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Abstract 
 
Natural organic matter (NOM) is present in all natural water sources and is a 

heterogeneous, complex mixture of organic compounds derived from the natural 

environment. NOM significantly affects the properties of the water source and can 

lead to the formation of unpleasant tastes and odours, impart a brown colour to the 

water and can act as a substrate for microbial growth. If not effectively removed by 

treatment, NOM may provide precursors for disinfection by-products (DBPs) during 

disinfection processes and provide a food source for biological regrowth and biofilm 

formation in distribution systems. Therefore, NOM directly impacts on source water 

management, treatment processes and distribution systems. 

As NOM represents a complex mixture of compounds derived from plants, animals 

and microorganisms, structural characterisation of NOM is often difficult and 

requires a multi-faceted approach. New analytical methods continue to be developed 

to aid in the structural analysis of NOM, information which can be used to assess the 

effectiveness of treatment processes. The study described in this Thesis contributes 

to the body of characterisation studies being conducted to develop a detailed 

understanding of the origins, structural features and reactivity of NOM in source 

waters, in order to help predict the impact of this type of NOM on drinking water 

supplies and to allow optimisation of treatment processes for NOM removal.  

In the preliminary investigation presented in Chapter 2, the general water quality of a 

selection of bores from the Wanneroo borefield in Perth, Western Australia, was 

assessed to allow selection of the most promising bore for the large scale treatment 

and characterisation studies presented in Chapters 3-5 of this Thesis. The four bores 

selected (termed W20, W60, W280 and W300) were located in two distinct regions 

of the borefield (W20 near W60, W280 near W300). The four bores had a wide range 

of dissolved organic carbon (DOC) concentrations and UV254 absorbance values. The 

UV absorbance at 254 nm (UV254) is an approximate indicator of the aromatic 

content of NOM. These ranges in DOC and UV254 are due to the diverse 

hydrogeology of the Wanneroo borefield, but the specific UV254 absorbance 

(SUVA254) values of W20 and W60 were similar and of W280 and W300 were 
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similar. The XAD resin fractionation distributions of NOM in the four samples were 

relatively similar where each groundwater had a high proportion of hydrophobic and 

transphilic material, enriched in aromatic moieties compared to the hydrophilic 

fraction. This suggests that, whilst the general water quality can vary within the 

borefield, the hydrophobicity of the DOC present in each bore across the borefield 

was relatively similar. The bore chosen for the further detailed characterisation 

studies was W300, primarily due to its high DOC concentration, which allowed 

enough solid material to be collected for the characterisation studies. 

After selection of W300, the performance of two NOM isolation methods, 

ultrafiltration (UF) and XAD-8/XAD-4 resin fractionation, were compared. In 

Chapter 3, the isolation of a NOM fraction from bore W300 using UF is discussed in 

detail, and the method for collecting a Raw Water UF solid isolate is described. 

Desalting of the Raw Water UF fraction was challenging and, even after dialysis, a 

high ash content remained, hindering characterisation. Even though the quality of the 

spectra was impeded by the high ash content, FTIR and solid-state 13C NMR 

spectroscopic analyses indicated a significant aliphatic content in this fraction. 

Further characterisation by size exclusion chromatography (SEC) also showed a 

significant contribution from humic substances of relatively high molecular weight.  

The Raw Water UF fraction was then treated by a laboratory simulation of the 

magnetic ion exchange (MIEX®) resin process, a key NOM removal process in 

operation at the Wanneroo Groundwater Treatment Plant, where water from bore 

W300 is blended with other Wanneroo bore waters prior to the treatment process. 

The Raw Water UF fraction was also treated with chlorine to measure the formation 

of disinfection by-products pre- and post-MIEX® treatment. As the MIEX® process 

is a relatively new technology in water treatment, the removal effectiveness of the 

resin for different types of organic matter is not yet well understood. Treatment of 

the Raw Water UF fraction by MIEX® resin led to only a small reduction in DOC 

concentration (12 %). The high salt content of the UF fraction may have effectively 

competed for active ion-exchange sites on the resin, limiting the ability of the 

MIEX® resin to remove DOC from the UF fraction. Chlorine reactivity of the UF 

fraction before and after MIEX® treatment where the DOC concentration was 

normalised to 2 mg L-1 prior to chlorine addition showed that the DOC in each 
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sample had a similar propensity to form trihalomethanes (THMs), but MIEX® 

treatment of the UF fraction did significantly reduce the propensity for haloacetic 

acid (HAA) formation. 

Characterisation of fractions of NOM from W300 isolated by an XAD-8/XAD-4 

resin procedure, and treatment of these fractions by the MIEX® process, is discussed 

in Chapter 4. Three solid isolates were recovered in the XAD-8/XAD-4 fractionation 

procedure: hydrophobic (HPO), transphilic base (TPIB) and transphilic neutral 

(TPIN); and the hydrophilic (HPI) fraction was obtained as a liquid isolate. Desalting 

of the solid isolates was still challenging, and a high salt content hindered 

characterisation of the TPIB fraction. Characterisation of the HPO, TPIB and TPIN 

fractions by FTIR and solid-state 13C NMR spectroscopy revealed significant 

aliphatic content in these fractions. Further characterisation by pyrolysis-gas 

chromatography-mass spectrometry (py-GC-MS), thermochemolysis-GC-MS and 

micro-scale sealed vessel (MSSV)-py-GC-MS revealed that the HPO fraction had a 

significant contribution of polysaccharide input, whereas the higher nitrogen and 

oxygen content present in the elemental analysis for the TPIB and TPIN fractions 

was consistent with more nitrogen- and oxygen-containing groups being observed 

during the pyrolysis characterisation studies on these two fractions. 

The HPO, TPIB and TPIN fractions were then treated by the MIEX® process in a 

laboratory experiment. MIEX® treatment led to a significant reduction in DOC 

concentrations (55 – 69 %) and UV254 absorbances (57 – 87 %), suggesting that 

MIEX® was effective for targeting removal of the more non-polar (HPO) and 

intermediate polarity (TPI) NOM fractions. 

The HPO and TPIB fractions, before and after MIEX® treatment, normalised to the 

same DOC concentration, were treated with chlorine to measure their disinfection 

by-product formation potential. Both the HPO and TPIB fractions showed similar 

reactivity with chlorine. The formation of THMs and HAAs for the HPO fraction and 

the HPO fraction after MIEX® treatment were essentially identical, indicating that 

the reactivity of the DOC in the two samples was very similar. MIEX® treatment 

prior to the disinfection studies did not appear to offer an option for selective 

removal of reactive DBP precursors over non-reactive precursors for the HPO 

fractions. In contrast, the disinfection study of the TPI fractions did show a reduction 
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in THMs and HAAs for the post- MIEX® treated sample. This study indicates that 

the major DBP precursors within the quantitatively significant HPO fraction can not 

be preferentially removed by MIEX® treatment and should be targeted by additional 

treatment in order to lower DBP formation from this source water. 

To complement the procedure in Chapter 4 whereby W300 water was fractionated by 

an established XAD resin adsorption method and then treated by the MIEX® resin 

process on a laboratory-scale, the work undertaken in Chapter 5 involved treating 

W300 water by a MIEX® resin process first, prior to XAD-8/XAD-4 fractionation of 

the NOM remaining after MIEX® treatment. Treating the raw water with MIEX® 

resin first, then fractionation of the remaining NOM, revealed a range of subtle 

differences in the molecular composition and properties of the fractions isolated, 

compared to the fractions obtained in Chapter 4. MIEX® pretreatment changed the 

distribution of the XAD fractions, due to the preferential removal of TPI and HPI 

material during MIEX® treatment. Characterisation by FTIR and solid-state 13C 

NMR spectroscopy indicated a significant shift in carbon distribution to aliphatic 

material compared to the untreated samples in Chapter 4, indicating that the MIEX® 

treatment had removed some aromatic material from the MIEX® HPO, MIEX® TPIB 

and MIEX® TPIN samples. Further characterisation by pyrolysis-gas 

chromatography-mass spectrometry (py-GC-MS), thermochemolysis-GC-MS and 

micro-scale sealed vessel-py-GC-MS revealed that the MIEX® HPO fraction 

appeared to have a significant contribution from alkyl phenols and polyaromatic 

hydrocarbons. The higher nitrogen and oxygen content present in the elemental 

analysis for the MIEX® TPIB and MIEX® TPIN fractions was consistent with more 

nitrogen- and oxygen-containing functionalities (such as those derived from proteins 

and tannins) being observed in the MIEX® TPIB and MIEX® TPIN product mixtures 

from the three pyrolysis-based methods. 

MIEX® treatment prior to fractionation also led to a reduced concentration of THMs 

and HAAs formed in disinfection by-product formation experiments compared to the 

corresponding DBP concentrations formed from the raw water HPO and TPI 

fractions (Chapter 4), but there was a trend towards increasing proportions of 

brominated species from the XAD fractions of NOM isolated after MIEX® treatment. 

This can be attributed to the high relative abundance in the MIEX® HPO and MIEX® 
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TPIB fractions of aliphatic material, as indicated in the FTIR and solid-state 13C 

NMR spectroscopic analysis, since aliphatic material is generally highly reactive 

with bromine. This could be significant for any future increased focus on brominated 

species by DBP regulators. 

Using a three-fold research approach to isolate NOM from a local groundwater 

source containing DOC in high concentration and of a highly hydrophobic nature has 

contributed to characterisation studies of NOM. The performance of two NOM 

isolation methods (UF and XAD-8/XAD-4 resin fractionation) has been compared, 

based on the efficiency with which NOM was collected and separated. Next, the 

isolated NOM was compared using several analytical methods, to shed light on the 

variability of molecules contributing to NOM in this highly hydrophobic, high DOC 

groundwater. The use of a variety of characterisation methods highlighted both the 

potential value and limitations of the analytical methods used in NOM research. 

Finally, the chemical composition and reactivity of the NOM  isolates has revealed 

that this particular water source is susceptible to MIEX® treatment, and is highly 

reactive with chlorine to form DBPs. Treatment processes in addition to the MIEX® 

process will be required to remove the recalcitrant structural moieties present in the 

NOM in this water source and this additional treatment may be particularly necessary 

when DBP formation is an issue.  
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Chapter 1 

1.0 Introduction 

1.1 Natural Organic Matter 

Natural organic matter (NOM) occurs in varying concentrations in essentially all 

natural water supplies. In aquatic systems, NOM is a complex matrix of organic 

species, originating from soil, living organisms and/or plant materials, including 

partial degradation products from any or all of these sources, in natural waters. The 

concentrations of NOM and of the sub-groups of molecules that contribute to it are 

usually quantified in terms of the amount of carbon in the molecules (Croué et al. 

1999, b). NOM, or total organic carbon (TOC), encompasses all organic matter in the 

watershed: insoluble particulate matter, including microorganisms, colloidal material 

and macro-scale plant and animal detritus, collectively referred to as particulate 

organic carbon (POC), as well as dissolved organic carbon (DOC) (Thurman 1985). 

DOC is an operationally defined term used to describe all the organic material able to 

pass through a 0.45 μm filter (Aiken and Leenheer 1993). It has been asserted 

(Thurman, 1985) that approximately 90 % of NOM in water is present as DOC. The 

DOC fraction of NOM can be further divided into humic and non-humic material 

(Beck and Jones 1992).  

Aquatic humic substances are heterogeneous, yellow to black organic materials that 

are reported to include most of the naturally occurring dissolved organic matter in 

water (Franson 1998) and to comprise up to 60 % of NOM in source waters (Smith et 

al. 2003). They are generally defined based on their solubility properties in aqueous 

solutions. The generalized terms, humic acids, fulvic acids and humins, cover the 

major fractions distinguished on the basis of their solubility in acid/base and are used 

to describe humic substance components (Piccolo 2001). Humic acids are insoluble 

below pH 2, fulvic acids are soluble at all pH levels and humins are insoluble at any 

pH level (Franson 1998). Humic acids and fulvic acids, like NOM, cannot be 

regarded as single chemical entities; hence, chemical structures can only be 
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illustrated by model structures based on compositional, structural, functional and 

behavioural data (Franson 1998). 

The structure of NOM varies based on its origin, as well as its chemical reactivity 

and biological breakdown (Chen et al. 2002). Difficulties have been encountered in 

determining the exact composition of NOM because it is comprised of a wide range 

of compounds, which can only be characterised broadly into generic groupings 

(Drikas 1997). Aquatic NOM is present in all source waters and on its own is not 

typically harmful. However, some of the compounds of which NOM is comprised 

affect water treatment by interacting with chemicals during treatment, thus adversely 

affecting water quality. For example, aquatic NOM in source waters can lead to the 

formation of unpleasant tastes and odours, impart a brown colour in water and can 

act as a substrate for microbial growth. If not effectively removed by treatment, 

NOM may provide precursors for disinfection by-products (DBPs) and provide a 

food source for biological regrowth and biofilm formation in the distribution system. 

NOM directly impacts, therefore, on source water management, treatment processes 

and distribution systems. 

1.2 Characterisation of Natural Organic Matter  

The characterisation of NOM is a complex and demanding analytical challenge due 

to the heterogeneous and variable nature of the material (Piccolo 2001; Her et al. 

2003). Analytical methods range from simple, rapid methods requiring little or no 

sample preparation, but which provide only basic information, to methods that are 

complicated, expensive and laborious, but which provide detailed structural chemical 

information. No single technique exists to determine the chemical structure and 

functionality of NOM, and all methods have considerable limitations and drawbacks; 

generally, the more complex the technique, the more detailed the information that is 

yielded. To enable improved understanding of the types of organic compounds 

present in source waters and after treatment, a number of established and 

complementary characterisation techniques are typically used. Other analytical 

methods continue to be developed to aid the structural analysis of NOM and assess 

the effectiveness of treatment processes. A detailed understanding of the origins, 

structural features and reactivity of NOM in source waters will help minimise 
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detrimental impacts of NOM in potable water systems. Understanding the nature of 

NOM and its potential behaviour in water treatment continues to be a high priority 

for water utilities and researchers.  

1.2.1 Preparative Procedures for the Isolation of Natural Organic 

Matter 

Characterisation of NOM is often hampered by its inherent chemical complexity 

(Aiken et al. 1992). A large number of protocols have been developed to isolate 

aquatic organic matter (Leenheer 1981; Thurman and Malcolm 1981) which is 

typically the first step in the characterisation protocol. Isolation is often accompanied 

or followed by separation into more analytically amenable fractions. Two techniques 

commonly used for the isolation and fractionation of aquatic NOM are resin 

adsorption chromatography and ultrafiltration (Kitis et al. 2002; Leenheer 1981).  

1.2.1.1 Resin Adsorption Fractionation 

It is desirable to have an isolation approach based on the chemical properties of the 

material of interest. Adsorption chromatography on non-ionic macroporous resins 

(such as XAD-8 and XAD-4 resins) has been successfully employed for the isolation 

of NOM fractions, with most of the emphasis placed on hydrophobic organic acids 

(Aiken and Leenheer 1993). Sorption of humic substances is determined by the 

aqueous solubilities of the solutes and the solution pH (Thurman et al. 1978). At low 

pH, weak acids are protonated and adsorbed on the resin; at high pH, weak acids are 

ionised and desorption is favoured. Samples are generally acidified with mineral 

acids, such as hydrochloric acid (HCl), and passed through a column of XAD-8 resin 

(a methyl methacrylate resin). Adsorbed organic acids are then recovered by eluting 

the column with a basic solution. 

1.2.1.1.1  Preparative XAD Resin Techniques 

An XAD-8 method developed by the United States Geological Survey (USGS) 

research group (Leenheer 1981; Thurman and Malcolm 1981) has now been widely 

adopted as a standard method (Ma et al. 2001; Croué et al. 1999, a) for the isolation 

of humic substances. With this approach, the humic fraction of NOM (the 

hydrophobic fraction: HPO) is selectively adsorbed at acidic pH onto the XAD-8 
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resin column, whereas the non-humic fraction (the hydrophilic fraction: HPI) elutes 

through the XAD-8 resin. Using this technique, up to 60 percent of DOC can be 

isolated (Leenheer et al. 2000).  

Another approach to the fractionation of organic matter in a water sample is to use a 

two-column array of XAD-8 and XAD-4 resins (Aiken et al. 1992; Andrews et al. 

1994; Croué et al. 1993, a; Malcolm and MacCarthy 1992; Marhaba et al. 2003; 

Sharp et al. 2006, c).  The two column array is an extension of the method of 

Thurman (1981) and allows for the isolation and separation of both the hydrophobic 

(HPO) fraction and a portion of the organic matter which is more hydrophilic. The 

fraction obtained from the XAD-4 resin (a styrene-divinylbenzene resin) is referred 

to as the transphilic fraction (TPI) because the compounds in this fraction are of 

intermediate polarity. The following fractions of DOC can be obtained using this 

approach: HPO, TPI and HPI, whereby the HPI fraction is material that passes 

through both columns. The main advantage associated with the XAD-8/XAD-4 

chromatographic method of fractionation over the XAD method is that totals of 

approximately 55 – 90 % of the DOC from a variety of aquatic environments have 

been isolated (Aiken et al. 1992).  

In addition to the capacity to isolate NOM from a variety of aquatic environments, 

the XAD-8/XAD-4 chromatographic method also allows the fractionation of the 

water to be carried out without using a pre-concentration step, which helps maintain 

fractionation reproducibility and comparability between samples (Aiken and 

Leenheer 1993). Disadvantages of the approach include potential structural alteration 

of NOM constituents due to the use of various solvents and the alternating pH 

conditions necessary to bring about the sorption/desorption of the compounds of 

interest. The fractions of organic matter obtained using the preparative methods are 

operationally controlled and are not sharply defined. Some overlap between fractions 

can occur. The preparative XAD-8/XAD-4 isolation procedure can also be time 

consuming due to resin cleaning and the quantities of water that need to be processed 

in order to obtain significant quantities of humic substances for characterisation 

purposes (Malcolm 1989). 

A further extension of the XAD-8/XAD-4 fractionation method has been developed 

based on the charge characteristics of NOM (Leenheer 1981; Leenheer et al. 2000). 
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This fractionation scheme separates NOM into six fractions: hydrophobic acids 

(HPOA), hydrophobic bases (HPOB), hydrophobic neutrals (HPON), hydrophilic 

acids (HPIA), hydrophilic bases (HPIB) and hydrophilic neutrals (HPIN) (Marhaba 

et al. 2000; Croué et al. 2000). Isolating the hydrophobic and hydrophilic material 

occurs by the same method as the two column array of XAD-8/XAD-4 resins. 

However, in this extended method, the hydrophobic and hydrophilic material isolated 

from the two column array is further fractionated into acid, base and neutral 

components by the use of ion exchange resins and successive elution with different 

solvents.   

1.2.1.1.2  Rapid Fractionation Procedure 

A rapid characterisation technique, utilising a small-scale arrangement of the XAD-

8/XAD-4 resins with an analysis time of less than 12 hours, has more recently been 

developed to assist water treatment operators to determine the relative percentage of 

XAD-based fractions of NOM in water samples (Chow et al. 2004). This rapid 

characterisation technique is based on the full-scale fractionation scheme reported by 

Croué et al. (1994) and Bolto et al. (1999) for the determination of the concentration 

of four organic fractions: very hydrophobic acids (VHA), slightly hydrophobic acids 

(SHA), hydrophilic charged (CHA) and hydrophilic neutral (NEU). This analytical 

procedure measures the organic carbon concentrations of the raw, XAD-8 effluent, 

XAD-4 effluent and IRA-958 (an anion exchange resin) effluent. The organic carbon 

concentration of each fraction is calculated from the concentrations of organic 

carbon before and after contact with the various resins. Results are presented either 

as actual DOC concentration or as a relative percentage.  

1.2.1.2 Ultrafiltration 

Ultrafiltration (UF) is an established separation process which utilizes permeable 

membrane filters to separate the components of solutions by molecular size (Amy et 

al. 1987). Ultrafiltration membranes typically use pore sizes in the range of 0.0015 to 

0.2 microns (Best et al. 2001) and are usually made of polymeric films with 

molecular weight cut-off (MWCO) values between 200 – 1000 or 1000 – 10,000 

Daltons (Da) (Lee et al. 2005). UF conveniently handles large volumes of water 



6 

samples and has been widely used for the concentration and fractionation of NOM 

(Assemi et al. 2004; Cai 1999; Francioso et al. 2002; Lankes et al. 2008).  

The solution to be processed is brought in contact with a suitable ultrafiltration 

membrane that will retain the large molecules. Pressure is applied until half the 

volume has passed through the membrane. The large molecules are retained in half 

of the original volume (known as the retentate), which also contains half the salt 

molecules. The filtrate (known as the permeate) contains the other half of the salt 

molecules but no organic molecules above the MW cut off of the membrane. A 

schematic of the process of ultrafiltration is shown in Figure 1.1.  

 

Figure 1.1 The concentration of a water sample by ultrafiltration. 

UF concentrates the large organic molecules, whilst liquid and salts are removed 

(Figure 1.1). The salt molecule to volume ratio in the retentate and the ionic strength 

of the concentrated solution both remain relatively constant. The ionic strength of the 

concentrated solution is measured by its conductivity, which is the ability of an 

aqueous solution to carry an electric current. This ability depends on a number of 

factors including the presence, mobility, valence and concentration of ions, as well as 
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the temperature of the water (Franson 1998). The ionic strength of the retentate 

solution can subsequently be reduced by “washing” the remaining salt out of the 

retentate, in a process called diafiltration or “desalting”. This is essentially a dilution 

process and is performed in conjunction with a concentration process. It involves 

washing out the original salts in the retentate by adding water to the retentate at the 

same rate filtrate is being generated. Diafiltration is a fast and effective desalting 

technique which minimises the risk of sample loss or contamination compared to 

other conventional salt removal techniques.  After diafiltration, the concentrated high 

MW material is freeze dried to obtain a solid NOM sample.  

1.2.2 Analysis of Isolated Natural Organic Matter  

The characterisation of NOM is challenging because of the heterogeneous size, 

structure and functional chemistry of its constituent compounds due to variation with 

source, climate and other environmental factors (Wong et al. 2002). A combination 

of characterisation techniques is typically required to establish the structural 

elements of aquatic NOM. The techniques used for the characterisation of NOM in 

this Thesis are discussed in the following subsections. 

1.2.2.1 High Pressure Size Exclusion Chromatography 

Molecular weight (MW) distribution is one of the fundamental properties required to 

understand the physical and chemical characteristics of NOM. The MW distribution 

affects the behaviour of NOM with respect to adsorption, metal binding, 

hydrophobic organic partitioning, electrostatic effects, bioreactivity and water 

treatment (Zhou et al. 2000). 

High pressure size exclusion chromatography (HPSEC) is a separation method based 

on the hydrodynamic molecular size of analytes (Vuorio et al. 1998). It is commonly 

used to determine the MW distribution of NOM in water. Separation by HPSEC is 

based on differential permeation of molecules of various sizes into a porous matrix. 

The largest molecules, which cannot penetrate the gel pores, elute first, whilst the 

smallest molecules exit the column last (Vuorio et al. 1998).  

HPSEC is an attractive option for determining the MW distribution of NOM, due to 

its ease of operation, simplicity of sample preparation and high sensitivity requiring 
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minimal sample volumes (Allpike et al. 2005).  In particular, HPSEC has become 

very useful for NOM characterisation during different steps in drinking water 

treatment (Fabris et al. 2008; Allpike et al. 2007; Chow et al. 2009). However, the 

technique has several significant limitations that need to be considered during data 

interpretation. Firstly, a series of non-ideal interactions between the column 

stationary phase can contribute to separation (Allpike et al. 2005). Further, most 

existing methods of HPSEC use UV detection of the DOC, usually at a wavelength 

of 254 nm (HPSEC-UV254). These detectors are sensitive only to UV-absorbing 

species. Many organic compounds absorb at different intensities in the UV spectrum, 

and some do not at all, hence, this method is not quantitative. For this reason, DOC-

specific detection methods have been developed (HPSEC-OCD) (Allpike et al. 2005; 

Amy and Her 2004; Huber and Frimmel 1996) The advantages of these methods are 

that the detector signal is directly proportional to the concentration of organic 

carbon, so all carbon species can be detected, irrespective of functionality. However, 

due to the intricacies of detecting trace amounts of DOC online, and the inherent cost 

in the recently manufactured instruments, there are presently only a small number of 

research groups worldwide with HPSEC-OCD capacity.  

1.2.2.2 Ultraviolet Spectroscopy  

Dissolved organic matter absorbs light, and the absorption behaviour of NOM in the 

UV region (190 – 800 nm) gives information regarding the relative number and types 

of functional groups (Korshin et al. 1997). The degree of aromaticity of NOM is 

reported to correlate with absorbance of the humic fraction of NOM in the UV region 

at 254 nm (UV254) (Barrett et al. 2000).  UV254 has also been used as a surrogate 

parameter for the concentration of DOC, as it is less time consuming and costly than 

direct DOC measurement (Chow et al. 1999).  Similarly, the specific UV254 

absorbance (SUVA254), the ratio of the absorbance at 254 nm (m-1) over the 

concentration of DOC (mg L-1), is used as an indicator of the aromatic character of 

NOM (Barrett et al. 2000). From a practical point of view, UV spectroscopic analysis 

of NOM is popular due to its ease of operation and the minimal sample preparation 

necessary. However, compared to other analytical methods, UV spectra are fairly 

featureless and may provide only limited information on the chemical structure of 

NOM.  
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1.2.2.3  Solid-State 13C Nuclear Magnetic Resonance Spectroscopy 

Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy has been used in a 

number of characterisation studies of NOM (Kögel-Knabner 2000; Cook 2004; 

Hatcher et al. 2001; Lankes et al. 2008; Li et al. 2009; Templier et al. 2005). Solid-

state NMR spectroscopy has many advantages over its liquid-state counterpart 

including: no solvent effects, minimal sample handling and whole sample analysis. 

Solid-state 13C NMR spectroscopy is now routinely applied with cross-polarisation-

magic-angle-spinning (CP-MAS). The technique is non-destructive and provides 

information on the chemical environment surrounding individual carbon atoms 

(Gélinas et al. 2001). Solid-state 13C NMR spectra of NOM samples can be broadly 

divided into five chemical shift regions. Signals for carbon atoms surrounded by 

carbon-carbon bonds are expressed in the aliphatic region of    0 – 60 ppm. A second 

aliphatic region of 60 – 90 ppm shows carbons bonded to oxygen atoms, including 

ether, alcohol and carbohydrate carbons. Aromatic and olefinic carbons occur in the 

region 90 – 160 ppm, with carboxyl carbons (mainly carboxylic acid carbons) 

present in the region 160 – 190 ppm. Signals in the region between 190 – 220 ppm 

represent the carbonyl carbons of aldehydes and ketones (Kögel-Knabner 2000; 

Knicker and Nanny 1997).  

In a 13C NMR spectroscopic study of river NOM isolates, Croué et al. (1999, a) was 

able to observe two major structural differences between transphilic and hydrophobic 

acid fractions, isolated by the XAD-8/XAD-4 chromatographic method. The 

transphilic fraction had the higher carboxyl and heteroaliphatic carbon content 

(carbon singly bonded to oxygen in aliphatic alcohols, ethers and esters). Another 

difference was that the hydrophobic acid fraction had the greater aromatic carbon 

content. These trends have also been shown in other studies (Aiken et al. 1992; De 

Paolis and Kukkonen 1997; Wong et al. 2002).  

1.2.2.4  Fourier Transform Infrared Spectroscopy 

Infrared spectroscopy has been widely used for the investigation of humic substances 

and has provided valuable insight into the nature, reactivity and structural 

arrangement of oxygen-containing functional groups in humic substances (Stevenson 

1994). Infrared spectra of humic substances contain a variety of bands that are 
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indicative of the absorption of different functional groups present in the complex 

mixture (Davis et al. 1999).  FTIR spectroscopy is still limited in its application to 

NOM or humic substances characterisation because these samples are comprised of 

extremely complex mixtures of organic compounds and the spectrum represents 

many superimposed signals of the many different functional groups. This can also 

result in significant spectral overlap, peak shifts and peak broadening, leading to only 

a few resolvable spectral bands. Broad featureless spectra can cause difficulties in 

assignment of spectral regions to specific functional groups. Despite its limitations, 

FTIR spectroscopy has been one of the more common methods of NOM 

characterisation (Christy and Egeberg 2000; Davis et al. 1999; Ludlow et al. 1999; 

Kanokkantapong et al. 2006; Her et al. 2007) as the unique information provided can 

complement data from other characterisation techniques. 

Hydrophobic and hydrophilic NOM samples have been shown to have dominant 

carboxyl peaks near 1725 cm-1 in their infrared spectra (Leenheer et al. 2000), with 

the hydrophilic NOM sample having a greater relative absorption from alcohol 

groups (1045 cm-1). FTIR spectroscopy has also revealed differences between humic 

and fulvic acids, with the latter having dominant carboxylic acid and ester group 

bands and the former more intense peaks attributed to aliphatic and aromatic 

stretching (De Paolis and Kukkonen 1997).  Colloidal organic matter has been 

distinguished from hydrophobic and hydrophilic material by FTIR spectroscopy, 

with colloidal material producing signals due to the presence of amide groups (1655 

cm-1 and 1545 cm-1), as well as methyl groups (1382 cm-1) and broad O-H (3402 

cm-1) and C-O (1045 cm-1) bands (Leenheer et al. 2000). 

1.2.2.5  Fluorescence Spectroscopy 

Aquatic NOM has distinctive spectrophotometric properties in terms of both 

absorption of light and fluorescence. Many studies have investigated the 

fluorescence and size distribution of aquatic NOM (Belin et al. 1993; Alberts and 

Takács 2004; Marhaba 2000; Smart et al. 1976; Swietlik and Sirorska 2004). 

Fluorescence has been reported to be sensitive to molecular and quantitative aspects 

of the chemistry of fulvic acid and its interactions with metal ions and organic 

chemicals (Senesi 1990). The high sensitivity and non-destructive nature of 

fluorescence techniques are well suited for studies of the chemical and physical 
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properties of NOM. In general, relatively low DOC concentrations (< 20 mg L-1) are 

suitable for fluorescence spectroscopic analysis (Chen et al. 2003, a). Fluorescence 

spectra are usually obtained either by analysing the intensity of emitted light as a 

function of its wavelength (emission spectra) or by analysing the intensity of light 

emitted at a fixed wavelength (excitation spectra).  Recent advances in fluorescence 

spectroscopy permit the rapid detection of organic matter at a wide range of 

excitation and emission wavelengths to produce an excitation-emission matrix 

covering a range from 200 nm to 500 nm. Specific wavelengths or fluorescence 

centres may be attributed to NOM groups such as humic and fulvic acids as well as 

proteins (Baker and Spencer 2004; Amy 2007). Humic and fulvic acids are seen in 

the excitation and emission wavelengths of 300 – 600 nm, whilst proteins are seen in 

the emission region below 350 nm and excitation region below 305 nm (Leenheer 

and Croué 2003). 

1.2.2.6  Analytical Pyrolysis 

Many of the organic compounds in humic substances are insoluble macromolecules, 

which can not be analysed at the molecular level without a degradation step (Hatcher 

et al. 2001). Pyrolysis is a common degradation technique which in combination with 

gas chromatography-mass spectrometry (py-GC-MS) allows analysis of complex, 

heterogeneous high molecular weight compounds that are difficult to analyse in their 

polymeric form. Pyrolysis typically involves rapidly heating a sample in an inert 

environment. The large amount of incident thermal energy causes the 

macromolecules to fragment, and volatile low MW fragments can be separated by 

GC and identified by MS. The fragments produced from pyrolysis may reflect 

moieties of the parent macromolecule in the NOM from which they are released. 

Therefore, some structural features of the parent molecules can be deduced from 

identification and quantification of the pyrolysates produced (Hatcher et al. 2001; 

Leenheer and Croué 2003; Templier et al. 2005). Pyrolysis is only semi-quantitative, 

but can be used to estimate the relative proportions of source diagnostic NOM 

components (Bruchet et al. 1990).  

Due to the structural complexity of NOM, and the potential for secondary reactions 

during the application of pyrolysis (usually at 500 – 600 ºC) (Filley et al. 2006), the 

interpretation of pyrolysis data can be challenging. In order to simplify the results, 



12 

products in NOM pyrolysates are commonly grouped into different classes, based on 

the source biopolymers from which the fragments most likely originated. Common 

biopolymer precursors of NOM pyrolysis products include carbohydrates, proteins, 

lignin, amino sugars and polyhydroxy aromatic compounds (Christy et al. 1999; Lu 

et al. 2000). Pyrolysis products may directly derive from parent structures or may be 

structurally modified secondary products. The latter typically provide little evidence 

of source and can complicate interpretation and classification of pyrolysis data.  

1.2.2.7  Thermochemolysis  

Thermochemolysis is used to chemically degrade higher molecular weight molecules 

at an elevated temperature, releasing fragments that may be volatile enough for GC-

MS analysis (Hatcher et al. 2001). Using the most common thermochemolysis 

reagent, tetramethylammonium hydroxide (TMAH), thermochemolysis involves 

base-catalysed reactions at elevated temperatures, reportedly including hydrolysis 

and methylation of labile C-O bonds such as esters and some ether and glycosidic 

bonds, as well as amide bonds. Functional groups containing acidic protons, such as 

carboxylic acids and phenols, may also be simultaneously methylated, whereas esters 

are transesterified to the corresponding methyl esters (Frazier et al. 2003). Many of 

the resulting products are volatile enough to be separated by GC and analysed by 

MS. Methylation of otherwise undetectable polar constituents represents an 

advantage over conventional pyrolysis. Highly polar carboxylic acids have poor 

chromatographic behaviour and are prone to decarboxylation during direct pyrolysis 

(Saiz-Jimenez et al. 1993). Therefore, thermochemolysis is a useful adjunct to 

analytical pyrolysis studies, providing complementary information on the structure 

and composition of macromolecules. 

Alternative chemical reagents, such as tetrabutylammonium hydroxide (TBAH) 

(Challinor 1989), tetramethylammonium acetate (TMAAc) (Joll et al. 2004) 

tetraethylammonium acetate (TEAAc) (Guignard et al. 2005) and trimethyl(triflouro-

m-tolyl)ammonium hydroxide (Challinor 1996), have also been investigated, but 

TMAH remains the most widely utilised thermochemolysis reagent. 
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1.2.2.8  Micro-Scale Sealed Vessel Pyrolysis 

Micro-scale sealed vessel (MSSV) pyrolysis can complement more traditional 

pyrolysis techniques, such as flash pyrolysis. MSSV pyrolysis uses relatively lower 

pyrolysis temperatures (300 – 360ºC) over longer time periods (several days) than 

the high temperatures (> 500ºC) and rapid heating rates associated with flash 

pyrolysis (Berwick et al. 2007). MSSV pyrolysis uses microgram amounts of sample 

in sealed tubes (Greenwood et al. 2006). MSSV pyrolysis can provide additional 

speciation information for establishing the structures of, and source inputs of, recent 

organic matter. This method has been widely applied to the kinetic study of 

petroleum generation from source organic compounds by simulating the thermal 

alteration of sedimentary hydrocarbons that occurs naturally over millions of years 

(Mycke et al. 1994). Characterisation of more recent organic material, such as NOM, 

however, has received relatively little attention. Thermal maturation of organic 

matter can induce a multitude of complex chemical reactions, many more than with 

rapid pyrolysis. Few of these secondary processes are well understood, but often lead 

to high yields of small sized, non-polar hydrocarbon products easily analysed by GC-

MS. Low MW fragments are produced by thermal cracking of the precursor 

biomacromolecules, whilst certain functional groups may be removed by redox or 

other selective processes according to thermodynamic equilibrium (Greenwood et al. 

2006). Several low MW products detected from MSSV pyrolysis have recently been 

investigated to understand the sources, and mechanisms of formation of these 

products (Berwick 2009; Berwick et al. 2010, a; Berwick et al. 2010, b). 

1.2.2.9  Halogen Reactivity 

Microbiological safety of drinking water is generally achieved by treating the water 

with a chemical disinfectant, such as chlorine. While chemical disinfectants are 

effective in destroying harmful microorganisms, they can also react with organic 

(such as NOM) and inorganic (such as bromide and iodide) materials in treated 

waters leading to the formation of disinfection by-products (DBPs). When chlorine is 

added to water during disinfection, molecular chlorine undergoes rapid and almost 

complete hydrolysis to form the chloride ion and hypochlorous acid (HOCl) 

(Equation 1.1), existing in equilibrium with its unprotonated form, hypochlorite ion 

(OCl-) (Equation 1.2) (White 1999). 
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Cl2 + H2O      HOCl    +   H+   +      Cl-  Equation 1.1 

  HOCl   H+  +  OCl-             Equation 1.2 

Bromide, and to a lesser extent iodide, ions are naturally present in many source 

waters (Hua et al. 2006). Naturally occurring bromide and iodide can be rapidly 

oxidised to hypobromous acid (HOBr) and hypoiodous acid (HOI) during 

disinfection (White 1999). These oxidants then react with NOM to form brominated 

and iodinated DBPs in an analogous way to the formation of chlorinated DBPs from 

hypochlorous acid (HOCl). Hence, in the presence of bromide ion and NOM, 

chlorination of water can result in the formation of brominated, chlorinated and 

mixed bromo-chloro DBPs (Singer 1999).  

The first group of DBPs, the trihalomethanes (THMs), were discovered in 1974 

(Bellar et al. 1974; Rook 1974). In the presence of bromide, four THMs are normally 

found: chloroform (CHCl3), bromodichloromethane (CHBrCl2), 

dibromochloromethane (CHBr2Cl) and bromoform (CHBr3). In the absence of 

bromide, only chloroform is found. The latest revision of the Australian Drinking 

Water Guidelines (NHMRC 2011) has set the guideline value for total THMs in 

Australian drinking water supplies to be less than 250 μg L-1. 

A number of factors affect the rate and extent of DBP formation: e.g. the 

characteristics and concentration of NOM, bromide ion concentration, the type and 

concentration of the disinfectant, the contact time between the disinfectant and the 

water, temperature and pH (Harrington et al. 1996; Liang and Singer 2003). 

Different NOM components react with aqueous chlorine species at different rates 

(Harrington et al. 1996). Reckhow et al. (1990) indicated that the nature of the 

aromatic sites, and especially the relative abundance of activated and non-activated 

rings, markedly governs the reactivity of NOM with chlorine. This is due to chlorine 

reacting with aromatic rings through electrophilic aromatic substitution. For 

electrophilic aromatic substitution reactions, a group that releases electrons (such as 

a methoxy group –OCH3) activates the ring, and a group that withdraws electrons 

(such as a nitro group –NO2) deactivates the ring (Morrison and Boyd 1992).  

Chlorine demand measurements examine the consumption of chlorine dosed into a 

water sample over a period of time (usually 72 hours or 7 days). The chlorine 
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demand of the water is a non-specific measure of the total organic and inorganic 

components that will react with chlorine in the sample, giving a partial indication of 

the reactive fraction of NOM in the sample. The chlorine demand can also reveal the 

chlorine dose required to achieve a specified disinfectant residual after a specified 

time.  

1.2.2.9.1  Formation of Disinfection By-Products  

The chemical reactivity of NOM with chlorine can provide a qualitative assessment 

of NOM character. The reactivity of NOM and chlorine can be measured with the 

trihalomethane formation potential (THMFP) method. The reactivity of NOM is 

directly proportional to the concentration of THMs produced. The more hydrophobic 

(HPO) and acidic fractions of NOM, and polyhydroxy aromatic structures in 

particular, have been reported to be the main THM precursors (Norwood et al. 1987; 

Croué et al. 2000).  Haloacetic acids (HAAs) have not been studied as extensively as 

THMs, but in several waters they have been found at mass concentrations equal to or 

greater than the mass concentrations of the THMs (Singer 2002). The relative 

distributions of HAAs, along with the THMs, are reported to be influenced by the 

HPO and HPI distribution of NOM (Liang and Singer 2003). Nine HAAs can be 

produced if chlorine and indigenous bromide ion are present in the water. Of these, 

chloroacetic acid, dichloroacetic acid and trichloroacetic acid are the most 

extensively studied, with Australian Drinking Water Guideline values of 150 μg L-1 

for chloroacetic acid, and 100 μg L-1 each for dichloroacetic and trichloroacetic acid 

(NHMRC 2011). 

1.3 Drinking Water Sources of Perth, Western 

Australia 

Perth, the capital city of Western Australia, has a population of 1.75 million 

("Australian Bureau of Statistics"  2012) and sources its drinking water from surface, 

sea and groundwater supplies. Surface water is obtained from nine separate 

reservoirs in the Darling Range, situated in largely uninhabited Jarrah forests 

growing on low-nutrient lateritic sediment. Groundwater is sourced from shallow 

subsurface aquifers or deeper aquifers in the sands of the Swan Coastal Plain 
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(Davidson 1995). The Perth Seawater Desalination Plant, commissioned in 2006, 

produces up to 45 gigalitres per day (GL d-1) of potable water, which is supplied into 

Perth’s Integrated Water Supply Scheme.  Most of the source water for Perth is 

located in groundwater borefields in the northern suburbs. Recent low water levels in 

the reservoirs have increased the amount of groundwater needed to supply water to 

the community. Currently, 35 – 50 % of Perth’s drinking water is supplied by 

groundwater sources ("Water Corporation of Western Australia"  2010).  The local 

shallow groundwater resources are usually highly coloured and contain relatively 

high concentrations of dissolved organic carbon (DOC, 10 – 50 mg L-1), sulfide (0.5 

– 5 mg L-1) and dissolved iron (1 – 4 mg L-1) (Davidson 1995), such that these 

resources require substantial treatment to produce drinking water which complies 

with the Australian Drinking Water Guidelines (NHMRC 2011). 

1.4 Drinking Water Treatment for Perth 

Groundwaters 

In drinking water treatment, removal of NOM early in the treatment process is 

desirable, in order to achieve more effective water treatment. The type and extent of 

treatment required is dependent on the source water quality. The local Perth 

groundwater supplies use a multi-step treatment process to satisfy community 

requirements for water quality, as well as to control various parameters to levels 

recommended by the Australian Drinking Water Guidelines (NHMRC 2011). 

Groundwater is treated at six major groundwater treatment plants (GWTPs) located 

at Wanneroo, Mirrabooka, Jandakot, Gwelup, Neerabup and Lexia. Each of these 

GWTPs receives water from a variety of bores (from both confined and unconfined 

aquifers), which individually have varying quality, but are mixed in such a way as to 

achieve a relatively stable composition, which, upon treatment, will produce water 

that meets current drinking water guidelines (NHMRC 2011). 

1.4.1 Water Quality Issues in the Wanneroo Source, Treatment 

and Distribution System  

Groundwater to be treated at the Wanneroo GWTP is extracted from 50 bores from 

various unconfined and confined aquifers. Due to the large number of bores in this 
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borefield, and each bore containing variable water quality, considerable complexity 

exists within the Wanneroo distribution system. Raw water entering the Wanneroo 

GWTP can be blended from several bores to produce a consistent water quality, 

however, the nature and concentration of other components, which are not 

individually monitored, can vary widely. The variable composition of NOM in these 

bores has led to the occurrence of aesthetic water issues in the distribution system 

that have stemmed from the Wanneroo GWTP. The high concentrations of DOC in 

these groundwaters have been shown to indirectly contribute to the formation of an 

objectionable, 'swampy' odour in the distribution system (Wajon et al. 1985; 

Franzmann et al. 2001; Heitz 2002). Wajon et al. (1985) first described the formation 

of this 'swampy' odour in the Perth distribution system and their research established 

that the odour was caused by dimethyltrisulfide (DMTS). DMTS is formed in zones 

of the distribution system where the chlorine residuals fall below critical levels 

(Smith et al. 2003). Franzmann et al. (2001) established a relationship between the 

'swampy' odour formed in distributed water and groundwater sources, probably due 

to the high concentrations of DOC and sulfide in certain groundwaters. Subsequent 

research (Heitz 2002) established a relationship between DMTS formation and the 

occurrence of biofilms in the distribution system. 

1.4.1.1 The Treatment Process at the Wanneroo Groundwater Treatment 

Plant 

The Wanneroo Groundwater Treatment Plant (GWTP), Perth’s largest GWTP, 

processes up to 225 megalitres per day (ML d-1). Historically, treatment has involved 

a conventional process of aeration, enhanced coagulation, sand filtration and chlorine 

disinfection. In 2001, the world’s first large-scale magnetic ion exchange (MIEX®) 

treatment plant was installed to improve water quality and odour issues in the 

Wanneroo distribution system. The MIEX® treatment process has been designed 

specifically for the removal of DOC from source waters containing high 

concentrations of DOC. At the Wanneroo plant, the goal of the MIEX® process is to 

reduce the concentration of DOC entering the distribution system, thus reducing 

chlorine usage and disinfection by-product formation. The reduction in chlorine 

demand has also provided a more stable chlorine residual and minimized biological 

activity within the distribution system. The current treatment scheme at the 
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Wanneroo GWTP, comprised of two parallel treatment streams (MIEX®–coagulation 

and enhanced coagulation), is shown in Figure 1.2.  

 

Figure 1.2 A schematic diagram of the two process streams currently operating at 
the Wanneroo Groundwater Treatment Plant. 

The source water entering the plant is first aerated to remove dissolved hydrogen 

sulfide. In summer, when water demand is high and the Wanneroo plant is running at 

full capacity, the aerated water is split between the MIEX®–coagulation process 

stream and the enhanced coagulation process stream. In winter, when the water 

demand is lower, the inlet water often flows only into the MIEX®–coagulation 
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stream, which has a capacity of 112 ML d-1. In the MIEX®–coagulation stream 

(Figure 1.2), following aeration, chlorine (0.5 mg L-1) is added to oxidise iron (II) to 

iron (III). The water is subsequently mixed with the MIEX® resin in the contactors 

for 30 minutes, and after that the water-resin slurry is transferred to the settlers. In 

the settlers, the magnetic properties of the resin allow the resin to separate from the 

water at a fast settling rate, facilitating the recycling of the resin back to the 

contactors.  The remainder of the water entering the treatment plant is treated by the 

parallel enhanced coagulation process and is pre-chlorinated (0.5 mg L-1) prior to 

enhanced coagulation. Coagulation with alum (aluminium sulfate) occurs in both 

treatment streams with typical doses of 30 – 40 mg L-1 for the MIEX®–coagulation 

process (pH 6.7), and 70 – 80 mg L-1 for the enhanced coagulation stream pH 6.0 – 

6.4).  Polyelectrolyte (a flocculation aid), at a dose of 0.25 mg L-1 for the MIEX®–

coagulation stream and 0.4 – 0.6 mg L-1 for the enhanced coagulation stream, is 

added as the water enters one of three clarifiers.  Supernatant water from the 

clarifiers in all treatment streams is recombined before flowing through up to twelve 

concrete filters, comprising anthracite coal, sand and gravel, (filters are backwashed 

with chlorinated water every 72 hours). After filtration, the water is chlorinated (3 – 

5 mg L-1) and fluoridated (0.9 mg L-1) before entering the clearwater tank and is then 

pumped to the Wanneroo storage reservoir. At the reservoir outlet, the water is re-

chlorinated to maintain a free chlorine residual of 0.6 to 1.5 mg L-1, prior to 

distribution to consumers ("Water Corporation of Western Australia"  2010; 

"Department of Water"  2010). 

1.4.1.2 The MIEX® Process 

The MIEX® resin has a polyacrylic macroporous structure which contains a high 

concentration of quaternary ammonium functional groups. The resin structure 

contains a magnetic component such that resin beads act individually as weak 

magnets. Their very small particle size (approximately 180 μm) provides a high 

relative surface area, allowing rapid adsorption kinetics (Slunjski et al. 2000, b).  

Negatively charged DOC is removed from the water by exchange with chloride ions 

on the active sites of the resin surface, as shown in Figure 1.3. The DOC sorption 

phase of the exchange cycle is based on a high affinity of the resin for anionic DOC 

(Slunjski et al. 2000, b). This allows DOC to be preferentially removed from raw 
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waters containing low levels of DOC and other naturally occurring anions. DOC 

desorption from the resin (resin regeneration) is achieved by reversing the sorption 

reaction. For this, the resin is treated with 10 % aqueous brine (NaCl) solution. The 

high chloride ion concentration displaces DOC from the resin via ion exchange.  

 

Figure 1.3 The reversible process of DOC removal by the MIEX® resin         
(Slunjski et al. 2000, a). 

1.5 Scope of Thesis 

Natural organic matter (NOM) represents a complex mixture of compounds derived 

from plants, animals and microorganisms, and its interactions with various chemicals 

affects all aspects of water treatment and water quality. NOM directly impacts, 

therefore, on source water management, treatment processes and distribution 

systems. The study described in this Thesis contributes to the body of 

characterisation studies which provide a detailed understanding of the origins, 

structural features and reactivity of NOM in source waters, along with its behaviour 

in drinking water treatment processes, ultimately allowing improved catchment 

management practices and optimisation of treatment processes. 

In Chapter 2, a preliminary investigation of a selection of bores in the Wanneroo 

borefield in terms of general water quality and NOM polarity distribution was 

performed to select the most promising bore to be used for larger scale treatment and 

characterisation. From analysis of the respective bore data, groundwater from bore 

W300 was selected to undergo further detailed characterisation. 

Isolation of a W300 NOM fraction by ultrafiltration is discussed in detail in Chapter 

3. The method for collecting a Raw Water UF solid isolate fraction is described, as 
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well as information on the character of the organic matter isolated in this fraction. 

The Raw Water UF fraction was then treated by a laboratory simulation of the 

MIEX® process. As MIEX® is a new technology in water treatment, the effect of the 

resin on different types of organic matter is not well understood. The MIEX® treated 

Raw Water UF fraction was then treated with chlorine and the formation of 

disinfection by-products measured. This information allowed structural features of 

the organic matter in this fraction to be identified and correlated with disinfection 

behaviour.  

Characterisation of W300 fractions isolated by an XAD-8/XAD-4 resin procedure 

and treatment of these fractions by the MIEX® process is discussed in Chapter 4. The 

hydrophobic, transphilic and hydrophilic fractions were analytically characterised 

before and after MIEX® treatment to establish the susceptibility of these fractions to 

removal during MIEX® treatment. By isolating and treating separate fractions rather 

than a bulk water source, insights into structural characteristics, such as the broad 

functional group distribution and molecular weight distribution, which may affect the 

removal of the fractions during MIEX® treatment, were provided. 

In a related study, treatment of a large volume of W300 water by the MIEX® 

process, followed by isolation of NOM fractions from the treated water by the XAD-

8/XAD-4 resin procedure, is reported in Chapter 5. To complement the procedure 

undertaken in Chapter 4, whereby W300 water was fractionated by an established 

XAD resin adsorption method and then treated by MIEX®, the work undertaken in 

this chapter involved treating W300 water by a MIEX® treatment process prior to 

XAD-8/XAD-4 resin fractionation of the NOM remaining in the treated water, to 

investigate the reactivity of the recalcitrant material remaining after MIEX® 

treatment. The fractions isolated from the MIEX® treated water were compared to 

the fractions isolated in the work described in Chapter 4 to examine the relatively 

treatable versus recalcitrant nature of the different NOM fractions. This comparison 

aids in the understanding of MIEX® treatment of various fractions, potentially 

allowing improved treatment strategies, and ultimately contributing to the improved 

quality of drinking water to consumers. 

Chapter 6 gives the overall conclusions from this study, together with specific 

recommendations for the MIEX® treatment process. Chapter 6 also provides 
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recommendations on the isolation and characterisation methods used in this Thesis, 

together with comments on their application to water treatment issues.  
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Chapter 2 

2.0 General Characterisation of a 

Selection of Wanneroo Groundwater 

Samples 

2.1 Introduction 

The Perth region lies almost entirely within the Swan Coastal Plain (Davidson 1995).  

The Swan Coastal Plain covers an area of 4000 km2 and is bounded by Gingin Brook 

to the north, the Murray River to the south, the Darling Scarp to the east and the 

Indian Ocean to the west (Davidson 1995). The important groundwater resources in 

this area include the unconfined superficial aquifer, incorporating the Gnangara and 

Jandakot mounds (Figure 2.1), as well as the semi-confined and confined 

Rockingham, Kings Park, Mirrabooka, Leederville and Yarragadee aquifers. The 

work described in this Thesis has exclusively involved water samples from the 

unconfined superficial aquifer. Accordingly, a detailed description of this aquifer 

follows.  

