHHOH bias
22 22

          2-39                     

By applying a potential to photoanode, both anode reactions occur in the PEC 

process. Under illumination, photo-energy further generates holes and electrons on 

the photoanode as the following equations: 

   
anodecbxanodecbx

hv

x hMOeMOMO             2-40 

    HOHMOOHhMO xanodecbx )(*

2               2-41                                                                                                       

The electrons on photoanode are withdrawn by the applying bias potential and 

transfer through external circuit to the cathode (Figure 2-7).  
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Figure 2-7. Photoelectrochemical mechanism. 

It should be also noted that electron and holes can be recombined within 

photoanode:  

    heatMOhMOeMO xanodecbxanodecbx                2-42                      

At high applied bias, the movement of electrons to cathode is very fast and thus the 

electron – hole recombination is hindered. Overall, with the presence of photo-

energy, the PEC will generate more MOx+1 and MOx(
*OH) than the EC process.  
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2.4.6.2c. Photocatalysts 

In both photocatalytic and photoelectrochemical processes, photocatalyst material 

is an important factor contributing to the whole efficiency of wastewater treatment 

[154]. Many important characteristics of these photocatalyst materials have 

determined their feasible applications in wastewater treatment including [155]:  

- Ambient operating temperature and pressure. 

- No harmful byproduct generation. 

- Long stability. 

- Affordable and environmentally friendly. 

In fact, none of photocatalyst material can satisfy all the mentioned features. Some 

photocatalysts are affordable and can work at normal thermodynamic conditions 

(room temperature and atmosphere pressure) [156]. However, they are only 

activated by UV illumination resulting in high operating cost [157]. While, others 

materials exhibit low resistant ability to corrosion [158]. Commonly, 

nanostructured metal oxides such as TiO2, ZnO, and Fe2O3 have been widely used 

for environmental applications. 

- TiO2  

TiO2 photocatalysis has been widely used for the degradation of organic pollutants 

from wastewater since the 19th century [159]. TiO2 photocatalyst can be activated 

under the photon energy of 300 nm < λ < 390 nm [160]. Other than that, TiO2 

possesses multi-faceted functional properties such as chemical and photochemical 

stability [161], biological inertness [162]. More importantly, this material is 

inexpensive. Because of these, TiO2 has been used as an effective photocatalyst not 

only in wastewater treatment but also in water splitting [163]. Liu Zhaoyue et al., 

illustrated that TiO2 can remove 80 % phenol from water [164], while Juan Yang 

indicated that 90 % of rhodamine-B dye (RhB) and sulforhodamine B dye (SRB) 

could be removed after three hours of treatment [165]. TiO2 has band gap energy of 

3.02 eV that is at near ultraviolet radiation (300 nm) [166]. Moreover, TiO2 absorbs 

only 5% energy of the visible wavelength [167]. Consequently, UV excitation 

source is needed for activating TiO2, and it results in high operation cost. 
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Many intensive researches have been conducted to develop a TiO2 photocatalyst 

that can be activated by solar energy with high catalytic efficiency [168]. Most of 

these works are to modify TiO2 structure with other elements such as metals and 

others. Modification TiO2 with noble metals, such as Au, is of largest interest 

because the high photocatalytic efficiency of TiO2 is achieved [169]. The overall 

performance of this modification heavily depends on content, type of TiO2 and 

selected noble metal [170]. Apart from photocatalytic improvement, TiO2 modified 

with this kind of metal can be able to absorb visible wavelength. Likewise, 

transition metals such as Co [171], Cr [172], Zr [173] have been replaced for noble 

metals to modify titan dioxide structure. This alternative is due to the expensive 

cost of noble metals. Far from that, TiO2 doped transition metals presents relatively 

high catalytic activity, and stability [174]. However, metal doping requires 

expensive facilities. Moreover, electrons generated during the wastewater treatment 

process are often trapped by the metal centers. These mentioned drawbacks can be 

overcome by using none - metal materials [175]. Carbon nanotubes can be 

effectively used to obtain highly active TiO2 photocatalyst [176]. Other, the 

photocatalyst can also be achieved by hydrolysis of titanium precursors in the 

presence of dopant such as acidic sulfuric [177]. Further, by modifying with none – 

metal materials, the generations of various impure phases, for example, metal 

oxides at high temperatures, which lead to the decrease of TiO2 activity, are 

eliminated [178].  

Overall, TiO2 photocatalytic is still of high interest for environmental applications 

owing to its mentioned superior properties. However, the required UV illumination 

has challenged practical applications of this process on an industrial scale. 

Undoubtedly, aforementioned modification methods can make TiO2 to response to 

visible light. However, these steps apparently require facilities and capital 

investments.  

- ZnO 

Likewise to TiO2, ZnO is also a common photocatalyst for the degradation of 

organics from wastewater. Particularly, ZnO is preferred for photocatalytic 

degradation of phenol due to reductive and oxidative reactions on its surface. In 



Page | 28 

 

fact, ZnO has a few advantages over TiO2 such as higher quantum efficiency and 

catalytic efficiency [179]. Other than that, TiO2  absorb a smaller fraction of solar 

spectrum than ZnO [180]. For this advantages, ZnO has also been used for dye 

degradation  [181]. 

However, ZnO remains drawbacks: (i) large band gap as often necessitating near 

UV light (λ < 400 nm) to induce electron photoexcitation; (ii) instability in an 

aqueous medium, leading to photocatalyst decomposition; (iii) high electron - hole 

recombination rates [155]. For instance, ZnO shows photo - corrosion effects 

resulting in ZnO self - deactivate by forming Zn2+ ions when it reacts with photo-

generated holes in the water. Finally, it is dissolved into solution [182]. Therefore, 

photocatalysts required for wastewater treatment should be photo-stable, feasible 

under visible light, and more efficient. 

- α-Fe2O3  

By comparing to TiO2 and ZnO, α-Fe2O3 is a higher stable photocatalyst under 

ambient conditions [183]. Further, hematite is also considered as an 

environmentally friendly semiconductor because it is less harmful, chemical 

inertness and ability to combine with biological technology [184]. Additionally, α-

Fe2O3 can be used for wastewater treatment at a large volume and easy to be 

magnetic separation [185]. Previously, α-Fe2O3 was most interested in heavy metal 

treatment [186]. However, it has been recently used for photocatalytic degradation 

of organics from wastewater [187]. By having a suitable band – gap (2.2 eV), 

which can be excited by visible light, α-Fe2O3 is believed to be an economical and 

sustainable photocatalyst for wastewater treatment [188, 189]. 

Nevertheless, the fast recombination of electron - hole pairs (within nanoseconds) is 

a real challenge for using α-Fe2O3 in environmental applications. A large number of 

intensive researches have been done to overcome this obstacle. Accordingly, 

doping hematite nanostructure with metals is considered as a most effective 

method. At this stage, noble metals such as Pt [190], Cr and Mo [191] could 

generate the faster transfer of surface electrons. [192]. Moreover, the better 

separation between electrons and holes would allow a better photocatalytic 

activities [193]. However, these means of doping are expensive owing to high cost 
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of doped metals. Relatively cheaper metals such as Al, Si have been used [194], 

however, these methods to prepare α-Fe2O3 anode are complicated and time - 

consuming. Amir et al., has been successfully and effectively controlled 

morphology and photocatalytic activities of α-Fe2O3 by cationic surfactants [195]. 

