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ABSTRACT:  

Energy efficiency in mining, as with any industrial process, is now a major factor in 

the economic viability of any project. The rolling resistance of haul trucks is not 

currently well understood, and much of the literature draws recommendations from 

scaling of tests completed with smaller passenger vehicles. This project has 

investigated the impact of pavement surface and structural condition on the rolling 

resistance experienced by large haul trucks through completion of full-scale testing. 

Terrestrial laser scanning techniques were adapted to provide a quantification of 

the surface properties of pavements, and also to measure rebound deflection and 

curvature arising from tyre loading. This has revealed that pavement deflection has 

equal influence to pavement roughness for a loaded truck travelling at operational 

speeds. Shorter roughness wavelengths have been found to more significantly 

influence on rolling resistance, with the IRI proving to correlate well with rolling 

resistance at operational speeds. 

Numerical modelling of the measured deflection/curvature profiles has provided 

insight into the applicability of available methods for haul road pavement design. 

Due to the ability to consider wheel load interaction in detail, three-dimensional 

Finite Element Analysis was shown to most accurately estimate pavement surface 

deflection. Two sub-grade failure theories that have been previously developed for 

airfield and haul road pavements present good correlation. These theories are 

recommended for haul road pavement design, with analysis being completed by 

FEA. 

Indexing Terms: Rolling resistance, haul road, haul truck, pavement 

deflection, flexible pavement, unbound granular material, resilient modulus, 

California Bearing Ratio, pavement roughness, pavement texture. 
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Glossary 

Anisotropic: 

In the context of pavement materials; a material with variation in material stiffness 

when measured vertically and horizontally. 

Austroads: 

The association of Australasian road transport and traffic agencies 

(austroads.com.au). 

Comminution: 

“The action of reducing a material, especially a mineral ore, to minute particles or 

fragments” (Oxford Dictionaries, 2014). 

Driving resistance: 

Energy required, per unit distance, for vehicle forward motion including all drivetrain 

and engine losses.  

Encastre: 

A boundary condition in geomechanical modelling allowing no displacement or 

curvature in any plane. 

Haul truck: 

Large, rigid off-the-road dump trucks commonly utilised in transport of mineral ore 

and waste materials within mining operations. 

Isotropic: 

In the context of pavement materials; a material with no variation in material 

stiffness when measured vertically and horizontally. 

Microtexture:  

Pavement surface undulations with wavelengths less than half a millimetre, primarily 

related to the nature of the surface of individual stone particles (Jackson et al, 2011) 

Macrotexture: 

Pavement surface undulations with wavelengths in the range 0.5 to 50mm 

(Jameson and Shackleton, 2009), typically related to the particle sizes used for the 

surface course (Sandberg et al, 2011). 



Doctor of Philosophy (Civil Engineering)            Mine Haul Road Rolling Resistance 
Curtin University                                                                                           Glossary 

Jarrad P Coffey                                                                                                   xxix 

Megatexture: 

Pavement surface undulations with wavelengths of 50 to 500mm (Jackson et al, 

2011). 

Mesh: 

The element (a discrete section of soil) structure given to a finite element analysis 

model that has consistent properties. Each element provides a unique calculated 

response to the application of the applied loads. 

Non-linear:  

In the context of material stress-strain response, refers to a material that does not 

show a perfectly elastic response. 

Parasitic losses: 

In the context of rolling resistance; loss of energy (or energy consumed) per unit 

distance travelled excluding internal tyre losses, and attributable to aerodynamic 

loss of the different rotating elements of the test equipment, bearing friction, and 

other sources of systematic loss which may occur within the wheel mechanism 

(Evans et al, 2009). 

Poisson’s ratio:  

“The ratio of the proportional decrease in a lateral measurement to the proportional 

increase in length in a sample of material that is elastically stretched” (Oxford, 

Dictionaries, 2014). 

Rolling resistance: 

Quantity of energy consumed per unit distance travelled by a rolling wheel, often 

described by the Rolling Resistance Coefficient (RRC). 

Rolling Resistance Coefficient (RRC): 

The ratio of force arising from the rolling resistance and the vertical force applied to 

a rolling wheel.  

Roughness: 

In the context of pavements; undulation in the pavement surface with wavelengths 

exceeding 0.5m.  

Registration:  

In the context of special sciences and analysis of field-collected data, refers to the 

amalgamation of data taken from different positions or of adjoining areas. 
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Resilient modulus: 

“The ratio of dynamic (resilient) stress and dynamic (resilient, recoverable) strain” 

(Vuong et al, 2008). 

Wheel gear: 

Collection of wheels spaced closely together such that they are considered as a 

group within the process of pavement design.  
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1 Introduction 

 Background 1.1

The optimisation of the energy consumed in any industrial process is now 

scrutinized by the public, regulators and law makers. However, it has always been a 

significant driver in the financial return earned by a commodity producer. Recent 

figures suggest that approximately nine percent of energy consumed in Australia is 

due to mining operations (Bureau of Resources and Energy Economics, 2012A). It 

is estimated that the load and haul process represents 25% of the total cost involved 

in producing and selling bulk commodities such as iron ore and coal (McIntosh 

Engineering, 2003). Subsequently, material transport has been noted to account for 

approximately 30% of total energy consumption within the production of bulk 

commodities (Norgate et al, 2009). To provide some context, consider that transport 

represents 24% of the annual national energy consumption (Bureau of Resources 

and Energy Economics, 2012A). The energy consumed within the transportation of 

mineral ores notably appears to be a significant component to the total energy 

consumed in Australia each year.  

Rolling resistance is the term used to describe the energy required to produce 

horizontal motion by way of a rolling mechanism, usually a wheel. These losses 

occur throughout a complex system of vehicular response to pavement surface 

characteristics (Hammarstrom et al, 2012). Several authors have stated in recent 

times that the energy loss in the pavement may also be significant. Schmidt et al 

(2009) completed Falling Weight Deflectometer (FWD) testing on flexible and rigid 

(concrete) pavements, which showed a significant difference in the resulting 

hysteresis loops. This concept suggests that some energy is lost from the system of 

a moving wheel due to the pavement material’s stress/strain response. Consider 

that Kaufman et al (1977) include values of rolling resistance on varying surfaces, 

with relatively higher values being suggested for ‘softer’ materials. This provided 

some early insight into the influence of pavement structural condition.  

Haul road pavement design is commonly completed via a local ‘recipe’ or via CBR 

design curves that have been developed with the method detailed by the US Army 

Corps of Engineers (Pereira, 1977). The generation of CBR design curves utilises 

the same theory and test data that underpins the design of runway pavement for 
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large aircraft. The only full scale testing of pavement performance subject to heavy 

wheel loads was completed by the US Army Corps of Engineers in the 1970s, with 

some additional data being added in the early 2000s following further testing by the 

Federal Aviation Administration. Both sets of testing considered a pavement 

structure involving some depth of asphalt and select crushed rock, which means that 

some ‘equivalence factor’ has to be relied upon in order to transform the pavement 

to comprise completely of uncrushed gravel materials. The requirement for this 

transformation is highlighted in Figure 1.1, as it forms an integral part of pavement 

design. Further, the haul road pavement failure theory presented by Thompson 

(2009) is tested. This theory includes consideration of the pavement’s serviceability 

and economic importance to a mine owner by considering the daily tonnes hauled 

along its path. In-situ and laboratory testing of pavement materials was undertaken 

for this project to assess the relative accuracies of employing each available design 

technique to haul road pavements. This investigation included methods commonly 

applied commercially and also more detailed analysis with FEA.  

 

 

Figure 1.1: Abbreviated project map. 

 

As described in Figure 1.1, this project was focussed on increasing the 

understanding of the performance of haul roads, which are a unique class of road in 

that they are privately owned and managed for the production of mineral ores. 

Importantly, as a result lower end-user costs may significantly outweigh any savings 

made at the design and construction phase of the haul road by lowering the 

pavement’s serviceability. Currently, haul road pavements are designed to limit both 

rut depth and the generation of surface roughness, which is assumed to be primarily 

associated with shape-loss of the sub-grade. As haul roads are effectively an 

economic asset needed for the production of mineral ore, it is suggested that the 
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focus (limiting design parameter) of pavement design should be the minimisation of 

energy consumption for haul trucks. This suggestion is valid within the bounds of 

acceptable road and vehicle maintenance costs.  

 Objectives 1.2

This research will contribute to improving efficiency in mining operations utilising 

large haul trucks, but also relates to the fields of Civil and Geotechnical Engineering 

with regards to pavement design for large wheel loads. The objectives for the 

research are as follows: 

1. Definition of the pavement surface properties that most influence the rolling 

resistance experienced by haul trucks. 

2. Determination of the influence of pavement stiffness on the rolling resistance 

of haul trucks. 

3. Assessment of the suitability of fuel consumption models for application with 

haul trucks. 

4. Quantify the magnitude of pavement surface deflection due to haul truck 

wheel loads. 

5. Characterise mine waste materials used in haul road pavement construction. 

6. Compare various structural analysis methods to determine if more complex 

models, such as FEA, are able to better predict pavement surface deflections 

associated with haul trucks. 

7. Compare pavement structural design techniques for large wheel loading and 

recommend the most appropriate.  

 

 Significance 1.3

There is limited understanding of haul road pavements with regard to design and 

efficiency in operation. Such pavements can significantly impact the cost of a mining 

operation, as outlined in Section 1.1.  

Many studies have defined the rolling resistance due to pavement surface condition 

(Sandberg, 2011) for highway vehicles. However, little research has been completed 

to relate these findings to haul trucks operating on unsealed haul roads, some 

examples are Thompson et al (2003) and Widodo et al (2009). This study is 

intended to serve as an initiation of research in this area.  
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It has recently been contended that pavement stiffness may significantly influence 

the rolling resistance experienced by a vehicle (Lenngren, 2010). Haul roads are 

typically constructed from unbound mine waste or locally available materials that do 

not typically comply with highway pavement specifications. In addition, haul trucks 

now exceed gross vehicle mass values of 500 tonnes (Komatsu, 2007). 

Consequently, this research investigates the contribution of pavement structural 

stiffness to rolling resistance for large wheel loads and pavement comprising 

materials characterised by relatively low elastic moduli. There is no such 

investigation available within the literature employing full-scale testing of large haul 

trucks.  

Flexible pavements subject to heavy wheel loads have long been designed by 

utilising the S77-1 curve detailed by Pereira (1977). Pavement structural design may 

influence rolling resistance in two primary ways. Firstly, it dictates the level of 

deflection, for which the influence on rolling resistance is being investigated in this 

study. Secondly, the failure condition considered by traditional pavement life 

theories is rutting/shape loss manifesting in surface roughness, which is widely 

accepted to significantly increase rolling resistance. Attempts have been made to 

relate this sub-grade failure theory to mechanistic analysis tools, such as the 

validation described by Wardle (2001) et al. However, to date these efforts have 

been focussed on airfield pavements and still include bound layers and asphaltic 

surfacing. This research investigates the use of various numerical structural analysis 

techniques in the design of haul road pavements utilising the criteria mentioned 

above. The investigation involves wheel loads larger than those on airfields and 

unbound/unsurfaced pavements.  

 Identification of Research Need 1.4

Haul road rolling resistance has been investigated previously by several authors. 

Regrettably, the method utilised to determine the magnitude of rolling resistance has 

either not been sufficiently detailed in the literature or is difficult to compare with 

results of similar studies. Additionally, the contribution of pavement structural 

stiffness has not been investigated. Considering the large expenditure involved in 

the construction and operation of haul roads for a typical mining operation, the 

magnitude of potential cost-savings is significant, even for incremental 

improvements in haul truck rolling resistance. This provides the basis for 

investigation of haul truck rolling resistance. 
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The design of haul road pavements is generally completed by empirical methods 

dating back to the development of airfield pavement design techniques in the 1970s 

(Pereira, 1977). Modelling of unsealed pavements, subjected to wheel loads as 

large as 80 tonnes, has not been validated with any readily available structural 

analysis technique. This research compares the ability of several analysis methods 

to predict pavement surface deflections, and provides insight into how best to apply 

sub-grade failure theories to mechanistic-empirical pavement design for haul roads. 

Greater understanding in this area provides the haul road designer greater control to 

detail a pavement that does not deteriorate past its point of failure, avoiding 

operation of haul trucks on a surface with a high value of rolling resistance. 

Investigating the influence on pavement rolling resistance parallel to pavement 

design provides an opportunity to comment on the most applicable design criteria for 

haul roads. For example, structural performance may not be considered critical if a 

haul road is only to be in place for a short time. For haul roads with a short design 

life, optimisation of pavement construction and maintenance may be of greatest 

importance to limit the development of surface roughness that significantly increase 

rolling resistance. In this case, the functional design of the pavement, that is the 

provision of wearing course materials that are stable under operating conditions, 

may be critical. This approach may benefit the mine’s operator because short design 

life roads typically make up a significant proportion of haul roads that are critical to 

production on a mine site. For roads with a longer design life, it may be important to 

limit the required maintenance on the pavement and so the design criteria may 

transition from rolling resistance to structural deformation. However, note that the 

latter will ultimately result in greater rolling resistance through either pavement 

deflection or surface roughness (as investigated in this project). An assessment of 

such decisions is likely to be unique for each mine site. This research is focussed on 

providing the technical insight to facilitate the determination of the optimum design 

criteria.  

Currently, there is a gap in the knowledge of haul roads linking structural design and 

operating costs. This project serves to define which pavement properties or features 

most significantly influence haul truck rolling resistance, such that clear pavement 

design criteria may be defined. Subsequently, this project investigates the structural 

design tools available to a pavement designer, with a view to allowing the operating 

costs (as arising from haul truck rolling resistance) to be addressed at the haul road 

design stage. 
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A more detailed discussion of the knowledge gaps currently present within the 

literature is provided in Section 2.7. 

 Scope of the Project 1.5

This research was focussed initially on identifying the pavement characteristics that 

most influence haul truck rolling resistance. Measurement of pavement deflection, 

which in combination with laboratory testing of the pavement materials in question, 

facilitated an investigation of available pavement structural analysis and design 

techniques. Figure 1.2 presents the methodology applied, showing the primary 

milestones. The major steps in achieving the objectives described in Section 1.2 are 

detailed below. 

 

 

Figure 1.2: Abbreviated Project Flow Chart. 

 

 

The haul road pavements required characterisation with respect to both texture and 

roughness values. There were several methods available to define these properties 

and a number were investigated such as walking profilometer, Australian Road 

Research Board roughometer and measurement of truck suspension stroke or other 

dynamic response. Ultimately, this data was obtained by terrestrial laser scanning 
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and analysis, utilising the same equipment used for measurement of pavement 

deflection to define the nature of the pavement surface undulations. Results for each 

pavement section included in the testing were analysed against continuously logged 

rolling resistance values to determine the influence of each respective wavelength.  

Options for pavement surface deflection such as direct measurement via theodolite, 

precise levelling and photogrammetry were investigated. However, after completing 

trials, pavement surface deflection was measured with the use of terrestrial laser 

scanning for wheel loads arising from an unladen and laden Komatsu 830E haul 

truck. This technique also allowed measurement of pavement curvature, facilitating 

back-calculation of pavement stiffness. Comparison of the pavement surface 

deflection with measured rolling resistance data determined the influence of 

pavement structural condition on rolling resistance.  

There are a few options reported in the literature for measuring rolling resistance of 

a given vehicle, two of which were trialled; coast-down and towing tests. Both 

appeared viable methodologies from initial trial test results, however complications 

arising from the application to haul trucks with electric wheel motors meant an 

alternative was required. A significant portion of the available literature utilises 

scaled-down tests with custom rigs, with the assumption that rolling resistance 

values are consistent with larger vehicle tyres and wheel loads. It was the opinion of 

the author that the calibration from small rigs to large haul trucks would present 

unacceptable unknown error and a full-scale test was further pursued. Ultimately, 

the personnel involved in mine operations were able to assist in utilisation of the 

truck performance monitoring system to log wheel motor toque and total power 

output. This data allowed the instantaneous rolling resistance to be calculated.  

Fuel consumption of haul trucks was modelled utilising a modified version of a 

commonly applied mechanistic model. This was then compared to the fuel 

consumption estimation technique specific to haul trucks presented by the 

Australian Federal Department of Resources, Energy and Tourism (2010). 

Pavement samples from the haul roads used for rolling resistance and deflection 

testing were subjected to laboratory testing. This served to define the material’s 

index, elastic and shear strength properties for inclusion in the structural analyses 

modelling approaches that were undertaken. The stress state under large haul truck 

wheel loads meant that an extension of existing test routines was necessary, to 

allow for the stress dependency of unbound granular materials in the analysis 

discussed below. 
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As discussed above, pavement deflection data was available in combination with 

elastic properties determined from tri-axial testing with both monotonic and cyclic 

loading. It was therefore possible to compare the modelling capability of several 

techniques, including simple hand-calculation methods and software employing 

liner-elastic and finite element analysis methods. After determining the most 

appropriate methods for analysing pavement response to loading, an investigation 

of pavement design methods was completed by comparing pavement lifetime 

estimates made with each method.  

The above work allowed the critical pavement properties influencing rolling 

resistance to be identified. Furthermore, a greater understanding of the abilities of 

the pavement design tools available to the practitioner has been gained. When 

combined, this knowledge allows the designer to identify the critical pavement 

design parameter and focus the design effort on optimisation. The mine owner then 

benefits from greater efficiency in the hauling of ore and waste materials. 
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2 Background 

This section details the available literature, to explain how each topic relates to the 

current project, as depicted in Figure 2.1. The primary goal of this project is 

optimisation of energy consumption in the haulage process required for the 

production of mineral ores, which is reflected at the top of Figure 2.1. Pavement 

structural analysis and design relevant to haul roads is then detailed, as shown 

below. 

 

 

Figure 2.1: Project background map. 
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 Energy Consumption in the Production of Ore 2.1

For the discussion below the energy produced in the mining and processing of 

mineral ores and in the transport of ores is separated. This has been done to 

provide a broad context for the issue of haulage fuel efficiency and then further 

define the potential benefits of improvements.  

 

 Energy Consumption in Mining 2.1.1

The energy consumption inherent in any commercial activity has become 

increasingly present in the public conscience. Mining and mineral processing are 

two industry sectors widely accepted as large energy consumers. However, in total 

only 9% of Australia’s energy consumption was due to mining operations in 2012 

(Bureau of Resources and Energy Economics, 2012A), compared with 24% in 

transport and 30% in electricity generation (Bureau of Resources and Energy 

Economics, 2012A). In the mineral rich state of Western Australia, the relative 

consumption by industry is vastly different with mining which accounting for 29.5% 

of the state’s energy consumption in 2009-10. The most telling statistic of the size of 

Western Australia’s mining sector may be that the iron ore industry alone is 

approximated to consume in excess of three million litres of diesel per day (Shastri 

et al, 2012). To give greater perspective, consider that Western Australia’s energy 

consumption was 17.3% of the national total in 2009-10 (Australian Bureau of 

Statistics, 2013). The steady growth in global commodity prices in recent decades 

has seen consumption in mining grow from 65 PJ (2.4% of gross domestic 

consumption) in 1974-1975 to 509 PJ (8.6%) in 2009-2010. Although this figure is 

statistically significant, consider that over the same time period consumption in 

transport has remained relatively steady at approximately 25% (Bureau of 

Resources and Energy Economics, 2012).  

It is difficult to distinguish between the energy consumption of various processes 

employed in the production of any commodity. For example it is commonly accepted 

that 70% of energy consumed in conventional mining and processing circuits is 

consumed in the comminution of ore, however coal and iron ore commodities 

require vast amounts of bulk transport, which (including mining extraction) represent 

up to 30% of total energy consumption (Norgate et al, 2011). From a global point of 

view, steel production accounts for significantly more energy consumption than 

production of any other metal (Norgate et al, 2011). Figure 2.2 shows the origin of 
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carbon-dioxide emissions from the activities constituting the production of iron ore. 

Although the breakdown presented here is specific to each mining process (the 

energy consumed in hauling alone is discussed in Section 2.1.2) the results present 

an overall view of the industry in Australia. One consideration of the energy 

consumption in iron ore operations in the study reported by Norgate et al (2009) is 

the proportion of operations requiring wet processing of ores, which represents a 

significantly lengthened processing circuit when compared to dry crushing and 

screening.  

 

 

Figure 2.2: Contributions of net carbon-dioxide emissions for each stage of 

iron ore production (Norgate et al, 2009). 

 

 

The energy consumption in the mining industry is expected to increase further in the 

future as additional amounts of waste are required to be removed as a result of 

increased over-burden removal arising from deeper deposits of lower grade 

becoming economically viable (Norgate et al, 2011). This effect may be so profound 

that the absolute prices of metals are expected to adjust to reflect the intensities of 

production, as carbon footprints are progressively built in to the cost structure 

(Norgate et al, 2009). Hence, the energy consumption and intensity of a unit of 

saleable product is likely to be an area of increasing focus for miners.  
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 Energy Consumption in the Load and Haul Process 2.1.2

Transport of ore and waste material within a mine site is generally completed either 

by overland conveyor or haulage via trucking. Other methods such as slurry 

pipeline, hoists (especially in underground mining) or rail are also relatively common 

for commodities involving a smaller quantity of material extraction. However intra-

site transport in bulk commodities such as coal and iron ore are dominated by 

haulage via truck (Li et al, 2011). Note that the transported volume of precious 

metals is relatively insignificant in comparison to bulk commodities when considering 

the total tonnages transported in Australia due to lower mined volume and a higher 

degree of processing near extraction (Li et al, 2011). Energy consumption of 

conveyor systems is relatively well understood and accurately estimated whereas 

that in a haulage process completed by large off-the-highway rigid dump trucks is 

not as well defined. The less processing that occurs close to the mine site results in 

a higher volume of product that must be transported (Li et al 2011). Haulage costs in 

an open pit environment may represent up to 50% of the mining cost and 25% of the 

total costs (including processing, marketing and overheads) in hard rock mining (de 

la Vergne, 2003). Similarly, a value of 50% of total operating costs is stated in 

reference to the South African coal mining industry by Thompson et al (2003). The 

exact cost of haulage (due to energy consumption equipment and road associated 

costs) will be unique to each site and is dependent on the geology of the site, load 

density, road surface and gradients (Department of Resources, Energy and 

Tourism, 2010). 

Measuring fuel consumption rates for haulage vehicles is a complex task. Kecojevic 

et al (2010) contend the most accurate method is from observation at the mine site. 

This view is expanded upon by the Department of Resources, Energy and Tourism 

(2010) who include comment that observation needs to occur over a sufficient time 

period to account for any natural variations in fuel use when determining the 

baseline energy used in haulage. If such a program to capture fuel use data is not 

possible then estimation of fuel use from manufacturer data may be possible. Most 

equipment manufacturers describe operating conditions in estimating fuel 

consumption of vehicles, with the operating class generally including comment on 

the condition of haul roads (Kecojevic et al, 2010). The judgement of the class of 

road is a subjective one that must often be made with limited direction as to the 

definition or guidance being provided. 
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One study has attempted to define energy use through analysis of published data 

for various mine sites and determined that on average loading and haulage account 

for the consumption of diesel at a rate of 2.2 kg/t of iron ore produced in Australia 

(Norgate et al, 2009). If a net calorific value of 42.91 (MJ/kg) is considered (Staffell, 

2011) then approximately 94.4 MJ/t of energy is consumed in the process. 

Therefore approximately 60% of energy consumed for a tonne of iron ore is spent in 

the load and haul process (Norgate et al, 2009). This amount of diesel use is 

undoubtedly significant and thus means that for the 393.9 million tonnes of iron ore 

produced in Australia in 2009 (Geoscience Australia, 2013) a total of approximately 

37 Gigajoules were consumed in loading and intra-site haulage. This equates with 

approximately 2.8 million litres used per day. It is for this reason that load and haul 

is identified as the second greatest area for potential energy savings in the 

production of ore, after crushing and grinding (Norgate et al, 2009). Possible 

improvements (outside of technological advance and monitoring of diesel-powered 

haul trucks) focus on reduction in haulage requirements through pit design and 

adoption of in-pit crushing and conveying (Department of Resources, Energy and 

Tourism, 2012).  

Mine contractors and operators have attempted to increase energy efficiency with 

initiatives such as reducing the stopping of haulage vehicles and optimising engine 

controls (Britton et al, 2012). An example of the effect of stopping is presented in 

Figure 2.3, where it is evident that the fuel saved in the process of stopping the 

vehicle is far out-weighed by that consumed in returning the vehicle to the original 

speed. Stopping a haulage vehicle also results in reduced production, thus some 

mine operators have attempted to optimise the vehicle flow of their sites 

(Department of Resources, Energy and Tourism, 2012). Although such initiatives will 

provide benefit, many studies also note that the road surface is a major contributor 

(see Section 2.2.5), yet do not investigate a means to improve efficiency. In the 

study presenting the findings reproduced in Figure 2.3 it is also noted that a dry and 

hard-packed haul road keep fuel costs and tyre wear to a minimum whereas wet 

conditions can increase rolling resistance (Department of Resources, Energy and 

Tourism, 2012). No substantiation of this statement is provided and therefore it can 

only be assumed it is derived through observation and experience.  
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Figure 2.3: Stop simulation impact of fuel consumption for a Caterpillar 777F 

(Department of Resources, Energy and Tourism). 

 

 

A method for estimating the fuel (and therefore energy) consumption of haul trucks 

is presented by the Department of Resources, Energy and Tourism (2010) in 

Appendix A. This is a first pass approach requiring assumptions for fuel to wheel 

energy efficiency, load density and transmission efficiency. While it is a simple 

model it does allow for some optimisation of the energy balance within the bounds of 

the assumptions made (Department of Resources, Energy and Tourism, 2010). The 

method considers many inputs and includes a subjective estimate of the rolling 

resistance and traction coefficient. If the final result of 6.84 L/100km/t is considered 

and converted to the unit of MJ/t.km with net calorific value of 40 MJ/L for diesel 

(Staffell, 2011) a final value of 2.74 MJ/t.km is calculated. One study of note that 

also attempts to describe and optimise haulage efficiency (although not applying the 

model discussed above) is reported by Britton et al (2012). The key aspects 

affecting fuel efficiency were considered to be the directness (ratio of total haulage 

distance to the direct distance to the dumping point) and energy balances. These 

theories alone with a simple fuel consumption model allow one to complete some 

degree of optimisation for any haulage route. 

If the energy consumption values of the haulage system assumed above are 

compared against the average energy consumption for general road freight, 2 

MJ/tonne km (Bureau of Resources and Energy Economics, 2012), it can be seen 

that off-highway transport is indeed more energy intensive that normal road 

transport. This is despite the economies of scale at play with regard to the large 
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payload sizes employed in mine haulage. However, also consider that the final value 

noted above for the haul truck scenario includes a climbing gradient of 4.5%, which 

most definitely would exceed the average value experienced by all freight vehicles 

on Australian roads.  

The approach for estimating the energy consumption of haulage operations 

described above may be supplemented by a method for estimation of fuel 

consumption due to pavement roughness. Such a model, derived specifically for 

haul trucks has been derived by Thompson et al (2003). This set of functions was 

derived through development of an engine-speed model and computer modelling for 

various haul trucks, including mechanical and electric drivetrains. Ultimately, it was 

found that fuel consumption was most affected by speed as with heavy commercial 

vehicles (Thompson et al, 2003), which was supported through a monitoring 

program. The model derived by Thompson et al (2003) quantifies fuel consumption 

for trucks experiencing unfavourable total grades, thus either travelling on a positive 

grade or downhill on a pavement of exceptionally high rolling resistance. The model 

was found to have an R-squared value of 64% and thus was deemed a reasonable 

fit to the observed data. Not surprisingly, this model includes vehicle mass and 

speed as key input parameters, however does not include any term for engine or 

drivetrain efficiencies. Despite this, the inclusion of total resistance means that it is a 

neat approach in estimating fuel use in conjunction with the method noted above, 

while taking into consideration road geometry. This model is considered the most 

relevant model of its type available. 

 

 Rolling Resistance 2.2

 

 Theory of Rolling Resistance 2.2.1

The theory of rolling resistance has been researched with a view to improving the 

performance of self-propelled vehicles for approximately a century. In simple terms 

the notion refers to the effort required to move a wheel over a given terrain via the 

motion of rotation or rolling, see Figure 2.4. ISO 28580:2009 utilises the rolling 

resistance coefficient, which is the most commonly adopted for quantification. In its 

most basic form this can be expressed as: 
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Equation 2.1: ISO 28250 definition of the rolling resistance coefficient. 

𝑅𝑐 =  
𝑇𝑦𝑟𝑒 𝐿𝑜𝑎𝑑 (𝑘𝑁)

𝑅𝑜𝑙𝑙𝑖𝑛𝑔 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝐹𝑜𝑟𝑐𝑒 (𝑁)
 

Where: 

𝑅𝑐= Rolling Resistance Coefficient (dimensionless)  

 

Although there is no universally accepted measure at the current time, the majority 

of literature adopts Equation 2.1 for the definition of the rolling resistance coefficient 

(RRC). There is no general relation available that links tyre inflation pressure, 

speed, rolling resistance and the coefficient of rolling resistance. Therefore Equation 

2.1 can be used to describe only unique situations and should not be applied for 

estimation of tyre load or rolling resistance (Evans et al, 2009). Rolling resistance 

can be thought of as the force producing a torque in the direction opposing travel in 

the desired direction and hence is essentially the sum of all the energy losses within 

the vehicle, tyre and pavement systems (Sandberg et al, 2011). ISO 28250:2009 

(International Organisation for Standardisation, 2009) discusses this method of 

quantification in terms of ‘parasitic losses’. Although the above description is useful 

in describing the net effect of rolling resistance, it is important to remember that the 

resistance is the result of a complex system involving many parameters. Further the 

rolling resistance is not a force (despite being often expressed in J/m or N), but 

rather is the scalar quantity of energy lost per meter travelled (Evans et al, 2009).  
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Figure 2.4: Forces acting on a rolling tyre (Jackson et al, 2011). 

 

 

Careful distinction of the different quantities often referred to simply as ‘rolling 

resistance’ is required for clarity. In most literature the driving resistance is actually 

measured and discussed, which refers to the sum of rolling resistances of each 

wheel in contact with the ground and any associated losses in the tyres, vehicle 

suspension, bearings or transmission (Hammarstrom et al, 2012). Note that there 

are many other smaller influences, which are detailed in the ensuing chapter. 

Driving resistance is often applied due to the difficulties of measuring the resistance 

to motion experienced by a single tyre and also the practicality of defining such a 

value in isolation. Most investigations are interested in the energy consumption of 

the whole driving system and so it is prudent to consider the entire system together. 

Such an approach allows for significant learning in experimental research, however 

the problem remains in making use of the results for pavement design. This issue is 

magnified when it is considered that other losses such as bearing losses can be 

studied effectively in a laboratory (Sandberg et al, 2011) and empirical relations 

developed based on extensive data. Thus the study of pavement/tyre interaction in 

isolation is important but the results are difficult to apply. 

The early twentieth century saw modern studies of rolling resistance commence with 

Bernstein (1913) developing empirical theories taking account of a deformable 

terrain (Wong, 2010). These authors believed that rolling resistance was due 

primarily to the effort required to compress the soil (Komandi, 1999). Over the past 

century there have been many extensions of this work derived and several other 

noteworthy theories reported. This research is associated closely with the field of 



Doctor of Philosophy (Civil Engineering)            Mine Haul Road Rolling Resistance 
Curtin University                                                                                      Background 

Jarrad P Coffey                                                                                                         18 

terramechanics, which is discussed in Section 2.2.3. The advent of modern 

pavement analysis methods has resulted in similar studies generally considering a 

perfectly elastic surface or a rigid surface depending if the author was primarily 

interested in pavement or tyre response. The original investigations considering tyre 

sinkage have also continued, mainly by those with interests in agriculture or military 

applications where off-the-road travel is common.  

A great number of investigations have explored the effects of individual variables on 

rolling or driving resistance for a specific vehicle. These provide the basis for critique 

of any theory suggested in the literature, but what makes such comparisons 

particularly difficult is the presence of pneumatic tyres. Most functions derived with 

observation of mechanics consider a rigid wheel, and thus the interaction of 

soil/pneumatic tyres needs to be understood in great detail in order to draw 

significant conclusions from such work. Jackson et al (2011) provide one such 

summary, from which it is clear that a universally accepted definition and measure 

for rolling resistance would help to simplify and increase the impact of each author’s 

contribution. An example of potential harmonisation is to consider the aerodynamic 

resistance of the rotating tyre. ISO 28250:2009 and other accepted industry 

standards do not take this into account, which is undoubtedly not negligible at higher 

speeds (Sandberg et al, 2011). It is evident in almost all studies that this effect has 

been neglected and as a result may have been included in the rolling resistance 

values presented. One common definition could potentially allow for all such losses 

to be considered and therefore create a more consistent research basis. Such an 

approach would enhance correlation of future research.  

The following sections describe groupings of investigations on the topic of rolling 

resistance. A distinction is made to isolate tyre derived losses from those inherent in 

various components of the vehicle (suspension, engine and drivetrain). Similarly, 

discussion relating to pavement/terrain interaction is separated into discussion of 

response due to surficial (‘functional’) features and structural support. A further 

distinction is made with regards to the structural support whereby deformable terrain 

is considered distinct from the loading response of designated pavements, as the 

former relates to the study of terramechanics and the latter to pavement 

engineering. 
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 Rolling Resistance due to Tyre Response 2.2.2

Tyres play a crucial role in the driving resistance experienced by any vehicle. They 

are indeed the only part of the vehicle that contacts the ground and the interaction 

that occurs at this interface is immensely complex. Essentially the energy losses 

experienced by tyres in the rolling motion can be separated into three categories; 

friction between tyre and road (2-10%), air resistance in and outside of tyre (1.5-

3.5%) and internal tyre hysteresis (90-95%) (Clark, 1981). Tyre manufacturers 

attempt to balance three elements; rolling resistance, traction and tread wear which 

are mutually inclusive and complexly interdependent (Evans et al, 2009. These 

goals complicate the aim of simply minimising tyre rolling resistance, as the latter 

two focus on the frictional and durability characteristics of the tread section of the 

tyre. To simplify the actions acting at the interface of tyre and pavement, consider 

that two types of interactions occur, which can be described as ‘stick-slip’ and ‘stick-

snap’ (Sandberg et al, 2011). ‘Stick-slip’ refers to situations where the coefficient of 

friction is not sufficient to prevent any longitudinal movement. ‘Stick-snap’ describes 

a situation where friction is sufficient to prevent longitudinal movement and the 

rubber material is strained, resulting in the adhesion between the two faces being 

broken. These actions in combination with the bending and dynamic actions of the 

tread section and side-walls encompass the majority of reactions exhibited by 

pneumatic tyres. A visual summary is provided in Figure 2.5. 
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Figure 2.5: Rolling loss generation mechanisms due to tyre deflection 

(Sandberg et al, 2011). 
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To explain the energy loss through the mechanism of a rolling pneumatic tyre one 

should observe the theory of thermodynamics, where energy transfer occurs either 

due to work being completed or alternatively transferred as heat (LaClair, 2006). 

There is no net displacement between the tyre outer tread and the wheel’s rim, 

hence all losses must result from the loss of heat. Generation of heat occurs 

primarily through hysteresis of rubber and also through friction between tyre tread 

and the pavement surface, tyre bead and wheel rim. The induced stresses are 

highest at the front of the contact patch, which is where the majority of heat 

originates and then concentrates in the tyre’s steel belts which are included in the 

structure of the tyre to increase stiffness (Li et al, 2012). The contact patch deflects 

and results in bulging of the adjacent side-walls, these are the two main areas in 

which the tyre rubber is strained. Most rubber compounds are viscoelastic; viscous 

materials resist shear flow and strain linearly with time as stress is applied. Elastic 

materials strain instantaneously when stress is applied and return to their original 

orientation as quickly as possible after the release of the applied stress (Brancatti et 

al, 2011). The hysteresis in the tyre rubber occurs with strain leading stress due to 

the deformation being greatest in the rubber component of the tyre. This results in 

strain energy potential being stored in a significant lag phase between strain and 

stress, which is lost as heat energy (Lin et al, 2004). Although the greatest build-up 

of heat occurs in the steel belts it is indeed the least stiff component of the tyre, the 

rubber, that dissipates heat the most. Hence rubber deformation is the predominant 

element within the mechanism of a rolling tyre that causes rolling resistance. 

Further, it is worth noting that tyres cool while stationary much slower than they heat 

up (Venkataraman, 2007), thus the effect of stopping in traffic is minimal. 

The potential for improvements in tyre technology is evident from the relatively 

recent past. It is estimated that rolling losses have been reduced by up to 70% due 

to the implementation of radial tyre construction in the past couple of decades (Pillai, 

2004). Figure 2.6 describes the variance in performance between cross-ply and 

radial-ply tyres. The evolution of radial tyres has occurred due to superior rubber 

compounds being developed, this means the tyre is not as stiff and conforms to the 

road surface better (Venkataraman, 2007). Flexibility is achieved by the steel belts 

within a radial tyre running perpendicular to the bead and not continuing through the 

sidewalls as illustrated in Figure 2.6. This difference in the contact patch means the 

tyre can better traverse pavement texture. Subsequently, hysteresis is reduced due 

to the larger contact patch resulting in less flex in the tyre side walls being required 

to conform to the road surface, which results in less heat build-up and energy loss 
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(Venkataraman, 2007). Furthermore, any heat generated is more easily dissipated 

through the thinner tyre side walls of radial tyres, which is significant due to the low 

diffusivity of rubber compounds used in tyre construction (Brancatti et al, 2011). 

Therefore a radial tyre of equal size generally improves rolling resistance and 

traction, however this is dependent on the utilisation of the correct operating 

pressure (Michelin, 2000). 

 

 

Figure 2.6: Illustration of the differences in construction of (a) Bias and (b) 

radial tyres (Tonkovich et al, 2012). 

 

 

It has long been acknowledged that tyre temperature and inflation pressure impact 

on performance. The inflation pressure is critical as it largely determines the strain 

and therefore hysteresis experienced by a tyre, the faster a tyre is driven when 

under-inflated the higher the rolling resistance it experiences (Nielsen et al, 2002). A 

study completed by Pillai (2004) found rolling loss to be inversely proportional to 

inflation pressure. The modelling completed by Venkataraman (2007) describes 

stress being highest at the front of the contact patch, which results in the front of the 

contact area being larger than the rear. This disparity is reduced with a higher 

inflation pressure which in turn results in lower rolling resistance (Venkataraman, 

2007). Tyre temperature obviously impacts the strain rate experienced by rubber, so 

much so that Li et al (2012) suggest that higher ambient temperatures lead to 

shorter lifetimes for large dump truck tyres. Yong et al (1990) report that tyre 

inflation pressure has a more profound effect as road roughness increased, with a 

higher efficiency associated with higher inflation pressures.  
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 Terramechanics and Rolling Resistance 2.2.3

The study of ‘terramechanics’ has yielded many functions for the prediction of rolling 

resistance by employing the available mechanical relations applicable to each 

individual component of the rolling wheel mechanism. Of particular interest is the 

study of traction forces developed between a rolling tyre and a deformable terrain. 

Although such and understanding is useful, it must be noted that many of the 

relations were developed by applying classical soil mechanics, which relate to static 

loads. Consequently it must be remembered that the load applied by a rolling tyre 

varies significantly in application rate and duration (Schuring, 1963). Modern 

attempts have been made to model the problem with advanced software such as 

finite element analyses such as that detailed in Grujicic et al (2010). However, 

material response (such as the non-linear soil behaviour) may not currently be 

understood well enough to utilise such tools to utilise the results in practice, as was 

suggested some decades ago by Plackett (1985).  

The theoretical study of terramechanics is undoubtedly useful to the study of off-

road rolling resistance. One important point is the difference in the application of 

applied force for towed and driven wheels. Consider Figure 2.7 below, where it is 

shown in diagram (a) that a force (Ft) acts at the centroid of the wheel. This is 

effectively equivalent to (b) where a couple is shown to be applied (again F t), which 

is resolved to a moment and linear force (Fk) in (c). Note that the force is applied at 

the base of the wheel. The former is the case for a towed and the latter for a driven 

wheel (Komandi, 1999). Thus the moment required to overcome rolling resistance in 

each case is equivalent (Ft.R=Fk.R), only applied differently. It is for this reason that 

when considering the factors affecting the rolling resistance moment the study does 

not need to be separated to consider driven and towed wheels (Komandi, 1999). 
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Figure 2.7: Mechanical relationship between (a) towed and (b) driven wheels, 

and the shifting of forces (c) (Komandi, 1999). 

 

 

Another limitation of utilising basic mechanics to describe the rolling motion relates 

to the rotation of the wheels due to moment F.Q in Figure 2.7. In all cases this 

actually only relates to a rotation and not a forward translation (Komandi, 1999). 

Thus the resistance experienced is against rotation and not a rolling mechanism. 

This limitation should be kept in mind when considering any theoretical description 

of rolling mechanics.  

A concept from the field of off-road vehicle mechanics worth noting here is the 

notion of slip. At the wheel/terrain interface there is undoubtedly shear forces acting 

tangentially to the direction of tyre motion and hence some displacement must occur 

(Wong, 2010). The wheel must ‘slip’ to some degree when a thrust is applied or 

generated by a wheel gear. It is common for the performance of off-road vehicles to 

be described with consideration of 20% slip, which is considered to provide 

satisfactory working conditions (Wong, 2010). This topic is discussed further in 

Section 2.2.3.3. 

For estimating the traction (and therefore rolling resistance) in a deformable terrain, 

two distinct methods have been researched. One was popularized by Bekker (1956) 

who considered the stress at a point under a rigid plate with given sinkage 

analogous to the corresponding point under a rolling rigid wheel. This assumption is 

known to be incorrect (Gee-Clough, 1977) and assumes there to be no shear stress 

(tangential or normal) at the wheel-terrain interface (Wong, 2010). A practical issue 

associated with the theories developed from the work of Bekker is that they often 

apply soil properties that are not utilised in conventional soil mechanics and thus are 
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often difficult to define (Plackett, 1985). Ultimately it is contended that rolling 

resistance and sinkage (depth of tyre penetration into supporting medium) are an 

interdependent system of variables (Grahn, 1991) and hence such theories must be 

used with caution. The second method originated with sand and clay ‘mobility 

numbers’ derived by Freitag. This method utilises the soil cone index to describe soil 

strength, which is not a comprehensive measure and for which data may be difficult 

to obtain for use in practice (Plackett, 1985). Both models are empirical in nature, 

which raises doubt that they can be applied in the evaluation of environments not 

represented within their development (Wong, 2010). Both are discussed further in 

the following. 

 

2.2.3.1 Pressure Sinkage 

Pressure-sinkage relationships were extensively researched and extended by 

Bekker (1956). It was this work that provides perhaps the neatest function explaining 

the additional resistance experienced by a tyre rolling on a deformable terrain in 

comparison to a tyre running on a compacted pavement. It considers tyre losses 

separately to soil effects, which distinguishes it from the theories noted in the 

discussion above.  

Equation 2.2 helps describe the difference in rolling resistance on a deformable 

terrain and a compacted pavement. The additional terms due to the deformation of 

the supporting terrain represent resistance due to compaction and ‘bulldozing’. It 

has been understood for well over a century that rolling resistance is reduced more 

by an increase in wheel diameter, creating a long contact patch, than by an increase 

in wheel width (Gee-Clough, 1976) which increases resistance with significant 

sinkage and bulldozing soil in front of the tyre (Gee-Clough, 1979). Note that 

bulldozing is noted to occur when the sinkage/wheel diameter ratio exceeds 0.06 

(Sitkei, 1966). 

 

 

Equation 2.2: Bekker’s equation describing the three components of off-road 

rolling resistance (Gee-Clough, 1979). 

 

𝑅 = 𝑅𝑐 + 𝑅𝑏 + 𝑅𝑡 
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Where: 

R is the rolling resistance 

𝑅𝑐  is the rolling resistance due to soil compaction 

𝑅𝑏  is the rolling resistance due to bulldozing 

𝑅𝑡  is the rolling resistance due to tyre flexing 

 

To understand the compaction term, Bernstein (1913) proposed that the deformation 

caused by a wheel to create a rut was analogous to the pressure sinkage 

relationship under a rectangular plate (Plackett, 1985). Bekker extended this theory 

to consider both frictional and cohesive components of the soil, as he contended 

that compaction resistance was derived from both (Plackett, 1985). Other authors 

such as Schuring (1963) support the theory concluding that rolling resistance was 

closely related to the bearing capacity of the soil and sinkage of the wheel. Grahn 

(1991) furthered this work to take account of dynamic effects and vehicle speed to 

calculate maximum shrinkage. Grahn (1991) also noted that sinkage decreases with 

driving speed despite maximum pressure increasing due to a decreased contact 

patch area. Additional research into the prediction of sinkage has continued by 

authors such as Reece, who utilised classical soil mechanics to describe soil failure 

beneath a strip footing with respect to a pressure/sinkage relationship (Plackett, 

1985).  

Resistance due to soil compaction can be calculated by taking account of the 

effective stiffness of the tyre due to inflation pressure and tyre carcass stiffness 

(Plackett, 1985). The resistance to bulldozing has also been described by Bekker in 

two parts separating global and localized shear failure (Gee-Clough, 1979).  

 

2.2.3.2 Mobility Numbers 

An alternative method to the reliance on pressure/sinkage relationships was derived 

by Freitag, who utilised dimensional analysis to determine ‘mobility numbers’ for 

friction and cohesive soils (Plackett, 1985). This research showed that the main 

traction parameters could be correlated with a dimensionless number, termed either 

the ‘sand’ or ‘clay’ number (Gee-Clough, 1979). Both mobility numbers are used to 

estimate sinkage and therefore rolling resistance. Attempts were made to extend 
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these (Crossley et al, (2001) in soil-bin experiments, but ultimately the correlations 

were found to be quite poor due to the extrapolation of the testing conditions that 

were implicated. Gee-Clough (1980) utilised a deflection factor of the tyre to 

calculate the mobility number, however noted limited practical application of the 

relation. Other attempts have been made to expand the method, but ultimately it has 

been shown to have little practical use due to the difficulties alluded to above in 

extrapolating from the original conditions (Plackett, 1985).  

Finally it is worth noting that numerical approaches to modelling rolling resistance, 

such as mobility numbers, are problematic in that the mechanics utilised is not 

necessarily well understood in terms of critical state soil mechanics and plasticity 

theory. These issues need to be addressed before computer methods should be 

relied upon (Plackett, 1985).  

 

2.2.3.3 Wheel Slip  

The rolling resistance theories derived from Bernstein and later Bekker do not take 

into account wheel slip (Plackett, 1985). Due to this omission it was realised that 

rolling resistance would be overestimated (Gee-Clough, 1976). Prior to this it was 

also noted that sinkage could not be related to an infinitesimal element under a rigid 

plate with the same sinkage and pressure as a tyre (Onafeko, 1969). Another issue 

with the theories derived from the work of Bekker was that the shear stress between 

the soil and tyre was either omitted or considered constant. Gee-Clough (1976) 

states that this is the reason skid and slip was not included originally, as it is the 

unbalanced moment created by the shear stress acting in opposing directions during 

the passing of a wheel that explains the presence of slip. Figure 2.8 describes the 

nature of the shear stresses and also presents differences between the normal 

stress distribution between a wheel and a plate. Plackett (1985) also contends that it 

is very difficult to discriminate between soil compaction and sinkage as well as 

horizontal movement due to bulldozing within a soft soil environment. The 

culmination of these issues meant more traditional soil mechanics methods were 

needed to describe the problem. An attempt to apply such was made by 

Hetherington et al (1978), where the contact area was idealised as a series 

horizontal strip footings to allow the application of Terzaghi’s theory, but ultimately 

considers failure only perpendicular to the plane of the wheel (Placket, 1985). 
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Figure 2.8: Normal and shear stresses beneath a tyre in relation to the same 

soil beneath a rigid plate (Gee-Clough, 1976). 

 

 

2.2.3.4 Numerical Modelling 

In recent years, an advance in the capacity of personal computers has seen an 

effort to utilise numerical modelling to describe the motion of off-road pneumatic 

tyres. This is a very complex process requiring a three-dimensional model to 

account for soil moving laterally as it is displaced by the wheel and inclusion carcass 

stiffness in modelling of the tyre (providing bearing support between the tread/belts 

and the rim) (Fervers, 2004). Hambleton et al (2008) derived a model very similar to 

that proposed by previously noted authors. Ultimately it was concluded that the 

complexity of considering all out-of-plane effects presents potential errors. One 

exception to this is when considering cohesive soils where three-dimensional effects 

appear to have little effect on the sinkage/indentation per unit width (Hambleton et 

al, 2008). Furthermore, analytical models tend to oversimplify the dynamic tyre 

contact, which can result in surface settlements being defined in terms of wheel 

sinkage instead of changes in soil density through compaction (Xia, 2011).  
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Advanced numerical modelling has been able to provide findings in line with that 

discussed above. For example, it has been shown that rolling resistance is improved 

with multiple narrow wheels, rather than a single, wide wheel (Hambleton et al, 

2009). Xia (2011) notes that the energy used by a rolling tyre can be reduced 

through increased stiffness of tyres and/or terrain. Fervers (2004) also found 

through three-dimensional modelling of tyres and soil that decreased inflation 

pressure can significantly reduce rolling resistance. An increase in tyre translation 

speed (vehicle speed) is also noted to produce a reduction in rolling resistance, as 

the soil is contacted for a shorter duration and is therefore subject to less 

compaction (Xia, 2011). These results describe the power of numerical modelling to 

improve the efficiency of off-the-road transport. 

 

 Rolling Resistance due to Structural Support of 2.2.4

Engineered Pavements 

The ‘structural contribution’ to rolling resistance is a term used herein to denote the 

relative bearing strength effects of a pavement. In effect, it is the rolling resistance 

experienced due to energy loss through the stress/strain response (hysteresis) of 

pavement materials. In many texts such as Jackson et al (2011) it is noted to be a 

very small effect, accounting for as little as approximately 1% of total rolling 

resistance or even being negligible. Testing carried out in Europe suggests that 

pavement deflection contributes very little (Hammarstrom et al, 2008). Coast-down 

tests were used to define rolling resistance, where a vehicle is allowed to coast from 

a known speed and the deceleration is measured to define the total resistance 

experienced. This research is likely the most detailed study completed, however it 

considers vehicles only as large as goods trucks on asphaltic and rigid (concrete) 

pavements. A similar study has been conducted in New Zealand considering a 

similar sized vehicle on flexible pavements, both sealed and unsealed where a very 

significant portion of rolling resistance measured is attributed to pavement 

deformation effects (Jamieson et al, 2002). Figure 2.9 shows the raw data from this 

study. Although there is a limited number of roads tested, one was unsealed (top 

right corner of Figure 2.7), and hence was found to have limited stiffness and 

moderate roughness which resulted in a fuel consumption 2-4% higher than stiffer 

pavements of a similar roughness. This study resulted in the conclusion that 

pavement stiffness was the most significant contributor to the static rolling 

resistance coefficient. Research effort into the effect of pavement rigidity has 
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increased significantly in recent years, however it is still not certain in what 

conditions pavement deflection significantly impacts rolling resistance.  

 

 

Figure 2.9: Relation between fuel consumption, pavement rebound deflection 

and roughness (Jamieson and Cenek, 2002). 

 

 

If one is to consider the relative stiffness of both tyre and pavement, some insight 

can be gained into the relative hysteresis in each. Jackson et al (2011) describes a 

typical truck tyre as having a stiffness of approximately 1000 N/mm and pavement a 

value of approximately 28,000 N/mm, thus it would be reasonable to expect in the 

most simplistic of analyses that more energy would be lost through heat generation 

within the tyre by a factor of around 28. In this case, of the total energy loss in the 

system (rolling resistance), approximately 3.5% would be attributable to pavement 

response (Jackson et al, 2011).  
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Although the above discussion refers to a relatively crude estimation, it does appear 

to have some basis when compared to the available literature reporting empirical 

studies. One suggestion is that the sensitivity to pavement deflection may have 

been wrongly attributed to surface roughness (Jamieson et al, 1999). This may well 

be plausible since the pavement considered in the studies consisted of widely 

different wearing courses. For example, the most common comparison was between 

rigid concrete pavements against asphalt of varying grades. This effect was 

discussed at length in a report commissioned by the Australian Roads Research 

Board (Mclean et al, 1998), who ascertained that the idealisation of a wheel 

constantly climbing out of a deflection bowl is not consistent with the mechanism at 

play but rather there exists energy losses through pavement hysteresis.  

Research dating as far back as the 1950’s, reports findings of lower rolling 

resistance with improved support conditions, as can be observed in Table 2.1. The 

method employed is similar to that adopted in studies conducted since, in that the 

rolling resistance coefficient was determined for a range of vehicles on a range of 

surfaces. However, this study is of particular note due to the fact that an off-the-road 

tyre was utilised in conjunction with passenger car and truck tyres. Thus it can be 

seen that the high lugs of the ‘agricultural tyre’ (an off-the-road tyre) have resulted in 

a higher rolling resistance on the rigid concrete and the lowest value on the soft 

sand (Taborek, 1957). Firstly, as the agricultural tyre is likely to also have a high 

profile and almost certainly would have been of bias construction it is fair to assume 

that hysteresis would have been significant in the tread and sidewalls on the rigid 

surface. Conversely, it is highly likely that this tyre would have had an increased 

width and diameter compared to the other two tyres involved and therefore could be 

expected to have a lower rolling resistance coefficient than the road tyres. Secondly, 

note that between the concrete and the ‘medium hard soil’ rolling resistance is 

observed to increase significantly. Of particular interest here would be a detailed 

description of the nature of surface condition for the ‘medium hard soil’. If a 

significant amount of sinkage had occurred, the increase in rolling resistance could 

be attributed to this effect. However if no such effect was noted the result could 

serve as a pre-cursor to the increased resistance effect of pronounced pavement 

deflection.  
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Table 2.1: Rolling resistance coefficients for various tyres and surfaces 

(Taborek, 1957). 

Tyre Type 
Surface 

Concrete Medium Hard Soil Sand 

Passenger Car 0.015 0.08 0.30 

Truck 0.011 0.06 0.25 

Tractor 0.020 0.04 0.20 

 

A similar relationship has been reported in recent years, specifically for the 

prediction of tractive forces available to earthmoving equipment, as derived by 

machine manufacturer Caterpillar (Holman, 2006). A definition is made between 

tracked and tyred vehicles with more categories of ground support supplied than 

above. Softer soils are distinguished as those presenting some degree of rutting 

(considered as penetration of the tyre into the soil surface), which is often referred to 

as sinkage to describe the mechanism of bulldozing soil around a tyre. It would 

therefore be useful to add the effect of tread pattern and/or the presence of tyre lugs 

to better define the likely level of slippage (see Section 2.2.4). Despite this omission 

the data presented by Holman (2009) does show a four-fold increase in rolling 

resistance between  a condition of no visible flexing of the pavement surface to 

sinkage of 50mm. From the above discussion, it is clear that this data is relevant to 

theories relating to both terramechnics and pavement engineering. Thus 

presentation of empirical findings is likely the most prudent way to present such data 

in the absence of standardised testing methods or universally accepted theories for 

describing rolling resistance in each field of study. 

A study completed by Cenek et al (1996) resulted in Equation 2.3 being derived, in 

which Benkelman beam rebound deflection is the most significant variable when 

considering the coefficient of static rolling resistance. It is contended that there are 

losses associated with pavement deflection due to hysteresis. Note that this study 

was completed utilising a light truck as the reference vehicle. Table 2.2 presents a 

summary of the raw data from which this relation was developed. The relation 

presented here relates deflection linearly with the static rolling resistance coefficient. 

Hysteresis is a function of stress/strain response whereby a stiffer material could 

indeed exhibit larger losses depending on its strain rate and plastic behaviour. 

Therefore linearly relating deflection and static rolling resistance is an over-

simplification. Of course the relative stiffness values of tyre and pavement are also 

likely significant in such a theoretical discussion of rolling resistance due to 
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pavement deflection. Although this is a somewhat preliminary investigation it does 

allude to such effects being significant. 

 

Equation 2.3: Static rolling resistance according to Cenek et al (1996). 

𝐶0 = 0.011 + 0.0033𝐷 − 0.00044𝑀 

Where: 

𝐶0  is static coefficient of rolling resistance 

D  is Benkelman beam rebound deflection (mm) 

M  is truck mass (tonnes) 

 

 

Table 2.2: Typical values of deflection for calculation of rolling resistance and 

the relative effect of Portland cement concrete (PCC) pavements (Mclean et al, 

1998). 

 

 

A comprehensive model for vehicle fuel consumption, observing the significant 

effect of rolling resistance has been derived for use within the Worldbank’s HDM-4 

model (Zaabar et al, 2010a). This model is likely the most widely applied globally. 

Note that Benkelman beam rebound deflection is only considered for vehicles over 

2500kg on bituminous (flexible) pavements. The constant applied to the measured 

deflection is significant. For example, on a bituminous road an equal effect would 

arise from a 1mm deflection, IRI of 33.5 (pavement could be considered impassable 
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at such a level) or a texture depth of 2.35mm. Thus the data this relation was 

derived from either showed minimal deflection, or rolling resistance showed a very 

strong relation to deflection. Interestingly, the same factor is not applied to unsealed 

roads, which may have provided some greater insight in to the influence of 

deflection. Unfortunately this was not completed due to the lack of a standard test 

method for rebound deflection on an unsealed surface. This relation shows just how 

little is understood regarding the hysteresis generated in pavements due to 

trafficking and the respective operational costs.  

The mechanics involved in the energy loss associated with the loading/unloading of 

a pavement from a wheel undergoing a longitudinal translation is undoubtedly 

complex. It has been suggested it is best visualised as a ‘bow wave’ formed in front 

of the wheel within the sub-structure of the pavement or predominantly within 

weaker layers (Sandberg et al, 2011). Hereby, the materials in front of the wheel are 

stiffer than behind the wheel and thus some energy must be lost in the passing of 

such a ‘wave’. This energy maybe lost as heat, re-orientation of the particles 

constituting the pavement materials or through cracking or compaction depending 

on the properties of the materials of interest and the relative magnitude of the 

stresses induced (Sandberg et al, 2011).  

Some estimation of the energy lost through a load/unload cycle occurring within the 

pavement structure may be estimated by observation of the hysteresis under FWD 

testing (Schmidt et al, 2009). This effect can be observed in Figure 2.10, where the 

total energy lost can be determined by summing the area contained within 

subsequent curves, which are induced by the pulsed dynamic loading utilised within 

FWD testing. Note that Schmidt et al (2010) estimate that the energy lost due to a 

rolling tyre would be 70-80% of the maximum energy found to be lost through FWD 

testing, when the same vertical load is applied. However, this effect may be 

complicated by the pavement material’s load response due to variations in loading 

rate. For example, asphalt (which made up the composition of the pavement tested 

in generating Figure 2.10) stiffness increases with the rate of loading (Jameson, 

2008A). Analysis of Figure 2.10 reveals that the energy lost within an asphalt 

pavement is far more significant than within a rigid concrete pavement. In fact 

Schmidt et al (2010) estimate that within pavements with low structural capacities a 

greater proportion of rolling resistance is attributable to pavement hysteresis and 

could ultimately add up to an additional 20%. A study similarly focussed on FWD 

testing of pavements has been completed by Lenngren et al (2010). Within this 

study it was found that fuel consumption of a truck travelling at 80 km/h was 
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increased 5-10% when driving on an asphalt pavement, showing an energy loss 

approximately 4 times greater than that of Portland cement concrete pavement. The 

link between total rolling resistance and fuel consumption is immensely complex 

(see Section 2.3), however this does present clear evidence that increased 

pavement hysteresis could lead to a greater energy loss and therefore a greater 

cost to the end-user (Lenngren et al, 2010). Zaabar (2010) reports a similar effect, 

where heavy trucks experience greater fuel consumption on asphalt pavements 

compared to concrete pavements, an effect attributed to the viscoelasticity of 

asphalt. However, in this particular study no physical tests were carried out in an 

attempt to determine the hysteresis properties of the pavement. This method of 

testing pavement related losses requires further research but does provide an 

understanding of the potential inefficiencies of pavements with lower structural 

stiffness.  

 

 

Figure 2.10: Hysteresis of rigid concrete pavement (left) and an asphaltic 

pavement (right) materials undergoing FWD testing (Schmidt et al, 2009). 

 

 

Douglas et al (1992) completed a study of pavement stiffness for haul roads within 

the Canadian forestry industry. The contention was that on very low stiffness roads 
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(roads with sub-grade CBR values less than 1% were considered) the hysteresis of 

the pavement and sub-grade was found to provide a significant rolling resistance. 

Furthermore, it is noted that designing unsealed pavements using design criteria for 

low volume sealed roads is inappropriate, as ruts can be repaired (Douglas et al, 

1992). For example, 40% of trucking in Canada is for haulage of forestry products at 

low speed on unsealed roads, which are often founded on poor sub-grade materials. 

Therefore, pavement design with a focus on optimising pavement stiffness may be 

more appropriate than design to limit rut depth if rolling resistance was found to be 

significantly influenced by the flexibility (inverse of stiffness) of a pavement 

(Douglas, 1992). It was concluded that design should be focussed primarily on the 

operating costs of vehicles (Douglas, 1991), implying that stiffness could be adopted 

as the key design criteria. 