The superficial unconfined aquifer supplies for the Wanneroo borefield are located 

within the Gnangara mound in the Swan Coastal Plain (Davidson 1995). There is 

temporal variation in the quality of the groundwater in this aquifer. Salinity ranges 

from 130 – 12 000 mg L-1, measured as total dissolved solids (TDS), but rarely 

exceeds 1000 mg L-1 which Davidson (1995) attributed to sodium chloride arising 

from the presence of Bassendean Sand in the aquifer. Groundwater within the 

Bassendean Sand formation is generally acidic (pH 4.0 – 6.5). The acidity is due to a 

high organic acid component in the NOM, arising from decomposed vegetation in 

the swampy environment. NOM, appears to be transferred to the superficial aquifer 

from swampy lakes which are in hydraulic contact with the aquifer, such that 

concentrations of DOC in the aquifer can range up to 50 mg L-1. The characteristic 
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Figure 2.1 Location map showing the Perth metropolitan area and some of its water 
sources. Surface water sources are located to the east of the Darling Fault (modified 

from Hirschberg (1989)). 

brown colour of the water is due to the presence of organic compounds which are 

concentrated near the water table. Colour can be used as an indicator of the content 

of organic matter in natural waters (Bennett and Drikas 1993; Edwards and 

Amirtharajah 1985), and the colour in the Wanneroo borefield varies significantly, 

with the highest values due to leaching of organic matter from vegetation and peat 

deposits on the surface passing through the water table due to infiltration (Davidson 
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1995). The hardness of the water varies between less than 50 and greater than 300 

mg L-1, expressed in terms of an equivalent quantity of calcium carbonate (CaCO3). 

From the hardness scale, the groundwater for the superficial aquifer can vary from 

very soft (<50 mg L-1 as CaCO3) to very hard (> 300 mg L-1 as CaCO3). Sulfate 

concentrations are usually less than 100 mg L-1. The dissolved iron concentration is 

usually less than 1 mg L-1, but has been reported higher than 50 mg L-1 and this 

variation can be attributed to the presence of pyrite (Davidson 1995).  The dissolved 

iron is present as ferrous ion, which is readily oxidised to ferric ion on contact with 

air. Water in the confined or semi-confined aquifers is considerably different in 

quality to the superficial aquifer: generally it is lower in colour, salinity, hardness, 

iron and sulfate (Davidson 1995). 

2.1.1 Scope of This Study 

A preliminary investigation on a selection of bores in the Wanneroo borefield in 

terms of general water quality was performed to select the most promising bore to be 

used for larger scale treatment and characterisation. The DOC concentration, UV 

absorbance and molecular weight distribution of the UV254-active DOC were 

determined for each bore water. A fractionation procedure based on the longer resin 

fractionation procedure (Chow et al. 2004) was employed to qualitatively 

characterise the NOM for each bore water. The water samples were passed through 

this small-scale, modified, rapid XAD-8/XAD-4 fractionation procedure, to 

determine the polarity distribution of the major fractions of NOM present in these 

groundwaters. The characterisation of the four bores from this initial investigation 

was used to determine the bore to be chosen for larger scale treatment and 

characterisation. 

2.2 Experimental 

2.2.1 Water Samples 

Water samples (10 L) were obtained from bores labeled W20, W60, W280 and 

W300 in the Wanneroo groundwater production borefield on July 21st 2004. The 

locations of these four bores are shown in Figure 2.2. The groundwater samples were 

subjected to filtration through a 0.45 μm filter (Millipore) and stored at 4ºC. 
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Figure 2.2 Location of the four groundwater bores W20, W60, W280 and W300 in 
the Wanneroo Production Borefield (modified from Davidson, 1995).  

2.2.2 Materials and Methods 

2.2.2.1 Purified Laboratory Water 

Purified laboratory water was obtained by passing tap water first through an Ibis 

reverse osmosis system which included a 5 μm pre-filter followed by an activated 

charcoal filter and two mixed-bed ion exchange purification packs arranged in series. 

Product water was then passed through a reverse osmosis membrane and the 

permeate water was stored in a 60 L polypropylene tank. Water from the storage tank 

was then fed to an Elga Purelab Ultra Analytic purification system, comprising 

microfiltration, mixed bed ion exchange and final UV disinfection, as required, to 

produce high purity water with a conductivity of 18.2 m and a total organic carbon 

concentration of 1 μg L-1. This high purity water is referred to in this Thesis as 

MilliQ water.  

2.2.2.2 Cleaning Procedures 

All non-volumetric glassware was washed with Pyroneg detergent, rinsed with 

deionised water (3 ×) and annealed overnight at 600oC prior to use. All glassware 

that could not be annealed (volumetric flasks and syringes) was washed with ethanol, 
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dichloromethane, methanol and MilliQ water, with up to six separate washes with 

each solvent or liquid. All 0.45 μm filters were pre-washed with MilliQ water (500 

mL) followed by sample water (50mL). 

2.2.3 Rapid Fractionation Isolation Procedure  

A small-scale, rapid XAD-8/XAD-4 resin fractionation procedure, modified from the 

longer resin fractionation procedure of Chow et al. (2004), was employed to 

quantitatively characterise the main polar moieties of the NOM in the four 

groundwater samples. The adapted procedures for cleaning of the resins and 

fractionation of the NOM are outlined in the following subsections. 

2.2.3.1 Cleaning of the Resins 

Slurries of XAD-8 Resin (Rohm and Hass, 40 mL) and XAD-4 resin (Sigma Aldrich, 

40 mL) in aqueous sodium hydroxide solution (0.1 M, 100 mL) were prepared. The 

fines were removed by decantation and the remainder of the resin was stored in the 

sodium hydroxide solution for 24 hours. The resin slurry was then rinsed with MilliQ 

water and organic resin contaminants were removed by sequential 48 hour Soxhlet 

extractions with methanol, acetonitrile, and diethyl ether. Clean resin was then stored 

in methanol until required.  

2.2.3.2 pH Adjustment of the Water Sample 

Just prior to fractionation, the pH of the sample was adjusted by the addition of 

aqueous hydrochloric acid solution (0.1 M) while stirring. Once the pH decreased to 

2.2, the water sample was stirred to achieve equilibrium, upon which aqueous 

hydrochloric acid solution (0.1 M) was added until the pH reached 2.0, and the water 

sample was then stirred for a further 5 minutes.  

2.2.3.3 Fractionation Process 

Glass columns (10 mm diameter; 300 mm length) with a glass frit were packed with 

water-resin slurry and the resin column was rinsed with MilliQ water to remove 

methanol. The resin was cleaned further with an acetonitrile/MilliQ mixture (75:25 

% v/v, 100 mL) followed by MilliQ water until the DOC concentration was less than 
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0.5 mg L-1. Final preparation of the resin involved cleaning with hydrochloric acid 

solution (0.1 M, 200 mL). 

The water sample (2.5 L) was passed through the XAD-8 resin (40 mL). After 1 L of 

the sample was passed through the resin, a 100 mL aliquot of eluent was collected 

for analysis. The remaining XAD-8 eluent was passed through the XAD-4 resin (40 

mL) and, after 1 L, a 100 mL aliquot of eluent was collected for analysis. The 

remainder of the XAD-4 eluent was discarded. 

2.2.4 Measurement of Dissolved Organic Carbon Concentration 

Water samples were filtered using an IC Acrodisc filter (0.45 μm). The filtered water 

was collected in a glass vial (40 mL) and analysed using a Shimadzu TOC-V-Ws 

Total Organic Carbon Analyser using a non-purgeable organic carbon (NPOC) 

method. The NPOC parameters included: 3 to 5 injections of 2.5 mL of sample (with 

a maximum standard deviation of 0.05 mg L-1). An aliquot of aqueous phosphoric 

acid solution (75 µL, 17 %) was added and the sample sparged with nitrogen gas for 

3 minutes. An aliquot of an aqueous persulfate oxidiser solution (1.5 mL, 20 % 

sodium persulfate and 17 % phosphoric acid) was added and the sample irradiated by 

UV light to oxidise organic carbon. The resulting carbon dioxide was detected using 

an infrared detector. 

2.2.5 UV/Visible Spectroscopic Measurements 

Measurements at 254 nm were conducted using a Shimadzu Pharmaspec UV-1700 

Spectrophotometer with a 5 cm quartz cell. Background measurements were 

performed with MilliQ water, and all samples were filtered through a 0.45 μm IC 

Acrodisc filter prior to analysis. 

All UV254 absorbances in this Thesis were calculated per centimetre (cm-1) after 

converting the absorbance recorded using a 5 cm cell and after including any dilution 

factors. 
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2.2.6 Analysis of Bromide Ion Concentration and General Water 

Quality Parameters 

Bromide ion analyses were conducted using ion chromatography with a limit of 

quantification of 0.02 mg L-1. The Chemistry Centre of Western Australia performed 

these analyses under a commercial arrangement. 

Analysis of a series of general water quality parameters was carried out by SGS 

Laboratory Services Pty Ltd. 

2.2.7 High Pressure Size Exclusion Chromatography 

High pressure size exclusion chromatography (HPSEC) was performed according to 

a previously described method (Allpike et al. 2005). Detectors used for HPSEC were 

UV254 and OCD (organic carbon detection). Briefly, the HPSEC-UV254 system was 

comprised of a TSK G3000SWxl (TOSOH BioSep, 5 µm particle size, 250 Å pore 

size, 7.8 mm diameter, 300 mm length) column and a Hewlett Packard 1090 Series II 

HPLC instrument with filter photometric detection (FPD) at a wavelength of 254 nm. 

For organic carbon detection, the organic carbon in the eluent was separated and 

converted into carbon dioxide according to the procedure described by Allpike et al. 

(2007). Detection of the carbon dioxide was achieved using a Balzers Instrument 

Thermostar Mass Spectrometer operating in SIM mode (Warton et al. 2008). The 

HPSEC column had a void volume (V0) of 5.5 mL (determined with dextran blue) 

and a permeation volume (Vp) of 13.3 mL (determined with acetone).  The eluent 

was a 20 mM phosphate buffer (1.36 g L-1 KH2PO4 and 3.58 g L-1 Na2HPO4, pH 

6.85, with an ionic strength of 40 mM).  Samples were injected manually using a 

Rheodyne 7125 6-port injection valve equipped with a 100 µL sample loop and a 

flow rate of 1 mL/minute. HP Chemstation software was used for data analysis of the 

FPD signal, while Bruker Opus software was used to record the signal from the FTIR 

detector. Calibration was carried out using a series of polystyrene sulphonate 

standards with molecular weights between 840 – 81800 Da, and potassium hydrogen 

phthalate was used as a quantification standard for OCD.  
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2.3 Results and Discussion 

2.3.1 Characterisation of the Groundwater Samples 

2.3.1.1 General Water Quality Parameters of the Groundwater Samples 

Four groundwater bores (W20, W60, W280 and W300) from the Wanneroo borefield 

were sampled for preliminary NOM characterisation to select the most promising 

bore to be used for larger scale treatment and characterisation. The DOC 

concentration, UV254 absorbance and specific UV254 absorbance (SUVA254) for these 

four groundwater samples are shown in Table 2.1.  

Table 2.1 DOC concentration, UV254 and SUVA254 data for the four Wanneroo 
groundwater samples. 

Bore DOC 
concentration 

(mg L-1) 

UV254 absorbance 
(cm-1) 

SUVA254
 

(m-1 L / mg C) 

W20 6.4 0.232 3.7 
W60 11.2 0.427  3.8 
W280 14.3 0.716  5.0 
W300 23.4 1.349  5.8 

 

The DOC concentrations and UV254 absorbance of the four groundwater samples 

varied considerably from 6 to 24 mg L-1 and 0.24 to 1.34 cm-1, respectively. The high 

DOC concentrations measured here are consistent with the high concentrations (10 –

50 mg L-1) in Wanneroo groundwaters reported by Davidson (1995). The large 

variation between bores is likely due to the hydrogeology of the borefield, as 

discussed in detail in Section 2.1. The groundwater samples showed smaller 

variation in SUVA254. W20 and W60 had the same SUVA254 value despite different 

DOC concentrations and UV254 absorbances. This indicates that the chemical nature 

of the DOC within these bores may show some similarities despite the large variation 

in DOC concentration. A previous study of fulvic acids (a major fraction of NOM, 

soluble at all pH levels) showed a strong correlation between SUVA254 and aromatic 

carbon (Chin et al. 1994). A good relationship has also been established between 

SUVA254 and the aromatic carbon content of NOM fractions isolated from natural 

waters using the XAD-8/XAD-4 isolation protocol (Aiken et al. 1992; Croué et al. 

1999, a), with SUVA254 of the whole water sample largely dependent on the amount 
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and SUVA254 of the hydrophobic (HPO) fraction (Croué et al. 1999, a). Another 

study by Croué et al. (2001) showed that the correlation between SUVA254 and the 

aromatic carbon content is still valid when considering fractions isolated from both 

raw and treated waters. Typically SUVA254 < 3 m-1 L / mg C is reported to 

correspond to largely non-humic material, whereas SUVA254 in the range of 4-5 m-1 

L / mg C is reported to indicate mainly humic material (Hwang et al. 1999). 

SUVA254 is therefore a good predictor of the aromatic carbon content of NOM, and 

can be used to estimate the chemical nature of the DOC at a given location. The 

higher SUVA254 value from the other two bores (W280 and W300) may indicate a 

higher content of aromatic carbon in the NOM in these samples. The similarities and 

differences in SUVA254 between W20/W60 and W280/W300 are consistent with the 

location of W20 and W60 on one north-south transect, and W280 and W300 on 

another, through the aquifer. The variations in SUVA254 from the different water 

samples (such as W20/W60 and W280/W300) based on their spatial variability are 

reportedly often found to be reflected in differences in both the fractionation patterns 

and the quality of the material contained in the fractions (Croué et al. 1999, a).  

2.3.1.2 Rapid Fractionation of the Groundwater Samples 

The NOM contained within the Wanneroo groundwater samples (2.5 L each) was 

fractionated by a modified version of the rapid XAD-8/XAD-4 procedure (Chow et 

al. 2004) shown schematically in Figure 2.3, with the sampling points for the 

procedure shown in red. 
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Figure 2.3 Schematic diagram of the XAD-8/XAD-4 resin procedure for rapid DOC 
fractionation. *Sampling points for the rapid fractionation procedure are shown in 

red. 

The relative proportions of three fractions of NOM within the DOC of each sample 

were measured in this technique, calculated from the differences in DOC 

concentrations between column influents and column effluents. This procedure 

allowed a semi-quantitative assessment of the proportion of hydrophobic, transphilic 

and hydrophilic material in each groundwater sample. The proportion of 

hydrophobic material (HPO) was calculated based on the DOC concentration 

difference between the ‘Raw Water DOC’ and the sampling point ‘Eluent after 

XAD-8, relative to the Raw Water DOC concentration (Equation 2.1). The 

proportion of transphilic material (TPI) was calculated based on the DOC 

concentration difference between the ‘Eluent after XAD-8’ and the ‘Eluent after 

XAD-4’, relative to the Raw Water DOC concentration (Equation 2.2). The 

proportion of hydrophilic material (HPI), which is not adsorbed onto either resin, 

was calculated as the DOC concentration of the ‘Eluent after XAD-4’ relative to the 

DOC concentration of the raw water (Equation 2.3). 

HPO = %100
DOC' Water Raw'

8'-XADafter Eluent ' - DOC' Water Raw'








  Equation 2.1 
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TPI =  %100
DOC' Water Raw'

4'-XADafter Eluent ' - 8'-XADafter Eluent '








  Equation 2.2 

HPI =  %100
DOC' Water Raw'

4'-XADafter Eluent '








     Equation 2.3 

For each sample, the proportion of each fraction (hydrophobic, transphilic and 

hydrophilic) was calculated and the proportions are shown in Table 2.2. The 

proportions of each fraction for all four groundwater samples were similar to that 

found in a previous rapid fractionation study of a Wanneroo groundwater from a 

deep underground source (Bolto et al. 2002), where 80 % was measured to be 

hydrophobic (cf. 70 – 80 % in the current study), 9 % transphilic (cf. 10 – 15 %) and 

11 % hydrophilic (cf. 10 – 18 %). The small disparity between the XAD fraction 

distribution between the samples of this study and the study of Bolto et al. (2002) is 

likely due to the waters being taken from different locations within the aquifer of the 

Wanneroo borefield in the two studies. In another study (Croué et al. 1999, a), a 

slight variation in DOC distribution due to sampling time for a surface water source 

in France was observed. During winter sampling, the hydrophobic material 

accounted for 51 % of the DOC, with the transphilic and hydrophilic material being 

24 and 25 %, respectively. During spring, the hydrophobic material accounted for 60 

% of the DOC, with the transphilic and hydrophilic material being 19 and 21 %, 

respectively (Croué et al. 1999, a). In each case, the hydrophobic fraction was the 

largest fraction in the DOC distribution, which was also observed in the current 

study.  

Table 2.2  Relative contribution of hydrophobic, transphilic and hydrophilic 
fractions of NOM in the four Wanneroo groundwater samples. 

Bore % Hydrophobic 
NOM 

% Transphilic 
NOM 

% Hydrophilic 
NOM 

% Hydrophobic 
+ Transphilic 

NOM 
W20 70 12 18 82 
W60 80 12 10 92 
W280 79 10 11 89 
W300 75 15 10 90 
 

The high SUVA254 values measured for the four groundwaters (Table 2.1), 

suggestive of the NOM in these groundwaters being comprised of mainly humic 
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material, are supported by the high proportion of HPO and TPI fractions seen for 

each groundwater (Table 2.2). It has been previously observed in the XAD-8/XAD-4 

resin isolation protocol (Croué et al. 1999, a; Aiken et al. 1992) that generally the 

humic-type material (HPO and TPI) is enriched in aromatic moieties compared to the 

HPI fraction. Since the Wanneroo groundwaters have a high proportion of HPO/TPI 

fractions (82 – 92 % of the total DOC), they most likely have a high degree of 

aromatic character, which is distinctly different to other water sources (Bolto et al. 

2002). Mash et al. (2004) showed that the amount of hydrophobic compounds, 

defined as the fraction of dissolved organic matter (DOM) retained on XAD-8 resin 

at pH 2, expressed as a percentage of the total DOC from three freshwater reservoirs 

in the USA varied between 25 – 58 %, significantly lower than the HPO/TPI 

fractions in the Wanneroo groundwaters. The variation in hydrophobic compounds 

was reported to be a reflection of the source of the NOM, and whether it was of 

predominantly vegetative or microbial origin (Bolto et al. 2002). The high 

hydrophobic content of Wanneroo groundwaters can influence the behaviour of 

NOM in water treatment. The high amount of aromatic character can influence the 

removal of NOM by coagulation, as coagulation is influenced by the proportion of 

humic/non-humic fractions, the HPO/HPI character and the MW of NOM 

constituents (Chow et al. 2006). Therefore, the characterisation of NOM is extremely 

important to the water industry, and considerable research has been undertaken 

worldwide to establish links between NOM character and treatability of the water in 

drinking water treatment processes (Croué et al. 1994; Owen et al. 1995; Gjessing et 

al. 1998; Chow et al. 2000; van Leeuwen et al. 2002; Warton et al. 2007, a).   

2.3.1.3 Molecular Weight Distribution of the UV254-Active DOC in the 

Groundwater Samples 

The molecular weight (MW) distributions of the UV254-active fractions of DOC 

within the groundwater samples and their rapid fractionation eluents were analysed 

by HPSEC-UV254. The HPSEC system was calibrated with polystyrene sulfonate 

standards of various MW to correlate the log of the MW and the distribution 

coefficient (K d
'). The calibration curve was used to convert each measured 

chromatogram to a plot of absorbance vs. MW, with the converted chromatograms of 
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the four groundwater samples and the rapid fractionation eluents shown in Figure 

2.4. 

 

Figure 2.4 HPSEC-UV254 chromatograms of the raw groundwater, XAD-8 eluent 
and XAD-4 eluent of a) W20; b) W60; c) W280 and d) W300 groundwater samples. 

Numbers correspond to eight distinct MW regions as described in Huber and 
Frimmel 1996 and Allpike et al. 2005. 
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In Figure 2.4a – 2.4d, the MW regions are numbered from 1 – 8, according to the 

numbering system proposed by Huber and Frimmel (1996) and used by our group 

previously (Allpike et al. 2005), with the numbering corresponding to the elution 

order of the peaks. Each of these MW sub-regions still represents a complex mixture 

of organic compounds. The MW profiles for the raw water samples in Figure 2.4 are 

consistent with previous studies showing broad MW distribution for raw water 

samples from Finland (Peuravuori and Pihlaja 1997; Vrijenhoek et al. 1998) as well 

as for raw water samples from the Wanneroo GWTP (Warton et al. 2007, a; Allpike 

et al. 2005). Region 1, which elutes as a broad range of poorly resolved material in 

all four chromatograms, has been reported in earlier studies of Wanneroo borefield-

derived samples to potentially consist of sulphur species associated with organic 

matter, either in solution or colloidal form as elemental sulfur, and other inorganic 

substances (Allpike et al. 2005). Although samples were filtered (0.45 μm) prior to 

injection onto the SEC column, previous workers (Huber and Frimmel 1996) 

observed similar characteristics in a German lake water which similarly was 

attributed to an early eluting fraction of colloidal material. Regions 2 – 4, which elute 

as two partially resolved peaks for all four groundwater samples (Figure 2.4a – 

Figure 2.4d), are reported to be likely enriched in humic substances of relatively high 

molecular weight (Huber and Frimmel 1996). Humic substances are considered to be 

rich in aromatic functional groups, which are easily detected by both DOC specific 

and UV absorbance detectors. Regions 5 – 7 reportedly correspond to the fractions 

comprising lower molecular weight monoprotic organic acids such as fulvic acids, 

conjugated unsaturated acids or keto-acids (Huber and Frimmel 1996). Region 8 

eluted as a broad band of poorly resolved material and comprised organic matter of 

the lowest apparent MW.  

Comparison of the HPSEC-UV254 profiles of the groundwater samples after resin 

fractionation showed that the MW distribution of the UV254-active DOC remaining 

in the water after elution through the XAD-8 resin was similar for each bore. The 

large proportion of HPO fraction, adsorbed on the XAD-8 resin, can also be 

observed by the large difference between the chromatograms for the raw water and 

the eluent after XAD-8. The UV254-active material remaining after elution through 

the XAD-8 resin was predominantly of high MW (500 - 1000 Da), presumably 

humic, in nature. This is consistent with NOM fractions isolated by rapid 
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fractionation from Myponga reservoir that showed a high amount of humic/fulvic 

and polysaccharide/protein material (Soh et al. 2007). The preferential retention of 

UV254-active NOM on the XAD-8 resin (the difference between the chromatograms 

of raw water and eluent from XAD-8) confirms that the XAD-8 resin favours the 

adsorption of the higher MW NOM fractions (the most hydrophobic), which are the 

most aromatic in nature (Croué 2004). The higher MW portion of the material in the 

eluent after XAD-8 was adsorbed onto the XAD-4 resin, corresponding to the 

portion of NOM referred to as transphilic material. The hydrophilic fraction 

(remaining after elution through the XAD-4 resin; ‘Eluent After XAD-4’) of each 

groundwater showed less UV254-activity than the component remaining after elution 

through the XAD-8 resin, consistent with previous studies (Soh et al. 2007; 

Buchanan et al. 2005). The hydrophilic fraction of all of the bore waters included 

some humic character in the MW range of 500 – 200 Da.  

The small differences in relative amounts and profiles of the eight distinct MW 

regions (Allpike et al. 2005; Huber and Frimmel 1996) for the raw water and two 

eluents of the four groundwater samples, observed in the HPSEC-UV254
 

chromatograms may reflect subtle changes in the general water chemistry of the four 

groundwater samples. Future HPSEC-UV254-OCD analysis would enable the 

complete range of DOC in the water samples to be investigated.  

2.3.2 Selection of Groundwater Bore for Detailed Study 

The general water quality data of the four groundwater samples showed a range of 

DOC concentrations and UV absorbance values likely due to the hydrogeology of the 

borefield. The variation evident in SUVA254 values was not reflected by the 

relatively similar XAD resin fractionation distribution for the four groundwaters, 

where each groundwater had a high proportion of hydrophobic and transphilic 

material, enriched in aromatic moieties compared to the hydrophilic fraction. These 

results suggested that, whilst the general water quality can vary (such as DOC 

concentration, UV254, SUVA254); the hydrophobicity of the DOC present in each 

bore is relatively similar. HPSEC-UV254
 analysis for the four groundwaters showed 

small differences in profiles in the raw waters. The MW profiles of W280 and W300 

were almost identical, with the majority of the MW distribution between 1000 – 100 

Da representing humic substances of a highly aromatic nature (Huber and Frimmel 
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1996). W60 had a high proportion of MW material in the 1000 – 100 Da range as 

seen in W280 and W300, more material in this range was of higher MW than in 

W280 and W300. W20 still had a high amount of humic material in the 1000 – 100 

Da range, but there was a higher proportion of MW material between 100 – 10 Da 

for this sample, thought to represent monoprotic low MW acids such as fulvic acids 

(Huber and Frimmel 1996). These differences in MW distribution of the UV254-

active material may reflect subtle changes in the general water chemistry of the four 

groundwater samples, based on their location in the borefield. Understanding the 

NOM present in the raw water samples is important as the types of organic 

compounds collected by different isolation processes can differ based on the samples 

isolated. Inferences about the entire NOM pool in the source water are often drawn 

based on the analysis of material collected (Croué et al. 1999, b). After consideration 

of the NOM present in the water samples having relatively similar MW distributions 

from the HPSEC-UV254 profiles, groundwater from bore W300 was chosen for 

further detailed characterisation. This bore contained the highest DOC concentration 

and a high amount of aromatic DOC (based on the relative contribution of 

hydrophobic, transphilic and hydrophilic fractions) which will assist in isolation of 

sufficient quantities of DOC fractions for treatment and characterisation. 

2.3.3 General Water Quality of Groundwater from Bore W300  

Following selection of bore W300 for treatment and characterisation studies, 

groundwater (1000 L) from bore W300 was collected, filtered (0.45 μm) and stored 

at 4ºC. The general water quality parameters of the groundwater sample were 

analysed and the results are presented in Table 2.3.  

The general water quality parameters measured for W300 water in the current study 

were largely consistent with average annual sampling data reported over almost a 

decade by Ash et al. (2012). The exceptions to this were the very low turbidity and 

the higher colour in the current study, compared to the average annual data. This 

modest disparity in the physical properties of colour and turbidity could reflect 

differences in water quality at the time of sampling or differences in the manner of 

sampling. Organic compounds in water can result in a characteristic brown colour. 

Turbidity due to colloidal material from clay minerals in the sediments is extremely 

variable because of the thin beds of clay present throughout the Wanneroo borefield  



39 

Table 2.3 General water quality parameters of W300 groundwater in the current 
study and as averages of routine borefield sampling events over eight years. 

 
 

Water Quality Parameters 

W300 Sample 
(current 
study) 

Average Borefield 
Sampling Data from 
W300 from 2003 – 

2011 
(Ash et al. 2012) 

Total Alkalinity concentration as CaCO3  
(mg L-1) 

15 19 

Chloride concentration (mg L-1) 76 72 
Colour (TCU) 220 164 
Conductivity (mS cm-1) 310 324 
Hardness concentration (mg L-1) 45 42 
Bromide concentration (mg L-1) 0.23 0.20 
Iodide concentration (mg L-1) 0.03 • ND 
Sulphate concentration (mg L-1) 21 21 
Total Dissolved Solids concentration (mg L-1) 310 318 
Nitrate concentration (mg L-1) < 0.2 0.024 
Nitrite concentration (mg L-1) < 0.1 <0.011 
pH 5.9 5.64 
Total Filtered Solids concentration (mg L-1) 176 234 
Aluminium concentration (mg L-1) < 1 0.5 
Calcium concentration (mg L-1) 5.4 5.2 
Iron concentration (mg L-1) < 0.5 0.37 
Potassium concentration (mg L-1) < 5 2.5 
Magnesium concentration (mg L-1) 7.1 6.7 
Manganese concentration (mg L-1) < 0.20 0.003 
Sodium concentration (mg L-1) 44 44 
Silicon concentration (mg L-1) 6 10 
Turbidity (NTU) 8 51 
DOC concentration (mg L-1) 24 23 
UV254 (cm-1) 0.97 1.04 
 • ND – not determined 

area within the Leederville aquifer (Davidson 1995). Therefore, depending on depth 

and seasonal time of the year, the turbidity and colour can vary. The salinity 

(measured as total dissolved solids) of W300 groundwater (310 mg L-1) lies in the 

range reported for the Leederville aquifer (176 – 2511 mg L-1) by Davidson 

(1995).The salinity of the water is due to the sodium chloride arising from the 

Bassendean Sand present in the aquifer. The pH (5.9) indicates acidic water, 

probably due to the decomposition of vegetation in the swampy environment. The 

water was of low hardness (15 mg L-1 as CaCO3) according to the hardness scale in 

Davidson (1995) (< 50 mg L-1 as CaCO3). The low dissolved iron concentration 

(<0.5 mg L-1) is consistent with the low concentration of iron in water from the same 

groundwater bore reported by Ash et al. (2012). The low sulfate concentration (21 

mg L-1) is consistent with the reported Leederville aquifer concentrations (<50 mg 
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L-1) (Davidson 1995). The DOC concentration measured for this W300 sample (24 

mg L-1) is consistent with the high concentrations (10 – 50 mg L-1) reported by 

Davidson (1995). Overall, the general water quality of W300 is consistent with 

previous studies (Davidson 1995, Ash et al. 2012) on this bore and the Leederville 

aquifer in general. 

Size exclusion chromatography with organic carbon detection (SEC-OCD) and 

ultraviolet detection at 254 nm (SEC-UV254) was performed on the sampled 

groundwater to examine the MW distribution of the DOC in this water source and 

the chromatograms are shown in Figure 2.5. In Figures 2.5a and 2.5b, the peaks are 

numbered from 1 – 8, as described in Section 2.3.1.3, with the numbering 

corresponding to the elution order of the peaks.  

 

Figure 2.5 a) HPSEC-OCD and b) HPSEC-UV254 chromatograms of W300 
groundwater. Numbers correspond to eight distinct MW regions as described in 

Huber and Frimmel 1996 and Allpike et al. 2005. 
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The MW distributions of both the UV254-active DOC and total DOC in the W300 

sample were similar in nature, as shown by the chromatograms derived using both 

UV254-specific (Figure 2.5b) and DOC-specific detectors (Figure 2.5a), respectively. 

The MW profiles were consistent with MW profiles of raw water entering the 

Wanneroo GWTP as seen in previous studies (Wong et al. 2007; Warton et al. 2007, 

a; Heitz 2002; Warton et al. 2008). It is likely that the material represented by 

Region 1 was colloidal in nature and may also have been comprised of some 

inorganic substances, as discussed in Section 2.3.1.3 and seen previously for 

Wanneroo groundwaters (Allpike et al. 2005; Allpike 2008), as well as other 

groundwater sources in Western Australia such as water sourced from the Jandakot 

Mound (Chow et al. 2006). The later eluting UV254-active and DOC regions (regions 

2 – 8 in Figures 2.5a and 2.5b) are more alike than the earlier eluting region. Regions 

2 – 4, which eluted as one unresolved peak in Figures 2.5a and 2.5b, are likely to be 

enriched in humic substances of relatively high MW (Allpike et al. 2005). Humic 

substances are considered to be rich in aromatic functional groups (Collins et al. 

1986) and so these fractions tend to be “over-represented” by UV254 detection. This 

can be observed in Figure 2.5 where these fractions form an apparently greater 

proportion of the sample in Figure 2.5b than in Figure 2.5a. SEC-OCD analysis 

shows great benefits in giving a more quantitative representation of the MW 

distribution of the DOC in water samples.  In the W300 sample, regions 5 – 7, had 

moderate UV absorbance and DOC concentration; these regions reportedly 

correspond to the fractions comprising lower MW monoprotic organic acids, such as 

fulvic acids, conjugated unsaturated acids or keto-acids (Huber and Frimmel 1996; 

Specht and Frimmel 2000). Region 8 eluted as a broad band of poorly resolved 

material and was comprised of organic matter of the lowest apparent MW. The 

lowest MW fractions are thought to be important in drinking water treatment as these 

are poorly removed by conventional processes and are considered to be bioavailable 

(Volk and LeChevallier 2000).  

The general water quality of W300 was largely consistent with the quality reported 

for this bore during routine sampling (Ash et al. 2012). HPSEC analysis showed a 

similar MW distribution by both UV254-active DOC and total DOC detection.  
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2.4 Conclusions 

Four groundwater samples (W20, W60, W280 and W300) were collected from the 

Wanneroo borefield to investigate characteristics of each water sample in order to 

determine the most promising bore for further characterisation studies. The bore 

chosen for further detailed characterisation was W300. W300 was primarily chosen 

due to its high DOC concentration, which should allow enough solid material to be 

collected for characterisation studies, and its relatively high proportion of aromatic 

components (based on the relative contribution of hydrophobic, transphilic and 

hydrophilic fractions from XAD-8/XAD-4 resin fractionation). 

The general water quality of W300 from the large sampling event (1000 L) was 

consistent with 8-year-average annual sampling data for the bore for the vast 

majority of water quality parameters (Table 2.3; Ash et al. 2012). Isolation of the 

DOC present in the groundwater sample W300 using ultrafiltration and resin 

chromatography, followed by characterisation of the DOC fractions, will be 

presented in the following Chapters.  
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Chapter 3 

3.0 Characterisation and Treatability of 

NOM Isolated from a High 

Hydrophobicity / High DOC 

Groundwater by Ultrafiltration 

3.1 Introduction 

NOM characterisation remains a priority for the water treatment industry, because 

such characterisation holds the key to understanding, predicting and controlling 

NOM reactivity under water treatment conditions. A large number of protocols have 

been developed to isolate aquatic NOM (Thurman 1985; Aiken and Leenheer 1993). 

These protocols are based on two different approaches: 1) concentration and 

fractionation, and 2) concentration only. Adsorption chromatography (such as XAD 

resins) and membrane filtration (such as ultrafiltration and nanofiltration) are the 

most commonly applied isolation methods (Croué et al. 1999, a). In this Thesis, one 

of each of these types of isolation methods (XAD resins and ultrafiltration) will be 

investigated and compared for isolation of NOM for characterisation purposes. 

Among the membrane filtration methods available, ultrafiltration (UF) has been the 

most widely used to fractionate aquatic NOM for characterisation studies (Francioso 

et al. 2002; Christensen et al. 1998; Koechling and Summers 1996; Cai 1999; 

Assemi et al. 2004), hence ultrafiltration was chosen to isolate the organic matter 

present in W300 in this study. UF has also been useful to examine the compositional 

variability of NOM samples from different sources based on an estimation of DOC 

distributions in different nominal molecular weight (NMW) fractions (Newcombe et 

al. 1997). Another study using ultrafiltration to fractionate NOM (Koechling and 

Summers 1996) showed a correlation between the NMW of NOM and its potential to 
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produce DBPs, with the lower the NMW, the higher the potential to produce THMs 

upon chlorination.  

The advantages of membrane techniques over adsorbent-based NOM techniques are: 

firstly, that a comparatively large volume of water can be processed in a short period 

of time, and secondly, the NOM is never subjected to extreme pH values that could 

alter its structural properties (Croué et al. 1999, b). Unlike adsorbent-based NOM 

techniques, which rely on certain chemical properties of NOM, membrane filtration 

is based on the molecular weight/size of the NOM components. The fractionation 

mechanism characterising membrane filtration is based on membrane pore size and 

the difference in size of the NOM molecules in the water (Amy et al. 1987). In 

theory, the membrane will retain NOM molecules larger than the maximum pore size 

of the membrane and the smaller molecules will pass through the pores (Assemi et 

al. 2004). Since the NOM components are fractionated as a function of their 

molecular size/shape without any reference to specific chemical composition or 

characteristics, there is no specific term for NOM fractions obtained from these 

membrane filtration methods. Therefore, each fraction of NOM is only distinguished 

from the other fractions by its NMW. However, it must be noted that the NMW of 

the NOM fractions produced from the membrane separation is not a true molecular 

weight, as there is some uncertainty in the range of the molecular weight of the NOM 

which will pass through a membrane of a particular NMW (Cho et al. 1999). This is 

because the application of membrane filtration may lead to filter polarisation, in 

which smaller materials can be trapped in the larger molecules and so the larger 

molecules can act as a filter themselves (Peuravuori and Pihlaja 1997). 

The major drawback of membrane concentration is that the membrane concentration 

techniques usually concentrate inorganic salts along with the NOM, albeit not 

necessarily with the same efficiency (Croué et al. 1999, b), and concentrated samples 

must be repeatedly diluted with purified water and subjected to further membrane 

filtration steps in order to reduce the concentration of inorganic salts in the fractions. 

Another problem with the use of membranes for NOM concentration is the 

possibility of membrane fouling by NOM (Croué et al. 1999, a). 
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3.1.1 Scope of This Study  

For this study, ultrafiltration was employed to isolate the fraction of NOM from a 

sample of W300 raw water which did not pass through the membrane. The efficiency 

and practicality of ultrafiltration for isolation of NOM from a high hydrophobicity / 

high DOC groundwater was investigated. The isolated fraction was then 

characterised by a variety of NOM characterisation techniques, allowing new 

information to be determined about the characteristics in terms of structure and 

functionality of NOM from a high hydrophobicity / high DOC groundwater.  

The isolated fraction was also separately treated by a laboratory simulation of the 

magnetic ion exchange (MIEX®) treatment process to determine the effectiveness of 

MIEX® treatment for removal of this fraction from water. The characteristics of the 

NOM in the fraction were investigated before and after MIEX® treatment. As 

MIEX® is a relatively new technology in water treatment, the removal effectiveness 

of the resin for different types of organic matter is not yet well understood. New 

information was obtained on the treatability of a highly hydrophobic DOC fraction 

by the MIEX® process.  

3.2 Experimental 

3.2.1 Water Sample 

Groundwater (1000 L) from bore W300 in the Wanneroo groundwater production 

borefield was collected on 31st March 2005. The groundwater sample was subjected 

to filtration through a 0.45 μm filter and the filtrate was stored at 4°C prior to use. 

3.2.2 Cleaning Procedures 

The procedure for cleaning of glassware was the same as that described in Section 

2.2.2.2. 

3.2.3 Ultrafiltration Isolation Protocol 

Filtered raw water (W300, 75 L) was passed through a 1 kDa nominal molecular 

weight (NMW) tangential flow ultrafiltration cartridge (Millipore). The retentate was 
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refiltered until the volume of the retentate was reduced to 4 L, and retentate and 

permeate sub-samples were collected in 30 mL glass vials. These samples were 

immediately analysed for their conductivity values and subsequently analysed for 

their DOC concentrations. MilliQ water was then added to increase the volume to 75 

L and the filtering process repeated until the retentate was again reduced to 3 L and 

retentate and permeate sub-samples (30 mL) collected for analysis of conductivity 

and DOC concentration. Rotary evaporation further reduced the volume of the 

retentate to 400 mL. Since the conductivity of the concentrated retentate was 

approximately 880 µS cm-1, indicating the presence of significant amount of 

inorganic salts, dialysis using a 1 kDa Spectra/Por 6 regenerated cellulose 

membranes was performed until the conductivity of the dialysis retentate was 

approximately 50 – 60 μS cm-1. The 1 kDa dialysis membrane was chosen to keep a 

consistent NOM NMW fraction while maximising salt removal. The sample was 

then freeze dried to obtain a solid sample of NOM of NMW > 1000 Da. This sample 

is referred to as the UF sample or fraction.  

3.2.4 MIEX® Treatment of the UF Fraction 

3.2.4.1 Preconditioning of the MIEX® Resin 

Raw water (W300, 1.65 L) was stirred with virgin MIEX® resin (16.6 mL) for 30 

minutes. The resin was then regenerated by stirring with 10 % aqueous sodium 

chloride solution (600 mL) for 30 minutes. Lastly, the resin was stirred with MilliQ 

water (600 mL) for 10 minutes. After each process the solvent/solution was decanted 

from the settled resin.  

3.2.4.2 UF Stock Solution 

A stock solution (1 L) of the UF fraction was produced by initial dissolution of the 

dried isolate (100 mg) in aqueous sodium hydroxide solution (0.01 M, 1 mL) 

followed by addition of MilliQ water. The solution was filtered through a 0.45 µm 

glass fibre filter and the DOC concentration measured, as outlined in Section 2.2.4, 

to be 17.5 mg L-1. 
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3.2.4.3 MIEX® Treatment of UF Solution 

UF stock solution (400 mL, [DOC] = 17.5 mg L-1) was stirred with MilliQ water 

(total volume 1 L) and preconditioned and regenerated MIEX® resin (2.1 mL) for 15 

minutes, and the aqueous layer was decanted from the resin. The aqueous layer 

represented the UF after MIEX® treatment sample.  

3.2.5 Characterisation Methodology  

DOC concentration, UV/Visible spectroscopy and HPSEC were analysed as outlined 

in Sections 2.2.4, 2.2.5 and 2.2.7, respectively. 

3.2.5.1 Elemental Analysis  

Elemental analysis for carbon (C), hydrogen (H), nitrogen (N), sulfur (S), oxygen 

(O) and ash was performed on the dry UF isolate by micro-combustion. Chemical 

and Micro Analytical Services Pty. Ltd performed this analysis under a commercial 

arrangement. Carbon, hydrogen and nitrogen were liberated from the sample via 

combustion (1800 °C) and detected as CO2, H2O and NOx, respectively, by gas 

chromatography. Sulfur was converted to SO2 via explosive heating with subsequent 

ion chromatography with detection using a sulfate ion-selective electrode. Oxygen 

was liberated by heating (800 °C) in an anoxic environment in the presence of a 

platinum/nickel catalyst with detection as CO2 via gas chromatography. Ash content 

was determined gravimetrically after heating (815 °C). 

3.2.5.2 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared (FTIR) spectra were collected in the transmission mode 

using a Bruker IFS-66 spectrometer. Approximately 2 mg of dried UF isolate was 

ground and potassium bromide (300 mg) was mixed with the ground material, and 

the mixture was pressed into a small disc. FTIR analyses were carried out by 

collecting 4 background scans followed by 4 scans of the sample. All FTIR spectra 

were scanned between 4000 and 7000 cm-1 and data analysis performed with OPUS 

software. 
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3.2.5.3 Solid-State 13C Nuclear Magnetic Resonance Spectroscopy 

The solid-state 13C cross polarization magic angle spinning NMR spectra were 

obtained at a frequency of 50.3 MHz on a Varian Unity 200 spectrometer. The 

samples were packed in a 7 mm diameter cylindrical zirconia rotor with Kel-F end-

caps and spun at 5000 ± 100 Hz in a Doty Scientific MAS probe. The spectra were 

acquired using a 1 millisecond contact time and a 1 second recycle delay. Between 

24K and 61K scans were collected, representing a total run time of 7 to 17 hours. 

The free induction decays (FIDs) were acquired with a sweep width of 40 kHz; 1216 

data points were collected over an acquisition time of 15 milliseconds. The FID was 

zero-filled to 32768 data points and processed with a 50 Hz Lorentzian line 

broadening and a 0.01 second Gaussian broadening. The chemical shift was 

externally referenced to the methyl resonance of hexamethylbenzene at 17.36 ppm. 

Spectra were corrected for background signal by subtracting the spectrum acquired 

for an empty rotor under the same acquisition conditions.  

These analyses were performed under a collaborative arrangement by Dr Ron 

Smernick in the School of Earth and Environmental Sciences at the University of 

Adelaide, Australia.  

3.2.5.4 Fluorescence Spectroscopy 

Fluorescence excitation-emission (EEM) measurements were conducted using a 

Varian Cary Eclipse Fluorescence Spectrophotometer with a quartz cuvette of 1 cm 

path length. The spectrometer displayed a maximum emission intensity of 1000 

arbitrary units (AU). The spectrometer used a xenon excitation source and excitation 

and emission slits were set to a 5 nm band-pass. To obtain fluorescence EEMs, 

excitation wavelengths were incrementally increased from 190 to 380 nm at 2 nm 

increments. The emission wavelength range was 280 – 500 nm with 1 nm 

increments. Data acquisition and processing was computer controlled with Sigma 

Plot software.  
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3.2.6 Disinfection By-Product Formation Potential Experiments 

3.2.6.1 Preparation of Chlorine Solution 

A stock solution of chlorine in water (approximately 1000 mg L-1) was prepared by 

dilution of a commercial sodium hypochlorite solution (125 g L-1) with MilliQ water. 

Due to the instability of chlorine solutions, the free chlorine concentration of the 

stock solution was measured prior to every set of experiments. The chlorine 

concentration was initially determined iodometrically against standardised sodium 

thiosulphate solution and excess potassium iodide (Franson 1998). The chlorine 

concentration obtained by titration was compared to the response given by a HACH 

chlorine colorimeter. The colorimeter was then used to determine the free Cl2 

equivalent concentration (mg L-1) of subsequent chlorine solutions. 

3.2.6.2 Chlorination Experiments 

UF stock solution and UF after MIEX® stock solution (diluted to 2 mg L-1 DOC 

concentration) and bromide ion stock solution (200 μL, 1000 mg L-1) were separately 

added into amber glass bottles, the pH was adjusted to 7.0 through the addition of 

phosphate buffer, and the solutions diluted with MilliQ water and dosed with a 

concentrated chlorine solution (6 mL, 1000 mg L-1) to produce an initial chlorine 

concentration of 6 mg L-1 (total volume 1 L), a similar concentration to what is 

applied for disinfection at the Wanneroo GWTP. The reaction mixtures were stored 

in the dark at 25°C for 7 days. At various times over 7 days, the residual chlorine 

equivalent concentrations were measured in duplicate and aliquots (~40 mL) of each 

reaction mixture were quenched with an aqueous sodium sulfite solution (500 μL, 

100 g L-1) and stored in the dark at 5°C until THM analysis was performed. After 7 

days, an additional aliquot (40 mL) of each reaction mixture was quenched with an 

aqueous sodium sulfite solution (500 μL, 100 g L-1) and stored in the dark at 5°C 

until HAA analysis was performed. 
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3.2.7 Analysis of Disinfection By-Products 

3.2.7.1 Analysis of Trihalomethanes 

THMs were extracted from the samples and concentrated via automated headspace-

solid-phase microextraction (HS SPME) as per the procedure published by Kristiana 

et al. (2010) on a Gerstel Multipurpose Sampler MPS2, which was interfaced to an 

Agilent Technologies Series II 6890N/5973N GC Mass Selective Detector for 

analysis.  HS SPME was carried out on 30 mL of sample in a 40 mL vial. Anhydrous 

sodium sulfate (5 g) and internal standard solution (30 µL of 50 mg L-1 1,2-

dibromopropane in methanol) were added to the sample. Samples were agitated for 

15 minutes prior to the introduction of a Supelco® divinyl/carboxen/ 

polydimethylsiloxane fibre (50/30 µm) into the headspace of the vial. The fibre was 

exposed to the headspace for 15 minutes to allow extraction of THMs. The SPME 

fibre was desorbed at 270°C for 10 minutes in the injector port of the GC. Separation 

of the analytes was achieved using a 60 m × 0.25 mm i.d. × 0.25 μm film thickness 

Phenomenex DB-5MS fused silica 5% phenyl/95% dimethylpolysiloxane GC 

column. Helium carrier gas was used at a constant flow of 1.0 mL/minute. The oven 

temperature was initially 35°C held for 5 minutes, then ramped at 10°C/minute to 

200°C, then 20°C/minute to 310°C and held for a final 10 minutes. Selected-ion-

monitoring (SIM) of m/z 83, 85, 96, 121, 123, 127, 129, 131, 173 and 175 was 

performed. Each sample was analysed in duplicate. 

Calibration of THM concentrations was achieved by analysis of a series of external 

standards (CHCl3, CHBrCl2, CHBr2Cl and CHBr3; AR grade, Aldrich). A stock 

standard solution with each THM present at a concentration of 2 g L-1 in methanol 

was prepared. A working standard solution (10 mg L-1) was then prepared. For the 

calibration standards, aliquots of the working standard solution were diluted with 

MilliQ water (30 mL) following the addition of the internal standard solution (10 µL, 

50 mg L-1 1,2-dibromopropane in methanol) and sodium sulfate (1.67g). Extraction 

by HS SPME and analysis by GC-MS was performed as described above. Each 

standard was analysed in duplicate. 
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3.2.7.2 Analysis of Haloacetic Acids 

Analysis of HAAs was conducted by liquid-liquid extraction, derivatisation to the 

methyl esters and analysis of the esters by GC-MS as per the procedure published by 

Kristiana et al. (2010). The pH of the quenched reaction mixture (30 mL) was 

lowered to < 0.5 via the addition of concentrated sulfuric acid. Sodium sulfate (13 g) 

and methyl tertiary-butyl ether (MTBE) (3 mL) were then added. The MTBE layer 

(~2 mL) was collected and 10 % sulfuric acid in methanol (2.5 mL) was added. The 

mixture was heated at 60°C for 2 hours then cooled to room temperature. The 

mixture was washed with aqueous sodium sulfate solution (7 mL, 150 g L-1) and 

saturated sodium bicarbonate solution (1 mL).  The organic layer was then dried 

(magnesium sulfate) and an aliquot (15 µL, 50 mg L-11,2-dibromopropane in 

methanol) of the internal standard solution added.  

The final solution was analysed using a Hewlett Packard (HP) 6890 GC interfaced to 

a HP 5973N Mass Selective Detector. A cool-on-column injector system was used 

with helium carrier gas at a constant flow of 1.0 mL/minute. Separation of the 

analytes was achieved using a fused silica 60 m × 0.25 mm i.d. × 0.25 μm film 

thickness Phenomenex ZB-5MS 5% phenyl/95% dimethylpolysiloxane GC column. 

The  initial oven temperature was 35°C which was held for 10 minutes, then ramped 

at 5°C/minute to 135°C with 5 minute hold times at each of 75°C, 100°C and 135°C, 

then increased at 20°C/minute to a final 300°C, and held for 10 minutes. Selected-

ion-monitoring (SIM) of m/z 59, 83, 85, 93, 95, 108, 117, 119, 121, 123, 127, 129, 

161, 163, 171, 173, 205, 209, 251 and 253 was performed.  

Calibration of HAA concentrations was achieved by analysis of a series of external 

standards. A working standard solution containing all 9 HAAs (concentration range 

of 1 – 500 μg L-1) was prepared by dilution of the commercially available HAA 

mixture in MTBE (EPA 552.2 Acids Calibration Mix, HAAs concentration range of 

200 – 2000 μg L-1, Supelco), into methanol. For the calibration standard solutions, 

aliquots of the working standard solution were added to MilliQ water (30 mL). The 

standard sample was then extracted, derivatised and analysed as described above. 

Each standard was analysed in duplicate. 
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3.3 Results and Discussion 

3.3.1 Isolation of UF Fraction 

In the first part of a comparison study of NOM isolation techniques, NOM from 75 L 

of a high hydrophobic / high DOC concentration (23 mg L-1) groundwater from a 

bore in the Wanneroo borefield (W300) was isolated and fractionated by 

ultrafiltration. Pre-filtered (0.45 μm) W300 water was passed through the 

ultrafiltration system (1 kDa NMW membrane), during which the concentration of 

DOC in both the permeate and retentate were monitored. From the first pass through 

the UF system (total DOC: 1725 mg), the DOC contained in the permeate was 

calculated to be 123 mg, and the DOC in the retentate was 1580 mg, resulting in 

retention of 92 % of the DOC and only 8 % of the DOC being transferred to the 

permeate, with 1 % loss of DOC, presumably on the membrane. After passing the 

retentate through the system for a second time, the DOC contained in the retentate 

was 1060 mg, and the DOC contained in the permeate was 130 mg, resulting in 68 %  

retention of the DOC from the first retentate in the second retentate, 8 % of the DOC 

from the retentate from the first pass being transferred to the permeate during the 

second pass, with 25 % of the DOC from the first retentate being lost during the 

second ultrafiltration pass, presumably due to adsorption of DOC onto the 

membrane. Overall, the UF procedure retained 61 % of the total DOC after two 

passes. From previous work in our laboratory (Allpike 2008), approximately 65 – 70 

% of the DOC from a Wanneroo groundwater sample was retained during 

ultrafiltration using a 1000 NMW Da Millipore membrane, which was comparable to 

the recovery in the combined retentate in the current study. Practical considerations 

in NOM isolation limit the NOM recovery currently achievable to 70 – 90 % for 

freshwater samples (Croué et al. 1999, b) with the major limitation imposed by the 

presence of salts. Due to time constraints in the current study, a solid isolate fraction 

(UF fraction) was obtained by freeze-drying the retentate after the second pass 

through the UF membrane after desalting by dialysis (1000 Da). The UF fraction was 

characterised by a number of techniques, which are described below.  
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3.3.2 Characterisation of Isolated Solid UF Fraction 

3.3.2.1 Elemental Analysis 

Elemental analysis is generally the first technique applied to the study of NOM 

(Croué et al. 2000). The elements analysed include carbon, hydrogen, nitrogen, 

oxygen and sulfur, and the fraction of NOM which is not oxidised is referred to as 

‘ash’ and indicates the amount of inorganic species present (Croué et al. 2000). The 

results of these analyses are usually given in percent by weight and also specific 

ratios of elements present. The elemental analysis and atomic ratio data for the UF 

fraction is shown in Table 3.1.  