This work also utilizes this technique combining with a voltage applied crossing α-

Fe2O3 surface to optimize its photooxidation activities. Iron oxide is normally used 

in the form of thin films for almost its applications. Many different methods can be 

used to synthesize α-Fe2O3 thin films such as Vapor Phase Deposition (VPD), 

Chemical Vapor Deposition (CVD), Electrochemical Deposition [196-198]. 

+ Chemical deposition. The chemical deposition methods have been considered as 

the simple, economical and effective ways to fabricate nanostructured films, with 

various morphologies such as nanoparticles,  nanowires, nanotubes, hollow spheres, 

and nanoflowers [199-202]. This method includes different techniques such as 

hydrothermal, solvothermal and sol–gel [203-206]. Among these, the sol–gel 

method, for example, the spin coating (Figure 2-8) is known as a simple and highly 

efficient method. This technique is operated at low temperature (the highest 

calcining temperature is always below 1000 ◦C) and can easily control the 

nanostructured crystallinity [219]. Moreover, no expensive equipment is required, 

and the process can be controlled easily and accurately. The sol–gel process can 

also be applied to deposit a film having a complex geometry onto a substrate [207, 

208].  

Drop

Precursor solution 

Rpm

 

Figure 2-8. The spin coating method [219]. 
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+ Vapor phase deposition. Gas deposition method includes physical vapor 

evaporation, atomic layer deposition and chemical vapor deposition (Figure 2-9). 

Carrier gas

Source
Substrate

Heated Substrate Holder

 

Figure 2-9. Vapor phase deposition method [209]. 

This method has been extensively used in various nanostructured film preparations.  

Quian et al., [210] has used this method to synthesize nanowire while  Glasscock et 

al., [211] and Lin et al., [212] have illustrated its efficiency for hematite 

nanostructured thin films. α-Fe2O3, which has various morphologies such as 

nanowires, nano - dendritic structures, nanorod arrays, and thin films could be 

fabricated by gas phase deposition [213]. However, this technique operation is toxic 

and flammable. Meanwhile, atomic layer deposition also requires a higher cost of 

operation than that of the solution - based methods [214]. 

+ Thermal pyrolysis. Thermal pyrolysis are also promising method for the 

synthesis of nanostructured α-Fe2O3 films. These films can be directly obtained by 

oxidizing iron metal [215, 216]. Moreover, hematite thin films can be fabricated by 

spray pyrolysis (Figure 2-10).  

 

Figure 2-10. Thermal spray pyrolysis for α-Fe2O3 films [217]. 
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The iron precursor can be sprayed onto the substrate surface that was annealed 

[217]. The properties of the thin film mainly depend on operating parameters such 

as annealing temperature or precursor solution. While iron oxide with various 

morphologies such as nanowire, nanorod arrays are likely more appropriate to be 

prepared by a vapor phase deposition method, thermal pyrolysis is mainly used for 

the growth of nanoparticle thin film. 

+ Electrochemical deposition. The electrochemical deposition also has been used to 

fabricated hematite nanostructures, especially highly porous morphologies. Hua 

Yang et al., [218] and Alan Kleiman-Shwarsctein et al., [194] have also used 

electrochemical technology for α-Fe2O3 nanostructure film deposition. By 

comparing with other methods, this technique can precisely control the 

microstructure and the potential of co-depositing dopants [219]. Further, it operates 

at low temperature.  

Power Source

Substrate Cathode

+ -

Reference electrode

Iron nitrate salt

 

Figure 2-11. Electrochemical deposition of α-Fe2O3 thin film [220]. 

The three - electrodes system, which includes working electrode (substrate), 

reference (Ag/AgCl) and counter electrode (Pt plate), is usually used for 

electrochemical deposition (Figure 2-11). The film thickness and morphology can 

easily be managed by controlling the concentration of precursor salt, depositing 

time as well as applied voltage. However, this method is higher energy 

consumption and much more time – consuming than the spin coating method. 
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+ Glancing angle deposition. This method has also been received attention to 

preparing the α-Fe2O3 nanostructured film for photoelectrochemical applications.  

 

θ

Substrate

Motor

 

Figure 2-12. Glancing angle deposition technique for α-Fe2O3. 

Glancing angle deposition (Figure 2-12) relies on ballistic shadowing phenomenon 

happening when a material is directionally deposited onto a relatively cool substrate 

at a glancing angle. Separated nano - columns can be achieved by increasing 

deposition angle [189]. However, this process is complicated and time - consuming. 

2.5.   Conclusion 

From the aforementioned analysis, it could be found that synthesized surfactants 

including sodium dodecyl sulfate from laundry wastewater not only damage the 

environment but also cause dangerous symptoms for both animals and human. 

Many technologies can be utilized for degraded these kinds of organic from laundry 

wastewater such as incineration, adsorption, electrochemistry, biological and 

advanced oxidation processes. The main advantages of adsorption and 

electrochemical techniques are high performance, simple to operate and easy to 

control the whole system. Physical adsorptions, however, are not the continuous 

processes, and they cannot be effectively used to treat contaminants, which are both 

dissolved in water and smaller than the size of the filter pore openings. Meanwhile, 

electrode stability is a huge challenge to apply practically electrochemical process 

due to corrosive reactions occurring at electrode surface over treating time, 

especially metal electrodes such as Cu, Fe. In fact, several kinds of the electrode 

such as boron - doped diamond, or gold can be stable longer over treating time. 
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However, they are expensive. In the meanwhile, incineration and biotechnology are 

considered as ineffective method owing to high energy consumption and hard to be 

controlled the operation respectively. Among advanced oxidation processes, Fenton 

technologies possess high oxidizing ability owing to strong radical oxidizing 

species. However, likewise to chemical oxidation processes, Fenton methods 

generate harmful byproducts. Conversely, photocatalysis processes have been 

illustrated as the innovative and effective water treatment technologies. Further, 

from the economical and practical perspective, α-Fe2O3 has been widely recognized 

as a highly effective photocatalyst for environmental applications.  

In this study, α-Fe2O3 anode prepared by the simple sol - gel spin coating method 

was used to degrade synthetic organics from laundry water. The voltage was also 

applied crossing iron oxide anode to enhance photocatalytic efficiency. The study 

ultimately aims to treat wastewater containing surfactants, particularly in rural and 

remote areas where technologies and budgets for wastewater treatment are limited.  
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Chapter 3      Methodology 

3.1. Materials 

3.1.1. Chemicals 

All chemicals used in this study were purchased from Sigma - Aldrich (Table 3-1).  

Stainless steel substrates with the dimension of 25 mm × 75 mm × 2 mm 

(width/length/thickness) were ordered from Haynes Educational (Australia). This 

study used a commercial detergent FAB™ (Unilever, Australia) to prepare laundry 

water. 

Table 3-1. List of the chemicals used in the study. 