 

 Rolling Resistance due to Surface Condition of Engineered 2.2.5

Pavements 

Rolling resistance derived from surface condition refers to the resistance 

experienced by a tyre due to undulations in the pavement surface. In most cases it 

invokes a particular tyre response and hence the following discussion links directly 

with Section 2.2.2. To understand the effects of roughness and texture it is first 

necessary to understand the definitions and specific actions of each. Although 

roughness is sometimes used to describe all surface irregularities (Santero et al, 

2011), it actually refers to those with a wavelength greater than 0.5m and often 

restricted at a maximum of 50m, to avoid confusion with road vertical geometry 

(Mclean et al, 1998) and thus describes ride quality. Shorter wavelength surface 

deviations are referred to as texture. Figure 2.11 provides a visualisation of the 

different classes of texture. Microtexture relates to wavelengths less than half a 

millimetre and is primarily related to the nature of the surface of individual stone 

particles (Jackson et al, 2011). Tyre adhesion and skid resistance is chiefly 

controlled by microtexure (Jameson et al, 2009). In relation to Section 2.2.2 it affects 

stick, slip and snap actions both positively and negatively in terms of rolling 

resistance (Sandberg et al, 2011). Macrotexture considers wavelengths in the range 

0.5 to 50mm (Jameson and Shackleton, 2009). This typically relates to the particle 

sizes used for the surface course and affects localised tyre deflections and shearing 

leading to energy loss (Sandberg et al, 2011). Often this value is confused with 

megatexture, which describes wavelengths of 50 to 500mm. Jackson et al (2011) 
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note this has a significant effect on rolling resistance by inducing vibration into the 

tyre. All three categories of texture are defined by the Mean Profile Depth (MPD), 

although in practice it is the two larger wavelength groupings that are counted 

(Jackson et al, 2011). 

 

 

Figure 2.11: The ranges in wavelength for varying types of roughness 

(Sandberg, 2010). 

 

 

Nielsen et al (2010) contends that the impact of texture on rolling resistance is 

speed dependent with an increase of 1mm in macrotexture resulting in a 17% 

increase at 54km/h and a 30% increase at 90km/h. Furthermore Sandberg et al 

(2011) states the majority of functional rolling resistance is generated by macro and 

megatexture, due to the wavelength of these types of surface undulation being 

similar to the dimensions of the contact patch for most tyres and therefore induces 

undesirable tyre-surface interaction mechanisms (Mclean et al, 1998). Descornett 

(1990) estimated that megatexture can increase fuel consumption by up to 9% alone 

due to the vibrations created in the tyre/suspension system. Therefore it is very 

important to define macro and megatexture. 
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Figure 2.12: Pavement Texture and Roughness wavelengths and their relation 

to vehicle performance (Jameson et al, 2009). 

 

 

Roughness is generally described by either of two measures; International 

Roughness Index (IRI) or NAASRA roughness counts (Jameson and Shackleton, 

2009). The former represents the utilisation of more advanced technology for 

measurement, whilst applying the quarter-car model developed for the latter 

(Gillespie, 1992). A close relation has been defined for the two and is described in 

Equation 2.4.  

 

 

Equation 2.4: Transformation between NAASRA Counts/km to IRI (m/km) 

(Jameson and Shackleton, 2009). 

𝑁𝐴𝐴𝑆𝑅𝐴 𝐶𝑜𝑢𝑛𝑡𝑠 𝑘𝑚⁄ = 26.5 ∗ (𝑙𝑎𝑛𝑒 𝐼𝑅𝐼) − 1.27 

 

Figure 2.13 presents typical ranges for different pavement conditions experienced 

by Austroads. This provides some insight into the raw IRI scoring commonly found 
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for unsealed pavements in comparison with sealed pavements, which provides 

some indication of the potential increase in VOC when utilising models such as 

those discussed in Section 2.3. 

 

 

Figure 2.13: Typical IRI range for different pavement type (Tan et al, 2011). 

 

 

The World Bank provides some guidance on subjective judgement of IRI for 

unpaved roads, reproduced in Table 2.3. Such guidance can be used for the 

purpose of estimating IRI, but ultimately roughness depends on the response of 

each individual vehicle and its travelling speed (Gillespie, 1992). 
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Table 2.3: Guidance on subjective assessment of IRI for unpaved roads (The 

World Bank, 1999). 

 



Doctor of Philosophy (Civil Engineering)            Mine Haul Road Rolling Resistance 
Curtin University                                                                                      Background 

Jarrad P Coffey                                                                                                         41 

Roughness is generally expected to affect more than just losses in the tyre. Mclean 

et al (1996) contend that roughness less than 3m in wavelength induce wheel hop 

(wheel movement relative to vehicle body) and wavelengths of 7m to 28m are 

associated with the vehicle body bouncing on the suspension. In terms of rolling 

resistance, Nielsen et al (2010) reports that like texture the effect is speed 

dependent with an increase of 1.8% at 54km/h and an increase of 6% at 90km/h for 

an increase in IRI of 1m/km. Note that these increases are far less than that for a 

unit increase of texture. A great deal of empirical research is available presenting 

similar results to that contained in Table 2.4. Rolling resistance and therefore fuel 

consumption are sensitive to unit changes in IRI, however the relationship is highly 

variable. Which is testament to the effect of pavement texture (consider the 

dependence on macro and megatexture in Figure 2.12) and other sources of energy 

loss. 

One study which is relevant but difficult to compare with any other was completed by 

Jamieson et al (2002), who found an increase in loose material present at the 

surface of an unsealed road increased rolling resistance by 25%. This study was 

completed with a light truck at steady state speeds ranging from 20 to 75 km/h. 

Unfortunately, the degree of slip (as per Section 2.2.3) and texture of the pavement 

were not defined.  
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Table 2.4: Results of selected studies showing the sensitivity of rolling resistance and roughness (Mclean et al, 1998). 
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One additional factor that must be noted when considering functional performance is 

the relative weight of the vehicle and tyre size (contact patch area). Many other 

vehicle characteristics are likely significant, however these are the two that are 

addressed within the literature. Firstly, Sandberg et al (2011) notes that IRI seems 

more significant for a truck and MPD more so for a passenger vehicle. To some 

extent this could be attributed to the relative tyre sizes employed; for example, a 

truck tyre may be influenced by short wavelength roughness in the same way a 

passenger car tyre is influenced by megatexture.  

Furthermore, Lenngren (2010) states that rolling resistance appears more 

dependent on pavement hysteresis, which further confuses the relation between any 

single pavement parameter and rolling resistance. Although some conclusions can 

be drawn from the logic described in the literature the overall system of pavement, 

tyre and vehicle is immensely complex and relative vehicle size appears to cause 

differing vehicle response.  

 

2.2.5.1 Rolling Resistance Models 

There exist many models relating pavement functional characteristics to the rolling 

resistance experienced by a passing vehicle. Those discussed below are 

considered the more comprehensive examples within the literature. It must be 

highlighted that many relationships have been developed utilising differing rolling 

resistance measuring methodologies due to the lack of a standardised test method. 

Some relations are derived via regression from coast-down rolling resistance tests 

and others from steady-state torque methods. It must be assumed each method 

produces results equivalent to the other, in order to make comparisons of the 

conclusions derived from each in the literature. Currently there has not been a study 

completed to comment on the equivalency of the two methods. 

A general equation for rolling resistance with cognisance of functional pavement 

effects was developed by Hammarstrom et al (2008). It considers the separate 

effects of texture (MPD) and roughness (IRI), with both being influenced by vehicle 

mass. Interestingly, the resistance due to texture is influenced by velocity, an effect 

disputed in some literature as discussed above. The general equation can be used 

to develop specific functions for a given vehicle with regression from a matrix of 

testing. Such work was completed for a couple of vehicles, one for passenger 

vehicles and one for trucks (27 tonne truck utilised in the testing). Within these two 



Doctor of Philosophy (Civil Engineering)            Mine Haul Road Rolling Resistance 
Curtin University                                                                                      Background 

Jarrad P Coffey                                                                                                         44 

relationships velocity only influences the roughness component. With the constant 

applied for trucks being approximately 50% greater than that for a passenger 

vehicle. This type of relation is not well suited to extrapolation and ideally should be 

developed for discrete vehicles and pavement conditions.  

Also worth consideration is the structure of the rolling resistance surface factor 

included within the HDM-4 rolling resistance model (Zaabar et al, 2010). The vehicle 

mass and velocity are considered independently meaning the pavement condition is 

considered in isolation. The other main factor included is tyre derived rolling 

resistance, which is directly affected by velocity and mass, which appears 

appropriate if one considers the discussion included in Section 2.2.2. The rolling 

resistance surface factor in HDM-4 considers texture, roughness and rebound 

deflection independently. However, it considers a larger vehicle to be influenced 

more by texture and an equivalent amount or less by roughness, this is of course at 

odds with the discussion contained within Sandberg et al (2011) and the discussion 

above. Considering pavement types separately makes the HDM-4 model more 

detailed than many other relations reported in the literature. However, it may also 

result in some effects not being fully captured for certain pavements, a prime 

example being the lack of influence of structural capacity for unsealed pavements. 

More general relations may capture such effects within the data used for derivation. 

Thus the approach employed within the HDM-4 model does appear more 

comprehensive than the other relations discussed. Conversely, it may produce 

erroneous results through assumptions of the relative influence of texture, 

roughness and deflection for a given pavement as there is some disagreement 

within the literature. 

A model developed by Jamieson et al (2002) is similar, although it considers the 

static rolling resistance coefficient (Equation 2.6) to be influenced by varying texture 

categories and rebound deflection. Conversely the speed dependent coefficient 

(Equation 2.7) considers velocity in conjunction with tyre size and vehicle mass. This 

model appears to be the most complex general model available when considering 

functional pavement effects while also incorporating the structural capacity as part of 

the static coefficient. Thus it has additional modelling capacity compared to the 

HDM-4 model. Similar to the HDM-4 model it has been derived considering 

unsealed and highway pavements, however one shortcoming is that although it 

includes a term for pavement rigidity (Jamieson et al, 2002), it has not been 

developed with consideration of rigid concrete pavements.  



Doctor of Philosophy (Civil Engineering)            Mine Haul Road Rolling Resistance 
Curtin University                                                                                      Background 

Jarrad P Coffey                                                                                                         45 

 

 

Equation 2.5: Rolling resistance force equation (Jamieson and Cenek, 2002). 

𝐹𝑅 = 𝑀. 𝑔(𝐶0 + 𝐶𝑣 . 𝑉2) 

 

Where: 

𝐹𝑅  is the rolling resistance force (N) 

M  is the vehicle mass (kg) 

𝑔  is gravitational acceleration 

V  is vehicle speed (m/s) 

𝐶0  is the static coefficient of rolling resistance 

 

 

Equation 2.6: Static coefficient of rolling resistance (Jamieson and Cenek, 

2002). 

𝐶0 = 0.0131 ∗ 𝑅𝐷 + 0.015 ∗ 𝑆𝑊𝑅 − 0.004 ∗ 𝑀𝑊𝑅 + 0.000075 ∗ 𝐿𝑊𝑅 − 0.003 ∗ 𝑆𝑅

− 0.000042 

 

Where: 

𝐶𝑣  is the speed dependant coefficient of rolling resistance 

 

 

Equation 2.7: Speed dependant coefficient of rolling resistance (Jamieson and 

Cenek, 2002). 

𝐶𝑣 = 0.00032 ∗ 𝑅𝑎𝑑 − 1.64 × 10−9𝑇𝑀 + 2.73 × 10−5𝑀𝑅 − 0.00012 
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Where: 

RD  is Average Rebound Deflection (mm) from Benkelman Beam Tests 

SWR  is Root Mean Square short wavelength roughness (microtexture - mm) 

MWR  is Root Mean Square medium wavelength roughness (macrotexture - mm) 

LWR  is Root Mean Square long wavelength roughness (megatexure - mm) 

SR  is Site Roughness (NAASRA counts/km) 

MR  is ratio of front to rear axle mass 

TM  is total vehicle mass (kg) 

Rad is tyre radius (m) 

 

 Rolling Resistance of Haul Roads 2.2.6

Limited literature is available explaining the rolling resistance of haul roads due to 

pavement surface characteristics. One study has been completed by Thompson et 

al (2003) that not only considers roughness, modelled specifically by a ‘Roughness 

Defect Score’ to be a factor in rolling resistance, but considers it to be directly 

proportional. Coast-down testing was completed to define the rolling resistance and 

then compared with defect data, to show a progression in Defect Score (roughness) 

produces an increase in rolling resistance. Figure 2.14 details the data obtained 

from the testing and the values predicted by the model. 
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Figure 2.14: Actual and predicted rolling resistance (Thompson et al, 2003). 

 

 

From this data Thompson et al (2003) were able to develop a model for rolling 

resistance with the roughness defect score being the dependent variable, which was 

expected to vary as described in Figure 2.15. For details on the Roughness Defect 

Score (RDS) utilised, the original paper by Thompson et al (2003) should be 

consulted. Equation 2.8 describes the method for calculating the rolling resistance 

from RDS. Essentially, rolling resistance is considered to increase exponentially as 

a function of maintenance interval. A minimum value of rolling resistance is applied 

and is calculated as a function of speed, as detailed in Equation 2.9. 

 

 

Equation 2.8: Rolling resistance function considering roughness defect score 

(Thompson et al, 2003). 

𝑅𝑅 = 𝑅𝑅𝑀𝐼𝑁 + 𝑅𝐷𝑆 ∗ 𝑒(𝑅𝑅𝐼) 

Where: 

RR  is the rolling resistance 
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RRMIN  is minimum rolling resistance at RDS=0 

RDS  is the roughness defect score 

RRI  is a regression function describing rate of change of RDS, defined by Equation 

2.10. 

 

 

Equation 2.9: Minimum rolling resistance (Thompson et al, 2003). 

𝑅𝑅𝑀𝐼𝑁 = 𝑒(−1.8166+0.0028∗𝑉) 

Where: 

RRMIN  is the minimum rolling resistance for a given road pavement 

V  is the vehicle speed in km/h 

 

Equation 2.10: Rolling resistance regression function (Thompson, 2011). 

𝑅𝑅𝐼 = −6.068 − 0.00385𝑅𝐷𝑆 + 0.0061𝑉 
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Figure 2.15: Defect score (rolling resistance) progression against maintenance 

interval (Thompson and Visser, 2003). 

 

 

This model does not explain the pavement condition in great detail, nor does it allow 

for variation of vehicle parameters. However, it does relate the pavement condition 

and maintenance intervals, which was predicated toward providing a solution to 

industry without the requirement for a great deal of testing. From this point of view 

the model serves its purpose, but does not relate rolling resistance to common 

pavement condition measures as are utilised in elsewhere in the literature. 

There have been several studies completed that consider off-road type tyre/soil 

interaction effects in considering the rolling resistance of haul roads. The earliest of 

which was completed in the 1970’s when it was noted that haulage efficiency is 

largely dictated by rolling resistance of the road surface (Kaufman et al, 1977). This 

research compiled a study of the rolling resistance experienced by haul trucks 

encompassing gravel and stabilized earth materials as well as asphalt and concrete. 

The results of this can be seen in Table 2.5, which also includes the results of 

several other empirical studies. Equation 2.11 should also be considered, which 

allows for more general solutions to be obtained. Tannant et al (2001) state that for 

lightly loaded wheels, Equation 2.11 may produce underestimates of rolling 



Doctor of Philosophy (Civil Engineering)            Mine Haul Road Rolling Resistance 
Curtin University                                                                                      Background 

Jarrad P Coffey                                                                                                         50 

resistance. Although this data provides some general guidance, it should not be 

considered to be comprehensive. For example, it does not allow estimations of 

energy losses due to effects of pavement deformation, which are noted to affect the 

resistance encountered (Tannant et al, 2001). 

 

 

Equation 2.11: Rolling resistance function relating to weight and penetration 

depth (Caterpillar, 2006). 

 

𝑅𝑅 = 2% 𝑜𝑓 𝐺𝑀𝑊 + 0.6% 𝑜𝑓 𝐺𝑀𝑊 𝑝𝑒𝑟 𝑐𝑚 𝑜𝑓 𝑡𝑦𝑟𝑒 𝑝𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛 

RR  is the rolling resistance coefficient 

GMW  is the Gross Machine Weight 
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Table 2.5: Rolling resistance factors for haul roads determined via various studies (Tannant et al, 2001). 
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Research completed in Indonesia in recent years has resulted in the derivation of 

Equation 2.12 and Equation 2.13 (Widodo et al, 2009). These are based on 

equations originally generated by Bernstein (1913) as have many of the relations 

discussed within Section 2.2.3. One significant advantage of these relations is the 

consideration of rolling resistance on a vertical grade, which is relevant for mining 

due to many haul roads being constructed on ramps providing egress from pits. 

Both equations have been derived through soil bin testing in which compacted 

gravelly sand and silt were used as the pavement material, to mirror what is 

experienced within local mines (Widodo, 2009A). 

 

 

Equation 2.12: Rolling resistance function of grades less than 8% (Widodo et 

al, 2009). 

𝑅𝑅 = 0.115 [
𝑊6.96

𝑃. 𝐴
]

0.17

 

 

 

Equation 2.13: Rolling resistance function of grades of 8% and greater 

(Widodo et al, 2009). 

𝑅𝑅 = 0.116 [
𝑊4.67

𝑃0.5. 𝐺
]

0.24

 

 

Where: 

RR  is the rolling resistance force (N) 

W  is the total load (N) 

P  is the tyre inflation pressure (Pa) 

A  is the soil/tyre contact area (m2) 

G  is the road alignment vertical grade (%) 
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There have been several studies completed quantifying the rolling resistance of haul 

road surfaces through empirical data. Table 2.6 details the experience at a 

Canadian mine, considering the variation of road surface and ambient conditions. 

The data within Table 2.5 explains rolling resistance due to material type and 

surface condition to some extent, although ‘good’, ‘average’ and ‘poor’ are not 

defined in detail.  

 

 

Table 2.6: Haul road rolling resistance values with seasonal variation (Tannant 

et al, 2001). 

 

 

 Vehicle Operating Costs 2.3

The following discussion with regards to Vehicle Operating Costs (VOC) relates only 

to fuel consumption. Several models exist for vehicle maintenance and tyre wear, 

however it is unclear how these relate to large rigid haul trucks. 

 

 Fuel Consumption Models 2.3.1

The study of rolling resistance in relation to pavement properties ultimately 

manifests itself most significantly within the impact it has on vehicle fuel 

consumption. Various Austroads Panels have recommended further research of the 

roughness/VOC relationship (Tan et al, 2011). Fuel consumption is a function of 

driving resistance and engine efficiency, whereby an increase in engine speed will 

reduce efficiency, while an increase in torque will increase engine efficiency 

(Hammarstrom et al, 2012). To expand upon this idea it is also important to note that 

driving resistance is a function of road conditions and driver behaviour, whilst engine 
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speed is a function of vehicle speed and gear position (Hammarstrom et al, 2012). 

Thus it is clear that the model for fuel consumption for any given vehicle is very 

complex, with interdependent variables and potential variances between seemingly 

similar vehicles. It is therefore difficult to estimate the isolated effect of pavement 

condition on the fuel economy of a vehicle, however there are some empirical study 

results available that provide a probable range.  

Nielson et al (2010) note there have been several studies completed to empirically 

relate rolling resistance and VOC, and ultimately conservatively recommend use of 

a ratio of a 3% change in fuel consumption for a 10% change in rolling resistance. 

The Transport Research Board (2006) completed a similar literature review and 

estimated that a range of 1-2% change in fuel consumption results from a 10% 

change in rolling resistance, the higher values relating to highway driving and the 

lower values with urban environments. Interestingly the ‘factor of four’ ratio (1% 

change in fuel consumption per 4% change in rolling resistance) is often noted for 

trucks and used for estimation purposes (Tan et al, 2011). 

It is often considered that rolling resistance due to pavement condition is derived 

most significantly from pavement surface properties to the extent that other 

influences are considered negligible. It is for this reason that many studies focus on 

the effect of roughness (IRI) and texture (MPD) in isolation. Unsealed pavements 

are not considered in many studies. Jamieson et al (2002) was one such study 

which did consider unsealed pavements and ultimately expressed support of a 4:1 

ratio of change in rolling resistance to fuel consumption. Unfortunately this finding 

was not extensively detailed and further research is required.  

There are some specific complications in relating rolling resistance and fuel 

economy worth noting. Firstly, the approach of relating percentage change in rolling 

resistance to fuel consumption can be problematic, as a given percentage change in 

fuel consumption is related to an absolute change in rolling resistance (Transport 

Research Board, 2006). Thus the effect is lesser at lower speeds. Secondly, recent 

Australian-based research has shown that the roughness/fuel consumption 

relationship is indeterminate under variable speed conditions (Tan et al, 2011). 

Therefore the data and models presented in this Section can only serve as an 

estimate of fuel consumption in steady-state operating conditions or perhaps at the 

network level considering average values. 

Also available for estimation are mechanistic approaches, which are vastly superior 

to empirical methods, as they consider fuel consumption as a function of individual 
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vehicle characteristics and factors influencing the resistance to motion (Greenwood 

et al, 2003). Mechanistic model development employs the principals of physics and 

in many cases the inefficiencies of the mechanical operation (derived empirically) of 

an internal combustion engine to describe the amount of energy required to move a 

given load.  

The most common of the fuel consumption models derived from direct fuel 

measurement in Australia is the NIMPAC (NAASRA Improved Model for Project 

Assessment and Costing) model, originally developed by NAASRA (The National 

Association of Australian State Road Authorities) in the 1970’s (Lloyd, 2003). The 

basic fuel speed relationship predicts average fuel consumption for a section of road 

(combining sections of positive and negative total grade) at approximate steady 

speeds between 8 and 104 km/h (Thoresen et al, 1996). Direct fuel measurement 

models (such as NIMPAC) provide a quantification of variables through 

measurement in full-scale tests, rather than measuring rolling resistance and then 

relating this to fuel consumption (Tan et al, 2011). Furthermore, NIMPAC does not 

allow for variations in the vehicles specifications (Thoresen et al, 1996), certainly a 

shortcoming when considering very large vehicles. This can be described by the 

lack of any vehicle-specific terms included in the general fuel consumption function 

within the model. The model does not isolate rolling resistance to a degree where its 

influence can be examined explicitly (Tan et al, 2011). Therefore it does not provide 

instantaneous fuel consumption values as are present within other mechanistic fuel 

consumption models below. 

One mechanistic model has been developed by VTI (National Road and Transport 

Research Institute, Sweden). It has been adopted by the MIRIAM project (Models 

for Rolling Resistance in Road Infrastructure Asset Management Systems), a 

collaboration between 12 partners from Europe and the USA. The VETO model 

(note that VETO is not an acronym) is used to define fuel consumption for a range of 

vehicles for pavement surfaces of varying MPD and IRI. It is a mechanistic model 

based on physical relationships and is able to estimate fuel consumption for specific 

road segments with high precision, involving a great deal of variables that define the 

road and vehicle of interest (Karlsson et al, 2012). The model includes dependence 

between pavement roughness and vehicle speed, whereas texture is considered to 

have an influence independent of speed.  

The Australian Roads Research Board (ARRB) Road Fuel Consumption Model 

(ARFCOM) was developed following the completion of a number of studies on fuel 
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consumption being completed in Australia in the early 1980’s (Greenwood et al, 

2003). It was developed to predict fuel consumption as a function of engine input 

and output power, where engine accessory power is considered as a function of 

engine speed (Zaabar, 2010), shown in Figure 2.16. Engine maps were utilised in 

the models development to quantify the fuel consumption required for a given power 

demand. The final form of the model requires a significant amount of simplified input 

data but was judged suitable for application to all vehicle classes (Greenwood et al, 

2003).  

 

 

Figure 2.16: ARFCOM approach for fuel consumption modelling (Greenwood 

et al, 2003).  

 

 

The instantaneous fuel consumption is the steady state product of engine efficiency 

factor and net power required. The ARFCOM model was adapted for use in HDM-4, 

with changes to the prediction of engine speed, accessories power and engine drag 

(Zaabar, 2010). However, rolling resistance is treated the same in both models. The 

total power is the sum of requirements for the generation of tractive force, the 

running of vehicle accessories and the power to run the engine. Note that drivetrain 

inefficiencies can serve to both increase power requirement even on a pavement 
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with a negative gradient (Zaabar, 2010). The traction function includes a term for the 

rolling resistance, which has a significant weighting that considers the Benkelman 

beam deflection and pavement surface condition, with the relative influence of each 

varying with pavement type. 

Chatti et al (2012) includes an analysis of fuel consumption variation with changes in 

roughness (IRI) and texture (MPD). Roughness has a greater effect on smaller 

vehicles and texture has a greater effect on heavier vehicles. Texture is also shown 

to have a lesser effect at higher speeds (Chatti et al, 2012). However note that 

analysis also showed the HDM-4 model to overestimate fuel consumption from 

roughness. 

A fuel consumption model for haul trucks was developed by Thompson et al (2003) 

in line with models utilised in the public domain through vehicle simulations and 

observation of torque/speed maps. For validation this model was then tested against 

results from fleet fuel consumption and journey data. The results were found to 

largely mirror that of heavy commercial vehicles with a slight increase in fuel 

consumption with vehicle speed due to dynamic rolling resistance effects 

(Thompson et al, 2003). The model is broken down to consider sections of 

unfavourable (positive) total grade and favourable (negative) total grade, as is done 

in the HDM-4 model. Difficulty in validation is reported due to the lack of an inclusion 

for queuing times (truck stationary while waiting to be loaded or dump) and other 

time losses, however the model was found to be in-line with the original simulation 

that was completed for the mine circuit (Thompson et al, 2003).  

 

 Haul Roads 2.4

Structural design of haul road pavements involves a significantly more uncertainty 

than that of highway pavement design. This is due to the lack of significant full-scale 

tests to derive sub-grade failure theories and complexity surrounding the use of non-

standard road building materials. The following discussion provides a background to 

the available design methodologies.  

 



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                        Background 

Jarrad P Coffey                                                                                                       58 

 Empirical Pavement Design 2.4.1

Empirical pavement design is recommended for use in the absence of more rigorous 

material testing, analysis and design methodologies within the structural pavement 

design section of Austroads Guide to Pavement Technology (Jameson, 2008). The 

recommended process utilises the same inputs for design as with mechanistic 

methods, with regards to traffic data, pavement cross-section geometry and material 

stability parameters. Within the methodology recommended by Austroads, an 

assumption is made that regardless of material stiffness a finite cover is able to be 

defined that affords suitable sub-grade protection. Subsequent to this a definition of 

required base thickness is made to explain the composition of pavement layers. In 

addition, Main Roads Western Australia (MRWA) currently specify that the minimum 

thickness to be adopted shall be defined by the empirical design procedure, which 

has been optimised for Western Australian conditions through many years of 

anecdotal evidence (MRWA, 2012). 

Austroads current CBR cover curves for sub-grade materials is noted to yield similar 

results to the mechanistic-empirical method, with a maximum granular vertical 

moduli of 350MPa and an SAR7/ESA (Standard Axle Repetitions with number 7 

relating to rutting and shape loss/Equivalent Standard Axles) ratio of 1.2 (Jameson, 

2008). Thus the empirical design is slightly more conservative when assuming the 

use of sound gravel for the base-course layer of the pavement. Therefore, for 

general highway pavements, specifically those ‘capped’ with either sprayed 

bituminous or asphaltic layers, modern empirical design methodologies have been 

aligned with more involved analysis and design techniques.  

Empirical design for haul roads can be traced back to the manual derived by 

Kaufman and Ault (1978). Since publishing, this text has been utilised and 

referenced throughout the global mining industry and is still relevant in today’s 

environment of advanced computerised engineering design tools.  

Figure 2.17 presents the CBR cover curves included in the guidelines produced by 

Kaufman et al (1977). Some critical points to note for use of the cover curves 

(Figure 2.17) for the purposes of haul road pavement design are listed below 

(Kaufman et al, 1978): 

1. The highest wheel loading present should always be used for design and 

increase by 20% if tandem axle. 
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2. When the recommended thickness to the pavement surface fail to consume 

the open dimension (Figure 2.17), the residual space must be filled with a 

sub-base of at least CBR 80%. 

3. Proper compaction equipment should be used, usually heavy rollers, 

however few surface mine operators have access to such equipment.  

4. If proper sub-base and base are established prior to placing wearing course, 

it need not exceed 6 inches. 

 

Additionally, note that the indicative material properties and associated CBR values 

presented in Figure 2.17 should be employed as an initial guide only. Ideally 

subsequent testing should be completed for detailed design with due consideration 

of soaked or unsoaked CBR testing (Atkinson, 1992). 

 



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                        Background 

Jarrad P Coffey                                                                                                       60 

 

Figure 2.17: Material classification and CBR cover curves (Kaufman et al, 

1977). 
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The first note above is concerned with the treatment of multiple wheels adjacent to 

one another in the design vehicle’s wheel-base assembly. The recommendation 

made in Kaufman et al (1978) is simplified compared to more detailed 

methodologies developed around the same time period for heavy wheel loading 

observed in airfield pavements. Pereira (1977) suggests the use of the Equivalent 

Standard Wheel Load (ESWL), which originated in the 1950’s as proposed by 

Foster and Ahlvin (1954). An ESWL is a fictitious wheel load, which produces the 

same deflection as all wheels present in a wheel-gear at a given point on a 

pavement. In applying the ESWL, pavement deflection is calculated with 

consideration of a semi-infinite, homogenous, isotropic and elastic medium through 

Boussinesq’s theorem (Pereira, 1977) for a combination of wheel loads. This 

approach may lead to increased stress levels in certain layers of the pavement 

(Tannant et al, 2001). Design is complicated by the fact that ESWL varies with depth 

and is effectively a function of the maximum deflection factor arising from 

consideration of multiple wheels to the maximum deflection factor for a single wheel 

(Pereira, 1977).  

Use of the ESWL was adopted for development of CBR design curves in 

conjunction with full-scale tests to define the cover requirements for a given sub-

grade CBR and design traffic volume. These tests considered single and multiple 

wheel gears that were present on a range of aircraft used at the time (Pereira, 

1977). Observation of the results lead to derivation of a pavement thickness/CBR 

equation that can then be used to plot cover requirement curves, commonly referred 

to as the S77-1 method. Alternatively the S77-1 curve can be utilised to avoid 

iterative design. Figure 2.18 presents the S77-1 curve, which is an update of the 

S77-1 with inclusion of additional scale test data. Note that this method utilises sub-

grade deflection instead of strain, which results in greater wheel load divergence as 

deflections attenuate much more slowly than strains (Wardle et al, 2010). This leads 

to difficulty associated with selection of which wheels to include in determination of 

ESWL and the subsequent derivation of a design thickness. Another limitation of the 

method is the limited range of CBR to wheel load ratios for which it can be applied 

(White, 2007). This is due to the limited range of sub-grades present within the full-

scale testing from which the method was derived. In an effort to increase practical 

application, subsequent multiple-wheel heavy gear trafficking tests were completed 

to derive a more general equation, however the results applicability are not readily 

discussed in the literature. 
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Figure 2.18: US Corps of Engineers CBR curve (Pereira, 1977). 

 

 

It is worth noting that the pavements included in the full-scale tests associated with 

development of the S77-1 method had a fixed structure of asphalt, fine crushed 

rock, underlain by varying thicknesses of natural uncrushed gravel on the sub-grade 

(White, 2007). To transform a ‘non-standard’ pavement structure such as that of a 

mine haul road, material equivalences must be utilised to account for the absence of 

asphalt and crushed rock layers, this poses perhaps the greatest source of error in 

extrapolating from the original model (White, 2007). Although this may be the case, 

the method remains the only basis for development of design theories/methods for 

the heavy wheel loading experienced on haul roads.  

 

 Mechanistic Pavement Design 2.4.2

Mechanistic/empirical design refers to methods where pavement stress/strain 

response is defined through appropriate structural analysis, with failure then being 

defined by an adopted ‘failure criterion’ or ‘transfer function’ (Jameson, 2008a), see 

Section 2.5. The most common failure mode considered is an accumulation of 

permanent vertical strains at the top of the sub-grade (considered to be the locality 

of the majority of rut depth generation). The proceeding section discusses available 
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theories for design via mechanistic means. Note that the failure theories discussed 

below are more simplistic than that described in Section 2.6.5.2, as yet these are not 

available for design purposes in any commercial software. 

Mechanistic design techniques utilise elastic moduli values instead of CBR 

percentages to describe the stiffness of each layer within a pavement. As with 

determination of CBR values for empirical design; such estimates should only be 

used in preliminary designs prior to an appropriate regime of testing or in the 

absence of access to such testing (Jamieson, 2008). Tannant et al (2001) note use 

of the American Association of State Highway and Transportation Officials 

(AASHTO) Falling Weight Deflectometer (FWD) testing methodology to determine 

layer moduli, although this can only be completed post-construction. Some 

literature, such as Thompson (2009), recommend estimation of resilient modulus 

from CBR or as suggested by Thompson et al (1997), through comparison with 

Dynamic Cone Penetration (DCP) tests results. Such an approach is not supported 

by several studies, as outlined by de Carteret et al (2009), which conclude there is 

no physical relation between CBR and resilient modulus results. Austroads 

recommend that a range of values (150-400 MPa) be applied for sub-base quality 

gravels placed in a layer underlying a thin surfacing (Jamieson, 2008). Materials 

used in mine haul road construction likely differ from a typical ‘sub-base gravel’, 

however it should be noted that it is recommended that the maximum value in the 

range above are not exceeded design models for UGM layers (MRWA, 2013). A 

more detailed discussion of unbound granular material response to cyclic loading 

can be found in Section 2.6.5.1. 

Thompson (2009) suggests inclusion of a crushed rock layer for the attenuation of 

induced stresses. A resilient modulus of 3000 MPa is adopted for this ‘Run of Mine’ 

material as it is described as being considered analogous to a pre-cracked cement 

stabilized layer. This figure is the lower bound of the range noted by Austroads for 

pre-cracked cemented base-course materials, however note that a value of only 500 

MPa is recommended for the post-fatigue cracking phase (Jamieson, 2008). This 

estimate is utilised due to the relative difficulty in measuring the resilient modulus of 

such coarse materials, however it is not clear if large coarse rock layers exhibit 

resilient properties similar to that of a cemented layer. This note has been included 

to provide some guidance on the inclusion of large coarse rock fills within haul road 

pavements, as the practice is common within the mining industry.  
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There exists many transfer functions that describe pavement sub-grade failure and 

therefore define pavement lifetime. Figure 2.19 describes the variation in various 

failure theories that are available. Note that the two bottom rows represent design 

methodologies for heavier than standard highway traffic and therefore should be 

expected to present some differences. However it is undoubtedly significant that 

such marked disparity should exist between various methodologies used in practice 

(Wardle et al, 2003).  

 

 

Figure 2.19: Comparison pavement lifetime for given strain level from 

common transfer functions (Wardle et al, 2003). 

 

 

Through observation of common pavement failure theories and measurement of 

pavement deflections, Thompson et al (1997) asserted that restricting vertical strain 

at any level in the pavement to a maximum of 2000 microstrain resulted in 

pavements exhibiting ‘good’ performance. This was achieved through comparison of 

condition monitoring of pavements with deflection data obtained from multi-depth 

deflectometer stacks placed within the pavements. Although simple to use and 

related specifically to empirical data from operating haul roads it is difficult to make 

comparisons with other methods. As a result of the fixed ‘critical’ strain it is likely 

most other common sub-grade failure theories will provide both thicker and thinner 

pavement designs, as they provide variation in the critical strain value with changes 

in sub-grade resilient modulus. Thompson et al (1997) include only one case study 

which includes a waste rock layer with an assumed elastic modulus of 3000 MPa 

(as discussed above), making comparisons with empirical methods difficult.  

Thompson (2009) further developed a more detailed pavement strain criterion 

relating pavement performance directly to operating intensity and maintenance 
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requirements. Figure 2.20 details the method, whereby each category of haul road 

has been defined as (Thompson, 2009): 

1. Adequate but fairly maintenance intensive. 

2. Good with normal maintenance interventions. 

3. Outstanding with low maintenance requirements.  

 

This methodology is logical in scope, as the method has been developed specifically 

for haul roads through observation of operating pavements. Describing maintenance 

requirements from definition of traffic and the desired level of performance also 

presents an opportunity for some understanding of potential maintenance costs 

during the pavement design. Such a definition would allow comparison of the capital 

and maintenance costs for different options. The range of sub-grade/pavement 

material strength/stiffness parameters for which the model is applicable is not clear, 

as testing outside of the bounds of its development has not been reported.  
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Figure 2.20: Pavement strain theory relating operational intensity and 

maintenance requirements (Thompson, 2009). 

 

 

An alternate method of defining critical strain is a modification of the Austroads 

adopted method, derived by Wardle et al (2005). This theory considers strain 

induced, stress repetitions (vehicle passes) and sub-grade modulus as variables, 

with the latter being an addition to the method adopted by Austroads for design of 

flexible pavements. Development was completed through regression of results 

generated through Airport Pavement Structural Design System (APSDS) software 

(Mincad Systems) and validation with the empirical method described by Pereira 

(1977) in Section 2.4.1. The empirical method was developed by the US Army 

Corps of Engineers through observation of pavements being trafficked by aircraft 

ranging in mass from 40 to 397 tonnes. The most notable advantage over the 

empirical method is the flexibility afforded the designer through inclusion of layer 

moduli instead of the use of empirical material equivalency factors (Wardle et al, 

2010). Ultimately, the functions governing sub-grade failure were developed for 
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variables dependent on sub-grade resilient modulus, applicable to pavements with 

sub-grade CBR values ranging from 3% to 15% (Wardle et al, 2010). 

This methodology has been applied within the layered elastic pavement design 

software HIPAVE (Wardle et al, 2005). Wardle et al (2010) have also developed a 

general set of equations that are applicable to all sub-grade CBR values, landing 

gears with up to six wheels and aircraft weights up to 560 tonnes. The applicability 

of the set of design equations derived through use of these functions for haul road 

pavement design has not been commented upon in the literature, aside from 

descriptions of the HIPAVE software’s development by its authors (Mincad 

Systems). It is the only method relating sub-grade strains whilst taking account of 

varying sub-grade properties and a large range of wheel loads representing the 

largest commercial planes in operation. Shortcomings of the method relate to the 

fact the sub-grade strains were not measured in a physical test, but were predicted 

by a numerical model in validation of estimated pavement lifetimes. Thus it must be 

assumed the material equivalencies employed in the model were correct and are 

applicable to materials employed for pavements subsequently designed by the 

method. However, it does offer the pavement designer a higher level of 

understanding and flexibility than alternative methods. The reader is referred to 

Section 2.5.3 for additional discussion of this sub-grade failure theory.  

 

2.4.2.1 Interaction between Adjacent Wheels 

At current, there are short-comings in the knowledge pertaining to interaction of 

closely spaced axle groups (Wardle et al, 1999). Since this conclusion was drawn 

15 years ago, little knowledge has been gained in this area which has resulted in 

some confusion and debate regarding the modelling of heavy-industry pavements. 

Note that the following discussion relates to airfield pavements that are commonly 

constructed of select materials and surfaced in asphalt. How this discussion relates 

to haul roads constituted of mine waste materials is not clear.  

The original design method (sub-grade failure theory) for heavy wheel loading was 

developed by the US Army Corps at the Waterways Experiment Station, where 

single wheel gears were used to complete full-scale pavement tests (Pereira, 1977). 

No tests were carried out to investigate the increased damage due to wheel 

interaction (White, 2007). The derived method includes the use of Equivalent Single-

Wheel Load (ESWL), a fictitious load that takes into account the interaction between 

the wheels present within a gear (Pereira, 1977). To calculate the ESWL, the theory 



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                        Background 

Jarrad P Coffey                                                                                                       68 

of superposition and deflection factors that have been calculated for the depth and 

radial distance from load centre are used. The resulting ESWL, which is variable 

with depth, was then used to calculate the required thickness of the pavement using 

the S77-1 equation (see Section 2.4.1). The use of ESWL suggests that there was 

an allowance for interaction between wheel loads (White, 2007). However as strain 

attenuates much more rapidly with radial distance than deflection (see Figure 2.21) 

it was considered that the method over estimated pavement thickness; which 

resulted in alpha factors being introduced to take account of the number of wheels in 

a landing gear (White, 2007). Note that Figure 2.21 presents results from a linear-

elastic modelling of deflection and vertical strain resulting from a tyre load at the top 

of the pavement sub-grade. 

 

 

Figure 2.21: Attenuation of sub-grade strain and deflection with distance from 

load centre (Rodway et al, 1999). 

 

 

There have been many views expressed about how to best allow for wheel 

interaction, due to the realisation that currently it is not able to be properly included. 

Wardle et al (2007) state that it is generally necessary to model only one half of the 

axle, after modelling the whole axle and checking for interaction of the strain 

induced by adjacent wheel loads (and presence of negative strains, as discussed 



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                        Background 

Jarrad P Coffey                                                                                                       69 

later). The introduction of large aircraft, such as the Boeing 777 and Airbus A380 

have caused a rethink within recent design software packages considering entire 

wheel gears instead of isolated tyres, however there is currently no justification for 

this (White, 2007). Rodway et al (1999) note that common software (APSDS, 

Mincad Systems and Layered Elastic Design Federal Aviation Administration, United 

States Federal Aviation Administration) used for the design of airfield pavements 

utilise single gear loadings and so critical strains should occur in the region beneath 

the gear. The accuracy of these calculated strains removed radially from the load 

centre are described as being suspect. Yet it is often these doubtful values that are 

used to predict gear interactions. 

In some cases, the configuration of wheel gears or relative proximity to other gears 

is such that anomalous negative strains are calculated under adjacent load centres 

(Wardle et al, 2003). As noted previously strains attenuate slower than deflections 

and thus negative strains can be calculated at radial distances where other wheels 

are placed. This can result in improved predicted life due to inclusion of adjacent 

wheels or gears in the model (Wardle et al, 1999). It is most certainly counter-

intuitive that an increase in wheel loads should increase predicted pavement life. 

Another significant issue which is discussed at length within Section 2.5 and Section 

2.6 is the lack of an ability to properly model the elasto-plastic and stress dependent 

nature of unbound materials (Wardle et al, 1999). This further compounds the issue 

of adequately accounting for wheel load interactions, resulting in greater uncertainty 

with regards to current design methods.  

 

 Pavement Modelling 2.5

Pavement design has evolved significantly over the past century. Initial designs 

were based on past experience and available resources (Hamory, 2015) and were 

therefore largely analytical. In 1885, Boussinesq provided an elastic solution for a 

half-space (Kim, 2007), allowing structural analysis of geotechnical structures 

including pavements. This method has been extended and the modelling of 

pavements for structural design is becoming increasingly complex. In recent 

decades, FEA has been researched with a view to incorporating complex material 

constitutive relations, such as those discussed in Section 2.5. Well accepted linear-

elastic methods and Finite Element Methods, which are the subject of increasing 

research effort, are outlined in the following.  



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                        Background 

Jarrad P Coffey                                                                                                       70 

Some inherent differences between modelling of pavements with each approach are 

noted below: 

 linear-elastic models consider the stress state for nominal pavement layers 

(or sub-layers in some cases) and radius from load centre, where FEA 

considers the stress state for discrete elements due to external loading 

 linear-elastic models are axisymmetric, FEA models can be plane-strain, 

axisymmetric or three-dimensional 

 linear-elastic solutions use the theory of superposition to model load 

interaction, FEA considers all specified external loads in the generation of 

each element’s stress state within each iteration of load application 

 loads are most commonly circular in linear-elastic models, whereas load 

geometry can generally be applied via any shape chosen by the designer in 

FEA 

 sub-layered linear-elastic models assign moduli values based on some 

external input (for example moduli of supporting layer in HIPAVE). FEA 

models with nonlinear material subroutines consider convergence of stress 

state and the defined constitutive material model, within a specified 

tolerance.  

These differences are discussed in greater detail in the following sections.  

 Linear-Elastic 2.5.1

Linear-elastic analysis has been prevalent in pavement design for many years. 

Following Boussinesq’s theorem, Burmister considered the problem of an elastic 

layered medium as a half-space and subsequently applied this theory to the design 

and construction of airfield pavements in the mid twentieth century (Chen, 1971). 

Further work, to introduce a second layer to the pavement system was completed by 

Burmister, who eventually generated three layer solution tables (Kim, 2007). This 

work was extended by many authors but often considering a Poisson’s ratio of 0.5. 

Pereira (1977) also describes the use of Boussinesq’s one-layer theory for the 

calculation of deflections to define the Equivalent Standard Wheel Load at varying 

depths in the US Army Corps procedure for development of CBR design curves for 

airfields. Within this method, the pavement and sub-grade are considered together 

as a semi-infinite, homogenous, isotropic and elastic medium (Pereira, 1977). The 

Burmister solution is considered an improvement due to the ability to model multiple 

layers, however the interface between the layers is still treated as continuous (Kim 

et al, 2007A). Note that as a legacy of these early developments, the majority of 
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linear-elastic solutions continue to be axisymmetric. Further, this means that loads 

can only be imposed on a circular area (Gonzalez et al, 2012).  

A scheme of axisymmetric loading is presented in Figure 2.22. Note that only two 

directional components are required. As symmetry is assumed, any lateral position 

with equal radius and depth will have the same induced stress. It is also important to 

note that in this configuration the line load represents a circular loaded area with 

radius ‘a’.   

 

 

Figure 2.22: Component of tresses under axisymmetric loading (Nikraz, 1998). 

 

 

With observation of Figure 2.22, the vertical and radial stress and strain may be 

calculated via Equation 2.14 through Equation 2.18. Note that these equations can 

be extended to calculate deflections throughout the system. Functions for shear 

stress are not included here as they are not typically used for pavement analysis 

and design. 
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Equation 2.14: Vertical stress in an axisymmetric loaded pavement (Nikraz, 

1998). 

𝜎𝑍 = 𝑞 [1 −
𝑧3

(𝑎2 + 𝑧2)1.5
] 

 

 

Equation 2.15: Radial stress in an axisymmetric loaded pavement (Nikraz, 

1998). 

 

𝜎𝑟 =
𝑞

2
[1 + 2𝑣 −

2𝑧(1 + 𝑣)

(𝑎2 + 𝑧2)0.5
+

𝑧3

(𝑎2 + 𝑧2)1.5
] 

 

 

Equation 2.16: Vertical strain in an axisymmetric loaded pavement (Nikraz, 

1998). 

𝜀𝑧 =
𝑞(1 + 𝑧)

𝐸
[1 − 2𝑣 +

2𝑣𝑧

(𝑎2 + 𝑧2)0.5
−

𝑧3

(𝑎2 + 𝑧2)1.5
] 

 

 

Equation 2.17: Radial strain in an axisymmetric loaded pavement (Nikraz, 

1998). 

𝜀𝑟 =
𝑞(1 + 𝑧)

𝐸
[1 − 2𝑣 −

2𝑧(1 − 𝑣)

(𝑎2 + 𝑧2)0.5
+

𝑧3

(𝑎2 + 𝑧2)1.5
] 

 

Where (shown in Figure 2.22): 

𝜎𝑍  is vertical stress 

𝜎𝑟  is radial stress  

𝜀𝑧  is vertical strain. 

𝜀𝑟  is radial strain 
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𝑞  is the pressure intensity 

𝑧  is the depth from pavement surface 

𝑎  is the radius of the circular loaded area 

𝑣  is Poisson’s ratio. 

 

Foster and Ahlvin (1954) derived charts to simplify the analysis presented above, 

which have been widely applied since. More recently a considerable number of 

linear-elastic solution based software have been developed to perform the repetitive 

and complex computations required by classical multi-layer theory and in the pursuit 

of mechanistic design solutions (Kim, 2007). In Austroad’s technical basis for their 

structural design procedure, it is noted that the pavement is assumed infinite in all 

directions and the moduli independent of stress (Jameson, 2008b). This approach is 

commonly adopted in design, which is in direct contrast to authors such as Kim et al 

(2007A) that note Boussinesq’s equations to be inappropriate for calculating 

pavement response due to variation in layer elastic moduli and Poisson’s ratio. 

Despite these complications, the relatively short computational time and in some 

cases inclusion of specific models to mimic stress dependency, means that linear-

elastic analysis is still widely used today. To further this statement, linear-elastic 

analysis is used in several studies (for example Gonzalez et al, 2012; Kim, 2007; 

Sahoo et al 1997; Ghadimi, 2015) as a means of validating the numerical solving 

capabilities of newly developed FEA software. Due to the linear-elastic method 

employing a  closed-form solution, it provides confidence in the accuracy achieved 

with an FEA method, which only approximates the exact solution. Following 

validation, the researcher’s focus often turns to increasing complexity in the FEA 

model. Indirectly there is still a reliance on linear-elastic solutions due to the lack of 

physical testing being completed for validation of FEA models. 

It is important to note that all elastic layered programs consider each individual layer 

as a plate in bending (Dawson et al, 2008). This results in negative strains being 

calculated at a radial distance from the load. When multiple wheel gears are 

considered this can lead to less damage being predicted under adjacent wheels and 

thus longer pavement lifetimes being erroneously predicted (Wardle et al, 2003). 

Ultimately, to avoid this issue it is recommended that only single wheel gear loads 

are applied for the purpose of design (Wardle et al, 2003).  
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Axisymmetric models cannot consider multiple wheel loads without use of the theory 

of superposition of strains (Gonzalez et al, 2012). Kim (2007) states that this 

approach is valid for linear-elastic models as the alteration in stress state due to 

multiple loads does not influence the predicted response. Further consideration of 

the modelling of wheel load interaction is discussed in Section 2.4.2.1. 

An important consideration with regard to linear-elastic modelling, is the assignment 

of the elastic modulus of granular pavement layers independent of stress state. 

Essentially, all pavement layers are modelled as homogenous, and linear in 

response, after Burmister’s development of a two-layer analysis. Realistically, this 

approach is invalid as pavement layers exhibit elastic deformation in combination 

with other responses (Hadi et al, 2003). CIRCLY (Mincad Systems 2012) adopts the 

Austroads sub-layering method to mimic a nonlinear response which is based upon 

the selection of the resilient modulus of the top sublayer. HIPAVE (Mincad Systems, 

2012B) and APSDS (Mincad Systems, 2009) apply the Barker-Brabston method of 

sub-layering (Barker et al, 1975) developed by the US Army Corps of Engineers for 

design of airfield pavements. This method considers larger wheel loads than the 

Austroads method, and is therefore considered more appropriate for design of 

heavy-industry flexible pavements. Sahoo et al (2010) conclude that, from a study of 

the effect of nonlinear modelling of granular layers, linear-elastic analysis may result 

in under-design for roads where granular material forms the only structural layer. 

Further discussion of the treatment of nonlinearity within unbound granular 

pavement layers is contained within Section 2.6.1.  

Linear-elastic models also typically suffer from characterisation of unbound granular 

pavement layers as being isotropic. Tutumluer et al (1997) note that such a 

characterisation is unrealistic for most geomaterials. Austroads advise that the 

horizontal component of stress dependency cannot be directly modelled via a linear-

elastic model (Jameson, 2012). CIRCLY addresses this issue by including an option 

to complete modelling of UGM layers with an anisotropic ratio of two (vertical to 

horizontal modulus) (Mincad Systems 2012A). A detailed discussion of anisotropy of 

pavement materials is provided in Section 2.6.3. 

From the above discussion it is clear that there are many issues with the use of 

linear-elastic analyses for flexible pavements, mainly associated with 

characterisation of materials as isotropic, stress independent (which is unrealistic for 

most geomaterials) and subject to axisymmetric loads (Kim et al, 2007A). Such 

shortcomings can largely be overcome by more detailed techniques, such as the 
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Finite Element Method discussed in Section 2.5.2. Alternatively, to retain favourable 

calculation times whilst attempting to address the above issues, the following 

modifications could be made: 

 adoption of the sub-layering method to take account of the stress-

dependency of granular materials (see Section 2.6.1), such as applied in 

KENLAYER, CICRLY and associated software 

 approximation of anisotropy for granular materials, as applied in CIRCLY via 

an assumption of vertical to horizontal modulus ratio of two. Shear moduli 

being calculated from the vertical moduli and Poisson’s ratio using elastic 

theory (Mincad Systems, 2012) 

 in-built non-linear material models, such as that adopted in KENLAYER 

(Dawson et al, 2008) 

 inclusion of boundary frictional characteristics, to allow consideration of layer 

interaction, such as combinations of smooth and rough (continuous) 

boundaries included as a design input in CIRCLY (Mincad Systems, 2012).  

 

Finally, linear-elastic design software such as CIRCLY (Mincad Systems) and 

HIPAVE (Mincad Systems, 2012B) consider pavement failure mechanisms 

associated with vertical strain repetitions at the top of the sub-grade layer. In reality, 

there is no physical link between resilient and plastic strains, especially considering 

that rutting is often a function of shear failure. The damage models employed by 

CIRCLY and HIPAVE is discussed further in Section 2.5.3. 

 

 Finite Element Analysis 2.5.2

Computations with FEA are much more complex than those completed with the 

linear-elastic approach. A closed form solution may no longer be possible once it 

becomes evident that the assumptions of homogenous, linear-elastic pavement 

materials have become invalid within the modelling of real situations (Hadi et al, 

2003). One major advantage is that FEA can incorporate stress-dependency, 

allowing the models discussed in Section 2.6.5.1 to be applied. A specific benefit of 

this approach is that the modulus can vary radially from the load (which may be 

critical for modelling of wheel interaction). Other advancements are possible, such 

as the inclusion of the constitutive models that apply the failure envelopes discussed 

in Section 2.6.4. This allows permanent deformation analyses to be addressed, 
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possibly with the application of the theories presented in Section 2.6.5.2. Ultimately, 

truly mechanistic design may be possible. Although the calculations are complex in 

FEA, it must be remembered that a pre-requisite to any analysis, is a model that can 

effectively describe the material’s behaviour due to induced stresses (Siripun et al, 

2011).  

The fundamental workings of FEA are explained in the following. This is a general 

description of pavement numerical analysis and is not intended as an exhaustive 

description of the method’s derivation. It is important to keep in mind that FEA is 

simply a mathematical method for solving a differential equation (through partial 

differentiation without a closed form solution) under specific boundary conditions 

(Ghadimi, 2015). Therefore, FEA provides only approximate solutions. 

Firstly, the body being analysed is discretised into a user-defined number of 

elements. The geometry and orientation of elements in analysis completed by 

general solution software, such as ABAQUS, is reliant on the meshing strategy 

selected. Figure 2.23 presents triangular elements during the discretisation of the 

body, this was not the element type used throughout the pavement analysis for this 

project but is included here for descriptive purposes. This procedure results in 

meshing of the body, an example of which is presented in Figure 2.23. Where each 

element intersects with another element or the boundary of the body is referred to 

as a node.  
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Figure 2.23: Meshing of a membrane model (Komzsik, 2009). 

  

Internal displacements within an element may be related to nodal displacements 

(strains within the body) through the application of an assumed shape function 

through Equation 2.18. 

 

Equation 2.18: Nodal displacements from strain and shape functions (Chen et 

al, 2011). 

{𝑢} = [𝑁]. {𝑞} 

 

Where: 

{𝑢}  is the elemental displacement matrix 

[𝑁]  is the assumed shape function matrix 

{𝑞}  is the nodal displacement matrix. 

 

Development of the shape function matrix is dependent on the type of elements 

chosen. Generally, assembly utilises local element displacements (u and v) in the 

form of polynomials of local (element) coordinate variables (s, r and t  within  Figure 

2.24) (Chen et al, 2011). The derivation of the shape function matrix then varies due 
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to local geometry and nodes per element, however note that the terms within the B 

matrix are constants, which implies that the strain is constant throughout an element 

(Chen et al, 2011). Examples of element types with nodes and local coordinate 

systems, are presented in Figure 2.24. Note the additional complexity and 

computational effort required when introducing three-dimensional modelling.  

 

 

Figure 2.24: Examples of isoparametric elements. (a) three-dimensional brick 

element and (b) two-dimensional quadrilateral element (Desai et al, 2014). 

 

 

There is full derivation and details of different shape functions for different element 

types within the literature. None have been included here as the focus is on 

presenting the general framework of the FEA method only.  

From the description above, the strain vector can be determined through 

differentiation of elemental displacements, via Equation 2.19. 

 

Equation 2.19: Calculation of strain vector (Chen et al, 2011). 

{𝜀} = [𝐵]. {𝑞} 

 

Where: 

{𝜀}  is the strain vector matrix 
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[𝐵]  is a matrix derived from a derivative of [𝑁]. 

 

In order to calculate the stress field within the body from the calculated strains, a 

function is required to describe the material elastic properties. Equation 2.20 details 

a general form for orthotropic materials.  

 

 

Equation 2.20: General elasticity matrix for determination of elemental 

stresses in a two-dimensional, orthotropic material (Cheung et al, 2002). 

[𝐶] =
1

1 − 𝜐𝑥𝜐𝑦
[

𝐸𝑥 𝜐𝑦𝐸𝑥 0

𝜐𝑥𝐸𝑦 𝐸𝑦 0

0 0 (1 − 𝜐𝑥𝜐𝑦)𝐺

] 

 

Where: 

[𝐶]  is the elastic moduli matrix 

𝜐𝑥  is Poisson’s ratio in the x-direction 

𝜐𝑦  is Poisson’s ratio in the y-direction 

𝐸𝑥  is the elastic modulus in the x-direction 

𝐸𝑦  is the elastic modulus in the y-direction 

𝐺  is the shear modulus. 

 

Once the material elastic properties are defined, stresses may be calculated via 

Equation 2.21. 

 

Equation 2.21: Calculation of elemental stresses (Cheung et al, 2002). 

{𝜎} = [𝐶]. {𝜀} 
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Where: 

{𝜎}  is the stress vector. 

 

Where an orthotropic material is not being considered it is necessary to utilise a 

more complex constitutive model than depicted in Equation 2.20 to describe the 

relation between stress and strain tensors (Ghadimi, 2015). Inclusion of such 

models requires an incremental solution technique, which is discussed in more 

detail later. 

Now that the response of each element can be calculated through application of 

equilibrium, the principle of virtual work is utilised to relate the node displacements 

to the system of external loads (Equation 2.22). 

 

 

Equation 2.22: External work done (Chen et al, 2011). 

𝑑𝑊∗ = {𝑑𝑞}𝑇{𝑃} 

 

Where: 

𝑑𝑊∗  is the matrix of external work done 

{𝑑𝑞}𝑇  is the virtual node displacements 

{𝑃}  is the system of loads to which the body is subjected. 

 

Logically, the virtual strain may be expressed as a function of elemental 

displacement and some description of element geometry, which is achieved with 

Equation 2.23 and is termed the virtual strain. 

 

 

Equation 2.23: Virtual strain (Chen et al, 2011). 

{𝑑𝜀} = [𝐵]{𝑑𝑞} 
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Where: 

{𝑑𝜀}  is the virtual strain 

{𝑑𝑞}  is the virtual displacements.  

 

If the virtual strain energy density is {𝑑𝜀}𝑇{𝜎} (where T  denotes the transpose of a 

matrix) and external work done is assumed equal to virtual strain energy, then after 

reduction the virtual strain energy may be expressed by Equation 2.24.  

 

 

Equation 2.24:Virtual strain energy (Chen et al, 2011). 

𝑑𝑈∗ = ∫{𝑎𝜀}𝑇{𝜎}𝑑𝑉

𝑣

= ∫{𝑎𝑞}𝑇[𝐵]𝑇{𝜎}𝑑𝑉

𝑣

= {𝑎𝑞}𝑇 ∫ [𝐵]𝑇{𝜎}𝑑𝑉

𝑣

 

 

Where: 

𝑑𝑈∗ is the virtual strain energy. 

 

According to the principle of virtual work, external work done is equal to virtual strain 

energy. Application of this principle results in the derivation of Equation 2.25, which 

describes the relation between element stress and nodal loads (Chen et al, 2011). 

 

 

Equation 2.25: System of loads from the principle of virtual work (Chen et al, 

2011).  

{𝑃} = ∫[𝐵]𝑇

𝑣

{𝜎}𝑑𝑉 
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Where: 

{𝑃}  is the system of loads. 

 

The final step to achieve equilibrium is to apply the constitutive relations. This 

process results in the derivation of the stiffness matrix (which relates external loads 

to displacements) through the approach described below. External loads are often 

applied incrementally within FEA, such that an approximation of material behaviour 

can be included (Cheung et al, 2002). Such an approach is required when a 

nonlinear constitutive material model is adopted, as depicted in Figure 2.25 and 

noted in Figure 2.26 for integration of each element. Alternatively, all of the external 

loads may be applied and an iterative procedure repeated in accordance with the 

constitutive law until equilibrium is attained (Cheung et al, 2002). In reality a mix of 

the two approaches is generally utilised, whereby the external load is applied 

incrementally with the iterations continued until convergence is reached for each 

increment. Convergence can be considered to have occurred when the unbalanced 

element forces are negligible (Ghadimi, 2015). This approach is represented within 

Figure 2.25. In the case of ABAQUS, the Newton-Raphson approach is often utilised 

(NCHRP, 2004). A single iteration is suitable for the linear-elastic case, which is 

applicable to the current study. Since only a linear-elastic solution is required, the 

following details this simplified analysis. 