Table 3.1 Elemental percentage composition and atomic ratio data for the UF 
fraction. 

Sample %  
C 

%  
O 

% 
 H 

% 
 N 

% 
 S 

%  
Ash 

H/C O/C N/C 

UF 13.86 35.58 3.13 0.56 0.98 35.07 2.69 1.93 0.03 
 

The UF fraction was found to have a high ash content (Table 3.1). Ash includes 

heteroatomic compounds (eg. P), halogens (e.g. Cl, Br) and metals present in the raw 

water and is generally an indication of total inorganic content within the sample. 

Dialysis was performed to reduce the amount of inorganic salts in this fraction, but 

the ash content indicated that the remaining salt concentration was still very high 

compared to the carbon content. The high ash content present in the UF fraction was 

likely due to insufficient transfer of salt into the permeates during the ultrafiltration 

and dialysis processes. As ultrafiltration is primarily used to determine molecular 

weight of organic matter in water samples (Aiken 1985), solid NOM isolates from 

the retentates of ultrafiltration separations have rarely been obtained. Hence, there 

are few previous reports of elemental composition of ultrafiltration fractions. Abbt-

Braun and Frimmel (1999) did report the isolation of ultrafiltration retentate fractions 

and reverse osmosis retentate fractions from various NOM samples from different 

origins (surface water, lakes and controlled catchments) from Norway. The 

ultrafiltration retentate fractions produced similar elemental compositions (except for 

O and H) to those in the current study, i.e. for the Norwegian samples: C 14.36 –

15.64 %, H 1.36 – 1.49 %, N 0.90 – 1.81 %, O 24.5 – 27.7 % and ash 24.21 – 57.56 

% (Abbt-Braun and Frimmel 1999). The substantial amount of ash present in these 
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isolates reportedly caused the C content to be low and prevented the effective 

analysis of oxygen. With samples containing high ash levels (such as in the current 

study), it is important to use sufficiently high combustion temperatures (usually > 

1000°C) to decompose any carbonates that may be present in the sample or formed 

during combustion. If carbonates are present, the carbon value obtained represents 

total carbon, and carbonate carbon must be determined by treating the sample with a 

strong mineral acid (Huffman Jr and Stuber 1985). As oxygen is usually calculated 

by difference, the inefficient removal of salts may have contributed to some variation 

in measured elemental composition (Nanny 1997; Abbt-Braun and Frimmel 1999). 

The type of water sample from which the NOM has been isolated by UF may also 

influence the elemental composition as surface water lakes and dams, groundwater 

and river waters have been reported to produce NOM fractions with different 

elemental composition (Thurman 1985). H/C, O/C and N/C ratios are fundamental 

quantities used in describing and understanding geochemical substances (Huffman Jr 

and Stuber 1985). The high H/C ratio relative to the O/C and N/C ratios is indicative 

of an aliphatic rich character (Christensen et al. 1998) in the present UF sample.  

3.3.2.2 Fourier Transform Infrared Spectroscopic Analysis 

The Fourier transform infrared (FTIR) spectrum of the UF fraction solid sample, 

shown in Figure 3.1, is characterised by a number of absorption bands, exhibiting 

variable relative intensity. The FTIR spectrum (Figure 3.1) shows similarities to 

those of humic substances isolated from both soil and aquatic environments (Senesi 

1990; Leenheer et al. 1995; Kim et al. 2006), including four solid NOM isolates from 

water collected from various treatment stages at the Wanneroo GWTP (Allpike 

2008). Peak assignment includes a very broad absorption band at 3500 – 2500 cm-1 

(shown as the green region of Figure 3.1), due to hydrogen bonded hydroxyl groups 

of carboxylic acids, as well as phenols and alcohols (Takács and Alberts 1999), from 

carbohydrate material (Barber et al. 2001). Broad bands at 3000 – 2800 cm-1 (yellow 

region) are representative of C-H stretching from methyl and methylene carbons, 

from petroleum products and/or lipids present in the NOM fraction (Barber et al. 

2001). Other prominent bands in the spectrum include carboxylic and ketonic 

carbonyl stretching at 1710 cm-1 (pink region) due to the presence of carboxylic, 

ketonic, aldehydic or ester carbonyl groups, which all have a strong absorbance at 
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this wavelength. These stretches occur at this wavelength typically for aliphatic and 

aromatic acids, fulvic and humic acids, as well as amino acids (Barber et al. 2001). 

The strong band at 1630 cm-1 (purple region) is due to aromatic carbon stretches. 

Moderate bands at 1400 cm-1 (orange region) are characteristic of asymmetric and 

symmetric bending of CH3 and CH2 groups associated with carbonyl moieties, such 

as those of ketones, esters and carboxylic acids. A significant feature of the FTIR 

spectrum was absorbance bands centred at 1250 cm-1 (blue region), as several 

functional groups give signals in this region, including bands due to C-O stretching 

of alcohols, C-O stretching and O-H deformations of carboxylic acids, C-O 

stretching of esters and C-O-C stretching of ethers (Aiken et al. 1985; Stevenson 

1994).  FTIR can also serve as an assay of purity of NOM fractions because it allows 

bicarbonate, carbonate, nitrate, phosphate, silicate and sulfate salts in the sample to 

be readily detected (Croué et al. 1999, b). The FTIR spectrum of the UF sample 

indicates detectable inorganic constituents such as carbonates, nitrates, phosphates, 

silica and sulfates were still present in the sample post dialysis, indicated by the 

detectable peaks in the 800 – 500 cm-1 region. Hence, careful assignment of the 

peaks at 1630 cm-1 and 1400 cm-1 is necessary as they can be influenced by small 

changes in salt content (Takács and Alberts 1999), a likely outcome for this sample.   

 
Figure 3.1 FT-IR spectrum of the UF fraction. 
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3.3.2.3 Solid-State 13C Nuclear Magnetic Resonance Spectroscopic Analysis 

The solid-state 13C NMR spectrum for the UF fraction solid sample is shown in 

Figure 3.2. The low carbon and high ash contents of the fraction contribute to a 

poorly resolved spectrum. Nevertheless, several small broad peaks were attributable 

to aliphatic carbon (0 – 45 ppm, green in Figure 3.2), oxygenated aliphatic carbon 

(45 – 110 ppm, shaded yellow), aromatic carbon (110 – 160 ppm, pink shading), and 

carbonyl carbon (160 – 190 ppm, purple shading) structures (Li et al. 2004). The 

relative proportions of these different types of carbon atoms, based on integration of 

the UF fraction solid-state 13C NMR spectrum, are shown in Figure 3.3. 

 
Figure 3.2 Solid-state 13C NMR spectrum for the UF fraction. 

The relatively strong aliphatic carbon signal (0 – 45 ppm) is likely due to methyl, 

methylene and methine carbons (Wilson 1989) from lipid and biopolymer precursors 

(Dria et al. 2002). As the aliphatic signal is very broad, it indicates that the aliphatic 

components are short in chain length and or highly branched (Wilson et al. 1981). In 

a previous study, a hydrophobic NOM sample obtained from a MIEX® pilot plant 

process operating at the Wanneroo GWTP, a sample removed from the MIEX® resin 

representing the material removed by ion exchange, showed a similarly pronounced 

aliphatic peak (Wong et al. 2002). The moderate peak of the oxygenated aliphatic 

carbon region, is typical of a wide variety of alcohol, ether and ester carbons (Wilson 

et al. 1981). In a previous study of a highly coloured surface water from South 

Australia (Newcombe et al. 1997), ultrafiltration was used to isolate NOM into five 
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MW fractions and study the structural characteristics by solid-state 13C NMR 

spectroscopy. Newcombe et al. (1997) found that oxygenated aliphatic carbon was 

also the dominant signal by solid-state 13C NMR spectroscopy. The sharp peak at 

170 ppm, also seen in the previous study by Wong (2002), may be due to either 

carboxyl, ester or amide carbons (Desmukh et al. 2001), with all of these types of 

carboxyl carbon being found in humic substances (Wilson et al. 1981).  
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Figure 3.3 Relative proportions of carbon types based on integration of regions of 

the solid-state 13C NMR spectrum of the isolated UF NOM sample. 

For comparative purposes, the relative signal areas measured for the sample were 

divided into four broad regions (Figure 3.3). Overall, the distribution of types of 

carbons from solid-state 13C NMR spectroscopy were similar to other fractions 

isolated from Wanneroo groundwater (Allpike 2008). For the UF sample, the major 

carbon type was oxygenated aliphatic carbon, with aliphatic carbon the second most 

abundant carbon type. Carbonyl carbon was the least abundant carbon type as found 

in the previous study (Allpike 2008).  

3.3.2.4 Size Exclusion Chromatographic Analysis 

Size exclusion chromatography with organic carbon detection (SEC-OCD) and 

ultraviolet detection at 254 nm (SEC-UV254) was performed on the UF retentate of 

the raw water, prior to dialysis, to examine the molecular weight (MW) distribution 

of the organic matter in this fraction. DOC detection data is shown in Figure 3.4a and 
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SEC-UV254 data in Figure 3.4b, with different MW regions numbered from 1 – 8 

according to a previously reported numbering system (Allpike et al. 2005; Huber and 

Frimmel 1996). Similar MW distributions were detected by both methods, and the 

distributions were consistent with the MW distribution using UV254 detection of the 

W300 raw water profile reported in Section 2.3.3, as well as the MW distribution 

indicated by a chromatogram from a typical groundwater in Finland (Nissinen et al. 

2001). 

 
Figure 3.4 MW distribution of the UF retentate before dialysis analysed by a) SEC-

OCD and b) SEC-UV254 detection. Numbers correspond to eight distinct MW 
regions, as described in Huber and Frimmel 1996 and Allpike et al. 2005. 
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As size exclusion chromatographic analysis can not be performed on a solid sample, 

a sub-sample of the UF retentate of the raw water, prior to dialysis, was used. The 

high ash content (approximately 35 %, Table 3.1) of the solid UF fraction, post 

dialysis, correlates with a high salt content in the UF retentate post-dialysis. Because 

the sample for SEC characterisation was taken pre-dialysis, the salt content of this 

fraction would presumably have been higher than the post-dialysis sample. In high 

salt conditions, two elution modes are reported to be operating in SEC: separation 

based on size and the column interaction mode (Vuorio et al. 1998). These two 

elution modes have an effect on purification of the sample. The high salt content, 

causing an interaction between the salt in the sample and the column, resulted in the 

MW distribution of the UF sample being only broadly bimodal in nature, as shown 

by chromatograms using both UV254-specific and OCD-specific detectors (Figure 

3.4). The peak denoted as region 1 in these samples, which eluted as a broad range of 

poorly resolved material, has been reported in earlier studies of Wanneroo borefield-

derived samples to potentially consist of colloidal organic and inorganic substances 

(Allpike et al. 2005; Huber and Frimmel 1996; Warton et al. 2007, a). Regions 2 – 4, 

which eluted as one partially resolved peak, have been reported to be likely enriched 

in humic substances of relatively high molecular weight (Huber and Frimmel 1996). 

Regions 5 – 7 reportedly correspond to the fractions comprising lower molecular 

weight monoprotic acids, such as fulvic acids, conjugated unsaturated acids or keto-

acids (Huber and Frimmel 1996). Region 8 eluted as a broad band of poorly resolved 

material and comprised organic matter of the lowest apparent MW.  

3.3.2.5 Overall Characteristics of UF Solid Isolate 

Isolation of W300 NOM by ultrafiltration produced a solid freeze-dried sample. 

Desalting the fraction was challenging, and even after dialysis, a high ash content 

remained, hindering characterisation. While the quality of the spectra was impeded 

by the high ash content of the sample, FTIR and solid-state 13C NMR spectroscopic 

analyses indicated that the sample may have a significant aliphatic content, 

presumably from lipid and biopolymer precursors. Further characterisation by SEC 

revealed the UF fraction to have a significant contribution from humic substances of 

relatively high molecular weight. NOM from groundwaters is reported to contain 

molecules originating from the breakdown of large molecules: carbohydrate residues, 
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plant residues, plus the breakdown of lipids, fats and proteins (Caron and Smith 

2011). Hence, characterisation of the UF fraction has shown the fraction to be typical 

of groundwater-derived NOM.  

3.3.3 MIEX® Treatment of the Redissolved UF Fraction  

Virgin MIEX® resin was obtained from the Wanneroo GWTP at the time of raw 

water sampling. The virgin MIEX® resin was preconditioned with raw water (W300) 

to preload the resin with W300 NOM in a laboratory simulation of the plant 

treatment process. Preconditioning was carried out using a Jar Test Protocol 

developed by Orica Advanced Water Technologies (Holmquist 2006) which closely 

models full-scale MIEX® treatment at the Wanneroo GWTP.  

The isolated UF fraction was redissolved in MilliQ water and separately treated by 

preconditioned MIEX® resin. A UF solution (approximately 8 mg L-1 DOC) was 

treated with 2 mL of MIEX® resin for 15 minutes in a simulation of the full-scale 

plant at Wanneroo. The characteristics of the UF fraction before and after MIEX® 

treatment were then compared. 

3.3.3.1 DOC Concentration, UV254 and Colour 

The DOC concentration, UV254, SUVA254 and colour of the UF fraction before and 

after MIEX® treatment are shown in Table 3.2. A comparison of water quality from 

the Wanneroo GWTP at the time of sampling is also shown in Table 3.2. 

Table 3.2 DOC concentration, UV254, SUVA254 and colour parameters for the UF 
fraction before and after MIEX® treatment. 

Sample DOC  
(mg L-1)

UV 
 (cm-1)

SUVA254 

(m-1 L / mg C) 
Colour  
(HU) 

UF 7.7 0.878 2.2 37 

UF after MIEX®  6.7 0.628 1.8 27 

Wanneroo raw water 6.8 0.430 6.3 55 

MIEX® treated water 3.5 0.250 7.1 27 

 

The DOC concentration was only slightly reduced (12 %) by the laboratory MIEX® 

treatment, compared to the DOC removal (49 %) at the time of sampling through the 

MIEX® treatment process at the Wanneroo GWTP. Extensive batch, pilot plant and 
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full scale testing of the MIEX® process in Australia and the USA have shown that 

removal of DOC can vary between 9 – 89 % (Singer et al. 2007, b). Factors affecting 

DOC removal include resin dose, resin concentration, quality of DOC and the 

presence of competing anions. The resin concentration and dose used to treat the UF 

fraction in a simulated-fashion to the Wanneroo GWTP was based on the plant 

conditions at the time of water sampling. In the elemental analysis of the solid UF 

fraction (Section 3.3.2.1), the ash content was approximately 2.5× larger than the % 

C. Anions (such as chloride and sulfate) in this sample may have effectively 

competed for the active sites on the resin. The minimal MIEX® removal of DOC 

(2%) from the HPI fraction of a surface water source was attributed to the large 

retention of salts in the sample (Lee et al. 2002).  

The absorbance at 254 nm (UV254) is a useful surrogate for DOC concentration. 

MIEX® treatment of the UF fraction showed a 28 % reduction in the UV254 

absorbance, correlating reasonably well with the slight reduction in DOC after 

MIEX® treatment.  There was a reasonable reduction in UV254 (50 %) from the 

MIEX® treatment process at the Wanneroo GWTP, consistent with the DOC 

concentrations of the samples. The SUVA254, the ratio of UV absorption at 254 nm 

relative to the DOC concentration, for the UF fraction showed a small decrease with 

MIEX® treatment (18 %). This decrease showed that the MIEX® resin removed 

relatively more UV absorbing components of the DOC present in the fraction (Budd 

et al. 2005).  In a previous pilot plant study on MIEX® treatment using raw water 

with a low SUVA254 (<2) and high total dissolved solid content, from Southern 

Nevada Water Authority, USA (Singer et al. 2007, b) the reduction in SUVA254 was 

larger than the reduction in DOC concentration, as found in the current study. Colour 

refers to the ‘true’ colour; i.e. the colour of the sample with the turbidity removed. 

The colour values were strongly correlated with the respective UV254 and DOC 

concentrations, with the UF fraction colour reduced by 27 % and the MIEX® treated 

water colour reduced by almost 50 %, respectively, after treatment. 

3.3.3.2 Fluorescence Excitation-Emission Spectroscopy 

Fluorescence spectroscopy is useful for monitoring changes in the molecular 

structure of humic substances. Humic substances, regardless of their origin, exhibit 

characteristic fluorescence spectra which have been attributed to the presence of 
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aromatic fluorophores with electron-donating functional groups (Chen et al. 2003, a). 

The major fluorescent components present in the excitation-emission matrix (EEM) 

are shown in Table 3.3 (Leenheer and Croué 2003), whereby the EEM peaks have 

been associated with humic-like, tyrosine-like, tryptophan-like, or phenol-like 

organic compounds. The spectral breakdown of fluorescent components and their 

excitation and emission characteristics are shown in Figure 3.5 (Chen et al. 2003, b) 

where the operationally defined excitation and emission boundaries for the five 

regions are largely based upon supporting literature (Chen et al. 2003, b). In general, 

peaks at shorter excitation wavelengths (< 250 nm) and shorter emission 

wavelengths (< 350 nm) are related to simple aromatic proteins such as tyrosine 

(Regions I and II; Figure 3.5). Peaks at intermediate excitation wavelengths (250 – ~ 

280 nm) and shorter emission wavelength (< 380 nm) are related to soluble microbial 

by-product-like material (Region IV). Peaks at longer excitation wavelengths (≥ 280 

nm) and longer emission wavelengths (> 380 nm) are related to humic-acid like 

organic material (Region V) (Chen et al. 2003, b). Peaks with shorter excitation 

wavelengths (< 250 nm) and longer emission wavelengths (> 350 nm) are related to 

fulvic acid-like materials (Region III) (Chen et al. 2003, b).   

Table 3.3 Major fluorescent components in the excitation-emission matrix (Leenheer 
and Croué 2003). 

Range of  
excitation (nm) 

Range of  
emission (nm)

Component type 

330 – 350 420 – 480 Humic-like 

250 – 260 380 – 480 Humic-like 

310 – 320 380 – 420 Marine humic-like 

270 – 280 300 – 320 Tyrosine-like, protein-like 

270 – 280 320 – 350 Tryptophan-like, protein-like or phenol-like
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Figure 3.5 Breakdown of fluorescent components (Chen et al. 2003, b). 

The EEM spectra of the UF fraction before and after MIEX® treatment are shown in 

Figures 3.6a and b, respectively. The peaks running diagonally through the emission 

range of 400 – 500 nm at an excitation range of 200 – 260 nm are instrument 

artefacts of glass and water interactions present in all excitation-emission spectra. 

The peaks running diagonally through the emission range of 250 – 380 nm at an 

excitation range of 270 – 290 nm are due to Rayleigh/Tyndall scattering lines (Caron 

and Smith 2011). The intensity scale for Figure 3.6 was chosen to be consistent with 

the intensity scales for the EEM fluorescence profiles in Chapter 4 (Figures 4.8 – 

4.10) and Chapter 5 (Figure 5.4) to allow comparison of all EEM fluorescence 

spectra in Chapter 6. Fluorescence spectroscopy shows that treatment of the UF 

fraction by the MIEX® process removed humic and fulvic type material. The 

fluorescence intensities of the humic and fulvic regions in the spectrum from the UF 

fraction (Figure 3.6a) are large, relative to the MIEX® treated fraction which showed 

minimal humic and fulvic fluorescence (Figure 3.6b). The decrease in fluorescing 

components may also be consistent with the decrease in UV254-active species 

observed with treatment (Table 3.2). A small residual of soluble microbial by-

product like material and aromatic proteins (Figure 3.6b) was visible in the water 

sample after MIEX® treatment, which was not seen in the pre-treated sample. There 

has been no other reports of EEM spectra of MIEX® treated UF samples, so this is 

the first study of MIEX® treatment in this area. The microbial by-product like  
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Figure 3.6 Excitation-emission (EEM) fluorescence spectra of the UF fraction a) 
before and b) after MIEX® treatment. White arrows represent ‘humic-like’ and 

yellow arrows represent ‘protein-like’ components within the spectra. 

material present after  treatment, which was not seen pre-treatment, can not be easily 

explained. The presence of soluble microbial by-products after treatment indicates 
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that the MIEX® process is less effective at removing protein-derived structures. A 

previous fluorescence EEM study of a wastewater impacted drinking water source 

(Amy 2007) demonstrated effective removal of humic-like organic matter and 

ineffective removal of protein-like organic matter after coagulation treatment. 

3.3.3.3 Size Exclusion Chromatographic Analysis 

The SEC-OCD and SEC-UV254 chromatograms of the UF fraction (post-dialysis 

and redissolved in MilliQ water), before and after MIEX® treatment, are shown in 

Figures 3.7a and 3.7b.  Separate MW regions are numbered from 1 – 8 as described 

in Section 2.3.1.3. Organic carbon detection showed a small proportion of the DOC 

over a wide MW range was removed by MIEX® treatment, consistent with the low 

removal of DOC (12 %, Table 3.2). Previous studies (Humbert et al. 2007; Comstock 

et al. 2003; Fearing et al. 2004; Lee et al. 2002; Drikas et al. 2011) of water from 

Lake Allatoona (Georgia, USA), a high DOC (6 mg L-1) surface water from the 

Villejean/Rennes drinking WTP in Brittany (France) and various surface waters in 

the USA with differing alkalinity and TOC concentrations, as well as a long term 

case study of MIEX® treatment from Mt Pleasant WTP in South Australia, have 

shown that organic matter in the MW range of 1000 – 10000 Da was removed by 

MIEX® resin, with higher MW material poorly removed, consistent with the results 

of the current study. 

The MW distribution of both UV254-active DOC and total DOC in the UF fraction 

post dialysis is consistent with previous studies of Wanneroo groundwater (Allpike 

2008; Allpike et al. 2005; Warton et al. 2007, a). Region 1 with the high MW seems 

to be peculiar to local Western Australian waters (Warton et al. 2007, a), and was 

poorly removed by the MIEX® process. This lack of removal of the likely colloidal 

organic and inorganic substances in region 1 by MIEX®, also seen in previous 

studies of Wanneroo raw water (Allpike et al. 2005; Warton et al. 2007, a),  is 

consistent with the idea that colloids would not be removed by an anion exchange 

process (Vrijenhoek et al. 1998). Material in regions 2 – 4, was only slightly 

removed by MIEX® treatment. Since the NOM in groundwaters from the Wanneroo 

borefield is thought to consist largely of tannin-derived substances (Heitz 2002), 

composed predominantly of phenolic moieties with relatively minor carboxylic 

content, the low removal of material is consistent with phenolic moieties not being 
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amenable to removal by ion exchange. Material represented by regions 5 – 7 was 

removed slightly by the MIEX® process, suggesting that these fractions are probably 

enriched in negatively charged species and these anionic species are more readily 

removed by ion exchange (Allpike et al. 2005). Poor chromatographic resolution for 

region 8 hindered any quantification of this fraction, as per the previous study by 

Allpike et al. (2005).  

 
Figure 3.7 MW distribution of the UF sample before and after MIEX® treatment by 

a) SEC-OCD and b) SEC-UV254 detection. Numbers correspond to eight distinct MW 
regions as described by Huber and Frimmel 1996 and Allpike et al. 2005. 

3.3.3.4 Disinfection By-Product Formation Potential 

The chemical reactivity of NOM with chlorine as measured by the disinfection by-

product formation potential (DBPFP) can provide a qualitative assessment of NOM 

character. Prior to DBPFP measurement, aqueous samples of the UF fraction (post 
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dialysis, redissolved in MilliQ water) and the UF fraction after MIEX® treatment 

were diluted to achieve DOC concentrations of 2 mg L-1, typical of the DOC 

concentration leaving the Wanneroo GWTP, and bromide ion was added at a 

concentration of 0.2 mg L-1, typical of bromide concentrations of raw W300 water 

(Table 2.3, Section 2.3.3). The pore size of ultrafiltration membranes allows bromide 

to pass into the permeate (Chow et al. 2005), so the UF retentate fraction itself 

should have contained minimal bromide. This was confirmed by analysis of bromide 

in the UF fraction by ion chromatography with a detection limit of 10 µg L-1, where 

bromide was found to be below the limit of detection of the analysis. Disinfection 

experiments involved addition of chlorine to achieve an initial concentration of 6 mg 

L-1 (a similar chlorine dose to that applied to the treated water leaving the Wanneroo 

GWTP), addition of buffer to achieve pH 7 and temperature control to 25 ºC, and 

analysis of the concentration of trihalomethanes (THMs) and haloacetic acids 

(HAAs) after 7 days. The 7-day oxidant demands of the UF fraction and the UF after 

MIEX® treatment fraction are shown in Table 3.4, with the 7-day individual and total 

THM concentrations shown in Table 3.5, and the corresponding HAA concentrations 

shown in Table 3.6. 

Table 3.4 Oxidant demand of the UF fraction and the UF fraction after MIEX® 
treatment (halogenation conditions: 2 mg L-1 DOC, 6 mg L-1 Cl2 dose, 0.2 mg L-1 Br-, 

pH 7, 25oC, 168 hours). 

Sample Oxidant demand  
(mg L-1 free chlorine) 

Specific oxidant demand 
(mg free chlorine/mg C) 

UF 3.7 1.9 
UF after MIEX® 2.8 1.4 

 

The oxidant demand (expressed as a free chlorine equivalent concentration; 

commonly referred to as chlorine demand) examines the consumption of oxidant 

concentration over a period (usually 7 days). The oxidant concentration gives a 

measure of the amount of organic and inorganic components in the water sample 

with the capacity to react with the oxidant. Consumption of the oxidant (the oxidant 

demand) then gives an indication of the oxidant-reactive (here chlorine- and 

bromine-reactive) fraction of NOM in the water sample. Oxidant demands are useful 

for determination of the oxidant residual (often termed ‘chlorine residual’) required 

to achieve a specific disinfectant residual during water treatment.  
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MIEX® treatment resulted in a lower oxidant demand (Table 3.4), indicating that the 

MIEX® treatment preferentially removed the oxidant-reactive (chlorine- and 

bromine-reactive) fraction of NOM. Since the DOC concentration of each sample 

has been normalised to 2 mg L-1 prior to the disinfection experiments, the oxidant 

demand concentration is already in essence normalised to the DOC concentration.  

The oxidant demand data was completely normalised to the DOC concentration by 

dividing by the DOC concentration to produce a specific oxidant demand (mg free 

chlorine/mg C) to compare the current results to other MIEX® treatment studies. The 

study by Warton et al. (2007, a) described the behaviour of the MIEX® process on a 

full scale plant level using several parameters to assess its performance. Combining 

MIEX® with coagulation resulted in a higher quality water than simply coagulation 

in an enhanced mode, as measured by DOC concentration, UV254 absorbance, 

chlorine demand and specific chlorine demand, THMFP, turbidity and colour 

(Warton et al. 2007, a). In another study on two reservoir waters in South Australia, 

Drikas et al. (2003) found a lower specific chlorine demand for MIEX® treated 

waters (MIEX® 6 mL L-1, 15 minute contact time), and combined alum/MIEX® 

coagulation (6 mL L-1, 10 minute contact time, 20 mg L-1 alum/pH 6), compared to 

other treatment strategies including alum coagulation without pH adjustment and  

alum coagulation at pH 6. The slower chlorine decay for the MIEX® treatment alone 

compared with the combined alum/MIEX® treatment was thought to be due to the 

higher resin dose or longer resin contact time used with MIEX® treatment alone, but 

additional experiments confirmed the same chlorine decay rate was observed when 

the same MIEX® treatment conditions were used for both options. Similar trends 

were also seen at higher temperatures; the only difference was a faster chlorine decay 

(Drikas et al. 2003). Incorporating MIEX® into a treatment scheme may allow 

preferential removal of the oxidant-reactive fraction of NOM, resulting in a reduced 

chlorine consumption and likely correspondingly lower THM formation.  
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Table 3.5 Concentrations of THMs from chlorination of the UF fraction and the UF 
fraction after MIEX® treatment (halogenation conditions: 2 mg L-1 DOC, 6 mg L-1 

Cl2 dose, 0.2 mg L-1 Br-, pH 7, 25oC, 168 hours). 

 
Sample 

Concentration of Individual THMs  
(µg L-1) 

Total 
THMFP 
(µgL-1) 

Specific 
THMFP 

(μg/mg C) CHCl3 CHBrCl2 CHBr2Cl CHBr3 

UF 99 106 71 7 283 142 

UF after MIEX®  129 104 52 5 290 145 

 

Table 3.6 Concentration of HAAs from chlorination of the UF fraction and the UF 
fraction after MIEX® treatment (halogenation conditions: 2 mg L-1 DOC, 6 mg L-1 

Cl2 dose, 0.2 mg L-1 Br-, pH 7, 25oC, 168 hours). 

      
Sample 

Concentration of Individual HAAs (µg L-1) Total 
HAAFP 
(µg L-1) 

Specific 
HAAFP 
(µg/mg 

C) 

MCAA MBAA DCAA TCAA BCAA DBAA BDCAA CDBAA TBAA 

UF ND* ND* 44 82 34 15 92 27 ND* 294 147 

UF 
after 

MIEX® 

ND* ND* 13 6 21 21 19 19 10 108 54 

   * ND – not detected 

The 7-day THMFPs of the UF fraction and the UF fraction after MIEX® treatment, 

each with DOC concentrations normalised to 2 mg L-1, were essentially identical, 

indicating that the reactivity of DOC for THM formation in the two samples was the 

same and that the MIEX® treatment did not preferentially remove THM precursors 

from the UF fraction. This is not surprising given the low (12 %) DOC removal by 

MIEX® treatment in this case. As NOM is the principal precursor of organic DBPs, 

DBP formation is directly proportional to the concentration and characteristics of the 

NOM (Singer et al. 2007, b). In this DBPFP study, the DOC concentration was 

normalised to 2 mg L-1 for both samples to study the propensity to form DBPs for 

each sample. From both the UF fraction and the UF fraction after MIEX® treatment, 

the total THMs produced after 7 days were above the ADWG of 250 μg L-1, 

indicating that the NOM in this water type has a high propensity to form THMs. 

Even though the total THMs produced for both samples was higher than the 

maximum recommended concentration of 250 μg L-1, it should not be of concern as 

DBPFP experiments are generally considered to represent a worst-case scenario 

(Warton et al. 2007, a). The ADWG guidelines were also exceeded in a previous 

study on eight apparent MW fractions of a Western Australian surface water which 

were isolated by preparative SEC, where the initial DOC concentrations were also 
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normalised to 2 mg L-1 in disinfection experiments (Kristiana et al. 2010). At the 

Wanneroo GWTP, water is extracted from a variety of bores (from both confined and 

unconfined aquifers), which individually have varying quality. Although blending of 

the bores at the treatment plant results in the major water quality parameters being 

comparatively constant, the nature and concentration of other components, which are 

not individually monitored, can vary widely. Hence, while the NOM in W300 is very 

prone to THM formation as seen in Table 3.5, this bore water is blended with other 

higher quality bore waters as it enters the Wanneroo GWTP, such that the actual 

THM concentrations in distributed water are likely to be well below the THMFP 

measured in this experiment.  

Chlorination is widely utilized in drinking water disinfection and THMs and HAAs 

have been reported to be two of the most important DBPs formed (Rodriguez et al. 

2004). THMs are identified as the main DBPs, and, as such, HAAs have not been 

studied as extensively, but, in a number of systems, they have been found to occur at 

similar concentrations to THMs (Singer 2002). There are nine bromine- and 

chlorine-containing HAAs: two are monohalogenated species [monochloroacetic 

acid (MCAA) and monobromoacetic acid (MBAA)]; three are dihalogenated species 

[dichloroacetic acid (DCAA), bromochloroacetic acid (BCAA) and dibromoacetic 

acid (DBAA)], and four are trihalogenated species [trichloroacetic acid (TCAA), 

bromodichloroacetic acid (BDCAA), chlorodibromoacetic acid (CDBAA) and 

tribromoacetic acid (TBAA)]. BDCAA was the most abundant HAA product (in 

mass concentration) from the untreated UF fraction, with BCAA and DBAA equally 

abundant from the MIEX® treated UF fraction (Table 3.6). The UF after MIEX® 

fraction showed a shift towards brominated HAAs, as TBAA was only detected in 

the UF after MIEX® fraction. But, MIEX® treatment of the UF fraction did 

significantly reduce the potential for HAA formation, indicating preferential removal 

of HAA precursors by MIEX® treatment. Again, it should be emphasised that in this 

DBPFP study, the DOC concentration was normalised to 2 mg L-1 for both samples 

to study their propensity to form DBPs. The HAAFP of the UF fraction was very 

high and similar in mass concentration to its THMFP, but the concentrations of 

individual HAAs did not exceed the ADWG maximum concentrations. The ADWG 

only has maximum recommended concentrations for three HAAs: 150 μg L-1 for 

monochloroacetic acid (MCAA), and 100 μg L-1 each for dichloroacetic (DCAA) 
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and trichloroacetic acid (TCAA) (NHMRC 2011). Overall, these results 

demonstrated the high reactivity of the NOM fractions from this Wanneroo bore 

water for the formation of DBPs. 

Relative distributions of brominated and chlorinated DBPs can be compared through 

the ‘Bromine Incorporation Factor’ (BIF) parameter introduced by Boyer and Singer 

(2005). The ‘BIF’ is a parameter used to measure the extent of bromine substitution 

within a DBP class, as classified by the ratio of moles of bromine to moles of total 

halogen incorporated into the various DBP classes (Boyer and Singer 2005). The BIF 

parameter (Obolensky and Singer 2005; Boyer and Singer 2005) allows interclass 

comparisons of the extent of bromine substitution, by normalising the values to a 

range between 0 and 1, with zero representing no incorporation and 1 representing 

full bromine incorporation. In particular, the formula for THMs, where the 

concentrations of the individual THMs are expressed in molar units, is (Boyer and 

Singer 2005): 
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 The BIFs for THMs and HAAs for the UF fraction and the UF after MIEX® 

treatment are shown in Table 3.7. 

Table 3.7 BIF (THMs) and BIF (HAAs) obtained after 7 day chlorination 
experiment. 

Sample BIF (THMs) BIF (HAAs) 
UF  0.31 0.12 

UF after MIEX® 0.26 0.23 
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For both THMs and HAAs, the extent of bromine substitution varied for the UF and 

UF after MIEX® treatment fractions. During disinfection, the initial concentration of 

bromide ion and the extent of bromide ion oxidation to hypobromous acid (HOBr), 

have been found to affect the distribution of DBP species (Harrington et al. 1996). In 

addition, HOBr is reportedly more reactive to aliphatic precursors (Liang and Singer 

2003), and as bromine incorporation reduced for THMs after MIEX® treatment, this 

suggests that MIEX® treatment preferentially removed aliphatic precursors present in 

the fraction (Section 3.3.1). Aliphatic precursors are more significant for THM 

formation than HAA formation (Kanokkantapong et al. 2006). The increased BIF 

values for the HAAs in the UF fraction after MIEX® treatment reflects a shift 

towards the brominated HAAs. A MIEX® pilot plant study on four raw waters with 

varying water qualities in various locations across the United States (Singer et al. 

2007, b) reported a similar shift towards brominated HAAs after MIEX® treatment.  

From the DBPFP experiments, the UF fraction and the UF after MIEX® fraction 

have been demonstrated to be highly reactive to the formation of DBPs. The total 

THM concentrations of the UF fraction and the UF fraction after MIEX® treatment  

were comparable, indicating that the reactivity of DOC for THM formation in the 

two fractions was the same, suggesting MIEX® treatment has not preferentially 

removed THM precursors from the UF fraction. But, MIEX® treatment of the UF 

fraction did significantly reduce the potential for HAA formation.  

3.3.4 Conclusions 

Isolation of NOM from a local high hydrophobic / high DOC groundwater source 

using ultrafiltration was shown to have some success. The solid freeze-dried UF 

isolate obtained from 75 L of a high DOC concentration (23 mg L-1) groundwater 

had a low carbon content (14 %) and a high ash content (35 %). Desalting of the UF 

isolate was challenging, hindering characterisation of this fraction by the analytical 

methods employed in this study. While the quality of the spectra were impeded by 

the high ash content of the sample, FTIR and solid-state 13C NMR spectroscopic 

analyses indicated that the sample may have a significant aliphatic content, with 

some carboxylic acid groups present. 
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Treatment of the UF fraction by preconditioned MIEX® resin led to only small 

reductions in DOC concentration (12 %), UV254 absorbance (28 %) and colour (27 

%). The high salt content of the UF fraction, indicated by the high ash content of the 

solid sample, may have effectively competed for active ion-exchange sites on the 

resin surface, limiting the ability of the preconditioned MIEX® resin to remove DOC 

from the UF fraction.  

Chlorine reactivity of the UF fraction before and after MIEX® treatment showed that 

the DOC in each fraction had a similar propensity to form THMs, but MIEX® 

treatment of the UF fraction did significantly reduce the potential for HAA 

formation. However, there was a notable post MIEX® shift towards brominated 

HAAs, attributed to the selective reactivity of HOBr towards aliphatic precursors of 

these DBPs. The possibility of a shift towards more brominated HAAs after MIEX® 

treatment should be monitored in plant-scale applications of MIEX® treatment, since 

brominated DBPs are reported to be of greater health concern than their chlorinated 

analogues  (Richardson 2003). 

Ultrafiltration was used with limited success for the isolation of NOM from W300, 

as the salt concentration limited the quality of the characterisation that could be 

performed on the isolated fraction. Nevertheless, the isolated UF fraction was able to 

be treated with MIEX® resin, and was demonstrated to be highly reactive to the 

formation of DBPs. A comparison of the UF fraction to fractions isolated by an 

adsorption chromatographic isolation method (XAD-8/XAD-4 resin method) will be 

presented in Chapter 4.  
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Chapter 4 

4.0 Characterisation and Treatability of 

NOM Isolated from a High 

Hydrophobicity / High DOC 

Groundwater by Resin Fractionation 

4.1 Introduction 

The first step of many analytical protocols for characterisation of NOM is the 

fractionation process. Fractionation refers to chemical or physical processes that 

separate components of environmental mixtures into more homogeneous groupings 

based upon chemical or physical properties (Leenheer 2009). Since the purpose of 

isolating and fractionating NOM is to elucidate chemical properties, it is desirable to 

have an approach based on the chemical and reactive properties of the material of 

interest. Presently, the procedure used most extensively for isolation and 

fractionation of NOM is sorption onto XAD-type resins. These non-ionic 

macroporous resins combine relatively high adsorption affinities for NOM, with high 

elution efficiencies and very low affinities for inorganic salts (Croué et al. 1999, b). 

An attraction of sorption-based isolation techniques is their ability to simultaneously 

concentrate, isolate and fractionate NOM (Thurman and Malcolm 1981). Over three 

decades ago, Leenheer and Huffman (1976) proposed using XAD and ion exchange 

resins in a hierarchical fractionation procedure to characterise NOM molecules based 

on their hydrophobic-hydrophilic and acid-base properties. This approach was 

developed further in subsequent years, and a version of the protocol, first proposed 

by researchers at the United States Geological Survey (USGS) research group in 

1981, discussed in detail in Section 1.2.1.1., has become a reference method for the 

isolation of humic and fulvic acid fractions of NOM (Leenheer 1981; Thurman and 

Malcolm 1981). The approach has been further expanded and modified since then 
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(Aiken and Leenheer 1993; Malcolm and MacCarthy 1992), but still provides the 

basic framework for most fractionation studies. In this Chapter, the preparative two 

column array of XAD-8 and XAD-4 resins was chosen to fractionate the highly 

hydrophobic organic matter present in a high DOC water source on the basis of 

polarity (Croué et al. 1993, a). This protocol separates aquatic NOM into 

hydrophobic, transphilic and hydrophilic fractions and was preferred to the standard 

XAD-8 method which isolates just two fractions (hydrophobic and hydrophilic). The 

chosen fractionation method was also directly compared to the isolation method of 

ultrafiltration, reported in Chapter 3. Previous investigations of NOM from a variety 

of sources have led to some generalisations about the characteristics of NOM 

molecules in different environments. For instance, environments in which water is 

exposed to mineral surfaces that complex and adsorb NOM contain low 

concentrations of dissolved NOM, especially humic acids (Croué et al. 1999, b). 

NOM in lakes and reservoirs of moderate to high trophic status are often dominated 

by material generated in the water body (autochthonous material), whereas low-order 

rivers and streams usually carry more NOM that is generated exterior to the water 

body (allochthonous NOM). Allochthonous NOM has large C/N ratios, is highly 

coloured, and has significant aromatic carbon content, whereas autochthonous NOM 

has lower C/N ratios, is almost colourless, and has lower aromatic carbon content 

(Aiken et al. 1992). Isolating NOM from a high hydrophobicity / high DOC 

groundwater source from Western Australia will contribute to the body of 

characterisation studies being conducted to develop a detailed understanding of the 

origins, structural features and reactivity of NOM.  

There are two primary advantages associated with chromatographic methods of 

fractionation and isolation. First, it is possible to fractionate and isolate a total of 

approximately 55 to 90 % of the DOC from a variety of aquatic environments (Aiken 

et al. 1992). Secondly, the fractionation can be carried out on the original water 

sample without using a pre-concentration step (such as reserve osmosis), thereby 

maintaining fractionation consistency and comparability between samples (Croué et 

al. 1999, a). However, there are several potential drawbacks in NOM fractionation 

using XAD resins. First, the fractions isolated by XAD-8/XAD-4 fractionation may 

not fully represent the actual chemical properties of the NOM mixture because the 

use of strong acids and bases in the fractionation procedure potentially alters the 
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chemical characteristics of the NOM. Secondly, the distribution of each fraction can 

be affected by the sample preparation, as storage methods and filter type may 

contribute to variations in fractionation outcomes (Gadmar et al. 2005). Thirdly, 

fractions of organic matter obtained using these isolation methods are not sharply 

defined and thus overlapping and operational variations can occur (Gadmar et al. 

2005). 

For the potable water industry, the major goal of NOM characterisation is to 

understand and predict the behaviour and/or reactivity of NOM or its fractions in 

specific water treatment processes. The need for concentration and/or isolation of 

NOM is largely driven by the sensitivity of the characterisation methods: if it were 

possible to use the characterisation methods effectively on unconcentrated and 

unfractionated samples, many problems associated with the analysis (e.g. reactions 

among molecules in concentrates that are different from those in dilute samples; 

losses upon concentration and/or isolation) could be avoided (Croué 2004). 

Unfortunately, at the present time, many characterisation methods are not sufficiently 

sensitive to be applied to unmodified raw water. 

4.1.1 Scope of This Study  

This Chapter presents a study of the treatability of XAD-separated NOM fractions 

isolated from the Wanneroo groundwater bore W300. The NOM fractions were 

separately treated by a laboratory simulation of the MIEX
®

 process to investigate the 

removal of the different fractions. The hydrophobic, transphilic and hydrophilic 

fractions were analytically characterised before and after MIEX
®

 treatment to 

establish the susceptibility of these fractions, all still relatively complex chemical 

mixtures, to the treatment. A schematic of the treatment, isolation and 

characterisation process is shown in Figure 4.1. Isolation and treatment of separate 

fractions rather than a bulk water source was designed to provide insights into 

structural characteristics, such as the broad functional group distribution and 

molecular weight distribution, which may affect the removal of the fractions during 

MIEX
®

 treatment. The goal was to propose optimisation of treatment processes based 

on the various fractions of NOM, rather than only the removal of total NOM, 

ultimately contributing to improved drinking water quality to consumers.  
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Figure 4.1 The treatment, isolation and characterisation methodology for Chapter 4. 

4.2 Experimental 

4.2.1 Water Samples 

The collection, filtration and storage of the water samples used in this study was 

described in Section 3.2.1. 

4.2.2 Cleaning Procedures 

The procedure for cleaning of glassware was the same as that described in Section 

2.2.2.2. 

4.2.3 NOM Resin Fractionation and Isolation Protocol 

The XAD-8/XAD-4 resin preparation, cleaning and pH adjustment are described in 

detail in Section 2.2.3. 

4.2.3.1 Cleaning of Dowex MSC-1 H Resin 

The strong acid cation exchange resin (Dowex MSC-1 H) was prepared as a slurry in 

methanol. The fines were removed by decantation and the remainder of the resin was 

stored in methanol for 24 hours. Organic resin contaminants were removed by 
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Soxhlet extraction with methanol for 48 hours. Clean resin was then stored in 

methanol until required. 

4.2.3.2 Preparative Fractionation Process 

The XAD-8/XAD-4 resin fractionation procedure employed in this Chapter was 

modified from the fractionation procedure of Croué et al. (1993, a). Three glass 

columns (50 mm diameter; 300 mm length) with Teflon frits were each packed with 

a water-resin slurry (XAD-8, XAD-4 and Dowex MSC-1 H) and the resin column 

was then rinsed with MilliQ water to remove methanol. The XAD-8 and XAD-4 

resins (500 mL) were further cleaned with an acetonitrile/MilliQ mixture (75:25 % 

v/v, 500 mL) followed by MilliQ water until the DOC concentration was less than 

0.5 mg L-1. Final preparation of the resin involved cleaning with hydrochloric acid 

solution (0.1 M, 500 mL).  

The Dowex MSC-1 H resin (250 mL) was further cleaned with aqueous hydrochloric 

acid solution (3M, 2 L) followed by MilliQ water (4 L), prior to sample application. 

Filtered W300 water (0.45 µm, 33 L) was passed sequentially through the XAD-8 

and XAD-4 resin columns in series. The sample was followed by a pH 2-formic acid 

(2.5 L) rinse until the conductivity of the column effluent was the same as the 

conductivity of the column influent.  

The hydrophobic NOM sample was then desorbed from the XAD-8 resin by elution 

with acetonitrile/MilliQ water (75:25 % v/v) until the eluent was colourless (2.5 L). 

The solvent was removed from the eluent by rotary evaporation and freeze-drying, 

yielding the solid hydrophobic NOM fraction (HPO). The isolated mass of HPO was 

1900 mg. 

One transphilic NOM sample was desorbed from the XAD-4 resin using 

acetonitrile/MilliQ water (75:25 % v/v) until the eluent was colourless (2.5 L). The 

solvent was removed by rotary evaporation and freeze-drying, yielding the solid 

transphilic neutral NOM fraction (TPIN). The isolated mass of TPIN was 200 mg. 

The other transphilic NOM fraction was desorbed from the XAD-4 resin using 

aqueous sodium hydroxide solution (0.1 M, 1 L). The eluent was passed through 

Dowex MSC-1 H resin. The eluent from the Dowex MSC-1 H resin was then 
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concentrated by rotary evaporation and freeze-dried to yield the solid transphilic base 

fraction (TPIB). The mass of TPIB fraction recovered was 595 mg. 

The hydrophilic NOM fraction (33 L), which passed through both XAD-8 and XAD-

4 resins was subsequently concentrated by reverse osmosis. The retentate was 

recycled through the membrane until its volume was reduced to 2 L. Dialysis (100 

Da Spectra/Por Biotech Cellulose Ester membranes) was performed to minimise salts 

(conductivity of final retentate was approximately 50 – 60 μS cm), and the volume of 

the dialysed retentate reduced to 500 mL by rotary evaporation to obtain a 

concentrated isolate of the hydrophilic fraction (HPI) in water. 

The fractionation procedure was repeated four times (4 × 33 L) in order to provide 

sufficient material (approximately 200 mg) of the least abundant transphilic base 

fraction (TPIB), as well as the other two fractions, for the detailed treatment and 

characterisation purposes of this study. 

4.2.4 MIEX® Treatment of the XAD Fractions 

4.2.4.1 Preconditioning of the MIEX® Resin 

Preconditioning of the MIEX® resin was conducted as described in Section 3.2.4.1. 

4.2.4.2 Stock Solutions for MIEX® Treatment 

4.2.4.2.1 Stock Solutions of the HPO, TPIB and TPIN Fractions 

Stock solutions (1 L) of the HPO, TPIB and TPIN fractions in water were produced 

by initial dissolution of the dried isolate (50 – 100 mg) in aqueous sodium hydroxide 

solution (0.01 M, 1 mL) followed by the addition of MilliQ water. The solutions 

were filtered through a 0.45 µm glass fibre filter and the respective DOC 

concentrations measured, as described in Section 2.2.4, to be 18.1 mg L-1, 8.8 mg L-1 

and 89.6 mg L-1. 

4.2.4.2.2 Stock Solution of the HPI Fraction 

A stock solution of the HPI fraction (500 mL) was prepared after the HPI isolate 

obtained in the preparative fractionation process (Section 4.2.3.2) was filtered 
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through a 0.45 µm glass fibre filter. The DOC concentration of this solution was 

measured to be 13.6 mg L-1. 

4.2.4.3 MIEX® Treatment of Stock Solutions 

The HPO (386 mL, 18.1 mg L-1), TPIB (676 mL, 8.8 mg L-1), TPIN (89 mL, 89.6 mg 

L-1) and HPI (147 mL, 13.6 mg L-1) stock solutions were all separately stirred with 

MilliQ water (total volume for each fraction 1 L) in a 2 L beaker with preconditioned 

and regenerated MIEX® resin (2.1 mL) for 15 minutes, and the aqueous layer was 

decanted from the resin. The aqueous layer represented the corresponding post 

MIEX® solutions.  

4.2.5 Characterisation Methodology for the XAD Fractions 

Elemental analyses of the solid isolates (HPO, TPIB and TPIN) were measured by 

the procedure outlined in Section 3.2.5.1. DOC concentration, UV/Visible 

spectroscopy, bromide ion concentration, and HPSEC were all analysed as outlined 

in Sections 2.2.4 – 2.2.7. 

4.2.5.1 Flash Pyrolysis-Gas Chromatography-Mass Spectrometry 

Flash pyrolysis-GC-MS was carried out using a Chemical Data Systems 160 

pyroprobe. The solid NOM isolates (0.5 – 1 mg) were introduced into a quartz 

capillary with a plug of pre-annealed glass wool at one end and the capillary was 

placed inside the NiChrome coil of the Pyroprobe which was inserted into the 

Pyroprobe housing. The coil was heated at 650 ºC for 10 seconds. The pyroprobe-GC 

interface temperature was maintained at 250 ºC. Pyrolysis products were 

cryofoccused at -170 °C at the front of the GC column for 2 minutes prior to elution. 

Analysis was performed by GC-MS on a Hewlett Packard HP 5890 Series II GC 

with a HP 5971 mass selective detector (MSD) operating in the EI mode. Full scan 

m/z 50 – 550 mass spectra were acquired at 4 scans/second with an ionization energy 

of 70 eV. Separation of pyrolysis products was achieved using a fused silica capillary 

column: 30 m × 0.25 mm i.d. × 1 µm film thickness ZB-5MS GC column. Helium 

was used as the carrier gas at a pressure of 11 psi, flow rate of 1 mL/minute and a 

split of 30 mL/minute. The GC temperature program was increased from an initial 40 

ºC (2 minutes isothermal) at 4 ºC/minute to a final 310 ºC (15 minutes isothermal). 
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Data was collected using Chemstation software and mass spectra obtained were 

correlated with the Wiley 275 mass spectral library and published data. 

4.2.5.2 On-line Thermochemolysis-Gas Chromatography Mass Spectrometry 

Each dried isolate (0.5 mg) was transferred into a pre-annealed quartz tube sealed at 

one end. The thermochemolytic reagent tetramethylammonium hydroxide (TMAH) 

was added as a methanolic solution (5 µL, 25% w/w) and the open end sealed with a 

pre-annealed glass wool plug. The tube was placed into the coil of a Chemical Data 

Systems 160 Pyroprobe which in turn was loaded into a dedicated pyroprobe 

chamber installed on the GC injector. Thermochemolysis was performed at 650 ºC 

for 10 seconds. The temperature of the interface was maintained at 150 ºC. The 

products were cryofocussed (-170 ºC) at the front of the GC column for 2 minutes 

prior to commencement of GC-MS analysis. Conditions for GC-MS analysis were as 

described for flash pyrolysis-GC-MS (Section 4.2.5.1) except that the GC 

temperature program was increased from the initial 40 ºC (2 minutes isothermal) at 

4ºC/minute to 200 ºC, then 10 ºC/minute to a final 310 ºC (7 minutes isothermal).  