Name Formula Assay (%) 

Sodium dodecyl sulfate 

Iron (III) nitrate 

Tetramethylammonium bromide (TMAB) 

Ethanol 

CH3(CH2)11SO4Na 

Fe(NO3)3.9H2O 

C4H12BrN 

C2H5OH 

≥ 90 

     ≥ 99.95 

≥  98 

≥ 95 

3.1.2. Electrodes 

3.1.2.1. Cathode 

By having superior hydrogen evolving behaviors, platinum has been of interest as a 

cathode. Moreover, platinum is also an effective catalyst for H+ in electrochemical 

operations. There are many different types of platinum electrodes for quantitative 

electrochemical analysis in laboratory scale such as a rod, coil, plate. In this work, 

the coiled platinum was used as the counter cathode (Figure 3-1).  
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Figure 3-1. The platinum electrode. 

This coiled platinum wire with high purification covered by the epoxy rod. The 

surface area of this coiled platinum is about 4.7 cm2 while its diameter is about 9 

mm. The black epoxy rod (6.9 mm OD) is 150 mm long. The overall length of the 

rod and the coil is approximately 180 mm. On the top, one small metal head is used 

to connect with the electric power. 

3.1.2.2. Reference electrode 

A reference electrode is needed to maintain a constant voltage and thus ensure all 

experiments are consistent. In this study, Ag/AgCl immersed in KCl 3M was used 

as the reference electrode, and its constitution is showed in Figure 3-2. Glass tube 

is used to contain a silver wire that is coated with a thin layer of silver chloride and 

isolate the electrode from the solution. A nearly saturated solution of KCl 3 M, 

which the concentration can be reproducible, is filled into the glass tube. 
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Figure 3-2. The constitution of the reference electrode. 

3.1.2.3. α-Fe2O3 anode 

The stainless steel substrates with the dimension of 25 mm × 75 mm × 2 mm 

(width/ length/ thickness) had been subsequently rinsed in the ultrasonic bath with 

deionized water, ethanol before being dried with nitrogen for 10 minutes. The spin 

coating method was selected to prepare α-Fe2O3 thin film. 

 

Figure 3-3. The spin coater. 
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Two different procedures were used to prepare the anodes as the following:  

• (I): TMAB (0.5 g) was mixed with 5 ml deionized water. The solution was 

stirred for 30 minutes, before adding 4g Iron (III) nitrate, and then stirring 

for more 2 hours. The sample deposition was as the following steps: (i) 

Drop prepared solution onto the stainless steel substrate that tightly held on 

the chuck of spin coater (Figure 3-3), (ii) two fixed speeds (200 rpm, 300 

rpm) used to spin the substrate for 1 minute in total, (iii) the samples was 

heated on a ceramic plate at 80 0C for 15 minutes before placing into the 

furnace (Figure 3-4) at 450 ± 1 0C, for 2 hours, in air, with fixed heating 

and cooling rate of ~ 4 0C/min. The prepared anodes were used to remove 

organic compounds from laundry water. 

• (II): TMAB (1 g) was added into 5 ml deionized water. The solution was 

stirred for 30 minutes. 4 g Iron (III) nitrate was added into this mixture, and 

then also stirred for next 2 hours. The same sol-gel procedure was repeated 

to deposit the thin film onto the stainless steel substrate. However, these 

samples were annealed in the furnace at 450 ± 1 0C for 8 hours, in air, with 

fixed heating and cooling rate of ~ 1 0C/min. 

 

Figure 3-4.The furnace. 
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3.2. Preparation 

3.2.1. Aqueous solution 

The synthetic laundry was prepared by dissolving 5 g of detergent powder in 500 

ml water. This study used a commercial detergent FAB™ (Unilever, Australia). 

The solution was magnetically stirred for 2 hours before leaving for two more hours 

in room temperature. It was then transferred to vacuum membrane filtration system 

with Polycarbonate membrane filter with pore size of 0.1 μm (SterliTech 

Corporation, USA). This filtration step represents the physical removal, which is 

often applied in the commercially available units. In the meanwhile, SDS solution 

with 100 mg/L of concentration was prepared by dissolving SDS powder in water. 

The solution was magnetically stirred at room temperature for 30 minutes.  

3.2.2.  Reactor setup 

TOC removal and SDS degradation were performed in the circular-shaped reactor 

(500 mL). The reactor was covered by quartz and placed under a solar simulator 

(Figure 3-5). The α-Fe2O3 anodes had an apparent surface area of 18.75 cm2. For 

the removal of SDS, because of ionic nature of sulfate head group, the evaluation of 

physical adsorption of SDS on hydrophilic anode surface was performed in this 

reactor without voltage applied. 

 

Figure 3-5. Reactor setup. 

On contrast, to evaluate TOC removal efficiency as a result of an applied electric 

field, this study applied different combinations: (i) electrochemical (EC) and (ii) 

photoelectrochemical (PEC) process. The reference electrode was used to maintain 
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a constant voltage, and thus ensure all experiments are reproducible. Three different 

combinations of power were employed: 1V; 2 V; and 3 V. The forward bias values 

to the working electrode were generated by the DC power supply (Figure 3-6) 

(QJ3003XC DC Regulated Power Supply 30V-3A LCD, Australia).  

 

Figure 3-6. The DC supply power. 

For PEC processes, all non-semiconductor parts such as the substrate, wire were 

covered by the none - conductive plastic film to prevent exposure of the solution to 

these components. The system was illuminated under 500 W Xenon lamp (100 

mWcm-2, 25 0C) solar simulator (Abet Teachnologies, Model 11016A Sun 3000). 
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              Figure 3-7. Solar simulator. 

3.3. Sample characterization 

3.3.1.  Anode morphology and crystalline 

3.3.1.1. Scanning electron microscope (SEM) 

A scanning electron microscope (SEM) is a type of microscope that produces 

images of a sample by scanning it with a focused beam of electrons. The resolution 

of an SEM is given by the minimal spot size. Meanwhile, the Field emission SEM 

(FESEM) uses a field emission gun, also called a cold cathode field emitter, to 

produce the electrons from a much smaller area than a thermionic gun of 

conventional SEM. In other words, FESEM can deliver the high – quality imaging 

resolution in the field of nanotechnology. Consequently, FESEM, Tescan Mira3 

was utilized in this study for characterization of α-Fe2O3 nanostructure (Figure 

3-8). 
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               Figure 3-8. SEM equipment. 

3.3.1.2. X – Ray diffraction  

X-ray crystallography is a common technique used for characterizing the atomic 

and molecular structure of a crystal. Whereby, the X-rays are beamed to crystalline 

atoms of the material, and cause diffracted beams following specific directions. The 

angles and intensities of these diffracted beams are measured to produce crystalline 

characteristics of the material. Furthermore, the mean positions of the atoms in the 

crystal can be determined, as well as their chemical bonds, their disorder, and 

various other characteristics. In this study, XRD, Bruker D8 Advance with Cu Kα 

radiation (λ=0.15418 nm) was used. For qualitative analysis, XRD diagrams were 

recorded in the interval 200 ≤ 2θ ≤ 800 at a scan rate of 0.010 s-1.  

3.3.2.  Total organic compounds analysis 

Treated solution samples (1 ml) were periodically transferred from the reactor to 

test tubes after every 15 minutes. Afterward, the samples were analyzed by the 

TOC analyzer (TOC-VWS/TOC-VWP, Shimadzu, Japan) using wet oxidation 

method [221].  
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Figure 3-9. TOC analyzer. 