Constitutive relations for a two-dimensional linear-elastic system can be expressed 

by Equation 2.25. 

 

Substituting Equation 2.19 and Equation 2.25 into Equation 2.26 results in an 

expression for the external loads, Equation 2.26. 

 

 

Equation 2.26: External loads (Chen et al, 2011). 

{𝑃} = [𝑘]{𝑞} 
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Where: 

{𝑘}  is the stiffness matrix. 

 

The stiffness matrix can be determined from Equation 2.27. As seen above, three 

factors are addressed in determining the stiffness matrix; geometry of elements, 

degrees of freedom for nodal displacement and material properties (Hadi et al, 

2003). 

 

 

Equation 2.27: Stiffness matrix (Chen et al, 2011). 

[𝑘] = ∫[𝐵]𝑇[𝐶][𝐵]𝑑𝑉 

 

 

Figure 2.25: Representation of incremental and iterative procedure of analysis 

being applied together (Cheung et al, 2002). 
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From the above formulation, the internal response to external loads on a body may 

be determined. This represents a basic explanation of the FEA method. Far greater 

complexity can be applied to the derivation of the shape function matrix for different 

element types and the constitutive model, linking stress and strain response. The 

reader is referred to the literature for a more detailed explanation of these 

components of FEA. Some constitutive models for unbound granular materials are 

described within Section 2.6.4. 

The application of the above FEA formulation can then applied as per Figure 2.26. 

 

 

Figure 2.26: FEA calculation procedure (adapted from Ghadimi, 2015). 
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There are a number of FEA coded software available commercially, some with 

features such as tensile strain cut-offs (Dawson et al, 2008), one such code utilised 

in many fields is ABAQUS (Dassault Systemes). With reference to a broader context 

than pavement analysis, some benefits of FEA include (Sukumaran, 2004): 

 linear and non-linear-elastic, viscoelastic and elastoplastic material modelling 

 two and three-dimensional calculation 

 static, harmonic and transient dynamic simulated loading 

 interface modelling with friction 

 thermal gradient analysis. 

 

Incorporation of such advanced features has been found to provide benefit to 

pavement design. Based on a preliminary study, Hadi et al (2003) conclude that a 

moving load and nonlinear material characterisation will result in higher than 

expected deflection values at the top of the sub-grade when compared to static 

loading and linear materials. However, these estimated deflections matched closest 

with the field measured values. Sahoo et al (2010) found that nonlinear 

characterisation of pavement materials resulted in increases in vertical strain and 

surface deflection with a maximum difference of 35% and 44%, respectively. Note 

however that a linear-elastic sub-grade was adopted in the study.  

Finite element analysis is now often carried out three-dimensionally, with most 

researchers preferring this approach, due to the consideration of the complex 

behaviour of composite pavement materials and the effect of differing traffic loads 

(Sahoo et al, 2010). As alluded to in Section 2.5.1, FEA is often validated against 

axisymmetric linear-elastic solutions. In the case of three-dimensional FEA being 

applied, it is common that the model is segmented to include only a quarter of the 

wheel load and pavement. Where multiple wheel loads and nonlinear material 

models are incorporated (as discussed below), the theory of superposition is no 

longer valid when applied to axisymmetric modelling. The response of a nonlinear 

system is dependent on the response of the incremental loading scheme (Kim, 

2007). Alternate geometries, such as plane-strain models have been tested by 

Ghadimi et al (2013) and found to produce significantly higher pavement deflection 

estimates than axisymmetric or three-dimensional models. Consequently, it was 
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recommended that the simplification of the pavement response to the plane-strain 

condition be completed with extreme caution.  

It is worth noting that the issue of fictitious tensile strains calculated by most linear-

elastic methods is not automatically overcome through the use of FEA, with some 

programs applying tension cut-off functions, as alluded to above (Dawson et al, 

2008). Application of a tension cut-off is generally quite simple, where the strength 

of any element found to exceed a tensile limit (typically zero) is set as having no 

strength in subsequent load increments or iterations. This approach is common 

within recent research and development of FEA software published by Austroads 

(Gonzalez et al, 2012). The idea is also extended to shear failure, where any point 

with a shear stress calculated in excess of the chosen shear strength envelope, is 

corrected through redistribution to adjacent elements in the mesh. Any point that has 

been found to exceed the shear envelope has its modulus reduced to zero in 

subsequent load increment calculations (Gonzalez et al, 2012). In the same 

discussion, it is explained that the Drucker-Prager model is preferred to the Mohr-

Coulomb model for definition of shear failure, due to the former projecting on 

principal stress space as a circle, as opposed to a hexagon for the latter, which 

presents computational benefits (Jameson, 2012). This is just one approach taken, 

however a comprehensive literature review was completed for the Austroads project 

in question and the reader is referred to the report. 

The issue of plasticity within pavement modelling is introduced with the inclusion of 

plastic models, such as the Mohr-Coloumb and Drucker-Prager. Although this may 

serve to increase the accuracy of modelling, it is not applied to determine the 

pavement service life at this time. Sub-grade failure theories currently utilised are 

reliant on the magnitude of vertical sub-grade compressive strain. Further 

discussion of such models is contained in Section 2.5.3. In recent years a significant 

amount of research has focussed on more realistic representation of unbound 

granular material deformation behaviour under repeated load applications. Such 

theories have applied the shakedown theory and are discussed further in Section 

2.6.5.2. 

The selection of mesh type has a significant effect on the results generated by FEA. 

Sukumaran (2004) states that the same mesh used to complete drastically different 

tasks can lead to a highly impractical model. Essentially, each element represents a 

discrete portion of the physical structure, with accuracy dependent on mesh 

refinement and construction (Kim et al, 2007A). As mentioned above, many different 
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mesh options exist, with geometry affecting the element stiffness matrix generated, 

along with the degrees of freedom allowed for the nodes and material properties 

assigned (Hadi et al, 2003). Generally, a fine mesh is applied nearer to the wheel 

load to take account of steeper stress and strain gradients, with size increasing as 

vertical and radial distance increases. There is a significant body of literature 

available on the development and impact of various meshing strategies and required 

geometry/aspect ratios for FEA, which is beyond the scope of this study. Ghadimi et 

al (2013) have investigated the effect of mesh element type by comparing the 

deflection and strain outputs of an FEA model completed in ABAQUS (Dessault 

Systemes, 2011) to that of a linear-elastic model. It is noted that a four-node brick 

element is inappropriate for estimating pavement deflection and the use of eight-

node axisymmetric elements is recommended.  

Model geometry has also been noted to have a significant effect on the calculated 

pavement response in FEA. Kim (2007) compared axisymmetric and three-

dimensional model outputs with linear-elastic model outputs and reported that it was 

advantageous to reduce the number of nodes in both cases. Furthermore, the three-

dimensional model was able to produce accurate results with a smaller horizontal 

and vertical extent being included. Ultimately, Kim (2007) adopted a three-

dimensional model extending 10 times the load radius horizontally and 60 times the 

load radius vertically, on the basis that it produced pavement response similar to the 

axisymmetric model in a reduced computational time.  

For the case of flexible pavements with little or no bituminous surfacing, there is not 

a great deal of specific literature available. Certainly, it is suggested that stress 

dependency of granular materials and strain based subgrade soil models is 

considered essential for accurate pavement analyses (Sukumaran, 2004). Such 

inclusions (and those discussed above) allow for the avoidance of calculating non-

existent tensile stresses (Gonzalez et al, 2007; Sahoo et al, 2010), thus providing a 

better understanding of the pavement. Dawson et al (2008) recommend that 

analysis of flexible pavements largely composed of UGMs would be optimised 

through consideration of non-linear plastic analysis with an appropriate FEA 

platform. Studies such as Hadi et al (2003) have shown calculated deflections in 

granular layers to be comparable to those found in similar situations in accelerated 

loading facilities. In the same study the use of FEA was further supported, where it 

was found the accuracy of calculated deflections were increased when considering 

non-linear granular materials and cyclic loading. 
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When considering material models for analysis, it is worth noting that deviations 

from the common idealisation of isotropic elasticity may be appropriate due to the 

soil being either inelastic or anisotropic (Muir Wood, 1991). Further to this, in an 

anisotropic material a change in mean normal stress affects a change in shear 

strain, as well as volumetric strain (Arnold et al, 2004). Thus modelling is made 

considerably more complex than when linear-elastic theory is applied. Austroads 

state that the use of finite element models allow for stress dependency and 

anisotropy in both directions, facilitating analysis that cannot be directly modelled 

using linear-elastic theory (Jameson, 2008a). One anomaly of linear-elastic analysis 

is that significant horizontal stresses are calculated in unbound layers, which 

Tutumluer (1995) noted decreased by 75% when considering materials as cross-

anisotropic compared to isotropic. The inclusion of cross-anisotropy appears to have 

a significant impact in the stress distribution of FEA analyses. This is significant to 

note for flexible pavements with a thin (non-structural) surfacing. Youdale (1984) 

noted increased sub-grade vertical strain as a result of modelling pavement 

materials as anisotropic-elastic when compared to isotropic elastic characterisation. 

A further application of FEA common in the literature, are detailed studies of 

tyre/pavement and soil interaction. Dual tyre assemblies with lower tyre inflation 

pressures are particularly effective in reducing the stresses imposed on unbound 

layers. The effect is most notable when in combination with low stiffness unbound 

granular material (Dawson et al, 2008). One such study relevant to the current 

research is that completed by Fervers (2004). A tyre modelled with a representative 

structural stiffness and loaded to 30kN was modelled over two soils as described, 

with consideration of variable tyre pressure. Lower inflation pressure (750 kPa to 

150 kPa) resulted in a decrease in rolling resistance from 8.2kN to 3.9kN on a 

cohesive material with low internal angle of friction and compaction resistance. The 

result was different on a dry sand material (low cohesion, high angle of internal 

friction and high compaction resistance), where the rolling resistance was decreased 

from 8kN (7.5 bar) to 2.9kN (1.5 bar). Despite the fact the sinkage values were 

similar, the higher inflation pressure tyre accumulated a ‘bulldozing’ wave in front, 

leading to higher resistance to forward motion. The potential benefits of studying 

tyre inflation pressure through FEA analysis are further explained by Douglas 

(1997). It was found through an empirical study considering a 44kN wheel load with 

an 800mm diameter truck tyre on an unsealed granular pavement over a clay sub-

grade, a decrease in rut depth of 44% was noted after 10,000 passes when tyre 

pressure was halved. These results, when combined with those relating to tyre 
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inflation pressure in Section 2.2.3, provide an example (although not validated) of 

the potential practical benefits arising from the computational power of FEA.  

 

 Damage Models 2.5.3

Damage models describe the number of pavement strain repetitions prior to the 

accumulation of an unacceptable level of permanent deformation (plastic strains). 

Figure 2.17 is one example where the curves have been derived from the theory 

most commonly used for large wheel loads. The field testing was carried out by the 

United States Army Corps of Engineers and is reported, along with the procedure for 

derivation of the curves, in Pereira (1977). Failure of the pavement was considered 

to have occurred once unacceptable rutting was observed. This failure theory is 

commonly referred to as the S77-1. It was adapted to computerised linear-elastic 

analysis (mechanistic-empirical pavement design) in the development of APSDS 

(Wardle et al, 2001). Equation 3.34 through Equation 3.36 detail this failure theory. 

Figure 2.27 provides a comparison of the failure theory and that adopted by 

Austroads for design of highway pavements (Jameson, 2012). Note that the number 

of allowable repetitions of a large wheel load are less than that of a commercial 

vehicle for a given sub-grade strain. The theory also benefits from consideration of 

sub-grade elastic modulus (‘Esg’, in unit of MPa, within Figure 2.27). Intuitively, it 

can be seen that a ‘softer’ sub-grade is considered to deform quicker for a set sub-

grade strain value. Modelling similar to that described in Section 2.5.1 is used by 

APSDS and HIPAVE software programs in order to calculate the maximum sub-

grade strain, which is then used to estimate the pavement life of the given pavement 

configuration. Note that it is within this calculation step that the interaction of wheel 

loads must be considered (see Section 2.4.2.1). Therefore, it is critical to accurately 

model the pavement response, which may be assisted by the adoption of FEA, as 

discussed in Section 2.5.2.  
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Figure 2.27: Comparison of Austroads and HIPAVE damage models (Wardle et 

al, 2005). 

 

 

There are some limitations inherent in the design method discussed above that must 

currently be accepted for pavement design. Firstly, modelling via specialist 

pavement software packages employing a linear-elastic closed-form solution 

effectively consider the soil making up the pavement to have infinite strength. 

Subsequently, the use of sub-grade resilient strain to predict the accumulation of 

plastic shear and volumetric strain is surely questionable. With regards to rutting, 

this approach actually constitutes an analytical method of design (Dawson et al, 

2008). Further, the consideration of sub-grade strain only ignores the damage that 

may accumulate within unbound pavement layers. This is despite the large body of 

research (discussed in Section 2.6.5.2) supporting the validity of this mode of failure. 

This issue is yet to be addressed in commercial software, likely due to the 

complexities of modelling permanent deformation of UGMs explained in Section 

2.6.5.2. Presently, true mechanistic solutions are being sought by researchers 

through application of FEA (Section 2.5.2) with the incorporation of advanced 

material constitutive and failure models (Section 2.6). 

For the discussion of the more advanced permanent deformation theories, the 

reader is referred to Section 2.6.5.2. 
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 Unbound Granular Materials 2.6

Unbound granular materials are just as the name suggests, granular in composition 

and not subjected to any internal binding action. Austroads (Vuong et al, 2008) 

describe three generic materials that fit into this classification; naturally occurring 

granular materials (natural gravels, sand/clay and fissile rock), crushed rock and 

crushed recycled materials. Although differing in origin, their behaviour is generally 

considered consistent, which means they are modelled similarly in assessing the 

performance of pavements.  

In the case of unbound granular materials there is strong evidence to suggest 

variation exists between vertical and horizontal modulus and hence they are 

anisotropic (Jameson, 2008). Granular materials also present a degree of strain-

hardening and an increase of resilient modulus with increasing bulk stress (Sahoo et 

al, 2010). In reality, the materials considered herein are non-linear and anisotropic. 

 

 Stress Dependency 2.6.1

A critical effect that requires inclusion in analysis of a pavement is the fact that 

stiffness varies with the applied stress state (Rodway et al, 2007). It has been noted 

by many authors that the mobilised resilient modulus will be higher when subject to 

larger stresses (Brown, 2004). This is well represented by the often applied Uzan 

model (Tan et al, 2011). Further discussion of such models is provided in Section 

2.6.5.1. Other available methods consider linear-elastic theory whereby the granular 

materials are partitioned and assigned decreasing modulus values with depth to 

approximate effect of dissipation of stresses. Note that material composition and 

properties play a significant role in the determination of stress dependency 

(Jameson, 2008). For example it is noted that the majority of fine-grained cohesive 

subgrade soils exhibit stress-softening type behaviour (modulus decreases in 

proportion to the stress level), whereas coarse-grained materials have been 

observed to strain harden (Kim et al, 2010). 

The theory of sub-layering is often applied to approximate the effect of stress 

dependency. Two theories are considered, Austroads, developed for stress levels 

consistent with highway loads and the method developed by the US Army Corps of 

Engineers (Barker et al, 1975), which takes into account the heavy axle loads 
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common to airfields. Both of these theories consider the relative stiffness of the 

support layer (Jameson, 2008a). Figure 2.28 shows the basis of the sub-layering 

methodology developed by the US Army Corps of Engineers (Barker et al, 1975). 

Note that there are a few complications with this model that a user should be aware 

of. For example to ensure the mobilisation of the base layer moduli the material 

should be compacted to greater than 100% modified maximum dry density and have 

dried back to less than 70% degree of saturation (Wardle et al, 2007).  

 

 

Figure 2.28: Sub-layering of unbound granular layers (Wardle et al, 2007). 

 

 

Stress dependency can be accounted for through utilisation of Finite Element 

Method (FEM) for pavement analysis, however the effect of relative support is not 

considered (Jameson, 2008). Austroads include a method for sub-layering of 

asphalt surfaced cement-bound pavements that considers the modulus of the 

overlying layer for selection of the top sub-layer modulus. The modulus of the top 

granular sub-layer is determined from the minimum of presumptive values (which 

only consider bound or high quality material cover) or from an exponential relation 

for the sub-grade modulus and the total granular thickness. The ratio between top 
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and bottom layers is then calculated as the fifth root of the top granular sub-layer 

and the sub-grade moduli (Jameson, 2008a). Hence the US Army Corps of 

Engineers (Barker et al, 1975) method appears more appropriate for consideration 

of haul roads, due to the exclusion of bound surface layers. 

 

 Non-Linearity 2.6.2

The unbound granular materials utilised in flexible pavement layers are more 

complex in their behaviour than other common construction materials such as steel 

or concrete (Rao, 1991). In order to simplify analysis and design utilising unbound 

granular materials, they are often idealised as a homogenous isotropic elastic 

material whereby bulk stress is considered the sum of the three principal stresses 

(Karg et al, 2009). Most analytical models use elastic layered theory and hence 

consider unbound granular materials to be linear-elastic (Sahoo et al, 2010). Brown 

(1996) notes that the origins of such simplified analyses lie with Burmister’s stress 

solution for layered media, which was derived in the 1950’s. Although widely utilised, 

very little detailed reasoning exists for the use of the approximation. In the case of 

rationalising UGM performance via the resilient modulus, it is commonly stated that 

any permanent deformations under a single load application is small compared to 

the resilient component, such that it may be considered negligible (Brown, 1996). 

The point of difference for heavily loaded unbound pavements may be the fact that 

stiffness is known to decay with strain (Atkinson, 2000), so where the deformations 

in highway pavements may be small compared to elastic effects the same may not 

hold true for layers composed of unbound granular material not protected by asphalt 

layers. Figure 2.29 provides an indication of such an effect. Note that for sub-grades 

under highway pavements the small-strain ‘Eo’ may be applicable, however in base 

layers of haul roads a move to the right is probable with significant reductions in 

stiffness. Many studies, such as Rao (1991), have been conducted to compare in-

service deflections to those estimated from linear-elastic analyses. Such models 

may provide suitable insight for pavements fitting within the research experience, 

however extrapolations are difficult. It is noted by Brown (1996) that this approach is 

likely inappropriate for thinly surfaced pavements unless account is taken of non-

linear effects. Rodway et al (2007), the creators of the HIPAVE (Mincad Systems, 

2012B) industrial pavement design software also advise caution when using such 

linear-elastic models for off-road situations due to non-linearity of sub-grade 

behaviour.  
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Figure 2.29: Simple illustration of the decay of stiffness with strain level 

(Atkinson, 2000). 

 

 

It is likely non-elastic deformations occur within granular pavements subjected to an 

induced stress, such as viscous, plastic and visco-elastic deformations. All of these 

are stress dependent and thus the materials behave in a non-linear manner (Hadi et 

al, 2003). On a finer scale, it is ultimately the inter-particle movements (dilations) as 

a result of loading that govern the non-linear stress/strain behaviour, which is also 

inherently accompanied by permanent deformations (Vuong et al, 2008). The two 

statements above succinctly describe the internal response to the application of 

stress to an unbound granular material and the mechanism that provides for non-

linear and plastic behaviour.  

A note should also be given to the effects of soil damping. Generally, soil 

foundations are represented by a spring-dashpot mechanism and assumed to be 

viscous or linear-hysteretic (Beskou et al, 2011). This adds complexity to modelling, 

but also allows for energy dissipation within the sub-grade, a lack of which may be a 

shortcoming of some of the models in the literature or commercially available.  

Research studies, such as that of Picoux et al (2009), have been completed that 

attempt to quantify the effect of non-linearity in pavement modelling. The most 

relevant to haul roads is the study completed by Sahoo et al (2010), which showed 

non-linear analysis resulted in a 44% increase in surface deflection and a 35% 
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increase in vertical stain at the top of the sub-grade. Modelling considered a typical 

granular pavement (varying thickness with vertical modulus of 250 MPa, over 50 

MPa sub-grade) subjected to dual tyres of width 190-200mm and a 560kPa inflation 

pressure. It was ultimately concluded that linear-elastic analysis could lead to unsafe 

designs (Sahoo et al, 2010). Of course this is just one isolated comparison 

considering two specific modelling techniques, however it does serve as an example 

of how important non-linearity of pavement layers may be to low stiffness roads 

under significantly large loading.  

 

 Anisotropy 2.6.3

There is strong evidence that unbound granular materials exhibit a variation of 

modulus in different orientations, or anisotropy (Jameson, 2008b). In recent decades 

much research has characterised UGMs as non-linear and anisotropic (Kim, 2004). 

A complete general description of a soil includes 21 elastic constants (for an 

anisotropic elastic material considering strain energy conservation), which is quite 

prohibitive when it is considered that generally only three constants can be deduced 

from a normal tri-axial laboratory test. A special form of anisotropy, referred to as 

cross anisotropy is often adopted to describe aggregate and soil behaviour (Muir-

Wood, 1991). Cross anisotropic behaviour requires five resilient properties; resilient 

moduli in vertical and horizontal direction, Poisson’s ratio in vertical and horizontal 

directions and shear modulus in the vertical-horizontal plane (Kim, 2004). This 

idealisation aids the pavement engineer in more adeptly modelling the unbound 

layers included within any pavement.  

The cause of anisotropy within pavements structures is not clear. Within soil 

deposits one common theory is that soils are often deposited or ‘bedded’ over time 

at a slow rate of deposition and hence consolidate in the vertical direction (Muir 

Wood, 1991). In the case of pavements it may originate due to compaction of 

relatively thin layers through mechanical means, although occurring over a short 

period of time, the particles may take on a preferred orientation leading to the 

difference in directional stiffness (Jameson, 2008b). Interestingly, it was found by 

Kim (2004) that anisotropy increased when material gradations became finer and 

poorly graded, which may be a significant finding when considering that sub-grade 

properties may change significantly along a road alignment.  

Definition of the anisotropic modular ratio (ratio of vertical to horizontal elastic 

modulus) is quite difficult, as outlined in a recent Austroads report focussed on the 
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development of a non-linear anisotropic Finite Element Model (Gonzalez et al, 

2012): 

 degree of anisotropy is very difficult to measure in the laboratory, 

 in FEA, anisotropy may not be required to accurately predict deflection 

bowl shapes, 

 most models in the literature are isotropic. 

In the literature search for the above report it was found that the anisotropic modular 

ratio ranged from 1 to 4 for granular materials and from less to greater than 1 for 

sub-grade materials (Gonzalez et al, 2012). In the current Austroads pavement 

design guide it is recommended that modular ratio be taken as two (Jameson, 

2008a), a value that has been included in all Mincad Software packages for 

unbound pavement layers as well as for sub-grades (White, 2007).  

 

 Shear Strength and Yield Criteria 2.6.4

The discussion relating to yield criterion’s for UGMs here is brief, as inclusion of 

such theories into pavement design is still relatively in its infancy. The most 

commonly applied failure theory is likely the Drucker-Prager model, which is a three-

dimensional projection of the Mohr-Coloumb failure envelope, whereby the yield 

surface forms a cone (Arnold, 2004). The reason for considering a failure criterion is 

explained by Figure 2.30, where the material exhibits strain hardening (Brito, 2011). 

This effect is potentially significant due to the fact that when it is combined with non-

linear and anisotropic effects the performance of a given pavement could vary 

significantly over time. Lastly, note that the models mentioned above consider 

monotonic loading (Brito, 2011) and not cyclic loading as applied to a pavement.  

 



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                        Background 

Jarrad P Coffey                                                                                                       97 

 

Figure 2.30: Illustration of kinematic hardening and associated changes in 

resilient response with loading cycles (Brtio et al, 2011). 

 

 

 Response to Cyclic Loading 2.6.5

Pavement materials experience cyclic actions due to the application of passing 

traffic, the response of UGMs, both instantaneous and time-dependant is described 

in the proceeding sections.  

2.6.5.1 Resilient Modulus 

The most commonly utilised parameter for describing pavement material response 

to cyclic loading is the resilient modulus. This is defined as the ratio of recoverable 

(resilient) strain to applied deviator stress (Brown, 2004). It is used within pavement 

design as Young’s modulus is utilised within conventional liner-elastic soil analyses 

involving the application of a monotonic loading (Lekarp et al, 2000). However, 

recoverable instead of total strain is utilised to represent the cyclic loading condition 

of a pavement under wheel loading. Within a single cycle of loading the pavement 

experiences resilient and permanent strain responses, as presented in Figure 2.31. 

The stress path here describes the hysteretic loop experienced by the material, 

whereby the open end represents the permanent deformation (strain) induced. This 

is discussed further in Section 2.6.5.2. 
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Figure 2.31: Stress path showing the resilient and permanent strains 

experienced by a granular material within one loading cycle (Lekarp et al, 

2000). 

 

 

Much of the research effort to date has been focussed on quantifying the factors that 

influence resilient behaviour. Rodway et al (2007) provide a list of the variables most 

affecting changes in resilient modulus of a granular layer: 

1. Quality of aggregate: soundness, durability, particle size distribution, 

angularity. 

2. Thickness of the layer. 

3. Stiffness of the supporting layer. 

4. Moisture content. 

5. Stress-state. 

6. Relative density. 

The stress state is considered by the majority of authors to have the greatest 

influence, with confining stress being found to have a much more profound effect 

than variances in deviator stress (Lekarp et al, 2000). Therefore the ratio between 

mean normal stress increase and resilient modulus is significant and shows far 

greater sensitivity than for other factors. Poisson’s ratio is commonly utilised in 

conjunction with resilient modulus and is also believed to be influenced by stress 

state, however more research is currently needed on this topic (Lekarp et al, 2000). 
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The effect of strain on resilient modulus is not clear within the literature. However, 

Frost et al (2004) note a high sensitivity to small differences in strain, when low 

deviator stress is applied. However the strain accumulated during testing is not 

taken into account by most test methods, and hence the undeformed specimen 

height is utilised in calculations of resilient modulus (Kim et al, 2007). It is likely 

greater accuracy could be achieved if the deformed lengths were utilised.  

It may be most prudent to consider the effect of strain in conjunction with the stress 

history of the material. But as with strain level, there is little agreement on the effect 

of stress history, however it appears the effect is minimal unless the loading was 

significant enough to cause large permanent deformations (Lekarp et al, 2000). 

Density is known to affect the shear strength of granular materials (Jameson, 

2008a), however when considering the resilient modulus there has been little 

agreement between researchers to date (Lekarp et al, 2000). Uncertainty may be 

due to the difficulty to mobilise stress within a poorly compacted material, as may 

occur in the situation of poor support being provided by an inferior sub-grade. It is 

worth noting that the accumulation of permanent strain is likely of greater concern 

for poorly compacted materials and thus control must be exerted for this property, 

eliminating concern related to resilient modulus.  

The effect of water content on modulus has been investigated by several 

researchers. Lenngren (2009) conducted repeated FWD testing of a highway 

section over its first year in service. It was found that the resilient strain induced 

under similar load pulses was far more severe in wetter time periods and especially 

within sections of the roadway susceptible to moisture ingress (see Figure 2.32). 

Exact measurements of moisture content were not made and so the marked 

difference presented in Figure 2.32 should only be taken as an indication of the 

potential effect of elevated moisture contents within a granular pavement layer.  

 



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                        Background 

Jarrad P Coffey                                                                                                       100 

 

Figure 2.32: Pavement layer response under FWD test, comparing wet and dry 

state (Lenngren, 2009). 

 

 

Kim et al (2007) note that the resilient modulus was found to be highest when 

sandy-silty or clayey soil samples were tested in the dry state. This result was 

attributed to the capillary suction arising from the cohesive properties of the soils as 

they dried out. These samples were not compared to coarser soil samples (see 

discussion of particle grading below). Most literature reports that moisture content 

does not significantly impact resilient response for dry and partially saturated 

materials (Lekarp et al, 2000). However high pore pressures could occur in the case 

of a high degree of saturation, poor drainage or low permeability (Vuong et al, 

2008), and result in a lower effective stress and consequently a low modulus value. 

The particle grading of granular materials is also stated to have an effect to some 

degree on modulus (Lekarp et al, 2000). Perhaps most notable has been research 

focussed on the effect of the maximum (top) sized particles. Lindly et al (1995) 

undertook RLT tests with an up-scaled apparatus, which resulted in the magnitude 

of the top-size having little effect on modulus. The tests did however show less 

repeatability with an increase in maximum particle size. A study by Lekarp et al 

(1999) showed a 25% increase in resilient modulus when a similar material’s top-

size was increased from 16mm to 90mm. This finding is supported by Lambert et al 
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(2008), where resilient modulus is shown to increase significantly with a coarse 

gravel material; when layer thickness increased from equal to maximum particle size 

to twice layer thickness.    

A considerable number of resilient modulus models are available within the 

literature. The simplest of the commonly employed models is the ‘k- θ’ (Seed et al, 

1967) which considers bulk stress as the only variable, which means the model is 

widely used but does have several drawbacks (Lekarp et al, 2000). Caution should 

be exercised with this model as detailed stress conditions are not well represented 

by the use of mean normal stress, which can yield significant errors (Brown, 2004). 

The model can be modified to take account of deviator/shear stress (although noted 

to have a minimal effect on modulus in isolation) and failure (Gonzalez et al, 2012), 

after which re-orientation of particles obviously means a significant change to 

material behaviour. However, such models should be carefully applied as the effect 

of failure zones in the pavement could have a profound effect on predicted 

performance in other layers/adjacent areas (Lekarp et al, 2000). Despite this, such 

models are commonly employed to model resilient modulus, for example the Uzan 

model was adjudged the most suitable model for UGMs by Austroads (Gonzalez et 

al, 2012). This recommendation was based on the contention that the model fitted 

stress states anticipated within in-service pavements and not just in the states 

included in a repeated load tri-axial test. The Uzan model is known to show an 

increased post-failure modulus, which contradicts observations from other research 

(Lekarp et al, 2000). Finally, for modelling purposes, Ekblad (2008) states superior 

performance is only experienced when a stress dependent Poisson’s ratio is also 

utilised.  

An alternative method for defining the elastic behaviour of granular materials is the 

Boyce model. Stresses and strains are separated into volumetric and shear 

components; resilient modulus and Poisson’s ratio are then replaced by bulk and 

shear moduli (Lekarp et al, 2000). Thus the model is based upon three variables; 

bulk modulus, shear modulus and Poisson’s ratio. A fourth parameter is ideally 

required, which is dependent on the others, so that the strains are derived from an 

elastic potential (Bouzidi, 2003). To explain the benefits of such a technique, 

observe Figure 2.33. Here it is apparent that this approach may be advantageous, 

as there is a reversal of the shear strains induced once the wheel has passed the 

point of interest in the pavement.  
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Figure 2.33: Normal and shear stress against relative position of a passing 

wheel load (Bouzidi, 2003). 

 

 

Finally, note should be given to the resilient Poisson’s ratio of unbound granular 

pavement materials. This property has not been studied in nearly as much detail as 

the modulus. To date it has been shown to increase with decreasing confining 

pressure and increasing deviator stress (Lekarp et al, 2000). Further research is 

required for this parameter to be better applied in pavement design.. 

 

2.6.5.2 Permanent Deformation 

Under cyclic loading, UGMs exhibit elastoplastic behaviour, characterised by 

permanent deformation with an increasing number of load repetitions (Gidel et al, 

2001). Definition of permanent deformation is important and ultimately the main 

outcome modelled by structural analysis of pavements. Research effort in this area 

undoubtedly lags behind that of resilient modulus (Lekarp et al, 2000A). Deformation 

is, of course, strongly related to the strength and stiffness of a pavement material 

(Frost et al, 2004). It is perhaps often over-looked that accumulation of strains 

(permanent deformation) is the result of rearrangement of grains, shear deformation, 

abrasion of soil particles and non-recoverable drainage of pore water during cyclic 

loading (Karg et al, 2009). These responses to the application of stress result in the 

behaviour discussed herein, which can be categorised into two major reactions; 

frictional sliding (shear strain) or volumetric compaction (Karg et al, 2009). This is 

described by the three modes shown in Figure 2.34. Mode 0 is associated with 

compaction of the base layer, Mode 1 with shear deformation of base materials and 

Mode 2 representing shear deformation initiating in the sub-grade with the base 

subsequently deforming in shear (Dawson et al, 2004). For consideration of 

unsealed pavements it is particularly noteworthy that a Mode 3 is also considered by 
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Dawson et al (2004) which is associated with particle damage (attrition or abrasion). 

Several methodologies for describing the deformation of unbound granular 

pavement layers are described below. It is prudent to make note that although 

monitoring rut depth through direct measurement is quite simple, the prediction of 

such deformation is extremely complex (Lekarp et al, 2000A). 

 

 

Figure 2.34: Modes 0, 1 and 2 (respectively) of rutting (after Dawson et al, 

2004). 

 

 

Permanent deformation due to repetitions of vertical sub-grade strain is the criteria 

by which pavement life is estimated by Austroads and design software CIRCLY and 

HIPAVE (Mincad Systems, 2012B). Two variables are involved, both calculated from 

the sub-grade vertical modulus. This design model has been verified against the 

results of testing from which common CBR design curves were developed in the 

1970’s (and discussed in Section 2.4.1). The empirical data from which the theory 

was developed considers a set layer structure for the pavement which, as discussed 

previously, is transformed through material equivalency factors. Another 

shortcoming is the fact that development completed by Us Army Corps of Engineers 

(Pereira, 1977) considered CBR values for characterising the sub-grade, which has 

been transformed through use of the design software, APSDS (Mincad Systems) to 

make use of the sub-grade stiffness. There is no relation that has been shown to 

allow accurate modulus approximations from CBR values (Sukumaran et al, 2004).  

Like elastic response to loading, accumulations of plastic strains within unbound 

pavement layers is a highly complex system. Figure 2.35 explains the basic theory 

used in most deformation models, whereby stress level and number of loading 

repetitions are the primary factors. 
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Figure 2.35: Explanation of permanent deformation due to number of strain 

repetitions and stress/strain state (Theyse, 1997). 

 

 

There exist many theories of permanent deformation, of varying complexity. 

Perhaps the most widely accepted model for unbound granular materials is termed 

‘shakedown’.  

As alluded to above, the use of stress to model permanent deformation has become 

a research focus in recent times. This has resulted from observations that low stress 

ratios ultimately result in equilibrium and high stress ratios result in gradual failure. 

This leads to the postulate that a threshold stress must exist which defines this 

change in behaviour, termed the ‘shakedown’ limit (Lekarp et al, 1998). An elastic 

response alone cannot cause failure, rather it is irrecoverable plastic or viscous 

strains that accumulate with repeated load to produce failure in the form of surface 

slip, rutting or surface cracking (Collins et al, 2000). The typical response of 

unbound granular materials is shown in Figure 2.36, further explanation is provided 

by Arnold et al (2002): 

 Range 1 – Plastic Shakedown Range: A high strain rate per load cycle for a 

finite number of load repetitions (compaction). Strain rate then decreases per 

load cycle until response is entirely resilient. Stability in Range A is strongly 

dependent on the moisture content of the material (Dawson et al, 2004). 
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 Range 2 – Plastic Creep Shakedown Range: Initial behaviour similar to that of 

Range A while the material is compacted. Permanent strain is then either 

constant or slightly increasing or decreasing, however this rate is acceptable. 

Perhaps after as many as two million cycles, response may change to Range 1 

or Range 3.  

 Range 3 – Incremental Collapse Shakedown Range: initial compaction may be 

observed, after which the permanent strain rate increases and remains constant 

with increasing number of load cycles. 

 

 

Figure 2.36: Shakedown ranges and limits (Cerni et al, 2011). 

 

 

Definition of each range of shakedown response is possible by examining the 

permanent strain against the rate at which it occurs (Siripun et al, 2011). If such 

development is plotted, areas of consistent strain rate per loading cycle can be used 

to characterise each range of behaviour. 

To simplify the theory a little, Frost et al (2004) describe a stiffness asymptote 

occurring at around 50% of deviator stress at failure. This is an example of a simple 

practical limit that may provide acceptable performance for a defined material and 

application. Lekarp et al (1998) argues that failure in granular layers is a gradual 

process rather than a sudden collapse, thus the use of static shear strength may be 

of limited value. It is contended that the permanent deformation behaviour is related 
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to the maximum shear stress ratio and length of the stress path of the induced 

loading in p-q stress space (Lekarp et al, 1998). Such an approach can be extended 

by inclusion of the Drucker-Prager yield line, the proximity this limit and the stress 

ratio would then assist in determining the response type (Arnold et al, 2002) and 

therefore safe use for design of any pavement layer. 

Observation of the hysteresis loops reveals the nature of the response for a single 

load repetition and also longer term response. Where a loop is observed to grow in 

size represents an increase in accumulated plastic strain (Figure 2.37). This 

explanation is somewhat over-simplified; rather the area contained within a 

hysteresis loop represents the deformation work per volume element (Werkmeister 

et al, 2004). Note that as tension cannot develop in UGMs, diagrams such as Figure 

2.37 should be carefully interpreted, where cyclic plasticity is being represented 

(Nguyen, 2007) and not a tension portion of the loop. Beyond Range A responses, 

the dissipated energy per cycle relates to a stationary value, so that vertical strain 

decreases to a constant rate depending on loading characteristics, and frictional and 

stiffness characteristics of the grain contacts (Siripun et al, 2011). It is interesting to 

note that the elastic unloading section is a similar shape over all ranges and loading 

magnitudes (Werkmeister et al, 2004). 

 

 

Figure 2.37: Characterisation of shakedown ranges via hysteresis loops and 

accumulation of plastic strains (Nguyen, 2007). 
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The majority of the work completed through a UGM hysteresis loop is transmitted to 

heat and partly to a change of material properties leading to damage. A small part is 

dissipated through cumulative work on the material (Werkmeister et al, 2004). 

However note that the total amount of plastic energy dissipated on any load path 

must be finite (Nguyen, 2007). 

The direct application of the shakedown ranges with respect to pavement layer 

design remains somewhat in its infancy. Dawson et al (2004) suggest that for (well 

designed and constructed) unsealed or thinly sealed pavements, Range A response 

is only possible within the best quality unbound granular materials. Thus the 

objective, in most cases, is to design granular layers to ensure Range B behaviour, 

with as small a slope as possible (see Figure 2.36) to limit plastic strains.  

 

Linear-elasticlinear-elasticlinear-elasticlinear-elasticlinear-elasticlinear-elasticlinear-

elasticlinear-elastic 

 Identification of Issues Requiring Further Research 2.7

The following discussion identifies specific components of this research that are not 

directly addressed by the literature, and requires further development. Several of the 

identified deficiencies require tests to be developed, due to a lack of published or 

accepted testing methodologies being available in the literature.  

 Rolling Resistance of Haul Trucks 2.7.1

It has long been recognised that the nature of the haul road pavement significantly 

impacts the efficiency of a haulage operation, as evidenced by a similar comment in 

Kaufman et al (1977). Empirical tables for RRC values are available and have been 

updated by various researchers (Atkinson, 1992; Tannant et al, 2001; Holman, 

2006). The data in such tables alludes to an influence of pavement stiffness on 

rolling resistance. Holman (2006) presents an equation that considers plastic rutting 

(such as occurs in a soft sand) of the pavement surface as the sole independent 

variable, with a RRC of 2% resulting for no wheel penetration. Thompson et al 

(2001) successfully relates a Roughness Defect Score to RRC. This is a practical 

measure for monitoring the deterioration of the pavement surface with time and 

traffic, but attempts to describe all modes of pavement distress within a single value. 

Furthermore, it is not easily related to common pavement texture and roughness 

values used in general pavement rolling resistance research. For example, 
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Sandberg et al (2011) note that truck rolling resistance is most affected by 

roughness, whereas texture is more significant for cars. If the classifications of 

texture and roughness in Section 2.2.5 were applied to haul road research, this 

trend could be extended. Utilising such measures would allow the framework for the 

investigation of various pavement properties in general pavement research to be 

applied to haul roads, allowing a greater understanding of haul truck rolling 

resistance.   

The literature presents case studies (Jamieson and Cenek, 2002; Schmidt et al, 

2009) where pavement stiffness is suggested to have a significant impact on rolling 

resistance. To date there has not been a study of haul road pavements considering 

pavement stiffness through either deflection measurement or any other technique. 

Combined with the lack of haul truck rolling resistance measurements including 

detailed consideration of pavement surface condition, this provides the basis for the 

research objectives identified in Section 1.2. To achieve these objectives it is 

considered that full-scale tests should be utilised throughout, defining truck 

performance and pavement response to truck loading and motion.  

 Method for Rolling Resistance Testing of Large Vehicles 2.7.2

As noted in Section 2.2.5.1, a variety of methods have been used to measure rolling 

resistance in previous research. To date, there has not been an attempt to 

harmonise these methods, such that a universally accepted method for definition of 

RRC is possible. This issue is further compounded by confusion with regard to the 

definition of rolling resistance. Some research actually measures the driving 

resistance of a whole vehicle, such as those applying coast-down test methods 

(Thompson et al, 2001; Hammarstrom et al, 2008) or the steady state torque 

method (Jamieson and Cenek, 2002). Alternate approaches define rolling resistance 

as stated by ISO 28580:2009 (the horizontal force for wheel motion divided by 

vertical load on the wheel, see Equation 2.1), but used scaled-down towed cart 

methods to measure rolling resistance (for example Widodo et al, 2009; Lee 2010). 

The latter approach often employs considerably smaller tyres than that fitted to haul 

trucks, with no examples of such testing being described in the literature. 

The need for a rolling resistance test method that considers the large wheel loads 

applied to a pavement by rigid dump trucks used in mining is desirable, in order to 

properly investigate the impact of pavement deflection.  
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 Method for Full-Scale Pavement Deflection Testing with 2.7.3

Large Vehicles 

The structural stiffness of pavements, when being related to rolling resistance, is 

often quantified by a description of the constituent material (see Table 2.5). Although 

such a descriptive method can supply practical guidance for field use, it does not 

include sufficient detail for investigation of the influence of pavement structural 

condition of rolling resistance. This is exacerbated by the fact that this contribution is 

generally contended to be relatively small in comparison to pavement texture or 

roughness.  

Some pavement rolling resistance research has included direct measurement of 

pavement deflection, for example Jamieson and Cenek (2002), with use of a 

standard Benkelman Beam apparatus. In fact, the Worldbank includes a term for 

Benkelmen Beam rebound deflection in the adopted function for rolling resistance 

within the widely adopted HDM-4 model (Zaabar, 2010a). Other studies relating 

rolling resistance to pavement stiffness have made use of Falling Weight 

Deflectometer (FWD) testing to define likely energy loss under a passing wheel load 

(Lenngren et al, 2010). Such an approach may be inappropriate for haul roads due 

to the unsealed surface and variable moisture regime within the pavement.  

There is no method for measuring deflection under haul truck wheel loads currently 

available within the literature. One difficulty that must be addressed by the any 

method that is investigated, is to ensure the measurement apparatus is placed clear 

of the induced deflection bowl. 

 Measurement of Pavement Texture and Roughness 2.7.4

The measurement of pavement texture and roughness is required to define the 

surface condition of the pavement. A method providing greater detail than the RDS 

reported by Thompson et al (2001) or the IRI (Gillespie, 1992) would be preferable 

for this research. Correlation of roughness with different pavement longitudinal 

wavelength allows recommendations to be developed with regard to material 

selection and construction methodology, if a specific wavelength range is shown to 

significantly influence rolling resistance.  

Pavement texture is generally related to the surfacing aggregate size and method of 

pavement construction (see Figure 2.11). It is noted in Section 2.2.5, that it is the 

single greatest determinant of rolling resistance experienced by passenger-car 

vehicles (Sandberg et al, 2011). Mclean et al (1998) contends that such 
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wavelengths of surface undulation induce an undesirable tyre response, as they are 

contained within the pavement contact patch. Therefore, definition of surface 

roughness at a high resolution is required, such that this effect can be investigated 

for haul trucks. 

Research relating measured haul road pavement roughness and rolling resistance is 

confined to Thompson et al (2001). The method of pavement roughness 

measurement in this instance does not consider a distinction of pavement 

roughness wavelength, but is defined by subjective assessment of pavement 

surface defects. It is recognised in Section 2.2.2 and Section 2.2.5, that rolling 

resistance can be a unique function of pavement roughness and vehicle 

characteristics. Consequently, a test allowing post-processing of data and 

segregation into texture and roughness categories, defined by mean wavelength, is 

required for a full understanding of haul road rolling resistance. 

 Analysis of Pavements Subjected to Large Wheel Loads 2.7.5

An ability to predict pavement response to load is central to conventional pavement 

design techniques. Generally, the pavement model is used to calculate the vertical 

compressive strain induced at the top of the sub-grade layer, which is used to 

predict pavement lifetime (Jameson, 2008). The influence of pavement stiffness on 

rolling resistance is investigated in this study. If shown to be a significant contributor, 

the importance of an ability to compare the relative stiffness of two alternate 

pavement layer configurations would be increased (see Section 2.7.6).  

Thompson (2011) suggests that both linear-elastic and FEA analysis can be used 

successfully for haul road pavements. However, there is no comparison of the two 

methods for haul roads available in the literature. Furthermore, there is not any 

comparison of measured pavement response to that predicted by either method. 

Wardle et al (2001) have back-analysed pavement configurations included in the 

trial sections tested to develop the S77-1 curve reported by Pereira (1977). This 

allows the pavement designer to predict pavement lifetime (prior to the development 

of unacceptable rut depth) from calculated sub-grade vertical compressive strain. 

Subsequently, variable pavement layer configurations can be considered through 

application of material equivalence factors, which effectively transforms the standard 

pavement structure utilised in the original field trials (Pereira, 1977). The pavements 

included in the field trials, and subsequent analysis, included significant asphaltic 

concrete and bound layers applied for the surfacing course and base-course (White, 

2007). Since unbound granular layers were not physically tested as base-course, 
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and without a surfacing course of at least 40mm, design of such pavements is 

considered inappropriate and caution is advised (Jameson, 2008). At current, such 

assumptions are necessary for haul road pavement design. Furthermore, Austroads 

(Jameson, 2008) and MRWA (2013) suggest an upper limit for resilient modulus of 

unbound materials based on a maximum mean normal stress of 240kPa. This 

serves as an example of the dangers of utilising published ‘range’ values for 

material parameters instead of considering their in-service condition. Therefore, 

some means of investigating the ability of each calculation method to predict 

measured pavement response is required, in an effort to provide insight into the 

suitability of each method. 

Advanced numerical modelling in the form of FEA has become commonplace in 

pavement research. It provides benefits such as those listed in Section 2.5. 

However, it has not been tested in the literature for modelling of haul road 

pavements or compared to closed-form methods provided by analysis applying 

elastic theory. In order to apply this technique to haul road research it should first be 

shown to be superior to less time-intensive linear-elastic methods in predicting 

measured pavement response.  

 

 Definition of Critical Design Criteria for Haul Road 2.7.6

Pavements 

Haul road pavements are commonly designed based on local experience or the 

CBR cover curves based on the field trials completed by the U.S Army Corps of 

Engineers and reported by Pereira (1977). The latter has been extended by Wardle 

et al (2001) to allow more flexible application of the failure theory to linear-elastic 

modelling in the software platforms APSDS and HIPAVE. These failure theories are 

based on airfield pavement design theories, where aircraft stability and surface 

properties for safety at high speeds govern (Civil Aviation Safety Authority, 2013). 

However, haul roads are part of the commercial production process of surface 

mining, and therefore the impact to the mine operator should be considered in 

defining the critical pavement design parameter. Thompson (2009) presents a 

system wherein haul roads are categorised with consideration of the acceptable 

operating condition, volume of material hauled daily and pavement lifetime. In turn, 

these parameters are used to define the limiting pavement compressive strain for 

design. It is important to note that both failure theories discussed above relate 

elastic response (sub-grade strain) to plastic failure (rutting). Aside from any 
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technical argument of the appropriateness of relating these two responses, the 

approach must be questioned for application to unsealed pavements where 

environmental factors are likely to have a significant influence on material 

performance. Despite such complications, the method reported by Thompson (2011) 

provides the impetus for further investigation of the pavement condition in 

conjunction with rolling resistance, as it indirectly considers rolling resistance due to 

including a performance index in the determination of the road category. Thompson 

(2013) considers that only the functional performance of the haul road influences 

rolling resistance. Therefore, it is considered prudent that an extension be pursued 

to allow measurement techniques to replace subjective assessment of surface 

defects, and include the influence of structural capacity. A mine owner or operator 

would benefit from being able to estimate the cost associated with use of a haul 

road during the design phase. This can then be used with the best available analysis 

techniques, as discussed in Section 2.7.5, to optimise the costs associated with 

material haulage considering pavement design, construction and haul truck 

operations.  
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3 Procedure 

 Project Overview 3.1

The process taken to define haul road rolling resistance and explore the adequacy 

of current structural analysis techniques is presented in Figure 3.1. Within the 

project were two distinct processes. To the left of Figure 3.1 the primary focus of the 

project is represented, to define the factors affecting haul road rolling resistance. 

This is broken into two streams; functional or surficial pavement characteristics and 

pavement structural capacity. Definition was made by pavement roughness and 

texture for the former and pavement deflection for the latter. In turn, measurement of 

pavement deflection allowed investigation of various pavement structural analysis 

techniques, represented on the right side of Figure 3.1. In order to allow a definitive 

comparison of analysis methods, laboratory testing of the materials sampled on-site 

at the deflection test locations was completed for input into structural analysis. 

Deflection and soil modulus values were then used to test the accuracy of 

commercially available software in order for recommendations to be made as to the 

most appropriate for use in haul road pavement design, with a view to optimising 

haul truck rolling resistance. 

The following section details each step of testing and analysis completed as part of 

the project.   
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Figure 3.1: Project Flow Chart. 

 

 Experimental Design 3.2

The experimental method adopted for this project was motivated by the research 

needs arising from the lack of targeted investigations, as identified in Section 2.7. In 

general, there was a focus on utilising accepted pavement parameters in the 

investigation of haul truck rolling resistance. This approach has not been taken in 
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previous research, which meant that extending the findings from the study of 

highway pavements to haul roads is difficult. The following discussion explains the 

approach taken for the in-situ and laboratory testing of haul road pavements.  

As stated in Section 2.7.1, full-scale testing was considered the optimal means to 

investigate the influence of pavement properties on haul truck rolling resistance. 

Firstly, this was to address the lack of such testing completed to date, but also 

avoided the difficulty of relating the results of smaller, scaled testing to in-service 

haul trucks. As the influence of pavement deflection was a key parameter being 

investigated, it was considered critical that actual wheel loads and a ‘typical’ 

pavement structure and materials be utilised in the testing. Similar to the lack of full-

scale testing for rolling resistance in the literature, quantitative means of describing 

pavement texture, roughness and deflection for haul roads were found to be rare. 

This has meant that some inference or extrapolation of results must be made to 

compare the available research findings. Secondly, simplified testing introduces the 

risk of experimental error, where subjective assessment is required (for example the 

RDS detailed by Thompson, 2011) or where idealised tests must be calibrated to 

estimate a specific physical response. An example of an idealised test is the use of 

FWD to estimate potential rolling resistance through pavement hysteresis (Lenngren 

et al, 2010). In an attempt to avoid such complications, every effort was made to 

utilise full-scale testing, which meant that no standard test methods were available 

and resulted in the development of the in-situ tests detailed in Section 3.3.   

The pursuit of full-scale testing presented challenges, as a single haul truck can 

transport in the order of 8,000 tonnes of iron ore in a single shift, which at the time of 

testing was valued at approximately $128AUS per tonne (ycharts.com). As a result, 

the mine operator imposed strict time restrictions on the availability of a fully 

functioning truck and driver. For this reason the development of tests included a 

focus on rapid repeatability and utilising a minimal amount of equipment. Section 3.3 

details the process undertaken to determine the most appropriate means of testing, 

and the development of each test, culminating in Section 3.5 which details the test 

and analysis method used for in-situ testing. 

The goal of in-situ testing was primarily to determine which pavement or operational 

parameters most impact haul truck rolling resistance. From the literature, it was 

evident that pavement structural and surface properties needed to be measured, but 

also truck speed and load should be varied. Air drag was also a significant issue that 

needed to be addressed, despite the relatively slow operating speeds of haul trucks, 
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their substantial frontal surface area means that a significant degree of drag can be 

generated in times of high wind speed. For this reason, wind speed was monitored 

regularly throughout rolling resistance testing. The deflection test results presented 

an opportunity for an investigation of numerical modelling methods for haul roads, 

This was aided by the fact that the entire deflection bowl was able to be measured 

via the test method developed (see Section3.5.7). With the aid of sampling and 

laboratory testing of haul road pavement materials (which was used to determine 

material parameters) key inputs for modelling were obtained.  

Laboratory testing was planned to define the elastic modulus and shear parameters 

of the samples taken from each pavement section, with a similar stress state as that 

experienced when loaded by a haul truck. To achieve this, the confining and 

deviatoric stresses within accepted test methods for triaxial testing with monotonic 

and repeated load tests were extended up to a maximum deviatoric stress of 

1000kPa. The data from the monotonic load testing allowed the Mohr-Coloumb 

shear parameters for an unconsolidated undrained sample to be determined, which 

provides a key understanding of the physical properties of the material. The 

definition of these parameters then allowed various pavement modelling techniques 

to be trialled.   

As noted in Section 2.7.5, there are a number of software programs available that 

could be applied for the purpose of haul road pavement analysis. Although linear-

elastic and FEA solutions should in theory produce similar outputs under identical 

inputs and assumptions, this situation does not necessarily arise when utilising 

commercial pavement design software. For example linear-elastic analyses, such as 

the solution employed by CIRCLY, assumes loading to be applied over a circular 

area of an axisymmetric pavement. From interrogation of terrestrial laser scans 

taken to measure pavement deflection under haul truck wheel loads in this project, it 

is shown that contact areas are not circular. Furthermore, the question of pavement 

geometry for modelling has significant practical implications. Ghadimi et al (2013) 

have reported erroneous calculated pavement strains when utilising a plane-strain 

assumption. This result should be tested for haul road pavements and extended to 

consider three-dimensional modelling. It was considered valuable to define which 

analysis techniques can accurately predict surface deflections. To further this, the 

most appropriate modelling technique was to be recommended through comparison 

of observed and predicted surface deflection and curvature. Such knowledge is 

aimed at informing future researchers and practitioners currently undertaking 

mechanistic-empirical haul road pavement design.   
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There are only a limited number of pavement failure criteria that are reported in the 

literature that can be applied to haul road design. The earliest example is the CBR 

curves reported by Kaufman et al (1977), which apply the expressions reported by 

Turnbull et al (1957). This approach has since been updated by authors such as 

Thompson (2013), utilising failure criteria developed from various iterations of 

testing at the U.S Army Corps of Engineers Waterways Experiment Station. The 

most recent failure criteria developed from testing at this location was that reported 

in Pereira (1977). Further testing was completed in both the USA and France in 

preparation for larger commercial aircraft wheel loads that were planned to come 

into service in the early 2000s. However, to date there have not been any changes 

recommended for the failure criteria. Wardle et al (2001) completed a validation of 

the criteria for the development of the APSDS software. This program calculates the 

pavement life by considering the sub-grade compressive strain calculated for a 

given wheel load and pavement layer structure. Some validation is required for use 

on haul roads, as caution has been advised using such analysis methods for 

pavements that do not have at least a 40mm surfacing (Jameson, 2008). The 

pavements included in the field trials from which the failure criterion was developed 

all had such a surface treatment. Therefore, it is considered necessary to trial the 

linear-elastic solution method for haul roads, prior to proceeding with more detailed 

research on the design of such pavements. This project benefits from having in-situ 

loading/deflection data and pavement elastic modulus values that have been 

defined in a variety of ways. As such, predicted deflections can be compared to 

those measured, providing an opportunity to comment on the accuracy of different 

analysis approaches and recommend the most suitable for haul road design. 

Thompson (2011) considers the limiting pavement lifetime criterion to be pavement 

layer strain, although the criterion for limiting strain is determined from the daily 

haulage mass and desired level of serviceability. This has been developed through 

the back analysis of in-service haul road pavements. All design criteria for haul 

roads the structural design of haul road pavements refer to the generation of 

pavement surface rutting and roughness as the mechanism representing the end of 

the pavement’s serviceable life. If either pavement stiffness or roughness was found 

to significantly impact rolling resistance, the design criterion for haul roads should be 

revisited to include some consideration of operating costs, which would be 

represented by the estimated rolling resistance.  

An examination of the combination of analysis technique and failure theory is also 

required. The critical pavement response should be calculated via a method that 
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applies a validated pavement model. Therefore, if rolling resistance was found to be 

dominated by surface roughness, the current methods employed could be retained 

but with a greater understanding of the most appropriate method for pavement 

analysis. This ability would be perhaps even more crucial if pavement stiffness was 

found to significantly influence rolling resistance. In this instance, an understanding 

of the layer structure that produces the greatest net stiffness under the loading of 

the design vehicle would be an important element of the pavement design process.  

 Development of In-situ Test Methods 3.3

The testing identified above was further investigated in line with the findings of the 

literature review (Section 2.7). A key requirement for each in-situ test was that it had 

to be quick and repeatable. Komatsu 830E haul trucks can nominally transport up to 

8,000 tonnes of iron ore in a working shift, and so the potential economic impact of 

taking a single truck out of service for even a single, 12 hour shift is significant. For 

this reason, the amount of time allocated for testing was expected to be limited, 

providing the impetus for tests that were repeatable and able to be completed in a 

methodical manner quickly. To aid in this goal, repeated use of similar equipment 

was pursued.  

 Pavement Deflection 3.3.1

As discussed in Section 3.2, it was considered advantageous to complete in-situ 

measurements of pavement deflection. Firstly, it allows direct comparison to rolling 

resistance testing and secondly, it facilitates a targeted investigation of various 

pavement modelling techniques. In both instances, this alleviates uncertainties of 

the in-situ pavement response when utilising either scaled or idealised deflection 

tests or measurements of pavement stiffness, with the assumption of purely elastic 

response. For example, it is widely accepted in geotechnical practice that the zone 

of influence of a loaded footing is proportional to its width. Since haul truck tyre 

contact patches are vastly larger than that of a typical commercial vehicle, it was 

considered that any other test method would not be entirely representative. This is 

based on the fact that the same volume of pavement material would not be 

equivalently stressed within the test.  

The mine’s operating procedures dictate that no person shall approach closer than 

50m to a running haul truck. Therefore, scaled tests (i.e. testing with a smaller 

vehicle) were an attractive alternative, as full access to the vehicle would be 

possible. However, the magnitude of deflection was likely to be much smaller, 
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meaning a much more sensitive measurement method would be required, and any 

extrapolation of the results would have to be based on the assumption of pure 

elastic pavement response. The latter is perhaps not inappropriate, but consider the 

discussion above, in conjunction with the fact that the effective pavement base-

course depth was two metres thick. It was considered unlikely that a wheel load of a 

utility or small earthmoving plant would necessarily penetrate (induce elastic strains) 

to the sub-grade layer. Lastly, there is not an established method for measuring 

pavement surface deflection under a single wheel load. Benkelman beam tests (see 

MRWA WA_326.1) utilise a commercial vehicle with a dual-wheeled rear axle. For 

these reasons, a scaled test was not considered appropriate.  

The second alternative for testing of pavement deflection was to utilise an accepted 

test of pavement stiffness. Two viable options were identified; falling weight 

deflectometer (FWD) and plate load tests (PLT). Typically, for use of the former, a 

reference contact stress (Jameson et al, 2009) is utilised in order to allow back-

calculation of pavement stiffness with commercially available software. The net load 

applied during the test is 40kN, with an alternative being the Heavy Weight 

Deflectometer, which can typically apply a maximum 320 kN load (dynatest.com). It 

is evident that both methods apply significantly smaller loads than that of a Komatsu 

830E (maximum wheel load 634kN; Komatsu, 2006). There were also uncertainties 

related to the use of this technology on an unsealed surface. PLT were an attractive 

option, as the plate size could be increased from the typical 152mm to 762mm ( 

ASTM, 2009) to represent the tyre contact area of a haul truck, alleviating concerns 

about a limited load penetration depth. The test could also be completed with 

repeated load applications (see test method D1195/D1195M-09, ASTM, 2009), 

providing some insight into the degree of elastic to plastic response of the 

pavement, and also providing an indication of any strain-hardening behaviour. 

However, if such a plate was utilised for the test, a load equal to that of the 

maximum wheel loads of a Komatsu 830E haul truck would need to be provided as 

a reaction force. The only way to provide such a large, mobile force would be to 

utilise a haul truck itself. Furthermore, geomechanics texts such as Knappett et al 

(2012), suggest the stress distribution under a rigid and flexible contact medium are 

not consistent, when applied to an unbound granular material. Thus, it was 

considered more appropriate to pursue a method that could measure the in-situ 

deflections under a haul truck tyre, rather than the deflection of an idealised loading 

via a steel plate. Some insight into the impact of modelling uniform contact stresses, 

as should be present under a rigid plate, could be gained by completing this test in 
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conjunction with measured deflection under a haul truck tyre. Safety concerns, with 

effectively jacking a haul truck in the field, and the financial cost of fabricating a 

suitable apparatus mean that unfortunately, PLT was not able to be completed. 