4.2.5.3 Micro-Scale Sealed Vessel Pyrolysis-Gas Chromatography-Mass 

Spectrometry 

Each dried isolate (~ 0.5 mg) was loaded into the middle of a glass tube (length 5 

cm, i.d. 5 mm). Glass beads were used to fill the void above and below each sample. 

The tubes were flame sealed, with care taken to avoid direct heating of the sample, 

and placed in an oven at 300°C for 72 hours. Each sealed vessel, containing a 

thermally matured sample, was then loaded into a dedicated MSSV injector (300°C) 

installed on top of the GC oven. The MSSV tube was cracked with a plunger and the 

volatile products were transferred by helium carrier gas (6 psi) to the GC column. 

The products were initially cryogenically trapped (-170°C) at the beginning of the 

column for 2 minutes. GC-MS analysis commenced on removal of the liquid 

nitrogen trap and was performed as described for flash pyrolysis-GC-MS (Section 

4.2.5.1) except that a 40 m × 0.32 mm i.d. × 0.25 µm film thickness ZB-5MS GC 

column and a split of 20 mL/minute were used, and the GC temperature was 

programmed to increase from an initial 40 ºC (2 minutes isothermal) at 4 ºC/minute 

to a final 300 ºC (15 minutes isothermal).  
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4.2.5.4 Other Spectroscopic Analyses 

FTIR, solid-state 13C NMR and fluorescence spectroscopic analyses were conducted 

as outlined in Sections 3.2.5.2 – 3.2.5.4. 

4.2.6 Disinfection By-Product Formation Potential Experiments 

The various solutions used for DBP formation potential measurement were prepared 

as outlined in Sections 3.2.6.1 and 4.2.4.2.1. 

4.2.6.1 Chlorination Experiments of XAD Fractions Pre- and Post-MIEX® 

Treatment 

Aliquots of the HPO (110 mL, 18.1 mg L-1), TPIB (226 mL, 8.8 mg L-1), HPO after 

MIEX® (209 mL, 9.5 mg L-1) and TPIB after MIEX® (500 mL, 3.9 mg L-1) stock 

solutions were added into separate amber glass bottles and bromide ion stock 

solution (200 µL, 1000 mg L-1) was added into each bottle. The pH was adjusted to 

7.0 with the addition of phosphate buffer, and the solutions diluted with MilliQ water 

and dosed with stock chlorine solution (6 mL, 1000 mg L-1) to produce an initial 

chlorine concentration of 6 mg L-1 (total volume 1 L), a similar concentration to that  

applied for disinfection at the Wanneroo GWTP. The reaction mixtures were stored 

in the dark at 25°C for seven days. At various times over 7 days, the residual 

chlorine equivalent concentrations were measured in duplicate, and aliquots (~40 

mL) of each reaction mixture were quenched with an aqueous sodium sulfite solution 

(500 μL, 100 g L-1) and stored in the dark at 5 °C until THM analysis was performed. 

After 7 days, an additional aliquot (40 mL) of each reaction mixture was quenched 

with a sodium sulfite solution (500 μL, 100 g L-1) and stored in the dark at 5°C until 

HAA analysis was performed. The initial free chlorine equivalent concentration was 

chosen so as to produce a final 7-day free chlorine equivalent concentration of 0.5 – 

1.5 mg L-1 for each sample. 

4.2.7 Analysis of Disinfection By-Products 

HS SPME-GC-MS analysis of the THMs, and liquid-liquid extraction and 

derivatisation followed by GC-MS analysis of the HAAs, were conducted as 

described in Section 3.2.7. 
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4.3 Results and Discussion 

4.3.1 Isolation of XAD Fractions 

In the second part of a comparison study of ultrafiltration (Chapter 3) and resin 

fractionation techniques for NOM isolation, NOM from 132 L of a high DOC 

concentration (23 mg L-1) groundwater from a bore in the Wanneroo borefield 

(W300) was isolated and fractionated by the XAD-8/XAD-4 resin procedure. The 

hydrophobic (HPO) fraction was adsorbed onto the XAD-8 resin, eluted by 

acetonitrile/water and the solvent removed by rotary evaporation and freeze-drying. 

The transphilic (TPI) fraction was adsorbed onto the XAD-4 resin, and two TPI 

isolates, a transphilic base (TPIB) fraction, eluted with sodium hydroxide (and 

passed through the Dowex MSC-1 H resin), and a transphilic neutral (TPIN) fraction, 

eluted with acetonitrile/water, were recovered after rotary evaporation and freeze-

drying of the solvents. The hydrophilic (HPI) fraction, which did not adsorb on either 

XAD-8 or XAD-4 resin, was obtained as an aqueous isolate. The mass and relative 

proportions of the isolated XAD fractions are shown in Table 4.1. 

Table 4.1 Isolated mass and relative proportions of the isolated NOM fractions. 

Sample Isolated 
Mass 
(mg) 

Calculated 
Weight of C in 

Isolate based on 
Elemental 

Analysis % C 
(mg) 

Proportion of 
Total Recovered 

C as a Percentage^ 

HPO 1900 944 89 % 

TPIB 595 22 2 % 

TPIN 200 77 7 % 

HPI 13* N/A 1 % 

N/A – not calculated 
^ Based on mg C of each isolate (from the elemental analysis) / total mass of C of all isolates 
(from the elemental analysis) 
*This fraction was not isolated as a solid form. The isolated mass was calculated to be 13 mg 
of organic carbon based on the concentration of DOC in the aqueous isolate. 

The goal of comprehensive NOM isolation is, of course, 100 % recovery of NOM in 

desalted fractions, however practical considerations limit the recovery currently 

achievable to 70 – 90 % for freshwater samples (Croué et al. 1999, b). The total 

carbon recovered from the XAD-8/XAD-4 resin isolation method was 1056 mg, 
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equating to a carbon recovery of 35 %, which is consistent with the recovery 

achieved in some previous resin fractionation studies, including a previous study in 

the USA on various lakes, swamps and rivers (Leenheer et al. 1987), where the 

amount of DOC recovered varied between 20 – 71 % for the various samples. In 

comparison to the DOC recovery (61 %) achieved using the UF isolation method in 

Chapter 3, the XAD-8/XAD-4 resin procedure used in this Chapter did not allow a 

higher recovery of total DOC.    

The proportions of HPO, TPI and HPI fractions of rivers, lakes, groundwaters and 

swamps are typically in the range of 23 – 78 %, 7 – 33 % and 8 – 70 %, respectively 

(Chow et al. 2005), and the results from the XAD-8/XAD-4 resin fractionation 

(Table 4.1) show that the groundwater bore W300 has a very high amount of HPO 

NOM present within this water source. The high proportion of HPO material is 

expected, as preliminary rapid fractionation results (Chapter 2, Table 2.2, Section 

2.3.1.2) showed the HPO fraction to be the largest fraction in the DOC distribution, 

and the high SUVA254 values measured in the groundwater (Chapter 2, Table 2.1, 

Section 2.3.1.1), suggestive of mainly humic material, are consistent with the high 

proportion of HPO fraction isolated in this study. In previous studies (Croué et al. 

1999, a; Aiken et al. 1992) using XAD-8/XAD-4 resin isolation protocols, the 

humic-type material (HPO) has been noted to be generally enriched in aromatic 

moieties. Since W300 has a high proportion of HPO material (89 %), which is likely 

to have a high degree of aromatic character, this is distinctly different to other water 

sources (Bolto et al. 2002). The proportion of each fraction in the current study was 

similar to that found in a previous rapid fractionation study of a Wanneroo 

groundwater from a deep underground source (Bolto et al. 2002), where 80 % was 

measured to be HPO material, 9 % TPI and 11 % HPI material, based upon 

differences in DOC concentrations between column influents and effluents, rather 

than isolated mass as reported in current study. The modest disparity of the DOC 

distribution between this study and the study of Bolto et al. (2002) is likely to be due 

to the waters being taken from different aquifers in the Wanneroo borefield. In 

another study (Croué et al. 1999, a), a slight variation in DOC distribution due to 

sampling time for a surface water source was observed. During winter sampling, the 

HPO material accounted for 51 % of the DOC, with the TPI and HPI material being 

24 and 25 %, respectively. During spring, the HPO material accounted for 60 % of 
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the DOC, with the TPI and HPI 19 and 21 %, respectively. In each case, the HPO 

fraction was the largest fraction in the DOC distribution, consistent with the 

distribution in the current study.  

4.3.2 Characterisation of Isolated Solid XAD Fractions 

4.3.2.1 Elemental Analysis and Atomic Ratios 

General compositional information was provided by the elemental analysis of the 

solid fractions. The elemental analysis and atomic ratio data of the HPO, TPIB and 

TPIN solid fractions is shown in Table 4.2.  

Table 4.2 Elemental percentage compositions and atomic ratio data of the three 

solid XAD fractions. 

Sample % 
C 

% 
O 

% 
H 

% 
N 

% 
S 

%  
Ash 

H/C O/C N/C

HPO 49.73 40.56 5.19 1.75 0.85 3.10 1.24 0.61 0.01

TPIB 3.71 6.42 6.95 22.63 0.38 5.43 22.32 1.29 5.23

TPIN 38.71 ND* 5.48 5.92 0.51 ND* 1.69 ND* 0.13

* ND - Not determined due to insufficient sample for analysis 

The elemental composition values were largely consistent with other reports of 

similar data typical of NOM from groundwater sources (Thurman 1985; Grøn et al. 

1996; Christensen et al. 1998), however HPO from W300 was slightly enriched in 

oxygen compared to other groundwater samples from Germany (36.50 %, (Frimmel 

and Abbt-Braun 1999)). It is critical that NOM fractions are separated from 

inorganic salt hydrates before elemental analysis is conducted (Leenheer 2009). As 

the ash content of the HPO sample was < 5 %, the XAD isolation procedure was 

relatively successful in removing inorganic components from the samples. It is also 

important that NOM fractions have low ash content, especially for oxygen analyses, 

as oxygen is commonly reported by difference between 100% minus the sum of the 

other major elements determined.  The external laboratory reported percentage errors 

associated with the elemental analysis procedure are as follows for the elements 

analysed: C ± 0.2 %, O ± 0.2 %, H ± 0.3 %, N ± 0.3 %, S ± 0.3 % and ash ± 0.2 %. 

Hence, as the HPO sample reported an oxygen percentage of 40.56 ± 0.2 %, this 

fraction is enriched in oxygen compared to other groundwater samples from 
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Germany (36.50 ± 0.2 %, Frimmel and Abbt-Braun 1999) after taking into account 

the experimental error for oxygen analysis. The low sample amount (200 mg) of the 

TPIN fraction prohibited measurement of oxygen and ash content, and without these 

results the elemental composition of the TPIN fraction was similar to other reported 

TPIN fractions of NOM (Mash et al. 2004; Croué et al. 2003; Croué 1999). 

The low ash content for the HPO and TPIB fractions compared to the ash content 

seen in the UF fraction (Chapter 3, Table 3.1, 35 %) suggests that the XAD isolation 

procedure was relatively successful in removing inorganic components from the 

samples. However, the measured mass of the TPIB fraction (C, O, H, N, S, ash) 

elementally accounted for only 45.5 % recovery, indicating other elements that were 

not measured as part of the elemental analysis were present in significant quantities. 

A sub-sample of the TPIB fraction was dissolved in MilliQ water, the DOC 

concentration of this sample was determined and concentrations of selected metals 

and other ions in the TPIB fraction, measured by atomic absorption spectroscopy, are 

listed in Table 4.3. The results suggest that the TPIB fraction contained relatively 

high concentrations of the elements sodium and chlorine, which would have been 

volatilised at the combustion temperature used during the elemental analysis. The 

high concentrations of sodium and chlorine in the TPIB fraction suggest inefficient 

cleaning of the Dowex MSC-1 H resin, prior to sample application. Desalting the 

TPIB sample was considered, but as it a very laborious technique, with the risks 

including possible sample alteration and lower sample recovery, the decision was 

made to use the TPIB fractions as obtained. 

 

Table 4.3 Elemental composition of the TPIB fraction. 

Sample Concentration (mg L-1) 
Na K Mg Ca Al Si Fe Mn Cu Cl DOC

TPIB 148 0.25 0.13 1.55 0.03 0.75 0.05 0.0 0.06 105 5.9 
 

According to Abbt-Braun and Frimmel (1999), the H/C ratio is an indication of the 

aromatic/aliphatic character of NOM samples. A high H/C ratio indicates greater 

aliphatic content, while lower H/C ratios indicate greater aromatic character (Abbt-

Braun and Frimmel 1999). The values of the H/C ratio were in order of TPI > HPO 

which is typical of the respective hydrophilic character of these two types of NOM 

fractions (Croué 2004). As NOM becomes more hydrophilic, it is more enriched in 
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nitrogenous structures and oxygenated functional groups. The TPI fractions were 

more nitrogen-enriched than the HPO fraction (Table 4.2), which is consistent with 

the expected increase in the polar moiety content for the TPI fractions, with 

decreasing hydrophobicity with higher H/C values (Aiken et al. 1992). The relatively 

high carbon and nitrogen concentrations of the TPIN fraction are consistent with 

other studies of XAD fractions (Aiken et al. 1992) and can be attributed to the high 

structural polarity and low hydrophobicity of this fraction. The high O/C atomic ratio 

for the HPO fraction indicates a high content of carboxylic acid groups or 

hydroxylated functional groups (Christensen et al. 1998), which is supported by the 

prominent carboxyl peak (C=O) peak in the infrared spectrum (Section 4.3.2.2, 

Figure 4.2).  

4.3.2.2 Fourier Transform Infrared Spectroscopic Analysis 

FTIR spectra of humic substances typically contain a variety of discrete bands which 

can be attributed to specific molecular structures (Stevenson 1994), although some 

chemical absorbances can be difficult to resolve (Chen et al. 2002). FTIR spectra of 

the HPO and two TPI fractions are presented in Figure 4.2. Although each fraction 

had several distinguishing features in its infrared spectrum, the broadness of the 

infrared absorption bands indicated that each fraction contained a mixture of 

polyfunctional compounds. The HPO fraction gave an infrared spectrum very similar 

to that of a soil fulvic acid (Schnitzer and Ghosh 1979), as well as humic substances 

isolated from aquatic environments (Leenheer 1981; Kim et al. 2006) and four solid 

NOM isolates taken at various treatment stages from the Wanneroo GWTP (Allpike 

2008). The three fractions showed similar IR absorptions, reflecting qualitatively 

similar structural and functional group features. Nevertheless, the relative intensity of 

several absorbances did differ. The most prominent features in the spectrum of the 

HPO fraction were the aliphatic hydrocarbon absorption bands at 3000 – 2800 cm-1 

(yellow region), representative of C-H stretching from methyl and methylene 

carbons, accompanied by signals in the 1450 cm-1 (orange region) characteristic of 

C-H deformation of methyl and methylene groups.  FTIR absorbance spectra of 

humic substances are often dominated by O-H group stretches, as well as C=O group 

stretches and C-O stretches (Leenheer 2009), all of which were evident in the 

spectrum of the HPO fraction (Figure 4.2). The high oxygen content in the HPO 
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fraction measured in the elemental analysis (Table 4.2) was further evident in the 

prominent carboxyl peak C=O at 1715 cm-1 in the infrared spectrum (Figure 4.2, 

pink region), due to C=O stretching of carboxylic and carbonyl groups (Takács and 

Alberts 1999). This strong carboxyl peak was accompanied by the major band at 

1621 cm-1 (purple region) which can be assigned to aromatic C=C stretching and 

asymmetric C=O stretching in COO- groups (Rivero et al. 1998). The more 

hydrophilic fractions (TPIB and TPIN) were characterised by strong O-H stretching 

absorption bands from 3500 – 2500 cm-1 (green region) and C-O stretching bands 

from 1050 – 1250 cm-1 (blue region).  The TPIB fraction showed relatively high 

aliphatic C-H stretching (yellow region) and prominent carboxylic and ketonic 

carbonyl stretching (pink region). The sharp peak at approximately 1400 cm-1 may 

be indicative of high salt content (Takács and Alberts 1999).  

 

Figure 4.2 FT-IR spectra for three of the XAD fractions of NOM isolated from W300 
groundwater. 
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4.3.2.3 Solid-State 13C Nuclear Magnetic Resonance Spectroscopic Analysis 

NMR spectroscopy has been proposed to be one of the most useful spectroscopic 

methods for investigation of NOM structure because qualitative and quantitative 

organic structural information for certain organic moieties can be generated in both 

solution and solid state under non-degradative conditions (Knicker and Nanny 1997). 

The solid-state 13C NMR spectra for the HPO and TPIB solid fractions are shown in 

Figure 4.3. Due to the limitation in collected sample size, the TPIN fraction could 

not be analysed by solid-state 13C NMR spectroscopy. The HPO and TPIB fractions 

were relatively noisy due to the limited sample sizes available for analysis and 

showed several broad peaks at very low intensity. The most significant peaks in the 

HPO fraction were a broad aliphatic carbon signal at 10 – 60 ppm (green region), and 

a more sharply resolved aromatic signal at 150 – 170 ppm (pink shading). Smaller 

signals at 60 – 100 ppm and 100 – 140 ppm (yellow region) were attributed to carbon 

singly bonded to oxygen and unsaturated carbon. The TPIB fraction contained less 

aliphatic (green region) and unsaturated carbon (yellow region) and more aromatic 

carbon (pink region) than the HPO fraction, consistent with previous solid-state 13C 

NMR spectroscopic analyses of NOM isolated from a Wanneroo groundwater 

(Wong et al. 2002). In this previous study (Wong et al. 2002), the 13C NMR 

spectrum of the HPO material was dominated by a strong and broad aliphatic carbon 

signal at 10 – 60 ppm, with less intense signals at 70 – 90 ppm and 120 – 140 ppm, 

attributable to carbon singly bonded to oxygen (or some other heteroatom) and 

unsaturated (olefinic and aromatic) carbon, respectively. The TPI fraction contained 

relatively less aliphatic and unsaturated carbon and more carbonyl carbon than the 

HPO fraction (Wong et al. 2002), as observed in the current study. 
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Figure 4.3 Solid-state 13C NMR spectra for the a) HPO and b) TPIB fractions. 

To better compare the two spectra in Figure 4.3, functional group types were 

assigned to the various chemical shift ranges based on previous work by Croué et al. 

(2000) and Hatcher et al. (2001), where solid-state 13C NMR spectroscopy was used 

for the characterisation of aquatic NOM. The spectra were integrated over four broad 

regions 0 – 45, 45 – 110, 110 – 160 and 160 – 190 ppm. These spectral regions were 

then attributed to the following functionalities: 0 – 45 ppm to aliphatic carbons, 45 – 

110 ppm to oxygenated aliphatic carbons, 110 – 160 ppm to aromatic carbons and 

160 – 190 ppm to carbonyl carbons (Hatcher et al. 2001; Croué et al. 2000). The 

relative proportions of carbon types from integration of the two spectra are shown in 

Figure 4.4. 
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Figure 4.4 Relative proportions of carbon types in the solid-state 13C NMR spectra of 

the isolated NOM fractions. 

Overall, the distributions of types of carbon from solid-state 13C NMR spectroscopy 

were similar for the two fractions, and similar to other NOM fractions isolated from 

Wanneroo groundwater (Allpike 2008), as well as the isolated UF fraction studied in 

Chapter 3 (Figure 3.2). The major carbon type for the HPO and TPI fractions was 

oxygenated aliphatic carbon (32 %), which was found in a similar proportion in the 

UF fraction (Figure 3.3, 35 %) and also in a highly coloured surface water from the 

Myponga reservoir (39 %) in a study by Newcombe et. al (1997). Oxygenated 

aliphatic carbons incorporate carbons in the alcohol, ester and ether functional 

groups (Wilson et al. 1981). For the HPO and TPI fractions, the aromatic carbon type 

was the second most abundant carbon type (31 and 28 %, respectively). Carbonyl 

carbon was the least abundant carbon type in both fractions: HPO (12 %) and TPIB 

(19 %), similar to the results observed in previous studies on NOM isolated from 

Wanneroo groundwater (Allpike 2008) and the UF fraction isolated in Chapter 3.  

The solid-state 13C NMR spectra of the HPO and TPI fractions exhibit the general 

features of aliphatic, oxygenated aliphatic, aromatic and carbonyl carbons. The HPO 

fraction had higher aliphatic and aromatic carbon content, coupled with less carbonyl 

carbon than the TPI fraction (Figure 4.4). These features are consistent with the 

elemental analysis and the low H/C ratio (Table 4.2) in this study, as a high level of 

unsaturation for the HPO fraction is implied from the low H/C ratio. In general, 
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greater aromaticity can be directly correlated with increased hydrophobicity, with the 

highest aromatic content reported to be found in the HPO fractions (Aiken et al. 

1992). 

Humic substances have been reported to arise largely from the decomposition of 

vegetable matter, and four main classes of compounds have been reported as 

potential precursors, namely, carbohydrates, lipids, amino acids and lignin (Wilson et 

al. 1981). Carbohydrates contain considerable amounts of oxygenated aliphatic 

carbon (Croué et al. 2001), and lignin is aromatic, so it is quite reasonable to suppose 

that the 13C oxygenated and aryl resonances arise from these components or their 

microbial degradation products (Wilson et al. 1981). Carbonyl groups are 

components of amino acids and lipids which are also present in humic material. 

Hence, the carbonyl resonance could in part arise from these components. But, more 

likely, the major proportion of the carbonyl resonance may arise from carboxylic 

carbon (COOH) formed from microbiological oxidation of lignin and lipid material 

(Wilson et al. 1981). Further characterisation of the fractions using degradative 

techniques is discussed in Sections 4.3.2.4 – 4.3.2.6 to determine potential moieties 

present within the fractions. 

4.3.2.4 Pyrolysis-Gas Chromatography-Mass Spectrometry 

Most constituents of humic substances are too large or polar for GC analysis 

(Berwick et al. 2010, a; Hatcher et al. 2001). Strategies to overcome these challenges 

include chemical or thermal degradation to release macromolecular fragments that 

may be sufficiently volatile for GC-MS analysis. These may include structural 

fragments of the parent humic substance, although inevitably there will be some 

thermally altered secondary products. Conventional flash pyrolysis-GC-MS was 

performed at 650°C for 10 seconds on the solid samples of the HPO, TPIB and TPIN 

fractions of NOM isolated from W300 bore water. The total ion chromatograms from 

py-GC-MS of these fractions are shown in Figure 4.5a – c, respectively.  The major 

pyrolysis products from these fractions together with their likely biological precursor 

are listed in Table 4.4.  The full suite of tentatively identified products for each 

fraction is listed in Appendix 1. 
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Approximately 50 % of the pyrolysis products of NOM can usually be assigned to a 

specific biochemical precursor (Leenheer 2009). The HPO fraction showed a 

relatively high abundance of aromatic hydrocarbons (15, 20, 25), alkylphenols (31, 

37) and PAHs (28, 33, 47, 54, 60). Aromatic hydrocarbons are reported to be 

common flash pyrolysis products of aquatic NOM and can derive from several 

biomolecular sources, hence they offer limited source diagnostic value (Templier et 

al. 2005). Alkylphenols are often attributed to intact or partially degraded lignin and 

tannin constituents of plant tissues (McIntyre and McRae 2005). Polycyclic aromatic 

hydrocarbons (such as alkyl naphthalenes and alkyl benzenes) derive from land plant 

terpenoids present in plant resins, bark and leaf tissues, which are recognised as a 

major source of aromatic humic substances (Schulten and Gleixner 1999).  It is 

proposed that PAHs (such as alkyl benzenes) are primary structural units of humic 

substances, but can also derive in pyrolysis experiments from secondary thermal 

alteration of other NOM constituents (Schulten and Gleixner 1999; del Rio et al. 

1998; Page et al. 2003).   

In contrast to the HPO fraction, the distribution of the pyrolysis products from the 

TPIB and TPIN fractions contained higher proportions of nitrogen- and oxygen- 

containing products, consistent with previous pyrolysis studies of XAD resin 

fractions (Croué 2004; Krasner et al. 1996). The higher nitrogen content of the 

pyrolysis products from the TPI fraction compared to the HPO fraction was also 

reflected by the elemental analysis data (Table 4.2) and probably relates to a higher 

abundance of protein-derived material in this fraction (Croué et al. 1993, a). 

Templier et al. (2005) showed a higher proportion of nitrogenous pyrolysis products 

from a TPI fraction, rather than the HPO fraction, of NOM isolated from the 

Gartempe  River in France, despite similar nitrogen content (1.9 %) in each of the 

XAD fractions. In a study of various NOM fractions isolated by XAD-type resins, 

Croué et. al (1999, b) found that the most hydrophilic fractions included up to 40 % 

of the identified pyrolysis product area as protein-derived material. Amino acid and 

peptide functional groups can form H bonds with surrounding water molecules 

which gives rise to significant hydrophilic character (Gadmar et al. 2005). 

Heterocyclic nitrogenous compounds have also been produced by pyrolysis of 

chitosan, a biomolecule containing N-acetyl sugars similar to those in bacterial cell 

walls (Gadmar et al. 2005). Acetamide (peak 28 in Table A.3, Appendix 1) identified 
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in the TPIN pyrolysate, likely originates from aminosugars (Gadmar et al. 2005). 

Aminosugars have previously been detected in peptidoglycans, naturally present in 

microbial and fungal cell walls, algae and aquatic animals (Bruchet et al. 1990).  

The pyrolysis products analysed from the XAD fractions were generally consistent 

with pyrolysis products analysed in a previous study of unfractionated Wanneroo 

NOM (Heitz et al. 2001). In the previous study, groundwater NOM was found to 

typically contain high contributions of phenol and alkylphenols, aromatic 

hydrocarbons and thiophenes (Heitz et al. 2001). Sulfur-containing products (such as 

thiophenes) were only detected in the HPO fraction (peaks 16 and 21 in Table A.1, 

Appendix 1). The structural precursors of sulfur compounds are not well 

documented, probably due to the low concentrations in which they have been 

detected in studies of NOM using pyrolysis and other methods (Lu et al. 2001). The 

intrinsic polarity of sulfur (and oxygen) groups can limit the GC resolution of 

structurally intact sulfur and oxygen pyrolysis products from flash pyrolysis 

(Templier et al. 2005). These compounds can also undergo complex thermal 

reactions, such as decarboxylation, rearrangement and condensation, which can lead 

to loss of structural information and underestimation of their structural contribution 

to NOM (del Rio et al. 1998; Saiz-Jimenez 1994).  
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Figure 4.5a Total ion chromatogram from py-GC-MS of the HPO fraction. Peak assignments correspond to products listed in Table 4.4: ■ 
polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ▲no specific source. The pie chart reflects relative proportions of six major product and 

precursor types.
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Figure 4.5b Total ion chromatogram from the py-GC-MS of the TPIB fraction. Peak assignments correspond to products listed in Table 
4.4: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ▲no specific source. The pie chart reflects relative proportions of six major 

product and precursor types.
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Figure 4.5c Total ion chromatogram from the py-GC-MS of the TPIN fraction. Peak assignments correspond to products listed in Table 
4.4: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ▲no specific source. The pie chart reflects relative proportions of six major 

product and precursor types.
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Table 4.4 Major pyrolysis products from the XAD fractions and their likely origin. 
Full list of tentatively identified products can be found in Appendix 1. 

Peak 
No. 

Compound Possible Origin 

1 acetaldehyde / methyl propene /  
1,3-butadiene 

polysaccharides / no specific 
source  

2 methyl propene / 1,3-butadiene polysaccharides / no specific 
source  

4 acetonitrile N/S compounds 
6 acetone/acetonitrile polysaccharides / N/S compounds  
11 pyrrole protein  
12 2-butanone polysaccharides  
14 2-butenone polysaccharides  
15 benzene polysaccharides / protein  / lignin 
16 benzonitrile protein  
19 decanoic acid lipids  
20 toluene polysaccharides / protein / lignin  
22 furan polysaccharides  
25 xylene protein / lignin  
28 styrene no specific source  
30 2-cyclopenten-1-one polysaccharides 
31 phenol polysaccharides / protein / lignin  
32 methylpyrrole protein  
33 C3 benzene no specific source  
34 ethylbenzene protein / lignin  
37 cresol lignin / tannin / protein  
42 methylbenzyl alcohol no specific source  
43 ethyltoluene polysaccharides / protein/ lignin  
47 naphthalene polysaccharides  
54 methylnaphthalene polysaccharides  
60 dimethylnaphthalene polysaccharides  
62 furandione polysaccharides  
66 benzoic acid no specific source 
69 3,3,6,9,9,10-hexamethyl-2,10  

diazabicyclo[4.4.0]-1-decene 
protein  

70 2,4-diphenyl-4-methyl-2(Z)-
pentene 

protein 

72 tetradecanoic acid lipids  
73 ethylacetophenone polysaccharides  
74 trans-benzalacetone polysaccharides  
78 hexadecanoic acid lipids  
81 diacetylbenzene polysaccharides  

 

Guaiacol and other methoxyphenol products diagnostic of lignin were not detected in 

any of the pyrolysates of the XAD fractions, nor were they detected in the pyrolysate 

in the previous study of a Wanneroo groundwater (Heitz et al. 2001). The absence of 
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any syringyl, guaiacyl or p-hydroxyphenyl moieties within the pyrolysates suggest 

that there was minimal lignin input into the sample, or that the NOM sample had 

undergone sufficient environmental degradation such that any lignin character within 

the NOM sample has been lost. Lignin-derived pyrolysis products have been 

previously reported to be not usually present in high concentrations in pyrolysates 

from groundwater NOM (Sihombing et al. 1996; Gadel and Bruchet 1987). One 

disadvantage of the pyrolytic technique (and other chemical degradative techniques) 

is that the yields of products which can be analysed are often low, i.e., < 25% of the 

original sample is usually recovered as products which can be analysed (Gaffney et 

al. 1996). So, as only a fraction of the sample is represented in the pyrolysis 

products, conclusions regarding the original structure of the groundwater fractions 

must be drawn with caution (Kögel-Knabner 2000).  

The tentatively identified pyrolysis products for the three different fractions were 

compared in a modified version of the classification system of Bruchet and 

colleagues (Bruchet et al. 1989; Bruchet et al. 1990). Each of the products were 

assigned to one of six groups, four of which related to distinct biological origin or 

chemical structure, with two other categories referring to those products known to be 

derived from multiple sources and those that could not be identified by GC-MS. The 

proportion of species within these categories was determined by summing the areas 

of all peaks within a category and calculating the ratio of this total category peak 

area to the total area of detected peaks as a percentage. This process was carried out 

in an identical manner for all three samples, providing a consistent method for 

comparison. The relative proportions of these groups expressed as a percentage of 

the total pyrolysis product peak area are shown as pie charts in Figure 4.5a – c. 

Hence, this semi-quantitative approach adds to the chemical assessment of different 

samples, and revealed distinct differences between the three XAD derived fractions 

of W300 NOM. The HPO fraction was rich in polysaccharides (furans, 

cyclopentenes) and lipids, with minimal input from protein or nitrogen- or sulfur-

containing (N/S) compounds. The high abundance of polysaccharides present was 

reflected by the high oxygenated-aliphatic and aromatic carbon content seen in 13C 

NMR spectroscopic analysis (Figure 4.4), and was consistent with the separation 

expected by use of the XAD-8/XAD-4 resin fractionation method and the elemental 

analysis (Table 4.2) in this study. The TPIB fraction was rich in tannins (e.g. 
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alkylphenols), protein (N/S compounds, eg. acetonitrile, propanenitrile, pyrroles) and 

polysaccharides (e.g. furans). The higher abundance of oxygenated and nitrogenous 

products was consistent with the high oxygenated-aliphatic content shown by the 13C 

NMR data (Figure 4.4) and the higher organic nitrogen content and N/C ratio (Table 

4.2) found in the elemental analysis. 

4.3.2.5 On-line Thermochemolysis-Gas Chromatography-Mass Spectrometry 

Conventional pyrolysis gives little information about carboxylic acid structures in 

NOM, since decarboxylation occurs readily during pyrolysis (del Rio et al. 1998). 

Thermochemolysis-GC-MS with tetramethylammonium hydroxide (TMAH) or other 

methylating reagents combines thermal degradation and chemical derivatisation, 

ideally in a single process termed “thermochemolysis”. Thermochemolysis may be 

performed either as an on-line or an off-line technique, with on-line 

thermochemolysis the most frequently employed thermochemolysis method (Filley 

et al. 2006). Degradation occurs mainly through a base catalysed hydrolysis reaction 

at elevated temperature. Thermochemolysis offers the advantage over conventional 

pyrolysis of preservation of carboxylic acid and ester structures, since acidic protons, 

such as those found on carboxylic acids and some phenols, are methylated 

simultaneously, and esters are transesterified into the corresponding methyl esters 

(Hatcher et al. 2001). In earlier work conducted in our laboratory (Couton 2010), on-

line TMAH thermochemolysis of NOM samples was conducted at various 

temperatures (300, 400, 500 and 650 °C), and use of 650 °C was found to produce a 

vastly different product distribution compared to the other temperatures, indicating 

that, at 650 °C, in addition to thermochemolysis, pyrolysis may have also been 

occurring, resulting in the additional production of alkyl benzenes and phenols from 

the groundwater NOM sample. To obtain the most structural information possible, 

the temperature of 650 °C was therefore adopted in the current study. On-line 

thermochemolysis with TMAH was conducted at 650 °C for 10 seconds on the HPO, 

TPIB and TPIN solid fractions. The total ion chromatograms from 

thermochemolysis-GC-MS analysis of these fractions are shown in Figure 4.6a – c, 

respectively. Major products and their likely origin are listed in Table 4.5. The full 

suite of tentatively identified products for each fraction is listed in Appendix 1. 
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Figure 4.6a Total ion chromatogram from thermochemolysis-GC-MS of the HPO fraction. Peak assignments correspond to products listed in 
Table 4.5: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ◄ methyl methoxybenzoates, ►methyl benzoates, ▲no specific source. The 

pie chart reflects relative proportions of eight major product and precursor groups.
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Figure 4.6b Total ion chromatogram from thermochemolysis-GC-MS of the TPIB fraction. Peak assignments correspond to products listed 
in Table 4.5: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ◄ methyl methoxybenzoates, ►methyl benzoates, ▲no specific 

source. The pie chart reflects relative proportions of eight major product and precursor groups.
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Figure 4.6c Total ion chromatogram from thermochemolysis-GC-MS of the TPIN fraction. Peak assignments correspond to products listed 
in Table 4.5: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ◄ methyl methoxybenzoates, ►methyl benzoates, ▲no specific 

source. The pie chart reflects relative proportions of eight major product and precursor groups.
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Table 4.5 Major products from the XAD and their possible origin. Full list of 
tentatively identified products can be found in Appendix 1. 

Peak 
No. 

Compound Possible Origin 

1 methyl acrylate no specific source  
2 methyl propanoate no specific source  
7 methyl isobutyrate polysaccharides  
8 methyl methacrylate polysaccharides  
10 dimethylaminoacetonitrile N/S compounds 
11 dimethylcyanamide N/S compounds  
14 dimethylaminoacetonitrile N/S compounds  
15 butyl ethylene polysaccharides  
16 2-methoxypropionic acid methyl ester polysaccharides  
20 2-methoxypropionic acid methyl ester polysaccharides  
26 hexahydro-1,3,5-trimethyl-1,3,5-triazine N/S compounds  
30 dimethyl succinate polysaccharides  
35 anisole lignin  
37 cresol lignin / tannin / protein 
44 trimethylbenzene no specific source  
46 methyl fumarate polysaccharides  
47 dimethyl methyl succinate polysaccharides  
49 dimethyl succinate polysaccharides 
52 methyl 4,4-dimethoxy-2-methyl 

butanoate 
polysaccharides 

53 benzonitrile protein  
58 methyl benzoate methyl benzoates  
61 glycine methyl ester/ methyl benzofuran polysaccharides  
70 methyl toluate polysaccharides / protein  / 

lignin 
79 methyl dimethyl benzoate methyl benzoates  
81 ethyl benzoic acid methyl ester methyl benzoates  
97 methyl acetylbenzoate methyl benzoates  
102 methyl dimethoxybenzoate methyl benzoates 
105 decanedioic acid methyl ester lipids  
107 tetradecanoic acid methyl ester lipids  
113 hexadecanoic acid methyl ester lipids  
116 octadecanoic acid methyl ester lipids  
1 methyl acrylate no specific source  
2 methyl propanoate no specific source  
7 methyl isobutyrate polysaccharides  
8 methyl methacrylate polysaccharides  
10 dimethylaminoacetonitrile N/S compounds 

 

The product suites from on-line thermochemolysis complement the conventional 

flash pyrolysis analysis (Figure 4.4a – c), with the detection of additional acids (as 

methyl esters) such as methyl propanoate, methyl isobutyrate and 2-
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methoxypropionic acid methyl ester, which were not detected by flash pyrolysis. 

There were also a number of peaks (11 – 15 % of the total peak area) that could not 

be identified in each of the three chromatograms. While a number of these peaks had 

mass spectra that gave an indication of the likely structure, firm identifications could 

not be made.  

The methyl esters of low MW saturated and unsaturated acids (e.g. methyl acrylate, 

methyl propanoate) were detected in relatively high abundance. Low MW acids and 

polymethoxybenzenes are common thermochemolysis products of NOM (Frazier et 

al. 2003; Templier et al. 2005) and are usually attributed to cross linking units 

between phenolic structures of humic macromolecules (Martin et al. 1995). Several 

fatty acid methyl esters (FAMEs), generally formed by transesterification of 

triglycerides and other lipids (Challinor 1991), were also detected in moderate 

proportions. The FAMEs ranged from C8 to octadecanoic acid (C18) and several 

mono-unsaturated and branched chain isomers were also detected. FAMEs are likely 

to have been chemically bound to the humic macromolecule through ester linkages 

(del Rio et al. 1998) and are generally attributed to microbial sources (Frazier et al. 

2005). The C16 and C18 FAMEs were the most dominant lipids for each of the HPO, 

TPIB and TPIN fractions, consistent with similar studies of other groundwater NOM 

samples (Desmukh et al. 2001).  

The major products from the HPO fraction included methylbenzene carboxylic acid 

products and non acidic phenolic products. These are likely to be products of direct 

pyrolysis (Hatcher et al. 2001). However additional methoxy analogues (detected as 

methyl esters) can be attributed to TMAH thermochemolysis. Methyl esters of 

butanedioic and hexanedioic acids indicated the release of aliphatic compounds. 

Methyl esters of diacids such as methyl butanedioic acid were also detected in high 

relative abundance. These are typical thermochemolysis products of humic and 

fulvic acids (del Rio et al. 1998; Templier et al. 2005) and are thought to link 

phenolic units in cross-linked macromolecules (Templier et al. 2005). These acids 

are common metabolites of plant, microbial and macro-faunal sources (Martin et al. 

1995). 

A small number of oxygenated cyclic compounds, largely comprised of 2-

cyclopenten-1-one and its methyl derivatives, were detected in the HPO and TPI 
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fractions. TMAH does promote detection of nitrogen- and oxygen-containing 

structures which are known to concentrate in the TPI fraction (Templier et al. 2005).  

The high amount of total TMAH thermochemolysis products detected compared to 

flash pyrolysis products highlights the low suitability of flash pyrolysis to the large 

polar moiety of humic substances such as that found in NOM (Hatcher et al. 2001). 

A modified classification system used for the tentative flash pyrolysis products was 

applied to the TMAH thermochemolysis product distribution and the relative 

percentages of eight discrete product and precursor groups are shown as pie charts in 

Figure 4.6a – c. The eight product groups were comprised of: polysaccharides, N/S 

compounds, proteins, lipids, methyl benzoates, methoxy benzoates, other products 

which are known to be derived from multiple sources and those products that could 

not be identified.  

Several qualitative differences were evident between the relative proportions of 

product/precursor categories for the HPO, TPIB and TPIN fractions. The HPO 

fraction was rich in the categories of polysaccharides (eg. methyl methacrylate), 

lignins/tannins (cresol), methyl methoxybenzoates (methyl dimethoxybenzoate), 

methyl benzoates (methyl benzoate) and lipids (hexadecanoic acid methyl ester). The 

TPIB fraction was much richer in N/S products, with still significant contributions of 

polysaccharide and lipid precursors. The higher nitrogen content was reflected by an 

abundance of N products (such as methyl acetamide), as well as proteinaceous 

material (such as pyridine, methyl pyrrole), in Figure 4.6b. The TPIN fraction was 

also rich in the category of protein, as well as the categories of polysaccharides, 

lignin/tannin material, methyl benzoates and methyl methoxybenzenes. As NOM 

becomes enriched in nitrogenous compounds (indicated by e.g. acetonitrile, pyridine, 

and pyrrole in the thermochemolysate) it becomes more hydrophilic, consistent with 

the higher relative contribution of N compounds in the thermochemolysates from the 

TPIB and TPIN fractions and the results of elemental analysis (Table 4.2). 

4.3.2.6 Micro-Scale Sealed Vessel Pyrolysis-Gas Chromatography-Mass 

Spectrometry 

Micro-scale sealed vessel (MSSV) pyrolysis can complement the analytical 

characterisation afforded by more traditional pyrolysis techniques (e.g. flash 
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pyrolysis). Performed in a closed system using moderate temperatures (typically 250 

– 350 ºC) over long time periods (e.g. days), MSSV pyrolysis can provide additional 

speciation information useful for establishing the structures and source inputs to 

recent organic material (Berwick et al. 2010, b). MSSV removes oxygenated 

functional groups that give rise to chemical complexity, leaving the core 

hydrocarbon structures that may have less mixture complexity (Leenheer 2009). 

MSSV pyrolysis was conducted at 300°C for 72 hours on the HPO, TPIB and TPIN 

solid fractions. Total ion chromatograms from MSSV pyrolysis followed by GC-MS 

analysis of the HPO, TPIB and TPIN fractions are shown in Figure 4.7.  Major 

products assigned on the basis of mass spectral interpretation are listed in Table 4.6 

and all products are listed in Appendix 1. 

The major products of each fraction were alkyl substituted benzenes, phenols and 

naphthalenes. As found in the pyrolysis-GC-MS and thermochemolysis-GC-MS 

chromatograms, the HPO and TPIN fractions formed products in greater abundances 

and number than the TPIB fraction, with the high salt content present in the TPIB 

fraction (Table 4.2) reducing the NOM content in the sample and therefore the 

product abundance, as well as possibly inhibiting product formation in the MSSV 

pyrolysis-GC-MS technique. The chromatogram from analysis of the HPO fraction 

was dominated by alkylphenols (peaks 95, 110, 122), as well as low MW short chain 

aliphatic compounds (peaks 2, 9). These products can be derived from a range of 

organic precursors, hence they provide only limited information about source and 

origin (Greenwood et al. 2006). Monomethyl phenols were also prominent flash 

pyrolysis products (Figure 4.5a); however the higher MW alkyl (≥ C2) phenols were 

detected in much lower abundance in flash pyrolysis compared to MSSV pyrolysis-

GC-MS. Alkylphenols are very common pyrolysis products of aquatic and terrestrial 

humic substances and are often attributed to intact or partially degraded lignin 

structures (Saiz-Jimenez and De Leeuw 1986; Bruchet et al. 1990; Templier et al. 

2005). The broad distribution of alkylphenols from the HPO fraction likely reflects 

contribution from other sources apart from lignin, as guaiacol and other 

methoxyphenol products diagnostic of lignin were not detected, as discussed in 

Section 4.3.2.4, suggesting that there was minimal lignin input into the sample.  
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Figure 4.7 Total ion chromatograms obtained by MSSV pyrolysis-GC-MS analysis of the a) HPO, b) TPIB and c) TPIN fractions. Peak 
assignments correspond to products listed in Table 4.6 and Appendix 1. The pie charts reflect relative proportions of eight major product and 

precursor groups. 
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Table 4.6 Major products from MSSV pyrolysis-GC-MS of the XAD fractions. 

Peak No. Compound Possible Origin 
1 butene short chain compounds 
2 butene / methyl propene / methanethiol short chain compounds 
5 methyl heptene short chain compounds 
6 propanal short chain compounds 
7 benzonitrile N/S compounds  
8 ethyl hexanol short chain compounds 
9 pentene short chain compounds 
16 butanone short chain compounds 
24 methyl cyclopentene cyclic compounds  
33 heptane short chain compounds 
42 dimethylpyrrole N/S compounds  
47 trimethyl cyclopentene isomer cyclic compounds  
49 toluene alkyl benzenes  
56 ethylmethylpyrrole N/S compounds  
58 trimethyl cyclopentene isomer cyclic compounds  
66 ethylbenzene alkyl benzenes  
68 xylene alkyl benzenes  
75 dimethylbenzamine N/S compounds  
76 isopropylbenzene alkyl benzenes  
80 ethyl toluene alkyl benzenes  
84 dimethylbenzofuran furans  
86 trimethylthiophene N/S compounds  
89 C3 benzene alkyl benzenes  
95 cresol phenols  
103 methylbenzofuran furans  
110 dimethylphenol phenols  
122 ethylmethylphenol phenols  
130 methylnaphthalene naphthalenes  
133 dimethylnaphthalene naphthalenes  
135 trimethylnaphthalene naphthalenes  
# azepan-2-one contaminant 

* Full list of products are included in Appendix 1 

 

Lehtonen et al. (2000, a) attributed alkylphenols in the product mixture from 

thermochemolysis-GC-MS of lake humic substances to carbon-carbon bound alkyl 

aromatic networks, as opposed to phenolic-carboxylic acid structures characteristic 

of degraded tannins. The origins of these alkylphenols were attributed to algal-

derived compounds, including tyrosine moieties of proteins and selectively preserved 

phenolic biomolecules (phlorotannins) (Lehtonen et al. 2000, a).  Alkylphenols have 

been postulated to be more strictly bound macromolecular components than 

esterified or acidic lignin phenols not containing alkyl groups (Lehtonen et al. 2000, 
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b). The softer thermal release of covalently bound alkylphenols by MSSV pyrolysis-

GC-MS may partially preserve their alkyl substitution patterns (Lehtonen et al. 2000, 

b) and contribute to the higher concentration of more highly substituted alkyl (C2 – 

C4) phenols than were evident in flash pyrolysis.  

High abundances of polycyclic aromatic hydrocarbons, including alkyl naphthalenes 

(peaks 130, 133, 135) and alkyl benzenes (peaks 66, 68, 76, 80, 89) and indanes 

(Appendix 1), were detected from MSSV pyrolysis of the HPO fraction. Flash 

pyrolysis, in contrast, yielded very low concentrations of these products. Previous 

MSSV pyrolysis research (Berwick 2009) strongly correlated alkyl naphthalenes 

with higher plant terpenoids. Many cyclic higher plant terpenoids undergo 

aromatisation during natural or artificial maturation (Lu et al. 2003). A high aliphatic 
13C NMR signal was observed for the HPO fraction (Figure 4.4) and aromatisation of 

alicyclic terpenoids during MSSV thermal treatment may contribute to the high 

concentrations of aromatic hydrocarbon products. Alkyl benzenes likely include both 

primary alkyl-linked aromatic structures (Schulten and Gleixner 1999), as well as 

secondary products from the thermal alteration of other NOM moieties. 

Thermochemolysis of the HPO fraction also produced several aromatic carboxylic 

acids (as their methyl esters; Section 4.3.2.5).  

MSSV pyrolysis-GC-MS also yielded several cyclic oxygen-containing products, 

including alkyl furans (peak 84) and other cyclic compounds (peaks 24, 47, 58), from 

the HPO fraction. These products were detected in lower relative abundance than the 

alkylphenolic and aromatic hydrocarbon products. Major sources of furans and 

cyclic compounds (such as cyclopentene and indane) include carbohydrates, such as 

simple sugars (e.g. glucose, fructose), polysaccharides and their microbial 

metabolites (Almedros et al. 2000).    

The anoxic and sulfidic condition of the groundwater source was reflected by the 

relatively high concentration of a thiophene derivative (peak 86). The TPIN fraction 

showed large distributions of alkylated pyrroles, pyridines and pyrazines (Appendix 

1, Table A.9), which is consistent with nitrogen being reported to typically 

concentrate in the more polar HPI or TPI fractions of NOM (Croué et al. 2003), and 

was evident in the py-GC-MS  (Figure 4.4 b – c) and on-line thermochemolysis data 
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(Figure 4.5 b – c). The high concentrations of heterocyclic N-products probably 

represent primary or secondary pyrolysates of diagenetically degraded proteinaceous 

material (Berwick et al. 2010, a), which is supported by previous chemical 

degradation and pyrolysis-MS data from soil, aquatic and recent sedimentary 

environments (Schulten and Gleixner 1999; Mao et al. 2007). Analysis of the TPIB 

fraction included the identification of azepan-2-one (#) which was attributed to 

contamination from the gloves used to handle the samples. 

A semi-quantitative modified classification as discussed in Section 4.3.2.4 (Bruchet 

et al. 1989; 1990) of common MSSV pyrolysis product groups is shown as pie charts 

in Figure 4.7. Many of the abundant alkyl aromatic hydrocarbons of the HPO 

fraction can be derived from a range of organic precursors and therefore provide 

limited information about their source of origin. Alkyl benzenes and alkyl 

naphthalenes are generally attributed to algal or plant input (Greenwood et al. 2006). 

The alkylphenols are usually attributed to tannin or lignin precursors (Templier et al. 

2005). There was a lower proportion of N-containing compounds in the HPO 

fraction compared to the TPIN fraction (Figure 4.7),  which is consistent with 

previous studies on the HPO and TPI fractions of a French river source (Gadmar et 

al. 2005; Templier et al. 2005) and selected RO-isolates which were then fractionated 

by an XAD-8 resin fractionation method using water from various Nordic surface 

water locations (Gadmar et al. 2005). Compared to flash pyrolysis-GC-MS (Table 

4.4), MSSV pyrolysis-GC-MS (Table 4.6) provides more information about the N-

containing organic compounds and the heteroatom compounds in general (Berwick 

et al. 2010, a). 

4.3.2.7 Overall Characteristics of the HPO, TPIB and TPIN Fractions 

Isolation of NOM from W300 groundwater by XAD-8/XAD-4 fractionation 

produced three solid freeze-dried samples, termed HPO, TPIB and TPIN. Reduction 

of salt concentrations within these fractions was challenging, and a high salt content 

hindered characterisation of the TPIB fraction. Characterisation of the fractions by 

FTIR and solid-state 13C NMR spectroscopic analysis indicated that the samples had 

a significant aliphatic content, from lipid and biopolymer precursors. Further 

characterisation by py-GC-MS, thermochemolysis-GC-MS and MSSV pyrolysis-
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GC-MS revealed that the HPO fraction had a significant precursor contribution from 

alkylphenols and polyaromatic hydrocarbons. The higher nitrogen and oxygen 

content of the TPIB and TPIN fractions than the HPO fraction found in the elemental 

analysis was consistent with more nitrogen- and oxygen- containing groups (such as 

proteins and tannins) being observed in the TPIB and TPIN product mixtures.  

4.3.3 MIEX® Treatment of the HPO, TPIB and TPIN Fractions  

Virgin MIEX® resin was obtained from the Wanneroo GWTP at the time of raw 

water sampling, and the virgin resin was preconditioned with raw water (W300) to 

preload the resin with W300 NOM in a laboratory simulation of the plant treatment 

process, as discussed in detail in Section 3.2.4.1. The isolated solid HPO, TPIB and 

TPIN samples were separately redissolved in MilliQ water and treated by 

preconditioned MIEX® resin to investigate the removal achieved by the MIEX® 

process of the different organic polarity-based fractions. Solutions of HPO, TPIB and 

TPIN fractions (DOC concentrations ranging from 5 – 9 mg L-1) were treated with 2 

mL of MIEX® resin for 15 minutes in a simulation of the full-scale plant at 

Wanneroo. The characteristics of the fractions before and after MIEX® treatment 

were then compared. 

4.3.3.1 DOC Concentration, UV254 and Colour 

The DOC concentration, UV254, SUVA254 and colour of the HPO, TPIB and TPIN 

fractions both before and after MIEX® treatment are shown in Table 4.7. This work 

focused on the HPO and TPI fractions, since the high concentration of inorganic salts 

compared to DOC concentration in the HPI fraction was likely to interfere in DOC 

removal by the MIEX® process. Reverse osmosis and dialysis were performed to 

reduce the amount of inorganic salts in this fraction but the conductivity              

(9600 μS cm-1) of the resulting sample indicated that the remaining salt concentration 

was still very high compared to the DOC concentration of 13.6 mg L-1. The 

separation of inorganic salts from HPI NOM fractions is known to be particularly 

challenging, and the ratio of DOC to salt concentration is frequently the determining 

factor in the recovery of this fraction (Croué et al. 1999, a).  