Moreover, the same TOC analysis procedures were used to evaluate the TOC 

reduction during the degradation of sodium dodecyl sulfate. 

3.3.3.  Determination of SDS concentration 

The variation of SDS concentration was determined via methylene blue active 

substance (MBAS) method as in Figure 3-10 [222].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10. MBAS method for SDS concentration determination. 

SDS MB 
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MB-SDS ion pairs 
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Ratio 1:2 
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The concentration ratio of SDS and methylene blue used is 1:2 to make sure that 

the reactions to form SDS - MB ion pairs are completely occurred. Chloroform was 

used to extract generated ion – pairs from the separatory funnel. The absorbance of 

SDS - MB ion pairs formed was determined via UV - Vis Spectrophotometer 

(JASCO, V-670 spectrophotometer). The standard solution equivalent from 0 – 100 

mg/L of SDS was prepared to get the calibration curve. From this calibration curve, 

the variation SDS concentration against time under treatment processes was 

calculated.  

 

 

Figure 3-11. UV - Vis Spectrophotometer. 

3.3.4.  Intermediate verification  

Organics presented in the SDS solution were detected by Fourier transform infrared 

spectroscopy (Perkin Elmer Spectrum 100 FT-IR). Accordingly, the sample 

compartment was cleaned with acetone and water. The FTIR calibration curve of 

pure water was performed to ensure the accuracy of the analysis. Testing samples in 

liquid form were gently dropped onto the sample compartment to prevent air bubble 

formation. The FTIR spectrum software was used to analyze the samples 

automatically. 
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Figure 3-12. Fourier transform infrared spectroscopy (FTIR). 
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Chapter 4                                                                            

Experimental study on TOC removal from 

laundry water 

This chapter discusses the removal of TOC from laundry water. Organic 

compounds in laundry water were degraded by photoelectrochemical (PEC) and 

electrochemical (EC) processes on α-Fe2O3 anode. The applied voltage was 

between 1 and 3 V. Moreover, lumped kinetic was developed to describe the 

kinetics of TOC removal.  

4.1. Mechanism 

The decomposition of organic compounds on the metal oxide anode via EC process 

can be illustrated by the formation of adsorbed hydroxyl radicals (Eq.4-1) or 

adsorbed oxygen (Eq.4-2) or both [129]: 

 
  eHOHMOOHMO x

bias

x )(*

2                        4-1 



  eHMOOHMO xx 1

* )(                   4-2                

At the cathode, the counter reaction is: 

 OHHOH bias
22 22

            4-3                    

By applying a potential to photoanode, both anode reactions occur in the PEC 

process. Under illumination, photo-energy further generates holes and electrons on 

the photoanode as the following equations: 

   
anodecbxanodecbx

hv

x hMOeMOMO                    4-4                                        

    HOHMOOHhMO xanodecbx )(*

2               4-5                                                                                                      

The electrons on photoanode are withdrawn by the applying bias potential and 

transfer through external circuit to the cathode. It should be also noted that electron 

and holes can be recombined within photoanode:  

    heatMOhMOeMO xanodecbxanodecbx  
                   4-6                   
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At high applied bias, the movement of electrons to cathode is very fast and thus the 

electron - hole recombination is hindered. Overall, with the presence of photo-

energy, the PEC will generate more MOx+1 and MOx(
*OH) than the EC process.  

4.2. Kinetics of TOC removal from laundry water 

The produced hydroxyl radicals can oxidize the organic compounds adsorbed on 

anode. The laundry wastewater contains a wide range of dissolved organics, with 

complex oxidation steps. Consequently, lumped kinetics is required [223]. 

Generally, the organics can be oxidized completely or partially as the following:  

x

k

x MOOHCOPOHMO  22

* 1)(               4-7                                                        

OHCOMOQPOHMO x

k

x 22

* 2)(        4-8                                

Where, P is the original organics, Q is product of the partial oxidation.  

It can be assumed that Q comprises of the organic compounds that are not adsorbed 

into the anode and hence cannot be oxidized by PEC process. The TOC of solution 

equals to the sum of P and Q. Hence, the initial and the dynamic TOC 

concentration (mg/L) at time (t) are given as CTOC(0)=CP (0) and 

CTOC(t)=CP(t)+CQ(t). 

During the PEC and EC processes, the produced rate of free radicals is assumed 

constant. Assuming both oxidizing reactions are first-order kinetic, the rate of 

equations of lumped kinetics can be written as [224]:  

 PP
P CkCk

dt

dC
21                        4-9                                             

P

Q
Ck

dt

dC
2                     4-10                                                       

Integrating the above system yields: 
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It should be noted that the above differentiate equation is the simplest form of the 

lumped kinetics. More complicated forms, involving three or more different steps, 
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have also been developed in the literature [223]. Nevertheless, the binary system 

has been successfully verified for the TOC degradation of an industrial bleaching 

effluent [224]. The above equation, Eq.4-11, will be used to model the TOC 

removal in this study. 

4.3. Results and Discussion 

4.3.1. Anode characterization  

The morphology of α-Fe2O3 anode was examined. As shown in Figure 4-1, the 

deposited film consists of α-Fe2O3 nano-tuft structure. This film presented a highly 

porous structure illustrated to have the larger adsorption capacity than that of 

particle films [225]. 

 

Figure 4-1. SEM image and X-ray diffraction of nanostructured α-Fe2O3 prepared 

by the procedure I. 

Crystalline properties and the phase formation of α-Fe2O3 film were verified by X-

ray diffraction analysis (Figure 4-1). The α-Fe2O3 peaks and their corresponding 

facets were observed at 28.090
 {012}, 38.650 {110}, 42.440 {113}, 47.860 {024}, 

58.080 {122}, 64.720 {300}, 67.650 {208}, 74.840 {1010}, 76.850 {220}. The results 

indicate the position of the standard peaks of hematite α-Fe2O3 with a 

rhombohedral structure (JCPDS 33 - 0664). Thus, it can be concluded that a 

complete of hematite phase was formed by annealing process.  A similar prevalence 

of the peaks has also been observed for α-Fe2O3 film previously [195, 226].  
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4.3.2. Overall TOC removal 

TOC removal analysis was performed by analyzer wet oxidation method. The TOC 

removal efficiency was defined as the following equation:  

100
)0(

)()0(
(%)

TOC

TOCTOC

C

tCC
TOC


                                        4-12 

Where CTOC(0) and CTOC(t) are the initial and transient TOC concentration (mg/L) 

respectively. 

Besides, the comparative oxidation power of PEC system can also be explained 

from its mineralization current efficiency (MCE) [227]: 

FV
tI

tCC
MCE TOCTOC






8

)()0(
                                          4-13 

Where F is the Faraday constant (96.487 Ceq-1), I is the current applied (A), and V 

is the volume of solution (L). 

Table 4-1. TOC removal by α-Fe2O3 under various conditions. 

DC bias 
Solar 

Simulator 

Total degradation 

rate, % 

MCE at 

180 mins 

1 V On 68.78 5.05 

1 V Off 68 4.98 

2 V On 74.68 5.48 

2 V Off 73.1 5.36 

3 V On 77.47 5.68 

3 V Off 74.7 5.48 

 

For the EC system, increasing the applied bias increased the TOC removal. At 1 V 

the total degradation rate was 68 % at 180 minutes, and MCE was 4.98. By 

comparing to higher power (2 V), a much considerable improvement in the 
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degradation of organics was observed (73.1 % at 180 minutes, MCE = 5.36). 