As a result of the above investigative process, it was decided a method that could 

measure the deflection induced by a haul truck tyre should be developed. Firstly, it 

is important to note that the mine site had a rule in place that no person shall 

encroach closer than 50m to a running haul truck. This meant that the test method 

would benefit greatly from being able to be operated remotely, such that the test 

equipment could be set up away from the haul truck. An alternative was to have a 

procedure for mechanically isolating the truck in place (including having to place 

large wheel chocks), which would allow work close to the vehicle for test setup. This 

option was considered to be prohibitive from a timing point of view. Another issue 

that would need to be addressed is the fact that the diameter of the deflection bowl 

induced by a haul truck is unknown, and is also likely to be large and variable. 

Consequently, the equipment used to measure deflection needed to be placed 

outside the deflection bowl. This is a known complication of both deflectograph and 

Benkelman Beam testing (Jameson and Shackleton, 2009). As a result, a scaled-up 

version of the Benkelman Beam was considered possible, but the size would be 

such (initial linear-elastic FEA modelling indicated that a length up to 20m may be 

appropriate) that moving the device in the field would be difficult. As a result, the 

development of less labour intensive methods were pursued. 

Adaptation of common surveying techniques appeared promising. For example, the 

precise levelling technique was considered. However, this would require a person to 

access between the truck’s rear axle dual tyres and survey control/datum points to 

be set up on the site. The latter was not considered prohibitive as the mine site had 

a survey team working full-time at the mine. Conversely, personnel access between 

two haul truck tyres was physically difficult and not favoured from a personnel safety 

point of view. However, two more advanced surveying techniques were evident after 

considering the available survey technology. 

Terrestrial laser scanning and photogrammetric methods are being rapidly 

developed for spatial monitoring of structures. Photogrammetric methods involve 

taking a series of photographs from several varied positions (generally at least 

eight), each with a reference scale within view (typically accurate to a micrometre). 

Post-processing algorithms can then be used to define the geometry of the 

structure. One short coming of the method in the context of this project was that 
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small targets (typically 32mm diameter circles of contrasting colour to their 

background) must be placed and captured in each photo. The relative position, and 

therefore distance between, these points is the output of the software’s algorithm. 

The placement of targets was anticipated to be difficult. To overcome this issue, 

temporary raised pavement markers were constructed, where the reflective strip 

used to provide delineation of a traffic lane edge for a driver was removed and 

replaced with a 32mm diameter black adhesive tape (see Figure B.1, Appendix B). 

A large number of these targets were then planned to be placed in an array over the 

pavement, such that they could be placed before the truck reverses back over the 

array. This process was developed in preference to the procedure outlined above for 

isolating the truck to allow close access. Although this method was plausible, it 

suffered from two short-comings. Firstly, trials of fixing the pavement markers to an 

unsealed surface proved difficult, without having to nail each to the surface. 

Secondly, the accuracy able to be achieved with photographing from a range of 

even 10m appeared questionable after initial trials. Post-processing was completed 

with the iWitnessPRO software (iwitnessphoto.com). However, it was difficult to 

accurately define the centre of the targets using this software. The centre is 

automatically selected and can be manually relocated, but due many of the photos 

having been taken from low incident angle (less than 45 degrees), the targets 

appeared quite pixelated. As such, the selection of centre points for each target from 

visual inspection was considered a likely source of error. Considering the accuracy 

of pavement deflection would need to be determined to at least an accuracy of 

1mm, it appeared the use of photogrammetric methods may not be suitable. 

Lastly, the use of terrestrial laser scanning utilising the time of flight technique was 

investigated. The basis of this method is that a laser beam travels at a constant 

speed within a known medium, thus measuring the time for receipt of the reflected 

beam allows the relative distance between scanner and the object to be defined 

(Vosselman et al, 2010). When repeated a large number of times, the relative 

distance at discrete points between the scanner and an entire structure can be 

defined. This technology is able to be used in its simplest form when the laser 

scanner is placed in a fixed position, and the surrounding environment adapted. It 

involves placing targets (typically a minimum of four) at any point within the scanned 

view, these are then used as control points during registration of two or more scans. 

This principle was able to be combined with the theory of superposition, as applied 

in Benkelman Beam testing, for the measurement of pavement deflections. This 

process involved scanning the pavement area of interest with the truck in place and 
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repeated after the truck was removed from the area. The two scans were then 

combined (registered) and the difference in geometry of the two surfaces defined 

through post-processing with the Leica Cyclone 8.1.3 software (Leica Geosystems, 

2014).  

The utilisation of terrestrial laser scanning had several benefits over the other 

techniques discussed above. The scanner was able to be remotely operated via a 

50m long Ethernet cable, meaning the truck could be moved into the desired 

location after the scanner was placed. Measurements could also be completed with 

use of the full-scale haul truck wheel loads. Scanning times were typically 10 

minutes at a resolution of 10mm (i.e. the defined points within the scanned area 

were spaced on an orthogonal grid at 10mm intervals), which meant the test was 

quick and repeatable. The test also presented the best means to measure pavement 

curvature, as it would be coincidentally captured simply by extending the scan area 

to a sufficient offset from the wheel loads. An understanding of pavement curvature 

provides greater insight into the structural response of the haul road pavement and 

supporting sub-grade. In similar fashion, the interaction between adjacent wheel 

assemblies and axles was able to be estimated by mapping deflection between load 

locations. Load interaction is subject to significant debate with regards to pavement 

modelling and thus this data is valuable for testing the adequacy of various 

modelling methods (See Section 5.4.2). The scan data also allows one to measure 

the tyre contact patch geometry, providing insight into a critical modelling input 

commonly estimated for large off-the-highway radial tyres.  Lastly, as discussed in 

proceeding sections, the technology also provided an effective means of acquiring a 

pavement alignment survey, including the quantification of roughness and texture.  

Terrestrial laser scanning was trialled and developed prior to commencement of 

measurement on the mine site. Details of validation testing of laser scanning for the 

desired accuracy (0.5mm)  is presented in Appendix B.  

Further detail of the method, as applied within the testing phase of the project, along 

with details of the post-processing, is contained within Section 3.5.7.1. 

  

 Pavement Roughness 3.3.2

Pavement roughness is known to significantly influence the rolling resistance of 

highway vehicles, as discussed in Section 2.2.5. For this reason, it needed to be 

well defined for this project. Further, a single value quantifying roughness, such as 
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the IRI, was not preferable, as it may not provide sufficient insight into the nature of 

pavement surface defects that result in changes of rolling resistance. Each of the 

methods discussed below were considered with a view to simplifying the testing, 

with the benefit of applying an established and accepted test method. However, the 

majority of the methods suffer from an inability to distinguish between short and long 

wavelength roughness. The measure of roughness (specifically NAASRA counts or 

IRI) was developed with rider comfort in mind, and consequently may not be the 

best representation of vehicle response for a large, rigid haul truck.  

The most simplistic means to define haul road roughness, with the added benefit of 

being directly related to a published rolling resistance function, is the RDS 

(Thompson et al, 2003). Such a measure is highly practical for the road owner, but 

suffers from subjectivity of the assessor. However, a visual inspection procedure 

does present an opportunity for the assessor to note the nature of surface defect, 

which may provide insight into how the design, construction or maintenance system 

may be optimised. Therefore, the RDS was adopted for the project. However, a 

more detailed method was also required to provide greater understanding of the 

rolling resistance generated from pavement response.  

A conventional method for measuring roughness, which could be applied to capture 

the relative dynamic response of the haul truck, was an adaptation of the quarter-car 

model (Figure 3.2). Examples of this approach that may be adaptable to haul trucks 

include the Response-Type Road Roughness Measurement Systems (RTTMS) 

such as the NAASRA meter (Mclean et al, 1996). With such measures, the 

roughness is estimated from the measurement of relative movement between the 

rear axle and body of a vehicle, or from the response of the components shown in 

Figure 3.2. Although such a measure is somewhat attractive, it is predicated on the 

dynamic response of the vehicle, and thus was expected to be difficult to implement 

with a haul truck. It may have been possible to utilise a smaller vehicle such as a 

utility, as more advanced methods are now available employing systems installed on 

utility vehicles, as a result these were preferentially investigated.  
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Figure 3.2: The quarter-car model (Gillespie, 1992). 

  

 

One system that is fitted to a utility type vehicle for defining pavement roughness is 

the ARRB roughometer. As discussed above, this device is of the vehicle response 

type, however it utilises accelerometer measurement of axle movement to remove 

the uncertainties associated with individual vehicle response (ARRB Group, 2011). It 

was considered that this device could adequately define the pavement roughness of 

the haul road. Ultimately, it was not utilised due to development of the technique 

applying terrestrial laser scanning described below and in Section 3.5.6, but also 

due to limitations for utilising it to measure pavement texture (see Section 3.3.3). 

Laser profilometer methods, such as that detailed in Austroads test method 

AG:AM/T001 (Austroads, 2007), are commonly used to define long sections of road 

pavement condition, whereby the output is IRI per unit measure (100m in the case 

of the test method referenced). As it was planned to utilise laser scanning to survey 

the pavement alignment, it was also investigated for the definition of pavement 

roughness. If a high resolution scan could be obtained, it would also provide the 

benefit of being subjected to detailed analysis after testing. The registration 

procedure available within the Leica Cyclone 8.1.3 software also meant that long 

sections of pavement could be scanned from multiple locations and the scans joined 

together for analysis.  
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Ultimately, the method of terrestrial laser scanning was adopted. A detailed 

description of the test and analysis method is contained within Section 3.5.6. 

 

 Pavement Texture 3.3.3

In much of the literature, pavement texture is contended to significantly impact 

rolling resistance, through generation of tyre hysteresis (see Section 2.2.5), although 

it is unclear if this relation extends to haul trucks. Further, haul truck tyres are vastly 

larger than those fitted to common commercial vehicles. Subsequently it is 

contended that a short-wavelength roughness could induce tyre and vehicle 

response in a haul truck analogous to that experienced by a commercial passenger 

vehicle in response to pavement megatexture. For this reason, it was considered 

advantageous to adopt a method of texture measurement that can be related 

directly to that of roughness from terrestrial laser scanning (see Section 3.3.2 and 

Section 3.5.6). 

Pavement texture is most commonly measured via laser profilometer. However, 

concerns were raised by owners of such equipment when approached to complete 

testing for the unsealed pavements examined within this project. Feedback received 

indicated that measuring texture with sensitive equipment on rough pavements 

ultimately presents a risk to the integrity of the laser equipment, and thus it is 

generally avoided. For this reason, the measurement of pavement texture was 

trialled with the sand patch method, utilising Austroads test methodology 

AG:PT/T250. Attempts trialling this method proved troublesome, as the texture of 

the sections considered were (in the case of Section 2 and 3) very high, in contrast 

the AG:PT/T250 method only considers texture depth up to 6mm. It is possible an 

extrapolation from the method could be made, however it is not clear how much 

additional sand should be used for a given texture depth greater than 6mm, or if the 

standard cylinder used for spreading the sand would be appropriate for this task.  

To overcome these issues the pavement texture was estimated from measurements 

taken from the alignment scans with a terrestrial laser scanner, as discussed in 

Section 3.3.2 and detailed in Section 3.5.6. 

 Rolling Resistance 3.3.4

An ability to accurately define the rolling resistance experienced by a haul truck was 

critical to the project. Several methods are available for defining rolling resistance 
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generally, however only the towed and coast down method have been applied to 

haul trucks previously and neither have a published test method.  

The measurement of rolling resistance is often complicated by misinterpretation of 

rolling and driving resistance (see Section 2.2.1). The methods below generally 

relate to the measurement of driving resistance (except for cart methods), which in 

keeping with this report is also referred to as rolling resistance.  

3.3.4.1 Available Methods 

Tannant et al (2001) describe a method for towing a haul truck with suitably powerful 

mine equipment in order to provide accurate results. The rolling resistance is 

calculated from the measurement of drawbar pull required to sustain constant 

motion of the truck. This is a novel way of measuring rolling resistance and is the 

basis for the initial scaled-down trials described in Section 3.3.4.2. Some 

shortcomings do exist for this method. The first is that a continuous monitoring of the 

load cell tension is required, which can be overcome with the use of a digital data 

logger. Further, the method assumes the tension in the sling used to pull the truck is 

consistent. For this to be valid the pavement rolling resistance must be assumed 

constant across the section, otherwise the truck would accelerate and decelerate, 

modifying the tension in the sling. Ideally the sling would be made of a relatively stiff 

material, which is at odds with commonly accepted methods of towing large 

vehicles, whereby a brittle material is avoided due to the release of significant stored 

energy should the sling fail. Although not insurmountable, these issues would need 

to be addressed for the use of this method for testing on-site. 

Perhaps the most commonly used method to measure rolling resistance is the 

coast-down method. In this instance, the vehicle’s deceleration is measured after 

the gearbox is disengaged at a defined vehicle speed (Hammarstrom et al, 2008). In 

simplistic versions, the distance travelled by the vehicle is measured and the back-

calculated deceleration rate used to estimate the rolling resistance experienced by 

the vehicle. For this method to be applied, the test must be completed on a flat 

surface to remove uncertainty with acceleration or decelerations associated with 

road gradient. This method was pursued through trial testing described within 

Section 3.3.4.2, where the introduction of an accelerometer to log the deceleration 

rate was introduced in the second round of tests, in an attempt to increase accuracy 

and shorten the duration required to complete the test. This method also requires 

accurate measurement of vehicle’s velocity at the commencement of coasting. 

Developing such a test method was an attractive option as there is a relatively large 
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amount of literature describing the implementation and analysis of such testing, as 

well as regression results relating pavement properties and rolling resistance for 

different sized vehicles. A comprehensive summary is provided in Sandberg (2011) 

and the reader is referred to this paper and Section 2.2 for further background.   

Both methods discussed above require the vehicle in question to be able to be 

placed in neutral (in the case of coast-down tests, at speed) and safely towed. 

Unfortunately, many modern haul trucks, including the Komatsu 830E haul trucks 

available for use within this study, employ electronic drivetrain systems. A main 

diesel generator feeds a central inverter, which in turn powers the wheel hub motors 

fitted to the rear axle. The basis of such a system is efficiency and fewer mechanical 

components requiring regular maintenance (komatsu.com.au). However, it also 

means that the trucks cannot be placed into neutral at speed. They can be towed, 

however the mine operator only does so when all other options have been 

exhausted, for fear of causing damage to the wheel motors. This meant that the 

towed method was considered only a ‘last resort’ and the coast-down method would 

not be possible.   

As discussed previously, in Section 3.2, cart methods were not considered 

appropriate for rolling resistance testing. It is the author’s opinion that for similar 

applications to this project, such methods require thorough validation for specific 

vehicles, which in turn requires full scale testing. That is not to say such methods 

cannot provide benefit as a monitoring and asset management tool for haul roads, 

as described in Tannant et al (2001).  

Although applied in a limited number of studies, and not with electric wheel motors, 

the steady state torque method appeared to present an opportunity to overcome the 

issues discussed above. Jamieson et al (2002) present the case of a small 

commercial truck being used for testing over various surfaces, where the driving 

torque is continuously measured. In conjunction with measurement of the wind 

speed and direction, this allows the rolling resistance (more specifically the driving 

resistance) to be calculated at each point of the test. The Komatsu 830E haul trucks 

available for this study are fitted with on-board monitoring software in-built to the GE 

Invertex electric drive system. This system can monitor a large number of truck 

sensors and data loggers at any time, which includes main inverter power output 

and also individual wheel motor torque output. Both can be utilised to calculate the 

rolling resistance. However, the former will include accessory and mechanical 

losses, whereas the latter is the direct torque applied to the rear axle dual wheel 
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assemblies to produce truck motion. Therefore, with the appropriate parameters 

being logged by the GE Invertex software, the rolling resistance could be 

determined when the truck is driven in a steady state. Of course, this method suffers 

from the possibility of the truck being driven inconsistently in the form of throttle or 

steering changes. For this reason, the data was to be closely analysed with several 

layers of screening to remove perceived inconsistencies, as detailed in Section 

3.5.8.  

3.3.4.2 Trials 

As a result of the literature search and desktop study of different rolling resistance 

test methods, trials were undertaken. All trials in the proceeding section were 

undertaken prior to it being known that a haul truck with a suitable mechanical 

gearbox would not be available for testing. Both trials focussed on the testing of 

rolling resistance (more accurately driving resistance) of a Nissan Navara utility, with 

a net weight of 2060kg (including driver).   

An agricultural tractor was used to tow the utility in the initial trial. The general test 

setup for the second trial (identical set up to the first, only a car instead of a tractor 

was used as the towing vehicle) can be seen in Figure 3.3. A tension load cell was 

fabricated and calibrated for the purpose of this test, which can be seen in operating 

condition in Figure 3.4. Data was logged by a P3 strain indicator and recorder 

(Vishay Precision Group). Tension measurements were taken at a frequency of one 

second. The standard deviation of the between sample group’s recorded mean 

tension is reported, along with the mean in Table 3.1. This is included to provide an 

indication of test accuracy. The coast-down tests were conducted with the distance 

and time to stopping measured, in order to estimate the net deceleration rate of the 

utility via Newton’s second equation of motion. Note that a multi-link chain was used 

as the sling in the initial trial and an elastic nylon recovery strap was used to tow the 

utility for the second trial. The unsealed track used for the initial trial tests is shown 

in Figure 3.5 and was composed of dense sand, which had been compacted by 

decades of trafficking by farm equipment.  
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Figure 3.3: Photo of towed rolling resistance measurement trial test setup. 

 

 

 

Figure 3.4: Annotated photo of load cell setup used in towed rolling resistance 

measurement trials.  
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Figure 3.5: Track used for initial towed and coast-down rolling resistance 

testing trials. 

 

 

Table 3.1 presents the results for the average rolling resistance of towed and coast-

down tests from the initial trial. Note that the utility had a 780kg weight applied for 

the final two coast down tests included at the bottom of the table. A reasonable level 

of correlation can be seen between the respective test methods. However, the 

towing trial presented an increase in rolling resistance with speed, whereas the cost-

down test showed the opposite trend, for unloaded and loaded conditions. The 

addition of a load results in an increase in rolling resistance at both 10 and 20km/h. 

These initial results were encouraging. As a coast-down test was observed to be 

much easier to execute, a second trial was planned, with accelerometer logging of 

the vehicle deceleration instead of measuring the distance for the vehicle to stop 

from a designated speed. The track used for the second trial was composed of 

dense lateritic sandy gravel, as presented in Figure 3.6. 
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Table 3.1: Rolling resistance test method trial results – towed and coast-down 

with distance measurement. 

 

 

The test results from the second trial are presented in Table 3.2. Once again, this 

test showed some encouraging results at a test speed of 10km/h. However, 

correlation was poor at 20km/h. Further, it appeared that the accelerometers in-built 

to the HTC cellular mobile phone and Asus tablet were rather insensitive to the rate 

of deceleration. The results between 10 and 20km/h tests are very similar. This 

issue may have been due to the software application used (which was sourced at no 

cost from the ‘Google Play’ application store), or the accelerometers themselves 

may have been inappropriate for the task.  

Overall, the rolling resistance was found to be lower than that found during the initial 

trial. This may be attributed to having been completed on a dense, very even gravel 

surface as opposed to the sandy track used in the initial trials. The standard 

deviation of the towed test results were similar to the initial trial, suggesting some 

repeatability of the method. Both trials presented a relatively low rolling resistance if 

compared to Table 2.5. 
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Figure 3.6: Track used for second rolling resistance test trial. 

 

 

Table 3.2: Rolling resistance results from second test trial (coast-down with 

accelerometer and towed). 

 

 

Note, the coast-down method (distance measurement instead of logging of 

deceleration rate) was also used, as above, to complete rolling resistance testing on 

a soft soil. The condition of the soil, before and after coast-down testing can be seen 

in Figure 3.7. The average rolling resistance in this soil, when tested at 10, 20 and 

30km/h was 12.5% with a standard deviation of 0.5%. This finding was in keeping 

with the results reported in Table 2.5 for muddy rutted material. 
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Figure 3.7: Coast-down test site, muddy rutted material (prior to testing, left 

and after testing, right). 

 

 

Both the towed and coast-down method for testing rolling resistance appeared 

potential solutions for testing haul truck rolling resistance. Each method had been 

reported in the literature for testing with haul trucks, Tannant et al (2001) for towed 

testing and Thompson et al (2003) for the coast-down test. This data would present 

a point of reference and comparison for the results of the testing completed for this 

project. Despite this fact, a simpler test was still pursued and ultimately adopted. It is 

the author’s opinion that the logging of wheel motor torque provides an opportunity 

for monitoring of rolling resistance of haul roads during operation (especially with the 

advent of autonomous haul trucks). Therefore, the need to move away from the 

methods trialled above was viewed as a positive development for the project and for 

mining practice in the future.  

 Statistical Analysis Techniques 3.4

Some common statistical analysis techniques have been applied within the 

interpretation and analysis of in-situ and numerical test data. Each utilised method is 

detailed in the following, to provide the arithmetic form of the test and key 
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assumptions. For ease of calculations, all statistical analyses were completed 

utilising the Microsoft Excel 2010 software. 

 

 Chi-Square Test  3.4.1

The chi-square test can be used to indicate the goodness-of-fit between an 

observed sample and a defined cumulative distribution function (Dickinson Gibbons 

et al, 2003).  

The chi-square test has been applied in this project to determine if a sample follows 

a normal distribution. In order to commence the test, the sample is divided into ‘bins’ 

of equal magnitude and the frequency of results within each bin tallied. The null 

hypothesis is that the expected frequencies are similar to those observed, thus the 

distribution closely approximates normality. Within this project the expected 

frequencies are calculated via a normal distribution, with upper and lower limits 

given by the upper and lower bound of each bin, and utilising the observed sample’s 

mean and standard deviation. Therefore if the chi-square statistic, calculated by 

Equation 3.2, is less than the critical chi-square value (calculated via Equation 3.1, 

at a level of significance of 0.05), the observed data is considered to follow a normal 

distribution. Note that the degrees of freedom (υ) involved in the test are equal to N-

1, where population parameters are to be estimated from the observed sample.  

 

  

Equation 3.1: Chi-square distribution (Spiegel, 2011). 

𝜒2 =
𝑁. 𝑠2

𝜎2
=

(𝑋1 − �̅�)2 + (𝑋2 − �̅�)2 + ⋯ + (𝑋𝑁 − �̅�)2

𝜎2
 

 

Where: 

𝜒2  is the chi-square statistic 

𝑁  is the sample size 

𝑠  is the sample standard deviation 

𝜎  is the population’s standard deviation 
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𝑋𝑁  is the sample mean 

�̅�  is the mean of sample size N 

 

 

Equation 3.2: Chi-square statistic for goodness-of-fit tests (Spiegel, 2011). 

𝜒2 = ∑
(𝑜𝑗 − 𝑒𝑗)

2

𝑒𝑗
𝑗

 

 

Where: 

𝜒2  is the chi-square statistic 

𝑜𝑗  is the observed frequency 

𝑒𝑗  is the expected frequency 

 

 One-Way ANOVA 3.4.2

Analysis of variance (ANOVA) tests determine if the means of multiple samples vary 

significantly (Stamatis, 2012).  ANOVA compares the variation within and between 

samples (often referred to as ‘treatments’) to calculate the F-statistic (Spiegel, 

2011), which in turn can be compared to a critical value to make a judgement on the 

null hypothesis. The null hypothesis is that the mean of all groups in the analysis are 

equal. The alternate hypothesis is that they are not equal. This test is used in the 

current project to consider if two or more test samples have originated from the 

same test case, and therefore should be considered as a single population. Where 

this is shown to be true for two or more samples, they are used to calculate the 

mean rolling resistance for a given pavement section and test case.  

The assumptions applied within an ANOVA analysis are provided by Stamatis 

(2012): 

1. the population is normally distributed 

2. variances are equal between samples 

3. three or more independent groups are applied in the analysis 
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4. samples are drawn randomly from the population 

5. measurement should be at least at the interval level. 

 

 

Table 3.3: Computational procedure for one-way ANOVA (Stamatis, 2012. 

 

The following notation is applicable to Table 3.3: 

x1, x2…  are the sample mean values 

n1, n2…  are the sample sizes 

K  is the number of samples 

N  is the population size 

  

Note that in this project, ANOVA has been applied to two groups in several cases. In 

these cases, a t-test (see Section 3.4.3) has been subsequently completed to 

confirm the result. 

 

  T-test 3.4.3

The t-test (often referred to as ‘Student’s t-test’) may be applied for testing of equal 

means when the distribution of a random sample is not normally distributed 

(Czaplicki, 2014). Student’s probability distribution, like a normal distribution, is 

symmetrical about a statistic of zero, with the density function and therefore the 
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shape of the curve varying with degrees of freedom (r in Figure 3.8). If the t-statistic 

is found to be less than the probability calculated for a given level of significance 

and degrees of freedom (area under relevant curve in Figure 3.8 or calculated via 

Equation 3.9), then the null hypothesis may be accepted.  

 

 

Figure 3.8: Student’s t probability distribution (Czaplicki, 2014). 

 

 

The t-test is used in the current study to confirm the result of hypothesis testing with 

one-way ANOVA (see Section 3.4.2), when only two samples are found to have 

equal means.   

The t-test, assuming unequal variance, is detailed below (Equation 3.3 to Equation 

3.8). Note that when using this form of analysis, it is preferable for the sample sizes 

to be equal (Stamatis, 2012). Many authors provide more detailed functions for the 

calculations of the t statistic, which have not been reproduced here. 

Firstly, the sample and population means must be calculated via Equation 3.3 and 

Equation 3.4. 

 

 



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                           Procedure 

Jarrad P Coffey                                                                                                       138 

Equation 3.3: Sample mean for calculation of the t statistic (Stamatis, 2012) 

𝑢𝑖 = 𝑥1𝑖 − 𝑥2𝑖 (
𝑛1

𝑛2
)

1
2⁄

 

 

Where: 

𝑢𝑖  is the mean of sample i 

𝑥1𝑖  is a point from sample 1 

𝑥2𝑖  is a point from sample 2 

𝑛1  is the size of sample 1 

𝑛2  is the size of sample 2 

 

 

Equation 3.4: Population mean for calculation of the t statistic (Stamatis, 

2012). 

�̅� =
1

𝑛1
∑ 𝑢𝑖

𝑛1

𝑖=1

 

 

Where: 

�̅�  is the population mean 

𝑖 = 1,2,3,… 𝑛1 

 

Now, the t statistic can be calculated from Equation 3.5: 
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Equation 3.5: The t statistic (Stamatis, 2012). 

𝑡 =
�̅�1 − �̅�2

√
𝑄

𝑛1
2(𝑛1 − 1)

 

 

Where: 

𝑡  is the t statistic 

𝑄  is defined in Equation 3.6 

�̅�1  is defined in Equation 3.7 

�̅�2  is defined in Equation 3.8 

 

Equation 3.6: Factor Q, for calculation of the t statistic (Stamatis, 2012). 

 

𝑄 = 𝑛1 ∑(𝑢𝑖 − �̅�)2

𝑛1

𝑖=1

= 𝑛1 ∑ 𝑢𝑖
2 − (∑ 𝑢𝑖

𝑛𝑖

𝑖=1

)

2𝑛1

𝑖=1

 

 

 

 

Equation 3.7 (Stamatis, 2012). 

 

�̅�1 =
1

𝑛1
∑ 𝑥1𝑖

𝑛1

𝑖=1

 

 

 

Equation 3.8 (Stamatis, 2012). 

 



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                           Procedure 

Jarrad P Coffey                                                                                                       140 

�̅�2 =
1

𝑛2
∑ 𝑥2𝑖

𝑛2

𝑖=1

 

 

For use in hypothesis testing (equality of two sample means for this project) the 

critical t value is calculated from Student’s t-distribution (Equation 3.9). It is worth 

noting that this distribution closely approximates a normal distribution for large 

samples (>30) (Spiegel, 2011). The degrees of freedom (v) for this distribution is 

given by N-1. 

 

Equation 3.9: t distribution (Spiegel, 2011).  

𝑡 =
�̅� − 𝑢

(
�̂�

√𝑁
)
 

 

Where: 

𝑡  is the t statistic 

�̅�  is the sample mean 

𝑢  is the population mean 

�̂�  is the sample standard deviation 

𝑁  is the sample size 

 

 Kruskal-Wallis 3.4.4

The Kruskal-Wallis is a nonparametric test for analysis of variance, which can test 

the equality of medians (null hypothesis) among groups, based on the sum of ranks 

(Czaplicki, 2014). Results of the Kruskal-Wallis test closely resemble a chi-square 

distribution for sample sizes larger than five (Spiegel, 2011). It requires the data 

within all samples to be ranked in ascending order, such that if adjacent ranks are 

well distributed between samples, the sum of ranks would be divided proportionately 

(Dickson Gibbons et al, 2003). This is the basis of the calculation of the H statistic, 

shown in Equation 3.10. Nonparametric tests do not rely upon assumptions of data 
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complying with any specific distribution or equal variances between samples, and 

therefore provide an alternative for hypothesis testing, where assumptions of 

ANOVA fail to be met. Where the null hypothesis of the Kruskal-Wallis test is found 

to be acceptable, the sample data can be considered to have originated from the 

same population (Czaplicki, 2014). In the context of the current study, this means 

the samples inputted to a successful test may be used together to calculate the 

mean rolling resistance value for a given pavement section and test case.  

 

 

Equation 3.10: H statistic for the Kruskal-Wallis test (Spiegel, 2011). 

 

𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑗
2

𝑁𝑗
− 3(𝑁 + 1)

𝑘

𝑗=1

 

 

Where: 

𝐻  is the H statistic 

𝑁  is sum of ranks (sum of size of k samples) 

𝑘  is the number of samples 

𝑅𝑗  is the sum of ranks for sample j 

𝑁𝑗  is the size of sample j 

 

 

 Pearson Product-Moment Correlation Coefficient 3.4.5

The product-moment correlation coefficient is commonly used to test the linear 

correlation between two samples (Spiegel, 2011). It is based upon how far the 

samples lay from a regression line of best-fit. It ranges from negative one (a strong 

inverse correlation) to one (a strong positive correlation) (Graham, 2013). 

Correlation coefficient, r, may be calculated via Equation 3.11. The issue of sample 

size is critical for the correlation coefficient and for this reason reporting of its value 
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should be accompanied by a level of significance. This can be sourced from Table 

3.4, with the degrees of freedom being equal to the sample size minus one.  

 

 

Equation 3.11: Pearson’s sample coefficient of correlation (Stamatis, 2012). 

𝑟 =
∑ 𝑋𝑌 − 𝑛𝑋𝑌̅̅ ̅̅

√(∑ 𝑋2 − 𝑛�̅�2)(∑ 𝑌2 − 𝑛�̅�2)
 

Where: 

𝑟  is Pearson’s sample coefficient of correlation (dimensionless) 

𝑋  are observed values of the first independent variable 

𝑌  are observed values of the second independent variable 

𝑛  is the sample size 

�̅�  is the mean of the first independent variable 

�̅�  is the mean of the second independent variable 

 

 

Table 3.4: Pearson correlation coefficient levels of significance (adapted from 

the University of New England, 2015). 
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 Method of Least Squares Regression 3.4.6

The method of least squares derives a linear equation of best-fit for a dependent 

variable, given a sample of corresponding independent variables. The general 

equation of the regression line is given by Equation 3.12, with the gradient 

conveniently calculated by Equation 3.13. 

 

 

Equation 3.12: Linear form of equation produced by least-squares regression 

(Graham, 2013). 

 

�̅� = 𝑎 + 𝑏�̅� 

 

Equation 3.13: Regression equation for ‘b’, least squares method (Graham, 

2013). 

 

𝑏 =
𝑛 ∑ �̅��̅� − ∑ �̅� ∑ �̅�

𝑛 ∑ �̅�2 − (∑ �̅�)2
 

 

Where: 

𝑛  is the sample size 

𝑎  is the regression line gradient 

𝑏  is the regression line intercept 

�̅�  is the dependent variable 

�̅�  is the independent variable 

  

 

The coefficient of determination for the regression is then commonly calculated 

through analysis of the regression equation and original data, via Equation 3.14. 
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This is effectively the ratio of explained variation to unexplained variation (Spiegel, 

2011) and will vary from zero (all variation unexplained) to one (all variation 

explained).  

 

 

Equation 3.14: Coefficient of determination (Spiegel, 2011). 

 

𝑟2 =
∑(𝑌𝑒𝑠𝑡 − �̅�)2

∑(𝑌 − �̅�)2
 

Where: 

𝑟2  is the coefficient of determination 

𝑌𝑒𝑠𝑡  is the dependent variable estimated by the regression equation 

�̅�   is the sample mean 

𝑌  is the sample data 

 

The level of significance can then be determined taking the square root of the 

calculated coefficient of determination to determine the correlation coefficient, and 

comparing with the values stated in Table 3.4. 

 In-Situ Testing Method and Analysis 3.5

In-situ testing was completed at a Rio Tinto operated mine site in Western 

Australia’s Pilbara region over three days between the 24th and 26th of January, 

2014.  

 

 Site Selection 3.5.1

A site representative of common haul roads was sought for in-situ testing. A mine 

waste dump was ultimately selected as some control over the stratigraphy of the site 

was possible, due to knowledge of the material placed in subsequent lifts forming 

the dump. This was considered valuable, as it was not anticipated any invasive test 
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for definition of substructure layers, such as borehole or Cone Penetration Test 

(CPT), would be possible due to financial constraints. From discussion with mine 

planners, it was evident that the material present at the surface of the dump was 

representative of that placed below it to a significant depth. In total the waste dump 

was approximately 40m thick at the time of testing. It was composed of coarse 

clayey or silty gravels with large cobbles consisting of boulders and broken blasted 

fragments of Banded Iron Formation (BIF). This structure is typical of waste dumps 

throughout iron ore mines of the Pilbara region in Western Australia. 

With regard to rolling resistance testing, this provided confidence that variation of 

results along a pavement section was not due to significant changes in sub-surface 

stiffness. Therefore, it is effectively assumed that pavement deflection was equal 

along each pavement section.  

For pavement modelling, this meant that the characterisation of the sub-grade could 

be made with relative confidence. The parameter that would have provided the 

greatest additional benefit was the in-situ density of the waste dump material. From 

the author’s experience, it was known that density was a highly variable parameter 

for truck-dumped soil, with compaction by means of trafficking by haul truck and 

bull-dozer. The completion of large-scale density tests was not pursued, as it was 

not considered that it would provide significant benefit in estimating the elastic 

properties of the sub-grade for modelling purposes. This assumption was somewhat 

validated by the consistency of deflections between the two deflection test sites on 

Sections 1 and 2 (see Section 4.4). 

 

 Site Layout 3.5.2

There was constraint placed by mine operations on access to many areas of the 

mine site and availability of haul trucks for testing. Therefore it was decided to select 

a site that would allow for an efficient circuit to be followed for testing. This was set 

atop a very large waste dump that was essentially flat and comprised a total of 38-

41 metres of mine waste fill, placed in approximately 2m thick layers and compacted 

by means of trafficking by haul trucks and bulldozers. This methodology is common 

industry practice for construction of waste dumps, haul roads and land bridges and 

thus was considered a suitably representative site. Three sections were investigated 

in detail, including testing for deflection and roughness. Figure 2.2 shows the layout 

of the site, including notes for the location of deflection tests, the aerial photograph 

was taken approximately two months prior to the testing date. Note that the 
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abbreviation ‘St.’ refers to station numbers where deflection tests were completed. 

The abbreviation ‘Ch.’ designates the chainage of each section (m) with the zero 

chainage was chosen as the starting point of testing completed in an anti-clockwise 

circuit.  

 

 

Figure 3.9: Site layout and test sites (aerial photograph not taken at date of 

testing). 

 

 

Photos of each of the three sections are presented in Figure 3.10, Figure 3.11 and 

Figure 3.12. 
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Figure 3.10: Section 1, looking from chainage 80m back to zero. 
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Figure 3.11: Section 2, looking from chainage 110m towards zero. 
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Figure 3.12: Section 3, looking from chainage 98m back to zero. 

 

 

 Ambient Conditions 3.5.3

Ambient conditions were taken from the Bureau of Meteorology website for the 

region over the dates of testing. It was advised by the mine operator, based on 

previous continuous on-board monitoring of a sensor fitted within a tyre on the 

majority of the haul trucks on the site, that tyre temperature did not show very 

significant variation with ambient temperature and hence this was not considered a 

critical parameter. 

 

3.5.3.1 Wind Speed 

Wind speed was measured with a VelociCalc Rotating Vane Anemometer. The 

accuracy of this instrument is 0.01 m/s and thus more than exceeds the 

requirements of wind velocity for this project. This wind speeds were taken before 
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and after each set of testing (comprising three completed circuits) from the access 

platform to the haul truck, which means the measurements were taken near to the 

maximum height of the vehicle. 

 

 Haul Truck Description 3.5.4

The haul truck utilised for testing was a Komatsu 830E AC electric drive, fitted with 

40.00R57 tyres. The precise unladen weight it not known, but only minor additions 

(including the two passengers on-board during rolling resistance testing) had been 

made and the published value of 164.2 tonne (Komatsu, 2006) was utilised for this 

project. The payload was measured by on-board load cells to be 220 tonne, with the 

accuracy of this equipment known to be relatively high as it is used to monitor mine 

production, which is weighed at multiple other points between dumping and loading 

onto ships at the export port. As is common with off-the-highway earthmoving 

haulage equipment the truck was fitted with dual-wheel assemblies on the rear axle. 

Weight distribution is shown in Table 3.5, for an unloaded and loaded Komatsu 

830E haul truck. 

 

3.5.4.1 Tyre Pressure 

Tyre pressures were electronically monitored by the mine operator using a 

continuous on-board monitoring system. This facility was utilised for this project to 

confirm tyre pressures during testing, which were observed to remain very 

consistent once warmed through the driving of the truck to the mine waste dump 

location for testing.  

 

 Pavement Texture 3.5.5

Pavement texture testing was completed by means of terrestrial laser scanning, as 

detailed in Section 3.3.4. To define texture from this testing, 1m radius circular 

sections were chosen at three random locations along each pavement section 

(within the wheel paths). Generally these locations were nearer the centre of the 

section as the scans are of higher resolution in these locations due to being in closer 

proximity to the position of the laser scanner. A 1m radius circle was chosen to 

replicate the gross contact area of a dual wheel assembly of a Komatsu 830 haul 

truck with 40.00R57 tyres fitted (as utilised in testing), which resulted in each test 
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location being represented by an average of 315 scanned points. The selected point 

cloud data generated from the scans was then exported to Microsoft Excel, where 

texture was estimated as twice the standard deviation of measured elevations for 

each section. This value was selected to capture the deviations above and below 

the ‘average’ plane of elevations within the selected sections obtained for the test. 

All results for each pavement section were then averaged to define an estimated 

texture depth.  

This method for definition of pavement texture is considered to interface well with 

the low sensitivity of the method used to define pavement roughness, with the 

shortest moving average wavelength being 0.5m long. The basis for this decision is 

Figure 2.12, where 0.5m is presented as the boundary between the two surface 

properties. Therefore in simple terms there is some overlap of the two measures. 

However this was deemed necessary, as it was considered appropriate to consider 

texture within the extent of a tyre contact patch to truly represent surface features 

that could affect losses within a tyre. The selection of pavement roughness 

wavelength was based upon existing measures and thus it was considered 

appropriate to maintain these bounds. It is not considered that there is significant 

duplication of results between the 0.5m wavelength roughness and texture results. 

Lastly, note that both measures are not at any point utilised concurrently for 

modelling purposes and consequently it is not possible the effect of texture 

roughness within the 0.5-1.0m wavelength range can be over-stated in any larger 

effects such as rolling resistance estimates.  

Although this test method is non-standard and cannot consider microtexture or even 

potentially shorter wavelength macrotexture it is considered a suitable estimation of 

pavement texture for an unsealed pavement being trafficked by large vehicles. 

Difficulty with defining texture of unsealed pavement surfaces is known to be 

problematic and hence models such at the HDM-4 omit it from VOC estimations on 

such pavement surfaces. Utilising data from the adopted method for estimation of 

magnitudes of rolling resistance and ultimately VOC has inherent inaccuracies, as 

no empirical method has been developed with texture definition in this way. The 

intent of defining texture was primarily to allow subjective assessment of whether it 

has a significant effect on rolling resistance, when compared to levels of pavement 

roughness and deflection. Therefore the method adopted for defining pavement 

texture is considered adequate for this purpose.  
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 Pavement Roughness 3.5.6

The following describes how pavement roughness was defined for the study. 

 

3.5.6.1 Site Data Collection - Terrestrial Laser Scanning 

Pavement roughness was measured by means of a Leica C10 terrestrial laser 

scanning of each pavement section.. The laser scanner was placed at the centre of 

the pavement section and set to scan the entire section from one fixed location. To 

achieve a sufficient point-cloud density (scan resolution) at the extremities of each 

pavement section, the tri-pod supporting the scanner was extended to its full height, 

approximately 2.4m from ground level to the laser level. The resolution of the scan 

(orthogonal distance between data points) was set to 10mm, which resulted in a 1-2 

hour scan time for each pavement section.  

Recorded scan data was then exported to Microsoft Excel to determine the variance 

of pavement surface elevation within each wheel track  Following the data analysis 

detailed in Section, 3.5.6.2, roughness was expressed in terms of average standard 

deviation, calculated from moving averages of varying lengths in parallel with the 

pavement centreline. The benefit of this approach is that it allows a thorough 

analysis to be made, whereby roughness of differing wavelength can be evaluated 

for impacts on rolling resistance.  

 

 

Figure 3.13: Example result for wheel path elevation data. 
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Despite the shortcomings alluded to above, the International Roughness Index (IRI) 

was also approximated from the scan data. This allowed input into existing rolling 

resistance models that allowed comparison of various factors.  

 

3.5.6.2 Analysis of Data 

Registration (joining) of pavement scans was not required, as a single scan was 

able to capture the entire section in all instances. Leica Cyclone 8.1.3 software was 

then used to select the points comprising each wheel path, with this data then being 

exported to Microsoft Excel for statistical analysis. Wheel paths for a 40.00R57 tyre 

are approximately 1.1m wide (goodyearotr.com), however a section of 100mm width 

was selected at the centre of the wheel paths. This was a necessary refinement due 

to limitations in the volume of data that can be accommodated by a single Microsoft 

Excel spread sheet. 

To define pavement roughness the surface elevation standard deviation was 

calculated over differing moving averages (longitudinally along the wheel path 

centreline). This allowed comparison with instantaneous rolling resistance results to 

define the nature/wavelength roughness that impacts haul truck performance. The 

moving averages selected were 0.5m, generally considered the boundary between 

wavelengths constituting megatexture and roughness (Mclean et al, 1996), 1m, 5m, 

10m and 20m. Longer wavelengths were not considered reliable due to the nature of 

some sets of approximate steady-state rolling resistance data being only 50m in 

length (see Section 3.5.8.2). Each wheel path was investigated separately for each 

wavelength moving average, the average of both wheel paths was then calculated 

to define the mean standard deviation for each moving average. However the 

difference of elevation/roughness between wheel paths at equivalent chainages was 

also recorded and presented graphically as it was suspected it could be a source of 

rolling resistance.  

The pavement IRI was able to be approximated by means of Equation 3.15. This 

model has been developed for roughness with a spatial frequency of 0.01 to 5 

cycles per metre and has been found to correlate well with IRI and counts measured 

with the UK high-speed road monitor reasonably well (Mclean et al, 1996). Utilising 

a single wheel path to measure and define roughness is common practice (Gillespie, 

1992). However it was decided to utilise an averaging of the two wheel paths in this 

study to account for inconsistency of the road surface that likely arises from 
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construction with large equipment only and the absence of any quality assurance 

survey.  

 

Equation 3.15: Approximate calculation of IRI from variance from three meter 

moving average (Mclean et al, 1996). 

𝐼𝑅𝐼 = 0.4 + 1.9(𝑉𝐴𝑅3)0.5 

 

Where: 

𝑉𝐴𝑅3  is the variance of pavement surface elevation, over a 3m moving average 

wavelength. 

 

Note that the measure of IRI in Equation 3.15 considers the quarter-car model, 

discussed in Section 2.2.5 and thus does not describe the vehicle response or rider 

comfort experienced by an occupant in a large rigid dump truck. However its 

inclusion was considered beneficial to allow comparison with pavements described 

in the literature, as this is the accepted ‘standard’ measure for pavement roughness.  

 

3.5.6.3 Roughness Defect Score 

Each section of road was also assessed using the Roughness Defect Score 

described in Section 2.2.5. This methodology has been developed specifically for 

haul roads and thus all scoring was carried out in adherence to the guidance 

supplied by Thompson (2011). As with IRI, this was incorporated as it allows a 

better understanding of both similar pavements reported in the literature and also is 

used as a dependant variable within a relevant rolling resistance model (see Section 

3.5.8.3).  

 

 Pavement Deflection 3.5.7

 

The process undertaken to measure and analyse pavement deflection under static 

wheel loads of a Komatsu 830E haul truck is presented below. 
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3.5.7.1 Site Deflection Testing 

The measurement of pavement deflection was completed using a Leica C10 

terrestrial laser scanner. There is no precedent for this application of the technology, 

thus the procedure used was itself subject to development and testing. A test report 

of assurance testing is contained within Appendix B – Terrestrial Laser Scanner 

Assurance Test Report. Measurement involved defining of surface displacement 

between two scans taken around the area of pavement contained in between and 

around the dual-wheel assembly, with and without the truck parked in the area of 

interest. The physical setup of the test is presented in Figure 3.14. Note that the 

distance between the truck and scanner setup is somewhat deceiving in this photo, 

as the scanner is offset from the longitudinal axis of the truck, making the two 

objects appear closer than they actually are.  

 

 

Figure 3.14: Setup of pavement deflection testing. 

 

 

The procedure for testing is outlined below: 
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1. Leica C10 Scanstation is setup with appropriate targets (minimum 5) on the 

pavement surface, to be remotely operated to allow for compliance with the 

mine operators vicinity restrictions to heavy mobile equipment.  

2. The haul truck is reversed to within 15m of the Scanstation and parked. 

3. The targets are individually scanned to a horizontal resolution of 1mm and 

vertical resolution of 1mm.  

4. The area of pavement under the rear axle (variable distances to each side 

and behind the axle) is scanned at a horizontal resolution of 10mm and 

vertical resolution of 0.5mm. This is to allow reduce required scan times and 

is not considered to impact accuracy in the determination of the maximum 

surface deflection.  

5. Steps 3 and 4 are repeated after the truck is removed from the scanned 

area. 

 

3.5.7.2 Data Analysis 

The scans of the pavement surface with and without the truck in place were 

registered together using Leica Cyclone 8.1.3 software. As the targets and the 

scanner used at each location do not move between the two scans, this process is 

relatively simple. Leica Cyclone 8.1.3 software was then used to complete 

registration of the two scans and subsequently to provide measurements of 

displacement.  

The procedure for measurement of displacement using the Leica Cyclone 8.1.3 

software is outlined below. The surface in between and surrounding the dual wheel 

assembly is examined to detect the area over which the maximum deflection occurs. 

This should not be an isolated area but rather confirmed as the part of the deflection 

bowl showing the greatest difference between the two scans, to avoid the recording 

of analogous results. Deflection is reported as a maximum value stated to nearest 

0.1 of a millimetre. Observation of the testing report in Appendix B suggests an 

accuracy of 0.5mm may be more appropriate, however 0.1mm is retained to allow 

estimation of curvature for input to software for the back-calculation of pavement 

modulus and is thus carried through reporting of all deflection results. If a deflection 

bowl is able to be detected the deflection at each radial distance to a maximum 

radius of 2.5m was reported. For consistency, the curvature bowl has been defined 

from along the centreline of the right hand dual wheel assembly for all tests.  
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The process utilised for determining deflection in an area of interest was: 

1. A TIN mesh was applied to both point clouds for the area of interest 

(between and immediately surrounding dual wheel assembly). 

2. The mesh was exported to Microsoft Excel such that the displacement 

between the data points constituting the two meshes can be calculated. 

3. The average displacement was calculated, if the deflection showed 

inconsistency near the edges of the chosen area, a smaller area was 

chosen to remove curvature effects. However, generally the area observed 

for calculation of deflection spanned the distance between tyres in the dual 

wheel assembly, and was nominally 300mm long. 

 

3.5.7.3 Pavement Curvature 

Pavement curvature was also defined to allow back-calculation of pavement elastic 

modulus (see Section 3.9.1). The scan data used to define pavement deflection was 

used following registration of the scans taken with and without the truck present. 

From the registered scans, a strip of approximately 100mm wide was taken, 

commencing at approximately the end of the tyre contact patch between the right 

hand rear dual tyre assembly and continued backwards for approximately 3.5m. 

This area of interest then had a TIN mesh applied (essentially applying a smoothed 

surface to the point cloud), as per the procedure within Section 3.5.7.2 to allow the 

‘surface deviation’ feature to be utilised within Cyclone. The resulting point cloud 

had a resolution of 10mm and details the elevation difference between the loaded 

and unloaded scans, which was then exported to Microsoft Excel for analysis. Once 

the raw surface deviation data was tabled in Microsoft Excel the distance from the 

edge of the tyre contact patch was calculated for each point generated. After plotting 

the distance from the extremity of the contact path against deviation and trialling 

several different types of trend-line it was apparent that the correlation was poor, 

with R2 less than 0.5 in most cases. This appeared to result from the unevenness of 

the pavement surface, especially in locations where an isolated stone was 

observed. In an effort to smooth the data a 100mm moving average was calculated 

for the raw deviation data, which produced greater consistency. The moving 

averages were then plotted against distance from the extremity of the tyre contact 

patches, with a logarithmic trend-line fitted. Using the equation for the resulting 

trend-line, the deflection for 0.2m to 2.5m was defined. For the purpose of back-
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calculation of soil modulus it is also necessary to define the deflection at the load 

point, for this the maximum deflection as per the results in Section 4.4 were used.  

Note that the edge of the tyre contact path was used as the ‘zero radius’ point, as 

the contact patch itself is approximately 1.0m long (see Section 4.4.3). Due to 

geometric constraints of placing the scanner directly behind the wheel assembly, 

and occlusion effects (interference of the scans due to proximity to the tyres) 

scanning of the surface between the tyres was problematic. Typically, the scan 

extended only 0.5m from extent of the contact path nearest the scanner. In some 

cases where the scanner was further offset from the centre of the truck the angle 

was such that far less than 0.5m was able to be scanned between the dual tyres. 

For these reasons it was not possible to determine accurately the deflection at the 

very centre of the loaded area and instead the maximum recorded value was used.  

 

This method varies from that of the Benkelman beam test, in that the curvature is 

defined by measuring the deflection at varying radii from the tyre contact, rather than 

monitoring the reduction of deflection as the truck moves away from the testing 

location as in MRWA Test Method WA 326.1 (MRWA, 2001). Secondly the 

curvature is not defined by a ratio of maximum deflection and deflection at a chosen 

radii, as is done by Austroads (Jameson et al, 2009). Rather, the data acquired has 

been chosen to allow back-calculation of modulus via software generally utilised for 

analysing Falling Weight Deflectometer (FWD) test data.  

 

3.5.7.4 Interaction of Deflection between Tyres 

Various pavement design methods discussed in Section 2.4 describe the use or 

exclusion of interaction of deflections or strains between wheel gears. From the 

scans described above, with the addition of two scans taken from the side of the 

truck at Station 1 for Section 1 and Section 2, it is able to determine the amount of 

deflection interaction between the rear wheel gears and also front and rear axle. The 

same method for registration of the data from loaded and unloaded scans was 

utilised as is detailed in Section 3.5.7. Strips between wheels of approximately 

100mm were then ‘TIN’ meshed and the deviation point cloud determined. This data 

was then exported to Microsoft Excel to define the deflection profile of the surface 

between adjacent tyres. 
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3.5.7.5 Geometry of Tyre Contact Patches 

The geometry of the tyre contact patch is a critical input within pavement modelling 

and design. For that reason the geometry of contact patches was measured from 

the registered scans used to define maximum deflection. Data was incomplete in 

some circumstances, due to the line of sight able to be achieved by the scanner 

from its position relative to the truck. Where possible the maximum outline of 

tyre/pavement contact was recorded for dual tyre assemblies, as this is used for 

some design techniques. Examples of various contact geometry being measured in 

Leica Cyclone 8.1.3 software are presented in Figure 3.15 through Figure 3.17. 

 

 

Figure 3.15: Example of measurement for tyre contact patch length (elevation 

side view of the lower section of tyre on a pavement surface). 
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Figure 3.16: Example of measurement for tyre contact patch width (elevation 

view of dual tyre assembly on a pavement surface). 

 

 

 

Figure 3.17: Example of measurement for dual tyre assembly contact patch 

width (elevation side view of dual tyre assembly on a pavement surface). 
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The contact patch geometry results were averaged and then used to estimate the 

total truck weight with weight distributions taken from Komatsu (2006), see Table 

3.5, to transform a rear or front tyre load into the total truck weight. The results 

present an opportunity to comment upon the relative stiffness of the tyre carcass 

with respect to the total contact stress also considering inflation pressure.  

 

 

Table 3.5: Weight distribution for a Komatsu 830 haul truck (Komatsu, 2006). 

 

 

Further the total calculated tyre contact area was utilised to estimate the total truck 

weight via the relation presented by Hadi et al (2003) and reproduced in Figure 3.18. 

This estimation is often utilised for modelling purposes and therefore comparison 

with the known truck weight assists in commenting on the contact patch pressure 

distribution.  

 

 

Figure 3.18: Estimated tyre contact patch geometry from contact area (Hadi et 

al, 2003). 
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 Rolling Resistance 3.5.8

3.5.8.1 Site Data Collection 

Rolling resistance was measured through standard on-board power monitoring and 

logging equipment. Parameters logged included power and torque output, as well as 

the vehicle speed at a frequency of 20 milliseconds. The equipment necessary to 

complete such logging was simply a laptop computer connected with the GE 

Invertex software, which is the engine monitoring and management system supplied 

as standard with the GE motors utilised on Komatsu 830E-AC haul trucks. There 

was no means to automatically and accurately activate logging at the start of a test 

section, nor was the truck able to log its GPS location. In the absence of such 

capabilities, manual logging of the time the truck entered the test section was 

completed, this is accurate to only a second. However, the raw data was moderated 

to remove any anomalies within the first and last second of any logged test data. 

 

3.5.8.2 Analysis of Data 

To allow analysis of the data captured from on-board logging, all data was exported 

to Microsoft Excel. The process for calculation of instantaneous rolling resistance for 

each data point recorded (0.04 second intervals) is outlined in the steps below: 

1. Relative wind effects (see Section 3.5.3.1) were calculated considering the 

speed and direction in relation to the truck for each section that rolling 

resistance was tested. The equation used for the calculation of the power 

required to overcome air resistance is presented in Equation 3.16. The wind 

vector was calculated for each section from the wind speed/direction test 

results taken at the conclusion of each circuit driven (see Section 3.5.3.1). 

 

 

Equation 3.16: Power required to overcome wind effects. 

𝑃𝑎(𝐻𝑃) =
𝐹𝐴 ∗ 𝐶𝑑 ∗ 𝑀𝑃𝐻3

156,000
 

Where: 

𝑃𝑎  is the power due to air resistance (HP) 

𝐹𝐴  is the frontal area of the truck (542.07 square feet). 
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𝐶𝑑   is the aerodynamic drag coefficient (0.9 as per Caterpillar, 2007) 

𝑀𝑃𝐻  is the truck speed in Miles Per Hour (MPH) 

 

2. Rolling resistance force was calculated from the results of wheel torque 

measured by the GE Invertex software at each of the rear wheel assemblies, 

with the use of Equation 3.17. 

 

 

Equation 3.17: Driving force from wheel motor torque and wind effects. 

𝐹𝑇𝑂𝑇𝐴𝐿 = 𝐺𝑒𝑎𝑟 𝑅𝑎𝑡𝑖𝑜
𝑊ℎ𝑒𝑒𝑙 𝑀𝑜𝑡𝑜𝑟 𝑇𝑜𝑟𝑞𝑢𝑒 (𝑘𝑁𝑚)

𝑅𝑜𝑙𝑙𝑖𝑛𝑔 𝑅𝑎𝑑𝑖𝑢𝑠 (𝑚)
− 𝐹𝑊𝐼𝑁𝐷 (𝑘𝑁) 

 

Where: 

Gear Ratio  is taken as 31.875:1 (Komatsu, 2006) 

Rolling Radius  is considered to be 1.03*Static Wheel Radius (Jamieson et al, 

1999) 

𝐹𝑊𝐼𝑁𝐷  is a vector with the scalar value calculated by Equation 3.16. 

 

The total force was then used to calculate the instantaneous rolling 

resistance coefficient (RRC) by way of Equation 3.18. 

 

 

Equation 3.18: Rolling resistance coefficient. 

𝑅𝑅𝐶 (%) = 100 ∗
𝐹𝑇𝑂𝑇𝐴𝐿

𝑇𝑟𝑢𝑐𝑘 𝑊𝑒𝑖𝑔ℎ𝑡 (𝑈𝑛𝑙𝑎𝑑𝑒𝑛) + 𝑃𝑎𝑦𝑙𝑜𝑎𝑑
 

 

Where: 

𝐹𝑇𝑂𝑇𝐴𝐿   was calculated via Equation 3.17; 

Truck Weight (Unladen)  was 1610.8 kN; and 

Payload  was measured via inbuilt on-board load monitoring. 

 

3. Rolling resistance tests were completed for a total of three runs with all 

combinations of the following considered: 

 driving direction; 
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 unladen and full payload; and 

 15 km/h and 30km/h driving speed.  

 

Following acquisition of data from rolling resistance testing, as described above, 

analysis of data proceeded as below. There were two primary steps involved in this 

process: 

a) analysis of recorded torque data to determine the RRC attributed to each 

section and truck condition 

b) analysis of the correlation of pavement properties, pavement section and 

truck load condition against RRC, culminating in regression of functions 

predicting RRC from pavement parameters. This process is depicted in 

Figure 3.19. 
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Figure 3.19: Flow chart of analysis for rolling resistance test data. 

 

 

The process alluded to in a) resulted in three sets of data being derived for each 

pavement section and truck payload/speed combination. Each subsequent step 

resulted from greater detail within the analysis. This approach was taken to account 

for the uncertainty associated with the refinement (reduction) of data removing 
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indications of truck response to pavement properties. For example, due to the lack 

of previous haul truck rolling resistance testing in the literature, it was impossible to 

state with certainty that a ‘spike’ in torque was due to a particular isolated pavement 

property or pressure being momentarily applied to the truck’s throttle. Therefore, the 

analysis would search for trends within the data, after each set was calculated 

through the steps of analysis detailed below.  

Within the following discussion, a ‘test case’, shall denote a specific combination of 

truck speed and payload for the three pavement sections.  

Initially all raw data, with removal of data from the first and final second of testing 

from each pavement section (as described in Section 3.5.8.1), was collated for truck 

payload and driving speed. Each test case was made up of six individual tests, 

resulting from three traverses of the pavement section in each direction. The mean 

and standard deviation RRC was determined for each pavement section and test 

case. As a result of this process, the set of results denoted the ‘unscreened data’ 

was derived, as presented in Section 4.5.  

Subsequently, the ‘screened data’ was derived (results presented in Section 

4.5).This involved discarding RRC resulting from torque readings failing either of the 

criteria listed below. Note that both criteria are nominal in nature, but have been 

selected qualitatively from observation of all test data and the truck driver’s 

behaviour within the testing. As a result, it was considered that the driving speed 

and throttle applied was very consistent throughout the testing, hence changes in 

torque due to driver action should be relatively minimal. Further, observation of the 

unscreened data suggested that there was inherent variation within the RRC results, 

however it was clear that it was unlikely RRC would exceed a certain level (selected 

as the upper limit noted in 2. below) and should also not approach zero (resulting in 

the lower limit in 2. below).  

The criteria applied to derive the screened data involved removal of: 

1. any torque readings changing greater than 10kNm from the previous 

reading (with readings taken at a frequency of 0.04 seconds) 

2. any RRC reading less than 1 population standard deviation under lowest 

mean RRC from any of the tests, or greater than 1 population mean above 

highest mean RRC, was removed. 
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Following the process above, the mean and standard deviation was calculated for 

each test case, resulting in the screened data, as presented in Section 4.5. 

There was some consistency evident between the two sets of data derived above. 

However, it was considered appropriate to test the correlation of the remaining data 

of the six sets making up each test case. The adopted test method had not been 

attempted prior to this project and involved a human element. Furthermore, some 

variation would be expected between tests, due to slight differences in wheel path 

resulting in potential differences in the pavement characteristics traversed in each 

test. As highlighted in Section 3.2, it is not well defined in the literature which 

pavement characteristics most significantly influence haul truck rolling resistance. 

Therefore, it was not possible to give any precedence to any data set over another 

through subjective assessment. However, the variation in the mean RRC of each 

test suggests that the data should also be refined to consider only the data arising 

from tests where a statistical relation could be established. The basis and process 

for this decision is discussed below, drawing heavily on the techniques detailed in 

Section 3.4. 