 

 113

Table 4.7 DOC concentration, UV254, SUVA254 and colour parameters for the HPO, 
TPIB and TPIN fractions before and after MIEX® treatment. 

Sample DOC  

(mg L-1)

UV  

(cm-1)

SUVA254 

(m-1 L / mg C) 

Colour  

(HU) 

HPO 7.01 0.32 4.6 46 

HPO after MIEX® 2.23 0.08 3.6 12 

TPIB 5.96 0.22 3.7 4 

TPIB after MIEX® 1.83 0.03 1.6 3 

TPIN 8.81 0.14 1.5 9 

TPIN after MIEX® 3.94 0.06 1.5 4 

 

MIEX® treatment significantly reduced the DOC concentration in each of the 

fractions on a laboratory scale: HPO (68 % reduction), TPIB (69 %) and TPIN (55 

%). A previous study (Lee et al. 2003) focussed on MIEX® treatment of surface 

waters in the USA with varying TOC and alkalinity concentrations, where significant 

reductions in both the TOC and UV absorbance for the HPO, TPI and HPI fractions 

were observed after MIEX® pre-treatment, with three of the four waters showing 

similar percentage removals of the HPO and TPI fractions (Lee et al. 2003). This is 

consistent with the current study, where the HPO and TPI fractions were removed to 

a similar extent. The UV254
 absorbance data showed similar trends to DOC removal, 

with reductions between 57-87 % for the three main fractions. Similar reductions in 

both DOC (60 %) and UV254 (78 %) were observed for MIEX® treated waters from 

the Maytum WTP in the USA (Budd et al. 2005), as well as four raw drinking waters 

in California, with reductions in DOC (36 – 72 %) and UV254 (54 – 83 %) after 

MIEX® treatment (Boyer and Singer 2005).  

SUVA254, the ratio of UV absorption at 254 nm relative to the DOC concentration, 

decreased for the HPO (21 %) and TPIB (56 %) fractions after MIEX® treatment, 

with no change in SUVA254 observed for the TPIN fraction. Treatment processes 

such as ion exchange (i.e. MIEX®) are reported to be more effective at removing 

UV254-absorbing materials in raw waters with a high SUVA254 ( > 3 m-1 L/ mg C, as 
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seen in the HPO and TPIB fractions), and is less effective in waters with a lower 

SUVA254 (< 3 m-1 L/ mg C such as the TPIN fraction) (Boyer and Singer 2005).  

The range of reduction of DOC concentration, UV254 absorbance and SUVA254 for 

the NOM fractions after MIEX® treatment was observed to be 21 – 75 % for the 

HPO fraction, 56 – 87 % for the TPIB fraction and 0 – 57 % for the TPIN fraction. 

The higher reductions in these parameters achieved for the TPIB fraction are thought 

to be due to the higher affinity for MIEX® towards this fraction than other fractions 

(Boyer et al. 2008, b).  Any improved performance of MIEX® over conventional 

treatments (such as coagulation) is reported to be due to the higher removal of the 

transphilic and hydrophilic fractions (Bond et al. 2010, Sharp et al. 2006, a), with the 

degree of anionic charge the key factor in removal (Bond et al. 2010). While the 

exact chemical identity of transphilic acids are unknown, they are assumed to be 

more hydrophilic than the hydrophobic acids and with a high proportion of 

carboxylic acid functionality (Aiken et al. 1992). Multiple dissociated carboxylic 

acid groups are necessary for the high removals reported for transphilic acids by 

coagulation and MIEX® treatment (Bond et al. 2010). This increased hydrophilic 

character was observed in Section 4.3.2.3 (Figure 4.4), as the TPIB fraction had a 

greater relative abundance of carboxylic acid signal area in the 13C NMR spectrum 

compared to the HPO fraction. The lower percentage reductions for the TPIN 

fraction compared to the HPO and TPIB fractions after MIEX® treatment were likely 

due to physicochemical properties of the fraction, as the degree of anionic charge 

within this fraction is reported to be low (Bond et al. 2010), and anionic charge is the 

key factor to removal by MIEX® treatment (Bond et al. 2010).  

4.3.3.2 Fluorescence Excitation-Emission Spectroscopy 

Fluorescence spectroscopy provides sensitive and non-destructive analysis of the 

structure, functional groups, conformation and heterogeneity of humic substances, as 

well as dynamic properties relating to their intramolecular and intermolecular 

interactions (Chen et al. 2003, a). Fluorescence excitation-emission matrices (EEM) 

of the XAD fractions before and after MIEX® treatment are shown in Figures 4.8 – 

4.10, with all supporting literature explaining the major fluorescent components 

discussed in detail in Section 3.3.2. Humic acid material seen in fluorescent EEM 
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spectra represents NOM that is refractory to oxidation and is highly conjugated 

(Caron and Smith 2011). Fulvic acid material is described as being more 

functionalised than humic acids but with a lower MW (Caron and Smith 2011). 

Proteinaceous material represents NOM originating in the build up or breakdown of 

biomass (Caron and Smith 2011). The fluorescent bands running diagonally through 

the emission range of 400 – 500 nm at an excitation range of 200 – 260 nm were 

present in all spectra and were artefacts of glass and water interactions. The peaks 

positioned diagonally through the emission range of 250 – 380 nm at an excitation 

range of 270 – 290 nm were due to Rayleigh/Tyndall scattering lines (Caron and 

Smith 2011). The XAD fractions showed several distinct EEM spectral differences 

before and after MIEX® treatment. This is the first report of EEM spectra of MIEX® 

treated XAD fractions. 

Before treatment, the HPO fraction (Figure 4.8a) showed high humic and fulvic acid 

signal intensity at Ex: 330 nm – Em: 450 nm and Ex: 250 nm – Em: 450 nm. These 

areas were significantly reduced in intensity by MIEX® treatment (Figure 4.8b), 

mirroring the reductions in DOC (68%) and UV254 (75%) by MIEX® treatment 

(Table 4.7). The reduction in intensity for the humic and fulvic acid material is due 

to the removal of carbonyl, hydroxyl and alkoxyl containing substituents present 

within the HPO fraction (Senesi 1990) as these components are easily removed by 

the ion exchange process (Bond et al. 2010).  

The untreated TPIB fraction (Figure 4.9a) showed similar humic and fulvic acid 

signals to the HPO fraction (Figure 4.8a), with MIEX® treatment of the TPIB 

fraction completely removing these signals (Figure 4.9b). Transphilic material was 

expected to be preferentially removed by MIEX® treatment, due to its higher 

hydrophilic character, as discussed in Section 4.3.3.1 (Bond et al. 2010). However, a 

low intensity signal at Ex: 270 nm – Em: 320 nm and Ex: 333 nm – Em: 380nm, 

indicative of soluble microbial metabolites (Chen et al. 2003, a) remained after 

MIEX® treatment. A similar component of the UF fraction also proved recalcitrant to 

MIEX® treatment (Section 3.2.2), consistent with the idea that the MIEX® process is 

less effective at removing protein-derived structures (Amy 2007). 
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Fluorescence spectroscopy shows that treatment of the TPIN fraction by the MIEX® 

process removed a small proportion of humic and fulvic acid type material (Figure 

4.10b). The different chemical composition of the TPIN fraction compared to the 

TPIB and HPO fractions is key to the low removal of the fluorescent signals for the 

TPIN fraction. The TPIN fraction had a reduced aromatic character compared to the 

other two fractions (as seen in the elemental analysis data, Section 4.3.2.1) and this 

fraction is reported to generally consist of lower MW components such as 

polysaccharides and proteins (Leenheer 1981). Only very small amounts of the TPIN 

material were removed by any treatment (MIEX®, coagulation) in the study of 

Drikas et al. (2011). van Leeuwen et al. (2002) also identified neutral material as 

recalcitrant following fractionation and coagulation of two waters. A pilot-plant 

study of MIEX® treatment on estuarine water using size exclusion chromatographic 

analysis also showed MIEX® to be ineffective at removal of neutral polysaccharides 

and protein-like organic material (Booth et al. 2006). 

 

In a previous study of fifty-six Missouri lakes (Hua et al. 2007), it was observed that 

waters with abundant fluorescent signals also exhibited high THMFP. In Figures 4.8 

– 4. 10, the untreated HPO, TPIB and TPIN fractions exhibited abundant fluorescent 

signals, which may indicate a high propensity to form disinfection by-products. The 

DBPFP of each fraction will be discussed in detail in Section 4.3.3.4. 
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Figure 4.8 Excitation-emission (EEM) fluorescence spectra of the a) pre and b) post 
MIEX® treated HPO fraction. White arrows represent ‘humic-like’ components 
within the spectra. ‘Protein-like’ components within the spectra could not be 

identified due to the high concentration of ‘humic-like’ material. 
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Figure 4.9 Excitation-emission (EEM) fluorescence spectra of the a) pre and b) post 
MIEX® treated TPIB fraction. White arrows represent ‘humic-like’ components 
within the spectra. ‘Protein-like’ components within the spectra could not be 

identified due to the high concentration of ‘humic-like’ material. 
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Figure 4.10 Excitation-emission (EEM) fluorescence spectra of the a) pre and b) 
post MIEX® treated TPIN fraction. The intensity of the EEM is represented by 

contour lines. White arrows represent ‘humic-like’ components within the spectra. 
‘Protein-like’ components within the spectra could not be identified due to the high 

concentration of ‘humic-like’ material. 
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4.3.3.3 Size Exclusion Chromatographic Analysis 

Size exclusion chromatography analysis, with both organic carbon detection (OCD) 

and UV254 absorbance detection, was performed on solutions of the HPO and TPI 

fractions before and after MIEX® treatment to examine the molecular weight 

distribution in these samples (Figures 4.11 – 4.13). In Figures 4.11 – 4.13, the 

different MW regions are numbered from 1 – 8 according to a previously reported 

numbering system (Allpike et al. 2005; Huber and Frimmel 1996). Each of these 

fractions is comprised of a variety of individual organic compounds. Region 1, which 

elutes as a broad band of poorly resolved material in both the HPO and TPI fractions, 

has been reported to potentially consist of sulphur species associated with organic 

matter, either in colloidal form as elemental sulfur or in solution, or as colloidal in 

nature, and may be comprised of some inorganic substances (Allpike et al. 2005). 

Regions 2 – 4, which elute as three partially resolved peaks for the HPO fraction 

before MIEX® treatment (Figure 4.11), and as one unresolved peak for the TPIB 

(Figure 4.12) and TPIN fractions (Figure 4.13), are reported to be likely to be 

enriched in humic substances of relatively high MW (Huber and Frimmel 1996). 

Humic substances are considered to be rich in aromatic functional groups, and these 

are easily detected by both DOC specific and UV254 absorbance detectors. Regions 5 

– 7 reportedly correspond to the fractions comprising lower MW monoprotic organic 

acids such as fulvic acids, conjugated unsaturated acids or keto acids (Huber and 

Frimmel 1996). Region 8 is comprised of DOC of the lowest apparent MW, which 

eluted as a broad band of poorly resolved material. 
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Figure 4.11 MW distribution of the HPO fraction before and after MIEX® treatment 
detected by a) SEC-OCD and b) SEC-UV254. Numbers correspond to eight distinct 
MW regions as described by Huber and Frimmel 1996 and Allpike et al. 2005. 
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Figure 4.12 MW distribution of the TPIB fraction before and after MIEX® treatment 
detected by a) SEC-OCD and b) SEC-UV254. Numbers correspond to eight distinct 
MW regions as described by Huber and Frimmel 1996 and Allpike et al. 2005. 
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Figure 4.13 MW distribution of the TPIB fraction before and after MIEX® treatment 
detected by a) SEC-OCD and b) SEC-UV254. Numbers correspond to eight distinct 
MW regions as described by Huber and Frimmel 1996 and Allpike et al. 2005. 

Analysis by SEC-OCD and SEC-UV254 showed that a significant proportion of the 

material in all of the regions was removed by MIEX® treatment for the HPO fraction. 

From Figure 4.11, it appears that the MIEX® resin removed organic matter over a 

wide range of apparent MW for the HPO fraction, with particularly good removal of 

the high molecular weight material. This is consistent with a previous study of 

MIEX® treatment  of Wanneroo GWTP raw water (Allpike et al. 2005).  
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The DOC concentrations of the various components of the TPIB fraction after 

MIEX® treatment (total DOC concentration after treatment 1.8 mg L-1) were too 

close to the detection limit of the SEC-OCD instrument to observe the  remaining 

material in the various regions (Figure 4.12a). The aromatic-sensitive UV254 

detection showed some signal in the sample after treatment and there was significant 

removal of material with MW in regions 2 – 4, indicative of removal of high MW 

humic substances (Huber and Frimmel 1996). The removal of these organic 

components probably also accounts for the significant reduction in fluorescence of 

the TPIB fraction after MIEX® treatment (Figure 4.9). Interestingly, the SEC-UV254 

chromatogram (Figure 4.12b) showed a large increase in region 1 after MIEX® 

treatment. The high SUVA254 of this peak is suggestive of aromatic humic 

substances, but it is more likely to be colloidal with some inorganic substances 

(Huber and Frimmel 1996). Colloidal material can permeate the 0.45 μm membranes 

used to filter the sample prior to injection on the SEC column and has high UV 

absorbance activity due to light scattering effects (Huber and Frimmel 1996). Similar 

characteristics evident in the SEC characterisation of a German lake water were 

attributed to early eluting inorganic colloidal material (Huber and Frimmel 1996).  

SEC-OCD and SEC-UV254 analysis of the TPIN fraction (Figure 4.13) also showed a 

significant proportion of the material in all the MW regions was removed by MIEX® 

treatment. The negative detector response between 100 and 1000 Da evident in the 

SEC-OCD chromatogram (Figure 4.13a) is probably due to salt interference, since 

the separation at the salt boundary can cause interactions between the sample and the 

persulfate oxidiser (Soh et al. 2007). In order to reduce the salt boundary peak, an 

ionic strength adjustment is required as a pre-treatment step for optimal HPSEC 

chromatograms (Soh et al. 2007). Nevertheless, SEC-OCD which measures the total 

MW distribution, as opposed to the aromatic-sensitive SEC-UV254, indicated 

removal over a wide range of apparent MWs, with particularly good removal of high 

molecular weight material. A study of the ion exchange treatment of NOM (Amy 

2007) also showed relatively efficient removal of humic substances and low 

molecular weight acids (regions 2 – 4).  
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4.3.3.4 Disinfection By-Product Formation Potential 

A common laboratory approach to assess the possible formation of DBPs during 

chlorination in drinking water treatment is the DBP formation potential (DBPFP) 

procedure (Franson 1998). This test is performed by spiking waters of interest at pH 

7.0 – 8.3 and incubating them at 20 or 25ºC for a specific time period (days). In this 

test, the reactivity of chlorine and NOM is examined to predict the potential DBPs of 

finished waters (Chow et al. 2005).  

Prior to DBPFP measurement, aqueous samples of the HPO and TPIB fractions 

(produced by initial dissolution of the dried isolate in MilliQ water) and the HPO and 

TPIB fractions after MIEX® treatment were diluted to achieve DOC concentrations 

of 2 mg L-1, typical of the DOC concentration at the outlet of the Wanneroo GWTP, 

and bromide ion (0.2 mg L-1) was added to simulate the bromide concentrations of 

raw W300 water (Table 2.3, Section 2.3.3). Disinfection experiments involved 

addition of chlorine to achieve an initial concentration of 6 mg L-1 (a similar chlorine 

dose to what is applied for disinfection of water at the Wanneroo GWTP), addition 

of buffer to achieve pH 7 and temperature control to 25 ºC, and analysis of the 

concentration of trihalomethanes (THMs) and haloacetic acids (HAAs) after 7 days. 

The oxidant demands of the HPO and TPIB fractions before and after MIEX® 

treatment are shown in Table 4.8, with the 7-day individual and total THM 

concentrations produced shown in Table 4.9, and the corresponding HAA 

concentrations shown in Table 4.10. 

Table 4.8 Oxidant demand of the HPO and TPIB fractions before and after MIEX® 
treatment (halogenation conditions: 2 mg L-1 DOC, 6 mg L-1 Cl2 dose, 0.2 mg L-1 Br-, 
pH 7, 25oC, 168 hours). 

Sample Oxidant demand  
(mg L-1 free chlorine) 

Specific oxidant demand 
(mg free chlorine/mg C) 

HPO 5.7 2.9 
HPO after MIEX® 4.8 2.4 

TPIB 5.1 2.6 
TPIB after MIEX® 4.1 2.1 
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Table 4.9 Concentrations of THMs from chlorination of the HPO and TPIB fractions 
before and after MIEX® treatment (halogenation conditions: 2 mg L-1 DOC, 6 mg L-1 
Cl2 dose, 0.2 mg L-1 Br-, pH 7, 25oC, 168 hours). 

 
Sample 

Concentration of Individual THMs  
(µg L-1) 

Total 
THMFP 
(µgL-1) 

Specific 
THMFP 

(μg/mg C) CHCl3 CHBrCl2 CHBr2Cl CHBr3 

HPO 164 90 28 1 283 142 

HPO after MIEX®  166 95 33 2 296 148 

TPIB 133 100 54 5 292 146 

TPIB after MIEX® 49 79 60 10 198 99 

 

Table 4.10 Concentration of HAAs from chlorination of the HPO and TPIB fractions 
before and after MIEX® treatment (halogenation conditions: 2 mg L-1 DOC, 6 mg L-1 
Cl2 dose, 0.2 mg L-1 Br-, pH 7, 25oC, 168 hours). 

      
Sample 

Concentration of Individual HAAs (µg L-1) Total 
HAAFP 
(µg L-1) 

Specific 
HAAFP 
(µg/mg 

C) 

MCAA MBAA DCAA TCAA BCAA DBAA BDCAA CDBAA TBAA 

HPO - - 78 97 28 5 24 2 - 235 118 

HPO 
after 

MIEX®  

- - 99 120 31 6 20 1 - 278 139 

TPIB - - 7 5 4 1 1 - - 18 9 

TPIB 
after 

MIEX® 

- - 3 - 4 3 - - - 10 5 

   * ND – not detected 

The oxidant demands of the MIEX®-treated fractions were lower than the untreated 

fractions (Table 4.8). Since the DOC concentration has been normalised to 2 mg L-1 

prior to the disinfection experiments, the oxidant demand is already normalised to 

the DOC concentration, and comparisons of oxidant demands before and after 

MIEX® treatment are comparisons of specific oxidant demands. The oxidant demand 

concentrations in Table 4.8 show that MIEX® treatment has preferentially removed 

the oxidant-reactive (here chlorine- and bromine-reactive) fractions of NOM in these 

water samples. Specific oxidant demand results in Chapter 3 (Table 3.4) also showed 

a lower oxidant demand after MIEX® treatment. A previous study at the Wanneroo 

GWTP (Warton et al. 2007, a) showed a reduction in specific oxidant demand after 

MIEX® treatment, as observed in this study. Preferential removal of the oxidant-

reactive (here chlorine- and bromine-reactive) fraction of NOM is a favourable 
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parameter for a water treatment process, since a more stable oxidant residual (often 

termed ‘chlorine residual’) can be achieved in the product water, with lower levels of 

chlorination needed for the distribution system. With lower chlorination doses prior 

to distribution, the formation of disinfection by-products should be reduced. 

The formation of significant concentrations of THMs and HAAs (Tables 4.9 and 

4.10) indicates that the HPO and TPI fractions are both reactive with chlorine. The 7-

day THMFP of the HPO fraction and the HPO fraction after MIEX® treatment were 

essentially identical, indicating that the reactivity of DOC for THM formation in the 

two samples is the same and that the MIEX® treatment has not preferentially 

removed THM precursors from the HPO fraction. Similar THMFPs were seen for the 

UF fraction (283 μg L-1) and the UF fraction after MIEX® treatment (290 μg L-1) in 

Chapter 3, Section 3.3.3.4. Physicochemical factors controlling treatability do not 

relate to reactivity with chlorine, as the DOC concentration was reduced by 68 % for 

the HPO fraction compared to the UF fraction (12 %) after MIEX® treatment, yet, 

similar THMFPs were observed for each fraction before and after MIEX® treatment. 

Hence, MIEX® treatment does not appear to offer an option for selective removal of 

reactive DBP precursors over non-reactive precursors. In the study of Bond et al. 

(2010) using model compounds, treatability of the NOM surrogates was explained by 

physicochemical properties of the compounds. In the case of MIEX® treatment, the 

degree of anionic charge was the key factor in removal, whereas DBP formation can 

not be predicted using the same properties. It was not possible to selectively remove 

reactive DBP precursors in MIEX® treatment (Bond et al. 2010), consistent with the 

findings in this study. 

The DOC concentrations were normalised to 2 mg L-1 for all fractions in this DBPFP 

experiment to study the propensity of each W300 water fraction to form DBPs. Since 

three out of the four THMFP concentrations (Table 4.9) are above the ADWG value 

of total THMs < 250 μg L-1, the NOM samples have a high propensity to form 

THMs. The untreated HPO and TPIB fractions of W300 water showed similar THM 

formation potentials, and showed that they are similar in composition by the 

characterisation techniques (Section 4.3.2). HPO NOM fractions are reported to 

typically have the greatest THMFP (Budd et al. 2005; Croué et al. 1999, a), with 

humic substances reported to be the major precursors (Croué et al. 1999, a). Even 
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though other characterisation techniques in this study have shown that the HPO and 

TPI fractions of NOM in W300 water are chemically consistent with groundwater 

sources, the specific THMFP of the untreated HPO and TPIB fractions are higher 

than other groundwaters previously reported (Bolto et al. 2002; Drikas et al. 2003; 

Croué et al. 1993, a).  

In this DBPFP experiment, chloroform was the major THM product formed for the 

HPO and the HPO after MIEX® fractions. Chloroform was the major THM produced 

for the TPIB fraction, with dichlorobromomethane the major product for the TPIB 

after MIEX®
 treatment fraction. The shift towards the more brominated forms in the 

TPIB fraction after MIEX® treatment must be due to an increased reaction of the 

functional groups present and bromine (Liang and Singer 2003). 

HAA formation is similarly dependent on pH, bromide ion concentration, the 

concentration and characteristics of the NOM, temperature, chlorine dose, chlorine 

residual and contact time. The HPO fraction showed a much larger specific HAAFP 

than the TPIB fraction both before and after MIEX® treatment (Table 4.10), 

indicating that the NOM within the HPO fractions contained relatively more HAA 

precursors than the NOM within the TPIB fraction. The HPO fraction produced more 

di-and tri-halogenated HAAs than the corresponding TPIB fraction, with the major 

HAAs formed being the chlorinated HAAs: dichloroacetic acid (DCAA) and 

trichloroacetic acid (TCAA). Other HAAs detected were: bromochloroacetic acid 

(BCAA), dibromoacetic acid (DBAA), bromodichloroacetic acid (BDCAA) and 

chlorodibromoacetic acid (CBDAA). Again, it should be emphasised that in this 

DBPFP study, the DOC concentration was normalised to 2 mg L-1 for all fractions to 

study the propensity to form DBPs for each fraction from the selected bore, W300. 

The production of similar concentrations of HAAs for each of the HPO fraction and 

the TPIB fraction before and after MIEX® treatment suggests that MIEX® treatment 

did not selectively remove reactive HAA precursors over non-reactive precursors. 

Interestingly, the HAAFP of the UF fraction (Chapter 3, Table 3.6) was in contrast to 

the HAAFP measured in this study (Table 4.10), as the potential for HAA formation 

for the UF fraction was reduced after MIEX® treatment, indicating preferential 

removal of HAA precursors during MIEX® treatment. The HAAFP of the HPO 

fraction and the HPO fraction after MIEX® treatment were very high and similar in 
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mass concentration to the corresponding THMFPs, but DBPFP experiments are 

considered to represent a worst-case scenario (Warton et al. 2007, b). 

The bromine incorporation factor (BIF) is the measure of the extent of bromine 

incorporation into the different classes of DBPs (such as THMs and HAAs). The 

molar ratio is calculated as described in Section 3.2.2 by normalising the bromine 

incorporation factor to a value between zero (no incorporation) and one (full 

incorporation) for each DBP class (Obolensky and Singer 2005). The THM and 

HAA BIF values for the HPO and TPI fractions and the HPO and TPIB after MIEX® 

treatment fractions are shown in Table 4.11.  

Table 4.11 BIF (THMs) and BIF (HAAs) obtained after 7 day chlorination 
experiment. 

Sample BIF (THMs) BIF (HAAs) 
HPO 0.17 0.04 

HPO after MIEX® 0.18 0.03 

TPIB 0.25 0.06 

TPIB after MIEX® 0.38 0.16 

 

For both THMs and HAAs, the extent of bromine substitution varied for the HPO 

and TPIB fractions. The HPO fraction and the HPO after MIEX® treatment showed 

similar BIF values for each of the classes of THMs and HAAs, while MIEX® 

treatment of the TPIB fraction led to an increase in the proportion of brominated 

THMs and HAAs, similar to the behaviour of the UF fraction (Section 3.2.2). 

Hypobromous acid is more reactive to hydrophilic and aliphatic structures (Liang 

and Singer 2003), suggesting these structural precursors are more rich in the TPIB 

fraction, with MIEX® treatment exhibiting poor removal of these precursors.  

From the DBPFP experiments, the HPO and the HPO after MIEX® treatment 

fractions have been demonstrated to be highly reactive to the formation of DBPs. As 

mass concentrations, the total THM concentrations were comparable to the total 

HAA concentrations for the HPO fraction and these concentrations were not notable 

reduced for the HPO after MIEX® treatment fraction, suggesting MIEX® treatment 

has not preferentially removed THM or HAA precursors from the HPO fraction. But, 
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MIEX® treatment of the TPIB fraction did significantly reduce the potential for THM 

formation.   

4.3.4 Conclusions 

Isolation of NOM from a local groundwater source using XAD-8/XAD-4 resin 

fractionation was used with some success. The solid freeze-dried HPO and TPI 

fractions, isolated using the XAD-8/XAD-4 resin fractionation protocol, were 

obtained from 132 L of a high DOC concentration (23 mg L-1) groundwater. 

Desalting of the TPIB fraction was challenging, hindering characterisation of this 

fraction by the analytical methods employed in this study. Characterisation of the 

HPO and TPI fractions by FTIR and 13C NMR spectroscopic analysis revealed the 

fractions to have a significant contribution of aliphatic content, most likely from lipid 

and biopolymer precursors. Further characterisation of the fractions by pyrolysis-

GC-MS, thermochemolysis-GC-MS and MSSV-pryolysis-GC-MS revealed that the 

HPO fraction had a significant polysaccharide input. The higher nitrogen and oxygen 

content present in the TPIB and TPIN fractions allowed more nitrogen and oxygen 

containing groups (such as tannins and proteins) to be revealed by the pyrolysis and 

thermochemolysis techniques.  

The fractions showed different affinity for the MIEX® resin. Treatment of the HPO 

and TPI fractions by preconditioned MIEX® resin led to significant reductions in the 

DOC concentration, UV254 absorbance and colour. The MIEX® resin was effective 

for removal of organic matter in the more non-polar (HPO) and intermediate polarity 

(TPIB and TPIN) fractions of NOM. 

In the DBPFP study, the HPO fraction showed a similar propensity to form THMs 

and HAAs before and after MIEX® treatment, so whilst MIEX® removed 68 % of the 

DOC concentration from this fraction, it did not preferentially remove the organic 

precursors of the THM products. In contrast, MIEX® treatment of the TPIB fraction 

(69 % DOC removal) did show some preferential removal of the precursors for the 

THMs and HAAs, but showed a shift towards greater reactivity with bromine in 

THM formation. This indicates THM and HAA precursors within the quantitatively 

significant HPO fraction can not be preferentially removed by MIEX® treatment. In 
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general, additional treatment processes to the MIEX® process will be required to 

enhance removal of the recalcitrant structural moieties of the HPO and TPI fractions, 

with a particular focus on THM precursor removal. 
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Chapter 5  

5.0 Characterisation of Resin-

Fractionated NOM Remaining After 

MIEX® Treatment of a High 

Hydrophobicity / High DOC 

Groundwater  

5.1 Introduction 

Various water treatment processes can either directly or indirectly remove organic 

matter depending on their operational conditions and the characteristics of the NOM. 

High MW NOM is more amenable to removal than low MW NOM in conventional 

water treatment (Collins et al. 1986).  Water with high MW humic material is a good 

candidate for chemical coagulation, whilst low MW species are more amenable to 

ion exchange processes, such as a MIEX® process (Singer and Bilyk 2002). An 

increased removal of NOM can be obtained by a MIEX® process coupled with a 

coagulation process compared to a coagulation process alone (Singer and Bilyk 

2002; Warton et al. 2007, a). There have been numerous published papers on the 

performance of MIEX® resin at a pilot, bench or full scale application (Morran et al. 

1996; Nguyen et al. 1997; Pelekani et al. 2001; Singer and Bilyk 2002; Drikas et al. 

2011, Warton et al. 2007, a; Boyer et al. 2008, a; Boyer and Singer 2005; Allpike et 

al. 2005). The study by Warton et al. (2007, a) was the first of its kind describing the 

behaviour of the MIEX® process on a full scale plant level using several parameters 

to assess its performance.  

There does not appear to be any previous studies that have fractionated MIEX® 

treated water to investigate the reactivity of the residual NOM, which is the focus of 

the work described in this Chapter. Previous studies have characterised the nature 
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and abundance of structural units in the NOM remaining after treatment (Bond et al. 

2010; Chow et al. 1999; Allpike 2008; Page et al. 2003). Chow et al. (1999) used 

pyrolysis-gas chromatography-mass spectrometry (py-GC-MS), FTIR spectroscopy 

and high pressure size exclusion chromatography to characterise NOM isolated from 

raw water, as well as NOM remaining after alum coagulation treatment, from the 

Myponga and Hope Valley reservoirs located in South Australia. It was observed 

that the mid to high MW fraction of NOM (> 1000 Da) was removed after alum 

treatment. Bond et al. (2010) showed coagulation preferentially removed high MW 

hydrophobic acids and, under conditions representative of full-scale operation, 

MIEX® provided negligible further removal of the hydrophobic acids. Any 

improvement in NOM removal performance was reported to be likely to arise from 

removal of transphilic and hydrophilic acids (Bond et al. 2010). In the study by Page 

et al. (2003), raw water from several reservoirs in South Australia were coagulated 

by a jar test procedure, and the NOM samples isolated from the raw and the treated 

waters were characterised by a py-GC-MS technique. Most of the alum treated 

samples contained NOM with high relative quantities of polysaccharide-derived 

material, with the proportion of alkylbenzene, alkylphenol, indole and naphthalene 

derivatives appearing to change as a result of alum treatment. In the study of Allpike 

(2008), it was found that the organic matter remaining after MIEX® and after 

MIEX®-coagulation appeared to show that there had been a slight preference for 

removal of aromatic organic matter, whereas enhanced coagulation did not appear to 

preferentially remove aromatic organic matter. In regard to the treatment of water for 

distribution at a drinking water treatment plant, MIEX®-only treatment was able to 

remove a significant portion of DOC, colour and UV254-absorbing species, but for 

the water source under investigation, MIEX®-only treatment was not as effective as 

enhanced coagulation treatment for DOC, colour and UV254 removal. The 

recalcitrant fraction of NOM after MIEX®
 treatment appeared to be the intermediate 

to high MW fraction which Allpike (2008) reported may be effectively removed by 

other processes such as coagulation or membrane filtration. 

5.1.1 Scope of This Study 

To complement the procedure undertaken in Chapter 4 where the NOM in W300 

groundwater was fractionated by an established XAD resin adsorption method and 
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the HPO and TPI fractions separately treated by MIEX®, the work undertaken in this 

Chapter involved treating W300 water by a MIEX® resin process with the NOM 

remaining in the water after MIEX® treatment being subjected to XAD resin 

fractionation, to investigate the nature and reactivity of the recalcitrant material 

remaining after MIEX® treatment. A schematic of the treatment, isolation and 

characterisation process is shown in Figure 5.1. The reactivity of the fractions 

isolated post treatment will be compared to the reactivity of the separately treated 

fractions of Chapter 4, to aid understanding, prediction and perhaps control of NOM 

reactivity under water treatment conditions. This improved understanding of 

treatment of various fractions may ultimately result in optimised treatment strategies, 

contributing to increased quality of drinking water to consumers. 

 

Figure 5.1 The treatment, isolation and characterisation methodology for Chapter 5. 

5.2 Experimental 

5.2.1 Water Samples 

The collection, filtration and storage of the water samples used in this study are 

described in Section 3.2.1. 

5.2.2 Cleaning Procedures 

The procedure for cleaning of glassware was the same as that described in Section 

2.2.2.2. 
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5.2.3 MIEX® Treatment of the Raw Water 

5.2.3.1 Preconditioning of the MIEX® Resin 

Preconditioning of the MIEX® resin has been discussed in detail in Section 3.2.4.1. 

5.2.3.2 Treatment of Raw Water by Preconditioned MIEX® Resin 

Preconditioned MIEX® resin (42 mL) was used to treat a raw water sample (W300,  

1 L) for 15 minutes with stirring, and the aqueous layer was then decanted from the 

resin. This process was repeated twenty times with 1 L aliquots of W300 water and 

the same MIEX® resin. The MIEX® resin was then regenerated by stirring with 10 % 

aqueous sodium chloride solution (600 mL) for 30 minutes and then with MilliQ 

water (600 mL) for 10 minutes. 

 After regeneration, the same resin (42 mL) was used to treat another 20 L of raw 

water in twenty 1 L batches before further regeneration was required. This process 

was repeated until 400 L of raw water was processed to produce the total MIEX® 

treated water sample. The MIEX® treated water sample was then filtered through a 

0.45 μm glass fibre filter, concentrated under reduced pressure on a rotary evaporator 

to 70 L, and stored at 4ºC until required.  

5.2.4 NOM Resin Fractionation and Isolation Protocol 

The XAD-8/XAD-4 resin preparation, cleaning and pH adjustment process are 

described in detail in Sections 2.2.3 and 4.2.3, respectively. 

5.2.4.1 Preparative Fractionation Process 

The preparative fractionation process was the same as described in Section 4.2.3.2, 

except the NOM remaining in the MIEX® treated water sample was fractionated 

instead of the NOM in filtered W300 water. The fractionation procedure produced 

four fractions termed: MIEX® HPO, MIEX® TPIB, MIEX® TPIN and MIEX® HPI. 

A schematic of the isolation process and the four fractions is shown in Figure 5.2.  
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Figure 5.2 The XAD-8/XAD-4 preparative resin isolation procedure. Four fractions 
of NOM from the MIEX® treated water were obtained. 

The fractionation procedure was repeated twice (2 × 33 L) in order to isolate enough 

transphilic base fraction (MIEX® TPIB) for characterisation and treatment purposes. 

5.2.5 Methodology for Characterisation of NOM  

All general water parameter measurements and spectroscopic analyses were 

conducted using previously described methods as follows: elemental analyses of the 

dried isolates were measured by the procedure outlined in Section 3.2.5.1; DOC 

concentrations, UV/Visible spectroscopy, bromide ion concentrations, and HPSEC 

were all analysed as outlined in Sections 2.2.2 – 2.2.7.  

Flash pyrolysis-GC-MS, thermochemolysis-GC-MS and micro-scale sealed vessel 

(MSSV) pyrolysis-GC-MS were conducted as outlined in Sections 4.2.5.1 – 4.2.5.3. 

FTIR, solid-state 13C NMR and fluorescence spectroscopic analyses were conducted 

as outlined in Sections 3.2.5.2 – 3.2.5.4. 
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5.2.6 Disinfection By-Product Formation Potential Experiments 

The various solutions used for DBP formation potential measurement were prepared 

as outlined in Section 3.2.6.1. 

5.2.6.1 Stock Solutions of the MIEX® HPO and MIEX® TPIB Fractions 

Stock solutions (1 L) of the MIEX® HPO and MIEX® TPIB fractions in water were 

produced by initial dissolution of the dried isolate of each fraction (50 – 100 mg) in 

aqueous sodium hydroxide solution (0.01 M, 1 mL) followed by the addition of 

MilliQ water. The solutions were filtered through a 0.45 µm glass fibre filter and the 

DOC concentrations of the MIEX® HPO and MIEX® TPIB fractions measured, as 

described in Section 2.2.4, to be 29.6 mg L-1 and 5.2 mg L-1, respectively. 

5.2.6.2 Chlorination Experiments for the MIEX® HPO and MIEX® TPIB 

Fractions 

Aliquots of the MIEX® HPO (67 mL, 29.6 mg L-1) and MIEX® TPIB (383 mL, 5.2 

mg L-1) stock solutions were added into separate amber glass bottles and bromide ion 

stock solution (200 µL, 1000 mg L-1) was added into each bottle. The pH was 

adjusted to 7.0 through the addition of phosphate buffer and the solutions were 

diluted with MilliQ water and chlorine stock solution (6 mL, 1000 mg L-1) added to 

produce an initial chlorine concentration of 6 mg L-1 (total volume 1 L), a similar 

dose to that applied for disinfection at the Wanneroo GWTP. The reaction mixtures 

were stored in the dark at 25°C for seven days. At various times over 7 days, the 

residual chlorine equivalent concentrations were measured in duplicate and aliquots 

(~40 mL) of each reaction mixture were quenched with an aqueous sodium sulfite 

solution (500 μL, 100 g L-1) and stored in the dark at 5 °C until THM analysis was 

performed. After 7 days, an additional aliquot (40 mL) of each reaction mixture was 

quenched with an aqueous sodium sulfite solution (500 μL, 100 g L-1) and stored in 

the dark at 5 °C until HAA analysis was performed. The initial free chlorine 

concentration was chosen so as to produce a final 7-day free chlorine equivalent 

concentration of 0.5 – 1.5 mg L-1 for each sample. 
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5.2.7 Analysis of Disinfection By-Products 

HS SPME-GC-MS analysis of the THMs and analysis of the HAAs by liquid-liquid 

extraction and derivatisation followed by GC-MS were conducted as described in 

Section 3.2.7. 

5.3 Results and Discussion 

5.3.1 MIEX® Resin Preconditioning and MIEX® Treatment of W300 

Raw Water  

Virgin MIEX® resin was sampled from the Wanneroo Groundwater Treatment Plant 

(GWTP) at the same time as W300 raw water sampling. The virgin MIEX® resin was 

treated with raw water (W300) to preload the resin with W300 NOM to simulate the 

plant treatment process on a laboratory scale, using conditions to model full-scale 

MIEX® treatment at the Wanneroo GWTP. To simulate the MIEX® process on a 

bench-scale, the Jar Test Protocol developed by Orica Advanced Water Technologies 

(Holmquist 2006) was used. For this purpose, MIEX® resin (16.6 mL) was 

preconditioned by treating the resin with repeated aliquots (1.65 L) of the 

groundwater from bore W300 (total 50 L) before the resin was regenerated.  

The preconditioned MIEX® resin was then used to treat the raw water in batches of 

20 L before further regeneration was required. This process was repeated until 400 L 

of raw water was processed to produce the total MIEX® treated water sample. An 

aliquot of the raw water, and an aliquot of the MIEX® treated water sample, prior to 

rotary evaporation, was sub-sampled and the DOC concentration, UV254, SUVA254 

and colour parameters are shown in Table 5.1. 

Table 5.1 DOC concentration, UV254, SUVA254 and colour parameters for W300 raw 
water before and after MIEX® treatment. 

Sample DOC 

(mg L-1)

UV 

(cm-1)

SUVA254 

(m-1 L / mg C) 

Colour 

(HU) 

Raw Water (W300) 23.3 5.20 4.5 220 

MIEX®  treated water 9.8 2.63 5.4 101 
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The DOC concentration in the raw water was significantly reduced (58 %) after 

MIEX® treatment. This degree of removal was consistent with a previous study 

(Warton et al. 2007, a) in which water samples were collected from several points in 

the treatment stream at the Wanneroo GWTP on two occasions, one in winter and 

one in summer. In the summer blend water, 49 % of DOC was removed by MIEX® 

treatment, whilst the winter blend showed 54 % removal. Other pilot plant studies on 

groundwaters, surface waters and reservoirs (Drikas et al. 2003; Budd et al. 2003; 

Fabris et al. 2007; Boyer and Singer 2005) have shown MIEX® treatment producing 

removals of 36 – 80 % of the DOC concentration. Hence, the bench-scale 

preconditioning protocol used in this study does seem to reasonably replicate large-

scale MIEX® treatment.  

A slight increase in SUVA254 following MIEX® treatment reflects some selectivity in 

the DOC removal. This result is in contrast to a long term case study of MIEX® pre-

treatment at the Mt Pleasant WTP (Drikas et al. 2011) which showed MIEX® pre-

treatment consistently produced water with a lower SUVA254 because more UV-

absorbing organic compounds were preferentially removed by MIEX®. An increase 

in SUVA254 was also observed in the study of Warton et al. (2007 a), during studies 

of the water blend at the Wanneroo GWTP in summer. The SUVA254 was strongly 

influenced, however, by UV254-absorbing species of very high MW (> 67 kDa) rather 

than DOC in the 1 to 10 kD MW region as shown in the size exclusion 

chromatograms (Warton et al. 2007 a). This high MW peak in the SEC-UV254 

chromatogram was also observed in the corresponding winter blend study, and seems 

to be peculiar to local Western Australian waters (Warton et al. 2007 a). A similar, 

but relatively lower in abundance high MW peak was seen in the SEC for the W300 

raw water, and this material did not appear to be removed by MIEX® treatment 

(Section 5.3.1.1, Figure 5.3). The lack of removal of this high MW peak through 

MIEX® treatment, may have caused the slight increase in SUVA254 post treatment. 

Huber and Frimmel (1996) proposed that the high MW peak represents colloidal 

organic and inorganic substances: substances which are largely unaffected by anion 

exchange processes (Allpike et al. 2005). Conversely, MIEX® treatment removed a 

large proportion of the coloured DOC in the raw water (54 %), indicating its 

efficiency in removing the coloured or humic dominated fraction of DOC (Edwards 

and Amirtharajah 1985; Bennett and Drikas 1993). Coloured water is an aesthetic 
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problem for consumers and efficient removal, as achieved by MIEX® treatment, is an 

important consideration in water treatment processes.  

5.3.1.1 Size Exclusion Chromatographic Analysis 

The size exclusion chromatographic profiles of the raw water before and after 

MIEX® treatment with organic carbon (SEC-OCD) and UV detection at 254 nm 

(SEC-UV254) are shown in Figure 5.3a and b, respectively. The broad MW 

distribution of the SEC-UV254 profiles (Figure 5.3b) are generally consistent with the 

waters described in Section 2.2.3, as well as previous studies of Wanneroo 

groundwater (Warton et al. 2007, a; Allpike et al. 2005), and other water sources 

such as lakes (Peuravuori and Pihlaja 1997; Vrijenhoek et al. 1998) and rivers 

(Vrijenhoek et al. 1998). The profiles have been resolved into 8 different MW 

regions according to a previously reported numbering system (Allpike et al. 2005; 

Huber and Frimmel 1996). The raw water shows some colloidal material (region 1), 

a relatively large proportion of unresolved high MW humic substances (regions 2 – 

4), a moderate amount of lower MW monoprotic organic acids (regions 5 – 7) and 

negligible signal at lowest apparent MW (region 8).  

The SEC-OCD and SEC-UV254 profiles of the raw and MIEX® treated water samples 

indicate a moderate proportion of DOC was removed by MIEX® treatment, with the 

medium MW range (6000 – 1000 Da) material showing greatest reduction. The high 

MW region 1 was relatively unaffected by MIEX® treatment. This region represents 

colloidal (and inorganic) material which is largely unaffected by the anion exchange 

process (Allpike et al. 2005). The persistence of this material and loss of medium-

low MW organic material will lead to an increase in SUVA254 as shown in Table 5.1, 

since colloidal material has been shown to have a high UV absorbance activity due to 

light scattering effects (Huber and Frimmel 1996). Regions 2 – 4 were only slight 

removed during MIEX® treatment. Humic and fulvic hydrophobic materials are 

concentrated in this SEC region (Allpike et al. 2005). It has been reported that NOM 

in groundwaters on the Swan Coastal Plain is thought to consist largely of tannin 

derived substances, probably from condensed tannins composed predominantly of 

phenolic moieties, with relatively minor carboxylic acid content (Heitz 2002). 

Phenolic moieties are not efficiently removed by the MIEX® ion exchange 
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mechanism as they are likely to be present in their protonated (uncharged) form at 

the pH of treatment.  

Regions 5 – 7 were most significantly reduced by MIEX® treatment. This is 

consistent with anionic species, such as carboxylic acids, which are concentrated in 

this region, being readily removed by the ion exchange process.  

 

Figure 5.3 Molecular weight distribution of the raw water before and after MIEX® 
treatment measured by a) SEC-OCD and b) SEC-UV254 detection. Numbers 

correspond to eight distinct MW regions as described by Huber and Frimmel 1996 
and Allpike et al. 2005. 
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5.3.1.2 Fluorescence Excitation-Emission Spectroscopy 

Various fluorescence spectroscopy techniques have been used to characterise NOM 

samples (Chen et al. 2003, b). Fluorescence can provide important chemical 

information because all NOM samples have unique fluorescence signatures, 

reflecting the structure and functionality of the sample (Swietlik and Sirorska 2004). 

The fluorescence excitation-emission (EEM) profiles of the raw water before and 

after MIEX® treatment are shown in Figure 5.4, with all supporting literature 

explaining the major fluorescent components discussed in detail in Section 3.3.2. The 

peaks running diagonally through the emission range of 400 – 500 nm and an 

excitation range of 200 – 260 nm are instrument artefacts of glass and water 

interactions present in all EEM spectra. The peaks running diagonally through the 

emission range of 250 – 380 nm at an excitation range of 270 – 290 nm are due to 

Rayleigh/Tyndall scattering lines (Caron and Smith 2011).  

Prior to treatment, the raw water (Figure 5.4a) showed a high amount of humic-like 

(Ex: ≥  280 nm – Em: > 380 nm) and fulvic-like (Ex: < 250 nm – Em: > 350 nm) 

material (Chen et al. 2003, b). The spectral intensity in Figure 5.4 is represented by 

the contour lines: the closeness of lines increasing with increasing intensity. The high 

EEM intensity of the raw water and the only slightly lower intensity of the MIEX® 

treated water, reflect the high DOC concentrations of these two samples (Hua et al. 

2007). A high DOC concentration is normally found in waters with higher 

fluorescence intensity and broader fluorescence centres (Hua et al. 2007). The DOC 

concentrations of the raw water (23 mg L-1) and the MIEX® treated water (10 mg 

L-1) are considered high for fluorescence spectroscopic analysis. The closeness of the 

contour lines and occurrence of two peaks, a large one at Ex: 330 nm – Em: 420 nm 

and a less abundant one at Ex: 260 nm – Em: 420 nm, in the EEM spectra of the raw 

water (Figure 5.4a) are indicative of humic- and fulvic-like material (Hua et al. 2007; 

Her et al. 2003; Kim et al. 2006). After MIEX® treatment (Figure 5.4b), the humic- 

and fulvic-like material was of a slightly lower intensity. Partial removal of these 

structures might also be reflected by the moderate reduction of material in SEC 

regions 2 – 4 (Figure 5.3). But, as the fluorescence EEM spectra of the raw water and 

MIEX® treated water are similar, suggesting similar chemical characteristics, MIEX® 
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treatment appears to have had little effect on EEM spectral characteristics of NOM in 

this water source. 

 

 

Figure 5.4 Excitation-emission (EEM) fluorescence spectra of the a) raw water and 
b) MIEX® treated water. White arrows represent ‘humic-like’ components within the 
spectra. ‘Protein-like’ components within the spectra could not be identified due to 

the high concentration of ‘humic-like’ material. 
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5.3.2 Isolation of XAD Fractions from NOM Remaining After 

MIEX® Treatment  

After MIEX® treatment of W300 groundwater (400 L), the treated water was 

concentrated to 70 L and the NOM in the concentrated sample was fractionated with 

the XAD-8/XAD-4 resin procedure. Four separate fractions, MIEX® HPO, MIEX® 

TPIB, MIEX® TPIN and MIEX® HPI were isolated. The first three fractions were 

isolated in solid form and the MIEX® HPI (the final eluent from the procedure) 

remained as a liquid, with the total DOC recovered from the XAD-8/XAD-4 method 

being 30 %, consistent with the recovery observed in Chapter 4 of 35 % (Section 

4.3.1) and previous resin fractionation studies (Leenheer et al. 1987). In comparison 

to the DOC recovery (61 %) achieved using the UF isolation method in Chapter 3, 

the XAD-8/XAD-4 resin procedure did not allow a higher recovery of total DOC. 

The mass and relative proportions of isolated XAD fractions are shown in Table 5.2.  

Table 5.2 Isolated mass and relative proportions of the NOM fractions. 

Sample Isolated Mass 
(mg) 

Calculated Weight 
of C in Isolate based 

on Elemental 
Analysis % C 

(mg) 

Proportion of 
Total Recovered 

C as a Percentage^ 

MIEX® HPO 2050 1005 88 % 

MIEX® TPIB 248 123 11 % 

MIEX® TPIN 20 8 0.8 % 

MIEX® HPI 4* N/A 0.2 % 

N/A – not calculated 
^ Based on mg C of each isolate (from the elemental analysis) / total mass of C of all isolates 
(from the elemental analysis) 
*This fraction was not isolated as a solid form. The isolated mass was calculated to be 4 mg 
of organic carbon based on the concentration of DOC in the aqueous isolate. 

The relative proportions of XAD fractions from the NOM remaining after MIEX® 

treatment showed some differences to the relative proportions of XAD fractions 

isolated from the untreated NOM (Table 4.1). Following MIEX® treatment, there 

was a high proportion of HPO, similar amounts of TPI and lower HPI, consistent 

with the preferential removal of mid to low MW material in MIEX® treatment 

(Slunjski et al. 2000, b; Lee et al. 2003; Drikas et al. 2003), which concentrates in the 

TPI and HPI fractions. The degree of anionic charge in the TPI and HPI fractions is 

the key factor in the removal of these fractions by the MIEX® process (Sharp et al. 
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2006, a). Any preferential removal of TPI is important, given the ineffectiveness of 

coagulation in removing TPI fractions (Bond et al. 2010). MIEX® treatment has been 

previously shown (Huber and Frimmel 1996) to be inefficient in the removal of 

humic and fulvic hydrophobic material. The relatively inefficient removal of the 

humic rich HPO fraction after MIEX® treatment concurs with the persistence of high 

MW organic material identified by SEC analysis (OCD and UV254 detection) 

reported here (Figure 5.3) and previously (Allpike et al. 2005). 

5.3.3 Characterisation of Solid XAD Fractions from NOM 

Remaining After MIEX® Treatment 

5.3.3.1 Elemental Analysis and Atomic Ratios 

General compositional information was provided by elemental analysis of the three 

fractions obtained in solid form (MIEX® HPO, MIEX® TPIB, MIEX® TPIN), with 

the elemental percentage compositions and atomic ratio data of these fractions listed 

in Table 5.3. The low ash content of the MIEX® HPO fraction (3.01 %) is indicative 

of high organic matter content and low inorganic content. The low amount (20 mg) 

of the MIEX® TPIN fraction prohibited measurement of oxygen and ash content. 

Table 5.3 Elemental percentage compositions and atomic ratio data of the solid XAD 
fractions isolated from the MIEX® treated water. 

Sample % 
C 

% 
O 

% 
H 

% 
N 

% 
S 

%  
Ash 

H/C O/C N/C

MIEX® HPO 49.03 38.37 4.12 1.18 0.82 3.01 1.00 0.58 0.01
MIEX® TPIB 4.98 15.95 3.87 0.72 7.46 33.35 9.26 2.40 1.28
MIEX® TPIN 41.87 ND* 4.63 1.90 0.48 ND* 1.32 ND* 0.04

* ND - Not determined due to insufficient sample for analysis 

The elemental compositions of the three fractions varied considerably (Table 5.3), 

similar to the large variation in composition from the untreated water fractions 

(Table 4.2), but the values are still generally typical of groundwater NOM (Croué 

1999; Croué et al. 2003; Leenheer et al. 2000). The H/C, O/C and N/C ratios are also 

typical of reported ratios of HPO and TPI fractions from unpolluted groundwaters 

(Christensen et al. 1998). The H/C ratio of the MIEX® HPO fraction (~ 1) is 

indicative of aromatic rich aquatic humic material (Kim et al. 2006). The TPI 

fractions had higher O/C and N/C values, due to the concentration of heteroatom- 
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containing compounds in these fractions (Leenheer et al. 2000; Croué et al. 2003).  