Likewise, when a further higher current (3 V) was applied, a larger TOC removal 

efficiency via α-Fe2O3 was obtained via the PEC reaction (74.7 % at 180 minutes, 

MCE = 5.48).  This gradually increasing trend was repeated in EC processes under 

the same bias values used. A good agreement between these results and reported 

values in the literature for pentachlorophenol [228]. Overall, the PEC process had 

higher removal efficiency than the EC method.  

4.3.3. Reaction kinetics  

The modelling, Eq.4-11, was fitted against experimental data (Figure 4-2) to obtain 

kinetics constants. It can be seen that the binary model fitted well all experimental 

data. The obtained kinetics coefficients, k1 and k2, reflected the efficiencies of 

different treating processes. Generally, when a higher bias applied crossing 

electrodes, the rate constants of completed oxidizing reactions were higher for both 

EC and PEC processes. For PEC treatment, the rate constants of the completed 

oxidation, k1, was almost proportional to the applied voltage.  
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Figure 4-2. TOC removal under different processes: (a) EC; (b) PEC. 

As anodic bias increases, a large amount of current carrier (photoelectrons) passes 

through the anode, and photocurrent excited holes and electrons used to oxidize 

organics. Consequently, the higher the bias the larger TOC is removed.  

Table 4-2. Kinetic parameters of TOC removal. 

DC bias Solar Simulator k1, min-1 k2, min-1 

1 V On 6.5 × 10-3 1.1 × 10-2 

1 V Off 4.7 × 10-3 7.7 × 10-3 

2 V On 8.1 × 10-3 7.8 × 10-3 

2 V Off 5.2 × 10-2 4.4 × 10-3 

3 V On 1.2 × 10-2 1.1 × 10-2 

3 V Off 8.0 × 10-3 7.9 × 10-3 

 

In Table 4-2, it can be seen that at the low bias value (1 V), the partial oxidization 

(k2) were higher than those of complete oxidation (k1). This phenomenon can be 

explained via the role of electric power applied. It is well-known that laundry 
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wastewater includes a wide range of organic compounds, mainly including polar 

(anionic, cationic) and non-polar (non-ionic) surfactants [229]. When these 

surfactants are brought into contact, polar surfactants form aggregates at α-Fe2O3 

surface on account of electrostatic interactions between separately charged species 

and the oppositely charged α-Fe2O3 surface [230].  

The degradation kinetics of organics occurred via two mechanisms: (i) complete 

oxidation to form CO2 and water, and (ii) break-down to shorter chains [152].  

These intermediates were less oxidized by generated holes, but often by electrons 

running from anode to cathode [231, 232].  Therefore, when a relatively low bias 

was applied, the produced electrons were not enough to keep the organics close to 

the surface. Consequently, partial oxidizing is the dominant (k2 > k1), and the 

remaining organic compounds were suspended within the solution. With the 

increasing voltage (e.g., 3 V), however, the rate coefficients of the completely 

oxidizing reactions, k1, was higher than that of the partial ones. In this instance, 

organics were much more prone to complete oxidation. While the molecular nature 

of the original and remaining organics is not known, it is expected that most of the 

surfactant “heads” were oxidized (since they have strong surface adsorption). 

Hence, the remaining TOC should contain mostly non-ionic compounds, such as 

alcohols, which are less harmful than the original compounds.  

4.3.4. Stability of the electrodes  

The stability of the α-Fe2O3 electrodes was clarified via FESEM. Generally, the α-

Fe2O3 electrodes showed a good stability over three hours of reactions in both EC 

and PEC processes (Figure 4-3). Furthermore, in comparison with untreated anodes 

(Figure 4-1), treated α-Fe2O3 surfaces were changed by electrochemical reactions. 

Accordingly, the corrosion of α-Fe2O3 surface resulted in formation of smaller 

nano-tufts in EC (Figure 4-3a, Figure 4-3b, Figure 4-3c), and vigorous 

deformation by PEC process (Figure 4-3d, Figure 4-3e, Figure 4-3f). The 

deformation is expectedly increased with increasing voltage. 
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Figure 4-3. SEM images of α-Fe2O3 surface after EC treatment at: (a) 1 A, 1 V; (b) 

1 A, 2 V; (c) 1 A, 3 V; and PEC treatment at: (d) 1 A, 1 V; (e) 1 A, 2 V; (f) 1 A, 3 

V. 

The PEC process had more noticeable impact on α-Fe2O3 films more than EC 

process. This is due to the larger adsorption capacity, and higher catalysis activity 

under solar illumination. These were consistent with the higher TOC removal, i.e. 

the oxidation of organics on the α-Fe2O3 surface. Nevertheless, α-Fe2O3 thin films 

used in this study generally exhibits a good stable under bias applied over treating 

time. The results provide important foundation for further scaling up for practical 

applications.     

4.4. Summary  

Organic compounds in laundry water were degraded by photoelectrochemical 

(PEC) and electrochemical (EC) processes on α-Fe2O3 anode. The EC process 

exhibited lower TOC removal rate than PEC process for all testing conditions. α-

Fe2O3 anodes were still stable over three hours treatment time. Further, the 

experimental data were successfully described by the proposed lumped kinetic 

model. Accordingly, the degradation of organics from laundry water occurred by 
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both complete and partial oxidation. It was also found that the kinetic constants 

were influenced by the applied voltage.  

 

 

  



Page | 54 

 

Chapter 5                                          

Experimental study on degradation of sodium 

dodecyl sulfate 

This Chapter presents the degradation of SDS, which is one of the most common 

anionic surfactants in daily products such as detergent powder, soaps, shower gels 

and cosmetic. The photoelectrochemical (PEC) and electrochemical in dark (EC – 

dark) processes were used to decompose SDS from the water. For analysis, the 

presence of - OSO3 group was monitored via UV-Vis spectrum and Fourier 

transform infrared spectroscopy (FTIR). Moreover, methylene blue active 

substance method and TOC analyzer were also used to qualify the variation of SDS 

and total organic compound concentration against treatment time. Different 

numerical models were developed to simulate the kinetics of both SDS degradation 

and TOC reduction simultaneously.  

5.1. Kinetic models 

The formation mechanism of oxidizing hydro radicals by EC and PEC processes is 

similar to the mechanism presented in Chapter 4 (Eq.4-1 to Eq.4-6 ). Because of 

the hydrophilic behavior of SDS head group, SDS degradation from water occurred 

via the hydrolysis reaction of SDS to form dodecanol (C12H25OH) [233]. This 

reaction is very slow at normal thermodynamic conditions, i.e. atmosphere pressure 

and room temperature [233]. On contrast, in the presence of applied voltage and 

photocatalyst, the hydrolysis of SDS is accelerated by oxidizing species. 