Firstly, the data from each test underwent a chi-square goodness of fit test for 

normality, as per Section 3.4.1. The Microsoft Excel Data Analysis tool was utilised 

to determine the frequency of RRC data that fell into bins spanning 0.2% RRC, from 

0 to 4%. The calculated sample size, mean and standard deviation were then used 

to calculate the expected frequency within each bin, assuming a normal distribution. 

Note that bins below the minimum recorded RRC value and above the maximum, 

were excluded from the calculation of expected frequency. The recorded and 

estimated frequency for each bin was then used to estimate the chi-square test 

statistic. This value was then compared to the critical chi-square score for a level of 

significance (alpha) of 0.05. A typical distribution of the frequency of data is shown 

in Figure 3.20. 
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Figure 3.20: Example distribution of RRC, when distributed into bins. 

 

The outcome of the chi-square test was that typically, the data from the majority of 

rolling resistance tests was not normally distributed, see Section 4.5.2.  

Since many samples were found to not be normally distributed, it was also 

considered necessary to complete a nonparametric analysis. This approach was 

taken in an effort to avoid type two errors (incorrectly accepting a null hypothesis). 

As such, nonparametric analysis was completed for each test case considering the 

six original samples. The nonparametric test employed was the Kruskal-Walls, as 

per Section 3.4.4. This test is often utilised as a nonparametric alternative to one-

way ANOVA, and therefore was expected to be well suited for this application. The 

level of significance was once again adopted as 0.05 for nonparametric hypothesis 

testing. 

The following discussion provides an overview of the robustness of the ANOVA and 

non-parametric (Kruskal-Wallis) hypothesis tests. Robustness refers to the relative 

consequence of failure to comply with one of the test’s assumptions. This discussion 

is not exhaustive, as this is the subject of much literature, to which the reader is 

referred for further detailed discussion. The null hypothesis being tested for both 

tests is one of equal means (ANOVA) and of being selected from the same 

population (Kruskal-Wallis). The relevance of both hypotheses must be questioned, 

as some variance in measured wheel motor torque is expected due to changes in 

pavement properties and driver behaviour. This third step of analysis aims to find 

correlation in two or more sets of test data, under the assumption the resulting 



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                           Procedure 

Jarrad P Coffey                                                                                                       169 

population best represents the true steady state operating conditions of the haul 

truck on the pavement sections. In doing so, it must be remembered that useful data 

on the response to a given pavement property may be lost. This is the basis of 

giving the unscreened and screened data sets equal weight to that resulting from 

the following analysis (producing the ‘correlated data set’).   

It is often reported in the literature that violation of normality should be of little 

concern when completing ANOVA tests (Glass et al, 1972). Other authors report 

that the ANOVA f-test is known to be quite robust to the assumption of normality, 

when the number of factors is small and the sample size large (Akritas and 

Papadatos, 2001). The Kruskal-Wallis has been noted to have questionable ability 

when the number of samples is small (<5). Furthermore, from the same study it is 

concluded that even for non-normal data, ANOVA appears to outperform in this 

case (Khan et al, 2003). This view is further supported by Feir et al (1974), who 

state that when normality or homogeneity of variance is doubtful, ANOVA is 

recommended in preference of Kruskal-Wallis, with the latter becoming competitive 

for large sample sizes. The idea of noncompliance with base assumptions for 

hypothesis tests is extended with consideration of kurtosis (a measure of 

peakedness or flatness compared to a normal distribution) and skewness (a 

measure of the symmetry of the distribution) (Stamatis, 2012). It has been found that 

both ANOVA and Kruskal-Wallis are influenced significantly more by kurtosis of the 

error distribution than skewness, irrespective of its direction (Khan et al, 2003). 

Some caution is recommended, as literature such as Micceri (1989) warn against 

the potential bias of some investigators to find parametric techniques to be robust. 

Despite the above discussion relating to robustness, it should be noted that the level 

of significance has often been noted to generally be exceeded when sample sizes or 

variance is unequal (Glass et al 1972). The practical implication is that the 

probability of a type one error is greater than stated (by the tests’ alpha value). This 

results in conservative findings in the context of this project, where a correlation 

between two test samples is being sought. 

Type one errors (incorrectly rejecting a null hypothesis) were attempted to be 

controlled through observation of each tests p-value. This value represents the 

probability of mistakenly rejecting the null hypothesis (Stamatis, 2012). In all cases, 

the null hypothesis was accepted when the p-value was less than the level of 

significance adopted for the test (0.05).  



Doctor of Philosophy (Civil Engineering)             Mine Haul Road Rolling Resistance 
Curtin University                                                                                           Procedure 

Jarrad P Coffey                                                                                                       170 

Ultimately, the approach applied for this project, was to proceed with the mean 

values of samples found to have equal variances via ANOVA testing. This test 

showed the greatest correlation between samples, with 10 of the 12 tests cases 

having two or more samples being found to have equal mean values. This result 

was replicated for four of the 10 test cases through Kruskal-Wallis testing. A further 

two test cases were also shown to have samples from the same population.  

As noted in Section 3.4.2, ANOVA assumes equal variances between samples (as 

highlighted in Section 3.4). In an effort to provide further assurance against 

incorrectly accepting a null hypothesis of a relation between any two samples, a t-

test assuming unequal variances was completed for the two best correlated data 

samples from the ANOVA analysis. This test was completed in accordance with the 

procedure contained in Section 3.4.3. For both the ANOVA and t-tests a level of 

significance of 0.05 was adopted throughout. The null hypothesis was accepted if 

the test statistic (the F-value in ANOVA and t statistic in the t-test) was found to be 

less than the critical value, determined in accordance with the relevant distribution in 

Section 3.4. 

Where two or more samples were found to be related from acceptance of the null 

hypothesis through the test procedure above, the mean RRC was calculated. Data 

samples that were found to be from a common population were retained and carried 

through the remainder of the analysis. This data set shall be referred to as the 

‘correlated data’. These values were then utilised to test if the RRC data for each 

section and test case correlated with any of the pavement properties defined 

through the testing described in Section 3.5. Table 3.6 shows all potential 

correlations that are to be tested for each set of test data. Note that the greyed cells 

represent irrational combinations. For example, a deflection/curvature/modulus 

cannot be listed for the first two columns, as this combines average RRC values 

relating to an unloaded and loaded truck. This process was completed with use of 

Pearson’s product-moment correlation (r). The mean RRC values for each section 

and test case meant that the sample size being used to test the correlation was 

three. Therefore, as per Table 3.4, a statistically significant correlation was 

considered to have been identified when the product-moment correlation exceeded 

0.997 (single degree of freedom).  

The above procedure for correlation testing was completed for all three sets of data; 

the unscreened, the screened and the correlated data. 
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Table 3.6: Example table used for correlation testing of pavement properties 

and RRC. 

 

 

In an attempt to determine the percentage of induced rolling resistance arising from 

each pavement property, multiple variable regression was completed. An equation 

of the form shown by Equation 3.19 was pursued. Note it was considered that each 

pavement property should have a positive coefficient in order for the relationships to 

be rational. That is the function takes a form where the contribution of each 

pavement parameter to the total rolling resistance is added. Initially, this focussed 

on all measured pavement properties, however it soon became clear that rational 

relationships (those with no negative constants applied to any independent variable) 

only resulted for all test cases when only deflection and IRI were applied. As a result 

a regression equation was derived utilising these pavement properties for each set 

of data, considering all vehicle speeds. More significant correlations were observed 

between pavement properties and RRC for testing conducted at 30km/h, therefore 

regression was also completed considering data collected from testing at 30km/h 

only. The coefficient of determination was observed and noted to provide an 

indication of the significance of each result. The level of significance for each 

derived regression equation was controlled by observation of the significance 

associated with the derived F-value for each test. This is the probability that the 

resulting regression equation does not explain the variation in the independent 

variable (RRC). It is the calculated probability that regression F-value (regression 
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mean squares/residual mean squares) is less than that determined for the level of 

significance chosen for the test and the degrees of freedom in the regression. For 

this study it is considered necessary for this value to be less than 0.05 for the 

regression equation to be considered significant.  

 

Equation 3.19: Form of regression equation for RRC. 

𝑅𝑅𝐶 = 𝑎. 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 𝑏. 𝐼𝑅𝐼 + 𝑐. 𝑀𝑃𝐷 + 𝑑. 0.1𝑚 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 … … 𝑖. 20𝑚 𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 

 

Where: 

a, b, c, d……i  are regression coefficients 

Deflection  is the measured pavement rebound deflection 

IRI  is the estimated International Roughness Index (Equation 3.15) 

MPD  is the estimated Mean Pavement Depth 

0.1m Roughness  is the average standard deviation of the pavement surface 

elevation for a moving average wavelength of 0.1m 

20m Roughness  is the average standard deviation of the pavement surface 

elevation for a moving average wavelength of 20m. 

 

To further apply the regression equations derived through the above process, it was 

attempted to determine the relative impact of each pavement property in terms of 

the proportion of RRC resulting from each. By calculating the amount of RRC 

predicted by both pavement deflection and IRI with the regression equation for each 

data set, it was possible to examine which property was more significant. This 

process was completed twice, for all test speeds and again for only the data arising 

from testing at 30km/h. From observation of the resulting data it was evident that a 

significant difference occurred between testing with and without a payload applied to 

the truck. This result should be somewhat expected as a linear regression has been 

applied and deflection increases for the loaded case, but IRI remains constant for 

each section. It was evident from the results, that the proportions were very 

consistent for the screened and correlated data sets. However, the unscreened data 
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set showed much less influence of deflection for the analysis considering all test 

speeds. This is intuitive, due to the poor correlation between RRC and pavement 

deflection resulting from the correlations predicted by the process discussed above. 

Consequently, mean values were taken for the screened and correlated data sets, 

and the results arising from all test speeds and only 30km/h compared.   

The process described above, whereby a sequential analysis of RRC data is 

undertaken was considered necessary. It is uncertain exactly which changes in 

recorded wheel motor torque is related to driver behaviour, and which in response to 

some pavement feature. Therefore, to immediately discard test data due to some 

nominal rule or qualitative interpretation of the test data could restrict any correlation 

being found. Testing of correlation between rolling resistance and pavement 

properties at each level of data analysis was considered the best means to identify 

correlations. Where a consistent trends in correlation were observed between the 

three sets of data, it is considered a statistically significant influence of rolling 

resistance has been identified. 

Lastly, it should be remembered that the values of RRC presented in this 

dissertation in fact represent driving resistance. Due to the relative distribution of 

weight between an unloaded and loaded condition for a Komatsu 830E, the RRC 

values reported here should be doubled for the unloaded case and increased by 

50% for the loaded case. As discussed previously, it is considered appropriate to 

consider driving resistance when undertaking the procedure outlined above to 

determine the pavement properties most influencing RRC. However, the 

modification should be made in order to compare the data to findings of many of the 

other studies reported in the literature. 

 

3.5.8.3 Comparison with Available Models 

Although there are many models available for the estimation of the rolling resistance 

experienced by a rolling wheel, only a few have been considered appropriate for 

comparison to the physical tests completed in this project. Primarily this is due to the 

large vehicle mass of the haul trucks considered being vastly larger than that 

considered in the development of any models described below. One model that is 

investigated is that reported by Thompson (2011) and reproduced within Equation 

2.8  through Equation 2.10, which was developed though coast-down tests of haul 

trucks. Another model that has been developed (see Equation 2.11 and Equation 

2.12) for use with haul trucks but not yet validated is reported by Widodo et al 
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(2009). Caterpillar (2006) have also published an equation for estimation of rolling 

resistance, which is reproduced in Equation 2.11. This function is not included in the 

analysis for this project as tyre penetration is not visible on the tested pavements 

and deflections are far less than a centimetre (see Section 4.4). All of these models 

have been developed for haul trucks specifically, although the model reported by 

Widodo et al (2009) was developed with use of a towed trailer and had not been 

verified against full-scale test data for haul trucks at this time. 

As will be discussed in more detail in Section 3.6.1 with regards to fuel consumption 

modelling, the screened data set has been used for comparison purposes. This set 

has had uncertainty due to driver and truck response removed and therefore best 

represents the rolling resistance experienced by the truck. As the values measured 

in this study relate to driving resistance an adjusted set of rolling resistance results 

have been generated, considering the vertical load applied to each wheel in the 

testing. Further discussion of this process is supplied in Section 4.5.7. 

Several commonly applied models reported in the literature for passenger vehicles 

were also considered. This was completed despite the lack of understanding in the 

applicability of applying models derived for sealed highway pavements that have 

been trafficked by relatively light vehicles in deriving such models. However the 

basis of such models are pavement parameters that are focussed primarily on 

roughness and texture, with Benkelman beam rebound deflection included in some. 

Investigation of such functions therefore facilitates discussion of the potential 

relative impacts for haul trucks. 

During the 1990’s and early 2000’s considerable research was completed in New 

Zealand to define the effect of pavement surface on vehicle (specifically light truck) 

rolling resistance. Equation 2.5 presents the general equation to which these 

functions are applied. Note that the factors C0 and Cv have been expanded in 

Equation 2.3 and Equation 3.20. The first model considered was reported by Cenek 

(1994) and appears in an adapted form in Equation 3.20. This function utilises only 

IRI and vehicle speed as dependant variables. A similar function, taking account of 

rebound deflection and truck mass was then developed (Jamieson et al, 1996) and 

is presented in Equation 2.3. The two relationships were ultimately synthesised and 

the definition of pavement roughness further detailed to separate relative 

wavelengths, with the relation presented by Equation 2.6 and Equation 2.7. 

However this last modification is not able to be tested as it is not clear what 

wavelengths apply to short, medium and long wavelength roughness. A potential 
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issue with these functions is the inclusion of vehicle mass within the function. 

Development was completed with small to medium sized trucks whose Gross 

Vehicle Mass (GVM) did not exceed 13.01 tonnes during testing. However one 

potential advantage of this context is that the trucks were rigid and had similar load 

distribution to that of a large haul truck and were tested while empty and fully laden.  

 

 

Equation 3.20: Rolling resistance force as per Cenek, 1994 (via Greenwood et 

al, 2003). 

𝑅𝑅𝐶 = 0.0041 + 0.00043. 𝐼𝑅𝐼 + 0.0000025. 𝑣 

 

Where: 

𝑅𝑅𝐶  is the rolling resistance coefficient. 

𝑣  is the vehicle speed (m/s). 

𝐼𝑅𝐼  is the international roughness index (m/km). 

 

A modified version of the ARRB (Australian Roads Research Board) Road Fuel 

Consumption Model utilised within the HDM-4 VOC model was also considered. 

Equation 3.21 presents the rolling resistance factor due to pavement surface 

properties included within the model. As with the relations originating in New 

Zealand, this includes a term for Benkelman beam rebound deflection which 

provides the basis for consideration of this model. However the validity of utilising 

these functions is unclear considering the extreme wheel loading presented by the 

haul truck utilised during testing. Tyre response due to roughness and texture is also 

undoubtedly largely extrapolated, as the radius and thus contact patch is relatively 

much larger than would have been considered in the models development. 

Therefore the constants supplied in Table 3.7 may require modification. Despite this 

fact these models are tested in the absence of any alternative as the ability to better 

predict rolling resistance with a model that also allows estimation of fuel 

consumption (see Section 3.6) would prove a valuable input to mine planning. 
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Equation 3.21: HDM-4 rolling resistance surface factor (Worldbank via Zaabar, 

2010). 

𝐶𝑅2 = 𝐾𝑐𝑟2[𝑎0 + 𝑎1 × 𝑇𝑑𝑠𝑝 + 𝑎2 × 𝐼𝑅𝐼 + 𝑎3 × 𝐷𝐸𝐹] 

 

Where: 

𝐾𝑐𝑟2  is a calibration factor. 

𝑎0  to 𝑎3 are model coefficients, see Table 3.7. 

𝑇𝑑𝑠𝑝  is the Texture Depth using sand patch method (mm). 

𝐼𝑅𝐼  is the International Roughness Index (m/km). 

𝐷𝐸𝐹  is the Benkelman Beam rebound Deflection (mm). 

 

 

Table 3.7: HDM-4 rolling resistance surface factor coefficients (Worldbank via 

Zaabar, 2010). 

 

 

 

A couple of models resulting from recent research being conducted as part of the 

MIRIAM (Models for Rolling Resistance in Road Infrastructure Asset Management 

Systems) project are also trialled. Like the relations described above, these have 

been developed for light passenger vehicles with the consideration of a vast data 

set. One potential shortcoming is the fact that neither of the equations below 

considered unsealed pavements in their derivation. The first (Equation 3.22) was 
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developed as part of the ECRPD (Energy Conservation in Road Pavement Design, 

Maintenance and Utilisation) project and includes speed independent and 

dependent terms for the roughness (IRI), as well as pavement texture. Due to the 

large dataset it is considered a comprehensive comparison of pavement surface 

properties and rolling resistance and the further adaption made by the VTI (Swedish 

national roads authority) has been reproduced in Equation 3.23 and tested against 

rolling resistance data in this project.  

 

 

Equation 3.22: Rolling resistance coefficient derived in the ECRPD project 

(Sandberg et al, 2011). 

𝑅𝑅𝐶 = 0.0061 + 0.0014. 𝑀𝑃𝐷 + 0.00095. 𝐼𝑅𝐼 + 0.000076. 𝐼𝑅𝐼. (𝑉 − 20) 

 

Where: 

𝑅𝑅𝐶  is the rolling resistance coefficient. 

𝑀𝑃𝐷  is the mean pavement depth (mm). 

𝐼𝑅𝐼  is the international roughness index (m/km). 

𝑉  is the vehicle speed (m/s). 

 

 

Equation 3.23: Rolling resistance coefficient within the VETO model 

(Hammarstrom et al, 2012). 

𝑅𝑅𝐶 = 0.00414 + 0.00102. 𝑀𝑃𝐷 + 0.0000158. 𝐼𝑅𝐼. 𝑉 

 

Where all variables are as per Equation 3.22. 
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In instances where the RRC values estimated by an model are observed to closely 

match those measured, the Pearson correlation coefficient, as per Section 3.4.5, is 

analysed to provide greater insight.  

Lastly an attempt is made to compare the test results found in this project with the 

empirical data reported in the literature, mainly that contained within Table 2.5 and 

Table 2.6. There has been no specific methodology applied to assessing these 

relations as it is not being attempted to recommend any one for estimation 

purposes. Rather the predicted and measured values are to be subjectively 

compared to allow further comment on the impact of the various input variables.  

 Potential Impacts on Vehicle Operating Costs 3.6

The impact of pavement on Vehicle Operatic Costs (VOC) is a critical for defining 

road user costs, which holds significant potential benefits when the road in question 

is a (self-owned) critical piece of infrastructure for generation of revenue. In the case 

of mine haul roads an understanding of the relationship could assist in assigning 

haulage equipment maintenance and of course present opportunities to reduce 

operating costs. Within the literature there is an extremely limited number of models 

defining user costs for haul trucks and none that utilise pavement based inputs 

similar to those utilised within this study. Therefore only an attempt to define fuel 

consumption is made, through use of the HDM-4 model. 

 

 Fuel Consumption 3.6.1

Fuel consumption has been modelled through use and modification, where required, 

of the HDM-4 model as described in Section 2.3.1. ARFCOM, which was developed 

by the Australian Roads Research Board, is the basis of this model and hence the 

discussion above regarding use of the rolling resistance prediction function. The 

only variable considered here is the power required to overcome rolling resistance, 

in order to assess what percentage change in fuel consumption is probable from 

driving on the three pavement sections considered in the testing for this project. The 

factor for total tractive power is considered and analysed for sensitivity to pavement 

inputs including rolling resistance estimated from IRI results through use of the 

model derived by Cenek (1994), as proposed by Greenwood et al (2003) against 

rolling resistance coefficient results from this project (see Section 0). The ‘screened 

data’ set was used for input to fuel consumption estimates. This data set was 
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utilised as both models make allowances for accessory power and mechanical 

inefficiency. The HDM-4 model includes estimates for both based upon engine 

speed and maximum power output and the Department of resources model factors 

the power required to overcome the total of grade, air and rolling resistances. In 

order to consider the true magnitude of fuel consumption changes due to differing 

rolling resistance values, the total power requirement must be estimated. Such 

estimations are difficult as the ARFCOM model is predicated on a traditional 

mechanical transmission and drive-train vehicle. This is a shortcoming of the 

method proposed, however note that the model is mechanistic in nature and hence 

the estimation of fuel consumption for the power required to overcome rolling 

resistance for a given load is valid, but the estimation of transmission and drive-train 

efficiency may be somewhat inaccurate. Furthermore, the accessory power 

consumption is estimated from the data included within Greenwood et al (2003), but 

it is possible that a haul truck operating on a modern mine will have considerably 

more instrumentation installed than that of a long-haul highway truck, which is used 

as the basis of estimation. Also note that accessory power is estimated through 

consideration of the ratio of maximum power drag with the vehicle travelling at 100 

km/h. This speed is not achieved in the current project and it is likely that the ratio of 

total power, when applied to operating speeds of 15 and 30km/h result in 

underestimates.  

The inputs for the fuel consumption modelling are presented in Table 3.8, with 

chosen values indicated in Table 3.9. Some modifications are made to the traditional 

model in the interests of simplicity and applying the measured RRC instead of 

estimating the power to overcome rolling resistance using the term provided in the 

model, which includes the CR2 term detailed in Equation 3.21. ARFCOM also 

includes a term for minimum fuel consumption for the vehicle (Equation 3.24), which 

defines the power demand when pavement properties are favourable such that the 

vehicles engine is essentially idling and not under load. Despite being unlikely, fuel 

consumption could potentially be governed by this estimation and therefore it has 

been excluded from the modelling. This is to alleviate the potential complications 

that could arise should this value be calculated to exceed those due to the 

measured rolling resistance. This is considered appropriate, as the rolling resistance 

has been measured, whereas the minimum fuel consumption would be an estimate 

based on the maximum power output. 
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Equation 3.24: Idling fuel consumption as per HDM-4 (Greenwood et al, 2003). 

𝐹𝐶𝑀𝐼𝑁 = 𝛽(Paccs +  Peng) 

 

Horizontal curvature and longitudinal gradients are considered negligible in the 

modelling. This results in a simplification of the model presented in Table 3.8 and 

Table 3.9. Data required for inclusion of these effects is available within the 

literature.  
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Table 3.8: Definition of constants and variables within the HDM-4 fuel consumption model (Greenwood et al, 2003). 

Parameter Description Function 

ceng speed independent engine drag parameter  0.017*Pmax 

beng speed dependent engine drag parameter  0.7+0.026*Pmax 

α Engine idle fuel consumption (mL/s) β*(Peng+Paccs) 

RPM operating engine speed a0+a1*v+a2*v2 

Pa power to overcome air resistance (kW) 0.7331*C*D*AF*v3 

Pr power to overcome rolling resistance (kW) M*g*v*(RRCmeasured) 

Pi power to overcome inertial effects (kW) M'*a 

Ptr Power to overcome tractive resistance  Pa+Pr+Pg+Pc+Pi 

Paccs Power to run accessories EALC*(RPM/TRPM)+ECFLC*Pmax*(RPM/TRPM)2.5 

Peng Power to overcome internal engine drag ceng+beng*(RPM/1000)2 

Ptot Total power requirements (kW) Ptr/edt+Paccs+Peng 

IFC  Instantaneous Fuel Consumption (mL/s) β*Ptot 

TRPM load governed maximum engine speed (rev/min) 1900 (Komatsu, 2006) 
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Table 3.9: Values used for constants and variables within the HDM-4 fuel consumption model. 

Input Variable Description Modelling Value Reference 

a acceleration (ms-2)  0 NA 

IRI Roughness (m/km) Varies for each Section NA 

Constant Variables      

Cd Aerodynamic drag coefficient 0.9 Zaabar, 2010 

AF Projected frontal area (m2) 40.992 Komatsu, 2006 

g acceleration due to gravity (m/s2) 9.81 NA 

M Vehicle Mass (kg) 164,200 and 384,200 NA 

v Velocity (m/s) 4.17 and 8.33 NA 

M' Effective Vehicle Mass (EMRAT*M) (kg) 422,620 (EMRAT=1.1) Greenwood et al, 2003 

β fuel to power efficiency factor (mL/kW/s) 0.07 Greenwood et al, 2003 

EALC accessory load constant (kW) 10 Greenwood et al, 2003 

ECFLC cooling fan constant  0.05 Greenwood et al, 2003 

Pmax maximum rated engine power (kW) 1865 Komatsu, 2006 

RPM operating engine speed (RPM) 1097 (15km/h) and 1089 (30km/h) Zaabar, 2010 

edt drive-train efficiency factor 0.95 Greenwood et al, 2003 
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In order to provide a point of comparison to the IFC results derived from the 

ARFCOM model described above, the model presented by the Department of 

Resources, Energy and Tourism (2010) was also utilised to estimate IFC. A full 

example calculation is shown in Appendix A, however as wheel torque was 

measured in the current project only a small portion of the full model was required 

for estimation of fuel consumption, as reproduced in Table 3.10. Note that 

estimations for the transmission efficiency (0.95) and efficiency at the wheels (25%) 

have been selected to be in-line with the inputs to the ARFCOM modelling and also 

the values suggested within Appendix A. Further the estimated calorific values of 

38.6MJ/L of diesel fuel, as suggested in Appendix A, has been applied.  

 

 

Table 3.10: Input parameters for IFC modelling via Department of Resources, 

Energy and Tourism (2010). 

 

 

Thompson et al (2003) report a fuel consumption model, derived as part of a VOC 

model for haul trucks. However this model only utilised truck speed as a dependant 

variable and hence it is not able to be tested with the inclusion of pavement 

roughness or measured RRC found through the testing of this project. 

 Material Sampling 3.7

Sampling of materials was made from windrows from recent maintenance grading of 

the alignments in question. The collection of material was completed in compliance 

with Main Roads Western Australia Test Method 100.1 from windrows adjacent the 

road alignments and therefore employing the principles for sample collection from a 

stockpile.  
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 Laboratory Testing 3.8

The objective of the laboratory testing carried out for this project was to define the 

shear and elastic properties of the soils sampled from the deflection test sites. 

These parameters provide insight into the applicability of the laboratory testing 

employed through comparison of modelling results, which was completed using the 

elastic parameters derived through both from laboratory testing and back-analysis of 

deflection data (see Section 3.9.1). Additionally, Particle Size Distribution (PSD) 

tests were completed to help describe the nature of the materials sampled from the 

deflection test sites. Atterberg testing was not completed due to a shortage of 

material sampled, arising from restrictions on transportation within financial 

constraints. Instead precedence was given to Repeated Load Tri-axial Tests (RLTT) 

to define resilient modulus and multi-stage unconsolidated-undrained (UU) tests to 

define shear strength parameters, as both provide direct input parameters to 

pavement modelling techniques. Classification of materials in accordance with AS 

1726 (Standards Australia, 1993) and MRWA (2003) guidance on selection of 

natural materials as pavement courses was completed to provide an understanding 

of the nature of materials encountered.  

 

 Particle Size Distribution 3.8.1

The PSD of each sample was determined in accordance with AS 1289.3.6.1 

(Standards Australia, 2009). Hydrometer testing for particles finer than 75 micron 

was not considered necessary for the scope of this project. 

PSD test results were utilised for classification of the materials as per AS 1726. This 

considers the factors Coefficient of Uniformity (Cu) and Coefficient of Curvature (Cc), 

which are defined in Equation 3.25 and Equation 3.26 respectively. Additionally, the 

percentage of the material passing a 0.075mm aperture is required for classification 

of material in accordance with AS 1726. To provide some broad guidance, well 

graded gravels have a Cu greater than 4 and a Cc between 1 and 3, with percentage 

finer than 0.075mm being less than 5 (AS 1726). Detailed guidance on the 

classification of materials utilising these factors and the PSD results is contained 

within AS 1726. 
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Equation 3.25: Cu factor as per AS 1726 (Standards Australia, 1993). 

𝐶𝑢 =
𝐷60

𝐷10
 

 

 

Equation 3.26: Cc factor as per AS 1726 (Standards Australia, 1993). 

𝐶𝑐 =
(𝐷30)2

𝐷10. 𝐷60
 

 

Where: 

𝐶𝑢  is a factor defined in AS 1726 (Standards Australia, 1993) 

𝐶𝑐  is a factor defined in AS 1726 (Standards Australia, 1993) 

𝐷10  is the aperture opening that 10% (by weight) of the sample passes 

𝐷30  is the aperture opening that 30% (by weight) of the sample passes 

𝐷60  is the aperture opening that 60% (by weight) of the sample passes 

 

Assessment of the sampled materials was also completed in accordance with 

MRWA guidance for the selection of natural gravels for use in unbound granular 

pavements (MRWA, 2003). For this assessment the Dust Ratio (DR) and Grading 

Modulus (GM) were calculated via Equation 3.27 and Equation 3.28 respectively. 

For selection of gravels for base-course, the DR should be within the range of 0.3 to 

0.7 and the grading modulus should exceed 1.5. Additionally, the PSD results were 

compared with the ‘Lt10’ selection criteria within MRWA (2003). These limits relate 

to material selection for lateritic gravels in semi-arid and arid regions of Western 

Australia. Many of the mines in Western Australia are located within such climatic 

regions.  
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Equation 3.27: Dust Ratio as per MRWA (2003). 

𝐷𝑅 =
𝑃0.075

𝑃0.425
 

 

 

Equation 3.28: Grading Modulus as per MRWA (2003). 

𝐺𝑀 =
[300(𝑃2.36 + 𝑃0.425 + 𝑃0.075)]

100
 

 

Where: 

DR  is the dust ratio 

GM  is the grading modulus 

𝑃0.075  is the percentage of the sample by weight passing a 0.075mm aperture 

𝑃0.425  is the percentage of the sample by weight passing a 0.425mm aperture 

𝑃2.36  is the percentage of the sample by weight passing a 2.36mm aperture 

 

 Optimum Moisture Content/Maximum Dry Density 3.8.1

Optimum Moisture Content/Maximum Dry Density (OMC/MDD) testing was 

completed in accordance with AS 1289.5.1.1 (Standards Australia, 2003). Standard 

compactive effort (596 kJ/m3) was selected in preference to modified compactive 

effort (2703 kJ/m3). This decision was made due to the haul road pavements in 

question being compacted by wheel actions, without the use of dynamic/vibratory 

means on an approximate two meter lift thickness and without moisture conditioning. 

This approach may have been better supported via in-situ density testing, however 

this was not possible due to the coarse nature of the material excluding the use of a 

nuclear densometer via the method described by AS 1289.5.8.1 (Standards 

Australia, 2007A). In-situ density testing by the water replacement method, as 

described by AS 1289.5.3.5 (Standards Australia, 1997) was considered but was 

ultimately judged as being too time-consuming for the limited time available for on-

site testing.  
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 Shear Parameters 3.8.2

Shear parameters were determined through a modified test method, based on AS 

1289.6.4.1 (Standards Australia, 1998). A Controls Triax100 tri-axial testing machine 

was utilised to complete this test, with manual logging of data from dial gauges and 

automatic control of pore pressure via an automated displacement pump. It was not 

practical to apply the method in the above Australian Standard with a 67mm 

diameter sample. An adequate sample could not be produced due to the angular 

nature of coarse particles within the sampled soils, resulting in the impermeable 

membrane being pierced during compaction through tamping. Furthermore, it was 

found that the sample could not be effectively removed from the tamping mould. 

Ultimately it was decided to follow the same procedure with a 100mm diameter 

sample size (200mm height), with the sample preparation described in Austroad’s 

test methodology AG:PT/T05 (Austroads, 2007) being utilised (as used for RLTT 

testing, see Section 3.8.3). Multi-stage testing was applied due to testing requiring 

the 100mm diameter samples, after being originally planned to be completed using 

67mm diameter samples. As a 67mm diameter sample weighs approximately a third 

the weight of a 100mm diameter sample it was possible to apply multi-stage testing 

with a 100mm diameter sample to obtain the data required with the limited quantity 

of material available. Samples were not allowed to consolidate, however the sample 

for Section 1 did remain sealed in a mould for approximately 4 weeks as repairs to 

the tri-axial apparatus were occurring. Drainage during the test was also not 

allowed, as it was considered more representative of the transient loading of a 

passing wheel. As deflection tests were completed over periods of less than an hour 

(see Section 3.5.7) this condition was also considered more appropriate than the 

sample being fully drained.  

Stress states for testing were selected such that they were located on a similar 

stress path to that utilised for RLTT testing. These stress states were selected to 

extend the critical stress path for the stages of testing within the AG:PT/T05 

(Austroads, 2007) test method, to replicate the higher deviatoric stress present 

under a haul truck tyre (see ‘Modified Stress States’ in Figure 3.22). Therefore, 

testing was completed with confining stresses of 30, 100, 200 and 300 kPa. Section 

1 was not tested at a confining stress of 30 kPa, as it was anticipated that the stress 

history may have had too large an effect (the 300 kPa stage had been completed 

first prior to repairs to the apparatus). A fixed strain rate of 1mm/minute was utilised 

throughout, which represents an axial strain rate of only 0.5% per minute which is 
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significantly less than the 1-2% suggested within AS 1289.6.4.1 (Standards 

Australia, 1998). This rate was selected to ensure adequate time was available to 

cease testing once the commencement of plastic yield was observed, representing 

the end of each stage.  

 

3.8.2.1 Elastic Modulus 

The elastic modulus was required to facilitate modelling of the deflections measured 

on-site, as the loading was not cyclic in nature as would be represented by the 

resilient modulus. This value was selected from the deviator stress/axial strain plots 

of the multi-stage tri-axial testing. Tangent moduli were selected from the elastic 

loading portion of the curve. For this reason, tri-axial testing was completed with a 

confining stress range of 30-300 kPa. The ensuing stress states were considered to 

likely encompass the typical deviator and confining stresses induced during on-site 

deflection testing and thus representative estimates of elastic modulus can be 

calculated from the results of tri-axial testing. This approach assumes that the 

material acts elastically when subjected to the loading considered.  

 

 Resilient Modulus 3.8.3

Repeated loading tri-axial testing was completed using a GCTS STX-300 Dynamic 

Stress-Path Soil Tri-axial System, run through a PCP Pressure Control Panel 

connected to a SCON-1500 Digital System Controller. This equipment, with a 

sample in testing configuration, is shown in Figure 3.21. 
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Figure 3.21: RLTT test setup. 

 

 

Resilient modulus tests were completed in accordance with Austroads’ test 

methodology AG:PT/T053 (Austroads, 2007). This test comprises 66 stages of 

testing with a maximum confining pressure of 150 kPa and a maximum deviator 

stress of 600 kPa. This was not considered representative of the loading 

experienced by haul road pavements, with the inflation pressure of the tyres 

considered in this project 890 kPa. For this reason, several stages were added to 

the testing regime, with the maximum deviator stress being 900 kPa, with confining 

stresses of 40 to 150 kPa. Resultant resilient modulus/bulk stress plots were then 
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observed for selection of the resilient modulus for respective stages of modelling. 

Figure 3.22 presents the additional stress stages. Initially the ‘Modified Stress States 

1’ was applied. If the sample was still intact the ‘Modified Stress States 2’ was then 

completed. From observation of tri-axial test results, the relevant confining stress 

(and therefore mean normal stress) that corresponds to a deviatoric stress of 890 

kPa was determined. Utilising this value, relevant resilient modulus values were 

selected for use in modelling with the assumption that material behaviour remains 

elastic.  

 

 

Figure 3.22: Stress states (in p-q space) for resilient modulus testing. 

 

 

 

To assist in analysis and account for the non-linear response of the unbound 

materials encountered within the project, a trend-line relating to the ‘k-Ɵ’ theory, first 

published by Seed et al (1967) was derived for the set of results for each section. 

This relation was then used to estimate the resilient modulus at deviatoric stress 

levels relating to the 890kPa inflation pressure present on the truck utilised in 

testing. The resilient modulus was also calculated at a mean normal stress of 

240kPa, as advised for calculation of resilient modulus by Main Roads Western 

Australia (MRWA, 2013). 
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  Numerical Modelling 3.9

Several methods of numerical analysis have been considered within this project. 

The uses range from back-calculation of soil modulus with simple hand-calculation 

methods, to three-dimensional Finite Element Analysis (FEA) with complex 

software. Each is described in detail within the proceeding sections. An overview of 

the approach taken to address the objectives relating to pavement structural 

analysis, as stated in Section 1.2, is presented in Figure 3.23. 

As stated in Section 3.2, there is very limited literature available relating observed 

haul road pavement response and the ability of structural analysis methods. 

Currently, there is only very broad direction available with state-of-the-art guidance 

documents (such as Thompson, 2013), stating that approach taken does not 

significantly influence the outcome. Consequently, it is considered valuable to 

investigate this statement, considering the level of data that may be available to a 

haul road pavement designer. The primary goal of the analysis detailed in the 

following, is to investigate whether the available linear-elastic and finite element 

approaches can accurately predict the deflected pavement surface profile, including 

deflection values and curvature profiles as depicted in Figure 3.23. As stated in 

Section 2.5.1, linear-elastic modelling is often utilised to validate finite element 

analysis models, prior to the complexity of the model being increased beyond the 

capabilities of the linear-elastic method. A similar approach is taken here. If 

possible, the most appropriate means of structural analysis is to be recommended. 

Consideration is then to be given to whether the best-performed approach can be 

considered to have been validated from the modelling completed for this project. 

This should incorporate consideration of the most appropriate material 

characterisations from laboratory testing.  

The modelling in this project was completed subsequent to the in-situ and laboratory 

testing. It is anticipated that this level of information is likely to exceed that typically 

available to a practitioner. Furthermore, the investigation is aimed at making use of 

the available information to make recommendations that can best benefit the haul 

road pavement designer, utilising approaches that can realistically be implemented 

in practice.  
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Figure 3.23: Flow chart of approach taken for investigation of haul road 

pavement structural analysis methods. 
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 Back-calculation of Soil Modulus 3.9.1

3.9.1.1 Calculation Methods 

Back-calculation of soil modulus was completed by application of elastic theory, 

presented for the estimation of elastic settlements in several texts, including 

Knappett et al (2012). The measured contact patch (see Section 3.5.7.5 and Table 

3.12) was modelled as a flexible footing, with the maximum deflection assumed to 

occur at the centre of the footing. Initially, the known tyre inflation pressure of 

890kPa was utilised. However it was apparent that the uncertainty relating to contact 

stress distribution as discussed in Section 5.4.3 influenced the calculation 

significantly, with the soil moduli results estimated higher for the tyre load excluding 

truck payload. Therefore, the known tyre loads (Table 3.11) and measured contact 

patches were used to estimate the average contact pressure of the contact area 

(see Table 3.12). Influence factors (Is in Table 3.12) were calculated considering 

contact area geometry and with the assumption that maximum deflection occurs at 

the centre of the contact area. These values were estimated through interpolation of 

the values considered in Knappett et al (2012). Equation 3.29 was then used to 

back-calculate soil modulus from the maximum measured deflection for each 

section and load condition. 

 

 

Equation 3.29: Estimation of soil modulus from elastic theory (Knappett et al, 

2012). 

𝐸 =
𝑞. 𝐵(1 − 𝜐2)𝐼𝑆

𝑠
 

 

Where: 

𝐸  is the soil modulus (Pa) 

𝑞  is the contact stress (Pa) 

𝐵  is the footing breadth (m) 

𝜐  is Poisson’s ratio   

𝐼𝑆  is the Influence Factor as per Knappett et al (2012) 
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𝑠  is the measured surface deflection (m) 

 

 

Table 3.11: Tyre load used for back-calculation of soil modulus. 

 

 

 

Table 3.12: Geometry and pressure characteristics used in back-calculation. 

 

 

3.9.1.2 Evercalc 

Evercalc is a software package developed and published by the Washington State 

Department of Transport (USA). It is a back-analysis package for use with data 

arising from Falling Weight Deflectometer testing, although it also allows manual 

data input. This meant that the software was able to be used to back-analyse the 
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curvature data collected within this project. The following describes the modelling for 

the determination of pavement modulus. 

Within Evercalc, tyre contact patches are considered to be circular. Therefore it was 

decided to utilise the average measured tyre contact geometry for the unloaded and 

loaded cases (see Table 4.17) to calculate an equivalent radius to allow input to 

Evercalc. The total area encompassed the entire dual-wheel rear axle assembly and 

thus included the approximately 300mm wide separation area between tyres. This 

was considered a necessary idealisation, as a dual-wheel assembly was present on 

the truck used for measurement of deflection, with wheel load being a required 

input. Contact area radii are presented with the back-analysis results in Table 4.64. 

Wheel loads are given in Table 3.11. 

An option for the inclusion of a ‘stiff’ layer of user-defined elastic modulus is included 

within Evercalc. This feature was disabled for the back-analysis, as it was not able 

to be applied at a user defined depth, which results in variable depths for the 

uppermost layer in the analysis. As this layer represented the pavement in question, 

which was known to be approximately 2.0m thick, the feature was omitted from the 

back-analysis. The structure utilised in the analysis is presented in Figure 3.24. The 

elastic moduli of the three supporting layers are fixed at the values indicated. These 

were selected from an estimation of the stress state and consideration of the tri-axial 

elastic modulus test results presented in Section 4.7.5.3Stress state was estimated 

via Boussinesq’s theorem (see Bowles, 1997) and superposition of the wheel load, 

considering the area of influence to increase at a radius to depth ratio of 0.5, and 

overburden pressure (estimated using an average unit weight of 24 kN/m3, see 

Section 4.7.3). Although it is somewhat unusual to consider elastic modulus to 

increase with depth in pavement design, consider that this structure is relatively 

deep and represents quite a stiff foundation. This is representative of the supporting 

structure on the mine waste dump, where fill was as deep as 40m (see Section 

3.5.2). The moduli values were considered to occur at mid-depth for all layers 

except the bottom layer, for which stresses can only be considered at the top of the 

layer as it is assumed to have infinite depth. Further, Evercalc includes an allowance 

for temperature correction of the pavement. This relates to asphalt surfaced 

pavements and is therefore not applicable to this study. 
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Figure 3.24: Pavement and supporting structure used in Evercalc back-

calculation of pavement elastic modulus. 

 

 

To perform the back-calculation, curvature data (see Section 4.4.1) was directly 

entered for each pavement section. The back-calculation was performed twice; once 

with curvature data extending from the centre of the loaded area and secondly with 

curvature extending from the edge of the loaded area. The former is likely more 

appropriate as it is similar to common FWD tests where geophones recording strain 

data commence from a small radial distance removed from the edge of the loaded 

plate. However, consider that the radius of the loaded area is actually a fictitious 

value that was estimated from the contact geometry presented in Section 4.4.3 and 

has subsequently been adopted to allow back-calculation using the Evercalc 

software. It is anticipated the ‘true’ value of pavement elastic modulus lies at a point 

between the two results. Although this is a source of error, the approach was 
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adopted in the absence of more advanced methods being available for such large 

tyre contact geometry and loading.  

Root Mean Square (RMS) results are reported for each back-calculation. In 

completing the back-calculation process, Evercalc iteratively predicts curvature for 

varied soil elastic moduli within the user-specified range for each pavement layer. 

This data is then compared with the curvature data that was derived from direct 

measurement from the scans taken during on-site deflection testing (see Section 

3.5.7). The RMS in turn describes the percentage relative error between the 

calculated and measured curvature data.  

 

 WES Method 3.9.2

Design of heavily loaded unbound granular pavements has often been completed 

using CBR curves described in Section 2.4.1. Pavement deflection was the 

pavement response that was considered to govern permanent deformation in the 

original derivation of the S77-1 method (Pereira, 1977), from experiments carried 

out at the Waterways Experiment Station (WES). This method was subsequently 

used to derive CBR design curves (Wardle et al, 2003). However the deflection is 

not actually calculated nor inputted within the method when deriving a design curve 

for a specific vehicle, but is used in calculating the Equivalent Single Wheel Load 

(ESWL). This method is based on Boussinesq’s single-layer theorem and considers 

the pavement to be a single, isotropic mass (Wardle et al, 2010). Calculation of 

pavement deflection first requires determination of the ESWL, a fictitious wheel load 

with the same contact geometry as one of the wheels in the design gear. However, 

the inflation pressure is calculated such that it produces a pavement deflection equal 

to that produced by the entire group. ESWL varies with depth and therefore 

calculation is an iterative process involving calculation of the deflection profiles with 

depth at multiple points (Pereira, 1977).  

Equation 3.30 was used to calculate deflection at the mid-point of the tyres on a 

rear-axle dual wheel gear present on the Komatsu 830E, as utilised during on-site 

testing. Because the pavement surface deflection is considered in the present study, 

the calculation of ESWL is simplified with the use of Equation 3.31. When estimating 

the deflection due to the multiple wheels on a haul truck, the ESWL pressure is used 

in place of tyre inflation pressure, to account for the effects of multiple wheel loads. 

Deflection factors were selected via linear interpolation between the tables 
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presented in Pereira (1977), the reader is referred to the original reference for 

further information.  

 

 

Equation 3.30: Pavement deflection, as per Pereira (1977). 

∆𝑚=
𝑝. 𝑟

𝐸
∑ 𝐹𝑀 

 

Where: 

∆𝑚  is the calculated deflection (mm) 

𝑝  is the tyre contact pressure (kPa) 

𝑟  is the tyre contact area radius (m) 

𝐸  is the elastic modulus of the material (MPa) 

𝐹𝑀  is the deflection factor for each wheel considered (unit-less) 

 

 

Equation 3.31: Calculation of ESWL from known wheel load. 

𝑃𝑒 = 𝑃
𝐹𝑀

𝐹𝑒
 

 

Where: 

𝑃𝑒  is the ESWL 

𝑃  is the load on one wheel in the group 

𝐹𝑒  is the maximum deflection factor for a single wheel 
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Equation 3.32: Maximum deflection due to ESWL (Pereira, 1977). 

∆𝑒=
𝑝𝑒𝑟

𝐸
𝐹𝑒  

 

Where: 

∆𝑒  is the maximum deflection due to ESWL 

𝑝𝑒  is the ESWL contact pressure 

𝐹𝑒  is the maximum deflection factor due to the ESWL 

 

Once the characteristics of the ESWL were calculated via Equation 3.31, the 

maximum deflection due to ESWL was calculated using Equation 3.32. The point 

considered was at the pavement surface at the centre of a rear wheel assembly of 

the Komatsu 830E. The methodology is as described above, except the maximum 

deflection factor due to a single wheel load (𝐹𝑒) was utilised instead of the maximum 

deflection factor (𝐹𝑀). For the case of a Poisson’s ratio of 0.35, the maximum 

deflection factor due to a single wheel was 1.75. This value was utilised for all 

calculations involving Equation 3.32. 

Finally, it was attempted to gain some understanding of the inflation pressure that is 

best to utilise in pavement modelling via calculation of the average contact pressure 

from measured pavement deflections. For this purpose the contact radii matching 

the measured contact area were utilised, along with the static elastic moduli values 

derived through tri-axial testing. The resulting contact pressure was then used to 

calculate the corresponding wheel load. Subsequently, this value was compared to 

wheel loads published by a tyre manufacturer for various inflation pressures 

(goodyearotr.com). The known wheel load and calculated ESWL is also presented 

for comparison in Section 4.8.2. The published data is an example of the data 

typically used in mechanistic design and the latter in empirical designs with the S77-

1 curve presented by Pereira (1977). This analysis provides some insight into the 

adequacy of available pavement design methods, through comparison of published 

wheel load and pavement/tyre contact data and the corresponding values that are 

estimated in completing designs via commonly accepted pavement design 

techniques.  
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 Linear-Elastic Software 3.9.3

There are many software programs available that allow analysis of layered 

pavements using linear materials and elastic theory. The pre-cursor to CIRCLY was 

developed at the CSIRO (Commonwealth Scientific and Industrial Research 

Organisation), prior to the program becoming commercially available in 1977 

(Mincad Systems, 2012). Since its release CIRCLY (Mincad Systems, 2012) has 

been updated several times and Mincad Systems have also released an off-shoot, 

HIPAVE (Mincad Systems, 2012B), which is optimised for mechanistic design of 

flexible pavements subjected to heavy wheel loads arising from freight handling 

vehicles (Mincad Systems, 2009). These programs allow significant variation of 

loading and material modelling to be considered, which forms the basis for their use 

within this project. The modelling completed with each is explained in the following 

sections. Note that HIPAVE is discussed first as it has been used more extensively 

for this project, with CIRCLY being used to test different load inputs and allowances 

for material stress-dependency with the Austroads sub-layering methodology.  

The following assumptions are held constant throughout all linear-elastic modelling 

completed within the software packages discussed below: 

1. all materials are considered to be linear-elastic 

2. wheel loads are applied to a circular contact area with constant imposed 

contact pressure 

3. all materials have a Poisson’s ratio of 0.35. 

 

3.9.3.2 HIPAVE 

HIPAVE 5 is a linear-elastic pavement design software program produced by 

Mincad Systems (2012B). It is a customisation of the CIRCLY software that was 

developed to provide a tool for pavement design in accordance with the method 

originally selected by Austroads (Jameson, 2008A). The focus of HIPAVE is the 

design of heavy industrial pavements, particularly those of port facilities and 

container terminals (Wardle et al, 2006). This means that the program includes a 

material model for UGMs commonly referred to as the Barker-Brabston sub-layering 

model (see Section 2.6.2), which approximates non-linear material effects. Note that 

the maximum elastic modulus considered within the Barker-Brabston method for 

unbound material is 275 MPa (Wardle et al, 2010). When including this 
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characterisation of a UGM, the material modulus is calculated from the modulus of 

the sub-grade layer upwards. Therefore the base-course layer was also 

characterised as isotropic, with the various elastic modulus values discussed in 

Section 3.8 (these values are also included in Section 4.8.5.1). Modelling generally 

excluded the use of the Barker-Brabston characterisation of pavement and sub-

grade materials. The pavement structure of the modelling remains constant 

throughout, as illustrated in Figure 3.25. This figure presents the loading regime 

along the rear axle of a Komatsu 830E haul truck. Response due to the front axle 

was generally not included within the analysis. Although not all wheel loads are 

included in every modelled case, the geometry of loads considered is shown in 

Figure 3.26. Contact pressures were calculated from known axle loads and the 

contact areas presented in Section 4.4.3. Geometry was selected as per Komatsu 

(2006).  

 

 

Figure 3.25: HIPAVE model geometry and material inputs, along the rear axle 

of Komatsu 830E haul truck. 
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Figure 3.26: Geometry used for HIPAVE and CIRCLY modelling of Komatsu 

830E contact geometry. 

 

 

Initially, a sub-grade elastic modulus of 150 MPa (analogous to a CBR of 15%) was 

selected. This decision was based on the tri-axial testing completed (see Section 

3.8.2.1). A significant depth of influence should be expected from the relatively large 

loaded area of the haul truck tyres. High confining pressures could therefore be 

expected to be induced within the sub-grade layer, when compared to general 

flexible pavements, thus resulting in relatively high elastic modulus values being 
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mobilised. The modelling was repeated, with a select foundation as shown in Table 

3.13 and Table 3.14, utilising isotropic base-course characterisation. The elastic 

moduli values for layer A, B and C relate to two metre deep layers from the under-

side of a two meter deep base-course layer. Elastic modulus values were selected 

from calculation of the vertical stress state on a sub-grade soil element via 

Boussinesq’s theory, with consideration of additional surcharge at-depth due to the 

presence of the truck tyres. Lateral soil pressure at rest was then estimated using a 

40 degree internal angle of friction. Modulus values were then selected from 

interpolation of tri-axial testing.
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Table 3.13: Foundation layer elastic moduli values for unloaded truck – Select foundation. 

 

 

 

Table 3.14: Foundation layer elastic moduli values for loaded truck – Select foundation. 
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Following the above characterisation of the support structure, it was decided to trial 

including a Barker-Brabston sub-base layer to produce a similar approximation of 

material stress-dependency. This layer was considered two metres thick and was 

placed between the two metre thick base-course (with moduli values as measured 

through the various methods described in Section 3.8) and three metre thick sub-

grade with an elastic modulus of 150MPa. The pavement was also modelled twice 

more, with idealisation as a single layer of Barker-Brabston base and sub-base with 

the top of the layer in contact with the wheel load. Barker-Brabston sub-layer moduli 

(for both base and sub-base materials) are assigned with consideration of the 

stiffness of the support layer. Therefore significantly different deviatoric stress is 

applied when the material is placed at depth compared to being in direct contact 

with the tyre load. Such an arrangement allows for some consideration of stress-

dependency while maintaining control over the maximum modulus mobilised at the 

pavement surface (which as stated above is 275 MPa for a UGM).  

Interaction of tyre loads were tested by comparing the surface deflection profile and 

vertical strain at the top of the sub-grade arising firstly from analysis with inclusion of 

the whole rear axle of the Komatsu 830E and secondly with only a single dual-wheel 

assembly. It is contended that strains attenuate closer to the applied load than 

deflections (see Section 2.4.2.1). Examination of these two responses was 

considered adequate for comment on the likelihood of interaction of load response 

from adjacent wheel gears. If deflection was not observed to interact at the surface, 

or if the vertical strain level was not found to be higher at the mid-point of the rear 

axle when both wheel gears are considered then it was concluded that wheel 

interaction does not occur. See Section 3.9.7 for further discussion of the 

examination of wheel load interaction. 

 

3.9.3.3 CIRCLY 

Modelling within CIRCLY was completed to test the suitability of differing material 

models, and load characteristics, in predicting the measured pavement deflections 

with linear-elastic theory based software. Its origins extend back to the development 

of what is commonly referred to as the Austroads mechanistic design procedure, 

where CIRCLY was recommended for use in estimating pavement deflection 

(Jameson, 2008A). The geometry and loading characteristics were the same as for 

HIPAVE modelling as shown within Figure 3.25 and Figure 3.26, with one exception. 

Sub-grade depth was also trialled as continuing to infinite depth. Initially, sub-
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layering of unbound granular base-course materials was considered with the 

Austroads (2004) method (Jameson, 2008). This was completed to compare the 

impact of changing the sub-layering methodology from that applied within HIPAVE. 

Additionally a non-uniform distribution of contact pressure was trialled, with a 

significantly higher contact stress at the edges of the tyre as advised in Jameson 

(2008). Thus the loading applied in CIRCLY was applied with a load exponent of -

0.5, see Mincad Systems (2014) for further explanation. Non-uniform load 

distributions were found to significantly over estimate pavement deflections and 

were therefore not completed within the analysis for this project. Note that the 

Austroads sub-layering method involves input of the elastic modulus of the top sub-

layer, whereas the Barker-Brabston method utilised by the HIPAVE software is 

dependent on the supporting layer’s elastic moduli. The modulus of the top sub-

layer was then selected as the minimum of the inputted base-course modulus value 

and that calculated from the sub-grade modulus. The base-course layer was also 

considered without sub-layering, thus characterising it with a single modulus value.  

There exists two major differences between HIPAVE and CIRCLY, beyond sub-

layering. These are the characterisation of unbound materials as cross-anisotropic 

and load input involving definition of contact area and pressure (in place of wheel 

load). Cross-anisotropic characterisation involves five inputs. Firstly elastic modulus 

in the vertical (EV) and horizontal (EH) direction are required. To simplify definition of 

the horizontal modulus, Austroads (Jameson, 2008) advises that a degree of 

anisotropy (EV/ EH) equal to two is appropriate in all cases of unbound pavement 

materials. Also required is Poisson’s ratio in each direction, which was selected to 

be 0.35 in all cases, as suggested by Austroads (Jameson, 2008). The fifth input is 

the shear modulus and is calculated via Equation 3.33. The relative effects of cross-

anisotropy are discussed within Section 2.6.3. Note that despite the CIRCLY User 

Manual suggesting that the tyre inflation pressure is generally used as the contact 

pressure, it was decided to use the average contact pressure, calculated from 

measured contact geometry and known tyre loads. Contact areas within CIRCLY 

are considered as circular, and therefore a radius producing an equivalent area to 

the measured rectangular contact areas was inputted.  
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Equation 3.33: Shear modulus function used within CIRCLY (Mincad Systems, 

2009). 

𝑓 =
𝐸𝑣

(1 + 𝑣)
 

 

Where: 

𝑓  is the shear modulus (MPa) 

𝐸𝑣  is the vertical elastic modulus (MPa) 

𝑣  is Poisson’s ratio in the vertical direction  

 

 Finite Element Analysis 3.9.4

Finite Element Analysis (FEA) was completed with use of the Dessault Systemes 

ABAQUS Standard 6.10 software. This is a general FEA package allowing detailed 

input of materials, boundary conditions and loading. However, an effort was made to 

maintain some simplicity in the modelling, so as to allow a test of the capabilities of 

the model in comparison with those discussed in the preceding sections. One 

benefit of FEA is that soil anisotropy is considered to be allowed for by the 

redistribution of stresses carried out during iterations of the calculation, as noted in 

Section 2.5.2. The effect of such complexity is that computing time is increased 

exponentially over a simple layered-elastic analysis and therefore it may be that at 

the current point in time FEA is not be practical for use as a design tool for haul road 

pavements. Despite this, an ability to closely model pavement deflections would 

present opportunities to investigate structural response through numerical 

modelling, which could guide future research efforts towards increasing the 

understanding and definition of the model’s inputs.  

Note that the only characteristics of FEA modelling that is held constant for all 

analysis are outlined below: 

1. all materials are considered to be isotropic 

2. Poisson’s ratio is 0.35 for all materials 

3. the contact pressure between wheel and pavement surface is constant. 
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At first modelling comprised of a simplified sub-grade structure, where all sub-grade 

layers shown in Figure 3.27 and Figure 3.28 had a resilient modulus of 150MPa. 

This was done to replicate the modelling completed within CIRCLY and HIPAVE, 

however it is worth noting that only the resilient modulus was utilised within FEA. 

This was completed so that the ‘k-Ɵ’ model could be applied, as detailed in 

Gonzalez et al (2012). All other geometry and model inputs were as described 

below and applied to models resulting from the iterative process to better define 

sub-grade layer structure.  

Following the initial, simplified analysis, FEA modelling comprised of two discreet 

steps. Firstly, two-dimensional models were utilised to complete the iterative 

procedure described below to determine an appropriate layer structure. The 

resulting structure was subsequently used for three-dimensional modelling, from 

which pavement surface deflection and sub-grade vertical strains were taken. This 

procedure was selected based on the recommendation of Ghadimi et al (2013) 

whereby a plane strain approximation was found to produce poor predictions of 

pavement response, as discussed in Section 2.5.2. However, the non-linear effects 

of UGMs in flexible pavements is widely accepted (see Section 2.6.1), and thus the 

iterative procedure was carried out with a two dimensional (plane strain) model to 

reduce computational time.  

An annotated sketch of the two-dimensional model used is presented in Figure 3.27. 

The base-course is 2m thick throughout the modelling and is supported on 18m of 

sub-grade. A fixed encastre boundary condition was selected for the base of the 

model. The horizontal extent of the model are 15m from the outside of wheel loads 

in both directions, with the mid-point of the rear axle at the centre. Measured tyre 

contact area geometry (Section 3.5.7.5) was utilised, with the total contact area 

arising from the dual wheel gears included together in the modelling. Average 

pressure arising from the known wheel loads was then applied as a uniform contact 

pressure (as adopted in CIRCLY and HIPAVE modelling). This approach includes 

the small strip of separation between the tyres, found to be approximately 350mm 

wide, within the loaded area (see Section 4.4.3). At this time it is considered 

necessary to make this simplification, as an extremely high resolution mesh 

(requiring a long computation time) would otherwise be required to effectively model 

the area. It is anticipated that this approach does not introduce significant error into 

the results, as the known total wheel load is applied and consequently the net effect 

is a slightly lower contact pressure being applied over a marginally larger contact 

area than occurs in reality. 
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Figure 3.27: Annotated sketch of plane-strain FEA model. 

 

 

A fine mesh was utilised throughout the modelling with a higher resolution employed 

around the loaded area (0.1m element size) and directly below the loaded area to a 

considerable depth. A structured mesh was used to ensure the shape of mesh 

elements was consistent throughout modelling. 

Loading applied to the model included gravity initially and the wheel loads secondly. 

The effect of gravity was to apply stress due to over-burden pressure to the soil at-

depth. This stress state was used in the iterative procedure described below, to 

estimate non-linear effects in each sub-grade layer (see Figure 3.27) due to the 

stress-dependant nature of UGMs. The gravity action was not applied during the 

tests producing the deflection estimates presented in Section 4.8.6. 

The boundary conditions for the model are relatively simple. Lateral deflections are 

dis-allowed at the edge of the model, with vertical deflections allowed. The base of 

the model is fully fixed. Due to the considerable size of the model, it is not 

anticipated that these boundary conditions have a significant effect on the results.  

In order to replicate the non-linear effects of the pavement and sub-grade, multiple 

iterations, balancing mean normal stress at the middle of each layer and resilient 

modulus, were made for all pavement sections. This approach applied the resilient 
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modulus models discussed in Section 3.8.3, by utilising the resultant mean normal 

stress at the centre of each layer and re-calculating the layer’s resilient modulus to 

be applied in the subsequent step. The point considered was typically taken directly 

under one of the wheel loads. However, it was found that higher stress states 

occurred at the mid-point of both wheel loads from the ‘Sub-Grade 2’ layer 

downwards, when modelling a full rear axle. The iterations were terminated once 

each layer resilient moduli was within 5% of the previous step.  