Nitrogen concentrations generally increase with hydrophilic character, whilst carbon 

and hydrogen levels decline (Leenheer et al. 2000). Malcolm et al. (1995) isolated 

HPO and TPI fractions from a variety of surface waters in France, England, Norway 

and the United States and the TPI fractions were reported to have a relatively low 

chlorine reactivity compared to the humic and fulvic rich HPO fractions. Given the 

likely higher chlorine reactivity and proportion of the HPO fraction compared to the 

untreated HPO in Chapter 4, it is the more significant fraction with respect to 

disinfection by-product (DBP) formation. The DBP formation potential of the XAD 

fractions from NOM remaining after MIEX® treatment will be discussed in detail in 

Section 5.3.3.7. 

The measured elements of the MIEX® TPIB fraction (C, H, N, O, S, ash) accounted 

for only 66.3 % of the material, indicating other elements that were not measured as 

part of the elemental analysis were present in significant quantities. A sub-sample of 

the MIEX® TPIB fraction was dissolved in MilliQ water, the DOC concentration of 

this sample was determined, and concentrations of selected metals and other ions in 

the TPIB fraction were measured by atomic absorption spectroscopy. The results of 

these analyses are listed in Table 5.4.  

Table 5.4 Elemental composition of the TPIB fraction isolated from the MIEX® 
treated water. 

Sample Concentration (mg L-1) 
Na K Mg Ca Al Si Fe Mn Cu Cl DOC

MIEX® TPIB 7.6 0.02 0.15 1.18 0.23 0.5 0.03 ND* 0.04 20 1.6 
* ND – not detected 

The results suggest that the MIEX® TPIB fraction contained relatively high 

concentrations of the elements sodium and chlorine, which would have been 

volatilised at the combustion temperatures used during the elemental analysis. The 

high concentrations of sodium and chlorine in the MIEX® TPIB fraction suggest 

insufficient cleaning of the Dowex MSC-1 H resin, prior to sample application. A 

similar occurrence was reflected in the elemental analysis of the TPIB fraction of the 

untreated water (Table 4.3). Desalting the MIEX® TPIB sample was considered, but 

as it a very laborious technique, with risks including possible sample alteration and 
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lower sample recovery, the decision was made to use the MIEX® TPIB fractions as 

obtained.  

5.3.3.2 Fourier Transform Infrared Spectroscopic Analysis 

FTIR spectra of the MIEX® HPO and MIEX® TPI fractions are presented in Figure 

5.5. The three fractions showed similar IR absorption, typical of the profile of humic 

substances (Stevenson 1994) and the untreated fractions in Chapter 4, reflecting 

qualitatively similar structural and functional group features. The similarity of the 

FTIR bands of HPO and TPI fractions has been reported in several previous studies 

(Stevenson 1994; Rostad et al. 2000; Leenheer 1981). The most prominent features 

in the HPO spectrum in the current study were aliphatic hydrocarbon absorption 

bands at 2800 – 3100 cm-1 (yellow region), representative of C-H stretching from 

methyl and methylene carbons, accompanied by a dominant carboxyl peak at 1725 

cm-1 in the infrared spectrum due to stretching of carboxylic and carbonyl groups 

(pink region, (Rostad et al. 2000)). This strong carboxyl peak was accompanied by a 

broad aromatic and ketonic peak at 1620 cm-1 (purple region) which can be assigned 

to aromatic C=C stretching and asymmetric C=O stretching in COO- groups (Rostad 

et al. 2000). Consistent with a higher hydrophilic nature as shown by elemental 

analysis (Table 5.3), the TPI fractions showed more pronounced aliphatic bands at 

2900 cm-1 (yellow region), O-H stretching around 2800 – 3600 cm-1 (green region) 

and C-O and alcohol stretching at 1050 – 1250 cm-1 (blue region).  
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Figure 5.5 FT-IR spectra for the three XAD fractions isolated from MIEX® treated 
water. 

MIEX® treatment of the raw water prior to fractionation did result in some variations 

in the FTIR spectra of the NOM isolates compared to the raw water isolates (Figure 

4.2). Most noticeably, the MIEX® treated samples (Figure 5.5) displayed a 

significant absorption in the 1000 – 1200 cm-1 region, possibly representing C-O 

stretching of various groups (Takács and Alberts 1999), whereas this absorption was 

not seen in the raw water isolates. Several functional groups give signals in this 

region, including bands due to C-O stretching of alcohols, C-O stretching and O-H 

deformations of carboxylic acids, C-O stretching of esters and C-O-C stretching of 

ethers (Aiken 1985; Stevenson 1994).  The nature of MIEX® treatment (i.e. anion 

exchange) suggests that hydroxy groups may be particularly susceptible to removal 

by MIEX®. A reduction in the relative proportion of the band at 1620 cm-1 for the 

TPI fractions isolated from MIEX® treated water compared to fractions from the raw 

water possibly indicates a reduction in the amount of aromatic carbon in the fractions 

isolated from MIEX® treated water. Ineffective removal of the high MW, highly 

aromatic fraction was also observed in the HPSEC results (Figure 5.3). 
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5.3.3.3 Solid-State 13C Nuclear Magnetic Resonance Spectroscopic Analysis 

The solid-state 13C NMR spectra for the MIEX® HPO and MIEX® TPIB fractions are 

shown in Figure 5.6. The corresponding MIEX® TPIN fraction could not be analysed 

due to insufficient sample. The low intensity broad peaks in the spectra of the HPO 

and TPIB fractions were generally similar to the solid-state 13C NMR spectra 

reported for other aquatic NOM samples (Chen and Edwards 1999; Chen et al. 2002; 

Chen et al. 2003, a; Rostad et al. 2000; Mash et al. 2004; Lankes et al. 2008) and the 

corresponding XAD fractions from the untreated water sample in Chapter 4 (Section 

4.3.2.3). The MIEX® HPO fraction showed relatively larger signals of aromatic 

carbon (pink region) and oxygenated aliphatic carbon (such as methoxy groups) 

(yellow region) than the MIEX® TPIB fraction, consistent with a previous study of 

HPO and TPI fractions isolated from three water storage reservoirs in the semi-arid 

area of Southwest USA (Mash et al. 2004). In this previous study (Mash et al. 2004), 

the HPO fractions from all three reservoirs showed similar solid-state 13C NMR 

spectra, with the oxygenated aliphatic carbon signal contributing 46 – 48 % of the 

total peak area, and aromatic carbon contributing 12 – 14 % of the total peak area. 

The oxygenated aliphatic carbon signal for the TPI fractions from these three 

reservoirs contributed 39 – 41 % of the total peak area, with the aromatic carbon 

signal contributing 7 – 9 % of the total peak area. Conversely, the TPI fractions 

showed a higher contribution of aliphatic material (23 – 24 %), compared to the HPO 

fractions (16 – 18 %) (Mash et al. 2004), as observed in the current study. The sharp 

signal at 30 ppm (green region) for the TPIB fraction is indicative of long chain 

aliphatic moieties (Lankes et al. 2008).  
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Figure 5.6 Solid-state 13C NMR spectra of the a) HPO and b) TPIB fraction isolated 
from the MIEX® treated water. 

For comparison purposes, the relative signal areas measured for the fractions were 

integrated over four broad regions and attributed to functional groups, as discussed in 

detail in Section 4.3.2.3. The relative proportions of carbon types from integration of 

the two spectra are shown in Figure 5.7. Overall, the distribution of the types of 

carbon from solid-state 13C NMR spectroscopy were similar for the two samples, but 

the carbon distribution differed to the untreated fractions in Chapter 4, and other 

fractions isolated from Wanneroo groundwater (Allpike 2008). The major carbon 

type for the MIEX® HPO and MIEX® TPIB fractions was oxygenated aliphatic 
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carbon (32 and 35 %, respectively), with aliphatic carbon the second most abundant 

carbon type in both fractions. It appears that MIEX® treatment removed a small 

component of the aromatic fraction, which was also observed in the FTIR spectra 

(Figure 5.5). Carbonyl carbon was the least abundant carbon type in both fractions, 

as found in previous studies (Allpike 2008), and in earlier studies of the UF fraction 

(Chapter 3) and the fractions isolated from untreated water (Chapter 4). 
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Figure 5.7 Relative proportions of carbon types in the solid-state 13C NMR spectra of 
the isolated NOM fractions separated from water after MIEX® treatment. 

In a study of NOM isolated from three Australian sources (two from Victoria and 

one from Wanneroo GWTP), Wong et al. (2002) used solid-state 13C NMR 

spectroscopy to obtain structural characteristics of these samples. In the study by 

Wong et al. (2002), the 13C NMR spectrum of isolated material from the Wanneroo 

GWTP was similar to the spectra in the current research (Figure 5.6), dominated by 

aliphatic carbon. Unfortunately in the previous research, integrated areas of each 

spectral region were not reported, making a direct comparison of spectral response 

difficult. Fractionation of the Wanneroo sample resulted in a greater proportion of 

aliphatic and oxygenated aliphatic carbon for the hydrophobic sample (Wong et al. 

2002), as observed for the NOM fractions obtained after MIEX® treatment (Figure 

5.7). Overall, treatment of the raw water with MIEX® resin showed increases in the 

relative amounts of aliphatic carbon and oxygenated aliphatic carbon, with small 
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decreases in the relative amounts of aromatic carbon and carbonyl carbon. The ion 

exchange properties of the MIEX® resin mean that it is likely to remove the 

negatively charged fraction of aquatic NOM. 

5.3.3.4 Pyrolysis-Gas Chromatography-Mass Spectrometry 

Conventional flash pyrolysis-GC-MS was performed at 650 °C for 10 seconds on the 

solid samples of the MIEX® HPO, MIEX® TPIB and MIEX® TPIN fractions of 

NOM remaining after MIEX® treatment. The total ion chromatograms from py-GC-

MS of these fractions are shown in Figure 5.8a – c, respectively. The major pyrolysis 

products from the fractions and their likely biological precursors are listed in Table 

5.5. A much larger suite of tentatively identified products are listed in Appendix 2.  

The high salt content present in the MIEX® TPIB fraction (Table 5.4) reduced the 

NOM content in the sample and therefore the product abundance. The high salt 

content possibly also inhibited product formation in the pyrolysis-GC-MS technique, 

limiting comparison of this fraction to the other fractions.  

Approximately 50% of the pyrolysis products of NOM can usually be assigned to 

specific biochemical precursors (Leenheer 2009), but as the yields of analysable 

products from pyrolytic techniques (such as pyrolysis-GC-MS) are often low (< 25 

%), conclusions regarding the original structure of the NOM in the samples must be 

drawn with caution (Kögel-Knabner 2000). The MIEX® HPO fraction showed a 

relatively high abundance of aromatic hydrocarbons (peaks 15, 20, 25), alkylphenols 

(31, 37) and PAHs (28, 33, 47), similar to the pyrolysis products observed from other 

aquatic HPO fractions (Croué et al. 1999, b; Harrington et al. 1996) and the raw HPO 

fraction (Figure 4.4a). Flash pyrolysis (at 625 °C) was one technique used for 

characterisation of the Suwannee, South Platte and Blavet River NOM samples in the 

study of Croué et al. (1999 b), with phenols and cresols shown to be the predominant 

peaks for the HPO fractions. The high content of phenolic (Templier et al. 2005; 

Berwick et al. 2010, b) and other aromatic (Joll et al. 1999) compounds in pyrolysis 

product mixtures from NOM samples derived from groundwaters has been 

previously reported; indeed aromatic hydrocarbons are common flash pyrolysis 

products of aquatic NOM and they are derived from several biomolecular sources 

(Templier et al. 2005). Phenols and cresols can be derived from 
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polyhydroxyaromatic type structures (Heitz et al. 2001; Croué et al. 1999, b), and are 

often attributed to intact or partially degraded lignin and tannin constituents of plant 

tissues (McIntyre and McRae 2005). In contrast to the MIEX® HPO fraction, the 

MIEX® TPIB and MIEX® TPIN fractions contained lower proportions of phenols, 

but higher proportions of nitrogenous products, such as acetonitrile (4) and pyrrole 

(11), reported to be derived from protein and amino sugar precursors (Gadmar et al. 

2005; Croué et al. 2003). The higher nitrogen content of the pyrolysis products from 

the MIEX® TPI fraction compared to the MIEX® HPO fraction was also reflected in 

the results of elemental analysis (Table 5.3) where the MIEX® TPI fractions were 

more nitrogen-enriched than the MIEX® HPO fraction. A previous study on 

fractionation of NOM from a surface water source in France by the XAD-8/XAD-4 

resin method also used py-GC-MS to characterise the NOM isolates (Croué et al. 

1999, b). It was found that phenol and cresol were the major peaks in the 

chromatogram of the XAD-8 fraction (equivalent to the HPO fraction in the current 

study) whilst acetonitrile and pyrrole were more abundant in the chromatogram of 

the XAD-4 fraction (equivalent to the TPI fractions here) (Croué et al. 1999, b), 

consistent with the observed products in the current study. 
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Figure 5.8a Total ion chromatogram from the py-GC-MS of the MIEX® HPO fraction. Peak assignments correspond to products listed in Table 
5.5: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ▲no specific source. The pie chart reflects relative proportions of six major 

product and precursor types.
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Figure 5.8b Total ion chromatogram from the py-GC-MS of the MIEX® TPIB fraction. Peak assignments correspond to products listed in 
Table 5.5: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ▲no specific source. The pie chart reflects relative proportions of six 

major product and precursor types.
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Figure 5.8c Total ion chromatogram from the py-GC-MS of the MIEX® TPIN fraction. Peak assignments correspond to products listed in 
Table 5.5: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ▲no specific source. The pie chart reflects relative proportions of six 

major product and precursor types.
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Table 5.5 Major pyrolysis products from the XAD fractions of the NOM isolated 
from the MIEX® treated water and their likely origin. Full list of tentatively 

identified products can be found in Appendix 2. 

Peak 
No. 

Compound Possible Origin 

1 acetaldehyde / methyl propene / 
1,3-butadiene 

polysaccharides /no specific 
source 

3 propylene no specific source 
4 acetonitrile N/S compounds 
7 cyclobutane / acetone / furan polysaccharides / no specific 

source 
11 pyrrole protein 
15 benzene polysaccharides/ protein / lignin 
17 2-methyl propanal polysaccharides 
18 indene no specific source 
20 toluene polysaccharides / protein / lignin 
25 xylene protein / lignin 
28 styrene no specific source 
30 2-cyclopenten-1-one polysaccharides 
31 phenol polysaccharides/ protein / lignin 
33 C3 benzene no specific source 
37 cresol lignin / tannin / protein 
41 cyclotetradecane no specific source 
43 ethyltoluene no specific source 
44 benzoic acid no specific source 
46 2-furancarboxaldehyde polysaccharides 
47 naphthalene polysaccharides 
57 2-methyl-2-cyclopenten-1-one polysaccharides 
67 diacetylbenzene polysaccharides 
71 ethyl hexanol polysaccharides 
75 1,4-diaza-2,5-

dioxobicyclo[4.3.0]nonane 
protein 

78 hexadecanoic acid lipids 
86 dimethylphenol lignin / tannin 
93 dimethylphenol lignin / tannin 

 

In order to simplify the pyrolysis products from the three different fractions, the 

tentatively identified products were allocated to one of six groups based on the 

probable origin of the fragment. Four of the categories related to distinct biological 

origin or chemical structure, with two other categories referring to “other products” 

which could be derived from multiple sources or could not be identified by GC-MS. 

These classifications are based on a modified version of the classification system of 

Bruchet and colleagues (Bruchet et al. 1989; Bruchet et al. 1990). The proportion of 
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species within these categories was determined by summing the areas of all peaks 

within a category and calculating the ratio of this total category peak area to the total 

area of detected peaks as a percentage. This process was carried out in an identical 

manner for all three samples, providing a consistent method for comparison. The 

relative proportions of these groups expressed as a percentage of the total pyrolysis 

product peak area are shown as pie charts in Figure 5.8a – c. This semi-quantitative 

approach added to the chemical assessment of different samples, and revealed 

several distinct differences between the three fractions. The MIEX® HPO fraction 

was rich in polysaccharides (furans, cyclopentenes), tannins and lipids, with minimal 

input from protein or nitrogen- or sulfur-containing (N/S) compounds, similar to the 

untreated HPO fraction (Figure 4.4a). The high abundance of polysaccharides 

present in the MIEX® HPO fraction was reflected by the high oxygenated-aliphatic 

and aromatic carbon content seen in the solid-state 13C NMR spectroscopic analysis 

(Figure 5.7). The MIEX® TPIN fraction was rich in N/S compounds, proteins and 

polysaccharides. The higher abundance of oxygenated and nitrogenous products was 

consistent with the higher total nitrogen content and N/C ratio (Table 5.3) observed 

from the elemental analysis of this sample.  

Whereas MIEX® treatment preferentially removed TPI and HPI material, as 

indicated by the slight redistribution of the fractions following treatment (Table 5.2), 

little molecular difference was evident in the py-GC-MS profiles of the XAD 

fractions of the untreated (Figure 4.4) and MIEX® treated water (Figure 5.8). Most of 

the products detected in the HPO and TPIN fractions of the treated water (Table 5.5) 

were also detected in the same fractions of the untreated water (Table 4.4). The HPO 

fraction isolated from the MIEX® treated water (Figure 5.8a) had a higher amount of 

polysaccharide material, but a lower amount of protein and N/S compounds 

compared to the HPO fraction isolated from the untreated water (Figure 4.4a). 

Similar tentative pyrolysate distributions were detected from the respective TPIN 

fractions (Figure 5.8c and 4.4c). The high salt content present in both the TPIB and 

MIEX® TPIB fractions (Tables 4.2 and 5.5 respectively) inhibited product formation 

in the pyrolysis-GC-MS technique, limiting the ability to compare the fractions.  
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5.3.3.5 On-line Thermochemolysis-Gas Chromatography-Mass Spectrometry 

Pyrolysis of NOM in the presence of tetramethylammonium hydroxide (TMAH) 

promotes the formation of GC- resolvable methyl esters of carboxylic acid structures 

and methyl ethers of phenolic structures which is beneficial since carboxylic acids 

and phenols are not efficiently detected by GC-MS during conventional pyrolysis 

(Saiz-Jimenez et al. 1993). On-line thermochemolysis with TMAH was conducted at 

650 °C for 10 seconds on the MIEX® HPO, MIEX® TPIB and MIEX® TPIN 

fractions. The total ion chromatograms from thermochemolysis-GC-MS analysis of 

these fractions are shown in Figure 5.9a – c, respectively. Major products and their 

likely origin are listed in Table 5.6, whilst the full suite of tentatively identified 

products across the three fractions is listed in Appendix 2. 

The high salt content present in the MIEX® TPIB fraction (Table 5.4) reduced the 

NOM content in the sample and therefore the product abundance. The high salt 

content possibly also inhibited product formation in the thermochemolysis-GC-MS 

technique, limiting the comparison of this fraction to the other fractions.  

The product mixtures from on-line thermochemolysis complement the product 

mixtures observed in conventional flash pyrolysis (Figure 5.8a – c), with the 

detection in on-line thermochemolysis of additional acids (as their methyl esters), 

such as methyl propanoate, methyl isobutyrate and the methyl ester of 2-

methoxypropionic acid, which were not detected by flash pyrolysis. Alkyl substituted 

aromatic compounds (e.g. alkyl benzenes and naphthalenes) typical of direct 

pyrolysis were detected, but also a large range of aliphatic and aromatic carboxylic 

acids common to thermochemolysis studies of NOM (del Rio et al. 1998; Templier et 

al. 2005). The methyl esters of the low MW carboxylic acids have been attributed to 

cross linkages between phenolic structures and have been reported to be usually 

abundant in humic substances (Martin et al. 1995). Aliphatic diacids, as their 

dimethyl esters, were also detected and are reported to be typical of animal, 

vegetable and microbial cell metabolites (Templier et al. 2005). The C16 and C18 fatty 

acid methyl esters (FAMEs) were the most dominant lipids for each fraction, similar 

to the HPO, TPIB and TPIN fractions (Section 4.3.2.5, Figure 4.6 and Table 4.5) and 

other studies of groundwater NOM (Desmukh et al. 2001). Thermochemolysis of 

these NOM fractions obtained after MIEX® treatment also showed several
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Figure 5.9a Total ion chromatogram from thermochemolysis-GC-MS of the MIEX® HPO fraction. Peak assignments correspond to products 
listed in Table 5.6: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ◄ methyl methoxybenzoates, ►methyl benzoates, ▲no specific 

source. The pie chart reflects relative proportions of eight major product and precursor groups.
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Figure 5.9b Total ion chromatogram from thermochemolysis-GC-MS of the MIEX® TPIB fraction. Peak assignments correspond to 
products listed in Table 5.6: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ◄ methyl methoxybenzoates, ►methyl benzoates, 

▲no specific source. The pie chart reflects relative proportions of eight major product and precursor groups.
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Figure 5.9c Total ion chromatogram from thermochemolysis-GC-MS of the MIEX® TPIN fraction. Peak assignments correspond to 
products listed in Table 5.6: ■ polysaccharides, ● N/S compounds, □ protein, ◊ lipids, ◄ methyl methoxybenzoates, ►methyl benzoates, 

▲no specific source. The pie chart reflects relative proportions of eight major product and precursor groups.
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Table 5.6 Major products from the XAD fractions of NOM isolated from the MIEX® 
treated water and their possible origin. Full list of tentatively identified products can 

be found in Appendix 2. 

Peak No. Compound Possible Origin 
1 methyl acrylate no specific source 
2 methyl propanoate no specific source 
7 methyl isobutyrate polysaccharides 
8 methyl methacrylate polysaccharides 
10 (dimethylamino)acetonitrile N/S compounds 
11 dimethylcyanamide N/S compounds 
12 2-methoxy propionic acid methyl ester polysaccharides 
13 N,N-dimethylacetamide N/S compounds 
14 N-methylacetamide N/S compounds 
23 acetic acid methyl ester polysaccharides 
27 ethylbenzene protein / lignin 
35 anisole lignin 
37 trimethylbenzene no specific source 
41 methyl 2-pentanoate polysaccharides 
42 hexahydro-1,3,5-trimethyl-1,3,5-triazine N/S compounds 
45 C3 benzene no specific source 
47 ethyl hexanol polysaccharides 
49 dimethyl succinate polysaccharides 
51 dimethyl 2-methylsuccinate polysaccharides 
58 methyl benzoate methyl benzoates 
60 dimethoxybenzene lignin 
67 dimethyl glutarate polysaccharides 
77 dimethoxytoluene lignin 
79 methyl dimethyl benzoate methyl benzoates 
84 dimethoxytoluene lignin 
86 methyl ethylbenzoate methyl benzoates 
90 methyl methoxybenzoate methyl benzoates 
92 methylnaphthalene polysaccharides 
95 methylnaphthalene polysaccharides 
102 methyl dimethoxybenzoate lignin 
103 trimethoxybenzene lignin 
113 methyl hexadecanoate lipids 
116 octadecanoic acid methyl ester lipids 
128 trimethoxybenzoic acid methyl ester methyl methoxybenzoates
129 phenanthrene no specific source 
132 anthracene no specific source 

 

high MW polycyclic aromatic hydrocarbons (e.g. phenanthrene, anthracene) not 

observed with flash pyrolysis, suggesting that the TMAH reagent assists in the 

thermal release of these PAH structures. 
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The major thermochemolysis products of the MIEX® HPO fraction included the 

methyl esters of low MW saturated and unsaturated acids (e.g. methyl acrylate, 

methyl propanoate), alkyl (≤ C3) phenols, and their methoxy analogues. FAMEs 

were also detected (peaks 113, 116). All these products are common 

thermochemolysis products of tannin and lignin structures of terrestrially derived 

humic substances (Leenheer et al. 2003). Low MW acids (as their methyl esters) and 

polymethoxybenzenes are usually attributed to cross linking units between phenolic 

structures of humic macromolecules (Martin et al. 1995). FAMEs are generally 

formed by transesterification of triglycerides and other lipids (Challinor 1991), and 

are generally attributed to microbial sources (Frazier et al. 2005). A higher 

proportion of nitrogenous compounds were detected in the MIEX® TPIB and MIEX® 

TPIN fractions, such as (dimethylamino)acetonitrile (10), dimethylcyanamide (11) 

and N-methylacetamide (12) consistent with the concentration of relatively polar 

nitrogen (and other heteroatom) structures present in the thermochemolysis product 

mixture of the TPI fraction (Table 5.3). 

The classification system used for the flash pyrolysis data was also applied to the 

TMAH thermochemolysis products and the percentages of eight discrete product 

groups - polysaccharides, N/S compounds, protein, lipids, methyl benzoates, methyl 

methoxybenzoates, and other products (which refers to those known to be derived 

from multiple sources and those which could not be identified) - are included in pie 

charts in Figure 5.9a-c. Qualitative differences were evident between the 

classification types of the products from the three fractions. The MIEX® HPO 

fraction was richest in polysaccharides, methyl methoxybenzoates, methyl benzoates 

and lipids. The MIEX® TPIB fraction was much richer in N/S compounds, but still 

had significant contributions of polysaccharide, methyl benzoate and lipid material. 

The MIEX® TPIN fraction was also rich in polysaccharides, as well as protein, 

methyl methoxybenzoates and methyl benzoates. As NOM becomes enriched in 

nitrogenous compounds, it becomes more hydrophilic (Templier et al. 2005), 

consistent with the high relative contribution of N compounds in the 

thermochemolysis product mixtures from the MIEX® TPIN and MIEX® TPIB 

fractions and the results of the elemental analysis of these two fractions (Table 5.3). 
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MIEX® treatment prior to XAD resin fractionation led to several notable changes in 

the molecular composition of the XAD fractions (Figure 5.9a compared to Figure 

4.6a) as indicated by thermochemolysis-GC-MS. MIEX® treatment led to a relative 

reduction in detectable N/S compounds for the MIEX® HPO fraction. The MIEX® 

TPIB fraction increased in the relative N/S compound composition, with a 

corresponding relative decrease in polysaccharide material, compared to the 

corresponding fraction without MIEX® treatment. No obvious changes were evident 

for the MIEX® TPIN fraction compared to the corresponding fraction without 

MIEX® treatment. However, as all the chromatographic techniques employed in this 

Thesis were used for qualitative rather than quantitative purposes, any changes 

between composition of the fractions pre and post MIEX® treatment should be 

verified by other methods. 

5.3.3.6 Micro-Scale Sealed Vessel Pyrolysis-Gas Chromatography-Mass 

Spectrometry 

Recent MSSV pyrolysis studies of NOM and related humic fractions has shown that 

the technique can assist the thermal defunctionalisation of a wide variety of organic 

biochemicals and provide new speciation data useful for establishing structures and 

source inputs (Berwick et al. 2007; Greenwood et al. 2006; Berwick 2009; Berwick 

et al. 2010, a; Berwick et al. 2010, b). MSSV pyrolysis was conducted at 300 °C for 

72 hours on the MIEX® HPO, MIEX® TPIB and MIEX® TPIN fractions. Total ion 

chromatograms from MSSV pyrolysis followed by GC-MS of the MIEX® HPO, 

MIEX® TPIB and MIEX® TPIN fractions are shown in Figure 5.10. Major products 

assigned on the basis of mass spectral interpretation are listed in Table 5.7, and all 

products are listed in Appendix 2. 

Each fraction contained high concentrations of alkyl substituted benzenes, phenols, 

and naphthalenes. As found in the pyrolysis-GC-MS and thermochemolysis-GC-MS 

chromatograms, the MIEX® HPO and MIEX® TPIN fractions formed products in 

greater abundances and number than the MIEX® TPIB fraction, with the high salt 

content present in the MIEX® TPIB fraction (Table 5.4) reducing the NOM content 

in the sample and therefore the product abundance, as well as possibly inhibiting 

product formation in the MSSV pyrolysis-GC-MS technique. The MIEX® HPO 

fraction was dominated by alkyl aromatic compounds (peaks 49, 66, 68; Table 5.7), 
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and in particular alkylphenols (95, 99, 110, 122, 129), as well as low MW short chain 

aliphatic compounds (1, 5, 6, 8). The majority of these products were also detected 

by MSSV pyrolysis-GC-MS of the HPO fraction of the untreated water (Figure 4.7). 

Alkyl aromatic compounds are common pyrolysis products of aquatic NOM and 

other humic materials (Saiz-Jimenez et al. 1993). They may arise from a range of 

sources, but alkylphenols are usually attributed to lignin or tannin sources (Templier 

et al. 2005; Saiz-Jimenez and De Leeuw 1986; Bruchet et al. 1990). Many cyclic 

aliphatic higher plant terpenoids undergo aromatisation during natural or artificial 

maturation (Berwick 2009), and a high aliphatic solid-state 13C NMR signal 

measured for the MIEX® HPO sample (Figure 5.6) may be indicative of this process. 

Aromatisation of cyclic terpenoids during MSSV thermal treatment may contribute 

to the high concentration of aromatic hydrocarbon product. The lack of significant 

amounts of long chain aliphatic products from MSSV pyrolysis, flash pyrolysis and 

thermochemolysis suggests the high alkyl carbon content detected by solid-state 13C 

NMR spectroscopy probably reflects highly branched and cyclic aliphatic structures 

of terpenoids (Lu et al. 2003).  

Naturally occurring terpenoids occur in an extremely wide variety of structural 

configurations and may be subject to alteration during MSSV thermal treatment. As 

such, it is difficult to unequivocally correlate individual alkyl naphthalene pyrolysis 

products to a specific terpenoid precursor. Trimethylnaphthalenes (135) dominated 

the alkyl naphthalene distribution of the MIEX® HPO fraction, and have been 

reported in residues after multi-step chemical degradations of immature sediments, 

rich in higher plant terpenoids (Almedros et al. 1998).  

Alkyl benzenes likely include both primary alkyl-linked aromatic structures 

(Schulten and Gleixner 1999), as well as secondary products from the thermal 

alteration of other NOM moieties. Reduction of aromatic carboxylic acid groups may 

be one possible route to alkyl benzenes as solid-state 13C NMR spectroscopic 

analysis (Figure 5.6) showed that the MIEX® HPO fraction contained moderate 

carboxyl content. Several aromatic carboxylic acids (as their methyl esters, Section 

5.3.3.5) were also detected by thermochemolysis-GC-MS of this fraction. However, 

the high abundance of alkyl benzenes from this fraction does not correlate to the  
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Figure 5.10 Total ion chromatograms obtained by MSSV pyrolysis-GC-MS analysis of the a) HPO, b) TPIB and c) TPIN fractions of NOM 
remaining in the MIEX® treated water. Peak assignments correspond to products listed in Table 5.7 and Appendix 2. The pie charts reflect 

relative proportions of eight major product and precursor groups. 
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Table 5.7 Major products from MSSV pyrolysis-GC-MS of the XAD fractions of 
NOM isolated after MIEX® treatment. 

Peak No. Compound Possible Origin 
1 butene short chain compounds 
3 acetone short chain compounds 
4 methanethiol / 1-butene short chain compounds 
5 methyl heptene short chain compounds 
6 propanal short chain compounds 
8 ethyl hexanol short chain compounds 
12 trimethyl pentane short chain compounds 
15 butanone / pentane short chain compounds 
23 dimethylhexadiene short chain compounds 
24 methyl cyclopentene cyclic compounds 
33 heptane short chain compounds 
49 toluene alkyl benzenes 
59 trimethyl-2-cyclopenten-1-one cyclic compounds 
61 ethyl hexane short chain compounds 
66 ethylbenzene alkyl benzenes 
68 xylene alkyl benzenes 
69 dimethylphenol phenols 
80 ethyl toluene alkyl benzenes 
82 tetramethyl furan furans 
88 phenol phenols 
90 trimethyl benzene alkyl benzenes 
95 cresol phenols 
110 dimethylphenol phenols 
122 ethyl-methyl-phenol phenols 
129 trimethyl phenol phenols 
135 trimethyl naphthalene naphthalenes 

 

relatively low aromatic carbon content detected by solid-state 13C NMR 

spectroscopy. This suggests that secondary cyclisation and aromatisation of aliphatic 

and alicyclic terpenoids may be a significant source of alkyl benzenes for this sample 

(Schulten and Gleixner 1999).  

Low MW aliphatic compounds were also prominent MSSV pyrolysis-GC-MS 

products for all fractions. These aliphatic compounds included C4-C8 branched 

alkanes and alkenes (5, 12, 15, 23, 33) and alkyl cyclopentene (24). Flash pyrolysis 

also generated high concentrations of low MW aliphatic compounds displaying a 

range of unsaturation and alkyl substitution from these samples. The high 

concentration of these pyrolysis products is consistent with the high aliphatic carbon 

signal measured by solid-state 13C NMR spectroscopy (Figure 5.6). MSSV pyrolysis-
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GC-MS of the TPIN and TPIB fractions showed a higher proportion of short chain 

compounds, a lower proportion of detectable nitrogenous compounds, and a similar 

proportion of alkylphenols, when compared to the HPO fraction. Conversely, alkyl 

furans were more abundant for the TPI fractions than for the HPO fraction, 

consistent with the more abundant oxygenated aliphatic signal seen in the solid-state 
13C NMR spectra (Figure 5.7) and the FTIR spectra (Figure 5.5) of the untreated 

samples.  

A semi-quantitative modified classification, as discussed in Section 5.3.3.4 (Bruchet 

et al. 1989; Bruchet et al. 1990), of common MSSV pyrolysis product groups is 

shown as pie charts in Figure 5.10. Many of the abundant alkyl aromatic 

hydrocarbons produced from the MIEX® HPO fraction can be derived from a range 

of organic precursors and therefore provide limited information about their source of 

origin. There was a lower proportion of N-containing compounds in the MIEX® 

HPO fraction compared to the MIEX® TPI fractions (Figure 5.10), consistent with 

the HPO and TPI fractions of the raw water (Figure 4.7). A previous study on NOM 

fractions isolated from the Gartempe River in France (Templier et al. 2005) also 

showed the TPI fraction, in contrast to the HPO fraction, exhibiting a large number 

of nitrogen-containing compounds in significant relative intensity, including organic 

compounds containing only nitrogen heteroatoms and organic molecules with both 

nitrogen and oxygen heteroatoms. 

5.3.3.7 Overall Characteristics of the MIEX® HPO, MIEX® TPIB and MIEX® 

TPIN fractions  

MIEX® pre-treatment of W300 groundwater before isolation of NOM fractions by 

XAD-8/XAD-4 fractionation produced three solid freeze-dried samples, termed 

MIEX® HPO, MIEX® TPIB and MIEX® TPIN. Reduction of salt concentrations 

within these fractions was challenging, and a high salt content hindered 

characterisation of the MIEX® TPIB fraction. Characterisation of the fractions by 

FTIR and solid-state 13C NMR spectroscopic analysis indicated that the samples had 

a significant shift in carbon distribution to aliphatic material compared to the 

untreated samples, indicating that the MIEX® treatment had removed some aromatic 

material from the samples. Further characterisation by py-GC-MS, 

thermochemolysis-GC-MS and MSSV-py-GC-MS revealed that the MIEX® HPO 
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fraction had a significant contribution from alkylphenols and polyaromatic 

hydrocarbons. The higher nitrogen and oxygen content of the MIEX® TPIB and 

MIEX® TPIN fractions than the MIEX® HPO fraction found in the elemental 

analysis was consistent with more nitrogen- and oxygen- containing functionalities 

(such as those derived from proteins and tannins) being observed in the MIEX® 

TPIB and MIEX® TPIN product mixtures from the three pyrolysis based methods.  

5.3.3.8 Disinfection By-Product Formation Potential 

The quantity and speciation of DBPs in finished drinking water can vary with a range 

of factors, including source water quality (i.e. temperature, pH, bromide 

concentration and DOC composition and concentration). NOM has been well known 

as the primary precursor for formation of trihalomethanes (THMs) during 

chlorination since the 1970s (Bellar et al. 1974; Rook 1974, 1977), and the THM and 

HAA (haloacetic acid) formation from various organic carbon fractions isolated by 

XAD resin fractionation has been examined (Kitis et al. 2002; Drikas et al. 2011; 

Croué et al. 1993, b; Croué et al. 2000). There does not appear to be any previous 

studies that have fractionated the NOM remaining in MIEX® treated water to 

investigate the reactivity of this residual NOM. In the current study, the disinfection 

by-product formation potential (DBPFP) of NOM remaining in the water after 

MIEX® treatment was examined to determine the potential for the XAD fractions 

isolated from the NOM in the water after MIEX® treatment to form DBPs. 

 In the present study, aqueous samples of the MIEX® HPO and MIEX® TPIB 

fractions (produced by initial dissolution of the dried isolate in MilliQ water) were 

diluted to achieve DOC concentrations of 2 mg L-1, typical of the DOC concentration 

at the outlet of the Wanneroo GWTP, and bromide ion (0.2 mg L-1) was added to 

simulate the bromide concentrations of raw W300 (Table 2.3, Section 2.3.3) since 

negligible bromide is removed in the Wanneroo GWTP (Warton et al. 2007, a). 

Disinfection experiments involved addition of chlorine to achieve an initial 

concentration of 6 mg L-1 (a similar chlorine dose to that applied for disinfection of 

water at the Wanneroo GWTP), addition of buffer to pH 7 and temperature control 

(25°C), with the concentrations of the residual free chlorine equivalents, THMs and 

HAAs analysed after 7 days. The 7-day oxidant demands of the MIEX® HPO and 

MIEX® TPIB samples are shown in Table 5.8, with the 7-day individual and total 
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THM concentrations shown in Table 5.9, and the corresponding HAA concentrations 

are shown in Table 5.10.  

Table 5.8 Oxidant demands of the MIEX® HPO and MIEX® TPIB fraction 
(halogentation conditions: 2 mg L-1 DOC, 6 mg L-1 Cl2 dose, 0.2 mg L-1 Br-, pH 7, 

25°C, 168 hours). 

Sample Oxidant demand 

(mg L-1 free chlorine) 

Specific oxidant demand 

(mg free chlorine/mg C) 

MIEX® HPO 4.5 2.3 
MIEX® TPIB 4.1 2.1 

 

In these experiments, the oxidant demands of the individual samples were similar to 

the raw water samples post MIEX® treatment (Table 4.8). Since the DOC 

concentration has been normalised to 2 mg L-1 prior to the disinfection experiments, 

the oxidant demand is already normalised to the DOC concentration, and 

comparisons of oxidant demands are therefore comparisons of specific oxidant 

demands. The oxidant demand of the MIEX® HPO sample was slightly higher than 

the corresponding MIEX® TPIB sample. Huber and Frimmel (1996) showed that the 

HPO fraction is likely to contain mainly humic-type material with a large aromatic 

content, and possibly include significant quantities of phenols and 

dihydroxybenzenes which have been shown to be highly reactive with chlorine 

(Gallard et al. 2003). Krasner et al. (1996) established that aromatic compounds, 

particularly those found in humic material, undergo a number of reactions with 

chlorine, accounting for the high chlorine demand of this material. In addition, Owen 

et al. (1995) found that the humic fraction was more reactive with chlorine compared 

to non-humic material from the same source, as observed in the lower chlorine 

demand for the MIEX® TPIB fraction. 
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Table 5.9 Concentrations of THMs from chlorination of the MIEX® HPO and MIEX® 
TPIB fractions (halogenation conditions: 2 mg L-1DOC, 6 mg L-1 Cl2 dose, 0.2 mg L-1 

Br-, pH 7, 25ºC, 168 hours). 

Sample Concentration of Individual THMs 

(µg L-1) 

Total 

THMFP 

(µg L-1) 

Specific 

THMFP 

(μg/mg C) CHCl3 CHBrCl2 CHBr2Cl CHBr3 

MIEX® HPO 111 93 52 5 261 131 

MIEX® TPIB 10 19 24 23 76 58 

 

Table 5.10 Concentrations of HAAs from chlorination of the MIEX® HPO and 
MIEX® TPIB fractions (halogenation conditions: 2 mg L-1DOC, 6 mg L-1 Cl2 dose, 

0.2 mg L-1 Br-, pH 7, 25ºC, 168 hours). 

 
Sample 

Concentration of Individual HAAs (µg L-1) Total 
HAAs 

(µg L -1) 

Specific 
HAAFP 
(μg/mg 

C) 

MCAA MBAA DCAA TCAA BCAA DBAA BDCAA CDBAA TBAA 

MIEX® 
HPO 

6 1 60 44 32 8 17 2 ND* 172 86 

MIEX® 
TPIB 

ND* ND* 13 3 20 23 1 ND* ND* 60 30 

* ND - not detected 

The concentrations of DBPs in Table 5.9 and 5.10 show that the MIEX® HPO and 

MIEX® TPIB samples are both reactive with chlorine. The higher THM and HAA 

concentrations from the MIEX® HPO sample compared to the MIEX® TPIB sample 

are due to the enrichment of reactive humic-type components, other aromatic 

substituents and unsaturated organic species in this fraction (Liang and Singer 2003; 

Reckhow et al. 1990; Owen et al. 1995). MIEX® treatment prior to fractionation did 

reduce the THM concentrations produced for the MIEX® HPO and MIEX® TPIB 

fractions compared to the HPO, HPO after MIEX®, TPIB, and TPIB after MIEX® 

fractions (Tables 4.9 and 5.9). Interestingly, the MIEX® TPIB sample produced a 

higher amount of HAAs (Table 5.10) than the TPIB sample from the untreated water 

(Table 4.10). This indicates that yield reductions, such as the lower THM and HAA 

concentrations produced from the MIEX® HPO fraction compared to the 

concentrations produced from the HPO after MIEX® fraction, could not be 

envisaged. It is impractical with current treatment technology to selectively target the 

removal of reactive DBP precursors (Bond et al. 2010), hence the increase in HAAs 

after MIEX® pre-treatment would also have been difficult to predict, as 
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physicochemical factors controlling treatability do not relate to reactivity with 

chlorine (Bond et al. 2010). The TPIB fraction is usually more recalcitrant to 

conventional treatment (Kitis et al. 2002), and further measures will be required to 

reduce the concentration of the TPIB fraction if more stringent DBP regulations 

continue to be implemented.  

In this DBPFP experiment, chloroform was the major THM product formed from the 

MIEX® HPO sample. Dibromochloromethane and bromoform were the most 

abundant products from the MIEX® TPIB sample. The shift towards the more 

brominated forms from the MIEX® TPIB sample must be due to an increased 

reaction of the functional groups present with bromine (Liang and Singer 2003). The 

shift towards more brominated species was also seen for the TPIB after MIEX® 

sample compared to the raw water sample in Chapter 4 (Table 4.9), but 

dichlorobromomethane was the major THM produced for the TPIB after MIEX® 

fraction. 

The MIEX® HPO fraction showed a much larger HAAFP than the MIEX® TPIB 

sample (Table 5.10), indicating that the NOM within the MIEX® HPO sample 

contained relatively more HAA precursors than the NOM within the MIEX® TPIB 

sample. Interestingly, more HAAs were produced for the MIEX® TPIB sample 

compared to the respective TPIB samples before and after MIEX® treatment in Table 

4.10 (TPIB – 18 μg L-1, TPIB after MIEX® – 10 μg L-1). This suggests that MIEX® 

pre-treatment prior to fractionation did not selectively remove reactive HAA 

precursors over non-reactive precursors for this sample, even though MIEX® 

treatment for the TPIB samples (Tables 4.9 and 5.9) indicated removal of some THM 

precursors. This indicates that some HAA precursors within the MIEX® TPIB 

fraction are recalcitrant to treatment, and should be targeted by additional treatment.  

Some brominated DBPs are more mutagenic and carcinogenic than their chlorinated 

analogues (Bougeard et al. 2010; Richardson 2003; Chen and Westerhoff 2010; 

Drikas et al. 2008; Zhang et al. 2000), so a better understanding of the extent of 

bromine and chlorine substitution into DBPs is required. The extent of bromine 

incorporation into THMs and HAAs was evaluated here by calculating the bromine 

incorporation factors (BIFs) as described in Section 3.2.2. BIF values relating to a 
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comparison of bromine substitution, on a scale of 0 to 1 (Obolensky and Singer 

2005), for the THMs and HAAs are shown in Table 5.11. 

Table 5.11 BIF values for THMs and HAAs obtained after a 7 day chlorination 
period. 

Sample BIF (THMs) BIF (HAAs) 

MIEX® HPO 0.27 0.06 

MIEX® TPIB 0.59 0.18 

 

For both THMs and HAAs, the extent of bromine substitution varied for the MIEX® 

HPO and MIEX® TPIB samples. The MIEX® HPO and MIEX® TPIB samples had 

higher BIF values than the corresponding samples of the untreated water (Table 

4.10), indicating a shift towards more brominated DBPs from the samples isolated by 

resin fractionation of the NOM remaining after MIEX® treatment. The higher BIF 

values seen for the MIEX® TPIB sample compared to the MIEX® HPO fraction 

could be due to the efficient reactivity of bromine with aliphatic functional groups 

which concentrate in the TPIB fraction (Liang and Singer 2003; Sinha et al. 1997). 

5.3.4 Conclusions 

MIEX® treatment of a large volume of water was used to isolate XAD fractions of 

NOM remaining after treatment in sufficient quantities for detailed molecular 

analysis. A range of subtle differences in the molecular composition and properties 

of the fractions were revealed by molecular analysis. MIEX® treatment changed the 

distribution of the XAD fractions compared to the raw water fractions (Chapter 4), 

due to preferential removal of the TPI and HPI fractions. Detailed molecular analysis 

with a range of methods, including sophisticated spectroscopic analysis, showed an 

increase in aliphatic character within the composition of the fractions (MIEX® HPO, 

MIEX® TPIB and MIEX® TPIN) compared to the raw water fractions obtained in 

Chapter 4. 

Reduced concentrations of THMs and HAAs were formed in DBPFP experiments 

from the XAD fractions isolated after MIEX® treatment compared to the raw water 

fractions (Chapter 4), but there was a trend towards increasing proportions of 
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brominated species from the XAD fractions isolated after MIEX® treatment. This can 

be attributed to the high relative abundance of aliphatic functional groups in these 

fractions – best identified by FTIR and solid-state 13C NMR spectroscopic analysis – 

which are generally highly reactive with bromine species. This could be significant 

for any future increase in focus on brominated DBPs by DBP regulators. 

 

 

  

 



 176

Chapter 6 

6.0 Summary of Characterisation 

Methods, Recommendations and 

Overall Conclusions 

Natural organic matter (NOM) can contribute to various potable water issues and is 

present in high concentrations in many Australian water supplies. Characterisation of 

NOM is important for treatment of these waters for potable water purposes. 

Analytical characterisation data can be correlated from a combination of 

characterisation methods to derive more detailed structural information about NOM, 

as well as to validate results obtained from the different methods (Leenheer, 2009). 

The study described in this Thesis has contributed to the body of characterisation 

studies being conducted to develop a detailed understanding of the origins, structural 

features and reactivity of NOM in source waters. A summary of the characterisation 

methods which have been used in the current study of NOM are discussed in the 

following subsections. Understanding how NOM behaves in drinking water 

treatment processes enables optimisation of treatment processes and improved 

catchment management practices. The information obtained from each 

characterisation method and its relevance to the water treatment industry are 

summarised in Section 6.6 (Table 6.2), prior to the overall conclusions of this Thesis. 

6.1 Comparison of Methods for Concentration of 

NOM 

This research assessed the efficiency and practicality with which NOM from a local 

groundwater source could be concentrated and isolated, using ultrafiltration and an 

XAD-8/XAD-4 resin fractionation procedure. One solid isolate was recovered from 

ultrafiltration: termed the Raw Water UF. Three solid isolates were recovered in the 

XAD-8/XAD-4 fractionation procedure: the hydrophobic fraction (HPO), the 
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transphilic base fraction (TPIB) and the transphilic neutral fraction (TPIN); and the 

hydrophilic fraction (HPI) was obtained as a liquid isolate in the procedure. 

The goal of collecting and concentrating NOM from a water source with 100 % 

efficiency is impossible to achieve (Croué et al. 1999, b), and the effort required to 

carry out the separation and concentration steps increases dramatically as that 

efficiency is approached. Even for the most laborious and efficient techniques 

currently available, significant losses of NOM can occur due to volatilisation, 

precipitation of salts and experimental errors (Croué et al. 1999, b). 

The two isolation and concentration methods investigated each have both advantages 

and disadvantages, and neither can be recommended universally. However, 

ultrafiltration offers the distinct advantage that a large volume of water can be treated 

in significantly less time and much less laboriously than in the XAD-8/XAD-4 resin 

fractionation procedure. Ultrafiltration separates the aquatic humic substances from 

inorganic solutes according to the molecular size of the membrane (Aiken 1985). 

The isolated NOM fraction is therefore a mixture of organic matter with different 

sized molecules (Lankes et al. 2008), with the separation influenced by the method 

conditions (Assemi et al. 2004). While the UF procedure retained 61 % of the total 

DOC after two passes in the current study, improvements to the procedure should, in 

general, allow higher recoveries, with lower concentrations of residual salts. In a 

previous investigation, Couton (2010) reported fouling of an ultrafiltration 

membrane in an isolation procedure using Wanneroo groundwater, as the membrane 

was noticeably coloured after a single pass. This colour was removed by washing 

with 0.1 M NaOH solution, but the NOM contained within the NaOH washings was 

not recovered in that procedure. Cleaning of the UF membrane with NaOH solution 

between the repeated filtration steps should reduce the loss of DOC through 

membrane fouling. Another improvement to the ultrafiltration procedure could 

include repeated filtration of the retentate (i.e. more than two passes) until the 

conductivity of the permeate is <5 µS cm-1 (Couton 2010), indicating minimal salts 

are still being removed, producing a NOM isolate with lower inorganic salt 

concentration. 

The XAD-8/XAD-4 resin fractionation procedure required significantly more time 

and labour than the UF procedure and also involved extensive repetitive washing of 
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the resins to rinse out reagents, but produced higher purity fractions. The higher 

purity of the fractions isolated by the XAD-8/XAD-4 resin procedure allowed a 

greater suite of characterisation techniques to be employed for these fractions 

compared to the UF fraction. The efficiency of NOM recovery was somewhat lower 

for the resin fractionation (35 %) than using UF (61 %) in the current study, but 

could potentially be improved by employing additional steps to collect more NOM. 

Aiken et al. (1992) used XAD-8 and XAD-4 resins with column capacity factors (k’) 

greater than or equal to 100, respectively, in series to isolate essentially all 

hydrophobic and transphilic NOM molecules. The column capacity factor (k’) is 

used to characterise the affinity of adsorbents for dissolved molecules (Croué et al. 

1999, b). Using the procedure from Aiken et al. (1992), recoveries from the XAD-4 

resin can be improved by using vacuum evaporation to concentrate the eluent from 

the XAD-4 resin to the point of salt saturation and then passing the concentrated 

solution through another column packed with XAD-4 resin with a column capacity 

factor (k’) between 5 – 100 to isolate the NOM molecules (Croué et al. 1999, b). 

Some molecules adsorb in the second exposure to XAD-4 but not the first exposure 

because fewer bed volumes of sample are passed through the column in the second 

exposure (corresponding to a lower k’ value, Aiken and Leenheer, 1993). In the 

current study, the column capacity factor was kept constant at a value of 50 for the 

resin procedure. As NOM is a collection of diverse molecules, different fractions of 

NOM elute from the column at different times, corresponding to processing a 

different number of bed volumes of influent (Aiken and Leenheer, 1993). The higher 

the affinity of a group of NOM molecules for the media surface, the larger is the 

number of bed volumes of water that can be processed before the molecules break 

through (Aiken and Leenheer, 1993). By varying the column capacity factor 

throughout the resin procedure all hydrophobic and transphilic NOM could 

essentially be recovered. 

6.2 Comparison of the Chemical Composition of 

NOM Isolates 

Identification of the types of organic compounds collected by the different isolation 

processes is important, because conclusions about NOM in the source water are often 
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drawn based on the analysis of the fractions collected (Leenheer, 2009). In this study, 

the types of NOM collected by UF and resin adsorption were compared. The sample 

chosen for this study had a high DOC concentration (23 mg L-1) and a high 

proportion of aromatic components, and was used as a ‘worst case scenario’ of 

possible source water NOM for subsequent characterisation and treatability studies.  

Even though this study isolated NOM from one water sample, the analytical 

approach used to isolate the NOM fractions was based on standard isolation methods 

that are reproducible on similar water types. The diversity of molecules that 

constitute NOM and the relatively low concentrations of NOM in water sources often 

make characterisation difficult. Thus, methods that can accurately characterise NOM 

are essential. Characterisation of a small number of NOM samples using a ‘worst 

case scenario’ water source can result in constraints in data interpretation. Further 

research could analyse a variety of samples of highly hydrophobic, high DOC source 

waters to see if relevant NOM classifications from these samples can be better linked 

to the analytical classifications seen in this study. Even with the limited sample set, 

this Thesis has contributed to the detailed understanding of the origins and reactivity 

of NOM of highly hydrophobic, high DOC groundwater sources. 