Consequently, this study proposes four numerical models to simulate the kinetic 

characteristics of SDS degradation and TOC reduction: 

5.1.1. Model P1 

The detail pathways of the Model P1 are shown as below:  
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k0

ROSO3
-
Na

+ ROH CO2 + H2O
k1

 

This study employed two independent methods to quantify experimentally the 

kinetics: (i) UV-Vis spectroscopy to quantify SDS concentration; (ii) TOC analyzer 

to evaluate all organics presented in bulk solution. By assuming that all reaction 

follows pseudo – fist order kinetic, the first method gives kinetics of SDS removal, 

and the TOC measurement describes kinetic reactions of all organics, yields:  

SDS
SDS Ck

dt

dC
0        5-1 

For TOC reductions, we have: 

SDS
SDS Qk

dt

dQ
0        5-2  

ROHSDS
ROH QkQk

dt

dQ
10        5-3                             

Where, k0, k1 (min-1) is the kinetic coefficients, 
SDSC is the concentration of SDS 

(mg/L), 
SDSQ , 

ROHQ are the TOC concentrations corresponding to SDS, alcohols 

generated (mg/L), respectively. The degradation kinetic of SDS, Eq.5-1, is the 

same for all proposals from the model P1 to the model P4. For the model P1, the Eq. 

5-1 the kinetics of SDS removal is equal to kinetics of SDS oxidation, i.e. k0 as in 

the Eq.5-3. At this stage, the TOC of the solution is the sum of all organic 

presenting in solution i.e., SDS and ROH, thus:  

dt

dQ

dt

dQ

dt

dTOC ROHSDS       5-4     

The above system of ordinary different equations could be solved and fitted against 

experimental data simultaneously by a numerical model developed in MATLAB 

(ODE45 and curve fitting). The kinetic rates can be obtained from fitting to 

transient data in two steps. First, k0 was obtained from SDS transient concentration. 

Consequently, k1 was obtained simultaneously from TOC data. 

Likewise, we also have kinetic equations for other proposals: 
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5.1.2. Model P2 

The Model P2 can be presented as the following:  

ROH

CO2 + H2O

k1

k2

k3

ROSO3
-
Na

+

 

x

k

x MONaHSOROHOHMONaROSO  

4

*

3
1)(    5-5  

x

k

x MOOHCOOHMOROH  22

* 2)(     5-6 

x

k

x MOOHCOOHMONaROSO 

22

*

3
3)(     5-7 

And the kinetic equations:  

SDS
SDS Qkk

dt

dQ
)( 21         5-8

 ROHSDS
ROH QkQk

dt

dQ
31        5-9 

Where, k0, k1, (k1 = k0 - k2), k2, k3 (min-1) is the kinetic coefficients. 
SDSC  is the 

concentration of SDS (mg/L), 
SDSQ , 

ROHQ are the TOC concentrations 

corresponding to SDS, alcohols generated (mg/L), respectively.  

TOC reduction in this case is defined as the following equation: 

dt

dQ

dt

dQ

dt

dTOC ROHSDS        5-10  

5.1.3. Model P3 

The reactions following the model P3 can be described as below: 
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CO2 + H2O

ROSO3
-
Na

+ Int

ROH CO2 + H2O
k1

k3

k4

k2

 k5

 

x

k

x MONaHSOROHOHMONaROSO  

4

*

3
1)(    5-11 

x

k

x MOOHCOOHMONaROSO 

22

*

3
2)(     5-12 

x

k

x MOOHCOIntOHMOROH  22

* 3)(     5-13  

x

k

x MOOHCOOHMOROH  22

* 4)(     5-14

x

k

x MOOHCOOHMOInt  22

* 5)(      5-15    

Where, Int refers to intermediates of partial oxidation i.e., shorter-chain alcohols, or 

acids. 

And the kinetic equations:  

SDS
SDS Qkk

dt

dQ
)( 21         5-16

 
ROHSDS

ROH QkkQk
dt

dQ
)( 431       5-17 

IntsROH
Ints QkQk

dt

dQ
53        5-18 

Where, k1, k2 (k2 = k0 - k1), k3, k4, k5 (min-1) is the kinetic coefficients. 
SDSC  is the 

concentration of SDS (mg/L), 
SDSQ , 

ROHQ , 
IntQ are the TOC concentrations 

corresponding to SDS, alcohols and intermediate compounds (mg/L), respectively. 

At this stage, the TOC of the solution is also the sum of all organics presenting in 

solution i.e., SDS, ROH, and Int, thus:  
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dt

dQ

dt

dQ

dt

dQ

dt

dTOC IntROHSDS       5-19 

5.1.4. Model P4 

For this model, the reactions of SDS degradation are assumed as the following 

reactions: 

ROSO3
-
Na

+

Int

ROHk0 CO2 + H2O
k1

k2 k3

 

x

k

x MONaHSOROHOHMONaROSO  

4

*

3
0)(    5-20

x

k

x MOOHCOOHMOROH  22

* 1)(     5-21

x

k

x MOOHCOIntOHMOROH  22

* 2)(     5-22

x

k

x MOOHCOOHMOInt  22

* 3)(      5-23  

Where, Int refers to intermediates of partial oxidation i.e., shorter-chain alcohols, or 

acids.   

Thus, the kinetic equations of TOC reduction in this case are:  

SDS
SDS Qk

dt

dQ
0         5-24

 
ROHSDS

ROH QkkQk
dt

dQ
)( 210        5-25

 IntROH
Int QkQk

dt

dQ
32        5-26 

Where, k1, k2, k3 (min-1) is the kinetic coefficients. 
SDSC is the concentration of SDS 

(mg/L), 
SDSQ , 

ROHQ , 
IntQ  are the TOC concentrations corresponding to SDS, 

alcohols and intermediate compounds (mg/L), respectively. For the model P4, the 

TOC of the solution is the sum of all organic presenting in solution i.e., SDS, ROH, 

and Int, thus:  
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dt

dQ

dt

dQ

dt

dQ

dt

dTOC IntROHSDS       5-27  

It can be seen that the model P1, model P2, model P3, and the model P4 has 2, 3, 5, 4 

parameters, respectively. This study employs these models to fit experimental data. 

The effectiveness of these models is hence verified.  

5.2. Results and Discussion 

5.2.1. Surface morphology and crystalline of photoanode 

The morphology and crystalline of α-Fe2O3 anode are showed in Figure 5-1. 

Whereby, α-Fe2O3 nanoflake structured film illustrated to have the larger 

adsorption capacity than that of particle films [234] was found. While, crystalline 

properties and the phase formation of α-Fe2O3 photoanode were investigated by X-

ray diffraction analysis (Figure 5-1).  The α-Fe2O3 peaks were observed at 28.090, 

38.650, 42.440, 47.860, 58.080, 64.720, 67.650 74.840, 76.850. Apparently, only 

hematite phase was formed after the annealing process, since no any related- 

impurity peak was observed. A similar prevalence of the peaks has also been 

observed for α-Fe2O3 film in the study carried out by sol-gel method [195]. 

 

 

Figure 5-1. SEM and XRD of α-Fe2O3 anode prepared by the procedure II. 

5.2.2. UV – Vis Spectra 

The UV-Vis adsorption spectra of MB-SDS ion pairs in aqueous solutions are 

presented in Figure 5-2. The maximum adsorption of ion-pairs is at 653 nm, and a 

negligible shoulder at 612 nm. A good agreement between these observations and 
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reported values of Zaghbani et.al., [235], and Hayashi [236]. No any peak 

corresponding to – SO3 group was observed after 1 hour of treatment with both 

PEC and EC – dark processes, which illustrated the complete decomposition of 

SDS from solution. 