The above method effectively prioritises the relationship derived from the data for 

laboratory resilient modulus testing over modulus results arising from measured 

pavement surface deflection data. This approach was adopted due to the fact that 

the iterations discussed above to mimic non-linear soil effects are not able to be 

completed automatically in the ABAQUS software. Furthermore, as discussed in 

Section 3.9.1.2, there has not been an accepted method developed for wheel loads 

as large as that present on haul trucks. However, the derived resilient modulus 

values are in fitting with the range stated in the literature for gravel materials 

(Jameson, 2008), as discussed in Section 5.7.3. Also, the focus of this project with 

regards to pavement modelling was to test each method’s ability to model haul road 

pavements. Therefore, it would be a considerable extrapolation to attempt a back-

calculation of pavement layer modulus and support structure with the use of FEA. 

Three-dimensional modelling was then completed with geometry and material 

properties replicated from the two-dimensional models derived via the procedure 

above, in order to test the effect of additional geometric detail. Figure 3.28 presents 

the geometry, load and boundary conditions utilised for the three-dimensional 

modelling. Note that the geometry was held constant for all modelling of all sections, 

other than that of the wheel load contact area, which was varied to match the 

measured geometry (see Section 3.5.7.5). This approach is consistent with the two-

dimensional modelling described above. The model geometry was smaller than 

recommended in much of the literature in terms of the ratio of overall modelled area 

and depth to tyre contact radius. However, the total size of the model was similar to 

many of the models presented in the literature in terms of the number of elements. 

Subsequently, the model was constructed to restrain the number of elements in 

order to achieve a workable calculation time. After observing initial results with this 

geometry, it appeared the calculated pavement response was not significantly 

affected by this simplification. An eight-noded axisymmetric mesh was selected for 

three-dimensional modelling, as recommended by Ghadimi et al (2013), due to their 

noted ability in producing accurate pavement response outputs. The element sizes 
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were 0.25m near the load centres, linearly increasing to a 0.8m maximum element 

size adjacent the model boundaries. The pavement surface deflection and sub-

grade vertical strain were then compared with that from the two-dimensional models. 

 

 

Figure 3.28: Annotated sketch of three-dimensional FEA model. 

 

 

Once the above iteration was completed the model output was interrogated to define 

the deflection and sub-grade strain outputs required. The interaction of wheel loads, 

as described in Section 3.9.7, was also investigated.  

 

 Comparison of Linear-Elastic and FEA Axisymmetric 3.9.5

Modelling 

In order to complete a comprehensive comparison of two modelling techniques, 

linear-elastic and FEA in this project, it is necessary to describe any variation in 

modelling outputs that occur under conditions of equal input parameters. For the 

current study, linear-elastic modelling (CIRCLY) and FEA (ABAQUS) have been 
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compared with an axisymmetric model. For this purpose the sub-grade modulus was 

set at 150MPa, with the base-course modulus varying. It was decided to select the 

base-course modulus from the values measured in the laboratory for this project. 

Consequently, the modulus values arising from the monotonic triaxial test (static 

elastic modulus) and repeated load triaxial test (resilient modulus) have been 

applied. The base-course was maintained as 2m deep throughout. For CIRCLY 

analysis, the sub-grade was set as 3m deep. Based on the geometry recommended 

in the literature (Kim, 2007; Gonzalez et al, 2012; Ghadimi, 2015), the ABAQUS 

model extended 10m laterally and 100m vertically. This represents approximately 

178 loaded tyre radii vertically and 18 radii laterally. Figure 3.29 shows the FEA 

model used for this purpose. Note that roller supports were applied to the 

boundaries extending in either lateral direction. The outer faces were not allowed to 

displace but had no constraint against rotation, while the base of the model was 

fixed against displacement and rotation.  
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Figure 3.29: Annotated sketch of axisymmetric FEA model. 

 

 

 Comparison of Isotropic and Anisotropic Base-Course 3.9.6

Characterisation 

Following the above comparison relating to isotropic linear-elastic half-spaces, the 

relative effect of cross-anisotropic base-course material was investigated. This is a 

common practice and is recommended by Austroads (Jameson et al, 2008) for 

characterisation of UGM pavement layers. For this reason it has been included as a 
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material input within CIRCLY. The anisotropic ratio (vertical modulus:horizontal 

modulus) was selected as two, in line with Austroads recommendations.  

Comparison was made by utilising CIRCLY to repeat the modelling discussed in 

Section 3.9.5 with the base-course modified to be cross-anisotropic. The results are 

then able to be compared to provide insight into the relative effect of anisotropy of 

pavement materials. To provide more detailed understand, sub-grade horizontal 

strain was also calculated for two situation considered a relatively ‘soft’ sub-grade 

with light loading (section 1 with base-course modelled with static elastic modulus 

and an unloaded truck) and a relatively stiff base-course with heavy load (section 

one base-course modelled with resilient modulus and a loaded truck). The results of 

this modelling are of importance as it provides an insight in to the degree of load that 

is transferred radially away from the load with the introduction of base-course 

anisotropy. A practical indication of the impact of including anisotropic materials in 

pavement modelling is provided by observing the different estimated pavement 

calculated by HIPAVE (isotropic) and CIRCLY (cross-anisotropic), see Section 3.9.9 

for further discussion on this topic.  

 

 Modelling of Wheel Load Interaction 3.9.7

Wheel interaction could potentially impact pavement lifetime estimates, primarily 

with use of mechanistic-empirical design techniques. Two parameters are 

investigated within the modelled pavement below the mid-point of the rear axle of 

the Komatsu 830E haul truck. This has been considered the most critical location for 

potential wheel load interaction as it represents the mid-point between wheel gear 

loads that each account for one third of total truck weight when loaded. The two 

parameters investigated were: 

1. Deflection at the pavement surface. 

2. Vertical compressive strain at the top of the sub-grade. 

In both instances analysis was initially completed applying only half of the rear axle 

and then repeated with the full rear axle. This procedure was repeated with both 

CIRCLY and HIPAVE, with investigation of the strain level completed at this location 

within the analysis outputs from ABAQUS Standard 6.10. Plots of the deflection 

outputs arising from modelling with half and full axles were then compared to 

investigate tyre interaction predicted by the various modelling methods.  



Doctor of Philosophy (Civil Engineering)            Mine Haul Road Rolling Resistance 
Curtin University                                                                                          Procedure 

Jarrad P Coffey                                                                                                       215 

 

 Comparison of Pavement Curvature 3.9.8

Comparison of pavement deflection does not provide much understanding into the 

sensitivity of the analysis technique. For example, there are simple equations such 

as Equation 3.29 that can estimate the deflection for simple elastic soil structures for 

a given loading intensity and geometry. An investigation of the pavement curvature 

predicted by each analysis method is considered necessary to provide some insight 

into the accuracy of the soil response to load at depth. As is explained in the 

preceding section, this is critical to accurately predict pavement lifetime with the 

currently available pavement failure theories. 

The predicted pavement deflection profile (curvature) along the rear axle of the 

Komatsu 830E was compared to measured deflection profiles attained through the 

process detailed in Section 3.5.7. To provide further understanding of the ability of 

each modelling method, the curvature from the centre of the dual-wheel assembly in 

a direction directly back from the truck has also been investigated. The latter is 

essentially similar to the curvature function commonly utilised in pavement 

engineering for back-calculation of pavement stiffness values.  

FEA (ABAQUS) modelling adopted the resilient modulus values for the 

characterisation of the base-course, as these values produced the best agreement 

with measured deflection values. For the same reason, the static elastic modulus 

values have been adopted for the CIRCLY modelling. Although a point of difference 

in the two methods, objective six and seven of the study (Section 1.2) relate to 

investigation of the most appropriate methods for the analysis of haul roads. This 

includes selection of the most appropriate testing methods to characterise pavement 

materials. If the resilient modulus had been adopted for the CIRCLY analysis, as 

with ABAQUS, the curvature values would have been found to be even further from 

that measured during deflection testing.  

 Comparison of Pavement Lifetime Estimates 3.9.9

Following the above linear-elastic analyses, predictions of pavement life were then 

made with utilisation of both CIRCLY and HIPAVE, to allow comparison to the CBR 

design curves discussed in Section 3.9.9.1. Note that lifetime estimates generated 

via CIRCLY made use of the same sub-grade failure theory utilised by HIPAVE. 

Therefore, the focus of the investigation was the different methodologies adopted in 

each software package to calculate critical sub-grade strains. Comparison of lifetime 
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estimates were made by selecting various points on the S77-1 derived CBR design 

curves for a Komatsu 830E haul truck, and then modelling the resulting pavements 

(thickness and CBR values) in both HIPAVE, CIRCLY and ABAQUS Standard 6.10. 

As stated in Section 3.9, current practice for mechanistic-empirical haul road 

pavement design does not consider the sensitivity of different structural analysis 

methods. Therefore, this comparison is intended to present the differences in sub-

grade vertical compressive strain, and the resulting pavement lifetime estimates that 

result from the use of different analysis techniques. A comparison of surface 

deflection profiles is described above. For the purpose of design, such analysis must 

be applied with a defined pavement failure theory. There is little benefit in providing 

recommendation of a given modelling approach based on predicted pavement 

surface deflected profiles, if the same approach provides poor estimates of sub-

grade strain resulting in unrealistic estimated pavement lifetimes.  

To further the discussion above, it is imperative that, if shown to have a significant 

effect on haul truck rolling resistance, pavement design is completed in such a way 

to present opportunities to optimise road user cost. Therefore, limiting elastic strain 

may address rolling resistance arising from hysteresis best represented by 

pavement deflection. However, the time-dependent effect of pavement rutting may 

still require addressing to limit rolling resistance due to pavement roughness. It is 

understood that the failure theory considered throughout the estimation of pavement 

lifetime considers a failure to have occurred when a 20mm rut has developed. This 

is considered to be associated with a high level of pavement roughness, and 

consequently it may be that the pavement lifetime (or time to maintenance) is 

actually shorter than that found from the procedures below. Although this is 

dependent on the outcome of the interrogation of the generation of haul truck rolling 

resistance completed for this project. 

To consider the deterioration of the haul road pavement surfaces, the theory 

presented by Thompson (2009) is also considered to provide some insight into the 

serviceability of the pavement considered due to the calculated sub-grade strain. 

The basis of this theory is shown in Figure 2.20. This theory also considers the 

pavement rolling resistance indirectly, by consideration of the performance index. 

Therefore, if it is shown to align somewhat with the theory reported by Wardle et al 

(2001), it may be extended by further including the understanding of how haul road 

rolling resistance is generated and how this could be optimised in design.  
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3.9.9.1 Generation of CBR Design Curves with S77-1 

Design curves were generated via the method described by the U.S. Army Corps of 

Engineers in Pereira (1977) with use of the S77-1 curve presented in Figure 2.18 

(White, 2007). A detailed explanation of the method utilised for the generation of 

curves is not presented here, as it was completed in accordance with the 

methodology detailed by Pereira (1977). The inputs utilised were as per published 

values for a 40.00R57 off-the-road tyre (goodyearotr.com), which was fitted to the 

Komatsu 830E haul truck during in-situ testing. The contact area radius was 575mm 

(goodyearotr.com). A single wheel load was considered to be 64,037kg as was 

utilised during in-situ deflection testing. Finally, Poisson’s ratio for the pavement 

material was 0.35 as advised by Austroads for unbound granular materials 

(Jameson, 2008).  

Selection of ‘alpha factors’ are required to account for multiple wheels within a group 

for the purpose of CBR curve generation. As noted in Wardle et al (2010), it is 

considered appropriate to model only a single wheel gear in mechanistic design. 

The basis of this recommendation is that strain (considered the controlling factor for 

mechanistic design) attenuates much more rapidly in the radial direction from the 

load centre than deflection (Wardle et al, 2010). This issue creates some conflict, as 

deflection was the limiting design criteria applied within modelling completed in the 

derivation of the S77-1 method. Accordingly it was decided to stay with the 

recommended approach for each respective design method. Subsequently, the CBR 

design curves generated within this study have considered variable alpha factors to 

take account of all six wheels on a Komatsu 830E and varying load repetitions, as 

advised by Pereira (1977). 

Design curves have been calculated considering all wheel loads separately, as per 

the method presented by Pereira (1977) and also with dual-wheel gears being 

represented by a single contact area. The latter was found to produce the most 

accurate surface deflection predictions and as such it is considered valuable to 

consider the effect on resulting design pavement thickness. Although an 

extrapolation from the original pavement model this could represent a simplification 

that better represents wheel load interaction for haul trucks.  

Finally, the pavement thickness calculated by the method described by Pereira 

(1977) includes a 75mm layer of asphalt and 150mm of crushed rock over variable 

uncrushed gravel sub-bases. Consequently, some equivalence of these two upper 

materials must be made. This was completed via the equivalency factors stated by 
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White (2007), meaning the thickness of uncrushed gravel layers were scaled by 1.6 

when replacing asphalt and 1.2 when replacing crushed rock. Consequently, 75mm 

of unbound granular material (minimum CBR 20%, as per the P154 material 

described in Section 3.9.9.2) has been added to each calculated design thickness. 

 

3.9.9.2 HIPAVE/CIRCLY Pavement Lifetime Estimates 

Pavement lifetime estimates made within HIPAVE and CIRCLY utilised similar 

pavement models and an identical sub-grade failure theory. The pavement model 

employed was composed of Barker-Brabston sub-base materials overlaying an 

isotropic sub-grade of varying elastic moduli. The natural granular material 

considered in designs derived via the S77-1 curve, as described by Pereira (1977), 

is considered a P-154 material as specified by the Federal Aviation Administration 

(FAA, 1995) and has a minimum CBR value of 20% (White, 2007). For this reason 

the base-course material was selected as a cross-anisotropic material with an 

elastic moduli of 200 MPa for modelling with CIRCLY and HIPAVE. Note that this is 

despite the P154 material nominally having a resilient modulus of approximately 

150MPa, as this would have suggested it was only of sub-grade quality. From the 

discussion within Section 5.7.3 this was considered inappropriate for UGMs 

subjected to high stress states. The sub-grade was also modelled with cross-

anisotropic characterisation and varying elastic moduli to provide some comparison 

with the design arising from use of the S77-1 curve (White, 2007). No sub-layering 

was applied to either base or sub-grade materials within CIRCLY or HIPAVE. 

Contact pressures within both CIRCLY and HIPAVE were those of the published 

maximum value for a 40.00R57 tyre, which is 700 kPa (goodyearotr.com). This is 

commensurate with the recommendations arising from the investigation of pavement 

deflection estimates within this project (refer to Section 5.8.2). Tyre contact area 

(represented by radius for the assumed circular contact area in both programs) was 

a constant 575mm throughout modelling, as published for a 40.00R57 tyre 

(goodyearotr.com).  

As stated above, the sub-grade failure theory utilised for both software packages 

was identical. Critical strains were calculated as required and then pavement lifetime 

values were estimated as per Equation 3.34, Equation 3.35 and Equation 3.36. This 

is the method inbuilt within HIPAVE and is described by Wardle et al (2005). The ‘k’ 

and ‘b’ constants vary with sub-grade modulus and are presented for the respective 

materials considered within the modelling in Table 3.15. Note that the sub-grade 
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failure theory has been extrapolated for a sub-grade CBR value of 20% (elastic 

modulus of 200MPa). Although generally considered inappropriate for design by 

MRWA (MRWA, 2013) and Austroads (Jameson, 2008) this has been included to 

test the suitability of such a measure. Equation 3.35 and Equation 3.36 have been 

extended to allow consideration of the number of wheels in a gear. However, the 

increased accuracy noted in the validation of these equations is only 2.2% for a two 

wheel configuration (Wardle et al, 2010). Due to the uncertainty of the interaction of 

wheel loads occurring under a haul truck, the updated ‘k’ and ‘b’ factors have not 

been adopted in the analysis. Further, consider that there is conjecture as to the 

suitability of using a factor of 10 when transforming sub-grade CBR values to 

resilient modulus values (see Section 2.6.5.2), which further complicates the 

prediction of lifetime estimates utilising this method. 

 

 

Equation 3.34: Pavement life as per Wardle et al (2005). 

𝑁 = (
𝑘

𝜀
)

𝑏

 

 

Where: 

𝑁  is the number of allowable strain repetitions (number of 𝜀 repetitions in pavement 

life) 

𝜀  is the induced sub-grade vertical compressive strain (unit-less strain) 

𝑘  is a parameter, as per Equation 3.35 

𝑏  is a parameter, as per Equation 3.36 

 

 

Equation 3.35: ‘k’ parameter for use in estimating pavement life. 

𝑘 = 1.64 ∗ 10−9𝐸3 − 4.31 ∗ 10−7𝐸2 + 2.18 ∗ 10−5𝐸 + 0.00289 
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Equation 3.36: ‘b’ parameter for use in estimating pavement life. 

𝑏 = −2.12 ∗ 10−7𝐸3 + 8.38 ∗ 102 − 0.0274𝐸 + 9.57 

Where: 

𝐸  is the sub-grade elastic modulus (MPa) 

 

The resulting failure criteria are described below in Table 3.15. 

 

 

 

Table 3.15: Sub-grade failure criterion as per Wardle et al (2005). 

 

 

Finally, it is stated by Austroads (Jameson, 2008) that modelling with a thin 

surfacing (nominally asphalt less than 40mm thick) involves a low level of 

confidence. The impact of modelling with relatively high elastic modulus materials is 

potentially a significant source of error. This area requires significant further 

research, but is considered outside the scope of this investigation.  

 

3.9.9.3 FEA Modelling – Pavement Lifetime Estimates 

Pavement lifetime estimates completed with FEA were initially made with an effort to 

mirror the models employed in linear-elastic modelling. This involved utilising the 

average tyre contact geometry found through terrestrial laser scanning described in 

Section 3.5.7.5. The iterative process of balancing pavement layer moduli with 

estimated stress from plane strain FEA models, as discussed ins Section 3.9.4 

resulted in a relatively consistent foundation structure (‘Sub-Grade 2’ to Sub-Grade 
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4’ in Figure 3.27 and Figure 3.28). It is contended that these relatively high elastic 

moduli values are plausible due to the high confining stress resulting from the 

significant overburden pressure. Subsequently, these layers were designated elastic 

modulus values of 250MPa, 300 MPa and 350MPa within modelling for pavement 

lifetime estimates for comparison with CBR design curve predictions. The pavement 

layer thickness and moduli values were then selected as with CIRCLY and HIPAVE 

modelling, to allow for direct comparison of pavement lifetime estimates utilising the 

sub-grade failure theory detailed in Section 3.9.9.2. 

Secondly, pavement lifetime estimates were made for the pavements involved in on-

site deflection testing. The maximum assumed sub-grade modulus of 150MPa was 

used for calculation, in line with the maximum value in the validation completed by 

Wardle et al (2001). This involved selecting the critical sub-grade strain values that 

occurred in the results of the modelling described in Section 3.9.4. This allows 

further comparison with estimates made via the other methods discussed above.  
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4 Results 

The following section presents the results for the testing and modelling detailed in 

Section 3. 

 

 Ambient Conditions 4.1

The maximum temperature on the day of rolling resistance testing (25 January 

2014) was 36.9 degrees Celsius. However testing was completed from 8:30 AM to 

10:30 AM and thus the ambient temperature was approximately 30 degrees Celsius 

over the duration of testing.  

 

 Wind Speed Data 4.1.1

Wind speed and direction was measured at the beginning and end of each set of 

testing (note the time elapsed between each test set was approximately 3 minutes), 

the results are presented in Table 4.1. 

 

 

Table 4.1: Wind speed data relating to rolling resistance tests. 

Test Set Description 

Wind 
Speeds 
(m/s) Wind Direction 

Prior 15km/h Anti-Clockwise Loaded 0.4 Westerly 

Prior 30km/h Anti-Clockwise Loaded 0.4 Westerly 

Prior 30km/h Clockwise Loaded 0.7 Westerly 

Prior 15km/h Clockwise Loaded 1.1 Westerly 

Prior 15km/h Anti-Clockwise Unloaded 1.3 Westerly 

Prior 30 km/h Anti-Clockwise Unloaded 1.4 Westerly 

Prior 15km/h Clockwise Unloaded 2.1 Westerly 

Prior 30km/h Clockwise Unloaded 2.2 Westerly 
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 Pavement Texture 4.2

Pavement texture results are shown in Table 4.2. The standard deviation referred to 

below relates to the differences between test locations for each pavement section. 

 

 

Table 4.2: Pavement texture results for each section. 

 

 

 Pavement Roughness 4.3

A summary of pavement roughness results is presented in Table 4.3, where 

roughness is presented as the standard deviation to moving averages over varying 

wavelengths. Table 4.4 attempts to present roughness in a standardised form, 

through use of an approximation for IRI employing the average variance of 

pavement surface undulations, calculated over a 3m moving average.  
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Table 4.3: Summary of average standard deviation from various moving 

averages for each section. 

 

 

 

Table 4.4: Estimated IRI for each section, as per Mclean et al (1996). 

 

 

 Pavement Roughness Plots – Section 1 4.3.1

Graphical results for Section 1 comparing road chainage against each parameter 

listed below, are presented in the proceeding: 

 Elevation (m); 

 Standard deviation (0.5m moving average); 

 Standard deviation (1m moving average); 

 Standard deviation (5m moving average); 
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 Standard deviation (10m moving average); 

 Standard deviation (20m moving average). 

 

 

Figure 4.1: Section 1 inner wheel path elevation. 

 

 

 

Figure 4.2: Section 1 outer wheel path elevation. 
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Figure 4.3: Section 1 inner wheel path, standard deviation (0.5m moving 

average). 

 

 

 

Figure 4.4: Section 1 outer wheel path, standard deviation (0.5m moving 

average). 
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Figure 4.5: Section 1 inner wheel path, standard deviation (1m moving 

average). 

 

 

 

Figure 4.6: Section 1 outer wheel path, standard deviation (1m moving 

average). 
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Figure 4.7: Section 1 inner wheel path, standard deviation (5m moving 

average). 

 

 

 

Figure 4.8: Section 1 outer wheel path, standard deviation (5m moving 

average). 
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Figure 4.9: Section 1 inner wheel path, standard deviation (10m moving 

average). 

 

 

 

Figure 4.10: Section 1 outer wheel path, standard deviation (10m moving 

average). 
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Figure 4.11: Section 1 inner wheel path, standard deviation (20m moving 

average). 

 

 

 

Figure 4.12: Section 1 outer wheel path, standard deviation (20m moving 

average). 

 

 Pavement Roughness Plots – Section 2 4.3.2

Graphical results for Section 2 comparing road chainage against each parameter 

listed below, are presented in the proceeding: 

 Elevation (m); 

 Standard deviation (0.5m moving average); 
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 Standard deviation (1m moving average); 

 Standard deviation (5m moving average); 

 Standard deviation (10m moving average); 

 Standard deviation (20m moving average). 

 

 

Figure 4.13: Section 2 inner wheel path elevation. 

 

 

 

Figure 4.14: Section 2 outer wheel path elevation. 
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Figure 4.15: Section 2 inner wheel path, standard deviation (0.5m moving 

average). 

 

 

 

Figure 4.16: Section 2 outer wheel path, standard deviation (0.5m moving 

average). 
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Figure 4.17: Section 2 inner wheel path, standard deviation (1m moving 

average). 

 

 

 

Figure 4.18: Section 2 outer wheel path, standard deviation (1m moving 

average). 
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Figure 4.19: Section 2 inner wheel path, standard deviation (5m moving 

average). 

 

 

 

Figure 4.20: Section 2 outer wheel path, standard deviation (5m moving 

average). 
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Figure 4.21: Section 2 inner wheel path, standard deviation (10m moving 

average). 

 

 

 

Figure 4.22: Section 2 outer wheel path, standard deviation (10m moving 

average). 
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Figure 4.23: Section 2 inner wheel path, standard deviation (20m moving 

average). 

 

 

 

Figure 4.24: Section 2 outer wheel path, standard deviation (20m moving 

average). 

 

 

 Pavement Roughness Plots – Section 3 4.3.3

Graphical results for Section 3 comparing road chainage against each parameter 

listed below, are presented in the proceeding: 

 Elevation (m); 



Doctor of Philosophy (Civil Engineering)            Mine Haul Road Rolling Resistance 
Curtin University                                                                                             Results 

Jarrad P Coffey                                                                                                       237 

 Standard deviation (0.5m moving average); 

 Standard deviation (1m moving average); 

 Standard deviation (5m moving average); 

 Standard deviation (10m moving average); 

 Standard deviation (20m moving average). 

 

 

Figure 4.25: Section 3 inner wheel path elevation. 
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Figure 4.26: Section 3 outer wheel path elevation. 

 

 

 

Figure 4.27: Section 3 inner wheel path, standard deviation (0.5m moving 

average). 
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Figure 4.28: Section 3 outer wheel path, standard deviation (0.5m moving 

average). 

 

 

 

Figure 4.29: Section 3 inner wheel path, standard deviation (1m moving 

average). 
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Figure 4.30: Section 3 outer wheel path, standard deviation (1m moving 

average). 

 

 

 

Figure 4.31: Section 3 inner wheel path, standard deviation (5m moving 

average). 
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Figure 4.32: Section 3 outer wheel path, standard deviation (5m moving 

average). 

 

 

 

Figure 4.33: Section 3 inner wheel path, standard deviation (10m moving 

average). 
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Figure 4.34: Section 3 outer wheel path, standard deviation (10m moving 

average). 

 

 

 

Figure 4.35: Section 3 inner wheel path, standard deviation (20m moving 

average). 
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Figure 4.36: Section 3 outer wheel path, standard deviation (20m moving 

average). 

 

 

 

 Roughness Defect Score 4.3.4

The Roughness Defect Score for each pavement section is presented below. 

 

 

Table 4.5: Section 1 Roughness Defect Scoring sheet. 

 

 

 

Date:

Site:

Chainage:

Defect Degree Extent Defect Score

Potholes 1 1 1

Corrugations 1 2 2

Rutting 1 1 1

Loose Material 1 1 1

Stoniness 1 4 4

RDS 9

Mine Haul Road RDS Evaluation Sheet

0-80

Emu Section 1

24/01/2014
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Table 4.6: Section 2 Roughness Defect Scoring sheet. 

 

 

 

Table 4.7: Section 3 Roughness Defect Scoring sheet. 

 

 

 Pavement Deflection 4.4

Pavement deflection results are presented below. Note that where deflection data is 

shown for the loaded condition with the wheel gear ‘side-on’, these figures are not 

included in the average values shown at the bottom of each table.  

 

 

Date:

Site:

Chainage:

Defect Degree Extent Defect Score

Potholes 1 1 1

Corrugations 4 5 20

Rutting 1 1 1

Loose Material 2 5 10

Stoniness 4 5 20

RDS 52

Mine Haul Road RDS Evaluation Sheet
24/01/2014

Emu Section 2

0-110

Date:

Site:

Chainage:

Defect Degree Extent Defect Score

Potholes 1 1 1

Corrugations 3 5 15

Rutting 1 1 1

Loose Material 2 5 10

Stoniness 5 5 25

RDS 52

0-90

Mine Haul Road RDS Evaluation Sheet
24/01/2014

Emu Section 3
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Table 4.8: Pavement deflection results for Section 1. 

 

 

Table 4.9: Pavement deflection results for Section 2. 

 

 

Table 4.10: Pavement deflection results for Section 3. 
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 Pavement Curvature 4.4.1

Pavement curvature data for each pavement deflection test are presented in the 

following. Each result includes a graphical plot of the measured deflection and a 

table defining deflection values calculated using the equation shown for the trend 

line, for pre-defined values of radial distance from the centre of the dual wheel gear 

assembly. The curves are replicated in Section 4.8.7, where an assessment of 

various pavement structural analysis are tested. Data within tables in this section 

were utilised for back-calculation of pavement elastic modulus via the Evercalc 

software, see Section 4.8.1.2. 

 

 

Figure 4.37: Curvature, Section 1 unloaded (0.1m moving average and 

logarithmic trend-line). 
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Table 4.11: Calculated deflection to define curvature, Section 1 Unloaded. 

 

 

 

Figure 4.38: Curvature, Section 1 loaded (0.1m moving average and 

logarithmic trend-line). 
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Table 4.12: Calculated deflection to define curvature, Section 1 loaded. 

 

 

 

Figure 4.39: Curvature, Section 2 unloaded (0.1m moving average and 

logarithmic trend-line). 
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Table 4.13: Calculated deflection to define curvature, Section 2 unloaded. 

 

 

 

Figure 4.40: Curvature, Section 2 loaded (0.1m moving average and 

logarithmic trend-line). 
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Table 4.14: Calculated deflection to define curvature, Section 2 loaded. 

 

 

 

Figure 4.41: Curvature, Section 3 unloaded (0.1m moving average and 

logarithmic trend-line). 
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Table 4.15: Calculated deflection to define curvature, Section 3 unloaded. 

 

 

 

 

Figure 4.42: Curvature, Section 3 loaded (0.1m moving average and 

logarithmic trend-line). 
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Table 4.16: Calculated deflection to define curvature, Section 3 loaded. 

 

 

 Interaction of Deflection between Tyres 4.4.2

The following presents plots of the pavement surface deflection profile directly under 

the rear axle of the haul truck utilised in the testing. Polynomial curves have been 

fitted using the least-squares regression technique in order to provide remove the 

variation observed at the surface, such that they can be compared to profiles 

modelled by various software in Section 4.8.7. Note that a polynomial curve has not 

been fitted to Figure 4.43, due to a concave profile resulting. It is expected that 

either some unforeseen error has affected the measurement of the curvature profile. 

Ultimately it should be expected to be minimal from observation of the magnitudes 

of deflection in Figure 4.44. The deflection values for the truck in the unloaded 

condition can also be observed as being significantly smaller than the loaded 

condition for Sections two and three in the following.  
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Figure 4.43: Section 1, Station 1 (unloaded truck) deflection along rear axle 

from inside of left hand wheel assembly to inside of right hand wheel 

assembly. 

 

 

 

Figure 4.44: Section 1, Station 1 (loaded truck) deflection along rear axle from 

inside of left hand wheel assembly to inside of right hand wheel assembly. 
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Figure 4.45: Section 2, Station 1 (unloaded truck) deflection along rear axle 

from inside of left hand wheel assembly to inside of right hand wheel 

assembly. 

 

 

 

Figure 4.46: Section 2, Station 1 (loaded truck) deflection along rear axle from 

inside of left hand wheel assembly to inside of right hand wheel assembly. 
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Figure 4.47: Section 3 (unloaded truck) deflection along rear axle from inside 

of left hand wheel assembly to inside of right hand wheel assembly. 

 

 

 

Figure 4.48: Section 3 (loaded truck) deflection along rear axle from inside of 

left hand wheel assembly to inside of right hand wheel assembly. 
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 Geometry of Tyre Contact Patches 4.4.3

Average measured tyre contact patch geometry (Table 4.17) and estimates of total 

truck weight (Table 4.18) made from these results are presented below. The latter is 

included to provide an indication of the accuracy of assuming the average 

tyre/pavement contact patch has the tyre inflation pressure. All results relate to rear 

axle tyre, unless note otherwise. 

 

 

Table 4.17: Tyre contact patch geometry results 
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Table 4.18: Estimated truck weights from average tyre geometry and tyre 

inflation pressure. 

 

 

Table 4.19 presents the constant pavement/tyre contact pressure, which have been 

estimated from the measured contact area and known tyre loads in the unloaded 

and loaded condition (Komatsu, 2006).  

 

 

Table 4.19: Estimated uniform tyre contact pressure from measured tyre 

contact geometry. 

 

 

 

 Summary of Pavement Structural Condition  4.4.4

To provide a succinct summary of the structural condition of each respective 

pavement section, Table 4.20 is provided.  

 

Table 4.20: Summary of pavement section structural condition.  
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 Rolling Resistance 4.5

The following results correspond to the testing completed within Section 3.5 through 

Section 3.5.8. This presents the raw data collected during testing and the respective 

steps taken for data analysis. Ultimately a regression of the statistically significant 

correlations identified in the data was undertaken to determine the ability of using a 

limited number of pavement parameters to predict the rolling resistance experienced 

by the haul truck for a given set of operating conditions. 

 Summary of Truck Speed During Tests 4.5.1

The following summarises the truck speed for each test case. Ass there is no 

accepted correlation between vehicle speed and RRC, the variability evident in 

Table 4.21 is not expected to impact the results of rolling resistance testing 

sufficiently to require any additional screening of the data.  

 

Table 4.21: Average truck speed during rolling resistance testing. 

 

 

 Chi-square Test for Normality 4.5.2

The following summarises the results of the chi-square test for normality. Note that 

at a level of significance of 0.05 only one test per section was found to follow a 

normal distribution. Only the tests used found to have equal means/have originated 

form the same population in the ANOVA or Kruskal-Wallis tests respectively, have 

been included in the normality testing. Consequently, the number of tests included in 

the following chi-square results for each pavement section are not equal. 
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Table 4.22: Section 1 chi-square test for normality results. 

 

 

Table 4.23: Section 2 chi-square test for normality results. 

 

 

Table 4.24: Section 3 chi-square test for normality results. 
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 Summary of Tests per Section, Speed and Direction 4.5.3

The following presents the results for the average RRC for each test case and level 

of data analysis. Following the ‘screened data’ results is a summary of the statistical 

analysis completed on this set of data in order to produce the ‘correlated data’. 

 

Table 4.25: Summary of ‘unscreened data’ mean RRC. 

 

 

Table 4.26: Summary of ‘screened data’ mean RRC. 

 

 

Hypothesis testing, as per Section 3.5.8.2, was undertaken on the screened data set 

to further remove potential sources of error in the correlation testing between 

pavement properties and RRC. The results of non-parametric (Table 4.27) and 

parametric (Table 4.28) hypothesis testing are presented below.  
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Table 4.27: Kruskal-Wallis hypothesis test results of screened data. 

 

 

 

Table 4.28: ANOVA hypothesis test results of screened data. 

 

 

The results from the ANOVA hypothesis testing (the correlated data set) was 

applied to derive mean RRC values for the different test cases.   
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Table 4.29: Summary of ‘correlated data’ mean RRC. 

 

 

 Correlation between RRC and Pavement Properties 4.5.4

Pearson’s correlation coefficient was applied to identify correlations between any of 

the measure pavement properties and RRC. Firstly, a summary of pavement 

structural properties is presented (Table 4.30). This is a culmination of test results 

presented in Section 4.4 and Section 4.8.1. It is provided here, as it presents the 

pavement deflection, curvature and elastic modulus values utilised for correlation 

analysis presented in Table 4.31 through Table 4.33. Note that statistical 

significance is highlighted for a level of significance of 0.05, in accordance with 

Table 3.4. 

 

 

Table 4.30: Summary of pavement structural stiffness measures. 
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Table 4.31: Pearson correlation coefficient for ‘unscreened data’ between pavement properties and mean RRC values. 
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Table 4.32: Pearson correlation coefficient for ‘screened data’ between pavement properties and mean RRC values. 
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Table 4.33: Pearson correlation coefficient for ‘correlated data’ between pavement properties and mean RRC values. 
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Note that the correlation coefficient between the measured pavement deflection 

(when expressed to 0.1mm accuracy from testing) and RRC for a loaded truck 

travelling at 30km/h has been found to be 0.999 for each of the unscreened, 

screened and correlated data sets. Although this level of accuracy is beyond that 

confirmed for the laser scanning method of pavement deflection, this result does 

further confirm the trend that can be seen between the deflection and RRC for 

loaded trucks throughout the data.  

If the unloaded and loaded RRC for testing at 30km/h are considered, the 

correlation with pavement deflection was found to be 0.820. This is statistically 

significant at the 0.05 level of significance (requiring a correlation coefficient in 

excess of 0.811).  

The above results are considered evidence that a positive linear correlation has 

been confirmed between the pavement deflection and RRC for a loaded truck 

travelling at 30km/h.  

 

 RRC Regression Analysis 4.5.5

Initially multiple linear regression was completed between each the 12 tests cases 

for each data set. This regression included texture in addition to deflection and IRI 

initially, but was later removed after negative coefficients resulted. As a result the 

regression focussed on only the pavement properties found to consistently correlate 

with RRC above. Note that the constant term was set to zero in all regression 

analysis, as a result of a minimum RRC value not being apparent in earlier analysis 

to screen the data. Further, it was anticipated that the constant term would be 

influenced by the fact that any data more than two standard deviations from each 

test case mean RRC had been removed from the data in the derivation of the 

screened data set. Table 4.34 presents a summary of the linear regression 

equations.  

 

Table 4.34: Linear regression equations for RRC considering all tests. 

Data Set Regression Equation r2 Significance of 

F-value 

Unscreened RRC=0.0973*Deflection+0.0853*IRI 0.913 0.000009 

Screened RRC=0.1499*Deflection+0.062*IRI 0.939 0.000002 
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Correlated RRC=0.1756*Deflection+0.0544*IRI 0.942 0.000002 

 

As a result of the findings in Section 4.5.4, it was evident that superior correlation 

between pavement properties and RRC occurred for tests conducted at 30km/h. 

Therefore, regression was completed utilising the six test cases relating to these 

tests, with the results presented in Table 4.35. 

 

 

Table 4.35: Linear regression equations for RRC considering 30km/h tests 

only. 

Data Set Regression Equation r2 Significance of  

F-value 

Unscreened RRC=0.1682*Deflection+0.0663*IRI 0.958 0.0057 

Screened RRC=0.1537*Deflection+0.058*IRI 0.993 0.0004 

Correlated RRC=0.1506*Deflection+0.0598*IRI 0.987 0.0009 

 

 

 Relative Influence of Pavement Properties on RRC 4.5.6

The regression equations presented above provide an opportunity for an analysis of 

the relative influence of each pavement property on the generation of rolling 

resistance. For each data set, the portion of the estimated RRC arising from both 

deflation and IRI was calculated. First this focussed on the regression equation 

resulting from all test data. The results for each data set are presented in Table 4.36 

though Table 4.37. A summary of the results is presented in Table 4.39. 
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Table 4.36: Percentage of predicted RRC attributed to each pavement 

property, all truck speeds (unscreened data). 

 

 

 

Table 4.37: Percentage of predicted RRC attributed to each pavement 

property, all truck speeds (screened data). 
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Table 4.38: Percentage of predicted RRC attributed to each pavement 

property, all truck speeds (correlated data). 

 

 

 

Table 4.39: Summary (screened data and correlated data) of RRC derived from 

each pavement property, all truck speeds.  

 

 

Note the approximate ratio of RRC derived from deflection to IRI in Table 4.39, is 

one third (deflection) to two-thirds (IRI) for the unloaded case and half for each 

deflection and IRI in the loaded case.  

 

As noted previously, the correlations observed within the test data suggest that 

better correlation occurred between RRC and pavement properties for the testing 

conducted at 30km/h. For this reason the exercise above was repeated with only the 

30km/h test data considered. Table 4.40 through Table 4.42 present the proportions 

for each 30km/h test case for each data set, with a summary provided in Table 4.43. 
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Table 4.40: Percentage of predicted RRC attributed to each pavement 

property, 30km/t test data (unscreened data). 

 

 

Table 4.41: Percentage of predicted RRC attributed to each pavement 

property, 30km/t test data (screened data). 
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Table 4.42: Percentage of predicted RRC attributed to each pavement 

property, 30km/t test data (correlated data). 

 

 

 

Table 4.43: Summary (screened data and correlated data) of RRC derived from 

each pavement property 30km/h truck data. 

 

 

Again note the approximate ratios noted above for testing at all truck speeds (Table 

4.39) has been replicated for the test data for testing at 30km/h (Table 4.43). 

 

 Comparison with Available Models 4.5.7

For comparison purposes, the RRC values resulting from the screened data set are 

applied. This is to allow some removal of uncertainty related to truck and driver 

response. Further discussion behind this decision is provided in Section 5.5.2. The 

RRC values found through testing in the current study actually related to driving 

resistance, as the power generated at the rear axle must also propel the non-driving 

front axle. The models below are similar in that they apply coast-down tests, with the 

exception of that reported by Widodo et al (2009). For comparison with this model a 

true rolling resistance (relating to a single wheel) should be considered. For this 

purpose Table 4.44 has been developed, whereby RRC values are increased by 
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100% for an unloaded truck and 50% for the loaded case, as per the weight 

distributions in Komatsu (2006).  

 

Table 4.44: Adjusted RRC relating to a single wheel (screened data set). 

 

 

Results for estimation of rolling resistance with models developed specifically for 

haul roads are presented in Table 4.45  (Thompson et al, 2003) and Table 4.46 

(Widodo et al, 2009). 

 

 

Table 4.45: Predicted rolling resistance values as per Thompson et al (2003). 

 

 

 

Table 4.46: Typical rolling resistance values for a Komatsu 830 as per Widodo 

et al (2009). 
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Predictions based on the models derived through research in New Zealand (Cenek 

et al, 1996) with a commercial truck are presented in Table 4.47, Table 4.48 and 

Table 4.49. The first two primarily consider pavement roughness and the latter 

rebound deflection. 

 

 

Table 4.47: Comparison of estimated RRC via Cenek et al (1996), utilising IRI 

results and measured RRC values (15km/h). 

 

 

Note that the RRC values noted in Table 4.47 have a calculated Person correlation 

coefficient (see Section 3.4.5) of 0.7 with the measured unloaded RRC from the 

current study.  

 

Table 4.48: Comparison of estimated RRC via Cenek et al (1996), utilising IRI 

results and measured RRC values (30km/h). 

 

 

Note that RRC noted in Table 4.48 correlate well with those measured within the 

current study (applying the screened data results). The correlation coefficient 

exceeds 0.997 (limit of statistical significance of 0.05) when both the unloaded and 

loaded truck condition is considered. In the case of the loaded case the model under 

estimated the RRC by a range of 25-32%, with correlation with unloaded measured 

RRC being less consistent with a range from a 46% over estimate to a 14% under 

estimate.  
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Table 4.49: Predicted static RRC (Co) as per Jamieson et al (1999). 

 

 

Estimations using the HDM-4 (ARFCOM) model are presented in Table 4.50, taking 

account of pavement roughness and vehicle speed.  

 

 

Table 4.50: Rolling resistance estimates using the HDM-4 model. 

 

 

Lastly, results of predictions via research as part of the MIRIAM project are 

presented (Table 4.51 and Table 4.52). These models consider velocity, texture and 

roughness in estimating RRC. 
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Table 4.51: Estimated RRC from equation derived in ECRPD project for trucks. 

 

 

 

Table 4.52: Predicted RRC from the VETO model (Hammarstrom et al, 2012). 

 

 

 Potential Impacts on VOC 4.6

 

 Fuel Consumption 4.6.1

The estimates of instantaneous fuel consumption (IFC) for measured rolling 

resistance values, via the HDM-4 model are presented in Table 4.53. For 
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comparison, estimates have also been generated utilising the Department of 

Resources model, shown in Table 4.54. The correlation between the two models is 

presented in Figure 4.49. 

 

Table 4.53: Results of modelling IFC with HDM-4 fuel consumption model. 

 

 

 

Table 4.54: Fuel Consumption estimates for each section as per Department of 

Resources, Energy and Tourism (2010). 
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Figure 4.49: Comparison of fuel consumption models. 

 

 

 Laboratory Testing 4.7

The proceeding section presents the details of laboratory testing completed for the 

project. Note that some additional data is presented in this section (for example, 

photographs of in-situ soil conditions), as it has been interpreted with the data from 

laboratory testing.  

 

 In-situ Photographs 4.7.1

Photographs of in-situ material for each pavement section are presented below. 
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Figure 4.50: In-situ material of Section 1. 

 

 

 

Figure 4.51: In-situ material of Section 2. 
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Figure 4.52: In-situ material of Section 3. 

 

 

 Particle Size Distribution 4.7.2

Particle Size Distributions (PSD) for materials samples taken from each pavement 

section are shown in Figure 4.53, with the Main Roads Western Australia (MRWA) 

‘Lt10’ grading envelope (MRWA et al, 2003).  
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Figure 4.53: PSD results, with MRWA ‘Lt10’ envelope for lateritic gravels in semi-arid regions (MRWA, 2003). 
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In addition to PSD results, Table 4.55 presents results from interpretation of grading 

results. Table 4.55 classifies each material according to the Unified Soil 

Classification system, which is contained with AS 1726.  

 

 

Table 4.55: Assessment of materials as per AS 1726 and MRWA selection 

criteria. 

 

 

 Optimum Moisture Content/Maximum Dry Density 4.7.3

The results for the optimum moisture content (OMC) and maximum dry density 

(MDD) for each section are presented below.  

 

 

Table 4.56: OMC/MDD results summary. 

Section OMC (%) MDD (t/m3) 

1 8 2.8 

2 9 2.47 

3 11 2.4 
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Figure 4.54: Section 1 OMC/MDD results with plotted trend line. 

 

 

 

Figure 4.55: Section 2 OMC/MDD results with plotted trend line. 
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Figure 4.56: Section 3 OMC/MDD results with plotted trend line. 

 

 

 Repeated Load Tri-axial Test (RLTT) 4.7.4

The following details the repeated load tri-axial testing undertaken for the project. 

This includes a description of the condition of the soil during testing. 

 

4.7.4.1 Resilient Modulus 

Plots of resilient modulus against mean normal stress for each section are 

presented below. The first graph for each section relates to the results from 

Austroads AG:PT/T053 test method, with Sections 2 and 3 also including a second 

plot , which relates to the additional stress states described in Section 3.8.3. The 

power function relating to the trend-line drawn on each graph, along with the 

coefficient of determination (R2) is included on each graph. This equation is the ‘k-Ɵ’ 

relation to describe non-linear soil modulus response to differing levels of mean 

normal stress. A summary of the results, indicating resilient modulus values at a 

deviatoric stress of 890kPa is included in Table 4.57. 
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Figure 4.57: Section 1 resilient modulus plot (Austroads test stress regime). 

 

 

 

Figure 4.58: Section 1 resilient modulus plot (modified stress regime). 
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Figure 4.59: Section 2 resilient modulus plot (Austroads test stress regime). 

 

 

 

Figure 4.60: Section 2 resilient modulus plot (modified stress regime). 
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Figure 4.61: Section 3 resilient modulus plot (Austroads test stress regime). 

 

A summary of the calculated resilient modulus, from the RLT results presented 

above, is provided in Table 4.57, which relate to a deviatoric stress of 890kPa. Note 

that the mean normal stress exceeds the maximum of 240kPa stated by MRWA 

(2013). The values of mean normal stress in Table 4.57 are considered acceptable 

due to the significantly larger tyre loads and pressures experienced by haul roads.  

 

 

Table 4.57: Interpreted resilient modulus results for stress state from tri-axial 

testing. 
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4.7.4.2 Permanent Deformation 

The measured permanent deformation accumulated during the repeated load tri-

axial tests are presented below. Note that sequence 65 to 70 relate to the additional 

stress states which relate to the higher mean normal stresses in Figure 4.57 to 

Figure 4.61. This represents the operating stresses likely under a haul truck. The 

exaggerated deformation occurring from sequence 55 onwards is related to the low 

confining stresses applied, resulting in high stress ratios (deviatoric:confining 

stress).  

 

 

 

Figure 4.62: Section 1 permanent deformation against test sequence number. 
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Figure 4.63: Section 2 permanent deformation against test sequence number. 

 

 

 

Figure 4.64: Section 3 permanent deformation against test sequence number. 

 

 

4.7.4.3 Test Density/Moisture Conditions 

Table 4.58 details the soil conditions present during repeated load tri-axial testing. 

 



Doctor of Philosophy (Civil Engineering)            Mine Haul Road Rolling Resistance 
Curtin University                                                                                             Results 

Jarrad P Coffey                                                                                                       289 

Table 4.58: Sample density and moisture ratios, RLTT testing. 

 

 

 Tri-axial Testing 4.7.5

The following details the tri-axial testing undertaken with monotonic loading 

conditions. 

 

4.7.5.1 Stress/Strain Plots 

Stress/strain plots are presented for triaxial testing of each sample in the following. 

The inconsistency of the testing for section 1 (Figure 4.65) is considered to be 

related to the stress history of the sample, and is discussed in detail in Section 

5.7.3. 

 

Figure 4.65: Section 1 stress/strain plot (legend showing confining stress). 
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Figure 4.66: Section 2 stress/strain plot (legend showing confining stress). 

 

 

 

Figure 4.67: Section 3 stress/strain plot (legend showing confining stress). 

 

 

4.7.5.2 Mohr-Coloumb Strength Envelope 

Mohr-Coloumb strength envelopes, relating to the test results detailed above, are 

presented in the following. A summary of the Mohr-Coloumb strength parameters is 

also presented in Table 4.59. 
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Table 4.59: Mohr-Coloumb failure envelope summary. 

 

 

 

Figure 4.68: Section 1 Mohr’s circle, showing Mohr-Coloumb failure envelope 

(incomplete). 
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Figure 4.69: Section 2 Mohr’s circle, showing Mohr-Coloumb failure envelope. 
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Figure 4.70: Section 3 Mohr’s circle, showing Mohr-Coloumb failure envelope. 

 

 

4.7.5.3 Elastic Modulus 

Tangent elastic moduli results are shown in Table 4.60. Secant elastic moduli 

(relating to the elastic yield point) are presented in Table 4.61. The tangent elastic 

modulus and confining stress are included for a deviatoric stress of 890kPa to 

provide insight into the material properties that were considered to have occurred 

during site testing. 
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Table 4.60: Tangent elastic modulus values from tri-axial testing. 
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Table 4.61: Failure secant elastic modulus values from tri-axial testing. 
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4.7.5.4 Test Density/Moisture Conditions 

The soil moisture and density conditions present during tri-axial testing are 

presented in Table 4.62. 

 

 

Table 4.62: Sample density and moisture ratios, tri-axial testing. 

 

 

 Numerical Modelling 4.8

Numerical modelling of various pavement responses via several methods has been 

undertaken.  The modelling follows the regime discussed in Section 3.9. Initial 

results relate to back-analysis of measured deflection and curvature data. The focus 

then turns to applying the material parameters defined above, and through back-

analysis techniques in Section 4.8.1 to test the ability of a variety of modelling 

approaches to predict the measured pavement surface deflection and curvature.  

Note that the inflation pressure is considered to be 890kPa in all cases noted below. 

The ‘estimated tyre pressures’ relate to the average pavement/tyre contact pressure 

inferred from the measured tyre contact areas and known wheel loads, as presented 

in Table 4.19. 

 

 Back-Calculation of Pavement Modulus 4.8.1

4.8.1.1 Calculation Methods 

Table 4.63 presents the soil modulus values, back-calculated as described in 

Section 3.9.1. 
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Table 4.63: Back-calculated soil modulus results. 

 

 

 

4.8.1.2 Evercalc 

Back-calculated pavement modulus results, derived through the Evercalc software 

are presented in the following. Table 4.64 presents the base modulus and relative 

error, for back-calculation of base course elastic modulus considering the curvature 

to initiate at the centre of the observed contact area, whereas Table 4.65 considers 

curvature commencing at the edge of the loaded area (observed wheel contact 

area). The sub-grade structure was constant for all back-calculations, the reader is 

referred to Section 3.9.1.2 for explanation. 

 

 

Table 4.64: Pavement modulus back-calculated from curvature data with 

Evercalc software (from centre of contact area). 
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Table 4.65: Pavement modulus back-calculated from curvature data with 

Evercalc software (from edge of contact area). 

 

 

 Pavement Deflection – WES Method 4.8.2

Pavement deflection estimates (Δm), calculated via the method presented by Pereira 

(1977) are detailed in the following. The first set of results apply a tyre inflation 

pressure of 890 kPa, considering all wheel loads present for a Komatsu 830E and 

with only half of the rear axle (single dual-tyre assembly). 

 

 

Table 4.66: Deflection calculated via Pereira (1977). All wheels considered and 

contact pressure equal to inflation pressure. 
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Table 4.67: Deflection calculated via Pereira (1977). Single wheel gear and 

contact equal to inflation pressure. 

 

 

The modelling undertaken to produce the results above, was then repeated with the 

estimated tyre pressure (from tyre contact geometry and known wheel loads) 

applied. Modelling was completed with all wheel loads present for a Komatsu 830E 

and with only half of the rear axle (single dual-tyre assembly).  

 

 

Table 4.68: Deflection calculated via Pereira (1977). All wheels considered and 

contact pressure estimated from contact area and wheel load. 
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Table 4.69: Deflection calculated via Pereira (1977). Single wheel gear and 

contact pressure estimated from contact area and wheel load. 

 

 

The analysis of deflection was again repeated, with the dual-wheel assembly 

modelled as a single contact area (as was applied in the FEA analysis detailed in 

Section 3.9.4).  

 

 

Table 4.70: Deflection calculated via Pereira (1977). Dual-wheel gear modelled 

as a single tyre, with influence of all wheel considered and contact pressure 

estimated from contact area and wheel load. 

 

 

Table 4.71 provides a summary of the above deflection estimates, calculated with 

the method detailed n Pereira (1977). 
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Table 4.71: Summary of deflection estimate accuracy using WES method with 

varying input parameters. 

 

  

 Comparison of linear-elastic and FEA Axisymmetric 4.8.3

Modelling 

The results below show the correlation between linear-elastic and FEA modelling 

with equivalent input parameters. These results relate to axisymmetric modelling of 

a 2m deep base-course with the variable modulus values as indicated, supported by 

a 150MPa sub-grade. Figure 4.71 and Figure 4.72 show graphically the similarity in 

the curvature results estimated by the two modelling techniques.  Further, note that 

with equal analysis inputs and assumptions, HIPAVE and CIRCLY have been 

confirmed to produce the same output.  
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Figure 4.71: Comparison of CIRCLY and ABAQUS modelled curvature using 

static elastic modulus values for base-course (Note CIRCLY results are 

obscured by the HIPAVE results). 
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Figure 4.72: Comparison of CIRCLY and ABAQUS modelled curvature using 

resilient modulus values for base-course (Note CIRCLY results are obscured 

by the HIPAVE results). 

 

 

 Comparison of Isotropic and Anisotropic Base-Course 4.8.4

Characterisation 

The following outlines the comparison of modelling with only a change in the base 

material being characterised as isotropic and anisotropic. As in Section 4.8.3, the 
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model is axisymmetric with a base-course depth of 2m over an infinite sub-grade. 

From observation of Figure 4.73 and Figure 4.74, it is clear that modelling with an 

anisotropic ratio of two (vertical:horizontal elastic modulus) increases the deflection 

near the load centre, but has a negligible effect  beyond a one meter radius.  
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Figure 4.73: Comparison of isotropic and anisotropic base-course 

characterisation of predicted curvature, applying static elastic modulus 

values. 
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Figure 4.74: Comparison of isotropic and anisotropic base-course 

characterisation of predicted curvature, applying resilient modulus values. 

 

 

In addition to the comparison of pavement surface curvature, the horizontal stress 

has been investigated at the top of the sub-grade. Two situations have been 

investigated. Figure 4.75 relates to a relatively low base-course modulus (section 
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one static elastic modulus) and an unloaded truck. Figure 4.76 relates to a relatively 

high base-course modulus (section one resilient modulus) and a loaded truck.  

 

 

Figure 4.75: Comparison of horizontal strain at top of sub-grade for section 

one unloaded truck with static elastic modulus to characterise the base-

course. 
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Figure 4.76: Comparison of horizontal strain at top of sub-grade for section 

one unloaded truck with resilient modulus to characterise the base-course. 

 

 

 Linear-Elastic Modelling 4.8.5

Table 4.72 presents a summary of HIPAVE and CIRCLY estimated pavement 

surface deflections. Note that only the full results for each program with the 

modelling setup providing the best results are presented in full below. Comparison 

can be made via Table 4.72. 
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Table 4.72: Summary of HIPAVE and CIRCLY estimations of pavement surface deflection. 
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4.8.5.1 HIPAVE 

The initial set of deflection results, as calculated by HIPAVE consider the average 

contact stress, as calculated from known wheel loads and measured tyre contact 

areas (see Section 4.4.3). This modelling employs a three meter deep sub-grade of 

elastic modulus 150MPa. 

 

 

Table 4.73: HIPAVE deflection results, unloaded truck, measured moduli and 

estimated contact pressures. 

 

 

 

Table 4.74: HIPAVE deflection results, loaded truck, measured moduli and 

estimated contact pressures. 
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The above modelling was then repeated with Barker-Brabston sub-layering of the 

base-course, which approximates nonlinearity, presented in Table 4.75 and Table 

4.76. The modulus of the base-course is dependent on the sub-grade modulus and 

geometry of sub-layers and therefore does not vary for each section. 

 

 

Table 4.75: HIPAVE deflection results, unloaded truck, Barker-Brabston UGM 

materials and estimated contact pressures. 

 

 

 

Table 4.76: HIPAVE deflection results, loaded truck, Barker-Brabston UGM 

materials and estimated contact pressures. 

 

 

4.8.5.2 CIRCLY 

Table 4.79 and Table 4.80 present pavement deflection estimates via CIRCLY, with 

a contact pressure of 890kPa. Each table include deflection estimates considering a 

two metre thick base-course over a sub-grade of 15% CBR (elastic modulus of 150 

MPa). The base-course elastic modulus has been defined by the various methods 

outlined in Section 4.7.4, Section 4.7.5 and Section 4.8.1. All CIRCLY modelling 
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(Except for the results in Section 4.8.4) consider the materials to be cross-

anisotropic with a ratio of two (vertical modulus divided by horizontal modulus) and 

without any sub-layering. The latter is due to the Austroads (Jameson, 2012) sub-

layering method built into CIRCLY not being developed for heavy wheel loads. Note, 

deflection results for isotropic characterisation are noted as arising from CIRCLY 

and HIPAVE as they produce identical models when excluding any sub-layering or 

anisotropy, except that a load radius is nominated in CIRCLY. This has been found 

to have a negligible impact the results in this case.  

 

Initial  modelling was completed with an infinite sub-grade, and is presented in Table 

4.77 for an unloaded truck and Table 4.78 for a loaded truck. Modelling with an 

infinite sub-grade depth has been included here, as it was utilised for the results 

generated in Section 4.8.3 and Section 4.8.4. The results can then be compared to 

modelling presented later, with a three meter deep sub-grade, to provide comment 

of the effect of this simplification on the modelling. 

 

 

Table 4.77: CIRCLY deflection results, unloaded truck, measured moduli, 

cross-anisotropic materials and estimated contact pressures. Infinite sub-

grade. 
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Table 4.78: CIRCLY deflection results, loaded truck, measured moduli, cross-

anisotropic materials and estimated contact pressures. Infinite sub-grade. 

 

 

As per the finding in Section 4.8.3, CIRCLY and HIPAVE produce identical 

modelling outputs with equal inputs and with the exclusion of material sub-layering. 

For this reason, the reader is referred to Section 4.8.5.1 for deflection estimates 

relating to an isotropic base-course on a three meter deep sub-grade.  

 

 

Table 4.79: CIRCLY deflection results, unloaded truck, measured moduli, 

cross-anisotropic base-course materials and estimated contact pressures. 
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Table 4.80: CIRCLY deflection results, loaded truck, measured moduli, cross-

anisotropic base-course materials and estimated contact pressures. 

 

 

From the above results, it is clear that a three meter deep sub-grade produces 

greater deflection estimates (than an infinite sub-grade), that more closely reflect the 

deflection measurements taken in the current study. 

 

 Finite Element Analysis 4.8.6

The following sections detail the investigation of FEA for modelling haul road 

pavements. Generally, as with the results in Section 4.8.3 FEA has produced higher 

deflection estimates than linear-elastic software and as such appears to produce 

better estimates of the measured deflections.  

 

4.8.6.1 Pavement Layer Structure Resulting from Nonlinear 

Modelling 

The pavement and sub-grade layer structures that were derived through the iterative 

process described in Section 3.9.4, and used to determine pavement deflections via 

FEA are presented below.  From comparison of the elastic modulus resulting for the 

lower sub-grade portions with the consistent 150MPa sub-grade adopted for the 

axisymmetric modelling, provides some explanation of the lower calculated 

deflections. The increase in modulus with depth is evidence that the over-burden 

pressure dominates over that induced by the wheel loading.  
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Table 4.81: Derived pavement and sub-grade structure, Section 1 rear axle, 

unloaded truck. 

 

 

 

Table 4.82: Derived pavement and sub-grade structure, Section 1 rear axle, 

loaded truck. 

 

 

 

Table 4.83: Derived pavement and sub-grade structure, Section 2 rear axle, 

unloaded truck. 
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Table 4.84: Derived pavement and sub-grade structure, Section 2 rear axle, 

loaded truck. 

 

 

 

Table 4.85: Derived pavement and sub-grade structure, Section 3 rear axle, 

unloaded truck. 

 

 

 

Table 4.86: Derived pavement and sub-grade structure, Section 3 rear axle, 

loaded truck. 

 

 

 

4.8.6.2 Deflection Results 

Deflection estimates completed with FEA modelling are presented below. Table 4.87 

details deflection estimates considering the plane strain condition with a single 
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wheel gear load. Subsequently, Table 4.88 presents plane-strain modelling, with 

both wheel gears present on the rear axle of a Komatsu 830E included.  