The solid freeze-dried UF isolate obtained from the high DOC concentration / high 

hydrophobicity groundwater had low carbon content (14 %) and high ash content (35 

%). Characterisation of the UF isolate was hindered due to the high ash content, and 

the recommendations for the ultrafiltration method in Section 6.1 should enable other 

NOM characterisation studies to produce an isolate with a lower concentration of 

residual salts. While the quality of the spectra was impeded by the high ash content 

of the sample, FTIR and solid-state 13C NMR spectroscopic analyses indicated that 

the sample may have a significant aliphatic content, presumably from lipid and 

biopolymer precursors. Further characterisation by SEC revealed the UF fraction to 

have a significant contribution from humic substances of relatively high molecular 

weight. Hence, isolation of NOM using ultrafiltration has produced a mixture of 

organic material (both hydrophobic and hydrophilic). This has enabled an overall 

snapshot of the NOM present in highly hydrophobic / high DOC groundwater 

sources to be determined. 
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The NOM fraction eluted from the XAD-8 resin was typically richer in carbon, but 

depleted in nitrogen and oxygen, compared to the XAD-4 sample, supporting the 

widely accepted idea that the XAD-8 resin selectively retains the more hydrophobic 

molecules compared to the XAD-4 resin (Croué et al. 1999, b). The hydrophobic 

character of the XAD-8 concentrate was manifested by its higher SUVA254 and more 

intense fluorescence EEM, and also by an intense signal from aromatic carbon in the 

solid-state 13C NMR spectrum and a significant contribution of polysaccharide input 

detected by pyrolysis-GC-MS, thermochemolysis-GC-MS and MSSV pyrolysis-GC-

MS. The solid-state 13C NMR and FTIR spectra of the XAD-4 fractions indicated a 

significant contribution of aliphatic content from lipid and biopolymer precursors, 

along with much less aromatic carbon than in the XAD-8 fractions. The higher 

nitrogen and oxygen content present in the TPIB and TPIN fractions allowed more 

nitrogen and oxygen containing groups (such as those derived from tannins and 

proteins) to be revealed by the pyrolysis and thermochemolysis techniques. These 

structural features support the importance of aliphatic carbon in this fraction and its 

corresponding hydrophilic character (Croué et al. 1999, b).  

Understanding the impact of various forms of NOM on drinking water treatment 

processes has resulted in a number of isolation methods being developed worldwide, 

such as the XAD-8/XAD-4 resin fractionation and ultrafiltration methods. For a 

better understanding of the types of organic compounds present before and after 

treatment processes, a number of characterisation techniques are used, from the very 

simple (UV254 absorbance and colour), to the more complex, analytical procedures 

(pyrolysis-GC-MS, Chow et al. 2006). However valuable the characterisation 

method, the results are not in a form that can be easily interpreted by treatment plant 

operators. Rapid resin fractionation has found increasing application for NOM 

characterisation due to its speed, repeatability and minimal sample preparation 

(Vuorio et al. 1998). Rapid fractionation has allowed a better understanding of NOM 

removal, as the types of organic compounds removed by the treatment processes can 

be investigated (Drikas et al. 2011). Hence, even though UF was more useful for 

evaluating the overall presence of organic material, resin fractionation is more useful 

for examination of aromatic and hydrophobic humic species. As a result, it is 

possible that a combination of membrane and resin-based NOM isolation techniques 
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might be used successfully for characterisation purposes of a highly hydrophobic, 

high DOC concentration groundwater source. 

6.3 Comparison of Methods for NOM 

Characterisation 

As NOM represents a complex mixture of compounds, structural characterisation of 

NOM is often difficult and requires a multi-faceted approach. New analytical 

methods continue to be developed to aid the structural analysis of NOM and provide 

information which can be used to assess the effectiveness of treatment processes. A 

summary of each characterisation method used in this Thesis is shown in Table 6.1. 

Each characterisation method allowed new information to be determined about the 

characteristics of the high DOC groundwater with high hydrophobicity, and each 

method is summarised in the following subsections. 

Table 6.1 Analytical methods used to identify different features of NOM. 

Characterisation Method Featured Which Can Be Identified 

Elemental analysis Elemental composition is often used for calculation of the 

atomic ratios such as O/C, H/C or N/C.  

FTIR spectroscopy Aromatic and aliphatic hydrocarbon, different bonds and 

functional groups. 

Solid-state 13C NMR spectroscopy Details of carbon structures of NOM (aliphatic carbon, 

oxygenated aliphatic carbon, aromatic carbon and carbonyl 

carbon). 

Pyrolysis-GC-MS Produces structural information about the molecular building 

blocks of NOM. 

Online thermochemolysis-GC-MS Produces structural information about the molecular building 

blocks of NOM. 

MSSV py-GC-MS Produces structural information about the molecular building 

blocks of NOM. Can provide information on specific 

biomarkers of NOM. 

Fluorescence EEM Three major fluorophores can be identified: protein-like, 

humic-like and fulvic-like fluorophores. 

SEC-OCD / SEC-UV254 Molecular weight distribution of NOM; NOM fingerprinting 

Oxidant Demand  Chemical reactivity of NOM. 

DBPFP Chemical reactivity of NOM. 
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6.3.1 Elemental Analysis 

Elemental analysis is generally the first technique applied to the study of NOM, and 

can be reliably conducted only on dry, ash-free isolates. If the ash content of a dry 

sample is > 5 %, significant errors can occur in the evaluation of organic oxygen 

(Leenheer, 2009). Oxygen in NOM is commonly reported by difference between 

100% minus the sum of the other major elements determined with a C, H, and N 

analyser. Problems with this difference-oxygen determination are: i) errors with C, H 

and N determinations are additive and are summed in the O calculation, ii) the minor 

elements aren’t included in this difference calculation, and iii) the ash may include 

elements already determined such as carbonates, sulfates and oxides (Leenheer, 

2009). Direct determination of oxygen on samples with low ash content therefore 

minimises errors. The high ash content (35 %) seen in the UF fraction indicated that 

a significant amount of inorganic material was present within the sample. Dialysis 

had been performed to reduce the amount of inorganic salts in this fraction, but the 

high ash content present was likely due to insufficient transfer of salts into the 

permeate during the ultrafiltration and dialysis processes. The low ash content for the 

HPO and TPIB fractions compared to the UF fraction suggests that the XAD 

isolation procedure was relatively successful in removing inorganic components 

from the samples. However, the measured mass of the TPIB fractions (C, O, H, N, S, 

ash) elementally accounted for a recovery between 45.5 - 66.3 %, indicating other 

elements not measured as part of elemental analysis were present in significant 

quantities. This led to the determination of high sodium and chlorine in the samples, 

measured by atomic absorption spectroscopy. The high concentrations of sodium and 

chlorine in the samples would have been volatilized at the combustion temperature 

used during elemental analysis, and so were not included in the recovery calculation. 

Desalting of the TPIB fractions was considered, but as it is a very laborious 

technique, with the risks including possible sample alteration and lower sample 

recovery, the TPIB fractions were used as obtained. Hence, elemental analysis was 

shown to be a good indicator of the efficiency of isolation and desalting protocols. 

Elemental analysis also provided important information such as atomic ratio data to 

allow NOM fractions isolated from the same source to be compared. The H/C ratio is 

indicative of the degree of unsaturation, with a higher H/C ratio indicating greater 
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aliphatic content, while lower H/C ratios indicate greater aromatic character. The 

H/C ratio values were in the order of UF > TPI > HPO, typical of the aliphatic 

character present in the samples. The O/C ratio is indicative of the concentration of 

oxygenated functional groups in the sample, and the N/C ratio is indicative of the 

concentration of nitrogenous functional groups. As NOM becomes more hydrophilic, 

it is more enriched in nitrogenous structures and oxygenated functional groups, with 

the TPI and UF fractions showing higher O/C and N/C ratios compared to the HPO 

fraction. 

Elemental analysis is a rather complex and time consuming method, and requires 

access to sophisticated analytical instrumentation (Matilainen et al. 2011). Even 

though this characterisation technique might not be used in water treatment 

applications due to its expense, the information obtained may be useful to describe 

and understand the NOM quality and characteristics at various water treatment 

process steps. The behaviour of NOM in various treatment processes can be better 

explained and understood if data on structural features involved in NOM are 

available (Matilainen et al. 2011).  

6.3.2 Fourier Transform Infrared Spectroscopy 

FTIR spectroscopy has been often used for NOM characterisation as the information 

provided can complement data from other characterisation techniques. The 

interpretation of FTIR spectra may be difficult, however, due to the complexity and 

polyfunctionality of NOM (Matilainen et al. 2011). FTIR analysis is advantageous in 

that it only uses a small amount of sample (2 mg), as compared to the larger 

quantities required for elemental analysis (250 mg), so this characterisation 

technique can be used without significant loss of sample. 

All FTIR spectra in this Thesis had several distinguishing features, although the 

broadness of the infrared absorption bands indicated that each fraction contained a 

mixture of polyfunctional compounds. Again, the hydrophobic fractions were shown 

to have strong aromatic C=C stretching and a prominent C=O stretching of 

carboxylic acids and carbonyl groups. Ineffective removal of the high MW, highly 

aromatic fraction can be an issue with MIEX® treatment, and another treatment 

process would need to be considered post MIEX® to remove these NOM compounds. 
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The removal of high MW organic matter with coagulation is well-documented (e.g. 

Collins et al. 1986, Owen et al. 1995, Chow et al. 1999, Drikas et al. 2011). Hence, 

coagulation following MIEX® treatment will remove the high MW material. The 

more hydrophilic fractions were characterised by relatively strong aliphatic C-H 

stretching. MIEX® treatment of the raw water prior to fractionation (Chapter 5) did 

result in some variations in the FTIR spectra of the NOM isolates compared to the 

raw water isolates. There was a shift in carbon distribution to aliphatic material 

compared to the raw water samples, indicating that MIEX® treatment had removed 

some aromatic material from the samples. The MIEX® treated samples also 

displayed a significant absorption in the 1000 – 1200 cm-1 region, representing C-O 

stretching of various groups such as ethers and esters. van Leeuwen et al. (2002) 

found very small amounts of this type of low MW components to be removed by 

treatment, and removal could be improved by change in coagulation conditions 

(Chow et al. 2004). 

The FTIR spectrum of the UF sample also indicated the presence of inorganic 

constituents such as carbonates, nitrates, phosphates, silica and sulfates in the sample 

post dialysis, with the detectable peaks in the 800 – 500 cm-1 region. These peaks 

indicate the insufficient transfer of salt into the permeate during the ultrafiltration 

and dialysis processes. Hence, FTIR spectroscopy was also used to monitor the 

presence or absence of inorganic solutes in the NOM fractionation and isolation 

procedures. 

6.3.3 Solid-State 13C Nuclear Magnetic Resonance Spectroscopy 

Solid-state 13C NMR spectroscopy is one of the most useful spectroscopic methods 

for investigation of NOM structure because qualitative and quantitative organic 

structural information can be generated under non-degradative conditions 

(Peuravuori et al. 2003). The technique is useful for determining details of carbon 

structures, and is especially useful in combination with elemental composition data, 

apparent molecular weight or FTIR spectroscopy data of fractionated NOM 

(Gjessing et al. 1998). However, its use is reliant on a dry, preferably desalted NOM 

sample. Again, the low carbon and high ash content of the UF fraction contributed to 

a poorly resolved spectrum for this sample. But, a relatively strong aliphatic carbon 

signal was able to be identified, and as the signal was very broad, it indicated that the 
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aliphatic components were short in chain length and/or highly branched (Wilson et 

al. 1981).  

The most significant peaks for the hydrophobic fractions were a broad aliphatic 

carbon signal, and a more sharply resolved aromatic signal. The transphilic fractions 

contained less aliphatic and unsaturated carbon and more aromatic carbon than the 

hydrophobic fractions. The results for solid-state 13C NMR spectroscopy appear 

perceived to be in contrast to the results found in FTIR spectroscopy, whereby 

strongly aromatic material was found for the HPO fraction and more aliphatic 

material was shown in the TPI fraction. But, it must be remembered that the cross-

polarizing solid-state 13C NMR spectroscopic technique is most sensitive in the range 

of aliphatic carbon (10 – 60 ppm, Wong et al. 2002). Normalisation of the carbon 

signal (applied in Sections 3.3.2.3, 4.3.2.3 and 5.3.3.3) allows a direct comparison of 

the fractions to occur, avoiding region sensitivity influencing the results.  

Solid-state 13C NMR spectroscopy also allowed the fractions obtained in this study to 

be compared as the relative signal areas measured for the fractions were integrated 

over four broad regions and attributed to functional groups. Differences from the 

isolation method used were observed, with the UF fraction carbon type being in the 

order of oxygenated aliphatic carbon > aliphatic carbon > aromatic carbon > 

carbonyl carbon. The HPO and TPIB fractions were in the order of oxygenated 

aliphatic carbon > aromatic carbon > aliphatic carbon > carbonyl carbon. MIEX® 

treatment prior to resin fractionation showed differences in carbon distribution 

compared to the untreated fractions. The MIEX® HPO and MIEX® TPIB fractions 

appear to contain oxygenated aliphatic carbon > aliphatic carbon > aromatic carbon 

> carbonyl carbon, similar to UF. This knowledge has shown that MIEX® treatment 

preferentially removed a small component of the aromatic fraction prior to resin 

fractionation, and is likely to preferentially remove aromatic material of aquatic 

NOM. 

6.3.4 Pyrolysis-Gas Chromatography-Mass Spectrometry 

In pyrolysis, large complex molecules included in NOM are broken apart to more 

analytically available fragments by the application of heat and under anoxic 

conditions (Matilainen et al. 2011). Pyrolysis combined with gas chromatography 
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(py-GC-MS) is a useful technique for producing structural information about the 

molecular building blocks of NOM (Bruchet et al. 1990, Leenheer and Croué 2003). 

Py-GC-MS analysis requires only a few milligrams of dry sample, free of salt 

interference. The low carbon and high ash content of the UF fraction did not allow 

this technique to be performed, and the high salt content present in the TPIB and 

MIEX® TPIB samples reduced the NOM content in the sample and therefore the py-

GC-MS product abundance.  

Conversion of about 50 % of NOM mass to identified pyrolysis fragments is typical 

(Leenheer 2009), and interpretation of fragments from the pyrolytic technique yields 

information about the distribution of molecules belonging to specific biochemical 

precursors. The interpretation of NOM py-GC-MS chromatograms may be more 

subjective than that of solid-state 13C NMR spectra, since only a portion of the 

pyrolysis fragments are generally used for interpretation. Interpretation of data is also 

complicated by the fact that some pyrolysis fragments (e.g. phenol, cresol) may have 

several origins, and others can be produced through secondary reactions.  

Despite its limitations with the data interpretation, this technique is a valuable tool 

for understanding NOM, as it provides a fingerprint of NOM that is distinct from that 

obtained by other techniques. The hydrophobic fractions showed a relatively high 

abundance of aromatic hydrocarbons, alkylphenols and PAHs. However, aromatic 

hydrocarbons are common flash pyrolysis products and are derived from several 

biomolecular sources, offering limited source diagnostic value (Templier et al. 

2005). Limitations therefore exist for analysing complex macromolecules, such as 

NOM, with this technique. In contrast to the hydrophobic fraction, the distribution of 

pyrolysis products from the transphilic fractions contained higher proportions of 

nitrogen- and oxygen-containing products.  

All of the tentatively identified products were compared on a semi-quantitative basis 

employing a previously used classification system to reveal differences between the 

XAD-derived fractions of a high DOC, highly hydrophobic groundwater source. The 

hydrophobic fractions were rich in polysaccharides and lipids, with minimal input 

from protein or nitrogen- or sulfur- containing (N/S) compounds. The transphilic 

fractions were rich in tannins, protein and polysaccharides. The high abundance of 

polysaccharides present in the HPO fraction was reflected in the high oxygenated-
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aliphatic and aromatic carbon content observed in the 13C NMR spectrum (Section 

6.3.3.). The higher abundance of oxygenated and nitrogenous products for the TPI 

fraction was also consistent with the oxygenated-aliphatic carbon content found in 
13C NMR spectroscopy (Section 6.3.3.), and higher organic nitrogen content and N/C 

ratio (Section 6.3.1).  

Whilst MIEX® treatment preferentially removed transphilic and hydrophilic material, 

based on the redistribution of fractions following treatment, little molecular 

difference was evident in the py-GC-MS profiles of the untreated and MIEX® treated 

water. Most of the products identified from the HPO and TPI fractions of the MIEX® 

treated water were also detected in the same fractions of the untreated water. Py-GC-

MS shows promise for the water industry because of the large amount of detailed 

data provided, but difficulties still remain with interpretation of this data. The 

technique allowed good comparisons between NOM characteristics identified by 

other analytical techniques, and helped to reinforce the interpretation of solid-state 
13C NMR, FTIR and fluorescence spectra. However, this characterisation method 

would require further development, prior to any implementation in the water 

industry.  

6.3.5 On-line Thermochemolysis-Gas Chromatography-Mass 

Spectrometry 

Thermochemolysis-GC-MS with tetramethylammonium hydroxide (TMAH) 

combines thermal degradation and chemical derivatisation, ideally in a single process 

termed “thermochemolysis”. Thermochemolysis offers the advantage over 

conventional pyrolysis of preservation of carboxylic acid and ester structures, since 

acidic protons are methylated. The product suites from on-line thermochemolysis 

complement those from conventional flash pyrolysis, with the detection of additional 

acids (as methyl esters).  

Product abundance for the TPIB and MIEX® TPIB fractions was hindered by the 

high salt content of these samples. Sample impurity due to the high ash content in the 

UF fraction did not allow this technique to be performed. Hence, it is imperative that 

the isolation method chosen for NOM characterisation studies produces a sample of 

high purity, free from salt interference, to allow detailed characterisation to occur.  
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Quantification of pyrolysis products is extremely difficult, because of the vast 

quantity and range of pyrolysis products obtained (Page et al. 2003). It should be 

noted that absolute integration of peak areas is unreliable for any quantification 

because of the different weights of samples and relative amounts of organic material 

in the samples. Ratios of areas of pyrolysis products to the area of an internal 

standard is required to give a fingerprint of the pyrolysis products (Page et al. 2003). 

With this in mind, a broad comparison of the high amount of total TMAH 

thermochemolysis products detected compared to flash pyrolysis highlights the low 

suitability of flash pyrolysis to the large polar moiety of humic substances found in 

NOM. The methyl esters of low MW saturated and unsaturated acids were detected 

in relatively high abundance for the NOM fractions studied. These low MW acids 

and polymethoxybenzenes are common thermochemolysis products of NOM and are 

usually attributed to cross linking units between phenolic structures of humic 

macromolecules. Thermochemolysis also allowed the detection of a small number of 

oxygenated cyclic compounds. TMAH has been reported to promote detection of 

nitrogen- and oxygen-containing structures known to concentrate in the transphilic 

fractions (Templier et al. 2005).  

The MIEX® treated NOM fractions also showed a large range of aliphatic and 

aromatic carboxylic acids common to thermochemolysis studies of NOM. Aliphatic 

diacids (as their dimethyl esters) were also detected, and are reported to be typical of 

animal, vegetable and microbial cell metabolites. Several high MW polycyclic 

aromatic hydrocarbons were also detected, suggesting that the TMAH reagent assists 

in the thermal release of these PAH structures.  

Important additional structural information can be found with thermochemolysis-

GC-MS, representing an excellent complementary method to conventional flash 

pyrolysis techniques where chromatographic resolution of the polar moiety of humic 

substances, such as that found in NOM, can be limited. Thermochemolysis-GC-MS 

shows promise for the water industry because of the large amount of detailed data 

provided, but difficulties still remain with interpretation of this data. 

Thermochemolysis, like py-GC-MS, reinforced the interpretation of solid-state 13C 

NMR, FTIR and fluorescence spectra. However, the thermochemolysis-GC-MS 
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technique needs further method development for more advanced NOM 

characterisation, before application to the water treatment industry.  

6.3.6 Micro-Scale Sealed Vessel Pyrolysis-Gas Chromatography-

Mass Spectrometry 

Micro-scale sealed vessel (MSSV) pyrolysis can complement the analytical 

characterisation afforded by more traditional pyrolysis techniques. Performed in a 

closed system using moderate temperatures over long time periods, MSSV pyrolysis 

can provide additional speciation information useful for establishing the structures 

and source inputs to recent organic material. MSSV removes oxygenated functional 

groups that give rise to chemical complexity, leaving the core hydrocarbon structures 

to be analysed.  

Each fraction contained high concentrations of alkyl substituted benzenes, phenols 

and naphthalenes. As found in the pyrolysis-GC-MS and thermochemolysis-GC-MS 

chromatograms, the hydrophobic and transphilic fractions formed products in greater 

abundances, but the high salt content present in the TPIB fraction reduced the NOM 

content in the sample and therefore the product abundance. The low carbon and high 

ash content of the UF fraction, did not allow this technique to be performed.  

The hydrophobic fractions were dominated by alkyl aromatic compounds, and low 

MW short chain aliphatic compounds. Alkyl aromatic compounds are common 

pyrolysis products and are usually attributed to lignin or tannin sources. MSSV also 

allowed the detection of higher MW alkyl phenols (not detected by flash pyrolysis-

GC-MS). These high MW alkyl phenols are common products of aquatic and 

terrestrial humic substances and are attributed to lignin structures.  

High abundances of polycyclic aromatic hydrocarbons (including alkyl naphthalenes 

and alkyl benzenes) were detected for the hydrophobic fractions. Flash pyrolysis, in 

contrast, yielded very low concentrations of these products. MSSV pyrolysis also 

showed a higher proportion of N-containing compounds for the transphilic fractions 

compared to flash pyrolysis-GC-MS.  

MSSV py-GC-MS shows promise as a NOM characterisation technique because of 

the large amount of information provided, but difficulties still remain with 
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interpretation of the data. This method uses thermal degradation to convert the 

complex macromolecular NOM structure into smaller fragments that are amenable to 

identification by GC-MS. However, since the mechanisms of thermal degradation are 

not yet fully understood, uncertainty still remains over the nature of the precursors to 

the pyrolysis fragments obtained. Although considerable research has been 

conducted in this field (Berwick 2009), additional questions remain regarding the 

mechanisms of formation of products under different heating conditions. Until these 

questions are answered, the utility of this technique will be largely limited to 

fingerprinting to provide broad insights into possible structural moieties that might 

exist within NOM. 

6.4 Effects of MIEX® Treatment on the Isolated 

Fractions 

In removing NOM from groundwater, optimisation of the treatment process is 

important. The main aim of treatment is to produce higher quality water that in turn 

will create fewer problems in the distribution system. MIEX® is a key NOM removal 

process in operation at the Wanneroo Groundwater Treatment Plant (GWTP). This 

study used a high DOC groundwater with a high hydrophobicity for characterisation 

and treatability studies to assess the performance of the MIEX® process for removal 

of various fractions. As MIEX® is a relatively new technology in water treatment, the 

removal effectiveness of the resin for different types of organic matter is not yet well 

understood. The treatability by MIEX® of each fraction are discussed in detail in the 

following sections. 

6.4.1 DOC Concentration, UV254 Absorbance and Colour 

NOM content is usually represented by the measurement of DOC concentration 

and/or absorption of UV light (UV254
 absorbance). UV254 has been identified as a 

potential surrogate measure for DOC, despite its propensity to only represent the 

aromatic character. NOM is also the major contributor of the brownish yellow colour 

in water (Matilainen et al. 2011). Measurement of colour, therefore, can give some 

indication of the amount of NOM in water (Edwards and Amirharajah, 1985). All of 

these tests are fast and do not require sophisticated sample pre-treatment or analytical 
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equipment. These analyses, however, provide information mostly about the amount 

of NOM, while offering limited information on the character of NOM. 

MIEX® treatment of each XAD fraction was conducted by a laboratory simulation of 

the MIEX® process in operation at the Wanneroo GWTP. Treatment of the Raw 

Water UF fraction by the MIEX® process led to only a small reduction in DOC 

concentration (12 %) and a moderate reduction in UV254 absorbance (28 %). The 

high salt content of the UF fraction may have effectively competed for active ion-

exchange sites on the resin, limiting the ability of the MIEX® resin to remove DOC 

from the UF fraction. MIEX® treatment of the fractions isolated by the XAD-

8/XAD-4 resin fractionation procedure led to a significant reduction in DOC 

concentration (55 – 69 %) and UV254 absorbance ( 57 – 87 %), suggesting that 

MIEX® treatment was effective for targeting removal of the differing polarity NOM 

fractions. 

6.4.2 Fluorescence Excitation-Emission Spectroscopy 

Fluorescence spectroscopy provides a sensitive and non-destructive analysis for 

NOM samples and it is useful for monitoring changes in the molecular structure of 

humic substances, as all NOM samples have a unique fluorescence signature 

(Matilainen et al. 2011). The main advantage of fluorescence techniques compared to 

traditional methods (such as UV-visible spectroscopy) is the better sensitivity and 

selectivity (Matilainen et al. 2011). The 3-D fluorescence excitation-emission (EEM) 

spectrophotometric technique visualises a range of different fluorophores covering 

the excitation and emission wavelengths from ~ 200 nm to ~ 500 nm. This study is 

the first report of EEM spectra of MIEX®-treated UF and XAD NOM fractions.  

Analysis of the UF fraction and the MIEX®-treated UF fraction by fluorescence 

EEM showed that the MIEX® process removed both humic and fulvic material. The 

removal of this material can also be correlated to the decrease in UV254-active 

species (Section 6.4.1). After MIEX® treatment, a small residual of soluble microbial 

by-product-like material was visible. This indicated that MIEX® was less effective at 

removing protein-derived structures.  

Analysis of the XAD fractions and MIEX®-treated XAD fractions using fluorescence 

EEM also showed a high removal of humic and fulvic material, mirroring the 
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reductions observed in DOC concentrations and UV254 absorbance (Section 6.4.1). 

As observed with the UF fraction, EEM analysis of the TPIB fraction indicated 

soluble microbial metabolites were present after MIEX® treatment, consistent with 

the idea that the MIEX® process is less effective at removing protein-derived 

structures. MIEX® treatment of the TPIN fraction only removed a small proportion 

of the humic and fulvic acid type material, as shown by fluorescence EEM. The 

different chemical composition of the TPIN fraction in comparison to the HPO and 

TPIB fraction (as seen in the other characterisation techniques) was demonstrated by 

the use of fluorescence EEM since fluorescence EEM showed that limited material 

had been removed by MIEX® treatment of this fraction. 

As demonstrated, fluorescence EEM is a sensitive method for analysis of NOM 

fractions. The current study has shown that the EEM spectra of the fractions were 

predominantly governed by aromatic (humic/fulvic) functionality. However, the 

nitrogenous fluorescing species associated with proteins also contributed to the EEM 

spectra for some samples. Thus, fluorescence EEM can be useful as in-situ method to 

investigate the predominance of aromatic species in NOM and could be used to 

monitor biological processes. This characterisation technique is useful for the water 

treatment industry, as it could be used to probe the origin of NOM and mixing 

processes in distribution systems, if sources with dissimilar NOM are blended.  

6.4.3 Size Exclusion Chromatography 

The molecular weight (MW) distribution is one of the fundamental properties 

required to understand the bulk properties of NOM. High pressure size exclusion 

chromatography (HPSEC) is an attractive option for determining the MW 

distribution of NOM, due to its ease of operation, simplicity of sample preparation 

and high sensitivity requiring minimal sample volumes.  

Size exclusion chromatography with both organic carbon detection (OCD) and UV254 

absorbance detection was used to examine the MW distribution of all fractions both 

pre- and post-MIEX® treatment. The highly hydrophobic DOC from the groundwater 

source showed similar MW distributions using both detection methods, indicating 

that much of the organic carbon in the sample was strongly UV254-active and that 

with this type of NOM, OCD provided little useful information above the UV254 
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method. Hence, prior to using HPSEC for NOM samples, it would be useful to 

characterise the hydrophobicity of the NOM, to determine whether both UV254 

detection and OCD should be used, or if UV254 detection will be sufficient. 

Analysis by SEC-OCD and SEC-UV254
 showed that a moderate to significant 

proportion of the DOC was removed by MIEX® treatment for all fractions isolated 

by resin fractionation. MIEX® treatment of the HPO, TPIB and TPIN fractions 

showed removal of organic matter over a wide range of apparent MW. An 

intermediate amount of removal of humic material was observed for the UF fraction 

after MIEX® treatment, compared to the HPO, TPIB and TPIN fractions. Since 

NOM in groundwater in the Wanneroo borefield is thought (Heitz et al. 2001) to 

consist largely of tannin-derived substances composed predominantly of phenolic 

moieties, the minimal removal of humic material (as seen in HPSEC) reinforces the 

theory (Allpike et al. 2005) that phenolic moieties are not amenable to removal by 

ion exchange. 

HPSEC is a rapid, sensitive method, and does not require sample pre-extraction, 

making this method directly applicable to drinking water treatment process 

applications. It has become very useful for NOM characterisation during different 

steps in drinking water treatment (Allpike et al. 2005, Fabris et al. 2008, Chow et al. 

2009). HPSEC profiles provide valuable information in the study of the degree of 

removal, and the removal mechanisms, of high MW NOM during coagulation (Chow 

et al. 2009). Hence, HPSEC has been shown to be a highly valuable characterisation 

tool for the water treatment industry. 

6.4.4 Disinfection By-Product Formation Potential 

The chemical reactivity of NOM with chlorine as measured by the disinfection by-

product formation potential (DBPFP) provides a qualitative assessment of NOM 

character. DBPFP is a standard method used by the water treatment industry to 

understand the reactivity of NOM (Franson 1998). Using a highly hydrophobic 

groundwater source in these DBPFP studies allowed study of a ‘worst case scenario’ 

for reactivity. It has previously been reported that hydrophobic compounds, such as 

humic acids, are the primary contributors of DBP precursors in natural waters 

(Collins et al. 1986, Kitis et al. 2002). The DBPFP studies showed that the raw water 
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UF isolate and the raw water XAD-isolated fractions (HPO and TPIB) had similar 

propensities to form THMs and HAAs. Therefore, the reactivity of these fractions 

has shown that XAD resins and UF are satisfactory isolation methods for isolating 

the DBP precursors for source waters containing highly hydrophobic NOM.   

Chlorine reactivity of the UF fraction before and after MIEX® treatment showed a 

similar propensity to form THMs, but MIEX® treatment of the UF fraction did 

significantly reduce the propensity for HAA formation. The formation of THMs and 

HAAs for the HPO fraction and the HPO fraction after MIEX® treatment was 

essentially identical, indicating that the reactivity of the DOC in the two samples was 

very similar. In contrast to the HPO fraction, MIEX® treatment of the TPIB fraction 

showed some preferential removal of the precursors for THMs and HAAs.  

MIEX® treatment before XAD isolation led to a reduced concentration of THMs and 

HAAs compared to the corresponding DBP concentrations formed from the raw 

water isolates (UF, HPO and TPIB). The DBPFP also revealed a trend towards 

increasing proportions of brominated species with MIEX® treatment before resin 

fractionation. The possibility of a shift towards more brominated DBPs after MIEX® 

treatment should be monitored in plant-scale applications of the MIEX® process, as 

brominated DBPs are reported to be of a greater health concern than their chlorinated 

counterparts.  

6.5 MIEX® Treatment Applications 

The MIEX® process is an ion exchange process that employs a strong base anion 

exchange resin to remove NOM from water. NOM removal occurs as a consequence 

of the negative charge characteristics of many NOM components typically found in 

water. Use of the high DOC, highly hydrophobic groundwater source evaluated in 

this study indicated that the MIEX® resin was able to remove NOM over a wide 

range of apparent molecular weight, consistent with previous studies (Warton et al. 

2007, Drikas et al. 2011), and was effective for removal of both hydrophobic and 

transphilic material in this type of water source. The study results indicate that the 

MIEX® process can have a range of potential applications to meet site-specific needs 

of waters of this quality. Consideration must be given to other NOM removal 

approaches (such as membrane filtration, granular activated carbon) as achievable 



 195

levels of NOM removal may be greater with these types of technologies for this type 

of water source. However, the levels of NOM removal that are available with the 

MIEX® process may be appropriate at less cost to meet the needs of many utilities. 

Costs and process applicability of the respective process alternatives will vary 

depending on site specific factors, so it is important to confirm applicability of each 

treatment technology with pilot testing. In many cases, the MIEX® process could be 

integrated within a treatment sequence to provide a component of the overall strategy 

for NOM removal. It is important that the process be examined for its capability to 

act in conjunction with other processes to meet the overall goal for NOM removal 

under these conditions, with potential significant overall improvements in treated 

water quality. 

6.6 Summary of Characterisation Methods For 

Water Industry Application 

Groundwater is the main drinking water source in many regions. The quality of the 

groundwater will depend on the nature and character, as well as the amount, of NOM 

in the catchment. A number of different methods were used to describe the nature of 

NOM from a highly hydrophobic, high DOC groundwater source. Correlation of the 

data from the multiple characterisation methods has allowed more detailed structural 

information about NOM of this groundwater type to be obtained. New insights into 

the structural and functional features of fractionated NOM have been illustrated, 

which allows a greater understanding of the nature and properties of NOM from a 

high DOC concentration groundwater source with high hydrophobicity.  

The characterisation methods used in this Thesis have been summarised in Table 6.2, 

together with comments on their application to water industry issues. In some cases, 

where methods have been relatively well established, these are readily applied to 

water industry problems (HPSEC, DBPFP, oxidant demand, rapid fractionation). 

However, in most cases, methods are applicable only to more fundamental research 

on NOM (py-GC-MS, thermochemolysis-GC-MS, MSSV py-GC-MS), and are not 

directly applicable to daily water quality issues, although they can provide 

information that has the potential to improve water treatment technology and 

management, indirectly and in the longer term. Some techniques (MSSV, 
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fluorescence EEM) are very new and innovative and require substantial further 

development. Further development of these techniques has the potential to lead to 

breakthroughs in the understanding of the fundamental chemistry of NOM. 
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Table 6.2 Summary of analytical methods and their utility for NOM characterisation and applicability to water industry issues. 

 
 

Method 

 
 

What information does it provide? 

Comments on direct/indirect application to water industry issues 
Does it have immediate practical application to water industry? 

NOM isolation  
UF Evaluates overall presence of organic NOM Not directly applicable to water industry issues, but a useful research tool when 

used in combination with other methods. 
Resin fractionation Distinguishes between hydrophobic and 

hydrophilic NOM  
XAD-8/XAD-4 resin method is not directly applicable to water industry issues, 

but a useful research tool when used in combination with other methods.  
 

The related rapid fractionation characterisation (but not isolation) method (Chow 
et al. 2006) is used in water treatment plant research projects as it is a quick 

method (< 7 hours), requires minimal sample preparation and is a useful tool to 
evaluate treatment processes (Drikas et al. 2011). 

 
The rapid fractionation method can determine the efficiency of water treatment 
processes, identify NOM fractions recalcitrant to conventional treatment and 
allow investigation of the formation of disinfection by-products (Chow et al. 

2006). 
Characterisation techniques  

Elemental analysis Indicator of purity of NOM samples and isolation 
protocols. 

Elemental composition is often used for calculation 
of the atomic ratios, such as O/H, H/C or N/C. 

Not directly applicable to water industry issues, but a useful research tool when 
used in combination with other methods. 

FTIR spectroscopy  Molecular information on NOM functional groups Not directly applicable to water industry issues, but a useful research tool when 
used in combination with other methods. 

Solid-state 13C NMR spectroscopy Molecular information on NOM functional groups Not directly applicable to water industry issues, but a useful research tool when 
used in combination with other methods. 

Pyrolysis-GC-MS Molecular information on NOM substructures and 
functional groups, origins of NOM 

Not directly applicable to water industry issues, partly due to its complexity and 
the difficulties that remain in data interpretation. Method is still a useful research 

tool in combination with other methods. 
Online thermochemolysis-GC-MS Molecular information on NOM substructures and 

functional groups, origins of NOM 
Not directly applicable to water industry issues, partly due to its complexity and 
the difficulties that remain in data interpretation. Method is still a useful research 
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tool in combination with other methods. 
MSSV py-GC-MS Molecular information on NOM substructures and 

functional groups, origins of NOM 
Not directly applicable to water industry issues, partly due to its complexity and 
the difficulties that remain in interpretation of the data. Method is still a useful 

research tool in combination with other methods. 
Fluorescence EEM Origins of NOM, Three major groups: protein- , 

humic- and fulvic-like fluorophores 
Fluorescence EEM is potentially directly applicable to water industry issues, 

providing information on NOM removal in treatment processes. 
SEC-OCD / SEC-UV254 Molecular weight distribution of NOM, NOM 

fingerprinting 
SEC-OCD / SEC-UV254 is directly applicable to water industry issues, providing 

information on NOM removal in treatment processes. 
Oxidant Demand 

 
Chemical reactivity of NOM with chlorine/bromine 

can provide a qualitative assessment of NOM 
character 

Oxidant demand is directly applicable to water industry issues, providing 
information on reactivity of NOM. Oxidant demand is already used by the water 

industry as a standard method (Franson, 1998). 
DBPFP Chemical reactivity of NOM with chlorine/bromine 

can provide a qualitative assessment of NOM 
character 

DBPFP is directly applicable to water industry issues, providing information on 
reactivity of NOM.  

 
DBPFP is already used by the water industry as a standard method (Franson, 

1998). 
 

DBPFP can also be used to examine the potential to exceed guideline 
concentrations of DBPs in the distribution system. 
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6.7 Thesis Conclusions 

It is well recognised that improved understanding of the chemical structure, 

functionality and behaviour of NOM is important for development of enhanced water 

treatment and management technologies. The complexity and ill-defined nature of 

NOM means that any study of the chemistry of this material brings with it 

considerable analytical challenges and no single approach can provide definitive 

answers. In this Thesis, a number of methods to improve the understanding of the 

molecular chemical structures of NOM from a high DOC, highly hydrophobic 

groundwater source have been investigated, providing new information on NOM 

chemistry and behaviour. 

A three-fold research approach was used. First, the performance of two NOM 

isolation methods, ultrafiltration (UF) and XAD-8/XAD-4 resin fractionation, were 

compared. These techniques were compared based on the efficiency with which 

NOM was collected and separated. UF was found to be more useful for evaluating 

the overall presence of organic material, but resin fractionation was found to be more 

useful for examination of aromatic and hydrophobic humic species. 

Recommendations for both UF and resin fractionation focus on avoiding the 

desalting challenges experienced in this study, allowing a greater suite of 

characterisation methods to be employed for all fractions.  

Next, the isolated NOM was compared using several analytical methods. This part of 

the research shed light on the variability of molecules contributing to NOM of a 

highly hydrophobic, high DOC groundwater. It also highlighted the potential value 

and limitations of the analytical methods used in this NOM research. 

Characterisation of the various fractions by FTIR and solid-state 13C NMR 

spectroscopic analysis revealed the UF, HPO, TPIB and TPIN fractions to have a 

significant contribution of aliphatic content from lipid and biopolymer precursors. 

Further characterisation of the HPO, TPIB and TPIN fractions by pyrolysis-GC-MS, 

thermochemolysis-GC-MS and MSSV pyrolysis-GC-MS revealed that the HPO 

fraction had a significant contribution of polysaccharide input. The higher nitrogen 

and oxygen content present in the TPIB and TPIN fractions allowed more nitrogen 

and oxygen containing groups (such as those derived from tannins and proteins) to 
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be revealed by the pyrolysis and thermochemolysis techniques. Issues with data 

interpretation occurred for the pyrolytic techniques, but these characterisation 

methods helped to reinforce the information obtained by other characterisation 

methods. Further method development for more advanced NOM characterisation 

with the pyrolytic techniques is required before these methods can be applied to the 

water treatment industry. 

Finally, the effects of NOM isolation procedures on the chemical composition and 

reactivity of the isolates was investigated. All the fractions showed different affinity 

for the MIEX® resin. Upon MIEX® treatment, the UF fraction showed only a slight 

reduction in DOC concentration, UV254 absorbance and colour, whereas the HPO, 

TPIB and TPIN fractions showed a significant reduction in these parameters. The 

high salt content in the UF fraction was likely in competition with the DOC in this 

fraction for ion exchange sites on the MIEX® resin, limiting the ability of the MIEX® 

resin to remove DOC from this fraction. In comparison, the MIEX® resin was 

effective for removal of organic matter in the HPO, TPIB and TPIN fractions of 

NOM, as the low salt content of these fractions did not interfere in DOC removal by 

the MIEX® process. 

Chlorine reactivity of the UF fraction before and after MIEX® treatment showed a 

similar propensity to form THMs, but MIEX® treatment of the UF fraction did 

significantly reduce the propensity for HAA formation. The formation of THMs and 

HAAs for the HPO fraction and the HPO fraction after MIEX® treatment was 

essentially identical, indicating that the reactivity of the DOC in the two samples was 

very similar. In contrast to the HPO fraction, MIEX® treatment of the TPIB fraction 

showed some preferential removal of the precursors for the THMs and HAAs. It 

should also be noted that there was a shift towards more brominated HAAs after 

MIEX® treatment for the UF fraction and more brominated THMs after MIEX® 

treatment for the TPIB fraction. The possibility of a shift towards more brominated 

DBPs after MIEX® treatment should be monitored in plant-scale applications of 

MIEX® treatment, as brominated DBPs are reported to be of a greater health concern 

than their chlorinated counterparts. 

MIEX® treatment of the highly hydrophobic, high DOC groundwater prior to resin 

fractionation of the NOM remaining after MIEX® treatment did help to reveal subtle 
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differences in the molecular composition and properties of the fractions. MIEX® 

treatment changed the distribution of the XAD fractions, due to preferential removal 

of the TPI and HPI fractions. Detailed molecular analysis with a range of methods, 

including sophisticated spectroscopic analysis, showed an increase in aliphatic 

character within the composition of the solid isolates (MIEX® HPO, MIEX® TPIB 

and MIEX® TPIN) compared to the raw water fractions. 

Overall, this Thesis has contributed to the study of NOM, to gain more insight into 

the fundamental properties of NOM and to develop practical methods to isolate and 

study NOM. This Thesis has also shown that data from a combination of 

characterisation methods must be correlated with each other to derive more detailed 

structural information about NOM and to validate results obtained from different 

methods. 
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Appendix 1 
 
Table A.1 Tentatively identified pyrolysis products and unidentified products from 
the HPO fraction. 

Peak 
 No 

R.T. 
(mins) 

Compound Peak 
 No 

R.T. 
(mins) 

Compound 

1 1.167 methylpropene / 1,3-butadiene 62 36.919 unknown 
2 1.234 methylpropene 63 37.523 cyclododecane 
3 1.278 methanethiol 64 38.551 naphthalenol 
4 1.379 isocyanic acid 65 39.178 dibenzofuran 
5 1.434 acetaldehyde 66 39.547 dodecanoic acid 
6 1.646 acetone / acetonitrile 67 40.789 ethyl phthalate 
7 1.790 isopentadiene 68 41.405 diphenylenemethane 

8 1.891 dimethylcyclopropane 69 44.137 
3,3,6,9,9,10-hexamethyl-2,10-
diazabicyclo[4.4.0]-1-decene 

9 1.969 1,3-butadiene 70 44.272 unknown 

10 2.113 1,3-cyclopentadiene 71 44.586 
2,4-diphenyl-4-methyl-2(Z)-

pentene 
11 2.747 acetic acid 72 45.058 tetradecanoic acid 
12 2.903 2-butanone 73 45.934 unknown 
13 3.026 methylfuran  74 46.170 diphenylmethylpentene 
14 3.860 1-methyl-3-cyclopentadiene 75 46.406 anthracene 
15 4.416 benzene 76 46.900 pentadecanoic acid 
16 4.628 thiophene 77 47.676 unknown 
17 5.663 dimethylfuran 78 48.453 hexadecanoic acid 
18 5.963 2-cyclopenten-1-one 79 48.565 butyl phthalate 
19 7.231 pyrrole 80 51.416 pentadecane 
20 7.955 toluene 81 51.619 unknown 
21 8.133 methylthiophene 82 53.435 hexadecane 
22 10.592 furan 83 55.012 1,2-benzenedicarboxylic acid 
23 10.781 methylpyrrole 84 55.630 unknown 
24 12.005 ethylbenzene 85 60.204 unknown 
25 12.417 xylene 86 61.832 unknown 
26 12.796 dimethylthiophene 

 

27 13.230 methylfuranone 
28 13.442 styrene 
29 13.943 2-methyl-2-cyclopenten-1-one 
30 16.661 2-cyclopenten-1-one 
31 17.185 phenol 
32 17.766 benzonitrile 
33 18.200 C3 benzene 
34 18.356 benzofuran 
35 19.470 trimethylbenzene 
36 19.949 dimethyl-2-cyclopenen-1-one 
37 20.562 cresol (methylphenol) isomer 
38 21.477 cresol isomer 
39 22.213 unknown 
40 23.116 unknown 
41 23.340 methylbenzofuran  
42 24.655 methylbenzyl alcohol 
43 25.024 benzoic acid 
44 25.180 methylindane 
45 25.337 ethylphenol isomer 
46 26.509 ethylphenol isomer 
47 26.776 naphthalene  
48 27.424 unknown 
49 27.837 dimethylbenzofuran 
50 27.937 unknown 
51 28.484 2-coumarone 
52 29.723 resorcinol 
53 30.393 unknown 
54 31.164 methylnaphthalene isomer 
55 31.320 phthalic anhydride 
56 31.778 methylnaphthalene isomer 
57 32.180 unknown 
58 33.220 unknown 
59 35.197 dimethylnaphthalene isomer 
60 35.678 dimethylnaphthalene isomer 
61 35.846 dimethylnaphthalene isomer 
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Table A.2 Tentatively identified pyrolysis products and unidentified products from 
the TPIB fraction. 

Peak 
 No 

R.T. 
(mins) 

Compound 

1 1.135 2-methylpropene 
2 1.246 methanethiol 
3 1.390 acetaldehyde 
4 1.579 acetonitrile 
5 1.746 methylbutadiene 
6 1.890 acrylonitrile 
7 2.056 1,3-cyclopentadiene 
8 2.545 propanenitrile 
9 2.656 acetic acid 
10 4.309 benzene 
11 7.095 pyrrole 
12 7.805 toluene 
13 8.393 unknown 
14 13.211 styrene 
15 16.919 phenol 
16 17.485 benzonitrile 
17 21.181 cresol 
18 40.500 ethyl phthalate 
19 48.248 decanoic acid 
20 54.774 1,2-benzenedicarboxylic acid 
21 58.555 unknown 
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Table A.3 Tentatively identified pyrolysis products and unidentified products from 
the TPIN fraction. 

Peak 
 No 

R.T. 
(mins) 

Compound Peak 
 No 

R.T. 
(mins) 

Compound 

1 1.158 dichloromethane / 
methylpropane 

70 28.453 coumaranone 

2 1.236 methylpropene / 1,3-butadiene  71 28.699 unknown 
3 1.359 butene 72 29.472 ethylacetophenone 
4 1.414 methanamine 73 30.347 trans-benzalacetone 
5 1.503 unknown 74 31.110 methylnaphthalene 
6 1.593 unknown 75 31.379 unknown 
7 1.682 acetonitrile / acetone 76 32.579 methoxyacetophenone/ 

ethylbenzoic acid 
8 1.860 methylbutadiene 77 33.791 unknown 
9 1.949 dimethylcyclopropane 78 34.407 hydroxyacetophenone 

10 1.983 acrylonitrile 79 35.204 dimethylnaphthalene 
11 2.172 cyclopentadiene 80 35.743 diacetylbenzene 
12 2.651 propanenitrile 81 37.147 phthalamide 
13 2.785 3-buten-2-one 82 40.779 ethyl phthalate 
14 2.941 2-butenone 83 41.049 unknown 
15 3.888 cyclohexadiene 84 41.476 unknown 
16 3.988 hexatriene 85 43.130 unknown 
17 4.166 methylcyclopentene 86 44.313 unknown 
18 4.434 benzene 87 44.527 unknown 
19 4.679 unknown 88 45.102 tetradecanoic acid 
20 4.968 methylpentadiene 89 45.689  1,4-diaza-2,5-dioxobicyclo[4.3.0] 

nonane 
21 5.558 propionic acid 90 46.918 diethyl phthalate 
22 5.681 dimethyl furan 91 47.088 1,2-benzenedicarboxylic acid 
23 5.836 propenoic acid 92 47.81 unknown 
24 6.961 dimethylcyclopentadiene 93 48.307 hexadecanoic acid isomer 
25 7.072 pyridine 94 48.545 butyl phthalate 
26 7.295 pyrrole 95 48.714 3,9-diazatricyclo[7.3.0.0(3,7)] 

dodecan-2,8-dione  
27 7.986 toluene 96 51.044 decanedioic acid 
28 8.866 acetamide 97 52.472 benzene sulfonamide 
29 9.933 methylpyridine 98 54.809 phthalic acid 
30 10.056 furfural 99 55.637 triphenylphosphine oxide 
31 10.635 2-cyclopenten-1-one 100 58.826 unknown 
32 10.814 methylpyrrole isomer  
33 11.159 methylpyrrole isomer 
34 11.994 ethylbenzene 
35 12.396 xylene 
36 12.697 cyclopentanol 
37 13.399 styrene 
38 13.890 2-methylcyclopentanone 
39 14.570 dimethylpyrrole 
40 15.250 dimethylpyridine 
41 16.266 unknown 
42 16.589 ethyltoluene isomer 
43 16.746 ethyltoluene isomer 
44 17.058 butanedinitrile 
45 17.259 phenol 
46 17.717 benzonitrile 
47 18.163 alkylbenzene 
48 18.398 methylstyrene 
49 19.001 unknown 
50 19.369 C3 benzene 
51 19.615 unknown 
52 19.916 dimethylcyclopent-2-en-1-one 
53 20.519 indene 
54 20.586 cresol isomer 
55 20.933 C4 benzene 
56 21.391 acetophenone 
57 21.525 cresol isomer 
58 21.782 unknown 
59 22.162 ethylstyrene 
60 22.330 methyl succinimide 
61 22.475 tolunitrile isomer 
62 22.598 furandione 
63 23.079 tolunitrile isomer 
64 23.694 tetramethylbenzene 
65 25.126 benzoic acid 
66 26.515 methylacetophenone 
67 26.750 naphthalene 
68 27.098 unknown 
69 27.322 dimethylindazole 
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Table A.4 Tentatively identified thermochemolysis-GC-MS products and unidentified 
products from the HPO fraction. 