 

 

Figure 5-2. UV-Vis spectra of SDS-MB ion pairs. 

5.2.3. SDS degradation and kinetics 

SDS was completely removed after one hour of treatment by both PEC and EC – 

dark processes under all testing conditions (Figure 5-3). Without applied current, 

on contrast, only 1 % was removed after three hours (Figure 5-3a), due to physical 

adsorption. Being an anionic surfactant, the adsorption of SDS reached equilibrium 

rapidly owing to the strong attractive interaction between α-Fe2O3 photocatalyst 
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and polar head group [237]. Thus, α-Fe2O3 surface was covered by SDS molecules. 

The adsorption along was insignificant comparing to the soluble SDS.  

 

 

Figure 5-3. SDS concentration determined via MBAS method: (a) EC - dark and 

(b) PEC process. Model is taken from the Eq. 5-1. 
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By applying voltage crossing α-Fe2O3 anode, adsorbed SDS molecules were rapidly 

degraded to dodecanol or intermediates. The proposed model, Eq.5-1, fitted the 

experimental data of EC – dark and PEC treatment very well. The kinetic constant, 

k0, was slightly different between the two processes. Hence, SDS removal was 

dominated by the applied current due to its ionic nature. In other words, the light 

had a minimal effect on SDS degradation.  

Table 5-1. Kinetic coefficients of SDS degradation. 

Process DC bias k0, min-1 

EC – dark 1 A, 1 V 7.5 × 10-2 

 1 A, 2 V 8.6 × 10-2 

 1 A, 3 V 10.0× 10-2 

PEC 1 A, 1 V 7.8 × 10-2 

 1 A, 2 V 9.0 × 10-2 

 1 A, 3 V 10.3 × 10-2 

The degradation of SDS via these processes is superior to those of other methods 

such as Fenton-liked advanced oxidation (63% at 1 hour) [238], natural hydrolysis 

SDS in acid environment (100% hydrolysis of SDS after 12 hours) [233], or 

biodegradation with bacteria (almost 97% after 10 days) [239]. 

5.2.4. TOC reduction  

To simplify, the study first simulates the TOC reduction kinetics of the PEC 

process at 1 A, 1 V. This experimental data were fitted by the model P1 to the 

model P4 (Figure 5-4). As can be seen that the experimental data were not well 

simulated by the model P1, model P2, and model P3. On contrast, the proposed the 

model P4 fitted the experimental data very well.  
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Figure 5-4. TOC reduction kinetics during SDS degradation by PEC processes at 

1V: (a) P1; (b) P2; (c) P3; (d) P4, taken from the Eq.5-4 (P1); Eq.5-10 (P2); Eq.5-19 

(P3), Eq. 5-27 (P4). 
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This can be explained that the model P1 was not enough kinetic parameters (only 2) 

to describe the whole kinetics of TOC reduction during the degradation of SDS. 

Meanwhile, the model P2 and model P3 could not present the nature of SDS 

molecule, which is easily hydrolyzed in water owing to its hydrophilic head group. 

Indeed, the hydrolysis of SDS to form dodecanol is the first priority when 

dissolving SDS in water. In other words, the proposed model P4 model was selected 

to describe the TOC reduction kinetics for all testing conditions in both EC and 

PEC processes. Accordingly, the TOC reduction during SDS degradation by PEC 

and EC processes with applied voltage from 1 V to 3 V is shown in Figure 5-5. 
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Figure 5-5. TOC reduction during SDS degradation by (a) EC and (b) PEC 

processes with different applied voltage. 

It should be noted that the initial TOC was 54 mg/L, which was more than the 

carbon quantity corresponding to 100 mg/L SDS. The difference was a result of 

impurity on SDS, which has been well-documented in the literature [240]. 

Comparing to the degradation of SDS molecules (Figure 5-3), TOC kinetics in all 

case was slower (k0 is much larger than k1, k2, k3).  Moreover, the sharp change in 

TOC curves after 60 minutes revealed two distinguishable steps. Within the first 

hour, TOC was reduced quickly, which corresponded well to the completed 

removal of SDS. Afterward, the TOC followed a gradual decline. The change 

reflected the dominant role of partial oxidation after the formation of dodecanol. 

The intermediates, products of partial oxidation, have much slower oxidation rates. 

Quantitatively, the kinetics constants reflect the relative rates of oxidation. The 

direct oxidation dodecanol to carbon dioxide was far larger than others (k1 > k2 and 

k3 in all conditions). It is noteworthy that PEC had higher constants than EC – dark 

in all testing conditions: k1 was almost double, while k2, k3 were approximately 1.5 

times higher. Thus, the PEC presented a better decomposition of generated SDS 
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derivatives compared to EC – dark process. Contrasting to SDS degradation, TOC 

removal was evidently enhanced by light.   

To verify the obtained modeling, the 95 % confidence interval [241] of the fitting 

parameters were calculated for all systems (Table 5-2a - Table 5-2c). Apparently, 

the errors were negligible for all k values (< 10 %). The good agreement between 

theoretical and experimental results and the small confidence interval confirm the 

appropriateness of the proposed mechanism. 

Table 5-2. Kinetic coefficients and their 95% confidence interval parameters of 

TOC reduction kinetics with testing conditions from 1 V – 3 V. 

a - 1A 1V 

Constants  

(min-1) 
PEC 95% CI EC - dark 95% CI 

  k1 × 10-2  7.43 7.17 - 7.69 3.78 3.65 - 3.90 

  k2 × 10-2  3.62 3.40- 3.84 2.29 2.12 - 2.47 

 k3 × 10-3  3.31 3.08 - 3.54 2.28 2.00 - 2.57 

 

b - 1A 2V 

Constants 

(min-1) 

PEC 95% CI EC - dark 95% CI 

  k1  × 10-2  8.22 8.02 - 8.42 4.55 4.46 – 4.64 

 k2 × 10-2  3.04 2.90 - 3.19 2.50 2.39 – 2.62 

 k3 × 10-3 3.60 3.39 - 3.81 2.71 2.54 - 2.88 

 

c -1A 3V 

Constants 

(min-1) 

PEC 95%  CI EC - dark 95% CI 

  k1 × 10-2  10 9.82 – 10.17 5.69 5.57– 5.81 

  k2 × 10-2 2.26 2.17 – 2.35 2.57 2.45 – 2.68 

  k3 × 10-3 3.27 3.04 – 3.50 2.84 2.65 – 3.02 
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In addition to the kinetics, overall TOC removal efficiency after 180 minutes of 

treatment was defined as the following equation:  

100%
0

0

TOC

TOCTOC
removal t

              5-28                             

Where, TOC0, TOCt is the initial and transient TOC concentration (mg/L) 

respectively. 