 

 

Table 4.87: Deflection results from FEA modelling (plane-strain model, single 

dual-wheel gear only). 

 

 

 

Table 4.88: Deflection results from FEA modelling (plane-strain model, rear 

axle). 

 

 

Three-dimensional FEA pavement deflection results are presented in Table 4.89. 

The top half of the table reflects the calculated deflection with a simple linear-elastic 

sub-grade with an elastic modulus of 150MPa, with the bottom half being a repeat 

for the analysis with a nonlinear sub-grade applied, as per Table 4.81 through Table 

4.86. 
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Table 4.89: Summary of three-dimensional FEA modelling, with linear-elastic (150MPa) and nonlinear sub-grades. 
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 Comparison of Pavement Curvature 4.8.7

Following a comparison of the maximum deflections predicted by various analysis 

methods it was considered advantageous to also investigate the calculated 

pavement curvature. This is a common approach taken in the literature for validation 

of a modelling technique, which is made possible in this case due to the 

measurement of curvature in deflection testing. The initial set of results consider 

curvature in the traditional sense, that is the pavement surface deflection profile 

commencing at the centre of a rear axle dual-wheel gear and extending 

longitudinally backwards from the truck.  

 

 

Figure 4.77: Section 1, measured and predicted curvature (centre of wheel 

gear backwards) for unloaded truck. 
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Figure 4.78: Section 1, measured and predicted curvature (centre of wheel 

gear backwards) for loaded truck. 

 

 

Figure 4.79: Section 2, measured and predicted curvature (centre of wheel 

gear backwards) for unloaded truck. 
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Figure 4.80: Section 2, measured and predicted curvature (centre of wheel 

gear backwards) for loaded truck. 

 

 

Figure 4.81: Section 3, measured and predicted curvature (centre of wheel 

gear backwards) for unloaded truck. 
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Figure 4.82: Section 3, measured and predicted curvature (centre of wheel 

gear backwards) for loaded truck. 

 

 

Following modelling of curvature, in the common sense from the centre of load 

backwards, the deflection profile along the rear axle was also modelled and 

compared to the measured profile. This comparison provides insight into the ability 

of both modelling techniques with regard to replicating observations in the field. 

Secondly, it provides an indication of the degree of wheel interaction modelled by 

each method. 
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Figure 4.83: Section 1, predicted curvature along the rear axle (from insides of 

tyres) for unloaded truck. 

 

 

 

Figure 4.84: Section 1, predicted curvature along the rear axle (from insides of 

tyres) for loaded truck. 
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Figure 4.85: Section 2, predicted curvature along the rear axle (from insides of 

tyres) for unloaded truck. 

 

 

 

Figure 4.86: Section 2, predicted curvature along the rear axle (from insides of 

tyres) for loaded truck. 
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Figure 4.87: Section 3, predicted curvature along the rear axle (from insides of 

tyres) for unloaded truck. 

 

 

 

Figure 4.88: Section 3, predicted curvature along the rear axle (from insides of 

tyres) for loaded truck. 
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 Modelling of Wheel Load Interaction 4.8.8

The results of wheel interaction modelling with various software packages are 

presented below. HIPAVE analysis is presented in Figure 4.89. This modelling 

considers a loaded Komatsu 830E applied to pavement section 1, with a sub-grade 

elastic modulus of 150MPa and the base-course elastic modulus determined 

through tri-axial testing with monotonic loading. The results in Figure 4.89 result 

from a completely isotropic linear-elastic modelling. 



Doctor of Philosophy (Civil Engineering)                   Mine Haul Road Rolling Resistance 
Curtin University                                                                                                             Results 

Jarrad P Coffey                                                                                                                                                                                                      327 

 

Figure 4.89: Comparison of pavement surface deflection and sub-grade vertical compressive strain, calculated by HIPAVE (note 

differences in vertical scale). 
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The results of CIRCLY analysis of tyre interaction are presented in the following. 

This analysis applied the same inputs as above, with the exception of the sub-grade, 

which was modelled as anisotropic (as opposed to isotropic in HIPAVE). The results 

in Figure 4.90 result from linear-elastic modelling with a cross-anisotropic base-

course and an isotropic sub-grade. 
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Figure 4.90: Comparison of pavement surface deflection and sub-grade vertical compressive strain, calculated by CIRCLY.
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Results of pavement surface deflection and sub-grade vertical strain, calculated 

through three-dimensional nonlinear FEA for each pavement section are presented 

in Table 4.90. Note that the sub-grade was considered to have a layered structure, 

as detailed in Section 3.9.4, with the elastic modulus values presented in Section 

4.8.6.1. ‘Single Wheel Gear’ and ‘Rear Axle’ refer to the wheel loads included in the 

respective modelling, in order to provide insight into the impact of including multiple 

wheel loads in the inputs to the FEA modelling.  

 

 

Table 4.90: Summary of critical values showing effect of wheel load 

interaction in FEA modelling of the pavement sections.  
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 Pavement Lifetime Estimates 4.8.9

CBR design curves have been developed with  

4.8.9.1 CBR Design Curves 

CBR design curves have been generated following the method in Pereira (1977), 

with used of the updated S77-1 curve presented in White (2007). The first (Figure 

4.91) relates to all wheels present on the haul truck being applied separately in the 

calculation process, the latter (Figure 4.92) considers the rear axle dual-wheel gears 

as a combined load. 

 

 

Figure 4.91: CBR design curves derived with the S77-1 curve (White, 2007) and 

method in Pereira (1977) with all wheels considered separately in 

determination of ESWL. 
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Figure 4.92: CBR design curves derived with the S77-1 curve (White, 2007) and 

method in Pereira (1977) with dual wheel gears modelled as a single wheel 

load in determination of ESWL. 

 

 

4.8.9.2 Comparison of Pavement Lifetime Estimates 

Pavement lifetime estimates, comparing empirical and mechanistic-empirical design 

procedures are presented in Table 4.91. Note that for all results below, CIRCLY and 

HIPAVE results relate to the application of elastic moduli determined through tri-

axial testing with monotonic loading, whereas all results from FEA were determined 

with application of the measured resilient modulus. Selection of moduli types is 

discussed in Section 5.8.6. 
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Table 4.91: Pavement lifetime estimates via various methods, and category of haul road from Thompson et al (2009), considering a 

haul road with a total of less than 100,000 daily tonnes haul (considering sub-grade strain from ABAQUS). 
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Results of pavement lifetime estimates for a loaded Komatsu 830E, arising from 

empirical and linear-elastic design methods described in Section 3.9.8, are 

presented in Table 4.92. Pavement lifetime estimates derived through three-

dimensional FEA analysis are then presented in Table 4.92. Each pavement section 

is modelled with a 2m thick base-course, to reflect actual conditions at the time of 

site testing.  

 

Table 4.92: Comparison of design pavement lifetime determined for a loaded 

truck from various methods. 
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5 Discussion 

 In-situ Testing Methods 5.1

The in-situ testing completed for the project is discussed in the following. The 

majority of these tests involve utilisation of test-methods that have been largely 

developed specifically for this study, as discussed in Section 3.5. For the discussion 

below, it is assumed these methods produce results with the accuracy stated in 

Section 3.5. 

 

 Pavement Texture 5.2

Measurement of pavement texture on unsealed pavement surfaces has not been 

the subject of significant research in the past. The nature of the surface can change 

rapidly with traffic volume and composition, climatic effects and maintenance works. 

It is difficult to define texture of an unsealed alignment for the purpose of estimating 

end-user impacts such as fuel consumption and vehicle wear. For this project it was 

considered appropriate to include such a measure, as tyre rubber hysteresis (see 

Section 2.2.2) is suspected of playing a significant role in generation of haul truck 

rolling resistance. As discussed within Section 3.5.5, the wavelength considered to 

constitute pavement texture has been adjusted for this project to allow consideration 

of texture within the extent of a tyre contact patch. Utilising this methodology, the 

results achieved reflect the observed condition of the pavement on the day of rolling 

resistance testing. 

Section 1 was observed to have a smooth surface, with loose material well swept to 

the windrows at the side of the pavement. Sections 2 and 3 were both seen to 

present significantly more texture, with Section 2 dominated by divots and some 

fixed stoniness, whereas the Section 3 surface was typically dominated by loose 

stone with a maximum particle size of 50mm (estimated only). These observations 

are reflected in the texture estimation results, with Section 2 showing the greatest 

variance in results along its alignment, with Section 3 having the greatest texture.  
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It is difficult to comment upon these results in comparison to ‘typical’ or previously-

measured texture for haul road surfaces, as to the author’s knowledge it has not 

been attempted in the past. The RDS discussed in Section 3.5.6.3 does take 

account of some short wavelength roughness effects that may be considered within 

the range of texture adopted here, but would have a minimal effect on the final 

score. Despite the lack of precedent, the logical alignment between observation and 

measured results is considered to provide some assurance of the results attained.  

 

 Pavement Roughness 5.3

The three pavement sections included in the study differ quite significantly with 

respect to pavement roughness. To summarise Table 4.3, Section 1 has been 

shown to have approximately half (Section 2) and a quarter (Section 3) the 

magnitude of roughness over 0.5, 1 and 5m wavelengths and approximately half the 

roughness for 10 and 20m wavelengths compared to both of the other sections. 

Therefore, Section 2 has significantly lower roughness for wavelengths of 0.5, 1 and 

5m wavelengths and similar roughness for 10 and 20m wavelengths in comparison 

to Section 3. Table 4.4 supports these findings, as the variance over a 3m moving 

average has been used to estimate the IRI for each section and therefore Section 1 

is shown to be significantly smoother and Section 3 to be the roughest. More 

sophisticated methods of defining IRI (namely via laser profilometer) are required in 

order to comment on the relation between the method utilised here and ‘standard’ 

measures of roughness through IRI. Additionally, it has been found that Section 2 

consistently has greater variation in roughness between wheel paths than the other 

two pavement sections. 

Figure 2.13 provides a broader context for the pavement condition of the pavement 

sections considered in this project. Through observation it can be seen that Section 

1 fits within the ‘maintained unpaved roads’ category or even in the rougher 

extremity of the ‘older pavements’ category. Note that the longer wavelength 

roughness shown to be present within the Section 1 alignment means it would likely 

be considered inadequate as a common sealed pavement. Such roads would be 

traversed by vehicles at much higher speeds than 30km/h and at these speeds it is 

likely that the roughness would be shown to be higher if the NAASRA counts 

method or another method utilising stroke measurements of suspensions was 

utilised. This comment relates to the quarter car model and IRI, which have been 
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derived from measurements of suspension stroke. Section 2 and Section 3 are 

classified as ‘rough unpaved roads’ which is consistent with the observations of 

surface condition presented in Section 5.3.1. The right-hand vertical scale within 

Figure 2.13 suggests normal use of Section 2 and Section 3 would normally be 

restricted to less than 60km/h. This scale relates to highway type vehicles, however 

it does appear to correlate well with the observations made during testing. 

To provide some insight into the physical characteristics that have led to these 

results, consider the scoring for the RDS, as presented within Table 4.6, Table 4.7 

and discussed in Section 5.3.1. Overall, the subjective information provided via the 

breakdown of RDS scoring correlates well with the findings via moving averages 

and IRI. However, the RDS considers wear-related pavement defects and not 

longitudinal unevenness as a result of sub-standard construction techniques, 

leading to much higher variation for Section 3, which had considerably more wear-

related surface defects. 

 

 Roughness Defect Score 5.3.1

The RDS methodology has been derived specifically to define the overall impact of 

wear-related defects on pavement condition and ultimately rolling resistance. As 

discussed in Section 0, the rolling resistance model derived to utilise the RDS score 

has not been able to be investigated, this occurred due to the whole rolling 

resistance function not being available in the literature. Despite this, it was still 

considered that definition of the RDS provided additional insight to the roughness 

scoring collected through laser scanning, as it describes the nature of the in-situ 

pavement defects. From the scoring in Section 4.3.4 it is evident that Section 1 was 

in a superior condition, with Sections 2 and 3 presenting significantly higher scores. 

Of interest is the fact that Section 1 likely had experienced the most traffic, with 

Sections 2 and Section 3 likely experiencing only random traffic during construction 

of the most recent lift on the waste dump. Section 1 and 2 had been maintenance 

graded previously, as evidenced by the windrows observed adjacent to them. The 

nature of traffic in the intervening time to the testing is not known, however it 

appeared that Section 1 was in quite sound condition as evidenced by Figure 3.10. 

This is in contrast to Section 3, which had a great deal of stoniness, both fixed and 

loose. Finally, Sections 2 and 3 had a similar level of corrugations.  

This information should be considered somewhat independently of the discussion 

within Section 5.3, which describes the mean deviation of the pavement surface for 
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varying wavelengths. This methodology lends itself well to the description of sealed 

pavements, where surface defects are generally infrequent. However, unsealed 

pavements are expected to present some surface attrition due to trafficking. It is 

therefore prudent to describe the surface condition through a qualitative means such 

as the RDS. It is unfortunate that the research completed to develop the rolling 

resistance function described by Thompson et al (2003) could not be extended, as 

such a relation could be highly beneficial for day-to-day mine operations. It is 

recommended that future research consider the RDS function (or some other 

qualitative assessment such as estimation of IRI using Table 2.3) and how it may 

relate to rolling resistance.  

 

 Pavement Deflection 5.4

Pavement deflection measured within this project is difficult to interpret in the 

absence of similar measurements being taken previously on unbound haul road 

pavements previously. It is clear that deflections are greater than would be expected 

on (stiffer) highway pavements subjected to lighter wheel loads. Discussion of the 

interpretation of pavement deflections is contained within the remainder of this 

section and specifically within the discussion arising from pavement modelling in 

Section 5.8. 

 

 Pavement Curvature 5.4.1

Significant pavement deflection was found to occur in all sections under both 

unloaded and loaded haul trucks. When combined with the significant magnitude of 

maximum deflections discussed in Section 5.4, it is clear that the area and volume 

of pavement material influenced by the large axle loading is significant. Consider 

that deflection has not been shown to have decayed at a radius of 2500mm, which 

is the largest radius considered in back-calculation of pavement modulus (see 

Section 3.9.1). Transit New Zealand (1998) state that a broad deflection bowl relates 

to the sub-grade layer possessing relatively lower stiffness, with pronounced 

deflection near the load centre describing relatively lower stiffness of surface layers. 

From this general guidance it is difficult to comment on the nature of the pavements 

considered, other than to say it appears that the sub-grade and upper layers are not 

significantly stiff with relation to the wheel loading applied. Ultimately, curvature has 
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been defined to allow back-calculation of pavement surface and layer moduli, which 

facilitates further analysis and discussion. Section 5.7.3 contains discussion relating 

to the results of back-calculation of deflection and curvature results, and Section 5.8 

discusses the implications of pavement design throughout.  

There is some uncertainty with the method adopted to define curvature. The 

deflection has been defined via the use of a moving average, where raw data that 

suggests a concave deflection bowl can be effectively smoothed. However, it has 

been considered that overall a significant relation has been shown for the calculation 

method presented in Section 3.5.7.3. Ultimately, the method has not been utilised 

prior and consequently there is limited precedent in utilising measured deflections 

via terrestrial laser scanner and inputting to software designed for FWD test 

analysis. Secondly, the ratio of tyre contact pressure to material stiffness may be 

outside of the material and performance models contained within the software 

packages available, as they have been developed to analyse typical highway 

pavements with at least a thin flexible surfacing.  

 

 Interaction of Deflection between Tyres 5.4.2

The deflection profiles along the rear axle and between the front and rear axle of the 

haul truck used for site testing have been determined. It is clear from these results 

that there is some interaction between loads, as can be further attested by the 

observation of the curvature results discussed in Section 5.4.1. To properly interpret 

this result one should consider the limitations in the understanding of wheel load 

interaction presented in Section 2.4.2.1, which highlights that current linear-elastic 

modelling techniques may be insufficient to analyse pavement response in areas 

horizontally removed from the tyre contact patch. However if the results in Section 

4.4.2 are considered, it is clear that the deflection bowls of adjacent dual-wheel 

assemblies loads do interact. Although wheel load interaction has been shown to 

occur, it is unlikely to result in a change in the location of critical sub-grade vertical 

compressive strain which governs mechanistic pavement thickness design. This 

contention is supported by the outcomes of various modelling techniques (see 

Section 5.8.4.4). The only caveat to this statement is if a vehicle wander algorithm 

was built in to the pavement analysis, as is possible with the use of HIPAVE (Mincad 

Systems). Such an effect could result due to an increase in cumulative pavement 

damage occurring as the increased strain at the axle centre being added to the 

damage caused by strains under the wheel loads with the truck in different lateral 
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positions. In this case the cumulative damage factor could be influenced by 

anomalous strains calculated in locations radially removed from the load centres, 

which in turn could decrease predicted pavement life. Similarly, it may be that 

negative strains are predicted between wheels and subsequently an erroneous 

increase in pavement life predicted. This topic is further discussed in Section 5.8 

with the benefit of observations from pavement analysis utilising the software noted 

above.  

 

 Geometry of Tyre Contact Patches 5.4.3

Measurement of tyre contact patches was completed within this project to assist 

understanding of the geometry and contact characteristics for pavement modelling 

purposes. From the results in Table 4.18 it is clear that utilising the measured 

contact geometry with a constant applied load is inappropriate for modelling. The 

inaccuracy is somewhat improved by utilisation of the method presented by Hadi et 

al (2003), however total truck loads are still significantly over estimated. If a uniform 

contact pressure is assumed, it is shown to approximately double with the 

application of a load to the truck, for the contact geometry shown in Table 4.19. This 

finding is very significant for the purpose of pavement modelling and design as 

pavement strains will be significantly larger for the loaded case. These findings 

suggest that the tyre carcass stiffness, both vertically and radially, must have a 

significant impact on the contact stress and geometry for large off-the-road tyres. 

Further research is recommended to better define this effect for the purpose of 

pavement modelling. If one considers commonly accepted theory relating to 

interaction of flexible footings (Knappett et al, 2012) and soil reaction stresses, it is 

clear that a constant pressure is unlikely to be an accurate approximation for 

pavements subjected to such large loads and significantly large tyre contact 

geometry. 

The published contact area for a 40.00R57 tyre is 1.039 m2 (goodyearotr.com). 

Table 4.18 shows the average measured contact area for a loaded tyre was 1.047 

m2, therefore it appears the measurements taken were accurate. Corresponding to 

the published contact area is an inflation pressure for a 40.00R57 tyre carrying 

greater than 60 tonnes of 700kPa. The mine operator stated that they operated their 

haul truck tyres at higher than recommended inflation pressures (890kPa when the 

measurements were taken), which is confirmed by these results.   
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 Rolling Resistance  5.5

The following sections discuss the results and analysis of the rolling resistance 

testing. Data has been analysed at various stages, with three different ‘data sets’ 

being discussed. The derivation of each is outlined in Section 3.5.8.2 and 

summarised below. 

Throughout the following discussion, the RRC actually refers to a driving resistance. 

The results for this study have been derived considering the wheel torque applied to 

the rear axle of the haul truck used in testing, but consider the gross weight of the 

entire truck, not simply the vertical force applied to the rear axle. Section 5.5.8 

includes further discussion of this simplification and Table 4.44 presents adjusted 

RRC values that reflect the weight being supported by a single wheel. 

 

 Derivation of Data Sets, Potential Error and Uncertainty 5.5.1

The derivation of three data sets for analysis of rolling resistance testing was critical 

to the study. Therefore, a detailed discussion of the impacts and potential errors 

associated with each step is provided below. Firstly, a summary of how each data 

set was derived is presented. Note that a test case refers to a discrete set of six 

tests representing a specific combination of truck speed and load over the three 

pavement sections with three tests being completed with the truck travelling in each 

direction. Each data set comprises a mean RRC value for each test case and 

section. 

1. Unscreened data set – mean values of RRC calculated from wheel motor 

torque measurements sampled at a frequency of 0.04 seconds. The only 

exclusion within the data is the first and last second of the test, to remove 

uncertainty with the logging being started and stopped manually at each end 

of the pavement section. 

2. Screened data set – within the six tests representing a test case, any 

calculated RRC point greater than one standard deviation above the highest 

test mean value or less than one standard deviation under the minimum test 

mean value is removed. Also, any point with a rate of change exceeding 

0.01356kNm (10 pound-feet) torque is removed. 

3. Correlated data set – ANOVA hypothesis testing of equal means is 

completed with the screened data set. A mean value is then selected from 

tests that are found to have equal means at a level of significance of 0.05.  
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Mean truck speed values for each test case are presented in Section 4.5.1. For 

each test case, the variation of mean truck speed values varies from 3.2 to 4.7%. As 

discussed in Section 5.5.5, there does not appear to be a significant variation in 

RRC with truck speed within this study, and consequently this variation is not 

expected to be the source of significant error. However, note that the identification of 

a relation between truck speed and RRC is made more difficult due to the poor 

correlations found between RRC and pavement properties for a loaded truck 

travelling at 15km/h.  

The chi-square test results presented in Section 4.5.2 suggest that the RRC data 

within the screened data set is generally not normally distributed. To further 

interrogate this result, observation of histograms of the data suggests that kurtosis is 

more significant than skewness. This infers that much of the data is centrally 

located, to the extent that it cannot be considered to be normally distributed. 

Although this means chi-square testing was largely unsuccessful in proving 

normality in the data, it does provide some insight into the significant number of test 

cases that were found to have equal mean values through ANOVA testing 

(discussed below). An example of the distribution of RRC data within the screened 

data set was presented in Figure 3.20. Further discussion on hypothesis testing is 

presented below.  

Section 4.5.3 presents the mean RRC for each test case and data set. Also included 

in each set of results (Table 4.25, Table 4.26 and Table 4.29) are the mean RRC 

values summarising each test speed and payload. These provide additional insight 

into the correlation between pavement properties and RRC due to variation in only 

speed or payload.  

As the unscreened data set includes all data from the rolling resistance tests, it is 

expected to present the estimated total energy requirements for truck motion. This 

value includes truck and driver response to pavement and any other external input 

such as wind. However, as wheel motor torque was measured directly, it will 

exclude accessory power usage and the like. In fact, logging of the central inverter 

power output during the testing suggests that the truck’s wheel motors use 

approximately 70-90% of total power output. It was considered inappropriate to 

utilise only the data from the unscreened data set to determine the influence of 

pavement properties. Hence, further analysis was completed to refine the data, 

producing the screened data set, as outlined above.  
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The criteria applied to derive the screened data set are nominal in nature. It was 

considered appropriate to eliminate data that was too far removed from the 

population mean for each test case. This was done by comparing mean of each test 

and the population mean of the six tests comprising each test case. From 

observation of the pavement sections utilised in testing, somewhat consistent results 

were expected in the calculated RRC throughout each rolling resistance test. As 

such, outliers were not anticipated to occur due to any interaction between 

pavement and truck. Furthermore, very low values represent operating conditions 

where only minimal power output is required, which is not representative of the truck 

in hauling conditions. The removal of this data has resulted in a reduction in the 

mean RRC values between the unscreened and screened data set. This suggests 

the majority of the data removed were high values expected to have been 

associated with truck or driver response to any external input (for example, the 

driver applying additional throttle pressure). In the case of driver response, this 

could be related to perceived pavement conditions, although the driver was 

instructed to avoid changes in throttle position as much as possible. In reality, if a 

highly controlled testing environment could have been developed such exclusions 

would not be necessary. In fact, continuous monitoring of truck power output, throttle 

position and location on the pavement section could have allowed rapid changes in 

RRC to be interpreted to provide greater understanding of the relationship. 

However, as stated above, these data points are considered to have resulted from 

some external input to the trucks operating state other than pavement interaction. 

Less potential error is associated with the removal of data due to rapid changes in 

wheel torque, as they have been observed to occur throughout the range of wheel 

torque output measured in this study. As mean values are ultimately used for 

analysis, this therefore should have a negligible effect in most instances.  

The removal of data, as discussed above, in deriving the screened data set typically 

removed 30-50% of data points contained in the unscreened data set. A greater 

proportion is attributable to the maximum and minimum limits imposed. This 

explains the drop in mean RRC values observed between Table 4.25 and Table 

4.26. Such a proportion of data exclusion appears quite high, but is considered 

suitable due to the lack of a set test method and the volume of test data.  

Section 3.5.8.2 included a comprehensive discussion of the adoption of mean 

values from tests found to have equal means from ANOVA testing. Only two test 

cases rejected the null hypothesis (equal means). The null hypothesis was rejected 

for half of the test cases, when analysed with Kruskal-Wallis hypothesis testing. The 
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robustness of ANOVA is considered to be reasonably high for the nature of non-

normality (see Section 3.5.8.2) observed in this study, which has been interpreted to 

have resulted due to kurtosis more so than skewness. In the instance of the 

alternate hypothesis having to be accepted in ANOVA testing (i.e. the mean of tests 

is not equal), the mean RRC values from the screened data set were adopted. This 

is a potential source of error. Minimisation of the error was attempted with 

comparison of correlations inherent in the correlated data set with those present in 

the other two data sets. The comparison of data sets is considered necessary, as 

Table 4.28 shows that eight of the 12 test cases were found to have only two tests 

with equal means. Although this is not an ideal outcome, it does appear that the 

tests retained within the correlated data set are quite representative of the 

population mean of the results within the screened data set, which includes all six 

tests in each test case.  

In deriving the test data for this portion of the study, several potential sources of 

error and unknowns existed. The first relates to the inclusion of a human element 

within the testing, that is the haul truck driver. From observation of the driver 

throughout rolling resistance testing, it must be stated that he was vastly 

experienced and skilled. Despite this fact, it is expected that driver response is 

present within the unscreened data set, specifically in the form of ‘peaks’ in the 

measured wheel motor and central inverter torque output. It has been considered 

that such discrete changes in the rate of truck power output could not be in 

response to a pavement feature only, but more likely due to the driver applying 

additional throttle to maintain vehicle speed. Although such abnormalities have been 

removed from the data in the generation of the screened data set, it is 

acknowledged that further influence of the driver is possible within the bounds set. 

For example, it can be observed in Table 4.21 that the truck speeds are consistently 

higher than specified to the driver. This may have resulted from some inconsistency 

between the truck’s speedometer to that logged by the GE Invertex software, 

however it is thought more likely that it results from an attempt made by the driver to 

maintain a consistent speed. This has resulted in marginally higher than intended 

vehicle speeds, fortunately this trend is quite consistent throughout the data.  

Other potential errors relate to variation of pavement properties over the length of a 

pavement section. This study has characterised each pavement section through a 

mean value for each pavement property. For instance, Table 4.3 and Table 4.4 

utilise a mean value of the standard deviation of pavement surface undulation over a 

set moving average and the variance of pavement surface level over a moving 
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average wavelength of 3m, respectively. Deflection is characterised similarly, with 

section one and two having a second testing location added in the case of an 

unloaded truck to provide some assurance. Ideally, the test method used for the 

rolling resistance experienced by the truck, would have been of such accuracy that 

continuous monitoring of the wheel motor torque could be compared to discrete 

portions of each test section and their inherent pavement properties. This would 

require additional pavement deflection or pavement stiffness testing. Such an 

attempt could be made in future research if a rapid test method such as Heavy 

Weight Deflectometer could first be confirmed to correlate with full-scale haul truck 

deflection testing. Due to such an experimental methodology not being possible for 

the current study, mean values for each pavement section have been adopted in the 

analysis of rolling resistance test data. In the case of deflection, Table 4.8 and Table 

4.9 suggest that the test values are quite consistent over each section, however the 

lack of a second test station within section three means that it may have more 

inherent error. An attempt to control this unknown was made by selecting pavement 

sections that are expected to be consistent along their length, not just in appearance 

but also with regard to previous traffic in constructing the waste dump. Section three 

was removed from any designated roadway, and therefore was expected to present 

less pavement stiffness than the other two sections. Mine operations personnel 

advised the traffic layout has remained consistent for the placement of all lifts on the 

waste dump. However, such assurances and the heterogeneous nature of mine 

waste material is not sufficient to conclude that stiffness along each section does not 

vary, without some testing (such as that suggested above) that can be completed at 

a higher frequency.  

Although characterising sections of pavement with a single roughness (typically IRI) 

value is typical in the literature, this is an imperfect method in the context of 

correlating pavement condition to RRC. Such measures can be influenced by 

shorter portions of significantly higher roughness. Again, an attempt was made to 

utilise uniform pavement sections, which appears to have been somewhat confirmed 

by the profiles shown by the graphical outputs in Section 4.3, keeping in mind the 

pavement was unsealed and constructed without a quality control procedure in 

place.  

Potential sources of error also lie within the analysis of rolling resistance data. The 

process involved in the generation of the screened data set has been discussed 

previously, though some uncertainty is also present in the refinement to produce the 

correlated data set. Firstly, the need for two test samples to have equal means or 
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represent discrete samples of a single population, as tested by the ANOVA and 

Kruskal-Wallis hypothesis tests respectively, is not certain. The process for 

refinement was adopted in an attempt to remove uncertainty remaining within the 

screened data set, after removal of data outside the bounds set to represent driver 

and truck response. It is contended that if the data appears to have equivalent mean 

values then it must be consistent. However, the poor acceptance rate of the null 

hypothesis in Kruskal-Wallis testing does raise some concern. This has resulted 

from variation in the distribution of ranks within the test data. Which could be due to 

a difference in the number of data points in the test samples being tested. Secondly, 

it may result from variation in the mean RRC value between two (or more) tests. As 

stated above, there was a significant concentration of data points found to be 

grouped around the mean. This means that the median of two tests would vary, 

providing a skew in the distribution of ranks for the data points of two compared 

tests. Both explanations are cause for concern, which is one of the reasons that the 

screened data set was adopted for use in analysing RRC data and in the 

development of regression functions. As a result, this decision was made on the 

basis that the correlations present between RRC and pavement properties utilising 

the correlated data set were consistent with those observed in the screened data 

set. 

 

 Influence of Pavement Properties and RRC 5.5.2

A process has been undertaken to determine which pavement properties correlate 

with the RRC values derived for each test case within each data set. As a result, the 

strongest correlations were utilised to complete a multiple linear regression between 

RRC, pavement deflection and IRI. Finally, the resulting regression equations were 

applied to determine the relative impact of deflection and IRI to the case of an 

unloaded and loaded truck. Statistical analyses have been used throughout in order 

to provide insight into the level of confidence and error associated with each result.  

Most prevalent of all the trends identified by the correlation analysis, was the lack of 

any correlation being identified between a loaded truck at 15km/h and any pavement 

property. In fact, an inverse trend was observed in this test case when compared to 

the others in the study, with Section 1 having the highest RRC and Section 3 the 

lowest. Although no physical data was captured during the rolling resistance 

experiments to support the suggestion, it is contended that this may be due to the 

fact that the truck performs in a very inefficient manner at this low hauling speed. It 
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is logical that the truck would be designed to operate at peak torque, such that it is 

most efficient when operating in an ‘in-service’ condition. From the author’s 

experience within the industry, most hauling is completed at a maximum speed of 

30-40 km/h. This suggestion could have implications for haul trucks operating on 

ramps climbing out of mine pits. Such an operating case is beyond the scope of this 

study. However, in this instance torque output would likely be much higher than the 

testing at 15km/h in the present study due to the addition of grade resistance 

experienced by the truck. Testing completed at 15km/h in such an operating 

condition would provide much greater insight into the response of the truck to 

pavement properties, and it is recommended that any conclusion concerning a 

loaded truck travelling at 15km/h be reserved until such a study is completed.  

The correlation coefficients presented in Section 4.5.4 include the statistically 

significant results (exceeding 0.997, as per Table 3.4) noted in Table 5.1. Each is 

discussed in detail below. 

 

 

Table 5.1: Summary of statistically significant correlations between pavement 

properties and RRC. 

Data Set Relation with RRC 
Correlation 

Coefficient 

Unscreened 

Deflection (unloaded), all truck speeds 0.999 

5m moving average roughness, unloaded, 

15km/h 
0.997 

MPD, unloaded, 15km/h 0.999 

Screened 

1m moving average roughness, loaded, all truck 

speeds 
0.999 

IRI, unloaded, 30km/h 0.999 

Correlated 

5m moving average roughness, unloaded, 

15km/h 
0.999 

IRI, unloaded, 30km/h 0.997 

 

The correlations relating to 15km/h truck speed were found to produce negative 

coefficients when included in the multiple regression analysis, which is discussed 

below. As stated in Section 3.5.8.2, such results are considered irrational and are 
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excluded for this study. Further, the correlation between 5m moving average 

roughness and an unloaded truck travelling at 15km/h was found to correlate poorly 

(r=0.516) within the screened data set, and subsequently has not been investigated 

further. MPD was found to have a negative coefficient within each attempted 

regression analysis completed following the calculation of correlation coefficients, 

and was excluded from all subsequent analysis. Further, it was surprising that MPD 

was not shown to significantly correlate with RRC at 30km/h, as the discussion in 

Section 2.2.5 suggested a more pronounced influence of texture at higher vehicle 

speeds. Although a significant correlation coefficient was found for the 1m moving 

average roughness and a loaded truck, it was only found to be significant in a single 

data set, and subsequently this was not considered a trend warranting further 

investigation. 

Most significantly, the correlation analysis identified a statistically significant 

correlation in two of the three data sets between IRI and an unloaded truck at 

30km/h. A lower correlation coefficient resulted from analysis of the unscreened 

data set (0.832). This alludes to the greater error and uncertainty associated with 

the data prior to any screening. It is contended that greater truck and driver reaction 

occurs due to shorter wavelength roughness than any other property, which is 

referred to as ‘wheel hop’ by Mclean et al (1996) in Section 2.2.5. More discussion 

on this topic is included below.   

To this point, no discussion has related to the correlation between RRC and 

pavement deflection. It is noteworthy that in all test cases deflection produced a 

correlation coefficient with a level of significance of around 0.1 (r=0.988). 

Throughout the study, a level of significance of 0.05 was adopted to represent a 

finding of statistical significance. However, as noted in Section 4.5.4, this case 

should be considered further. If all test cases are considered for 30km/h alone, a 

correlation coefficient of 0.82 results, which is statistically significant for a level of 

significance of 0.05 and a sample size of six (requiring a minimum of r=0.811). 

Furthermore, if the deflection results are considered to an accuracy of 0.1mm, then 

a statistically significant correlation coefficient results at a level of significance of 

0.05 for all data sets. As was discussed in Section 5.4, an accuracy of only 0.5mm 

has been possible from the measurement techniques for pavement deflection 

developed for, and used within this study. It is recommended that future research 

focus on developing a method of measuring pavement deflection to an accuracy of 

0.1mm, as a resolution of 0.5mm represents a significant percentage of the total 

measured magnitude of deflection. As a result of this fact, it appears that greater 
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uncertainty may have resulted for the findings of this study, whilst being sufficient to 

address the research objectives. Therefore, pavement deflection was considered in 

conjunction with IRI within all subsequent regression analyses. 

Lastly, the correlation analysis showed a consistent trend of greater influence of 

longer wavelength roughness for a truck in the unloaded condition and shorter 

wavelength roughness in the loaded condition. Unfortunately, the poor correlations 

that have resulted between a loaded truck and RRC at a speed of 15km/h, mean 

that these results are excluded from this general statement. It was not possible to 

further analyse this effect with the size of the data set resulting from the experiments 

in this study. It is recommended this effect is investigated further in subsequent 

research.  

The findings from the correlation analysis discussed above were then utilised to 

guide the regression analysis, which is discussed in detail below.  

Multiple variable regression results presented in Section 4.5.5 are quite consistent 

between test cases. The only regression equation that could be considered an 

outlier from those determined from other data sets, is that derived from the results 

including all test speeds within the unscreened data set. Potential explanations are 

discussed below. The coefficients of determination are significant and also 

consistent for each regression equation. Further, the F-probability, as discussed in 

Section 3.5.8.2, has been shown in Table 4.34 and Table 4.35 to be less than 0.05 

in all cases, meaning only a minimal error should be considered to be present within 

the regression equations. The F-probability effectively defines the probability that the 

regression equation cannot adequately predict the independent variable (RRC), 

which has been observed to be sufficiently small for acceptance throughout. 

Therefore, it is contended that the outcomes of the regression are suitable for use in 

subsequent analysis and for estimating the driving resistance (as represented by 

RRC in this dissertation) of a Komatsu 830E haul truck operating at 30km/h on flat 

terrain. Further testing with alternate vehicle and operating conditions are 

recommended in future research, such that these functions can be modified. and 

verified for other operating conditions and vehicles. 

From comparison of the regression results considering all operating speeds and 

only 30km/h, it is clear that the unscreened data set produces distinctly different 

correlations to the screened and correlated data sets, which are generally well 

agreed. The lower coefficient of determination (r2) provides some insight. As the 

lowest values occur from regression with the unscreened data set, it is concluded 
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that a larger amount of unexplained error is present. This is logical, as this data set 

includes all data logged during each test, which includes unforeseen truck and driver 

response. The aim of screening the data, and then completing hypothesis testing to 

test equal sample means within the population of each test case, was to remove 

such error and uncertainty. Further, a greater influence of IRI has been determined 

for the unscreened data set. This may be explained by the fact that both truck 

dynamic response and driver response are likely to be more sensitive to IRI than 

pavement deflection. Vehicle dynamic response is known to be related to pavement 

roughness and it is suggested that driver response is related to driver comfort, which 

was the basis of pavement roughness measures, as discussed in Section 2.2.5. 

For prediction of total energy requirements, including uncertainties that have not 

been controlled or monitored within this study, the regression equations from the 

unscreened data should be applied (see Section 4.5.5). For clarity, Equation 5.1 is 

reproduced from Table 4.35 below. Whereas, in determining the relative influence of 

each pavement property on the generation of rolling resistance only, thus referring 

to an isolated wheel and its respective vertical load, the outcomes of the regression 

from the screened and correlated data should be observed. The equations and 

illustrated influence of each property displayed in Section 4.5.6 are closely related 

for these data sets. However, it is recommended that the regression equation noted 

for the screened data in Table 4.35 should be used for the prediction of RRC 

(driving resistance), which is reproduced as Equation 5.2 below. Note that, although 

a consistent trend has been identified between the equations derived from testing at 

both speeds and 30km/h in isolation, the uncertainty related to the operating state of 

a loaded truck moving at 15km/h, as discussed above, is considered too great to 

recommend use of any data from testing at 15km/h to predict the RRC. Due to the 

similarities between regression outcomes for both speeds and 30km/h, it is noted 

that that the equations presented below are potentially quite robust, but should be 

tested further in future research.  

As previously discussed, the RRC as measured in this study actually relates to 

driving resistance, as the power required to maintain steady state motion of the 

entire vehicle is considered instead of a single wheel. Therefore, the resistance of a 

single wheel motor also includes the power required for motion of unpowered 

wheels. This effect is discussed further in Section 5.5.8 and needs to be 

remembered when observing any output resulting from either of the equations 

below.  
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Equation 5.1: Regression equation for total haul truck driving resistance. 

𝑅𝑅𝐶𝐷𝑅 = 0.1682 ∗ 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 0.0663 ∗ 𝐼𝑅𝐼 

 

Where: 

𝑅𝑅𝐶𝐷𝑅   is the total driving resistance of the truck 

 

Equation 5.2: Regression equation for haul truck driving resistance. 

𝑅𝑅𝐶 = 0.1537 ∗ 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 + 0.058 ∗ 𝐼𝑅𝐼 

 

Where: 

𝑅𝑅𝐶  is the driving resistance of the haul truck, with some uncertainty removed for 

unforeseen truck and driver response 

 

The derived regression equations were then utilised to estimate the proportion of 

rolling resistance generated by both deflection and pavement roughness. A clear 

trend is evident within Table 4.39 and Table 4.43. Firstly, note that in both cases, IRI 

has approximately twice the influence of deflection for an unloaded truck and 

approximately equal influence for a loaded truck. The latter is also evident in the 

regression analysis for the unscreened data at 30km/h only. In concluding which set 

of results to utilise to state the relative influence of each pavement property it is 

important to consider the significance of the data contained within each data set.  

Table 4.40 and Table 4.43 should be observed with regard to the proportion of 

rolling resistance generated by each pavement property. It is evident from Table 

4.43 that approximately one third of rolling resistance experienced by the haul truck 

travelling at 30km/h in the unloaded condition was attributable to pavement 

deflection. The remainder, approximately two-thirds, is attributable to IRI. 

Furthermore, in the loaded condition, approximately half of the rolling resistance 

may be attributed to both pavement deflection and IRI. The results shown in Table 

4.40 further support this finding, with due consideration of the discussion above 
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relating to uncertainties included in the unscreened data set. It appears that 

unexplained error is most prevalent in the unloaded case, where the difference in 

the influence of deflection and IRI is more pronounced. It is contended that this may 

be due to the effects relating to unloaded truck response as discussed above. To 

further support this outcome, the relative influence of each pavement property is 

shown to be similar, when including the test data with a truck speed of 15km/h, see 

Table 4.39. 

The findings above are somewhat unprecedented in the literature. Jamieson et al 

(2002) suggest that deflection has the greatest influence on rolling resistance 

experienced by a small commercial truck operating on an unsealed road. 

Conversely, Thompson et al (2003) suggest that pavement roughness should be 

utilised as the sole determinant of haul truck rolling resistance. The HDM-4 model 

(Zaabar et al, 2010a) noted a significant effect for small changes in deflection on 

thinly bituminous sealed pavements. As was noted in Section 2.2.4, deflection has 

not been included in the relation for unsealed pavements within the HDM-4 model 

due to difficulties measuring unsealed pavement deflections. The results from the 

current study lie within the (rather broad) bounds of these findings stated in the 

literature, and are recommended as the basis for further research. Further 

discussion relating the magnitude of RRC estimated by the functions above, and 

those included in the literature, is included in Section 5.5.8.  

Although these findings have been derived from a limited set of test data, it is 

contended that the application of full scale testing in this study means that the 

outcome is quite significant. Note that the research conducted by Jamieson et al 

(2002) considered a single test on unsealed pavements, Thompson et al (2003) 

considered a total of 36 test cases with testing of a single truck. Ultimately a 

regression equation was derived involving RDS and truck velocity as the 

independent variable that was better than significant at the 0.02 level, with a 

coefficient of determination of 0.27. The result reported for the present study is 

considered similar in statistical significance to those noted above, though 

unfortunately there is little consistency between the experimental approaches taken 

by each study and therefore it is difficult to recommend which should be given 

precedence. As alluded to in Section 2.2.1, this is a major issue with previous 

research relating to the study of rolling resistance experienced by large vehicles.  
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 Rolling Resistance and Pavement Texture 5.5.3

Texture and load condition do not appear to have any significant relation when 

considering variation in RRC. The HDM-4 model and VTI consider that large 

vehicles (therefore heavier wheel loads) experience greater influence from 

pavement texture than roughness. This is not supported by the correlation 

coefficients presented in Section 4.5.4.  

 

 Rolling Resistance and Road Defect Score (RDS) 5.5.4

Similar to texture, no relation between RDS and RRC has been able to be 

determined. A lower RDS appears to have successfully predicted the lowest RRC 

values for Section one. However, the identical RDS values for Sections two and 

three suggest it is not a sensitive enough measure to provide any significant finding 

within the current study.  

 

 Rolling Resistance and Vehicle Speed 5.5.5

The correlation coefficients for all data sets (Table 4.31 through Table 4.33) show a 

statistically significant trend between the 5m moving average roughness and MPD 

with RRC for a truck travelling at 15km/h in the unloaded condition. Further, a 

consistent and statistically significant relation is observed between IRI and RRC for 

each set of data for an unloaded truck travelling at 30km/h. The combination of the 

these findings is somewhat difficult to account for in that the significant relations 

found at 15km/h relate to wavelengths of shorter than 1m (MPD) and 5m, whereas 

the relation noted for the truck speed of 30km/h relates to a wavelength of 3m (IRI). 

Therefore, it does not appear that truck speed can be attributed to a change in 

roughness wavelength most influencing RRC for an unloaded truck.  

In general it appears RRC is higher at 15km/h than 30km/h for Section one and two, 

whereas the opposite is observed in Section 3. As was discussed in Section 5.5.2, it 

is contended that roughness more significantly influences rolling resistance in the 

unloaded condition. Roughness, in conjunction with deflection, most significantly 

influences RRC in the loaded condition. Although difficult to comment on the speed 

dependence of either roughness or deflection, it does appear that one must result in 

higher rolling resistance within the bounds of the roughness and deflection values 

measured for Section two and three. It may be that the short wavelength roughness 

and texture present on Section three affected a greater energy loss through tyre 
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hysteresis, however pavement deflection is also significantly higher than the other 

sections for the loaded condition. Sandberg et al (2011) suggest a speed 

dependence of pavement texture with truck speed. It is possible that the haul truck 

energy losses are analogous to this effect in response to pavement roughness. 

Furthermore, note that the VTI model as reported by Hammarstrom et al (2008) 

considers rolling resistance due to roughness is affected by velocity, with an 

increase in RRC resulting from an increase in speed. The lack of research relating 

pavement deflection and rolling resistance makes it difficult to comment on the 

likelihood that this effect has occurred in the present study. Perhaps indicative of the 

two effects alluded to above, Jamieson et al (2002) report that an increase in loose 

material present at the surface of an unsealed road increased rolling resistance by 

25%. The study was completed with a light truck at steady state speeds ranging 

from 20 to 75 km/h,  no comment was made on the relative roughness effect with an 

increase in speed. This result is thought to correlate much closer to the estimated 

MPD than IRI in the context of the current study, and therefore is unlikely to 

represent a suitable answer to the relationship in the variation of RRC with changes 

in deflection and roughness, as discussed above.  

It appears that a significant correlation exists between pavement deflection and 

RRC at a truck speed of 15km/h. As discussed in Section5.5.2, it is contended that 

pavement deflection significantly influences rolling resistance at a truck speed of 

30km/h. The lack of any correlation identified at 15km/h may be due to the haul 

truck having been designed to operate most efficiently at hauling speeds, which 

typically vary from 30-40km/h. However, this cannot be confirmed from the data 

gathered for the present study.  

 

 

 Rolling Resistance and Payload 5.5.6

It is likely that the increase in tyre load, resulting from a larger applied payload, 

leads to a greater energy loss at the tyre/pavement interface. Rolling resistance 

experienced as a result of pavement deflection is more adversely impacted by the 

application of a greater wheel load. This is evidenced by the portion of RRC 

attributable to deflection significantly increasing with an increase in pavement 

deflection resulting from the truck being loaded. A greater range of truck payloads 

should be considered in future research in order to confirm this relation.   
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 Rolling Resistance and Pavement Stiffness 5.5.7

A detailed discussion of RRC and pavement deflection was provided in Section 

5.5.2. The following section discusses the relation between the pavement stiffness 

that has been estimated from the testing and RRC. Although closely related, it is 

important for the topic of pavement design that the two be considered separately.  

Table 4.20 provides a summary of pavement structural parameters, both directly 

measured and back-calculated. It was ultimately concluded that the Evercalc 

software may not be well suited for back-calculation of pavement stiffness for the 

magnitude of wheel loading included in the testing for the study (see Section 5.7.3). 

Consequently, the significantly higher elastic modulus back-calculated for Section 2 

presented in Table 4.20 is considered anomalous. Based on measured pavement 

curvature, it appears that pavement stiffness follows a similar trend to maximum 

induced deflection, which was discussed in relation to RRC previously. In making a 

subjective assessment based on the discussion contained within Jamieson et al 

(2009), it appears that Section 3 may have had limited sub-grade stiffness due to 

the ‘flat’ curvature measured (which is well illustrated in Figure 4.42). This perhaps 

provides some insight in to the relative influence of sub-grade stiffness, as the 

laboratory testing did not show the resilient modulus to vary significantly between 

samples taken from each pavement section (see Figure 4.58). This statement must 

be considered in conjunction with the fact that it ignores the relative in-situ density of 

the pavement layers, which were not measured as part of the study. It is 

recommended that any future research consider to what depth the zone of influence 

of a moving wheel load extends, and whether this significantly impacts the RRC 

experienced by haul trucks. Overall, observation of pavement stiffness values and 

measured pavement curvature suggests that RRC is influenced by pavement 

stiffness in a similar manner to pavement deflection. Pavement deflection is 

considered to best represent pavement stiffness within this study. As such, future 

research should better focus on definition of pavement stiffness rather than simply 

deflection, as no statistically significant correlation was found between any of the 

pavement stiffness measures included in the present study and RRC.  
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 Comparison with Available Models 5.5.8

In considering the comparison of the RRC values and resulting regression models 

within the current study, the lack of consistency between test methods and 

regression techniques within the literature (see Section 2.7) must be remembered. 

Additionally, previously developed RRC regression functions for haul trucks consider 

the only pavement input as the RDS (Thompson et al, 2003), or have been 

developed with scaled-down loading (Widodo et al, 2011).  Further, IRI (pavement 

roughness) and MPD (pavement texture) have been defined by non-standard test 

methods. This complication is further compounded by the fact that there isn’t 

consistency in the methods utilised to define each property for the various models 

presented within the literature. Measurement of pavement deflection in all models 

that include deflection is defined by Benkelman beam testing. However, as 

discussed in Section 3.5.7, this method is not suitable for a large, rigid haul truck 

and in this case provides further uncertainty as to the adequacy of applying the 

models included in Section 3.5.8.3. Despite this, testing of the models was 

completed to provide insight into the comparison of measured magnitudes against 

past research. Further, this facilitated comment on the functions that appear to hold 

some promise in being able to accurately estimate haul truck rolling resistance with 

consideration of pavement properties.  

Two models developed for haul trucks have been tested in this project. Table 4.45 

presents the results of rolling resistance (RRMIN) as per Thompson et al (2011). 

From the results here, it is evident that the model over estimated the rolling 

resistance as the minimum (speed-dependent) RRC is greater than the typical 

values measured throughout the current project. Further, the results suggest that 

rolling resistance is relatively immune to changes in pavement roughness, 

represented by RDS in the model. It is not clear if any payload was applied to the 

truck during the coast-down testing completed prior to regression of the derived 

relations. This may not have been considered, as the relationship was developed as 

a means of benchmarking haul roads to understand the user costs associated with 

progressive deterioration of the pavement surface. Predictions via the model 

reported by Widodo et al (2009) are presented in Table 4.46. From these results, it 

is clear that this method greatly over estimated the RRC for the conditions 

considered, even with the adjusted RRC values resented in Table 4.44 to consider a 

single wheel load. This model has been derived from the terramechanics models 

discussed in Section 2.2.3 and involves quite detailed tyre and load-based inputs. 

The physical testing from which the model constants were derived did not consider 
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wheels of similar geometry to that in this project, but rather a small cart towed by a 

utility vehicle. Furthermore, the variation in contact area due to loading and the 

inclusion of dual-wheel assemblies should be considered. In producing the 

estimates in Table 4.46, the total contact area measured (see Section 4.4.3) for the 

dual wheel assembly was used. Therefore, it appears that at this stage the model is 

not suitable for predicting rolling resistance experienced by haul trucks. Additionally, 

it takes account of ‘soft soil’ effects and not pavement surface characteristics, and 

therefore appears it is more appropriate for estimating rolling resistance in non-

compacted soil conditions. It is possible that this was the focus of the model’s 

development, due to the conditions commonly experienced in Indonesian coal 

mines, however this is not stated within the literature. Comparison with commonly 

reported RRC values in Table 2.5 reveals that the measured values are significantly 

lower than that reported from previous haul road research. Kaufman et al (1977) 

reported a RRC of 2% for rigid, asphaltic or cement stabilised soil pavements. Other 

results in Table 2.5 suggest that a value of 2% may be possible with hard, smooth 

and well maintained pavements, although no values lower than this are reported. 

Therefore, the results in Table 4.44suggest that the pavements tested for the current 

were in a good condition, which matches the observations made during the testing. 

Other potential influences affecting this result are advances in tyre technology since 

a large portion of the available research was completed. It is possible that higher 

tyre inflation pressures may have been utilised during the models development. The 

latter is certainly plausible, with the mine operators increasing tyre pressure in order 

to lower the threat of punctures on haul roads in a sound condition. 

The estimated RRCs utilising the roughness and speed-dependent equation 

presented by Cenek (1994) provide perhaps the closest fit to the measured results. 

Note that this model has been derived applying driving resistance, which was the 

same approach applied in the rolling resistance tests utilised for the current study. 

However, the truck used in the models development had a mechanical drivetrain, 

whereas the Komatsu 830E used in testing for the current investigation had an 

electronic drivetrain. No attempt has been made to correct for this difference. As 

noted in Section 4.5.7, application of Equation 3.20 shows the predicted results are 

generally under estimates. The 30km/h show a statistically significant correlation 

with the correlation coefficient exceeding 0.997 (limit for level of significance of 

0.05). For clarity, Figure 5.1 is presented. As can be seen, in all but one case the 

model under-predicts the measured RRC.  estimate.  
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Figure 5.1: Correlation between measured RRC and that predicted by Cenek et 

al (1994) model. 

 

 

Therefore, it appears that predicting rolling resistance  with consideration of 

roughness and vehicle speed could be quite accurate, however the dependence on 

speed may cause significant errors in using the model for predicting RRC for the 

pavements tested. Research completed in New Zealand, subsequent to the 

derivation of the above model and taking account of pavement Benkelman beam 

rebound deflection, has proven inappropriate for estimating RRC for haul trucks. 

This is due to the coefficient applied to truck weight being excessive when applied to 

haul trucks and consequently resulting the large negative values presented in Table 

4.49. As discussed prior, Equation 2.6 and Equation 2.7 include consideration of 

both rebound deflection and roughness, but were not able to be tested due to the 

complexity of the required inputs.  

The HDM-4 model is based on the ARFCOM model, and has been validated and 

modified for driving conditions in many countries since being originally developed in 

Australia. For this project, the basis for inclusion  of the model is its extensive 

application around the world and its ability to be adapted to specific conditions, 

should it show promise for the estimation of haul truck rolling resistance. 

Observation of the results in Table 4.50 should be made with consideration of 
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vehicle parameters having a negligible effect at low speeds, hence the inclusion of 

only a single table of results. In all cases it can be seen that these estimations are 

considerably lower than those that have been measured. This may be due to the 

fact that constants have not been defined (rather stated as being zero) for unsealed 

pavement texture and deflection. Consequently, the effect of texture and deflection 

are not accounted for and the estimated values are therefore lower than would 

otherwise be the case. From the discussion above, the omission of deflection is 

likely significant. Also note that vehicle-related constants were selected considering 

rigid trucks with only two axles, rather than the heavier long-haul articulated vehicles 

also included in the model. These two effects require further investigation, however 

the model has estimated RRC values with a similar order of magnitude to the 

measured values. It is possible that with an appropriate inclusion of texture and 

deflection, this model could provide some benefit in estimating haul truck rolling 

resistance.  

Discussion of the models developed in Europe (ECRPD and VETO) is combined, as 

the models are very similar with modification to magnitude of constants. The 

ECRPD model was developed from testing with a 27 tonne truck, with the final 

results including transmission and drivetrain losses, thus producing driving 

resistance estimates. This is a potential inaccuracy; however it is not apparent how 

transmission losses are influenced by the Komatsu 830 haul truck used for testing in 

this project having an electronic drivetrain and being powered by electric wheel-hub 

motors, as discussed above. Sandberg et al (2011), in presenting the ECRPD model 

states that trucks are more sensitive to roughness than texture, with velocity 

significantly impacting response to both. The velocities in this study appear too low 

to have a significant effect. However, the estimated RRC values are more 

significantly impacted by texture, likely due to the fact that only sealed pavements 

were considered in the model’s derivation. The reverse may have been true if the 

velocity had been able to be increased to highway speeds in the current study, for 

which the model was derived. Obviously, this is not possible due to the limitations of 

the vehicle used in the testing. Furthermore, the measured texture depths are likely 

significantly higher than with the pavements considered in the derivation of the 

model. Accordingly, estimates are of the correct order of magnitude, but lower than 

the measured values in all cases. The VETO model estimates even lower values as 

the velocity dependence for roughness has been removed and the constants 

reduced. For this reason, it is concluded that the ECRPD model provides a greater 

promise for use in estimating haul road rolling resistance. However, the lack of the 
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inclusion of a term to capture the effect of pavement structure in either model means 

that it appears to hold less promise than that of other models discussed above.  

In all cases, it must be noted that all models estimate RRC highest for Section 1 and 

lowest for Section 3. This is due to the fact that the sections have been found to 

have consistent relative magnitudes of roughness, texture and deflection. If one of 

the available models was to have captured all pavement properties simultaneously, 

it may have provided some further insight into the relative effect of each. Therefore, 

it is recommended that, of the models tested in this study, the HDM-4 model be 

investigated in future research.  

 

 Fuel Consumption 5.6

Fuel consumption estimates have been derived for this study through application of 

a mechanistic model (HDM-4) and a simplified energy-mass balance model. In both 

instances, in-built functions used to predict the rolling resistance generated due to 

pavement condition have been replaced with the RRC from the screened data set. 

This data set has been applied, as both models include allowances for inefficiencies 

and auxiliary power requirements. The HDM-4 model does this in a more direct 

manner through consideration of engine speed and maximum power output. The 

Department of Resources model applies factors to the power required to overcome 

grade, air and rolling resistance to allow for inefficiencies and accessory power 

requirements. It should be noted that the HDM-4 model has not been developed 

with consideration of haul trucks, and consequently results are taken from 

extrapolations. This provided the impetus for the attempted validation with a model 

that has been developed specifically for haul trucks (the Department of Resources 

model).  

As shown in Table 4.53, the HDM-4 model predicts a significant increase in IFC with 

addition of a payload to the truck. For the RRC values measured in the current 

study, the model estimates a 67% increase in IFC with the addition of load at 

15km/h and a 111% increase at 30km/h. This occurs due to a larger truck mass 

being applied to the higher RRC values for the loaded truck case. Tan et al (2011) 

state a relation between changes in rolling resistance to fuel consumption of 3:1 for 

cars and 4:1 for trucks. The modelling completed for this study suggest a ratio of 

1.9:1 results for an unloaded haul truck and 1.3:1 for a loaded truck. This has been 
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determined from the equation resulting from least-square regression between the 

RRC and estimated IFC at 30km/h. Therefore, from this result it appears that haul 

trucks may be more sensitive to changes in rolling resistance than highway vehicles. 

Further discussion on this topic is contained below.       

The Department of Resources model predicts a 183% increase in IFC with the 

addition of payload at 15km/h and a 258% increase at 30km/h. As this model is 

linear, and grade and air resistance are considered consistent throughout, any 

change in RRC results in an equivalent change in IFC. For this reason, further 

comment on the sensitivity of haul trucks to change in RRC and IFC is not possible 

from this model’s results.  

Figure 4.49 shows that a least-square regression between the two models results in 

a coefficient of determination exceeding 0.99. The coefficient of correlation between 

the two sets of data is approximately 0.998, which is significant at the 0.05 level. 

Although this suggests the models are equivalent in predicting changes in IFC with 

input of RRC, note that for the unloaded case, the HDM-4 model predicts an IFC 

that is on average 54% higher than the Department of Resources model for the 

unloaded truck case. The reverse is true for the loaded case, with the Department of 

Resources predicting an average 9% higher IFC. This difference is attributable to 

the allowances for mechanical losses and accessory power made by the HDM-4 

model, as discussed above. The estimated auxiliary power requirements and 

mechanical inefficiencies represent a greater portion of power requirements when 

the RRC is lower (i.e. the unloaded case). At operational speeds (30km/h) it appears 

the models are quite similar, and consequently it appears general conclusions can 

be drawn for the results for the IFC values estimated with a truck speed of 30km/h.  

Therefore, it appears that haul truck fuel consumption is quite sensitive to the 

addition of load. In addition, haul truck IFC appears more sensitive to changes in 

RRC than for cars and commercial trucks. From the discussion in Section 5.5.2, it is 

clear that rolling resistance experienced by a haul truck at 30km/h appears equally 

influenced by pavement roughness and deflection, with the latter providing 

significantly greater influence for the loaded condition compared to the unloaded 

condition. As a result, it is recommended that haul road pavement design, 

construction and maintenance include consideration of pavement stiffness in 

addition to the generation of pavement roughness.   

The fuel consumption model, particularly the HDM-4, require calibration for large 

haul trucks. The Department of Resources model’s assumptions relating to 



Doctor of Philosophy (Civil Engineering)              Mine Haul Road Rolling Resistance 
Curtin University                                                                                          Discussion 

Jarrad P Coffey                                                                                                       362 

mechanical inefficiencies should also be confirmed. It is recommended that future 

studies include calibration of such models, preferably in conjunction with the 

measurement of RRC. This represents the practical link between an understanding 

of haul truck rolling resistance and a mine owner’s profits.  

 

 Laboratory Testing 5.7

Laboratory testing was focussed on defining strength and stiffness characterisation 

of the sampled materials to allow comparison of modelled and measured deflections 

from in-situ testing. Only PSD testing was completed with regard to index testing. 

Despite this, sufficient information was gathered to allow assessment as per AS 

1726. Section 1 and Section 3 were classified as well to poorly graded silty gravel 

and Section 2 as a sandy gravel. A more detailed discussion of each laboratory test 

is presented below. 