Peak 
 No 

R.T. 
(mins) 

Compound Peak 
 No 

R.T. 
(mins) 

Compound Peak 
 No 

R.T. 
(mins) 

Compound 

1 3.311 methyl acrylate 52 21.012 
methyl 4,4-dimethoxy-2-

methyl butanoate 103 41.097 unknown 

2 3.647 methyl propanoate 53 21.522 cresol isomer 104 42.409 
decanedioic acid dimethyl 

ester 

3 3.906 1,3-cyclohexadiene 54 22.002 
dimethylbutanedioic acid 

methyl ester 105 43.500 methyl methoxycinnamate 

4 4.002 methylcyclopentadiene 55 22.204 allyltoluene 106 44.265 
trimethoxybenzoic acid 

methyl ester 

5 4.454 benzene 56 22.320 unknown 107 44.400 
tetradecanoic acid methyl 

ester 
6 4.684 methyl-1,3-cyclopentadiene 57 22.560 unknown 108 44.981 unknown 
7 5.049  methyl isobutyrate 58 22.666 methyl benzoate 109 45.863 unknown 

8 5.845 methyl methacrylate 59 23.022 unknown 110 46.376 
pentadecanoic acid methyl 

ester 
9 5.980 methyl butenoate 60 23.119 dimethylanisole 111 46.648 unknown 

10 6.248 methyl butyrate 61 23.253 
glycine methyl ester/ methyl 

benzofuran 112 47.668 
hexadecanoic acid methyl 

ester 

11 6.642 methyl cis-2-butenoate 62 24.052 dimethyl glutarate 113 48.387 
methyl 

diphenylphosphinate 

12 6.834 methylpyrrole 63 24.523 1,2-dimethoxybenzene 114 48.669 
dodecanoic acid methyl 

ester 

13 6.987 dimethylcyclopentadiene 64 24.706 dimethylphenol isomer 115 50.334 
octadecanoic acid methyl 

ester 
14 7.247 dimethylaminoacetonitrile 65 24.792 dimethylphenol isomer 116 52.753 unknown 

15 7.631 
methoxyacetic acid methyl 

ester 66 25.148 vinylanisole 117 55.014 
1,2-benzenedicarboxylic 

acid methyl ester 
16 7.775 methyl trans-crotonate 67 25.967 unknown 118 58.942 unknown 
17 7.996 toluene 68 26.794 naphthalene 

 

18 8.293 
3-methylbutanoic acid methyl 

ester 69 27.227 methyl toluate isomer 
19 8.495 unknown 70 27.381 unknown 

20 8.706 
methyl ester of 2-methoxy 

propionic acid 71 27.612 methyl toluate isomer 
21 10.664 unknown 72 27.834 dimethylbenzofuran 
22 10.780 dimethyl pyrrole 73 28.344 dimethylanisole 
23 11.173 2-pentanoic acid methyl ester 74 28.883 dimethoxytoluene 
24 11.673 dimethylphosphite 75 29.124 unknown 

25 12.028 ethylbenzene 76 29.807 
hexanedioic acid dimethyl 

ester 

26 12.105 
methylbutenoic acid methyl 

ester 77 29.933 unknown 
27 12.239 unknown 78 30.790 methyl dimethylbenzoate 
28 12.422 xylene isomer 79 31.185 methylnaphthalene isomer 
29 12.499 xylene isomer 80 31.802 methylnaphthalene isomer 
30 13.325 trimethoxypropane 81 32.062 unknown 

31 13.421 styrene 82 32.341 
methylmethoxybenzene 

isomer 
32 13.930 2-methyl-2-cyclopenten-1-one 83 32.775 unknown 
33 14.064 dimethyl sulfone 84 33.334 unknown 

34 14.285 unknown 85 33.719 
methylmethoxybenzene 

isomer 
35 14.535 methoxybenzene (anisole) 86 34.230 unknown 

36 14.929 trimethyl phosphate 87 34.538 
trimethyl propane-1,2,3-

tricarboxylate 
37 16.302 unknown 88 34.866 trimethoxybenzene 
38 16.638 ethyltoluene isomer 89 35.204 unknown 
39 16.783 ethyltoluene isomer 90 35.522 unknown 
40 17.090 unknown 91 36.101 unknown 
41 17.292 unknown 92 36.245 methyl phthalate 

42 17.426 
hexahydro-1,3,5-trimethyl-

1,3,5-triazine 93 36.939 biphenylene 
43 17.744 benzonitrile 94 37.161 unknown 
44 18.244 trimethylbenzene 95 37.258 trimethoxytoluene 
45 18.753 methylanisole isomer 96 38.010 dimethyl isophthalate 
46 19.214 methyl fumarate 97 38.386 dimethyl terephthalate 

47 19.291 methylanisole isomer 98 38.531 
dodecanoic acid methyl 

ester 
48 19.359 methylanisole isomer 99 38.675 unknown 
49 19.580 dimethyl succinate 100 39.225 unknown 

50 19.955 dimethyl-2-cyclopenten-1-one 101 40.489 
methyl dimethoxybenzoate 

isomer 

51 20.599 cresol isomer 102 40.740 
methyl dimethoxybenzoate  

isomer 
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Table A.5 Tentatively identified thermochemolysis-GC-MS products and unidentified 
products from the TPIB fraction. 

Peak 
No 

R.T. 
(mins) 

Compound 

1 3.253 methyl acrylate 
2 3.321 methyl carbonate 
3 3.570 methyl propanoate 
4 3.839 methylcyclopentadiene 
5 4.165 ethylene chloride 
6 4.376 benzene 
7 4.587 thiophene 
8 6.746 methylpyrrole 
9 6.986 pyridine 

10 7.150 dimethylaminoacetonitrile 
11 7.409 dimethylcyanamide 
12 7.543 unknown 
13 7.697 butenoic acid methyl ester 
14 7.908 toluene 
15 8.302 butylethylene 
16 8.609 unknown 
17 9.377 unknown 
18 9.848 methylpyridine 
19 10.059 N-methylacetamide 
20 10.501 hexylcrotonate methyl ester 
21 11.932 ethylbenzene 
22 12.114 unknown 
23 12.412 unknown 
24 13.343 styrene 
25 14.812 trimethylphosphate 

26 17.279 
hexahydro-1,3,5-trimethyl- 

1,3,5-triazine 
27 17.405 dimethylpropanal 
28 17.673 benzonitrile 
29 18.806 ethylhexanol 
30 19.497 dimethyl succinate 
31 20.927 dimethyl methylbutanedioic acid 
32 21.167 unknown 
33 22.203 unknown 
34 22.568 methyl benzoate 
35 22.933 unknown 
36 23.125 dimethylthioformamide 
37 26.330 unknown 
38 26.694 naphthalene 
39 28.249 unknown 
40 28.738 unknown 
41 30.695 methyl dimethylbenzoate 
42 31.328 carbomethoxybenzaldehyde 
43 31.463 unknown 
44 31.962 unknown 
45 33.612 unknown 
46 33.861 unknown 
47 34.437 dimethyl itaconate 
48 35.137 unknown 
49 35.377 unknown 
50 35.521 unknown 
51 36.145 methyl phthalate 
52 37.891 dimethyl terephthalate 
53 38.285 dimethyl isophthalate 
54 38.419 unknown 
55 39.110 nonanedioic acid dimethyl ester 
56 42.304 unknown 
57 43.878 unknown 
58 44.319 tetradecanoic acid methyl ester 
59 45.635 unknown 
60 46.307 methyl heptadecanoate 
61 46.893 unknown 
62 47.594 hexadecenoic acid methyl ester 
63 49.296 decanoic acid methyl ester 
64 50.268 octadecenoic acid methyl ester 
65 50.672 unknown 
66 51.597 unknown 
67 52.686 unknown 
68 53.737 hexamethyl cyclotrisiloxane 
69 54.933 1,2-benzenedicarboxylic acid methyl ester 
70 58.814 squalene 
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Table A.6 Tentatively identified thermochemolysis-GC-MS products and unidentified 
products from the TPIN fraction. 

Peak 
No 

R.T. 
(mins) 

Compound Peak 
No 

R.T. 
(mins) 

Compound Peak 
No 

R.T. 
(mins) 

Compound 

1 3.340 methyl acrylate 54 23.041 unknown 107 42.406 decanedioic acid dimethyl ester 
2 3.667 methyl propanoate 55 23.128 dimethylanisole 108 44.004 unknown 
3 3.926 methyl-1,3-

cyclopentadiene 
56 23.456 cresol isomer 109 44.101 unknown 

4 4.032 methyl-1,3-
cyclohexadiene 

57 23.727 unknown 110 44.988 unknown 

5 4.493 benzene 58 24.055 ethoxytoluene 111 47.126 unknown 
6 4.724 hexatriene 59 24.220 dimethyl glutarate 112 47.987 hexadecanoic acid methyl ester 
7 5.886 methyl 

methacrylate 
60 24.519 dimethylanisole isomer 113 48.584 butylphthalate 

8 6.876 methylpyrrole 61 24.780 dimethylanisole isomer 114 50.602 octadecanoic acid methyl ester 
9 7.030 cyclopentadiene 62 25.166 methylindene 115 51.092 decanedioic acid dibutyl ester 

10 7.126 pyridine 63 25.640 unknown 116 55.022 1,2-benzenedicarboxylic acid 
methyl ester 

11 7.347 pyrrole 64 25.959 methylacetophenone isomer 117 55.660 triphenylphosphine oxide 
12 7.837 methyl crotonate 65 26.530 methylacetophenone isomer 118 58.962 squalene 
13 8.049 toluene 66 26.791 naphthalene  
14 8.328 unknown 67 27.236 methyl toluate isomer 
15 8.741 2-methoxy 

propionic acid 
methyl ester 

68 27.381 unknown 

16 9.962 methylpyridine 69 27.507 unknown 
17 10.298 N-

methylacetamide 
70 27.604 methyl toluate isomer 

18 10.712 unknown 71 27.778 unknown 
19 10.875 methylpyrrole 

isomer 
72 28.340 dimethyl adipate 

20 11.221 methylpyrrole 
isomer 

73 28.843 dimethoxytoluene 

21 12.066 ethylbenzene 74 29.404 methoxybenzaldehyde 
22 12.471 xylene isomer 75 29.521 ethylacetophenone 
23 12.528 xylene isomer 76 29.811 unknown 
24 13.462 styrene 77 29.918 unknown 
25 13.904 ethylpyridine 78 30.402 unknown 
26 13.972 3-methyl-2-

cyclopenten-1-one 
79 30.799 methyl dimethylbenzoate 

27 14.299 dimethylsulfone 80 31.177 methylnaphthalene 
28 14.578 anisole 81 31.429 ethyl benzoic acid methyl 

ester 
29 15.300 dimethylpyrrole 82 31.575 methyl cinnamate 
30 16.656 ethyltoluene 

isomer 
83 31.797 methylnaphthalene 

31 16.811 ethyltoluene 
isomer 

84 32.069 unknown 

32 17.340 phenol 85 32.137 methyl vinylbenzoate 
33 17.494 unknown 86 32.350 methyl methoxybenzoate 

isomer 
34 17.601 unknown 87 32.757 unknown 
35 17.764 unknown 88 33.000 methoxyacetophenone 
36 18.246 benzonitrile 89 33.456 unknown 
37 18.468 methylstyrene 90 33.717 methyl methoxy benzoate 

isomer 
38 18.786 methylanisole 

isomer 
91 34.630 unknown 

39 19.229 methyl fumarate 92 35.212 unknown 
40 19.384 methylanisole 

isomer 
93 35.474 unknown 

41 19.471 2-ethylhexanol 94 35.620 methylphthalimide 
42 19.596 dimethyl succinate 95 36.115 unknown 
43 19.962 dimethyl-2-

cyclopenten-1-one 
96 36.241 methyl phthalate 

44 20.049 propylpiperidine 97 36.970 methyl acetylbenzoate isomer 
45 20.570 indene 98 37.232 methyl acetylbenzoate isomer 
46 20.714 cresol isomer 99 38.000 dimethyl terephthalate 
47 21.023 dimethyl 

methylsuccinate 
100 38.389 dimethyl isophthalate 

48 21.438 acetophenone 101 38.544 unknown 
49 21.631 cresol isomer 102 38.933 unknown 
50 22.229 unknown 103 39.215 nonanedioic acid dimethyl 

ester 
51 22.365 methyl 

succinimide 
104 39.400 unknown 

52 22.538 methylbenzonitrile 105 39.847 unknown 
53 22.722 methyl benzoate 106 40.752 methyl methoxybenzoate 

isomer 
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Table A.7 Tentatively identified MSSV-GC-MS products and unidentified products 
from the HPO fraction. 

Peak 
No 

R.T. 
(mins) 

Compound Peak 
No 

R.T. 
(mins) 

Compound 

1 1.930 butene 67 13.846 ethylmethylhexadiene 
2 2.067 methylpropene 68 13.955 dimethylthiophene isomer 
3 2.530 pentene 69 14.281 dimethylthiophene isomer 
4 2.730 methylbutane 70 14.492 xylene isomer 
5 3.015 2-pentene 71 15.087 trimethylcyclopentanone 
6 3.147 propanal 72 15.658 ethylmethylhexadiene 
7 3.341 dimethylcyclopropane 73 15.715 isopropylbenzene 
8 4.250 cyclopentene 74 16.161 tetramethylfuran 
9 4.639 methylpentene isomer 75 16.470 dimethylpyridine 

10 4.736 dimethylbutene isomer 76 16.893 propylbenzene 
11 5.004 methylpentane isomer 77 17.207 ethyltoluene isomer 
12 5.205 methylpentene isomer 78 17.327 ethyltoluene isomer 
13 5.462 hexane 79 17.544 trimethylbenzene isomer 
14 5.513 butanone 80 18.059 phenol 
15 5.696 dimethylbutene isomer 81 18.522 trimethylbenzene isomer 
16 5.822 methylfuran 82 19.150 trimethylthiophene 
17 6.050 methylpentene isomer 83 19.259 trimethylpyridine 
18 6.159 methylcyclopentane 84 19.465 trimethylpyrrole 
19 6.302 methylpentene isomer 85 19.579 C3 benzene 
20 6.525 methylcyclopentadiene 86 19.790 methylisopropylbenzene  
21 6.759 dimethylpentene isomer 87 20.105 allylbenzene 

22 6.816 methylcyclopentene 88 20.236 
dimethylcyclopent-2-en-1-

one 
23 7.045 benzene 89 20.693 diethylbenzene 
24 7.199 unknown 90 20.831 propyltoluene 
25 7.251 thiophene 91 20.968 cresol isomer 

26 7.559 methylpentadiene 92 21.236 
trimethyl-2-cyclopenten-1-

one 
27 7.862 isooctane 93 21.488 acetophenone 
28 7.925 dimethylpentene isomer 94 21.676 ethyldimethylthiophene 
29 7.977 2-pentanone 95 21.871 cresol isomer 
30 8.251 heptane 96 22.168 methylphenylcyclopropane 
31 8.342 methylhexene 97 22.334 ethylxylene 
32 8.445 dimethylfuran 98 22.865 ethylcumene 
33 8.542 dimethylpentadiene 99 23.100 methylbenzofuran 
34 8.599 dimethylpentene isomer 100 23.420 diethyltoluene 
35 8.668 dimethyl furan 101 23.557 tetramethylbenzene 

36 9.051 trimethylcyclopentene 102 24.117 
isopropyldimethylbenzene 

isomer 
37 9.165 ethylcyclopentane 103 24.243 ethylphenol isomer 

38 9.423 methylcyclohexadiene 104 24.448 
isopropyldimethylbenzene 

isomer 
39 9.463 methyl-2-pentanone 105 24.654 methylindane 
40 9.640 unknown 106 24.711 dimethylphenol isomer 
41 9.714 trimethylcyclobutane 107 25.409 ethylphenol isomer 
42 9.765 2-methyl-3-pentanone 108 25.563 dimethylphenol isomer 
43 9.817 ethylmethylpentene 109 25.792 dimethylphenol isomer 
44 9.903 trimethylcyclopentene isomer 110 26.089 ethylmethyl phenol 
45 10.011 trimethylcyclopentene isomer 111 26.443 dimethylphenol 
46 10.126 toluene 112 26.786 unknown 
47 10.251 methylthiophene isomer 113 26.895 trimethylphenol isomer 
48 10.406 methylheptane 114 27.203 dimethylindazole 
49 10.514 methylthiophene isomer 115 27.323 dimethylbenzofuran isomer 
50 10.84 3-hexanone 116 27.455 dimethylbenzofuran isomer 
51 10.949 dimethylhexene 117 27.712 ethylmethylphenol isomer 
52 11.074 trimethylcyclopentene isomer 118 27.901 ethylmethylphenol isomer 
53 11.206 methylheptene 119 28.089 ethylmethylphenol isomer 
54 11.286 unknown 120 28.295 trimethylphenol isomer 
55 11.492 trimethylcyclopentene isomer 121 28.535 dimethylindane isomer 
56 11.566 dimethylhexene 122 28.969 unknown 
57 11.766 trimethylpyrazole 123 29.238 trimethylphenol isomer 
58 12.417 methylethylcyclopentene 124 29.621 dimethylindane isomer 
59 12.600 tetramethylcyclopentene isomer 125 30.284 methylnaphthalene 
60 12.697 2-methylcyclopentanone 126 30.764 unknown 
61 12.806 dimethylmethylenecyclopentene 127 31.444 trimethylbenzofuran 
62 12.938 tetramethylcyclopentene isomer 128 34.616 dimethylnaphthalene isomer 
63 13.326 ethylbenzene 129 34.765 dimethylnaphthalene isomer 
64 13.475 ethylthiophene 

 
65 13.669 xylene isomer 
66 13.721 xylene isomer 
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Table A.8 Tentatively identified MSSV-GC-MS products and unidentified products 
from the TPIB fraction. 

Peak 
No 

R.T. 
(mins) 

Compound 

1 3.629 unknown 
2 4.053 unknown 
3 5.636 toluene 
4 5.979 methylheptene isomer 
5 6.107 methylheptene isomer 
6 6.321 ethylmethylpentene 
7 11.208 benzonitrile 
8 12.768 ethylhexanol 
9 18.562 ethylbenzonitrile 

10 21.063 azepan-2-one 
11 41.112 unknown 
12 60.944 unknown 
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Table A.9 Tentatively identified MSSV-GC-MS products and unidentified products 
from the TPIN fraction. 

Peak 
No 

R.T. 
(mins) 

Compound Peak 
No 

R.T. 
(mins) 

Compound 

1 3.282 unknown 70 15.187 dimethylethylpyrrole isomer 
2 3.346 butene / methylpropene / 

methanethiol 
71 15.337 unknown 

3 3.464 acetone 72 15.627 unknown 
4 3.518 dimethylcyclopropane 73 15.863 unknown 
5 3.614 cyclopentene 74 16.131 trimethylethylpyrrole 
6 3.700 propanenitrile 75 16.249 dimethylbenzamine 
7 3.764 butanone 76 16.764 ethylphenol isomer 
8 3.840 methylfuran 77 17.065 dihydromethylindene 
9 3.936 ethylbutene 78 17.194 dimethylphenol 

10 4.075 methylcyclopentene 79 17.634 unknown 
11 4.161 benzene 80 17.924 ethylphenol isomer 
12 4.311 cyclohexene 81 18.525 dimethylindane 
13 4.365 hexane 82 18.965 unknown 
14 4.440 pentanone 83 19.148 unknown 
15 4.493 dimethylcyclopentene 84 19.288 dimethylbenzofuran 
16 4.579 unknown 85 19.932 unknown 
17 4.622 unknown 86 20.759 trimethylphenol 
18 4.922 methylpyrrole isomer 87 21.070 azepan-2-one 
19 5.083 pyrrole 88 21.930 unknown 
20 5.341 toluene 89 22.220 unknown 
21 5.555 methylthiophene 90 22.521 methylbenzothiazole 
22 5.673 ethylhexene 91 22.812 diethylpyrazine 
23 5.759 isopropylfuran 92 23.574 unknown 
24 5.877 dimethylpentene 93 24.101 2-methylquinoline 
25 6.038 dimethylhexadiene 94 30.472 unknown 
26 6.113 ethylpyrrole 95 36.208 unknown 
27 6.252 methylpyridine isomer 96 41.958 3,9-diazatricyclo 

[7.3.0.0(3,7)]dodecan-2,8-dione 
28 6.359 methylpyridine isomer 97 49.453 unknown 
29 6.606 ethylmethylcyclopentene 98 55.262 triphenylphosphine oxide 
30 6.670 methylpyrrole isomer  
31 6.777 methylcyclopentanone 
32 6.863 methylpyrrole isomer 
33 7.045 unknown 
34 7.238 ethylbenzene 
35 7.303 dimethylpyrrole 
36 7.464 xylene isomer 
37 7.818 dimethylpyridine isomer 
38 7.871 unknown 
39 8.064 xylene isomer 
40 8.450 benzylamine 
41 8.526 unknown 
42 8.933 dimethylpyrrole isomer 
43 9.029 ethylpyrrole isomer 
44 9.137 dimethylpyrrole isomer 
45 9.308 dimethylpyridine isomer 
46 9.587 ethylpyrrole isomer 
47 9.941 propylbenzene 
48 10.027 trimethylpyrrole 
49 10.188 ethyltoluene isomer 
50 10.284 ethyltoluene isomer 
51 10.370 trimethylbenzene isomer 
52 10.563 ethylmethylpyrrole 
53 10.745 aniline 
54 10.906 phenol 
55 11.324 trimethylbenzene isomer 
56 11.732 ethylmethylpyrrole isomer 
57 12.043 ethylmethylpyrrole isomer 
58 12.118 trimethylpyrrole 
59 12.268 trimethylbenzene isomer 
60 12.343 ethylmethylpyrrole isomer 
61 12.461 ethylmethylpyridine 
62 12.633 ethylhexanol 
63 12.783 dimethylcyclopent-2-en-1-one 
64 13.266 diethylbenzene isomer 
65 13.609 diethylbenzene isomer 
66 14.006 unknown 
67 14.424 pyrrolidinone 
68 14.585 cresol 
69 15.047 dimethylethylpyrrole isomer 
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Appendix 2 
 
Table A2.1 Tentatively identified pyrolysis products and unidentified products from 
the MIEX® HPO fraction. 
 
Peak 
 No 

R.T. 
(mins) 

Compound Peak 
 No 

R.T. 
(mins) 

Compound Peak 
 No 

R.T. 
(mins) 

Compound 

1 1.168 methylpropane 55 13.380 2-methyl-2-cyclopenten-
1-one 

109 35.144 dimethylnaphthalene 
isomer 

2 1.235 acetaldehyde/1,3-butadiene 56 15.417 coumalin 110 35.625 dimethylnaphthalene 
isomer 

3 1.301 methylpropene 57 15.506 citraconic anhydride 111 35.782 dimethylnaphthalene 
isomer 

4 1.346 methanethiol 58 16.386 methylfurfural 112 36.028 benzofuran 
5 1.435 isocyanic acid 59 16.608 2-cyclopenten-1-one 113 36.196 unknown 
6 1.491 cyclopropane 60 16.776 ethyltoluene 114 36.867 dimethylnaphthalene 

isomer 
7 1.702 cyclobutane/acetone/furan 61 16.965 butanedinitrile 115 38.836 naphthalenol 
8 1.847 2-methyl-1,3-butadiene 62 17.133 phenol 116 39.430 trimethylnaphthalene 

isomer 
9 1.936 dimethylcyclopropane 63 17.445 unknown 117 40.415 trimethylnaphthalene 

isomer 
10 2.014 1,3-pentadiene 64 17.701 benzonitrile 118 40.751 ethyl phthalate 
11 2.159 1,3-cyclopentadiene 65 18.147 C3 benzene 119 41.334 trimethylnaphthalene 

isomer 
12 2.537 2-methylpropanone 66 18.292 benzofuran 120 42.858 unknown 
13 2.682 cyclopentadiene 67 18.415 methylstyrene 121 44.238 unknown 
14 2.771 3-buten-2-one 68 18.793 dimethyl-2-cyclopenten-

1-one 
122 45.013 tetradecanoic acid 

15 2.838 acetic acid 69 19.428 ethylhexanol 123 45.901 tetradecane 
16 2.927 2-methylpropanal 70 20.053 methylfuranone 124 46.362 anthracene 
17 3.060 acetic acid 71 20.510 cresol isomer 125 47.645 unknown 
18 3.250 methylfuran 72 20.933 unknown 126 48.400 hexadecanoic acid 
19 3.428 methylpentadiene isomer 73 21.424 cresol isomer 127 48.535 butyl phthalate 
20 3.762 unknown 74 21.624 unknown 128 51.378 pentadecane 
21 3.862 1-methyl-3-cyclopentadiene 75 22.438 methylindane 129 54.958 1,2-benzenedicarboxylic 

acid 
22 4.140 methylpentadiene isomer 76 22.784 unknown  
23 4.296 3-methyl-2-butanone 77 22.918 unknown 
24 4.418 benzene 78 23.052 dimethylphenol isomer 
25 4.652 cyclopentanone 79 23.164 unknown 
26 5.042 isooctane 80 23.297 methylbenzofuran 
27 5.119 propanoic acid 81 23.676 cyclopentasiloxane 
28 5.342 dimethylfuran 82 23.922 dimethylstyrene 
29 5.665 unknown 83 24.602 dimethylphenol isomer 
30 5.943 unknown 84 24.691 dimethylphenol isomer 
31 6.143 acetamide 85 25.070 benzoic acid 
32 6.633 dimethylcyclopentadiene 86 25.282 ethylphenol 
33 6.934 pyrrole 87 25.818 dimethylphenol isomer 
34 7.212 unknown 88 25.896 tetramethylbenzene 
35 7.769 toluene 89 26.131 unknown 
36 7.936 methylthiophene isomer 90 26.443 dimethylphenol isomer 
37 8.114 methylcyclohexanone 91 26.733 naphthalene 
38 8.226 methylthiophene isomer 92 27.035 dihydrobenzofuran 

isomer 
39 8.437 unknown 93 27.771 dimethylbenzofuran 
40 8.749 unknown 94 28.318 unknown 
41 9.027 unknown 95 28.441 benzofuranone 
42 9.150 siloxane 96 29.356 unknown 
43 9.695 trimethylfuran 97 29.457 dimethylacetophenone 
44 9.784 2-furancarboxaldehyde 98 30.350 unknown 
45 9.951 unknown 99 30.707 trimethylphenol isomer 
46 10.574 methylpyrrole 100 30.808 trimethylphenol isomer 
47 10.752 unknown 101 31.109 methylnaphthalene 

isomer 
48 11.064 unknown 102 31.333 trimethylphenol isomer 
49 11.409 ethylbenzene 103 31.444 phthalic anhydride 
50 11.965 xylene isomer 104 31.724 methylnaphthalene 

isomer 
51 12.366 xylene isomer 105 32.260 methoxyacetophenone 
52 12.433 dimethylthiophene isomer 106 33.199 unknown 
53 12.734 dimethylthiophene isomer 107 33.546 unknown 
54 13.157 styrene 108 34.742 dimethylbenzofuranone 
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Table A2.2 Tentatively identified pyrolysis products and unidentified products from 
the MIEX® TPIB fraction. 
 

Peak 
 No 

R.T. 
(mins) 

Compound 

1 0.965 propylene 
2 1.132 2-methylpropene 
3 1.565 acetone 
4 1.743 methylbutadiene 
5 2.042 cyclopentadiene 
6 4.284 benzene 
7 7.780 toluene 
8 8.557 unknown 
9 9.523 cyclotrisiloxane 
10 11.543 unknown 
11 11.765 ethylbenzene 
12 12.165 xylene 
13 13.164 styrene 
14 16.895 phenol 
15 17.462 benzonitrile 
16 17.940 alkylbenzene 
17 19.239 2-ethylhexanol 
18 20.261 indene 
19 21.160 cresol 
20 23.371 unknown 
21 24.649 benzoic acid 
22 24.849 unknown 
23 25.049 unknown 
24 25.216 naphthalene 
25 26.771 unknown 
26 30.017 unknown 
27 30.817 methylnaphthalene isomer 
28 31.162 phthalic anhydride 
29 31.440 methylnaphthalene isomer 
30 35.298 dimethylnaphthalene 
31 35.899 methyl phthalate 
32 36.556 acenaphthylene 
33 40.482 ethyl phthalate 
34 42.986 unknown 
35 43.866 unknown 
36 44.000 unknown 
37 44.324 2,4-diphenyl-4-methyl-2-(Z)-pentene 
38 44.804 tetradecanoic acid 
39 46.883 1,2-benzenedicarboxylic acid 
40 47.151 cyclotetradecane 
41 49.980 siloxane 
42 50.542 unknown 
43 51.455 unknown 
44 52.536 unknown 
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Table A2.3 Tentatively identified pyrolysis products and unidentified products from 
the MIEX® TPIN fraction. 
 
Peak 
 No 

R.T. 
(mins) 

Compound Peak 
 No 

R.T. 
(mins) 

Compound 

1 1.095 methylpropene / 1,3-butadiene 73 48.383 hexadecanoic acid 
2 1.206 methanethiol 74 48.507 butyl phthalate 
3 1.362 unknown 75 48.631 3,9-diazatricyclo[7.3.0.0(3,7)] 

dodecan-2,8-dione 
4 1.551 acetonitrile 76 51.018 unknown 
5 1.729 methylbutadiene 77 51.604 unknown 
6 2.040 cyclopentadiene 78 52.687 unknown 
7 2.674 unknown 79 53.725 siloxane 
8 2.774 acetic acid 80 54.853 unknown 
9 2.829 2-butanone 81 54.920 1,2-benzenedicarboxylic acid 

10 3.774 methylcyclopentadiene 82 55.573 triphenylphosphine oxide 
11 4.330 benzene  
12 4.575 unknown 
13 6.898 unknown 
14 7.198 pyrrole 
15 7.921 toluene 
16 8.199 methylethanamine 
17 9.900 methylpyridine 
18 10.556 2-cyclopenten-1-one 
19 10.734 methylpyrrole isomer 
20 11.090 methylpyrrole isomer 
21 11.946 ethylbenzene 
22 12.347 xylene 
23 13.337 styrene 
24 13.837 2-methyl-2-cyclopenten-1-one 
25 15.349 citraconic anhydride 
26 16.561 ethyltoluene isomer 
27 16.706 ethyltoluene isomer 
28 16.973 butanedinitrile 
29 17.107 phenol 
30 17.652 benzonitrile 
31 18.109 ethyltoluene isomer 
32 18.365 alkylbenzene 
33 18.777 unknown 
34 19.856 dimethyl-2-cyclopenten-1-one 
35 20.491 cresol isomer 
36 21.425 cresol isomer 
37 22.138 unknown 
38 22.428 tolunitrile 
39 22.528 unknown 
40 23.018 methylbenzonitrile 
41 23.898 succinimide 
42 24.588 dimethylphenol 
43 25.112 benzoic acid 
44 25.881 methylacetophenone isomer 
45 26.260 unknown 
46 26.461 methylacetophenone isomer 
47 26.695 naphthalene 
48 27.051 unknown 
49 28.645 unknown 
50 28.979 toluic acid 
51 29.302 unknown 
52 29.425 dimethylacetophenone isomer 
53 30.306 cinnamaldehyde 
54 30.707 unknown 
55 31.075 methylnaphthalene isomer 
56 31.421 phthalic anhydride 
57 31.700 methylnaphthalene isomer 
58 31.956 benzamide 
59 32.246 dimethylacetophenone isomer 
60 32.369 methoxyacetophenone 
61 32.905 ethylbenzoic acid 
62 33.329 unknown 
63 34.110 hydroxyacetophenone 
64 35.126 unknown 
65 35.661 diacetylbenzene 
66 38.910 unknown 
67 39.703 unknown 
68 40.720 diethyl phthalate 
69 42.866 unknown 
70 44.466 unknown 
71 45.004 tetradecanoic acid 
72 45.385 1,4-diaza-2,5-dioxobicyclo 

[4.3.0]nonane 



214 

Table A2.4 Tentatively identified thermochemolysis-GC-MS products and 
unidentified products from the MIEX® HPO fraction. 
 
Peak 

No 
R.T. 

(mins) 
Compound Peak 

No 
R.T. 

(mins) 
Compound Peak 

No 
R.T. 

(mins) 
Compound 

1 3.292 methyl acrylate 63 23.658 dimethylanisole isomer 124 44.260 trimethoxybenzoic acid 
methyl ester 

2 3.618 methyl propanoate 64 24.052 dimethyl glutarate 125 44.387 methyl tetradecanoate 
3 3.878 methyl 1,3-cyclopentadiene 65 24.187 dimethylanisole isomer 126 44.969 unknown 
4 3.974 1,3-cyclohexadiene 66 24.514 dimethoxybenzene isomer 127 45.534 1,3-benzenedicarboxylic acid 

methyl ester 
5 4.434 benzene 67 24.764 trimethylphenol 128 46.360 anthracene 
6 4.559 acetone 68 25.130 methylindene isomer 129 46.633 unknown 
7 4.665 thiophene 69 25.332 methylindene isomer 130 47.286 unknown 
8 5.030 methyl isobutyrate 70 25.458 dimethoxybenzene isomer 131 47.657 hexadecanoic acid methyl 

ester 
9 5.836 methyl methacrylate 71 25.573 unknown 132 50.324 octadecanoic acid methyl 

ester 
10 5.970 methyl butanoate 72 25.621 dimethoxybenzene isomer 133 51.665 unknown 
11 6.623 methyl butenoate 73 26.517 unknown 134 52.744 unknown 
12 6.824 methylpyrrole 74 26.777 naphthalene 135 54.999 1,2-benzenedicarboxylic acid 

methyl ester 
13 6.968 1-dimethyl-3-cyclopentadiene 75 27.210 methyl toluate 136 58.904 squalene 
14 7.112 dimethyldisulfide 76 27.374 unknown  
15 7.227 dimethylaminoacetonitrile 77 28.058 unknown 
16 7.602 acetic acid methyl ester 78 28.260 dimethoxytoluene isomer 
17 7.755 methyl crotonate 79 28.328 dimethyl adipate 
18 7.976 toluene 80 28.857 dimethoxytoluene isomer 
19 8.274 methyl isovalerate 81 28.973 dimethoxytoluene isomer 
20 8.668 methyl ester of 

2-methoxy propionic acid 
82 29.108 unknown 

21 9.455 unknown 83 29.378 unknown 
22 10.223 unknown 84 29.552 dimethoxytoluene isomer 
23 10.607 unknown 85 29.802 hexanedioic acid dimethyl 

ester 
24 11.145 2-methyl pentanoate 86 30.467 unknown 
25 11.999 ethylbenzene 87 30.776 methyl dimethylbenzoate 
26 12.220 unknown 88 31.162 methylnaphthalene isomer 

27 12.403 xylene isomer 89 31.403 methyl ethylbenzoate 
28 12.480 xylene isomer 90 31.558 unknown 
29 13.411 styrene 91 31.780 methylnaphthalene isomer 
30 13.805 unknown 92 32.050 unknown 
31 13.910 2-methyl-2-cyclopentan-1-

one 
93 32.175 unknown 

32 14.074 unknown 94 32.339 methyl methoxybenzoate 
isomer 

33 14.189 dimethylsulfone 95 32.773 unknown 
34 14.554 anisole 96 33.246 trimethoxybenzene isomer 
35 14.900 trimethylphosphate 97 33.699 methyl methoxybenzoate 

isomer 
36 16.523 unknown 98 34.520 unknown 
37 16.648 ethyltoluene isomer 99 34.848 trimethoxybenzene isomer 
38 16.792 ethyltoluene isomer 100 35.176 dimethylnaphthalene isomer 
39 17.282 phenol 101 35.176 dimethylnaphthalene isomer 
40 17.378 hexahydro-1,3,5- 

trimethyl-1,3,5-triazine 
102 35.505 unknown 

41 17.590 unknown 103 35.602 dimethylnaphthalene isomer
42 17.743 benzonitrile 104 35.853 dimethylnaphthalene isomer
43 18.214 C3 benzene 104 36.085 unknown 
44 18.339 benzofuran 105 36.239 methyl phthalate 
45 18.685 ethylhexanol 106 36.925 acenaphthylene 
46 19.205 methyl fumarate 107 37.148 methyl terephthalate 
47 19.301 methylanisole 108 37.235 trimethoxytoluene 
48 19.580 dimethyl succinate 109 37.727 unknown 
49 19.946 dimethyl-2-cyclopenten-1-one 110 37.998 dimethyl terephthalate 
50 20.561 indene 111 38.375 dimethyl isophthalate 
51 21.003 dimethyl 2-methylsuccinate 112 38.762 unknown 
52 21.483 cresol 113 38.955 unknown 
53 21.608 unknown 114 39.206 unknown 
54 22.224 unknown 115 39.902 unknown 
55 22.301 methylsuccinimide 116 40.067 unknown 
56 22.551 unknown 117 40.463 methyl dimethoxybenzoate 

isomer 
57 22.657 methyl benzoate 118 40.734 methyl dimethoxybenzoate 

isomer 
58 23.013 unknown 119 41.015 unknown 
59 23.109 dimethylanisole isomer 120 41.683 unknown 
60 23.244 ethylanisole isomer 121 42.525 unknown 
61 23.321 methylbenzofuran 122 43.455 unknown 
62 23.427 ethylanisole isomer 123 44.076 unknown 
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Table A2.5 Tentatively identified thermochemolysis-GC-MS products and 
unidentified products from the MIEX® TPIB fraction. 
 

Peak 
No 

R.T. 
(mins) 

Compound 

1 3.205 methyl acrylate 
2 3.532 methyl propanoate 
3 4.357 benzene 
4 4.568 thiophene 
5 7.015 pyridine 
6 7.159 dimethylaminoacetonitrile 
7 7.370 dimethylcyanamide 
8 7.553 unknown 
9 7.821 methylformamide 
10 7.908 unknown 
11 8.292 unknown 
12 8.608 2-methoxy propionic acid methyl ester 
13 9.385 unknown 
14 10.393 N-methylacetamide 
15 10.537 unknown 
16 12.034 N-N-dimethylacetamide 
17 12.418 unknown 
18 13.320 styrene 
19 14.481 anisole 
20 15.680 unknown 
21 17.100 butanedinitrile 
22 17.264 phenol 
23 17.398 unknown 
24 17.513 unknown 
25 17.686 benzonitrile 
26 19.144 methyl fumarate 
27 19.355 ethyl hexanol 
28 19.500 dimethyl succinate 
29 20.939 unknown 
30 22.244 unknown 
31 22.580 methyl benzoate 
32 23.328 unknown 
33 26.705 naphthalene 
34 35.520 unknown 
35 36.154 methyl phthalate 
36 36.835 acenaphthylene 
37 37.919 dimethyl terephthalate 
38 38.283 dimethyl isophthalate 
39 39.320 unknown 
40 44.336 unknown 
41 46.323 methyl pentadecanoate 
42 47.609 hexadecenoic acid methyl ester 
43 49.773 unknown 
44 49.888 unknown 
45 50.283 octadecenoic acid methyl ester 
46 50.794 unknown 
47 51.063 unknown 
48 51.439 unknown 
49 51.940 unknown 
50 52.701 unknown 
51 53.106 cyclotrisiloxane 
52 53.742 unknown 
53 54.869 unknown 

54 54.937 
1,2-benzenedicarboxylic acid methyl 

ester 
55 58.825 squalene 
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Table A2.6 Tentatively identified thermochemolysis-GC-MS products and 
unidentified products from the MIEX® TPIN fraction. 
 

Peak 
No 

R.T. 
(mins) 

Compound Peak 
No 

R.T. 
(mins) 

Compound 

1 3.263 methyl acrylate 70 27.174 methyl toluate isomer 
2 3.590 methyl propanoate 71 27.328 unknown 
3 3.849 methylcyclopentadiene isomer 72 27.434 unknown 
4 3.955 methylcyclopentadiene isomer 73 27.559 methyl toluate isomer 
5 4.406 benzene 74 27.723 unknown 
6 4.636 N-N-dimethylmethanamine 75 28.215 dimethoxytoluene isomer 
7 5.001 methyl isobutyrate 76 28.292 dimethyl adipate 
8 5.797 methyl methacrylate 77 28.784 dimethoxytoluene isomer 
9 6.201 methyl butyrate 78 29.353 anisaldehyde 
10 6.786 methylpyrrole 79 29.450 ethylacetophenone 
11 7.036 pyridine 80 29.768 unknown 
12 7.228 pyrrole 81 30.116 unknown 
13 7.516 propanal 82 30.337 unknown 
14 7.593 unknown 83 30.743 methyl dimethylbenzoate 
15 7.727 methyl crotonate 84 31.042 methoxyacetophenone 
16 7.948 toluene 85 31.119 methylnaphthalene isomer 
17 8.687 2-methoxy propionic acid 

methyl ester 
86 31.361 methyl ethylbenzoate 

18 8.783 methylcarbamic acid methyl 
ester 

87 31.506 methyl cinnamate 

19 9.733 cyclotrisiloxane 88 31.737 methylnaphthalene isomer 
20 9.944 methylpyridine 89 31.998 unknown 
21 10.156 N-methylacetamide 90 32.287 methyl methoxybenzoate isomer 
22 10.626 methylfuran 91 32.538 unknown 
23 10.808 methylpyrrole isomer 92 32.731 unknown 
24 11.163 methylpyrrole isomer 93 32.934 methoxyacetophenone 
25 12.037 ethylbenzene 94 33.205 trimethoxybenzene 
26 12.219 unknown 95 33.659 methyl methoxybenzoate isomer 
27 12.412 xylene isomer 96 34.480 unknown 
28 12.489 xylene isomer 97 34.567 unknown 
29 13.410 styrene 98 35.166 unknown 
30 13.910 2-methyl-2-cyclopentanone 99 35.417 unknown 
31 14.188 dimethylsulfone 100 35.775 unknown 
32 14.524 methyl methoxybenzene 101 36.065 biphenyl 
33 15.735 unknown 102 36.191 methyl phthalate 
34 16.618 ethyltoluene 103 36.471 unknown 
35 17.060 unknown 104 36.868 acenaphthalene 
36 17.252 unknown 105 37.177 unknown 
37 17.397 trimethylbenzene 106 37.361 unknown 
38 17.551 unknown 107 37.651 unknown 
39 17.714 benzonitrile 108 37.941 dimethyl terephthalate 
40 18.214 methylstyrene 109 38.329 dimethyl isophthalate 
41 18.685 methylanisole isomer 110 38.474 unknown 
42 19.175 unknown 111 38.609 unknown 
43 19.262 methylanisole isomer 112 38.870 unknown 
44 19.397 ethyl hexanol 113 39.151 unknown 
45 19.541 dimethyl succinate 114 39.345 unknown 
46 20.012 unknown 115 39.838 unknown 
47 20.522 indene 116 40.013 unknown 
48 20.964 dimethyl 2-methyl succinate 117 40.168 1,3-benzenedicarboxylic acid methyl 

ester 
49 21.387 acetophenone 118 40.420 methyl dimethoxybenzoate isomer 
50 21.57 unknown 119 40.681 methyl dimethoxybenzoate isomer 
51 22.176 unknown 120 41.059 methyl dimethoxybenzoate isomer 
52 22.262 methyl succinimide 121 41.572 unknown 
53 22.503 unknown 122 42.192 unknown 
54 22.629 methyl benzoate 123 43.928 3-methyl-2,4,5-trioxo-1-(2-N-

propenyl)imidazolidine 
55 22.975 unknown 124 44.035 unknown 
56 23.062 dimethylanisole 125 44.366 methyl tetradecanoate 
57 23.399 ethylanisole 126 44.939 unknown 
58 23.486 unknown 127 45.036 unknown 
59 23.659 ethoxytoluene 128 46.380 phenanthrene 
61 24.468 dimethoxybenzene isomer 129 46.604 unknown 
62 25.093 methylindene 130 46.925 unknown 
63 25.421 dimethoxybenzene isomer 131 47.003 unknown 
64 25.584 dimethoxybenzene isomer 132 47.637 unknown 
65 25.700 dimethoxytoluene 133 47.950 hexadecanoic acid methyl ester 
66 25.912 methylacetophenone isomer 134 50.560 octadecanoic acid methyl ester 
67 26.336 unknown 135 52.715 unknown 
68 26.461 methylacetophenone isomer 136 54.957 1,2-benzenedicarboxylic acid methyl 

ester 
69 26.731 naphthalene 137 58.860 squalene 
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Table A2.7 Tentatively identified MSSV-GC-MS products and unidentified products 
from the MIEX® HPO fraction. 
 

Peak 
No 

R.T. 
(mins) 

Compound Peak 
No 

R.T. 
(mins) 

Compound 

1 1.948 butene 73 14.322 dimethylthiophene isomer 
2 2.205 methylpropene 74 14.527 xylene isomer 
3 2.548 methylbutene 75 15.025 trimethylcyclopentanone 
4 2.754 methylbutane 76 15.122 unknown 
5 3.177 propanal 77 15.699 unknown 
6 3.365 dimethylcyclopropane 78 15.756 isopropylbenzene 
7 3.594 methylbutene / pentene 79 16.202 tetramethylfuran 
8 4.280 cyclopentene 80 16.928 propylbenzene 
9 4.451 propanethiol 81 17.242 ethyltoluene isomer 
10 4.640 dimethylbutene isomer 82 17.368 ethyltoluene isomer 
11 4.760 dimethylbutene isomer 83 17.585 trimethylbenzene isomer 
12 5.228 methylpentene isomer 84 17.905 trimethylbenzene isomer 
13 5.491 hexane 85 18.100 phenol 
14 5.543 butanone / pentane 86 18.563 trimethylbenzene isomer 
15 5.726 methylpentene isomer 87 19.300 trimethylpyridine 
16 5.846 methylfuran 88 19.483 trimethylpyrrole 
17 6.074 methylpentene isomer 89 19.626 trimethylbenzene isomer 
18 6.189 methylcyclopentane 90 19.831 methyl isopropylbenzene 
19 6.549 cyclohexadiene 91 20.146 allylbenzene 
20 6.663 dimethylcyclopentene 92 20.277 dimethylcyclopent-2-en-1-one 
21 6.846 methylcyclopentene 93 20.734 diethylbenzene 
22 7.012 4-methyl-3-penten-2-one 94 20.872 propyltoluene 
23 7.074 benzene 95 21.009 cresol 
24 7.223 unknown 96 21.277 unknown 
25 7.280 thiophene 97 21.512 acetophenone 
26 7.589 methylpentadiene 98 21.712 ethyldimethylthiophene 
27 7.686 3-methyl-1-cyclopentene 99 21.929 cresol 
28 7.898 trimethylpentane 100 22.209 methylisopropylbenzene 
29 7.955 methylcyclohexane 101 22.369 trimethyl-2-cyclopenten-1-one 
30 8.006 2-pentanone 102 22.901 diethyltoluene 
31 8.292 heptane 103 23.135 dimethylphenol 
32 8.372 2-methyl-2-hexene 104 23.461 tetramethylbenzene isomer 
33 8.475 dimethylfuran 105 23.598 tetramethylbenzene isomer 
34 8.578 dimethylcyclopentene 106 24.158 isopropyldimethylbenzene isomer 
35 8.629 dimethylpentene 107 24.284 ethylphenol 
36 8.698 dimethylfuran 108 24.490 isopropyldimethylbenzene isomer 
37 8.846 trimethylpentane 109 24.695 methylindan 
38 9.035 dimethylpentanal 110 24.758 dimethylphenol isomer 
39 9.081 trimethylcyclopentene 111 25.450 ethylphenol 
40 9.452 methylhexatriene 112 25.615 dimethylphenol isomer 
41 9.492 methyl-2-pentanone 113 25.838 dimethylphenol isomer 
42 9.549 unknown 114 26.130 ethylmethylphenol isomer 
43 9.669 unknown 115 26.496 dimethylphenol isomer 
44 9.744 methylhexadiene 116 26.827 unknown 
45 9.795 2-methyl-3-pentanone 117 27.244 dimethylbenzofuran 
46 9.858 ethylmethylpentene 118 27.364 dimethylindazole 
47 9.938 trimethylcyclopentene 119 27.502 dimethylbenzofuran 
48 10.047 trimethylcyclopentene 120 27.753 ethylmethylphenol isomer 
49 10.161 toluene 121 27.947 ethylmethylphenol isomer 
50 10.281 methyl thiophene 122 28.136 ethylmethylphenol isomer 
51 10.441 methylheptane 123 28.336 trimethylphenol isomer 
52 10.549 methyl thiophene 124 28.982 unknown 
53 10.875 3-hexanone 125 29.279 trimethylphenol isomer 
54 10.984 dimethylhexene 126 29.439 trimethylphenol isomer 
55 11.110 trimethylcyclopentene 127 29.662 unknown 
56 11.247 methylheptene 128 30.331 methylnaphthalene 
57 11.327 unknown 129 30.811 unknown 
58 11.533 trimethylcyclopentene 130 31.491 trimethylbenzofuran 
59 11.607 ethylhexene 131 34.812 dimethylnaphthalene 
60 11.801 trimethylfuran 132 39.275 trimethylnaphthalene 
61 12.458 methylethylcyclopentene 

 

62 12.636 dimethylheptadiene 
63 12.733 methylcyclopentanone 

64 12.973 
tetramethylcyclopentene 

isomer 
65 13.030 unknown 

66 13.201 
tetramethylcyclopentene 

isomer 
67 13.362 ethylbenzene 
68 13.516 ethylthiophene 
69 13.710 xylene isomer 
70 13.762 xylene isomer 
71 13.887 dimethylcyclohexene 
72 13.990 dimethylthiophene isomer 
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Table A2.8 Tentatively identified MSSV-GC-MS products and unidentified products 
from the MIEX® TPIB fraction. 
 

Peak 
No 

R.T. 
(mins) 

Compound 

1 3.478 unknown 
2 3.639 acetone 
3 3.820 trimethylsilanol 
4 3.874 unknown 
5 3.938 unknown 
6 4.313 benzene 
7 4.387 hexamethyldisiloxane 
8 4.516 unknown 
9 4.612 heptane 

10 5.264 unknown 
11 5.489 toluene 
12 5.832 dimethylhexene 
13 5.971 methylheptene isomer 
14 6.185 methylheptene isomer 
15 7.372 ethylbenzene 
16 10.376 unknown 
17 10.451 unknown 
18 11.071 phenol 
19 12.290 unknown 
20 12.761 ethylhexanol 
21 13.745 cresol 
22 16.310 unknown 
23 16.513 unknown 
24 16.599 unknown 
25 16.749 unknown 
26 18.063 unknown 
27 19.303 unknown 
28 19.976 unknown 
29 20.756 azepan-2-one 
30 26.144 unknown 
31 28.612 unknown 
32 29.275 unknown 
33 31.529 unknown 
34 35.695 unknown 
35 37.436 unknown 
36 39.851 unknown 
37 39.957 unknown 
38 41.197 unknown 
39 43.526 unknown 
40 43.761 unknown 
41 44.188 unknown 
42 46.218 unknown 
43 46.838 unknown 
44 47.169 unknown 
45 48.558 unknown 
46 48.750 unknown 
47 52.009 unknown 
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Table A2.9 Tentatively identified MSSV-GC-MS products and unidentified products 
from the MIEX® TPIN fraction. 
 

Peak 
No 

R.T. 
(mins) 

Compound Peak 
No 

R.T. 
(mins) 

Compound 

1 3.121 unknown 75 19.554 unknown 
2 3.207 1-butene 76 19.683 dimethylindazole 
3 3.314 acetone 77 19.940 unknown 
4 3.368 2-pentene 78 20.132 unknown 
5 3.507 cyclopentene  79 20.518 C3 phenol 
6 3.593 methylpentene 80 20.754 azepan-2-one 
7 3.636 butanone 81 21.354 ethylacetophenone isomer 
8 3.721 methylfuran 82 22.137 ethylacetophenone isomer 
9 3.968 methylpentadiene 83 22.554 unknown 
10 4.054 benzene 84 23.101 unknown 
11 4.214 cyclohexene 85 23.722 unknown 
12 4.268 trimethylpentane 86 24.311 unknown 
13 4.407 heptane / dimethylcyclopentene 87 26.967 dimethylnaphthalene 
14 4.547 hexadienal 88 27.235 unknown 
15 4.804 unknown 89 27.792 unknown 
16 4.911 1-methyl-1,4-cyclohexadiene 90 33.529 unknown 
17 4.954 dimethyldisulfide 91 49.487 unknown 
18 5.050 methylcyclohexene 92 60.974 unknown 
19 5.297 toluene 

 

20 5.511 methylthiophene 
21 5.640 ethylhexene 
22 5.758 unknown 
23 6.015 dimethylhexadiene 
24 6.144 trimethylpyrazole 
25 6.411 unknown 
26 6.572 ethylmethylcyclopentene 
27 6.711 methylpyrrole 
28 6.776 cyclohexanone 
29 6.968 methylcyclopentanone 
30 7.161 unknown 
31 7.236 ethylbenzene 
32 7.311 unknown 
33 7.461 xylene isomer 
34 7.686 dimethylthiophene 
35 7.890 unknown 
36 8.083 xylene isomer 
37 8.490 dimethylfuran 
38 9.004 unknown 
39 9.432 unknown 
40 9.529 unknown 
41 10.203 ethyltoluene 
42 10.310 C3 benzene isomer 
43 10.471 dimethyltrisulfide 
44 10.771 C3 benzene isomer 
45 10.910 phenol 
46 11.328 trimethylbenzene 
47 11.660 unknown 
48 11.746 ethylmethylpyrrole 
49 12.131 trimethylpyrrole 
50 12.271 trimethylbenzene 
51 12.645 ethylhexanol 
52 12.796 dimethylcyclopent-2-en-1-one 
53 13.278 diethylbenzene 
54 13.610 cresol isomer 
55 13.749 trimethyl-2-cyclopenten-1-one 
56 14.359 unknown 
57 14.466 cresol isomer 
58 14.691 dihydromethylindene 
59 15.206 dimethylethylpyrrole 
60 15.356 unknown 
61 15.602 methylbenzofuran 
62 15.880 unknown 
63 16.009 C4 benzene 
64 16.148 unknown 
65 16.309 unknown 
66 16.758 ethylphenol isomer 
67 17.080 dihydromethylindene 
68 17.187 dimethylphenol isomer 
69 17.915 ethylphenol isomer 
70 18.258 dimethylphenol isomer 
71 18.515 unknown 
72 18.869 dimethylindan 
73 18.954 C2 phenol 
74 19.308 unknown 
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