The higher the bias, the larger SDS was removed in both of two processes (Table 

5-2a, 5-2b, and 5-2c). Apparently, at high bias applied crossing electrodes, the rate 

constants of completed oxidizing reactions were higher as a result of a large amount 

of current carrier (photoelectrons) passes through the anode, and photocurrent 

excited holes and electrons used to oxidize organics. Moreover, 90% and 80 % 

TOC was removed after three treatment hours at 3 V applied via PEC and EC – 

dark process, respectively. Likewise, TOC removal efficiency of the PEC process 

was 7% and 8% higher in than EC – dark with 1 V and 2 V respectively. This 

divergence illustrated explicitly the higher efficiency of the PEC process in 

removing more stable organics. These results also confirm the rationality of the k 

variation between two processes. After the first treatment hour, polar molecules 

(SDS) were rapidly removed by both of two processes by adsorbing onto the 

oppositely charged α-Fe2O3 surface. However, degradation of intermediate 

products, i.e. dodecanol or acids, was strongly driven by the PEC process, which 

has more oxidizing radical species. 

Table 5-3. Overall SDS degradation efficiency after 180 minutes. 

Process Efficiency (%) 

 

1 A, 1 V 1 A, 2 V 1 A, 3 V 

EC – dark 73 77 80 

PEC 80 85 90 
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5.2.5. Verification of the intermediate products 

The solution samples were analyzed via FTIR spectrum (Figure 5-6). The 

disappearance of SDS molecules and the appearance of intermediates were verified 

qualitatively. In the 3000-2800 cm-1 region, the spectrum of SDS was dominated by 

the asymmetric and symmetric stretching bands of – CH3 and – CH2 of the 

hydrocarbon tail [242]. The adsorption band from 3200 to 3500 cm-1
 was linked to 

the stretching of – OH from the intermolecular hydrogen bond, particularly – OH 

bonded (3329 cm-1) and free alcohol (3461 cm-1) [243]. While, the adsorption at 

1561 cm-1 was owing to the bending mode of – CH2 –, whereas the weak band at 

1220 cm-1 corresponds to a – CH3 deformation [244]. From 1220 to 950 cm-1, the 

spectrum exhibits several distinct asymmetric and symmetric stretching bands of – 

OSO3. The strong doublet at 1220 and 1061 cm-1 corresponds to asymmetric S–O 

stretching, conversely the peaks at 1061 and 979 cm-1 result from symmetric S–O 

stretching. The correlation between symmetry and IR spectra of sulfate complexes 

has been well established [245]. 

 

Figure 5-6. FTIR spectrum of initial SDS, and treated solution with PEC, and EC – 

dark at 1 V at 60 minutes. 
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The peaks corresponding to – OSO3 group were not observed after one hour of 

treatment with both PEC and EC – dark. Meanwhile, the presence of alcohol with 

peaks in the region from 3200 to 3500 cm-1
 was still detected. Furthermore, new 

peaks at 2531 cm-1 reflecting the appearance of carboxylic acids and their 

derivatives (2500 – 3300 cm-1) [245] were recognized. The same results were also 

found from the two processes at other voltage values against time i.e., 2 V and 3 V. 

In summary, the spectrum profiles confirm the kinetics modelling: (i) – SO3 group 

of SDS was completely removed within 1 hours, and (ii) intermediates with 

hydroxyl and carboxylic groups were formed.  

5.3. Summary  

Overall, SDS was completely degraded after the first hour of treatment by both 

photoelectrochemical (PEC) and electrochemical in dark (EC – dark) processes. 

While, only 1% SDS was removed by physical adsorption on α-Fe2O3 surface. The 

different ordinary equation kinetic model developed successfully described the 

kinetics of both SDS removal and TOC reduction. Further, the mechanisms of EC 

and PEC reactions for TOC reduction in this study were similar to those of Chapter 

4 presented. These results once again confirm the rationality of the proposed 

models for degradation of organics from laundry water by EC and PEC methods.  
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Chapter 6 Conclusions and Recommendations 

 Conclusions 

In this study, α-Fe2O3 thin films were successfully synthesized by the sol-gel spin 

coating method. The α-Fe2O3 nano-tuft nanostructure was obtained after annealing 

the deposited sample at 450 0C for 2 hours in the furnace. The organic compounds 

from synthetic laundry water were removed by the EC and PEC processes on these 

α-Fe2O3 thin films with applied voltage from 1 V to 3 V. It was found that the PEC 

exhibited higher efficiency than the EC process in removing organic pollutants. 

Accordingly, approximately 53 % and 47 % TOC were removed by PEC and EC 

process at 1 A, 3 V respectively. Further, it was found that the kinetics of organic 

degradation from laundry water occurred via two mechanisms: (i) completed 

oxidation to form CO2 and water; and (ii) break-down to shorter chains. The 

remaining organics are expectedly less surface active and consequently less harmful 

than the original compounds. The lumped kinetic model well fitted the 

experimental data. The stability of the α-Fe2O3 anodes was also investigated. The 

PEC process had the more noticeable impact on α-Fe2O3 films more than EC 

process owing to the larger adsorption capacity and higher catalysis activity under 

solar illumination. However, nanostructured anode used in this study exhibits a 

good stable under bias applied over the treating time. 

Also in this study, α-Fe2O3 nanoflake structure were obtained by annealing the 

deposited film at 450 0C for 8 hours. Sodium dodecyl sulfate was completely 

degraded after the first hour of treatment by both the PEC and EC – dark processes 

on α-Fe2O3 anode. It was found that sodium dodecyl sulfate removal was 

dominated by the applied current due to its ionic nature. The PEC and EC processes 

also removed 90% and 80% TOC from the SDS solution respectively. The 

remaining organics contain hydroxyl and carboxylic groups, which are expectedly 

less surface active and consequently less harmful than SDS. The proposed 

numerical model successfully described the experimental data. Accordingly, the 

degradation of SDS includes the hydrolysis of SDS to form alcohols in water and 

both partial and completed decomposition these alcohols to generate intermediates 
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or carbon dioxide respectively. The quantitative and qualitative results confirmed 

the proposal mechanism and modeling assumptions.  

Overall, all the results present the economical and environmentally friendly 

methods for the degradation of organics from domestic laundry wastewater that can 

be applied in Australia at a household level. The methods can also be used for rural 

areas in developing countries, where centralized wastewater treatment and 

electricity are not available. 

 Recommendations 

This study explores the removal of organics and sodium dodecyl sulfate from 

laundry water by the electrochemical (EC) and photoelectrochemical (PEC) 

processes on α-Fe2O3 nanostructure. Based on the results of this study, the 

following recommendations are offered for future research works:  

 Use flow through reactors running for few hours per day. This study used 

a non - continuous reactor for testing on the lab scale. Thus, for practical 

applications, the larger and continuous reactor should be investigated. 

 

 Degrade other kinds of wastewater by using the processes from this 

study. These presented techniques should also be tested for treatment of 

black water (such as wastewater from toilets). 

 

 Supply power for the processes by using solar panels. By investigating 

this step, the operating cost of the PEC and EC processes can be 

considerably reduced.  

 

 The presented methods can be combined with other methods such as 

adsorption or bio-membrane to achieve the desirable efficiency.  
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APENDIX 

A.1. MATLAB codes 

-          PEC 1 A, 1 V: 

 

 

 

 

 

 

 

 

 

 

 



Page | 97 

 

 

 

 

 

 

 

 

 



Page | 98 

 

- PEC 1 A, 2 V :  
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- PEC 1 A, 3 V: 
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- EC 1 A, 1 V: 
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- EC 1 A, 2V: 
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- EC 1 A, 3 V: 
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A.2. Fourier transform infrared spectroscopy 
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