 

 Particle Size Distribution 5.7.1

PSD results have been compared to the MRWA recommended grading envelope for 

lateritic gravels for use within base-course layers in semi-arid and arid areas of 

Western Australia (MRWA, 2003). Such climatic conditions occur at the majority of 

mine sites within the state and around Australia. This specification has been 

developed for pavements intended to be sealed by thin sprayed bituminous wearing 

courses. Although haul roads are generally unsealed, this specification does 

represent gravel material that has been observed to present acceptable 

performance within unbound granular pavements. Table 4.55 suggests the materials 

are well or poorly graded gravels. Sections 2 and 3 are not sufficiently uniform in 

grading to be classified as well-graded gravels, as indicated by a coefficient of 

curvature value below the minimum of one (MRWA, 2003). When assessing the 

materials in accordance with MRWA selection guidance, the materials were found to 

be deficient in fines as indicated by the low dust ratio values. All samples included 

particles in excess of the recommended 37.5mm maximum.  

Selection criteria for gravel materials proposed for wearing courses on unsealed 

pavements generally relate to Atterberg limits, in combination with PSD and 

specifically fines content. The laboratory testing regime for this project involved a 

finite quantity of sampled material for testing, with strength and stiffness testing 
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being prioritised. Subsequently, Atterberg limit tests have not been carried out. 

Furthermore, this project is focussed on exploration of structural design techniques, 

and therefore, comment on the suitability of sampled materials for functional 

pavement performance is beyond the scope of this study.  

 

 Shear Parameters 5.7.2

Table 4.59 summarises the Mohr-Coloumb shear envelopes for the three materials 

tested. Figure 4.68 through Figure 4.70 show the Mohr’s circle of stress resulting 

from testing of the samples from each pavement section. It can be seen that the 

materials present relatively consistent properties, however note that the result for 

Section 1 should be taken as indicative only, as it is based solely on two stages of 

tri-axial testing. This was due to the load ring, responsible for measuring the 

deviatoric force, needing to be replaced and possibly having produced inaccurate 

results for the first stage of the test. Unfortunately, in an effort to ensure the sample 

was preserved so that multi-stage testing was successful, the highest confining 

pressure of 300 kPa was completed first for this sample. It is suspected that the 

stress history then impacted the results of the testing completed at 100kPa and 

200kPa confining pressures. Despite this complication it appears adequate to 

estimate the shear parameters for Section 1 from the analysis of the two stages that 

were completed successfully, and based on the similarity with results for the other 

two sections.  

The shear parameters found for these materials suggests they are relatively strong. 

Austroads do not provide guidance on potential shear parameters for pavement 

materials within the Guide to Pavement Technology. Presumptive values in an 

Austroads research paper (Gonzalez et al, 2012) show that based on the internal 

angle of friction the materials fall between high quality sub-grade material and low 

quality sub-base material. The South African Pavement Engineering Manual (The 

South African National Roads Agency, 2013) contains similar guidance on 

presumptive material parameters. Assessment for compliance to these guidelines 

provides a similar characterisation of the materials encountered. The materials 

within this project present a very high value of apparent cohesion, especially 

considering the materials were not typically dried-back for tri-axial testing (moisture 

ratios typically in excess of 90% OMC) and thus negative pore pressures within 

each sample should have been relatively low. The exception to this is the sample 

from Section 1, which as discussed in Section 3.8.2 was removed from the cell after 



Doctor of Philosophy (Civil Engineering)              Mine Haul Road Rolling Resistance 
Curtin University                                                                                          Discussion 

Jarrad P Coffey                                                                                                       364 

the first stage of testing and sealed and stored for approximately four weeks. 

However, the internal angle of friction characterises the materials as being, at best, 

analogous to select ferricrete sub-grade. This discussion compares the materials 

sampled for the project to the national pavement specifications of the South African 

National Roads Agency and presumptive values published by Austroads. It should 

not be considered an assessment of the suitability of the materials for use in mine 

haul road pavements. Rather, it characterises them as typical gravel materials which 

are, in general, unsuitable for use in base-course layers within sealed roads in 

Australia and South Africa. 

 

 Elastic Modulus of Pavement Materials 5.7.3

The pavement and material elastic moduli was tested via three means; back-

calculation of deflection/curvature data measured from static wheel loads, multi-

stage tri-axial testing and RLTT testing. All methods were described previously in 

Section 3.8. Discussion of the elastic modulus results from each has been combined 

below, including a comparison of results derived by each method to provide 

explanation of the values used within pavement modelling and analysis. 

Calculation methods as described in Section 3.9.1.1 have been included to provide 

insight into the applicability of a simple, and commonly applied, methodology for 

estimating elastic settlements under shallow footings. This method calculates elastic 

moduli values similar to the secant modulus (to plastic failure) values contained 

within Table 4.61. Note that this method considers the pavement and foundation as 

a single isotropic mass with no allowance for non-linear soil behaviour. This 

suggests that such values may be appropriate for long-term loading, which is 

unlikely to be required for haul road pavement design. Section 1 is calculated to 

have the highest elastic modulus value. This result is contrary to the discussion 

below relating to laboratory testing with monotonic or static loading. Further, it helps 

to describe the need for more detailed analysis taking account of pavement surface 

curvature. 

Results from back-analysis of measured deflection bowls with Evercalc software 

suggest that curvature has a profound effect on the estimation of elastic modulus 

values. Section 3, with wide and relatively deep deflection bowls, presents the 

lowest elastic modulus values. Back-analysis of Section 2 (in the case of the truck 

being subject to a payload) was not possible due to the steep curvature close to the 

centre of the contact area. The calculation was repeated allowing modulus values as 
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high as 2000 MPa but a convergence to a solution was not possible. Accordingly, 

the elastic modulus is stated as greater than 1000 MPa, as it is recommended by 

Austroads in Gonzalez et al (2012) as the maximum presumptive value for unbound 

granular material. Discussion of values recommended by Australian road authorities 

is included below, which suggests this value is well outside that used for commercial 

pavement designs. Further, comparison with moduli values derived through 

laboratory testing suggests that these results may be anomalous.  

Some uncertainties in relation to the use of Evercalc for back-analysis do exist, 

especially with regard to inputting such large wheel loads. As discussed within 

Section 3.9.1.2, modulus values have been calculated with curvature considered to 

commence from the edge of the equivalent radius of the contact patch (representing 

a circular contact patch equal in area to the measured contact patch) and also from 

the centre of the load. The back-calculated moduli values from the edge of the load 

were found to be exceptionally high and suggest that the Evercalc software may not 

be appropriate for determination of pavement modulus for the wheel load and 

pavement type considered. This is further supported by the relatively high RMS 

values reported for all results, especially in the case of the curvature commencing at 

the edge of the loaded area. However, in the absence of a specific program being 

available for back-analysis of pavement deflection with large, static wheel loads, 

Evercalc has been considered the best available means for analysis of in-situ test 

data. Furthermore, the in-situ density of the pavements that were subject to 

deflection testing is unknown. Measurement of this property would have required 

large water or sand replacement tests, which was judged to be too time consuming 

within the tight timeframe applied to the project’s in-situ testing regime. Such tests 

would have only extended to less than a metre depth, and so would have provided 

only a small amount of additional data. 

Tri-axial testing commonly used to determine soil elastic moduli employs a constant 

vertical strain rate and is repeated over several stages, each with a varied confining 

pressure. As soils exhibit stress-dependent behaviour, a unique stress-strain curve 

results for each stage of testing. Elastic modulus results from the tri-axial tests 

(monotonic loading) have shown to be significantly lower than that calculated 

through back-analysis (static loading). Several explanations are possible, the first 

being the difference in the load rate employed by the two tests. Furthermore, the 

result may be related to the level of strain and best explained by observation of both 

the relative geometry of a tri-axial sample (200mm deep) and the layer thickness 

designated within back-analysis of pavement curvature data (2m). A 4mm 
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deflection, if considered consistent throughout a 2m layer considered in Evercalc 

represents a strain of only 0.2%. Plastic yield, the point used to define tangent 

elastic modulus from tri-axial testing, can be observed to occur at much larger 

strains for all tests in Section 3.8.2, and therefore it is reasonable to expect relatively 

lower elastic modulus estimates. Separating the base-course layer into multiple, 

thinner layers within the back-analysis may remedy this issue. Unfortunately this 

was not found to assist in the back-calculation of pavement elastic modulus. Another 

limitation of the method is that a maximum of only four layers are able to be included 

in back-calculations completed by the Evercalc software. Consequently, preference 

was given to better defining soil conditions at depth by employing three layers of 

sub-grade, as the analysis was observed to be significantly influenced by the 

pavement foundation structure. 

The Section 2 sample had a relatively low elastic modulus determined through tri-

axial testing. This may be explained by its low sample relative density of only 86% 

MDD. It is expected a higher modulus value would have resulted if density was 

equal to that of the samples tested for the other sections (95-100% MDD). Testing of 

Section 1 with 300 kPa confining pressure is somewhat anomalous. For this stage of 

the test a different load ring was utilised for measurement of deviatoric load. As 

explained previously, following completion of this stage, the sample was removed, 

sealed and stored for the subsequent testing stages with confining pressures of 100 

kPa and 200 kPa. Yield was observed at a higher strain for the 200 kPa confining 

stress stage, which may be explained by the stress-history effects on the sample 

and also potential moisture changes. The former is expected to have had a greater 

influence.  

Resilient modulus values found through RLTT testing shows modulus under cyclic 

loading to be higher than that under static loading. Results between the three 

sections tested were relatively consistent, with Section 1 having the highest resilient 

modulus of 441 MPa at a mean normal stress corresponding to deviatoric stress of 

890 kPa. Austroads (Jameson, 2008) recommend presumptive values of 150-400 

MPa for base quality gravels under thin bituminous surfacing. MRWA advise that 

moduli shall not exceed these presumptive values, but also state that the maximum 

mean normal stress to be considered acting on the top sub-layer of granular base-

course should not exceed 240 kPa. This emphasises that the higher stress state 

being considered within unbound granular haul road pavement base-courses should 

indeed have a significant effect on the design resilient modulus value. If resilient 

modulus values were taken at 240 kPa mean normal stress results would have been 
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376, 302 and 277 MPa for Sections 1, 2 and 3 respectively. Although the maximum 

presumptive value provided by Austroads would no longer be exceeded, it is clear 

the materials tested are relatively stiff. Therefore it is considered that the 400 MPa 

upper bound value may be unnecessarily restrictive to haul road pavement analysis, 

but the maximum mean normal stress should be considered (influenced by wheel 

contact stress) in selecting maximum values used for haul road pavement design.  

The resilient modulus result for Section 2 is likely influenced by a low relative density 

of 86% MDD. However, the sample had also dried back to 58% OMC. Such an 

effect, as described in Section 2.5, is likely to increase modulus values and thus the 

effects of low density may be offset. This result suggests that compaction of similar 

materials may not be critical for pavement performance if they are allowed to 

operate in dry conditions.  

Back-analysis via Evercalc software has produced the highest elastic modulus 

results of any method. Tri-axial testing consistently produced the lowest results, with 

RLTT testing predicting resilient modulus values 1.32 to 1.63 times larger. Note that 

the confining pressure in the upper pavement layer was likely between the two 

modified stress regimes used in RLTT testing of 30 to 40 kPa and 150kPa, with 

deviatoric stress ranging from 500 to 900 kPa. This has meant that some 

interpolation of results has been used to predict the resilient modulus for the 

confining stresses shown in Table 4.57. These stress states have been inferred via 

linear interpolation of tri-axial results in Table 4.60, for a deviatoric stress of 890 

kPa. The above assumes that pavement response in all cases is purely elastic. 

Figure 4.62 through Figure 4.64 suggest that there is an accumulation of permanent 

strain and therefore an assumption of purely elastic response is perhaps inaccurate. 

If Table 4.60 and Table 4.61 are compared, it is clear that elastic moduli taken at the 

failure point are substantially lower. However, consider that this point is that of shear 

failure, which was not observed at any time during in-situ testing. Ultimately the 

understanding of unbound granular material permanent deformation and how it 

relates to changing resilient modulus values is still the subject of ongoing research, 

as described in Section 2.6.5. 

From the various results for elastic modulus, it appears that the resilient modulus 

values are more appropriate for pavement design in areas of free traffic flow or 

where intended haulage operating speeds are achieved in the majority of cases. Tri-

axial elastic modulus (monotonic loading and tangent modulus to yield) values 

therefore appear more appropriate for areas of slow moving and stopped vehicles, 
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such as hard-standings and parking areas. A conservative design approach may be 

to utilise the tri-axial elastic moduli values for all areas. However, consider that 

higher values resulted from the back-analysis of deflections resulting from a static 

load, and therefore in-situ pavement performance (in terms of the elastic modulus 

mobilised) may be superior to that predicted from the results of laboratory testing. 

This topic requires further investigation, preferably incorporating pavement moisture 

variations. Ultimately, such a decision should include consideration of a dynamic 

load factor to account for vertical body accelerations of haul trucks traversing rough 

surfaces. Such consideration is beyond the scope of this study.  

 Permanent Deformation Behaviour in Repeated Load 5.7.4

Triaxial Testing 

Some discussion of the permanent deformation results found through laboratory 

testing (Section 4.7.4.2) should be included. Considerable accumulation of strain 

can be observed from approximately sequence 55 of testing (Austroads test method 

AG:PT/T053). Sequence 57 to 65 in the RLTT test include the only instances of 

stress ratios (deviatoric:confining stress) that exceed 2.5. Additional deformation 

from sequence 66 through 72 include the additional stress states added to reflect 

the large deviatoric stresses present under a haul truck, with a maximum stress ratio 

of approximately 2. These results suggest that yielding of the material is likely at a 

stress ratio of 2.5, with subsequent loading resulting in accumulated strain. 

Sequence 55 involves a confining mean normal stress of 120kPa and a deviatoric 

(and shear) stress of 300kPa. Due to the consistency of shear parameters found for 

the three sections, a shear strength of 405kPa results for this stress state. Therefore 

a shear stress approximately 74% of failure is applied at sequence 55. In the context 

of the shakedown theory discussed in Section 2.6.5.2, it appears that Range 2 

response (plastic creep shakedown, see Figure 2.36) occurs with stress ratios below 

2.5 and/or where materials experience a shear stress less than 74% of their yield. 

The amount of data collected in this study is insufficient to provide further comment 

on design employing stress ratios or the shakedown theory. It is recommended that 

it be further investigated in the future.   

 

 Pavement Numerical Modelling and Design 5.8

The ability of each pavement analysis method to predict the measured response of 

the haul roads tested in this study is presented in the following. This includes some 
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discussion of the back-calculation technique employed by the Evercalc software. 

Secondly, a comparison of the pavement lifetime estimated by each method is 

made. 

 Back-Calculation of Pavement Modulus 5.8.1

A discussion of the back-calculation of base-course modulus values is contained 

within Section 5.7.3. This section focusses on the impact of modelling with the 

modulus values determined. From this discussion, and comparison with laboratory 

measured values, it appears that the two back-calculation methods provide the 

upper and lower bound values of base-course modulus. The hand-calculation 

method provides the lowest estimate in all cases (unloaded/loaded truck for each 

pavement section). Equation 3.29 is essentially a simplified displacement calculation 

of the linear-elastic axisymmetric solution presented in Section 2.5.1, which is 

similar to the technique employed by CIRCLY and HIPAVE. It has been derived 

from consideration of a semi-infinite, homogenous, isotropic and elastic mass. 

However, it also relies on influence factors that have been calculated to allow 

different loading geometries, whereas both CIRCLY and HIPAVE assume circular 

loading due to the assumption of axisymmetric conditions. It is thought this is the 

main source of difference, as it can be seen from the results that CIRCLY and 

HIPAVE also under estimate pavement deflection, which is exacerbated for section 

three, which has the lowest pavement stiffness.  

The use of Evercalc software for the back-calculation of haul road pavement base-

course modulus appears inappropriate. Stiffness values predicted by this software 

typically have resulted in significant under estimates of pavement deflection in the 

case of a loaded truck. For the unloaded case, base-course modulus results more 

closely reflect those measured in the laboratory, which suggests the method is 

better able to consider the wheel loads present in this analysis (41 tonne for a single 

dual-wheel gear, as considered in the back-analysis). Adoption of a presumptive 

maximum modulus value appears justified, as the deflection predicted by all 

methods employing the 1000 MPa maximum value noted in Table 4.64 and Table 

4.65 produce gross under estimates of pavement deflection. As discussed above, 

this value is also noted by Austroads (Gonzalez et al, 2012) as a maximum elastic 

modulus for unbound granular materials and is therefore recommended to be 

adopted for haul road design, until more specific research on this parameter is 

completed.  
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 Comparison of Axisymmetric Modelling 5.8.2

Observation of Figure 4.71 and Figure 4.72 suggest that only minor differences 

result in the predicted deflection profile generated by linear-elastic and FEA 

modelling, with all inputs held constant. FEA typically predicts a slightly lower 

deflection at the centre of the wheel load contact area, a trend that in most instances 

continues to a radius of three metres. Further, it does not appear that the 

relationship is significantly influenced by base-course modulus. Other than the 

maximum deflection, the most notable difference in the CIRCLY, HIPAVE and 

ABAQUS deflected profiles is the deflection at a radius of three metres when the 

base-course is characterised with the resilient modulus. It is thought that this 

difference is coincidental and is not indicative of any known difference between the 

two solution methods.    

There are a few possible explanations for the lower pavement deflection calculated 

by the FEA analysis. Firstly, the FEA model has been reduced in size by assuming a 

roller boundary condition on the faces sectioning the wheel load. No radial 

displacement occurs along these faces. Concurrently, it appears that the two 

methods treat Poisson’s ratio differently. CIRCLY and HIPAVE apply Poisson’s ratio 

as presented in Section 2.5.1, whereby pavement strain is calculated with direct 

input of Poisson’s ratio. As is discussed further in Section 5.8.3, the horizontal stress 

state appears to be more influenced by the anisotropic ratio adopted. FEA 

calculates the stress state of each element via first calculating the nodal 

displacements within the selected mesh (that is for each individual element). It is 

thought that a combination of these two differences provide the explanation for the 

variation between the two methods. Due to the lateral restraint provided in the FEA 

analysis, the base-course and sub-grade materials appear to be artificially stiffened, 

which ultimately reduces the deflection predicted.  

Figure 4.71 and Figure 4.72 also provide confirmation that CIRCLY and HIPAVE 

produce identical results with all analysis inputs constant. Although this is evident 

from the user and theory manuals published by the software developer, it was 

thought important to highlight this result, as CIRCLY is used to complete cross-

anisotropic modelling in the remainder of the discussion. All HIPAVE modelling 

employs an isotropic base-course characterisation. 

The above results relating to prediction of surface deflection, suggests that linear-

elastic modelling could result in conservative design. This will be discussed further 

below.  
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 Comparison of Isotropic and Anisotropic Base-Course 5.8.3

Characterisation 

Observation of the results in Section 4.8.4 show that the assumption of the 

pavement base-course as cross-anisotropic leads to greater calculated deflections 

than with an isotropic characterisation. The predicted curvature beyond one metre 

from the load centre, which is approximately equivalent to twice the tyre contact 

radii, are in close agreement. It is contended that in the case of CIRCLY, the cross-

anisotropic ratio of two (vertical modulus:horizontal modulus) results in less 

horizontal stress being transmitted radially from the load. This is evidenced by 

Figure 4.75 and Figure 4.76, which manifests in CIRCLY predicting shorter 

pavement lifetimes than HIPAVE in Table 4.91. However, this effect is isolated to 

the area of pavement near the application of the wheel load. In general, CIRCLY 

has been shown to under estimate deflection (see Section 4.8.5.2). Further, 

observation of the results in Section 4.8.7 suggest the measured curvature appears 

more pronounced near to the wheel load. Such a deflected profile is more evident in 

modelling utilising a cross-anisotropic base-course material, as in Section 4.8.4. For 

these reasons, cross-anisotropic base-course characterisation was adopted 

throughout the remainder of analysis completed by CIRCLY.  

 

 Deflection and Curvature Estimates 5.8.4

The discussion in Section 5.5.2 suggests that an ability to model haul road 

pavement structural response is an important factor in determining end-user costs. 

This is relevant for rolling resistance derived from both pavement roughness and 

deflection. Roughness is considered to develop as a consequence of structural 

failure within the theories currently employed, where the critical response is the level 

of vertical compressive strain at the top of the sub-grade. Calculation of this 

parameter requires a detailed understanding of response due to loading geometry 

and material properties. Deflection is dictated by the elastic stiffness of the 

pavement structure, which is determined by pavement structural analysis. The 

pavement modelling results discussed in the following section is therefore the 

practical manifestation of the findings of the study relating to rolling resistance. It is 

intended that the recommendations arising from this area of the study assist a 

pavement designer in optimising haul road user costs.  

Deflection estimates have been produced via elastic theory, as described in Pereira 

(1977). This is the method that was used to calculate deflections within the original 
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derivation of CBR design curves for heavy wheel loads. Subsequent to this analysis, 

computer software developed by Mincad Systems (CIRCLY and HIPAVE) for 

mechanistic-empirical and industrial pavement design were trialled. Finally, Finite 

Element Analysis via ABAQUS CAE 6.10 (Dessault Systemes) was undertaken. 

There is a degree of consistency observed between the various methods, which is 

supported by the variances from measured values presented in Section 4.8.  

 

5.8.4.1 Elastic Theory as per US Army Corps 

Several adapted variations of the theory presented by Pereira (1977) for estimation 

of pavement surface deflections have been trialled. Equation 3.30, applies the 

maximum deflection factor with consideration of all wheels (FM) present on the haul 

truck. This has been found to better estimate deflections than Equation 3.31. The 

latter employs the maximum deflection factor for a single wheel load (Fe). The ratio 

between each factor (FM/Fe) was utilised in determining the ESWL. It can be seen in 

Table 4.67 and Table 4.69 that the maximum deflection factor for multiple wheels is 

very similar to that for a single wheel when considering the unladen truck, with the 

ratio increasing to approximately 1.5 for a laden truck. This suggests that wheel 

interaction occurs when the truck is loaded but is not significant when unladen. 

Wheel interaction is further discussed in Section 5.8.4.4. The best overall deflection 

estimates occurred with the dual-wheel assemblies modelled as a single wheel load; 

with the net area of the two wheel contact areas utilised in conjunction with the 

pressure arising from a known wheel gear load. This approach has not been 

suggested by Pereira (1977) and therefore its application in design is not well 

understood, however it is proposed that more accurate design pavement 

thicknesses may result. Based on the preceding discussion, it is recommended that 

the sub-grade failure theory employed by the S77-1 curve be better understood 

before being superseded by design curves derived utilising only single wheel gears. 

This recommendation has implications for mechanistic-empirical design utilising the 

sub-grade failure theory derived from the S77-1 curve by Wardle et al (2001), as 

discussed in Section 2.5.3. It is recommended by Wardle et al (2007) that for design 

purposes single wheel gears are modelled, with a check for interaction by also 

modelling multiple wheel gears.  

Despite the above discussion, it should be noted that deflection estimates are 

relatively poor when wheels on the same gear are considered separately in the 

model detailed by Pereira (1977). For example, it can be seen in Table 4.71 that a 
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variance of 41% occurs when analysis was completed with ‘average contact 

pressures’ and all six wheels were accounted for separately. This is the approach 

suggested for use in determination of design CBR curves (Pereira, 1977). Note that 

the ‘average pressures’ (known wheel load divided by measured contact area) fall 

within the range of inflation pressures suggested by tyre manufacturers for a 

40.00R57 tyre.  

It is clear from observation of Table 4.66 and Table 4.67 that deflection is 

significantly over estimated when applying inflation pressure as the tyre contact 

pressure. An extremely high inflation pressure was utilised for the site deflection 

measurements in this project (890 kPa), which even exceeds the maximum 

recommended by tyre manufacturers (goodyearotr.com). This inflation pressure has 

been adopted for haul trucks site wide and was not able to be modified for this 

study. As may be expected, the contact area was also found to be less than that 

stated by tyre manufacturers (goodyearotr.com). It appears that in order to replicate 

the deflections measured in this study, reduction factors of 2/3 for unladen situations 

and 4/5 for laden cases should be applied to inflation pressures. Currently, the 

impact of the pressure distribution profile on pavement response is not well 

understood. From the results of this study, it appears accurate representation of the 

contact pressure profile may be critical to pavement analysis including large off-the-

road- tyres, as alluded to by Austroads (Jameson, 2008). 

 

5.8.4.2 Linear-elastic Modelling 

Initial linear-elastic modelling was completed within CIRCLY, with an infinite sub-

grade depth (Table 4.77 and Table 4.78), so that comparison can be made with a 

sub-grade depth of 3m (Table 4.79 and Table 4.80). The shallower sub-grade depth 

can be observed to result in significantly increased deflections. It appears that the 

higher deflection values better reflect the measured values (see Table 4.79 and 

Table 4.80). Additionally, HIPAVE results presented in Table 4.73 and Table 4.74 

relate to a 3m deep sub-grade and isotropic base-course characterisation. As 

suggested in the discussion above, the HIPAVE produces greater under estimates 

of the measured deflections than CIRCLY. This appears to be attributable to the 

isotropic characterisation of the base-course. Further, Table 4.72 shows lower 

variance for modelling completed by CIRCLY with a cross-anisotropic base-course, 

while the correlation coefficients are similar. Therefore, it is recommended cross-
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anisotropic base-course characterisation for linear-elastic modelling be further 

considered. Such a discussion is contained within Section 5.8.6 and Section 5.9. 

Table 4.75 and Table 4.76 present the HIPAVE calculated deflections with the base-

course idealised as nonlinear via the Barker-Brabston sub-layering method (see 

Section 2.6.1). It is evident that the use of base-course materials in the Barker-

Brabston model leads to under estimates of deflection, for an unloaded and loaded 

truck. The use of Barker-Brabston sub-base material produced a reasonable 

estimate for deflections observed at Section one. This is intuitive as the maximum 

elastic modulus for Barker-Brabston sub-base materials is 275MPa (White, 2007), 

which is similar to the elastic modulus of the material sampled from Section one. 

Due to the significant depth of base-course (2m), the maximum modulus value will 

be utilised to characterise a significant portion of the pavement. The use of either 

Barker-Brabston material classes appears to result in under design of the haul roads 

constructed, where materials similar to those comprising the pavement sections in 

this study are used. 

Single wheel gear modelling has been included in the analysis with a summary of 

the results presented in Table 4.72. The basis for the inclusion of this analysis is the 

recommendation by Wardle et al (2003) that modelling include only a single wheel 

gear, as discussed in Section 2.4.2.1. A large average variance between measured 

and estimated deflections is evident in Table 4.72 within the HIPAVE analysis with 

all wheel loads included. This result suggests modelling only single wheel loads may 

be inappropriate, with the potential to produce under-design. Further discussion of 

wheel interaction is contained in Section 5.8.4.4. 

For the reasons discussed above, the remainder of linear-elastic modelling was 

completed within CIRCLY, applying a 3m deep sub-grade and cross-anisotropic 

base-course characterisation.  

The curvature results presented in Section 4.8.7 suggest that CIRCLY generally 

produced under estimates of the measured deflection profiles. This is most 

pronounced in the prediction of the deflected profile along the rear axle, where 

significant under-estimations of both maximum deflection and slope of curvature can 

be observed. It is contended that this is mostly due to the consideration of wheel 

interaction through the use of super-position within linear-elastic modelling. Section 

4.8.8 includes a detailed discussion on this topic. Another potential reason for the 

underestimates produced by CIRCLY is the lack of material nonlinearity, whereby 

the increased stress state due to interaction does not result in additional strain being 
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calculated within the pavement between wheel loads. It appears from the estimates 

of deflection and curvature produced by linear-elastic solutions that wheel 

interaction may be critical for modelling of haul roads, and therefore it may be more 

appropriate to utilise more advanced numerical analysis methods.  

 

5.8.4.3 Finite Element Analysis 

It is clear from observation of Table 4.87 and Table 4.88 that plane strain 

idealisation results in poor deflection estimates, as reported by Ghadimi et al (2013). 

Therefore, it is recommended that the plane strain models are not utilised for design 

purposes, including for the estimation of pavement life. 

Note that the mesh size adopted throughout the study appears to have negligible 

impact on the results. Table 4.89 shows that a reduction of the typical mesh size 

from 1m to 0.25m had a minimal impact on the predicted surface deflections. The 

0.25m mesh size was the maximum size applied near the load centre throughout all 

FEA analysis. The comparison of a 0.25m and 1m dimension refers to the maximum 

mesh size at any point in the model. Consequently, in order to maintain reasonable 

calculation times, a typical mesh size of 1m was adopted. 

Three-dimensional FEA produced the most accurate pavement surface deflection 

estimates of any method trialled. Table 4.89 shows accurate estimates for three-

dimensional modelling, including wheel loads of an unladen and laden haul truck. 

The three-dimensional modelling was completed with the benefit of the iterative 

procedure described in Section 3.9.4 to determine an optimised sub-grade layer 

structure. Observation of Table 4.89 reveals that a simplified sub-grade structure 

(resilient modulus of 150MPa throughout) results in relatively less accurate 

deflection estimates. Perhaps more significantly, these results reveal that the sub-

grade structure significantly influences the pavement response. This is predicated 

on the greater variation of deflection estimates than observed for the modelling 

discussed above, with a sub-grade structure determined iteratively to take account 

of stress-dependent effects. These estimates are of greater accuracy (average 

variance of 20.4%) than the corresponding estimates derived with CIRCLY and 

HIPAVE (average variance of 25% in Table 4.72), where the static elastic modulus 

was utilised, which was noted above to produce the most accurate deflection 

predictions. The average variance for deflections predicted through FEA within 

Table 4.89 is 17.2%. As a result, it appears that sub-grade structure is influential to 
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the prediction of haul road pavement response and that FEA is better able to include 

this effect.  

In addition to calculating pavement deflection with much greater accuracy, nonlinear 

FEA was also able to produce much closer estimates of pavement curvature in 

comparison to linear-elastic methods. This is evidenced by the deflection profiles 

presented in Section 4.8.7. It is thought likely that the superior ability of FEA to 

predict deflected surface profiles, should result in superior estimations of critical 

pavement response, specifically sub-grade strain. Of note is the closeness of fit 

between the measured deflection profiles along the rear axle measured and 

predicted by FEA. From observation of these results, it is contended that the 

nonlinear FEA has been able to best address the issue of wheel interaction.  

One issue that needs to be considered is that material nonlinearity was completed 

by an iterative process external to the numerical solution method described in 

Section 2.5.2. AS described in Section 2.5.2, such a model is generally included in 

the constitutive matrix. This simplification provided benefits in terms of calculation 

time, however it does mean that the material may not be truly represented in a 

nonlinear manner. Rather the maximum induced vertical stress state within each 

sub-grade layer was used to determine the resilient modulus of the layer in the 

subsequent iteration of the analysis. The relative impact of this approach in 

comparison to inclusion of a nonlinear constitutive material model is not known. 

However, it has been shown to produce the best estimates of pavement deflection 

and curvature in this study. As a result, it is recommended that future investigations 

further apply nonlinear modelling to haul road pavement analysis.   

FEA modelling utilised resilient modulus instead of the elastic modulus values 

(derived through monotonic tri-axial testing), which were adopted for the other 

analysis methods discussed above. This appears to have resulted in quite close 

estimates of the measured pavement response, and therefore is recommended for 

future investigations of haul roads. Secondly, the use of resilient modulus should 

produce the most representative critical pavement response for the prediction of 

pavement life, as it considers transient loads. Where different analysis methods are 

utilised, other methods for the definition of elastic modulus should be considered, 

however validation should be made with comparison to measured pavement 

responses.  
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5.8.4.4 Modelling of Wheel Load Interaction 

As alluded to in the above sections, it appears that wheel load interaction is a key 

issue in the modelling of haul road pavement response. Deflections via linear-elastic 

methods typically result in under estimates, whereas nonlinear FEA modelling 

predictions closely reflect the measured. The main difference arises from the 

assumption the theory of superposition being suitable to consider load interaction in 

(axisymmetric) linear-elastic. All reasons for this will be discussed in the following.  

The modelling included within the US Army Corps of Engineers method (Pereira, 

1977) implies that wheel interactions do occur and may lead to critical strains 

occurring at depth between adjacent wheel gears. It is inherent within the method 

adopted to calculate ESWL that deflection from all other wheels fitted to the design 

vehicle are added to estimate the maximum deflection. This value is then used to 

calculate the equivalent single wheel load (ESWL) that would produce the estimated 

maximum deflection. This is quite a significant effect and means that in order to 

maintain the original pavement model, CBR design curves should not be generated 

with only a single wheel gear. Rather all wheels present on a haul truck should be 

included. Further, inclusion of only a single gear would serve to decrease the 

required cover thickness for a given CBR, as the ESWL calculated with depth would 

be decreased.  

Figure 4.89 presents a comparison of surface deflected profile and sub-grade 

vertical compressive strain predicted by HIPAVE with half (‘Single Wheel Gear’) and 

all (‘Rear Axle’) of a Komatsu 830E rear axle included in the modelling. It shows that 

although surface deflection is approximately doubled at mid-axle (Distance from 

Truck Centreline=0) with both wheel-gears included, the sub-grade strain remains 

unaffected. Therefore, in the instance of the pavement modelled (section 1 with the 

base-course characterised by the static elastic modulus), the predicted pavement 

lifetime would be unaffected by wheel interaction. The HIPAVE modelling is identical 

to that of CIRCLY, except the base–course is characterised as isotropic. The above 

modelling was then repeated with a cross-anisotropic base-course in CIRCLY (all 

other parameters were the same), with the results presented in Figure 4.90. Again, 

the pavement surface deflection can be seen to approximately double. However, 

sub-grade strain can be seen to also double in this case. Consequently, this result 

may suggest that the inclusion of cross-anisotropy could be critical to the modelling 

of wheel load interaction within linear-elastic modelling. This further supports the 

discussion in Section 5.8.3 and is expanded in Section 5.9. Although a significant 

finding, note that CIRCLY has typically significantly under estimated both measured 
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deflection and curvature. Additionally, when comparing Figure 4.89 and Figure 4.90 

it is evident that the critical (design) sub-grade strain is unaffected by the inclusion of 

both wheel gears. It is possible, that for certain pavement configurations, this single 

change in the modelling could alter the predicted pavement life, however from the 

results of this study it appears unlikely. The impact of cross-anisotropic base-course 

characterisation on predicted pavement design life is discussed in Section 5.8.6. 

A similar comparison of the effect of modelling with a single wheel gear and both 

wheel gears present on the Komatsu 830E was made with nonlinear FEA modelling. 

Table 4.90 presents a summary of surface deflection and sub-grade vertical 

compressive strain. The columns on the right hand side include the critical (design) 

sub-grade strain, this comparison is made to test if wheel interaction can affect the 

design outcome. It is evident that the FEA modelling has been significantly 

influenced by the inclusion of a second wheel gear. Note that the wheel loads from 

the front axle of the truck were also included in the FEA modelling, but were found to 

have a negligible effect on the pavement response at locations under the rear axle. 

Further, it is possible that wheel interaction can produce the critical sub-grade strain 

at the mid-point of the rear axle, especially in the unloaded truck case. When 

combined with the relative agreement between FEA calculated and measured 

surface deflection profiles along the rear axle presented in Section 4.8.7, this 

suggests that haul road pavement modelling should be completed with nonlinear 

FEA in order to properly include the effect of wheel interaction.  

The reason for the superior treatment of wheel interaction in FEA is thought to be 

related to the fact that the stress state at a point between two loads is influenced by 

both wheel loads. This stress state is then used to predict displacements and 

subsequently strains (see Section 3.9.4). Linear-elastic modelling completed by any 

of the US Army Corps of Engineers (Pereira, 1977) method, HIPAVE and CIRCLY 

use superposition to add the calculated pavement response due to each defined 

wheel load. These models therefore accept the assumption that superposition 

effectively represents load interaction. Pavement response is also impacted by the 

radial separation of each load. Secondly, the iterative nature of the nonlinear 

treatment of materials in FEA modelling may further impact the degree of interaction 

of stresses due to adjacent wheel loads. In the context of this study, the maximum 

stress present in each pavement layer was selected to calculate the layer’s resilient 

modulus for the subsequent analysis. This may have resulted in an over-estimation 

of the wheel load interaction, and it is recommended that future investigations adopt 
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a nonlinear relation within the material’s constitutive matrix in preference to the 

approach adopted for this study.   

It is recommended that haul road pavement structural analysis is completed by 

numerical methods. This recommendation is in contrast to the comment made by 

Thompson (2011) that both linear-elastic and numerical methods produce similar 

results. Further, the recommendation of Wardle et al (2003) to model only a single 

wheel gear for design of heavy-duty pavements does not appear to extend to haul 

roads. The above conclusions are primarily based on the vast differences in the 

relativity of sub-grade strains at the middle of the rear axle and directly below wheel 

loads when analysis is completed with linear-elastic methods and FEA. As a result 

of these differences, the final outcome of pavement design may be significantly 

varied, which is discussed further below.  

  

 CBR Design Curves 5.8.5

The following discussion relates to the accuracy of the CBR design curves derived 

through use of the S77-1 method (Pereira, 1977). This assessment is based on the 

accuracy of the deflections predicted through use of the equations within the S77-1 

method for a Komatsu 830E haul truck.  

Firstly, it is appropriate to consider the impact of the wheel load used for derivation 

of design curves. The curves presented in Figure 4.91 have been developed with 

use of the known wheel loads and the contact pressure published by tyre 

manufacturer, Goodyear (goodyearotr.com). The measured tyre contact geometry, 

as presented in Section 4.4.3, results in slightly smaller contact areas of 

approximately one square metre. Use of this value would produce slightly higher 

wheel deflection factors, thus increasing ESWL, and the required CBR value for a 

given cover thickness. Consideration of wheel load and contact area is much 

simpler than with mechanistic-empirical design, where the contact pressure is a 

critical input and is quite variable, as discussed in Section 5.8.2. The net result is 

that, for the tyre pressures observed during testing for the current study, pavement 

thickness would be under-designed with use of Figure 4.91. 

In considering wheel loads and their interaction, note that the S77-1 procedure 

(Pereira, 1977) for the generation of CBR design curves includes all wheels on the 

design vehicle. However, modelling a dual assembly as an equivalent single tyre 

load (average contact pressure over a circular area comprising the net contact area 
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for two tyres) was also trialled. This idealisation produced the most accurate 

deflection estimates in this project, which are also very similar to those calculated by 

HIPAVE and CIRCLY software, see Table 4.71. Figure 4.92 shows the CBR design 

curves from consideration of dual wheel assemblies as a single tyre contact. 

Utilising an equivalent single wheel load for the dual wheel assemblies resulted in 

significantly thicker pavements being required for similar sub-grade CBR values. 

This arose due to larger ESWL values resulting than when each wheel load was 

considered separately. The effect extends to a depth of two metres, as the 

deflection factor is greater when considering the dual wheel loads together. 

However, it is not recommended this set of curves be used for design purposes. 

Consequently, all wheel loads have been considered separately in derivation of the 

design curves presented in Figure 4.91. These curves are recommended for 

pavement designs with a Komatsu 830E haul truck as the design vehicle. The fact 

that the method producing the most accurate deflections estimates appears to 

produce inappropriate design curves, suggests this is currently a knowledge gap 

that should be addressed in future research.  

Finally, the design curves in Figure 4.91 include an additional 75mm allowance, to 

allow for material equivalencies and ‘standard’ pavement configuration, as 

discussed within Section 3.9.9.1. This provides a pavement thickness with the 

minimum cover over a sub-grade of a known CBR value, but considers a P-154 

material that has a minimum CBR value of 20%. This is a relatively poor material 

that would not be suitable for use as sealed base-course or sub-base as per MRWA 

specifications (MRWA et al, 2003). Consequently, mechanistic design could provide 

a valuable tool with reductions in pavement thickness possible due to stiffer 

materials being utilised. For the purpose of short-term roads with rapid construction 

and less quality control, especially relating to compaction effort, these design curves 

may be appropriate. However, for long-term roads, some reduction in pavement 

depth due to stiffer material may be economical if a suitable mechanistic-empirical 

design procedure was to be found.  

 

 Comparison of Pavement Lifetime Estimates 5.8.6

From observation of Table 4.91 and Table 4.92 it is clear that the various 

mechanistic-empirical design methods investigated do not correlate well with the 

pavement lifetime predicted by the S77-1 method. In all instances CIRCLY under 

estimated pavement lifetime in comparison to the S77-1 curves. HIPAVE and FEA 
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calculated strains produce a similar result, except that pavement lifetime is predicted 

to be significantly longer than that produced with the S77-1 curve for higher sub-

grade strengths (CBR 15%). An extrapolation of the sub-grade theory developed by 

Wardle et al (2001), from the S77-1 curves, has been made with the inclusion of a 

pavement with a CBR 20% (elastic modulus of 200 MPa). The lifetime predictions 

for this pavement are consistent with the trend outlined above.  

The underestimates produced by CIRCLY are explained by the fact that the sub-

grade failure theory was developed for the APSDS software, which employs the 

same solution method as CIRCLY, but with isotropic pavement materials. As 

discussed in Section 5.8.3, the effect of the inclusion of an anisotropic base-course 

is increased deflections. It appears this effect has manifested in an increased critical 

sub-grade strain for all the pavements tested in the generation of Table 4.91. Note 

that Figure 4.90 does show that critical sub-grade strain is not affected by 

anisotropic characterisation of the base-course, this is due to a two metre base-

course and 150MPa sub-grade being considered in the calculation of the sub-grade 

strain in this instance. This is effectively a much stiffer pavement than those tested 

in the derivation of Table 4.91. 

In contrast to the CIRCLY predicted pavement lifetime, HIPAVE has produced 

results greatly exceeding those from the S77-1 curve. This is a surprising result, as 

the development and validation of the sub-grade failure theory employed in this 

study was effectively completed with the same solution method employed by 

HIPAVE (including isotropic characterisation of materials). It is possible that this is 

indicative that the theory is being inappropriately extrapolated in utilisation for wheel 

loads as large as those considered in this study. If this is the case, it is important 

that future research considers the viability of field trials to extend this method. It is 

understood that this has been completed for airfield design due to the introduction of 

larger commercial aircraft, as discussed previously. However, no recommendation 

to modify the S77-1 curve has been found in the literature.  

It appears that the consideration of nonlinear base-course characterisation has a 

significant impact on predicted pavement lifetime. It is suggested in Section 5.8.4.4 

that three-dimensional nonlinear FEA results in increased interaction between wheel 

loads. Similarly, inclusion of all wheel gears results in an increase in critical sub-

grade strain due to load interaction. Table 4.90 suggests that the location of the 

critical sub-grade strain is the middle of the rear axle (between two wheel gear 

loads) for an unloaded truck. Further, it appears the interaction is such that the 
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deflection under each wheel load is increased when the truck is loaded. The net 

result is that the predicted pavement lifetime is greatly influenced by the degree of 

wheel interaction in the analysis, with the potential for the critical location being 

laterally removed from the centres of the wheel loads. This should be considered in 

haul road pavement design. 

The pavement lifetimes predicted by HIPAVE and ABAQUS do show some 

similarity. HIPAVE ultimately predicts longer pavement lifetime than ABAQUS, and 

hence represents a less conservative design option. However, the correlation does 

support the comment of Thompson (2009) that linear-elastic and numerical methods 

can produce a similar result. From the discussion in Section 5.8.4, it is clear that 

FEA better predicts the measured pavement response and as a result has been 

recommended to be for use in pavement design. The lifetime predictions in Table 

4.91 further support the use of FEA, as the more conservative design method. 

CIRCLY presents very short predicted lifetimes, but was shown to under estimate 

pavement surface deflection in Section 5.8.4.2. As such it appears the cross-

anisotropic characterisation of base-course material should be avoided at the 

current time. It is recommended this is investigated further for haul road design in 

the future.  

 Recommended Haul Road Pavement Design Criteria 5.9

From the above discussion, it appears that a specific failure theory is needed for 

haul roads. Thompson (2009) suggests an absolute limit of 2500 microstrain at any 

point in the pavement for a ‘Category 3’ haul road (see Figure 2.20). This level of 

strain results in the number of allowable strain repetitions equating to less than a 

single pass of a haul truck for a sub-grade CBR of 15%, utilising the failure theory 

developed by Wardle et al (2001). The implication is that the pavement will require 

maintenance after the passage of every truck in order to avoid adverse operating 

conditions. The pavement lifetime in Table 4.91 relates to the formation of a 20mm 

rut and/or unacceptable roughness. The categories of haul road presented by 

Thompson (2009) include consideration of the level of serviceability (amount of ore 

hauled along the road daily) with an indication of the regularity of maintenance. It is 

contended that an unsealed pavement would show a significant level of distress 

prior to ruts progressing to a depth of 20mm, and thus the application of this failure 

criteria result in over estimates of pavement life and under estimate the frequency of 

maintenance presented by Thompson (2009). Table 4.91 includes an indication of 
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the haul road category according to Thompson (2009), considering the sub-grade 

strain calculated from FEA. The pavements shown to have higher sub-grade strains 

in Table 4.91 would be considered ‘Category 3’ if the road was to be used for 

haulage of greater than 100,000 tonne a day and accordingly would require frequent 

maintenance. Consequently, it is not surprising to note that the allowable repetitions 

resulting from the failure theory reported by Wardle et al (2001) suggest 

approximately 1,000 and less repetitions until failure. This estimated life does not 

consider the progression of functional and environmental defects, but essentially 

serves as the upper bound of time until maintenance is required to avoid a 

pavement presenting high rolling resistance due to roughness. Note that the 

inclusion of the CBR 20% sub-grade appears inappropriate as an indicator of 

maximum time until maintenance, which is logical as it represented an extrapolation 

of the sub-grade failure theory. Overall, it appears that when considering the sub-

grade strains calculated by three-dimensional FEA, the sub-grade failure theories of 

Wardle et al (2001) and Thompson (2009) align relatively well. It could be possible 

to use the former to estimate the minimum road maintenance frequency to provide 

greater insight to design, whilst utilising the latter for the selection of strain and 

serviceability limits (class of haul road).  

With regards to the testing of pavement materials for haul road design, it is 

recommended that further investigation be completed with a nonlinear relation 

included in the constitutive matrix in FEA modelling, prior to any further 

recommendation being made. If the iterative method used in this study is employed, 

it appears an extended regime of RLTT is most appropriate.   

The roads tested for rolling resistance in this study presented a very low calculated 

sub-grade strain (see Table 4.92). No matter the daily haulage volume, all three 

roads are classed ‘Category 1’.  Further, they have been noted as presenting low 

rolling resistance in Section 4.5.7, which is subjectively predicted by Figure 2.20 due 

to this classification. Interestingly, the prediction method for rolling resistance 

presented by Thompson (2011) (Table 4.45) shows reasonable correlation with 

those measured as part of this study, although over-predictions occur for all three 

pavement sections. However, the relatively low RDS scores and road classification 

suggests that the results of this study correlate well with those presented by the 

various research published by Thompson, which are summarised in Thompson 

(2011). Therefore, it would appear the results of this research are well aligned with 

the literature, although the roads tested are typically of a higher serviceability level.  
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It is recommended that haul roads are designed in accordance with Figure 2.20 

(Thompson, 2009). The selection pavement layer orientation may then be 

manipulated to reduce surface deflection in order to optimise rolling resistance. This 

action should not be taken at the expense of significantly increasing sub-grade 

strain, as this is likely to increase the required maintenance frequency in order to 

avoid increased rolling resistance due to pavement roughness progression. An 

indication of the maximum maintenance frequency may be estimated using the 

failure theory presented by Wardle et al (2001). The results of this study suggest 

that the critical strain should be calculated by nonlinear and three-dimensional FEA.  

This design practice should be supported by sound functional design and 

maintenance, both of which are discussed in the literature, to which the reader is 

referred.  
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6 Conclusions 

 Thesis Outcomes 6.1

Pavement deflection and curvature testing can be successfully completed via the 

use of terrestrial laser scanning techniques to an accuracy of 0.5mm. 

Progressive screening of rolling resistance test data suggests that some truck and 

driver response influences the total energy consumption of the haul truck. This is 

evidenced by the reduction in RRC values calculated for the unscreened, screened 

and correlated data sets derived within this study. 

A statistically significant relationship was shown between haul truck rolling 

resistance and pavement roughness (correlation coefficient exceeding 0.993 for a 

sample size of three, at a level of significance of 0.05) for an unloaded haul truck 

travelling at a speed of 30km/h. Pavement roughness was estimated from the 

measured variance of each pavement section considering a three metre moving 

average.  

A statistically significant relationship (correlation coefficient exceeding 0.811 for a 

minimum sample size of six at a level of significance of 0.05) has been observed 

between measured haul truck rolling resistance and pavement deflection. 

From analysis of the data determined through rolling resistance and pavement 

testing, it appears that pavement roughness and deflection most influence rolling 

resistance. The influence of roughness appears approximately twice that of 

deflection for an unloaded truck. The influence of roughness and deflection appears 

approximately equal for a loaded Komatsu 830E haul truck. 

No pre-existing relation from the literature was able to accurately predict the rolling 

resistance experienced by the Komatsu 830E haul truck during rolling resistance 

tests. 

The haul truck rolling resistance coefficient has been shown to be higher for a 

loaded truck. It is thought that this is due to the greater influence of pavement 

deflection representing energy loss in the structural response of the pavement. 

Consequently, the fuel consumption of a Komatsu 830E is expected to increase 

significantly with the addition of a payload. Modelling within this study suggests an 
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increase of 67-183% for a truck speed of 15km/h and 111-258% for a truck speed of 

30km/h.  

From the fuel consumption modelling completed in this study, it has been observed 

that a 1.9% change in rolling resistance for an unloaded Komatsu 830E haul truck 

and a 1.3% change for a loaded Komatsu 830E, results in a 1% change in fuel 

consumption.   

Evercalc software does not appear to accurately back-calculate the pavement 

elastic modulus, based on the root mean square of error typically exceeding 25%. 

This result is logical if one considers the inaccuracy of methods employing elastic 

theory in predicting measured pavement deflections.  

Where all inputs are consistent in each method, linear-elastic and FEA predict 

similar pavement deflection and curvature when modelling is completed in the 

axisymmetric condition. The difference in maximum deflection, located at the centre 

of the wheel load contact area, did not exceed 0.2mm for the pavement sections 

modelled in this study. Typically, linear-elastic modelling has been shown to predict 

slightly higher deflection than FEA.  

Anisotropic characterisation of the base-course within CIRCLY produces larger 

pavement deflections than identical modelling with an isotropic characterisation of 

the base-course. This has been shown to result in much shorter predicted pavement 

lifetime or a lower class of road haul road, when assessed with the failure theories of 

Wardle et al (2001) and Thompson (2009), respectively.  

The plane-strain approximation has been shown to poorly predict pavement surface 

deflected profiles. This agrees with results in the literature and suggests that a 

plane-strain approximation is inappropriate for haul road pavement design.  

Consideration of dual wheel gears as a single wheel load within the procedure for 

calculating pavement deflection in the process of determining ESWL presented by 

Pereira (1977) produced better estimates of the measured pavement deflection. As 

this idealisation violates the original pavement model reported by Pereira  

(1977), ESWL resulting from this simplification should not be used for the generation 

of CBR design curves. 

An average variance of 41% occurs between measured deflections and deflections 

calculated via the procedure detailed in Pereira (1977). This is the method included 

in the procedure for the generation CBR design curves. Therefore, it appears that 
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haul road design with curves generated from the S77-1 method should not be relied 

upon for haul road pavement design. 

It has been shown that nonlinear three-dimensional FEA better predicts the 

measured pavement deflections and curvatures than any other method tested. 

Based on the comparison of measured and predicted pavement surface deflection 

profiles, it appears that this superior ability is due to FEA better considering wheel 

load interaction. It appears that the use of super-position with linear-elastic methods 

under estimates wheel interaction occurring for a Komatsu 830E haul truck on the 

pavement sections included in the study. Interaction is significant to the extent that 

the critical sub-grade strain typically occurs under the mid-point of the unloaded 

truck’s rear axle when modelling with nonlinear three-dimensional FEA. Further, the 

critical sub-grade strain is significantly increased by inclusion of multiple wheel 

gears within nonlinear three-dimensional FEA. This effect was not observed for any 

of the linear-elastic methods trialled.  

Comparison of the predicted pavement lifetimes via the failure theory of Wardle et al 

(2001) and the haul road classification presented by Thompson (2009), suggests 

that more conservative results occur with the strain calculated by nonlinear three-

dimensional FEA compared to linear-elastic solutions employing an isotropic 

characterisation of the base-course. Linear-elastic analysis with the inclusion of an 

anisotropic base-course is considered inappropriate for haul road modelling at the 

current time, based on the aforementioned poor correlation between predicted and 

measured curvature within this study.  

The pavement lifetimes predicted by the failure theory of Wardle et al (2001) 

suggest longer lifetimes than that of the model presented by Thompson (2009). This 

result shows that the two correlate to some extent, as the latter includes 

consideration of functional defects for unsealed roads.  

None of the mechanistic-empirical pavement design methods trialled correlate well 

with the pavement lifetimes suggested by design CBR curves generated from the 

S77-1 curve. 

It has been shown that the haul roads tested in this study were very high quality 

roads via the pavement classification and lifetime predictions determined through 

nonlinear three-dimensional FEA modelling. Further, the rolling resistance values 

measured are consistently less than those predicted by the model included in 

Thompson (2011). Consequently, it is concluded that the results of this study appear 
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to fit well with the published work of Thompson, which represents the majority of 

advanced research in the area of haul road pavements.  

 Thesis Contribution 6.2

The relative contribution of pavement roughness and deflection to haul truck rolling 

resistance has not been defined or, to the knowledge of the author, investigated 

previously. Further, the finding that pavement deflection appears to have an equal 

influence on rolling resistance for loaded haul trucks is without precedence in the 

literature. This finding should present opportunities for cost savings for mine owners 

in the haulage of waste and ore.  

A comparison of the relative ability of closed-form and numerical analysis methods 

to predict measured haul road pavement response is not available in the literature. 

Consequently, it is currently uncertain how a haul road pavement is best analysed, 

and indeed, which pavement response should be interrogated and optimised in the 

design. These issues have been addressed and a recommended practice for haul 

road design presented in Section 7.2. The present study focussed on a small 

number of haul road pavements and a single model of haul truck, and as such a set 

of recommendations to extend this research is provided in Section 7.1. In 

combination, this study represents an initiation of more traditional pavement 

research and design techniques being applied to haul road pavements. The 

outcomes suggest that the performance of haul road pavements could be optimised 

with the recommended practice presented below. 
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7 Recommendations 

 Recommendations for Future Research 7.1

Further validation testing of terrestrial laser scanning techniques is required to 

increase the proven accuracy of the method for measurement of pavement 

deflection and curvature. 

Consideration should be made of an attempt to relate haul road pavement stiffness 

and rolling resistance in the future. It is recommended that rapid test methods such 

as heavy weight deflectometer be considered, such that a higher frequency of 

testing along a pavement section can be completed.  

The conclusions reached in the current study relating to rolling resistance and 

pavement properties, should be tested with an extension to different mine haulage 

vehicles to test the influence of different vehicle sizes before general conclusions 

can be made. The regression equations derived within the current study should be 

tested and revised with the results of such research. If any of the rolling resistance 

models in the literature are to be investigated for application to haul roads, the HDM-

4 model should be considered based on the correlation (correlation coefficient of 

0.997 at a level of significance of 0.05) found between its predictions and the 

measured rolling resistance in this study. This suggests that the method can 

calculate the relative changes in rolling resistance, but the magnitude of estimates 

are incorrect. It is thought that this may be able to be corrected with the availability 

of further test data. 

Future research should consider to what depth into the pavement and sub-grade 

that stresses from haul truck wheel loads extend. This may have a significant 

influence on pavement design attempting to optimise the rolling resistance of a haul 

truck considering the influence of pavement deflection found in this study.  

Further investigation of the potential for haul road pavement design via application 

of stress ratios or the shakedown theory should be considered, based on the results 

of permanent deformation testing completed on samples from the three pavement 

sections included in this study showing rapidly accumulated strain after experiencing 

a stress ratio of 2.5. 
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The inclusion of anisotropic pavement materials within linear-elastic modelling of 

haul road pavements should be further investigated. Comparison with measured 

deflection values in the current study suggests it may be inappropriate. 

FEA analysis with the inclusion of nonlinear material behaviour via insertion of a 

nonlinear relation within the material constitutive matrix should be investigated in 

preference to the iterative approach applied in this study. This investigation should 

include materials models that have been defined through both monotonic and 

repeated load triaxial testing, to confirm which test best represents the nonlinear 

behaviour of the UGM material in the modelling. This could be best achieved 

through a validation with measurements of full-scale pavement response. 

 Recommendations for Haul Road Pavement Design 7.2

Pavement stiffness should be considered in haul road design in an attempt to 

reduce rolling resistance. This is recommended on the basis of the significantly 

larger estimated fuel consumption of a loaded haul truck compared to an unloaded 

truck found in this study.  

Haul road pavement design is best completed via a mechanistic-empirical method. 

Structural analysis should be completed by nonlinear three-dimensional FEA with 

application of the failure theory presented by Thompson (2009). Due to wheel load 

interaction effects, the location of the critical sub-grade strain may not be directly 

under wheel loads, and as such other locations of the sub-grade should be 

investigated. Some indication of the maintenance intensity may be gained by also 

considering the pavement life predicted by the failure theory of Wardle et al (2001). 

However, this assumes that the pavement functional design is optimised to the 

extent that it is equivalent to a sealed pavement. As such, the functional design 

(selection of wearing course materials) should be considered in conjunction with the 

structural design method suggested above, for which guidance can be found in the 

literature.  
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Appendix A – Example Estimate of Energy 

Consumed in Load and Haul Cycle 

Table A.0.1: Example estimate of energy consumed in average hauling 

loading/unloading cycle (Department of Resources, Energy and Tourism, 

2010). 
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Table A.0.2: Example estimate of energy consumed in hauling 

loading/unloading cycle continued (Department of Resources, Energy and 

Tourism, 2010). 
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Appendix B – Terrestrial Laser Scanner 

Assurance Test Report 

B1.0 Aim 

The purpose of this testing regime is to test the accuracy of surface deflection 

measurement by means of terrestrial laser scanning technology. 

B2.0 Procedure 

A testing rig was setup consisting of ply-board simply supported at opposite ends 

and in the centre (see Figure B.1). The centre support was packed at progressive 

increments of 3, 6, 12 and 19mm. Atop the ply-board was a temporary pavement 

marker, which had been customised to include a 2mm Class 2 retro-reflective strip 

in accordance with AS 1906 (Standards Australia, 2007B) and a 24mm black ‘dot’. 

The strip is used to highlight a known point in the Cyclone software, which is used to 

perform the analysis of the laser scanning data. The dots were to provide a point of 

contrast on the white markers, which can then be designated as points of interest 

within processing for photogrammetric analysis techniques, which were ultimately 

not used. 

 

 

Figure B.1: Test surface setup. 

 

 

Following testing, analysis was completed to determine the deflection in each case. 

Registration of the scanworlds (original and deflected) was completed by Leica 
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Cloudworks Cyclone software. For laser scanning the class 2 retro-reflective strips 

were compared to measurements taken directly at the surface (which was covered 

in a fine sand to provide texture similar (see Figure B.2) to that anticipated on 

unsealed haul road pavements, the intended location of full scale testing). 

 

 

Figure B.2: Fine sand placed on test surface. 

 

 

B3.0 Results 

Table B.0.1 depicts the terrestrial laser scanning results via means of measuring to 

the reflective strip mounted on temporary pavement marker. Table B.0.2 presents 

the same results, measured between registered scanworlds at the surface, along 

the ‘crest’ of the deflected profile. 

 

 

Table B.0.1: Surface movement measured at the temporary pavement marker 

Class 2 retroreflective strip. 

Registered 
Scanworlds 

Actual Vertical 
Movement (mm) 

Average Measured 
Movement (mm) 

1 2 3 3.6 

1 3 6 6.1 

1 4 12 12.2 

1 5 19 19.8 
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Table B.0.2: Surface movement measured as the difference by surface level 

between scanworlds. 

Registered 
Scanworlds 

Actual Vertical 
Movement (mm) 

Average Measured 
Movement (mm) 

1 2 3 3.0 

1 3 6 5.9 

1 4 12 12.6 

1 5 19 19.0 

 

 

B4.0 Discussion 

In both cases measurement of surface displacement is on average within 1mm of 

the known movement of the surface.  

Measuring the displacement of the surface between the two scans appears to 

provide a more accurate means of testing pavement deflection. However in some 

circumstances such as rough pavement surface texture and due to occlusion near 

adjacent objects this approach may be difficult and hence measuring the 

displacement of the retro-reflective strips on the pavement markers may prove more 

viable.  

 

B5.0 Conclusion 

Measurement shall be taken at the displacement between pavement surfaces in 

preference to displacement to of the retro-reflective strips. However the later should 

always be checked as a means of quality control and may be used in the absence of 

satisfactory data being observed between the displacement of the pavement 

surface.  

The accuracy of vertical displacement measurement from a 10 meter range is likely 

within 0.5mm. 

 


